
UC Riverside
UC Riverside Previously Published Works

Title

The future low-temperature geochemical data-scape as envisioned by the U.S. geochemical 
community

Permalink

https://escholarship.org/uc/item/1qs17737

Authors

Brantley, Susan L
Wen, Tao
Agarwal, Deborah A
et al.

Publication Date

2021-12-01

DOI

10.1016/j.cageo.2021.104933

Copyright Information

This work is made available under the terms of a Creative Commons Attribution-
NonCommercial License, available at https://creativecommons.org/licenses/by-nc/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1qs17737
https://escholarship.org/uc/item/1qs17737#author
https://creativecommons.org/licenses/by-nc/4.0/
https://escholarship.org
http://www.cdlib.org/


1

The Future Low-Temperature Geochemical Data-scape as Envisioned by the U.S. 1 

Geochemical Community 2 

Susan L. Brantley1,15, Tao Wen2, Deborah Agarwal3, Jeffrey G. Catalano4, Paul A. Schroeder5, Kerstin 3 

Lehnert6, Charuleka Varadharajan7, Julie Pett-Ridge8, Mark Engle9, Anthony M. Castronova10, Richard P. 4 

Hooper11, Xiaogang Ma12, Lixin Jin9, Kenton McHenry13, Emma Aronson14, Andrew R. Shaughnessy15, 5 

Louis A. Derry16, Justin Richardson17, Jerad Bales10, Eric M. Pierce18 6 

7 

1. Earth and Environmental Systems Institute and Department of Geosciences, The Pennsylvania State8 

University, University Park, PA, USA9 

2. Department of Earth and Environmental Sciences, Syracuse University, Syracuse, NY, USA10 

3. Advanced Computing for Science Department, Lawrence Berkeley National Laboratory, Berkeley, CA,11 

USA12 

4. Department of Earth and Planetary Sciences, Washington University, St. Louis, MO, USA13 

5. Department of Geology, University of Georgia, Athens, GA, USA14 

6. Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, USA15 

7. Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley CA, USA16 
8. Department of Crop and Soil Science, Oregon State University, Corvallis, OR, USA17 
9. Department of Geological Sciences, The University of Texas at El Paso, El Paso, TX, USA18 
10. Consortium of Universities for the Advancement of Hydrological Science, Inc, Cambridge, MA, USA19 
11. Department of Civil and Environmental Engineering, Tufts University, Medford, MA, USA20 
12. Department of Computer Science, University of Idaho, Moscow, ID, USA21 
13. National Center for Supercomputing Applications, University of Illinois, Urbana, IL, USA22 
14. Department of Microbiology and Plant Pathology, University of California, Riverside, USA23 
15. Department of Geosciences, The Pennsylvania State University, University Park, PA, USA24 
16. Department of Earth and Atmospheric Sciences, Cornell University, Ithaca NY, USA25 
17. Department of Geosciences, University of Massachusetts Amherst, Amherst, MA, USA26 
18. Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN USA27 

28 
Corresponding author: 29 
Susan L. Brantley, Earth and Environmental Systems Institute and Department of Geosciences, The 30 
Pennsylvania State University, University Park, PA, USA 31 
Email: sxb7@psu.edu 32 

33 
34 

CRediT authorship contribution statement 35 
Susan L. Brantley: Funding acquisition, Supervision, Conceptualization, Investigation, Writing - 36 
original draft, Writing - review & editing. Tao Wen: Supervision, Conceptualization, Investigation, 37 
Writing - review & editing. Deborah Agarwal: Supervision, Conceptualization, Investigation, Writing - 38 
review & editing. Jeffrey G. Catalano: Supervision, Conceptualization, Investigation, Writing - review 39 
& editing. All other authors: Writing - review & editing. 40 

41 
42 

43 



 2

Abstract 44 

Data sharing benefits the researcher, the scientific community, and the public by allowing the impact of 45 

data to be generalized beyond one project and by making science more transparent. However, many 46 

scientific communities have not developed protocols or standards for publishing, citing, and versioning 47 

datasets. One community that lags in data management is that of low-temperature geochemistry (LTG). 48 

This paper resulted from an initiative from 2018 through 2020 to convene LTG and data scientists in the 49 

U.S. to strategize future management of LTG data. Through webinars, a workshop, a preprint, a townhall, 50 

and a community survey, the group of U.S. scientists discussed the landscape of data management for 51 

LTG – the data-scape. Currently this data-scape includes a “street bazaar” of data repositories. This was 52 

deemed appropriate in the same way that LTG scientists publish articles in many journals. The variety of 53 

data repositories and journals reflect that LTG scientists target many different scientific questions, 54 

produce data with extremely different structures and volumes, and utilize copious and complex metadata. 55 

Nonetheless, the group agreed that publication of LTG science must be accompanied by sharing of data in 56 

publicly accessible repositories, and, for sample-based data, registration of samples with globally unique 57 

persistent identifiers. LTG scientists should use certified data repositories that are either highly structured 58 

databases designed for specialized types of data, or unstructured generalized data systems. Recognizing 59 

the need for tools to enable search and cross-referencing across the proliferating data repositories, the 60 

group proposed that the overall data informatics paradigm in LTG should shift from “build data 61 

repository, data will come” to “publish data online, cybertools will find”. Funding agencies could also 62 

provide portals for LTG scientists to register funded projects and datasets, and forge approaches that cross 63 

national boundaries. The needed transformation of the LTG data culture requires emphasis in student 64 

education on science and management of data. 65 

 66 

Keywords 67 

Data management, data repositories, geochemistry, metadata, data sharing, open science 68 

 69 

Highlights 70 

1. Scientists use a wide variety of data repositories for heterogeneous LTG datasets 71 

2. Both structured and unstructured databases are needed to store LTG data online 72 

3. Powerful search tools and data portals are needed to enable LTG data discovery 73 

 74 

75 
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1. Introduction 76 

Scientific communities and publishers within geosciences are publishing their data online and 77 

promoting new ways to analyze these data (e.g. ASCH AND JACKSON, 2006; CHRISTENSEN et al., 2009; 78 

HORSBURGH et al., 2011; ASPEN INSTITUTE, 2017; CONSORTIUM OF UNIVERSITIES FOR THE 79 

ADVANCEMENT OF HYDROLOGIC SCIENCE INC. (CUAHSI), 2018; COUSIJN et al., 2018; BERGEN et al., 80 

2019; ESIP DATA PRESERVATION AND STEWARDSHIP COMMITTEE, 2019; GIL et al., 2019; STALL et al., 81 

2019; LIU et al., 2020; U.S.G.S., 2020a). Some publishers have promoted and agreed to the so-called 82 

Findability, Accessibility, Interoperability, and Reusability of digital assets (FAIR Data Principles). A 83 

few geoscience communities (e.g., climate, oceanography, cryosphere, ecology, genetics, atmospherics, 84 

and agricultural science) have progressed toward these goals in terms of managing their data online. The 85 

growth of the Open Science and Open Data movement has led publishers and data repositories in the 86 

Earth Sciences to collaborate as part of Coalition for Publishing Data in the Earth & Space Sciences 87 

(COPDESS, http://www.copdess.org), a group that is promoting best practices for data in publications in 88 

geosciences (COPDESS, 2020). Now, journals managed by the American Geophysical Union have opted 89 

into the ‘Enabling FAIR Data’ project to increasingly require data to be submitted to trusted, certified 90 

data repositories where they can be cited with a digital object identifier (DOI). The explosion in the use of 91 

sensors, remote sensing, automatic instrumentation, data analytics, and the increasing storage of data 92 

online in a globally connected information system is driving an increasingly efficient and accessible data 93 

management system or “data-scape” in the Earth Sciences. 94 

However, as this movement has progressed, improvements remain slow in many subfields of 95 

geoscience, including low-temperature geochemistry, referred to here in this paper as LTG. For example, 96 

the transition in late 2018 to requiring basic data sharing for submissions to the journal of Geochimica et 97 

Cosmochimica Acta resulted in initial resistance by many authors. Today, a majority of authors choose to 98 

attach their data to the published manuscript as supporting material, which often remains behind a 99 

paywall. This approach is generally preferred by many authors as this does not require time-consuming 100 

data formatting or input protocols for a separate repository. As enforcement of new data management 101 

policies has intensified by journals and funding agencies, submissions to geochemical data repositories 102 

have increased for rock chemistry (ALBAREDE AND LEHNERT, 2019). In addition, papers are beginning to 103 

appear that describe meta-analyses for topics as wide-ranging as arsenic and methane in groundwater 104 

(PODGORSKI AND BERG, 2020; WEN et al., 2021), soil organic carbon (GOMES et al., 2019), and nutrients 105 

in rain and groundwater (AMOS et al., 2018), and these papers highlight the utility of more extensive data 106 

sharing. Nonetheless, resistance to data management in repositories remains in the LTG community, as it 107 

does for other communities. 108 
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To understand this situation and to chart an appropriate roadmap for forward movement for 109 

management of LTG data within one country (U.S.), a two-year initiative was pursued to discuss the LTG 110 

data-scape (funded by the U.S. National Science Foundation, NSF). Four webinars were run (see 111 

Acknowledgements) and a 2.5-day workshop was held in February 2020 in Atlanta (Georgia, U.S.) with 112 

participants from data science and geochemistry communities from within the NSF-funded LTG 113 

community. Workshop participants posted this paper in a preprint form at EarthArXiv (BRANTLEY et al., 114 

2020), soliciting reader comments (none were posted). The posted paper was also sent to 350 geochemists 115 

funded by the NSF with i) a survey soliciting feedback and ii) an invitation for an online discussion. The 116 

survey and discussion included 27 and 24 participants respectively. This paper summarizes the outcome 117 

of all these discussions, noting that the participants were biased toward practicing geochemists with only 118 

a small number of data scientists. Thus, this paper is unusual compared to many other papers about data 119 

management in that it is mostly from the perspective of bench and field scientists within one country 120 

(U.S.). The intent was to consider the problem of data management with respect to the specific 121 

characteristics of LTG data and to propose a forward trajectory as new data systems are developed in the 122 

future. This paper is necessarily informed from that perspective because of the funding, but it is offered 123 

also as an invitation for other scientists worldwide to contemplate the LTG data-scape into the future. 124 

For this paper, “LTG” describes any geoscience that investigates earth processes pertaining to the 125 

chemistry of surficial Earth materials including water and biota. This field includes, but is not limited to, 126 

chemical and biogeochemical cycling of elements, aqueous processes, mineralogy and chemistry of earth 127 

materials, the role of life in the evolution of Earth’s geochemical cycles, biomineralization, medical 128 

mineralogy and geochemistry, and the geochemical aspects of critical zone science and geomicrobiology. 129 

In addition to these topics, LTG also includes tools, methods, and models pertaining to the fields listed 130 

above. This LTG definition is drawn from the definition currently used by the NSF for the U.S. LTG 131 

community. 132 

At the workshop, we recognized that some sub-sets of the LTG community have already self-133 

organized their approaches to data management, sometimes initiating their own best practices for data 134 

management systems (e.g., Table 1). To enable conversation at the workshop among more sub-sets of the 135 

LTG and data informatics communities, a short lexicon of terms was compiled (Table 2). We discovered 136 

that words were often used differently by domain scientists (geochemists) and data scientists, and even 137 

sometimes by different individuals within each community. The lexicon was also helpful for participants 138 

from communities that had yet to develop data management systems (e.g., Table 3). 139 

The main questions at the workshop addressed data management and sharing from different 140 

perspectives. We focused on three areas. First, who are the different stakeholders interested in 141 

coordinated management of LTG data, and what does each of them want to achieve? To answer this 142 
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question, we discussed what we perceive to be the characteristics of the optimal management system from 143 

the perspective of different stakeholders (e.g., data producers, data users, modelers, funders, journal 144 

editors, government agencies, the public). Second, we asked, how can we best secure the longevity of 145 

data for the future given that a typical research project in LTG in the U.S. is only three years without 146 

possibility of renewal? In this regard we noted that data archived in older papers can still be read, while 147 

data in “aging” electronic peripheral devices such as floppy disks can only be read by specialty workers, 148 

emphasizing the importance of the type of media for storage and the resources available for data storage 149 

(e.g. CHRISTENSEN et al., 2009). Similarly, data stored within proprietary software may not be accessible 150 

in the future if the software changes or is not maintained. Finally, we looked at the question, what does 151 

the data life cycle look like today for LTG? We noted that many LTG practitioners only collect small 152 

volumes of data and publish it in papers, while others pursue meta-analysis of multiple datasets. Although 153 

the original intent of the effort was to provide a definitive roadmap, it may not be surprising that we did 154 

not develop an “answer” here, but rather we describe a broad trajectory for a future data-scape for LTG 155 

data in the U.S. as a step forward. 156 

 157 

2. Characteristics of LTG data 158 

Geochemical data are highly heterogeneous in usage, type, volume, structure, dimensionality, 159 

quality, and character. The one trait that these data tend to share is that they often summarize chemical 160 

analysis or features related to chemical makeup along with estimates of sensitivity, reproducibility, 161 

accuracy, and type of analysis. An important characteristic of geochemical data is also that they are used 162 

not only by other chemists and geochemists, but also by scientists from other fields (e.g., environmental 163 

science, geophysics, agronomy, public health) as well as sometimes by the public (e.g., water quality, air 164 

quality). 165 

Given these many types of and uses for LTG data, the structure of the data varies from one 166 

dataset to another. Analyses can focus on the 100+ elements, the 200+ stable and radiogenic isotopes, 167 

5000+ minerals, or the thousands of inorganic and organic species that have been identified. A schematic 168 

example showing chemical analyses that might be made for one soil sample is shown in Figure 1. A few 169 

data characteristics are emphasized below. 170 

Some geochemical data are sample-based. A “sample” is a physical object that can be archived 171 

(Table 2). Samples refer to both laboratory- and field-derived objects and can include any medium from 172 

liquids to solids to gases. They can derive from any of the 5000+ minerals known to form naturally 173 

(FLEISCHER, 2018) or from the large number of possible mixtures of these minerals (e.g. rocks, rock 174 

aggregate, sediments, soils). In addition, geochemists also study non- and nano-crystalline materials 175 

(HOCHELLA et al., 2019). Of great importance among the non-crystalline materials are all the different 176 
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types of organic matter (e.g. HEMINGWAY et al., 2019) as well as living and non-living organisms and 177 

biotic waste materials. Finally, geochemists are not just interested in analyses of natural samples: they 178 

also investigate the human-made (i.e., engineered) materials and -associated wastes (i.e., incidental 179 

materials). 180 

With each sample, geochemists can complete bulk analyses but they also can separate a single 181 

sample into multiple daughter sub-samples or they can extract the materials for different species or 182 

different associations or affinities (e.g. PICKERING, 1981) as exemplified in Figure 1. Thus, Earth 183 

materials (e.g., rocks, soils) are ground for bulk analysis while, in addition, individual fragments are 184 

separated and analyzed or targeted for analysis in a thin section using a variety of spectroscopic or 185 

microscopic tools. Similarly, when organisms are analyzed, the analysis can be for the bulk or for a 186 

specific part such as the leaves, trunk, xylem, brain, otolith, etc., and for each body part, the analysis can 187 

target the bulk or a sub-part such as the entrained water (e.g. ORLOWSKI et al., 2016). And of course, each 188 

of these sample-based analyses can target concentrations of different species: for example, elements, 189 

molecules, isotopes, isotopically-labelled molecules, etc. In addition, geochemical analyses do not just 190 

consist of tabulated analytical data; rather, they consist of spectra, diffractograms, photographs, 191 

spectrograms, and other types of images or pixelated data that are often not reported as tables. The 192 

volume of data associated with these datasets can be much, much larger than sample-based analytical 193 

data. Thus, whereas early datasets could be accommodated in a notebook, these newer and larger data 194 

volumes can only be accommodated in online data systems (Figure 2). 195 

In contrast to sample-based data, LTG geochemists also collect time-series (“longitudinal”) or 196 

field-based measurements (taken without collecting a sample) of liquids, gases, biota, and solids. Some of 197 

these time-series measurements are made by field workers, but increasingly, measurements are made with 198 

sensors (e.g. KIM et al., 2017) or remote sensing (e.g. BERATAN et al., 1997). Temporal variations are 199 

measured in real-time or intermittently over long durations (e.g. BENSON et al., 2010). Advances 200 

occurring in the technology of sensors and sensor networks are rapidly driving new types of data 201 

collection for water quality, soil and rock characteristics, gas composition, and biological properties.  202 

Regardless of whether their measurements are sample-based, field measurement-based, or time-203 

series, LTG scientists place great stock in new types of analyses. The upshot of this is that many LTG 204 

papers summarize data that are purely research grade. As shown schematically in Figure 3, these 205 

measurements are highly non-routine (one-of-a-kind or first-of-a-kind), in contrast to more established, 206 

routine measurements with accepted standards. Figure 3 emphasizes that, as innovation in the 207 

measurement protocol decreases from left to right, the ease of data management increases. 208 

Finally, in addition to these sample-, field- and sensor-based measurements, many geochemical 209 

“data” now increasingly consist of model set-up (including input parameters), outputs, and/or 210 
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calculations. One type of model output that is often thought of as data include measurements reported 211 

from instruments where manufacturers keep data processing protocols proprietary, leaving open access to 212 

raw data limited and sequestered behind a paywall limited to licensed users. Other types of model output 213 

are also stored and used by geochemists. For example, global oceanic chemistry models used by 214 

oceanographers and geochemists can yield very large datasets of salinity or trace element content versus 215 

location. These models can include predicted data, so-called “re-analysis” data, model workflows, and 216 

model programs, and often the community wants to have access to all of these “data” sets (KALNAY et al., 217 

1996). In addition to the output “data”, the tabulated input values are also of importance for each model 218 

run. 219 

Given all of this heterogeneity in data types and model outputs, some LTG datasets are large in 220 

volume while others are very small. For example, model-related output “data” are commonly associated 221 

with very large “data” volumes, as are sensor or remote sensing data, both of which can provide high- 222 

spatiotemporal resolution. In contrast, many sample-based datasets may be relatively small in volume, at 223 

least partly because of the expense and time necessary to collect, prepare, sub-sample, and analyze 224 

(Figure 1). However, almost all geochemical data are large in terms of types of metadata that are needed. 225 

‘Metadata’ refers to the information related to “who, what, when, where, how” for the data values (e.g. 226 

MICHENER, 2006; PALMER et al., 2017; WEN, 2020). 227 

228 

3. Lack of best practices, standards, and harmonization229 

The design of effective data repositories – whether for LTG or other disciplines – depends not 230 

only on characteristics of the data as described above, but also upon the goal of the investigator and the 231 

overall workflow for data generation and processing (RUEGG et al., 2014). As a result, even where many 232 

examples of a certain type of data have been collected, and even when they may be organized into online 233 

libraries, it is rare in LTG that there is a generally accepted standard for the data. For example, 234 

quantitative phase analysis of Earth materials, whether they are rocks, soils, sediments, or something else, 235 

is fundamental to LTG, and there are several libraries for such data (Table 1), but formats for sample 236 

preparation for X-ray diffraction, data collection, and meta-analysis have not been established within the 237 

community. In another example, the team behind one NSF-supported geochemical data repository 238 

(EarthChem Library) emphasized the most common methods and sample types into templates for 239 

petrologists to submit rock chemical data. When the team used the same template for communities 240 

beyond petrology, they were met with resistance because non-petrologists preferred templates tailored to 241 

their own workflows. As a consequence of the many workflows, practicing LTG scientists consistently 242 

reported that data and metadata protocols from highly standardized data repositories were difficult to 243 

implement for their own datasets. For example, sometimes metadata that is important to one discipline 244 
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might not asked for in a specialized template (e.g., a soil scientist might want to indicate the soil order in 245 

a template for chemical composition but have no place to include that information), or metadata is 246 

required that was not collected (e.g., a soil scientist might not know the geologic age of a given 247 

formation). 248 

The variety of workflows that characterize LTG is not just a consequence of competing egos or 249 

laboratories. Rather, the different workflows result from groups asking different questions about different 250 

processes in different types of environments that require different approaches. For example, soil scientists 251 

and geologists collect and analyze soils to pursue questions within LTG. But the former analyzes only the 252 

<2 mm fraction (because it impacts soil fertility the most) while the latter use the entire sample for 253 

analysis (because they calculate mass balance compared to parent rock). Thus, for routine analyses of 254 

different types of soils, the National Cooperative Soil Survey (NCSS) database (N.R.C.S., 2020) is useful 255 

because all the soils have been sieved in the same way before an analysis, but this database is not 256 

necessarily useful for mass balance calculated by geologists (BRIMHALL AND DIETRICH, 1987). In another 257 

example, many in-vitro analytical methods have been developed to assess the health impact and 258 

bioaccessibility of contaminants in dust particles in the human lungs (WISEMAN, 2015) but these 259 

protocols differ significantly from analyses aimed to understand leachability in environmental systems 260 

(PICKERING, 1981). 261 

Another reason for the lack of agreement on standards and protocols of measurement and 262 

reporting data results from LTG practitioners’ strong emphasis on development of new and/or non-263 

standardized technique – for example in sampling methodology, chemical extraction, analytical 264 

technique, and laboratory protocol. This emphasis results not only in innovative new methodologies, but 265 

also in a lack of data standards, difficulty in creating templates for data or metadata input, and ultimately, 266 

difficulty in comparing datasets within the LTG community. Here, data standards are defined as policies 267 

or protocols that determine how geochemical data and metadata should be formatted, reported, and 268 

documented. Many LTG scientists have not heard of nor used standards such as the Observations and 269 

Measurements Protocol of the International Organization for Standardization (ISO) (COX, 2011). 270 

Likewise, few LTG scientists are aware of the so-called ‘Requirements for the Publication of 271 

Geochemical Data’ which were agreed upon in 2014 by an editors’ roundtable (a roundtable that included 272 

geochemists). These requirements explain how to report data and metadata in structured, standardized 273 

manners (GOLDSTEIN et al., 2014). 274 

Even where geochemical data are already compiled and accessible in one place such as the Water 275 

Quality Portal [co-sponsored by the U.S. Geological Survey (USGS), the Environmental Protection 276 

Agency (EPA), and the National Water Quality Monitoring Council (NWQMC)], the data are not 277 

harmonized, i.e., units, formats, analytical methods, detection limits, and other parameters are not 278 
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presented consistently (e.g. SPRAGUE et al., 2016; SHAUGHNESSY et al., 2019). Apparently, data standards 279 

for agreed-upon units and measurement protocols have never emerged because i) communities have never 280 

felt enough need for or placed enough value on such standardization or ii) variations in protocols were 281 

simply necessary to answer the proposed research questions. Neither have LTG scientists addressed, as a 282 

community, how to cite and reward or incentivize scientists who collate, curate, synthesize, and share 283 

published data for LTG or for other communities (data interoperability). The lack of standards, formats, 284 

and norms has in turn hampered the development of automated flows of geochemical data into databases. 285 

For these and other reasons, geochemical data compilations have grown slowly (LEHNERT AND 286 

ALBAREDE, 2019). 287 

 288 

4. Current data management systems  289 

To date, a variety of data management systems have been used by LTG scientists, including 290 

storage in notebooks, offline data infrastructures (e.g., individual computers), published works (e.g., 291 

theses, preprints, and journal publications and supplemental material), and online data infrastructures 292 

(e.g., personal webpages, dedicated data repositories). A schematic showing the trend of data 293 

management is shown in Figure 2. As emphasized by the red-shaded arrow, the number of data values 294 

diminish from left to right as data are culled after quality control checks or data are not deemed important 295 

enough to save. The most structured form of data management system indicated on Figure 2 is a shared 296 

online relational database (upper right). Only a few of these are available for LTG data (see, for example, 297 

Supplementary Material). Such databases represent the most structured and demanding management 298 

systems, but they also promote the easiest data discovery, re-use for meta-analysis, and collaboration.  299 

Some of the data repositories that have a track record of success for data types of interest to LTG 300 

(time-series water data, rock chemistry, atmospheric radiation measurements, CO2 flux, etc.) are 301 

summarized in Table 1. Some of these are maintained and used as libraries (e.g., for spectra, electron 302 

micrographs, or diffraction patterns) and not data repositories. Such libraries do not generate DOIs for the 303 

data provider and may only retain a limited number of examples for each entity. An instructive example 304 

for mineralogy is the International Centre for Diffraction Data (ICDD) that offers a detailed (behind the 305 

paywall) library of experimental and theoretical mineral structure data that serves as a reference for 306 

identification and quantification of minerals. Other open-source databases for mineral structures are also 307 

available (e.g., Mineralogical Society of America Crystal Structure database).   308 

Given that only a few highly structured targeted databases for LTG data are available, and that 309 

libraries are not true data repositories, many other LTG data types lack appropriate repositories (a few 310 

examples are listed in Table 3). For these “orphaned” data types, scientists either publish their data in a 311 

journal article or its supplement, leave it unpublished on their computer or in a thesis, publish it online on 312 
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their personal website, or use generalized and unstructured data repositories that can accommodate any 313 

type of data file and can assign a DOI to the dataset. These generalized data repositories provide little 314 

curation of metadata and do not police data quality. On the other hand, they generally provide long-term 315 

storage and require that the data provider record a modicum of metadata to allow indexing and to enable 316 

search features. 317 

Some of these general-purpose repositories operate behind a firewall or paywall, while some are 318 

open and free. Some can be used by anyone while others are limited to specific clientele (e.g., from a 319 

specific university, country, or funded program) or types of data. For example, geochemists in the USGS 320 

use ScienceBase (U.S.G.S., 2020c), geoscientists funded by the U.S. Department of Energy (DOE) use 321 

ESS-DIVE (see Supplemental Material) for ecosystem and watershed data (VARADHARAJAN et al., 2019) 322 

and the ARM data center for cloud and aerosol properties, and EDX for data related to fossil fuel energy 323 

(N.E.T.L., 2020). Other such generalized data repositories are also becoming available through 324 

publishers, universities, federal agencies, and private entities. Examples that are used by some NSF-325 

funded geochemists are EarthChem Library and CUAHSI’s HydroShare (see Supplemental Material). No 326 

portal links to all the many data repositories used by LTG scientists. 327 

Despite the examples in Table 1, most LTG scientists are not using data repositories. Thus, even 328 

for those parts of LTG science for which data management systems have been developed, many 329 

practitioners of LTG do not understand the repositories, how to use them, how to manage their data 330 

efficiently to prepare to ingest data into the repository, nor what kind of science they could enable. The 331 

problem is somewhat circular in nature because some of the difficulties in data management could be 332 

reduced by ‘best practices’ in data management throughout the data life cycle, but often the data 333 

repository itself is simply not well suited to the scientists’ data needs, leaving it less likely to be used 334 

(Figure 4). The bottleneck where LTG scientists are not uploading data into online repositories (Figure 2) 335 

is likely impacting the kind of LTG science that is completed (Figure 4).  336 

 337 

5. Lessons learned 338 

Several important lessons were learned (Table 4) by inspecting the history of a few U.S.-centric 339 

LTG data management systems (see, Supplemental Materials). Figure 2 shows a conceptual schematic for 340 

the evolution of these management systems. From bottom to top on Figure 2, systems increasingly allow 341 

efficient and easy data discovery outside of the data producers’ home group, improving the ease of 342 

collaboration across groups and disciplines. At the same time, however, increasing the utility and 343 

efficiency for the data user from top to bottom on Figure 2 entails more formalized and rigid rules for 344 

formatting and uploading data (i.e., from left to right on the graph), limiting flexibility for the data 345 

provider. Progress along the large arrow from left to right and bottom to top on the diagram also requires 346 
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increasing effort by the community to prioritize data standards. With data standards, data harmonization is 347 

more likely, and data access therefore becomes easier for the data user, but formatting demands increase 348 

for the data provider. Six lessons with respect to LTG gleaned from the initiative are summarized below 349 

and in Figures 3-4 and Table 4. The order of subsections below roughly moves from lessons about the 350 

more general aspects of workflows to lessons that are more specific to data management systems in LTG. 351 

 352 

5.1. The data enterprise from measurement to meta-analysis is complex and provides multiple 353 

opportunities for error, but systematic management of data and metadata leads both to improvements in 354 

the quality of the dataset and identification of large-scale trends within the data. 355 

Few individuals in LTG understand the entire trajectory of data from sample collection / sensor 356 

deployment to publication. Errors can creep in at all steps and only a very few people within this 357 

enterprise can assure the quality of the data. These personnel tend to be those who made or supervised the 358 

measurements or who were responsible for reference standards, methodologies, instrumentation upkeep, 359 

and quality assurance measures. These personnel need to be involved in organization of metadata and 360 

assurance of data quality. Even when the data volume is small, metadata often becomes highly complex, 361 

especially if the information is to be of lasting usefulness [a point also made for ecological data 362 

(MICHENER, 2006)]. LTG metadata is complex partly because interpretation of chemical analyses requires 363 

understanding details of sub-sampling, extractions, or density separations before analysis (Figure 1). 364 

As data are moved from the laboratory notebook to compiled datasets to shared data repositories 365 

along the trajectory in Figure 2, many opportunities for errors arise and data systems necessarily accrue 366 

errors. While most data management systems have very limited capacity to check for data quality, 367 

systematic data management promotes discovery of issues related to data quality or organization or 368 

metadata, and large-scale trends and patterns in the data can become apparent. Thus, even though 369 

compilation of data can be accompanied by error, systematic data and metadata management generally 370 

improves the overall quality of data sets and makes them more valuable. It is even possible that 371 

development of data management systems would lead to better tools for finding data quality issues. 372 

 373 

5.2. As determined by their specific goals, LTG scientists participate in many different workflows, 374 

produce data with different structures and metadata, and make different choices with respect to how and 375 

where they publish their data, contributing to a proliferation of data management systems. 376 

Some sampling and analytical strategies in LTG are routine. “Routine” data are relatively easy to 377 

standardize and manage in structured repositories (Figure 3). Example of “routine” data are measurements 378 

of solute concentrations, pH, alkalinity, and other parameters completed on water samples by the National 379 

Water Quality Laboratory (USGS) or completed based on standard methods (APHA, 1998). 380 
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In contrast, data developed from non-standardized analytical techniques or after refinements of 381 

specific issues with respect to collection or analysis of novel types of samples are inherently non-routine. 382 

These data generally are more difficult to archive in standardized data management frameworks and may 383 

also require extensive metadata, including discussions of analytical technique and clear disclosure of 384 

underlying assumptions. 385 

Even with samples undergoing mostly routine analyses, some samples are treated differently and 386 

can be difficult to formally enter into standardized data management systems. This is because a 387 

geochemist may have to use one workflow of separation / extraction / analysis for one rock sample and 388 

another for a second sample of different composition. For example, a low-sulfur red shale generally 389 

requires one type of analytical workflow while a high-sulfur black shale requires another because bulk 390 

elemental analysis is affected by sulfur content. Overall, LTG scientists generally do not use the same 391 

method of sample collection, preparation, nor analysis. 392 

The result of such variability is that the many combinations of sample preparations and chemical / 393 

mineralogical / isotopic analyses makes data compilation in a structured repository a complex process 394 

(NIU et al., 2014). Data management systems for LTG are thus like so-called “quality management 395 

systems” developed by large institutions to manage their data (RIEDL AND DUNN, 2013; U.S. NATIONAL 396 

ACADEMY OF SCIENCES ENGINEERING AND MEDICINE, 2019) in that they must facilitate different levels 397 

and types of reporting protocols (Figure 3). The result of all this complexity is proliferating approaches to 398 

data management driven by competition and different preferences among individuals, teams, projects, 399 

networks, universities, agencies, and even countries. As of October 2020, 63 data repositories were listed 400 

within the Enabling FAIR Data Project Repository Finder (https://repositoryfinder.datacite.org/) where 401 

the search term “geochemistry” was utilized. 402 

 403 

5.3. LTG scientists often resist sharing data in data management systems. 404 

Geochemists at the workshop stated that they want sustainable, long-term repositories for their 405 

data so that they can have accountability with funding agencies, so they can brand their data as their own, 406 

and so that they can promote use and citation of their data by other scientists and the public. But we 407 

learned that most LTG scientists do not publish their data in online data repositories, nor do they train 408 

their students in those activities. The few workshop scientists who had used repositories did it generally 409 

because they were required by journal editors or mandated by a funder. The result has been generally 410 

slow growth of geochemical databases (LEHNERT AND ALBAREDE, 2019). 411 

Even some of the LTG scientists who had used repositories expressed resistance to the process. 412 

The reasons for such resistance within LTG in some cases is similar to resistance observed in other 413 

scientists (TENOPIR et al., 2015; BRASIER et al., 2016). For example, sometimes the resistance in LTG 414 
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scientists stems from the natural tension between data providers and those who pursue meta-analysis. 415 

LTG scientists also sometimes expressed fear about loss of control of the data or possible misuse of their 416 

data by others (see, also, TENOPIR et al., 2015). Such fears were even expressed when embargoes were 417 

offered to limit the use of data for various periods of time, although embargoes can address the above 418 

concerns to some extent. 419 

But the most commonly cited reasons for resistance to the use of data repositories were the time-420 

consuming nature of inputting data and metadata and the related lack of a reward structure for data 421 

management. This driver of resistance is directly related to the complexity of LTG data and metadata, a 422 

complexity that is sometimes but not always shared by other data types (see also, TENOPIR et al., 2015). 423 

In most cases, data management falls on the geochemists who are completing the analyses because most 424 

geochemists do not have data managers. This may explain why, as pointed out (for ecological data) 425 

(MICHENER, 2006), “Obtaining metadata may be the most challenging aspect of data management. The 426 

investigators who collect, manipulate, perform QA [quality assurance] on, and initially analyze their 427 

particular part of the project’s information … have little intrinsic incentive to take the time to formalize 428 

and structure this knowledge, except for what is needed for reports and publications.” 429 

 430 

5.4. Scientists generally have not developed standards for data and metadata in LTG, and the resulting 431 

lack of data harmonization makes use of shared datasets cumbersome. 432 

An important result of the lack of systematic data sharing within LTG is the lack of agreement on 433 

data standards and lack of data harmonization. For example, in the USGS National Water Information 434 

System, one of the best maintained online data repositories for LTG data in the U.S., 32 different name-435 

unit conventions are used for dissolved nitrate alone (SHAUGHNESSY et al., 2019). Only rarely within 436 

LTG have monitoring networks and government agencies imposed common standards across specific 437 

projects. Of course, the multiplicity of questions, samples and analyses, lack of agreement on data and 438 

metadata standards, and general lack of data harmonization makes data management more difficult and 439 

may contribute to selection of research with a micro-scale or local focus rather than a focus on regional or 440 

global problems where many datasets must be collated together (Figure 4). The large number of important 441 

questions that can be answered within the current framework has served the LTG community well. But 442 

the circle shown schematically in Figure 4 emphasizes that the LTG community neither prioritizes nor 443 

rewards systematic data publication in repositories and this slows the pace of research on regional or 444 

global problems. 445 

In contrast, other communities have successfully brokered data sharing agreements (e.g., climate, 446 

biological oceanography, seismology) and best practices have been endorsed for data publication and data 447 

citation that apply across multiple domains (e.g., LEHNERT AND HSU, 2015; ESIP 2019; DATA CITATION 448 
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SYNTHESIS GROUP, 2014; STALL et al., 2019; COPDESS, 2020). Scientists within our LTG initiative 449 

hypothesized that the community does not (yet) value data standards nor harmonization enough to reward 450 

the time required for agreement and implementation of standards. If more LTG data were intended for 451 

integration with other groups’ or other disciplines’ datasets, or if this integration were highly valued and 452 

rewarded, then the hard work of data standardization would occur. But the development of Earth system 453 

models now demands interoperability of datasets, and LTG practitioners increasingly want to standardize 454 

and share more data. 455 

 456 

5.5. The activities of development and maintenance of shared relational databases are highly time- and 457 

resource-consuming. 458 

Building cyberinfrastructure that facilitates access to geochemical data along the trend shown in 459 

Figure 2 is expensive, skill-requiring, and time-consuming. The exact cost of building and maintaining 460 

datasets or data repositories depends upon the type of database. For example, although relational 461 

databases are more powerful than flat files, they are also more difficult to maintain over time. They are 462 

also less intuitive for subject-matter experts, and require more planning and documentation 463 

(CHRISTENSEN et al., 2009). In actual U.S. dollars, the annual cost of maintaining EarthChem’s PetDB 464 

(Table 2) is $250,000/year, including institutional overhead at the level of 54%. This does not include 465 

resources for new developments to keep up with changing technology demands. For large, multi-466 

investigator projects, data management can cost 20-25% of the cost of the measurements themselves 467 

(BALL et al., 2004). The costs of maintenance are at least partly related to the need to maintain utility in 468 

the face of ongoing evolution of computer hardware and software and web applications. A part of the 469 

problem is that research datasets are ever-changing, but very little money is typically available for 470 

changing data management structures or new metadata fields, etc. It is of course always possible to write 471 

code to migrate data from one system to the next. However, this also costs time and money. The costs of 472 

such activities along with the utility of some data may explain why in some cases, datasets are being 473 

prepared by commercial entities rather than through free data sharing among scientists. 474 

All these issues are amplified because of the large number of skillsets needed in a data 475 

management team – skillsets that are generally not found in a small set of individuals. For example, 476 

information technology researchers with the skill sets to develop new cyberinfrastructure are generally 477 

less interested in maintaining old infrastructure. Furthermore, personnel managing data 478 

cyberinfrastructures must not only support the software and hardware but must also provide help to the 479 

community of users. This latter requires people with geochemical skills and very few people currently 480 

have both data management and geochemical skillsets. 481 

 482 
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5.6. Where geochemical databases have been successful, they have been focused on specific data types 483 

and have either been funded over long periods of time or organized by small groups of dedicated 484 

scientists. 485 

A few entities have built very focused databases for geochemical data. For example, PetDB and 486 

Geochemistry of Rocks of the Oceans and Continents (GEOROC) are successful synthesis databases for 487 

petrologic data, as is the CUAHSI Hydrologic Information System (HIS) for time-series water quality 488 

data (see Supplementary Material). The first two databases exclude large sectors of materials of interest to 489 

LTG while the second database is built for time series but is not as easy to use for depth profiles of soil 490 

porewater, for example. Another successful data repository used in LTG is the USGS Produced Water 491 

Database (Table 1). 492 

These databases and other long-term repositories (Table 1) share some attributes. First, they 493 

target only a subset of data as defined by their mission or funding: PetDB, for example, was funded by 494 

NSF’s RIDGE Program to collate the geochemistry of igneous and metamorphic rocks of the ocean floor. 495 

These databases do not include the geochemistry of all rock types even though they have accepted similar 496 

geochemical data for other materials. Second, successful databases tend to receive consistent funding over 497 

many years from government agencies, private foundations, libraries, or universities, or are led by a small 498 

group of dedicated scientists (<12) who attract data from other contributing scientists. 499 

 500 

6. What is needed for the future LTG data-scape 501 

Publicly accessible geochemical databases accelerate collaboration among scientists and across 502 

disciplines and promote dialogue with the public (CHRISTENSEN et al., 2009; BRANTLEY et al., 2018). 503 

Without compiled datasets, very little coordinated design of data gathering strategies occurs, leaving gaps 504 

in geochemical understanding (Figure 4). Without publication of data in accessible venues, the 505 

information is not usable by communities outside of the original audience. Furthermore, the value of 506 

scientific data increases to other scientists and to the public when data can be accessed even after a given 507 

program or project is terminated and such longevity of data can be enhanced by systematic data sharing 508 

(BALL et al., 2004; CHRISTENSEN et al., 2009). As an example, background soil chemistry data from 509 

decades in the past can be used to assess pollution impacts or health risks for activities that are ongoing 510 

today (e.g. BRECKENRIDGE AND CROCKETT, 1998; U.S. NATIONAL ACADEMY OF SCIENCES 511 

ENGINEERING AND MEDICINE, 2017). On the other hand, if a decision-maker or scientist or member of the 512 

public must peruse multiple publications and web pages to pull together a dataset, or must laboriously 513 

adjust the units of a dataset because the data are not harmonized (SHAUGHNESSY et al., 2019), the time 514 

needed for such activity can limit deep analysis (LIU et al., 2020). 515 
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Each sub-section below describes a piece of what the LTG scientists who participated from the 516 

U.S. in our initiative concluded as to what is needed to move forward on this vision. 517 

 518 

6.1. Globally unique sample identifiers 519 

Once more LTG data are shared, the problem of ambiguity in sample identification could remain. 520 

Recognizing this, the participants in our initiative concluded that the community, funders, and journals all 521 

should require that LTG scientists use globally unique identifiers such as International Geo Sample 522 

Numbers (IGSN) (IMPLEMENTATION ORGANIZATION OF THE IGSN, 2020) or Archival Resource 523 

Keys (ARK) (INTERNATIONAL FEDERATION OF LIBRARY ASSOCIATIONS AND INSTITUTIONS, 2020). By 524 

providing information about provenance, sampling time, depth and other metadata, these identifiers 525 

perform analogously to a birth certificate for a sample. Use of identifiers does not imply that the sample is 526 

archived but such identifiers might allow sample discovery if they are archived. Apps could be developed 527 

to create identifiers prior to or concurrent with sample collection, even in the field. Funding agencies 528 

could reward investigators for use of identifiers in reporting. 529 

 530 

6.2. Publication of all data 531 

Workshop participants concluded that all primary LTG data should be shared publicly with 532 

appropriate metadata at the time of journal publication so that data can be used by other scientific 533 

communities, other LTG scientists, and the public. This will maintain the relevance of the discipline 534 

within the context of all of Earth science as more and more Earth system models are developed. LTG 535 

journals and government publications should consider mandating this, and should similarly consider 536 

mandating that computer code be made available and linked to journal articles, reports, and data in 537 

repositories (LIU et al., 2020). This could improve documentation and error checking for both data and 538 

codes, many of which currently have little external vetting. 539 

The workshop participants concluded that most of this LTG data should be published in online 540 

data repositories with DOIs (instead of in journal paper supplements). In that way, researchers can be 541 

evaluated efficiently for published data by peers (in peer review), by managers (in assessing salaries, 542 

promotion, tenure), and by agencies (in determining funding). Some LTG practitioners pointed out, 543 

however, that measurements produced in some process-oriented sciences are so small in volume that they 544 

do not even warrant summary in a table in a paper, let alone in a repository. Likewise, there are types of 545 

data (diffractograms, spectra, photomicrographs, wellbore logs, development-grade data such as on the 546 

left of Figure 3) for which specialized repositories do not yet exist. Publishing these small-volume or 547 

unusual data side-by-side with all explanations, interpretations, and metadata – within a journal paper or 548 

its supplement – in some cases might be better than in a repository if these data are highly likely to be 549 
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mis-interpreted. The problem with this is that such data are difficult to find, let alone meta-analyze. 550 

Recognizing this, some publishers no longer accept data in supplements as part of the ‘Enabling FAIR 551 

Data’ movement (COPDESS, 2020). 552 

To accomplish their goals, LTG scientists need both archived (unchanging) and versioned 553 

(modifiable and updatable) datasets. Some LTG datasets must be maintained as stationary entities (long-554 

term archives) while others are continuously updated or corrected over time (self-described longitudinal 555 

or versioned datasets). For example, water chemistry data have been used to investigate the impact of 556 

hydraulic fracturing on groundwater (Shale Network, Table 1). When meta-analyses are published (WEN 557 

et al., 2019), the data are referenced both as a growing dataset site hosted by the CUAHSI HIS 558 

(doi:10.4211/his-data-shalenetwork), but also as a separately archived version of the dataset sampled at 559 

the time of analysis (doi:10.26208/8ag3-b743). To archive the data as a versioned dataset was not 560 

possible in the CUAHSI HIS, and so the scientists published it in their university data repository. That 561 

repository allowed archiving of a long-term copy of the data, whereas the other site showed only the 562 

entire, growing dataset. From the perspective of data producers, it is particularly important to archive the 563 

dataset analyzed in publications to ensure the reproducibility of the relevant research or modeling. On the 564 

other hand, scientists also need to update datasets and attach version numbers to evolving data. Thus, data 565 

management systems should provide curation that tracks provenance, provides versioning capabilities, 566 

and allows citations (e.g., DOIs). Such utilities could be provided in different data management systems 567 

or within one system. 568 

569 

6.3. Data management must be streamlined and incentivized 570 

To break out of the circular problem shown in Figure 4, data management should be streamlined 571 

and rewarded. To streamline the management will require that LTG scientists implement best practices of 572 

data handling throughout each project. Some researchers have begun to propose such practices (THOMER 573 

et al., 2018) and some point out that efficient data and metadata management ultimately makes 574 

presentation and publication easier. Researchers should plan for data management in advance of their 575 

research. At the same time, however, funders should recognize that this requires additional funding for 576 

personnel time, hardware, or software. For larger projects, data management team members could be 577 

embedded into science teams. To enable improved data management, LTG scientists want agencies to 578 

fund the additional time and infrastructure, while protecting resources for the science itself. 579 

Data scientists at the workshop pointed out that the use of consistent data templates pulled from 580 

existing resources or standardized analytical laboratory reports could be a cost-effective way to streamline 581 

the collection of consistent metadata. These formats could use community-defined, non-propriety data 582 

formats. The utility of creating such formats is that it can help standardize data within and outside of 583 
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investigator groups and can lead toward data harmonization. Some pointed out that geochemical 584 

workflows could be supported and automatically recorded by intelligent software such as Laboratory 585 

Information Management Systems. At the same time, however, such systems can be expensive and time 586 

intensive to implement and are usually only implemented in large laboratories or for very large datasets, 587 

both of which tend to plot to the right on Figure 3.  588 

 589 

6.4. A “bazaar” of data management systems 590 

The participants of our initiative considered which of two realizations would be preferred for the 591 

ecosystem of data repositories for LTG. The first that was discussed was the development of one large 592 

repository, a data “superstore”, for most LTG data, regardless of the country of origin, funding agency, 593 

university, sub-discipline, or investigator. For example, the LTG program at NSF could fund a data 594 

management system that was required for NSF-funded LTG science but was open to non-NSF scientists. 595 

The second scenario, a “street bazaar” for data systems, would consist of many repositories for LTG data, 596 

all differing in data volume, data type (generalized or specific), access characteristics, etc., much as 597 

shown in Table 1. Such repositories would be managed by many different entities. 598 

In general, the first scenario was not considered to be feasible nor desirable. First, LTG datasets 599 

are already distributed among repositories across the world and within the U.S. and many data are stored 600 

in sites managed by non-US and non-NSF scientists (for example, see Table 1). Likewise, some already-601 

functioning specialized data management systems (Table 1) could be better places for LTG data 602 

publication than a generalized NSF-branded or LTG-branded repository. Furthermore, some datasets 603 

might be well-managed in different ways in different data management systems with different data 604 

measurement protocols, promoting different types of science. For example, a critical zone observatory or 605 

a national park might host its own data repository as an example of a site-based data curation system 606 

(PALMER et al., 2017) or might be best spread across multiple repositories. Hence, multiple data 607 

repositories must be expected and should be encouraged, and a street bazaar of data management systems, 608 

scenario two, is not only inevitable but could be desirable because competition would drive 609 

improvements. Perhaps data providers will eventually choose data repositories the same way they choose 610 

journals for their publications (in consultation with the scientific community, editors, managers, and 611 

funders), establishing a hierarchy of valued repositories. 612 

 613 

6.5. Both structured and unstructured data management systems 614 

Within the bazaar, LTG scientists need both flexible management systems for datasets where 615 

measurement methods are less routine or still under development, and highly structured and managed data 616 

systems for datasets with established standards for measurement. Structured data systems should only be 617 
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built for very large and important datasets where the measurements are more or less routine and the 618 

community agrees upon the need for and utility of the database. Two examples discussed previously 619 

manifest this finding: namely the development of a highly structured database for rock chemistry (PetDB) 620 

and the development of a highly structured database for water chemistry and other hydrological data 621 

(CUAHSI HIS). These communities had rough measurement standards and protocols already, and agreed 622 

on the utility of the data, and so they self-organized with funding from NSF and USGS respectively and 623 

developed standardized data management systems. At the LTG workshop, it was unanimously agreed that 624 

the specialized, targeted, and highly structured data repositories that are currently successful in managing 625 

data for specific communities (upper right on Figure 2) should be maintained as preferred repositories for 626 

their respective sub-disciplines (as long as their community finds them useful).  627 

Without such agreed-upon formats and goals, other communities instead need data management 628 

systems that allow data to be stored in less structured systems that are more intuitive to subject-matter 629 

experts, generally easier for data archival, and easy to re-structure (CHRISTENSEN et al., 2009). This is 630 

largely because it can be difficult and time-consuming to format and input large volumes of metadata into 631 

structured data management systems even when they are designed specifically for an individual dataset; 632 

likewise, such data input often does not make sense for less routine data (Figure 3). Thus, funding 633 

agencies should promote development of less-structured, generalized long-term data repositories for other 634 

data types (e.g., Table 3). These repositories can host almost any kind of dataset, without any 635 

requirements about data structure. Generalized data repositories are not organized around a research 636 

question and thus can adapt as the science changes. They are instead organized by an entity (a library or 637 

university or country or funding agency, for example) or are associated with a broad scientific target topic 638 

(water, climate, etc.). Good examples that have been funded by U.S. federal agencies are CUAHSI 639 

HydroShare, EarthChem Library (described in Supplementary Material), the NASA-funded EOSDIS 640 

Distributed Active Archive Centers (DAACs, https://earthdata.nasa.gov/eosdis/daacs), the USGS 641 

Sciencebase (https://www.sciencebase.gov/catalog/), and the DOE ESS-DIVE (VARADHARAJAN et al., 642 

2019). These generalized data repositories are not as rigid in their metadata requirements, do not provide 643 

rigorous data curation, and are simpler and more intuitive to use: these characteristics are important 644 

because of shifting reporting requirements and evolving science targets. 645 

Of course, by definition, this second type of unstructured data storage is not as useful to some 646 

data users (Figure 2) because datasets are compiled with different characteristics. But the need for less 647 

structured data systems emerged from both the rock and water communities (see Supplementary Material) 648 

largely because of the time commitment needed for uploading of data and metadata into more structured 649 

databases. Therefore, even after the highly structured databases became successful (e.g., PetDB and 650 

CUAHSI HIS), less structured data systems that allow easier collations of data without the time-651 
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consuming input and metadata format requirements were needed. The two highly disparate communities – 652 

petrologists and water scientists – both separately discovered the need for i) structured data management 653 

systems and ii) less structured systems. 654 

 655 

6.6. Pathways for prioritized growth of databases 656 

Workshop participants agreed that a path must be made available to nucleate and grow 657 

specialized, targeted, and highly structured databases for specific data (e.g., PetDB, CUAHSI HIS). For 658 

example, some of these might nucleate within the generalized and unstructured data repositories (e.g., 659 

EarthChem Library, HydroShare, ESS-DIVE). Such a transition might organically occur when the 660 

volume of data reaches a critical or threshold value, when the need for the data becomes critical, or when 661 

the user base becomes large (BALL et al., 2004). Not every dataset or data type will follow this trajectory, 662 

but for a small number of datasets, funding could be made available on a competitive basis within the 663 

standard proposal format. The data systems that move all the way to the upper right on Figure 2 will 664 

likely answer specific, important, and compelling questions that enable meta-analysis for broad, enduring 665 

problems. 666 

One intriguing mechanism for developing a specialized database is the so-called team-science or 667 

research-consortium model. In this mechanism, a group of scientists self-nucleate to compile their data 668 

into a structured database with the enticement of at least one co-authored publication. The scientific 669 

question and the publication are the focus of the effort rather than the production of a database. Thus, the 670 

benefits of data compilation are not restricted to the data user. An excellent example of such team science 671 

that is developing a structured and specialized database is the Sedimentary Geochemistry and 672 

Paleoenvironments Project (https://sgp.stanford.edu; SGP). Such efforts may be particularly successful 673 

when a limited type of data is targeted (for SGP, shale geochemistry) and when a highly dedicated group 674 

manages the effort. For such an effort to be successful, the data must answer more than one scientific 675 

question, and funding agencies must spur such groups forward. Some groups using the EarthChem 676 

Library for specialized datasets have also self-nucleated with help from the EarthChem Library team. 677 

Where datasets are crucial enough, agencies could begin to require and reward data 678 

harmonization. Alternately, an agency could fund groups to help communities begin to broker agreed-679 

upon reporting formats, along the lines of the community-driven strategy followed by ESS-DIVE, which 680 

involved domain experts and data scientists (http://ess-dive.lbl.gov/community-projects/). Some funders 681 

have also promoted the development of “translators” or thesauruses for controlled vocabularies used. For 682 

example, Skomos/OZCAR (https://in-situ.theia-land.fr/skosmos/theia_ozcar_thesaurus/en/) provides lists 683 

of closely related controlled vocabulary terms and their sources with links to the source of each one. As 684 

pointed out for a related problem by SCHROEDER (2018), however, computers can help impose some 685 
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harmonization but if algorithms to relate datasets are not agreed upon, then cybertools cannot solve the 686 

problem.  687 

688 

6.7. Certification of data repositories 689 

The appropriate repositories in the LTG data-scape of the future could include certified sites run 690 

by a scientific organizations, publishers, government agencies, or universities. These repositories should 691 

be well supported and secure and should use file formats that ensure long-term preservation. Storing the 692 

data in a specific spreadsheet format rather than a comma-separated values (CSV) file might limit users’ 693 

ability to use the data in the future if proprietary format conventions are changed. Thus, the use of non-694 

proprietary data formats is preferred. Upon deposition in the repository, the dataset should be given a DOI 695 

for use in journal publications. In some cases, repositories will be hosted on a single server while others 696 

might be distributed data management systems (e.g., CUAHSI HIS or the NASA DAACs). These latter 697 

are also sometimes referred to as portals because they point to data that are housed on servers distributed 698 

among participants. If a data repository is available for a specific type of data, then the editor or program 699 

manager or funder should encourage (or enforce) publication in that repository.  700 

Currently, only a few government agencies, funders, publishers, universities, or community 701 

organizations have articulated guidelines for certification of repositories (RE3DATA.ORG, 2020; THE 702 

FAIRSHARING TEAM, 2020) but participants in our initiative felt such certification is useful. For example, 703 

the USGS defines a trusted digital repository as “one whose mission is to provide reliable, long-term 704 

access to managed digital resources to its customers, now and in the future.” The USGS also stipulates 705 

four criteria for a “trusted digital repository” and provides an internal certification for such repositories 706 

(https://www.usgs.gov/about/organization/science-support/office-science-quality-and-integrity/trusted-707 

digital-repository). Specifically, the repository must 1) accept responsibility for the long-term 708 

maintenance of the material that is archived on the site; 2) be able to support not only the repository but 709 

also the digital information within the repository; 3) show “fiscal responsibility and sustainability”; 4) 710 

follow commonly accepted conventions and standards; and 5) participate in system evaluations defined 711 

by the community. Some of the repositories certified on the USGS site are run by the USGS while others 712 

are run by other entities (e.g., the Incorporated Research Institutions for Seismology or IRIS). Other data 713 

repository certification protocols are being developed, including one that currently has 16 requirements 714 

(CORETRUSTSEAL.ORG, 2020). 715 

716 

6.8. Better data search tools and portals 717 

Without a superstore or designated repository for all LTG data, better tools to navigate the bazaar 718 

of data are needed. In effect, the LTG participants advocated that we change the paradigm from “build 719 
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data repository, data will come” to “publish data online, cybertools will find”: less money for building 720 

data repositories and more for improving the capabilities of tag and search. With this new paradigm, 721 

every data provider would put their data into a certified data repository with appropriate metadata that are 722 

tagged during upload or after (voluntarily or mandated), enabling future data discovery. Some researchers 723 

might go into datasets posted by others and tag them, just as internet users tag online photographs for 724 

Google Search, and funding agencies could reward this activity if specific data types were deemed 725 

especially important. While this shift would mean that reusability and interoperability of data would not 726 

be possible until tagging and search tools became available, the data publication process would be less 727 

onerous for the data providers, and would likely result in more data uploads with metadata. Of course, 728 

greater adoption of data standards would enable more efficient data search and discovery. 729 

Another idea that emerged during this initiative and that would enable data discovery was that 730 

funders of LTG science should build portals to register their LTG projects, similar to the BCO-DMO 731 

portal built for oceanographic and polar projects funded by the NSF (NATIONAL SCIENCE FOUNDATION 732 

BIOLOGICAL AND CHEMICAL OCEANOGRAPHY DATA MANAGEMENT OFFICE, 2020). All projects funded 733 

through a given program would be required to register within the site and each project would be required 734 

to either upload project data to the portal site itself, or provide a link to project data in another online data 735 

management system. The portal could thus provide data management and navigation services at no cost to 736 

the program-funded projects and would promote discovery of data funded by the agency. 737 

Funding should be prioritized for cybertools to find the data that have been placed online in 738 

trusted secure data repositories and to cross-reference samples with unique identifiers. Examples of these 739 

types of search tools are beginning to appear. In recognition of the difficulty of harvesting data from 740 

papers and supplements, for example, the NSF has funded tools to find such data (XDD, 2020). The 741 

Enabling FAIR Data Project (Repository Finder) also provides a search tool for data repositories 742 

(https://repositoryfinder.datacite.org/). (However, not all the data systems summarized in Table 1 are 743 

returned by the finder.)  The Data Observation Network for the Earth (DataONE), a community project 744 

that links data repositories and provides data search functionality (https://www.dataone.org/), currently 745 

enables cross-search amongst registered member nodes using indexed metadata. 746 

Another example is Google Dataset Search, which is built around a metadata vocabulary and 747 

codes created and maintained by Schema.org. Schema.org, only recently adapted to Earth science data 748 

through the NSF-funded EarthCube 418 (https://www.earthcube.org/p418) and 419 projects 749 

(https://www.earthcube.org/p419), provides structured vocabulary that can be used to encode metadata, 750 

keywords, and web URLs into a machine-readable format. Google Dataset Search crawls these encoded 751 

datasets, extracts metadata attributes, and catalogs them for search. The result is a catalog of datasets from 752 

many different sources, including data repositories, that can easily be searched via 753 
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datasetsearch.google.com or from a more community-specific portal such as GeoCodes (e.g, 754 

https://geocodes.earthcube.org/geocodes/textSearch.html). End users in different disciplines can query 755 

and discover data across scientific domains and disciplines from a single access point. Such capabilities 756 

for dataset search would drive growth of controlled vocabularies that can be indexed. 757 

 758 

6.9. Education in geochemical data science 759 

All of the lessons learned and community needs suggest that the LTG community must educate 760 

students and early career researchers to promote a culture shift toward systematic data management. For 761 

example, the lack of data harmonization will only be resolved when LTG practitioners themselves 762 

develop and accept standardized formats and controlled vocabularies across their discipline. This will 763 

likely only happen if the community begins to prioritize and reward integrated databases and meta-764 

analyses. Some educational resources are already available including training modules for data 765 

management by the USGS (U.S.G.S., 2020b) and massive open online courses on the basics of data 766 

science. In addition, one team has developed a course to educate geoscience students about the basics and 767 

advanced knowledge of data science using genuine research data and peer-reviewed research (WEN et al., 768 

2020). Students can also attend workshops for data science at geoscience conferences offered by agencies, 769 

scientific societies, and many of the data initiatives already mentioned throughout this paper. These 770 

workshops often enable participants to gain first-hand experience in using data science for addressing 771 

geoscience questions. 772 

 773 

7. Conclusions 774 

The LTG community increasingly recognizes the value of data sharing but more guidance and 775 

education of the community is needed to push this recognition forward toward systematic data 776 

management. A group of LTG and data scientists from the U.S. participated in a multi-year initiative that 777 

led to advocacy for a change in paradigm from “build data repository, data will come” to “publish data 778 

online, cybertools will find”. This powerful and tractable paradigm shift will require funding agencies to 779 

work together to cross between the domains of basic science and information science. The group 780 

supported the notion that both highly structured (specialized) and less-structured (more generalized) data 781 

repositories are needed for LTG data. All of these data transformations within LTG require a new 782 

emphasis on data science for training the next generation of LTG scientists. As this data-scape emerges 783 

along with powerful cybertools for search, increasingly powerful answers to societal questions will arise. 784 

 785 

8. Computer Code Availability 786 

No code or software has been developed for this research. 787 
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Tables 806 

Table 1. Subset of datasets, data portals, and libraries for low-temperature geochemists 807 

Title Description Website or Citation  

Alberta Geological 
Survey (AGS) Open Data 
Portal  

Data related to the geology of Alberta 
Canada that are published by the Alberta 
Geological Survey. 

https://geology-ags-
aer.opendata.arcgis.com/ 

American Mineralogist 
Crystal Structure 
Database 

A crystal structure database that includes 
every structure published in the American 
Mineralogist, The Canadian Mineralogist, 
European Journal of Mineralogy and Physics 
and Chemistry of Minerals, as well as 
selected datasets from other journals. 

http://rruff.geo.arizona.edu/AMS/a
mcsd.php 

Ameriflux Ecosystem carbon, water, and energy fluxes. https://ameriflux.lbl.gov/ 

Aqua-Mer 
A database and toolkit for researchers 
working on environmental mercury 
geochemistry 

https://aquamer.ornl.gov/ 

Atmospheric Radiation 
Measurement (ARM) 
Data Center 

Data center stores data and observations of 
cloud and aerosol properties and their 
impacts on Earth’s energy balance. 

https://adc.arm.gov/discovery/#/ 

BCO-DMO (Biological 
and Chemical 
Oceanography Data 
Management Office) 

A portal to find data and related information 
from research projects funded by the 
Biological and Chemical Oceanography 
Sections and the Office of Polar Programs at 
the U.S. National Science Foundation 

https://www.bco-dmo.org/ 

Critical Zone Data sets 
Sensor, field, and sample data for the critical 
zone (highly interdisciplinary).  

http://criticalzone.org/national/data/
datasets/ 

Crystallo-graphy Open 
Database 

Crystal structures of compounds and 
minerals (not biopolymers). 

http://www.crystallography.net/cod/ 

CUAHSI Hydrologic 
Information Systems 
(HIS) 

Portals providing hydrologic information of 
different types. 

https://www.cuahsi.org/data-
models/portals/ 

CUAHSI HydroShare 

Repository for hydrologic data and models 
that enables users to share, access, visualize, 
and manipulate hydrologic data types and 
models. 

https://www.hydroshare.org 

DOE ESS-DIVE 
Repository for environmental data related to 
US DOE’s Office of Science Environmental 
Systems Science program.  

http://ess-dive.lbl.gov/ 

DRP (Digital Rocks 
Portal) 

A portal to data describing porous micro-
structures, especially for the fields of 
hydrocarbon resources, environmental 
engineering, and geology. 

https://www.digitalrocksportal.org/ 

EarthChem Library 
Repository for geochemical datasets 
(analytical data, experimental data, synthesis 
databases). 

http://earthchem.org/library 

ECOSTRESS Spectral 
Library 

The ECOSTRESS spectral library is a 
compilation of over 3400 spectra of natural 
and human-made materials. 

https://speclib.jpl.nasa.gov/ 

EDI (Environment-al 
Data Initiative) 

NSF funded data portal for data from the 
Long-Term Ecological Research network. 

https://portal.edirepository.org/nis/h
ome.jsp 

US EPA WQX 
U.S. Environmental Protection Agency’s 
water quality monitoring data from lakes, 

https://www.epa.gov/waterdata/wat
er-quality-data-wqx 
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Title Description Website or Citation  

streams, rivers, and other types of water 
bodies. 

GDR (Geothermal Data 
Repository) 

Data collected from researchers funded by 
US Dept. of Energy Geothermal 
Technologies Office. 

https://gdr.openei.org/ 

GeoReM (Geological and 
Environmental Reference 
Materials) 

Max Planck Institute database for reference 
materials (rocks, glasses, minerals, isotopes, 
biological, river water, seawater). 

http://georem.mpch-mainz.gwdg.de/ 

GEOROC (Geochemistry 
of Rocks of the Oceans 
and Continents) 

Max Planck Institute database with published 
analyses of rocks (volcanic rocks, plutonic 
rocks, and mantle xenoliths). 

http://georoc.mpch-
mainz.gwdg.de/georoc/ 

Geosciences Data 
Repository for 
Geophysical Data 

Collection of geoscience databases 
(including geochemistry) accessed by 
GDRIS. 

http://gdr.agg.nrcan.gc.ca/gdrdap/da
p/search-eng.php 

GLiM (Global Lithology 
Map) 

Database with spatial data on global 
lithology at a resolution of 1:3,750,000. 

https://www.geo.uni-
hamburg.de/en/geologie/forschung/
geochemie/glim.html 

Global spectral library to 
characterize the world's 
soil 

Library of vis-NIR spectra for predicting soil 
attributes. 

https://www.sciencedirect.com/scie
nce/article/pii/S0012825216300113
#s2105 

Global whole-rock 
geochemical database 
compilation 

Compilation of >1,000,000 whole rock 
geochemical measurements compiled from 
~13 other databases and >1,900 other 
sources. 

https://zenodo.org/record/3359791#.
X6wKb2dKjq0 

GLORICH (Global River 
Chemistry Database) 

Database with river chemistry and basin 
characteristics for global watersheds. 

https://www.geo.uni-
hamburg.de/en/geologie/forschung/
geochemie/glorich.html 

Handbook of the thermo-
gravimetric system of 
minerals and its use in 
geological practice 

Dataset of thermal properties of minerals 
from the Hungarian Institute of Geology. 

https://mek.oszk.hu/18000/18031/1
8031.pdf 

International Centre for 
Diffraction Data 

Mineral and inorganic materials powder 
diffraction database. (behind paywall). 

http://www.icdd.com 

Images of Clay 
A library of SEM images of clay, mostly for 
teaching purposes. 

https://www.minersoc.org/images-
of-clay.html?id=2 

Karlsruhe Crystal 
Structure Depot (Das 
Kristallstrukturdepot) 

A repository for crystal structures linked to 
publications in German journals that is run 
by FIZ Karlsruhe. 

https://www.fiz-
karlsruhe.de/en/produkte-und-
dienstleistungen/das-
kristallstrukturdepot 

LEPR (Library of 
Experimental Phase 
Relations) 

Published experimental studies of liquid-
solid phase equilibria relevant to magmatic 
systems. 

http://lepr.ofm-
research.org/YUI/access_user/login.
php 

mindat.org 
Database of mineral occurrence and general 
mineral properties. 

https://www.mindat.org 

MetPetDB Database for metamorphic petrology. 
https://tw.rpi.edu/web/project/MetP
etDB 

MG-RAST 
DOE resource for microbial community 
datasets, many of which are annotated with 
environmental data. 

https://www.mg-rast.org/ 

Mineral Spectroscopy 
Server 

Data on mineral absorption spectra in the 
visible and infrared regions of the spectrum 
and Raman spectra of minerals. 

http://minerals.gps.caltech.edu/FILE
S/Index.html 
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Title Description Website or Citation  

Mössbauer spectral 
library 

Further development of the database of the 
Mössbauer Effect Data Center. 

http://mosstool.com/  

NADP National 
Atmospheric Deposition 
Program 

U.S. precipitation chemistry database, 
including nutrients, acids, base cations, and 
mercury. 

http://nadp.slh.wisc.edu/ 

National Cooperative Soil 
Survey Soil 
Characterization Data 

Includes soil chemical, physical, and 
mineralogical data for soil profiles across the 
U.S. 

https://ncsslabdatamart.sc.egov.usda
.gov/ 

National Water Quality 
Portal 

Water quality monitoring data collected by 
over 400 state, federal, tribal, and local 
agencies. 

https://www.waterqualitydata.us/ 

NAVDAT (North 
American Volcanic rock 
Data) 

Web-accessible repository for age, chemical 
and isotopic data from Mesozoic and 
younger igneous rocks in western North 
America. 

https://www.navdat.org/ 

ORNL DAAC for 
Biogeochem. Dynamics 

Oak Ridge National Laboratory Distributed 
Active Archive Center for Biogeochemical 
Dynamics (NASA’s archive of record for 
Terrestrial Ecology)  

https://daac.ornl.gov 

PetDB 
Database of geochemical data for igneous & 
metamorphic rocks. 

https://search.earthchem.org 

RRUFF Project 
Database of Raman spectra, X-ray diffraction 
and chemistry data for minerals. 

https://rruff.info/ 

SGP (Sedimentary 
Geochemistry and 
Paleoenviron-ments 
Project) 

Database of shale geochemistry to answer 
questions about early environments on Earth 

https://sgp.stanford.edu/about 

Shale Network database 
Water quality data in regions of shale gas 
development in northeastern USA. 

Shale Network, 2015. 
doi:10.4211/his-data-shalenetwork 
 

Skomos 

Skomos manages the hierarchical vocabulary 
for OZCAR/Theia and has links to other 
thesaurus including GCMD (NASA), 
EnvThes (EU, eLTER), Eionet, FAO/GACS 
(incuding Agrovoc,  Agrisemantic), ANAEE 
(Fr/EU), LusTRE (EU), SKOS (UNESCO).  

https://in-situ.theia-
land.fr/skosmos/theia_ozcar_thesaur
us/en/ 

SPECTRa Project 
(Submission, Preservation 
and Exposure of 
Chemistry Teaching and 
Research Data) 

This project aims to disseminate primary 
data for chemistry from academic research 
laboratories. 

http://www.ukoln.ac.uk/repositories
/digirep/index/Deliverables#SPECT
Ra.html 

StabisoDB 

StabisoDB currently comprises δ18O and 
δ13C data of more than 67.000 macro- and 
microfossil samples including benthic and 
planktonic foraminifers, benthic and nektonic 
mollusks, brachiopods, and fish teeth and 
conodonts. 

https://cnidaria.nat.uni-
erlangen.de/stabisodb/ 
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Title Description Website or Citation  

Supplemental data for 
clay mineral journals 

Material deposited as supplemental material 
from Clays and Clay Minerals. 

http://www.clays.org/Journal/Journa
lDeposits.html 

Tethys RDR 

Open access data repository run by the 
Geological Survey of Austria (GBA) to 
publish data generated in cooperation with 
GBA. 

https://www.tethys.at/ 

Theia 
Array of Earth Surface datasets, including 
atmosphere, biosphere, cryosphere, land 
surface and terrestrial hydrosphere. 

https://in-situ.theia-land.fr 

TraceDs 
Experimental studies of trace element 
distribution between phases. 

http://traceds.ofm-
research.org/access_user/login.php 

USGS high resolution 
spectral library 

The spectral library was assembled to 
facilitate laboratory and field spectroscopy 
and remote sensing for identifying and 
mapping minerals, vegetation, and manmade 
materials. 

https://www.usgs.gov/labs/spec-
lab/capabilities/spectral-library 

USGS NWIS 
Chemical and physical data for surface and 
groundwater in the USA. 

https://waterdata.usgs.gov/nwis 

USGS Produced Water 
Database 

Chemistry of produced waters from oil and 
gas fields. 

https://www.sciencebase.gov/catalo
g/item/59d25d63e4b05fe04cc235f9 

VentDB 

Geochemical Database for Seafloor 
Hydrothermal Springs funded by US NSF for 
data management for seafloor hydrothermal 
spring geochemistry. 

http://www.earthchem.org/ventdb 

Allard Economic Geology 
Collection 

Collection of data and samples from >750 
mines worldwide. Data includes locations, 
rocks, minerals, photographs, and deposit 
type information. 

http://128.192.226.15/ 
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Table 2. A lexicon for a few data science terms 810 

Term Definition as used by geochemists 

Controlled vocabulary 
A set of terms that are used to describe measurables so that different data providers do 
not identify the same observable with different nomenclature 

Data curation 
Inspection of data for quality, inclusion of metadata, etc. after or before it is uploaded to 
a repository 

Data discovery 
The process by which data users search, discover, collect, and evaluate the data from 
various sources in order to extract patterns in the data 

Data harmonization 
The process by which a compilation of data of the same type of measurement are re-
calculated or re-normalized into the same units or species or reporting protocol so that 
meta-analysis of the large dataset can proceed directly from the data 

Data quality 
The characteristics that determine if data are fit for the purpose intended, including 
accuracy, relevance, accountability, reliability, and completeness1 

Data repository 

A site where multiple datasets are archived together. Data repositories can be of many 
types, which include general purpose repositories that accept any types of data (e.g., 
Figshare, Dryad), funder or institutional or national cross-domain repositories (e.g., 
ESS-DIVE, CUAHSI HIS), and domain-specific repositories that are theme-based (e.g., 
NCBI, PetDB). Repositories in the first two categories and sometimes the third 
typically issue DOIs. Importantly, a data repository may or may not require specific 
preparation, analytical methods, and/or data reporting styles.  

Data set or database A group of data values for a given project, with some metadata. 

Data standards 
Documented agreements on representation, format, definition, structuring, tagging, 
transmission, manipulation, use, and management of data 

DOI 
A unique digital object identifier that allows a researcher to find a published paper or 
dataset. 

Distributed data 
system 

A system where one can access data from multiple users but the data sets themselves 
reside on the providers’ server. 

FAIR principles Findable, accessible, interoperable, reusable principles.2 

Identifier An alphanumeric tag for a sample that is findable online. 

Interoperable Data can be used straightforwardly with other data and in multiple workflows.  

Library 

A repository of examples of a specific type of data (differs from a repository in that it 
generally has examples of each category but not all data in one place for all categories). 
Depositing data into a library allows others to find the data because of its location but 
DOIs are generally not assigned as data are deposited.  

Meta-analysis 
Analyzing data collected by different investigators perhaps at different times, or in 
different places, and sometimes with different techniques. 

Metadata  
Descriptors about data that answer the questions of who? what? how? when? where?, 
etc.  

Portal An online site that allows a user to find many datasets.  

Quality assurance of 
data 

A management approach that focuses on implementing and improving procedures so 
that problems do not occur in the data.  

Quality control of data  
An approach that seeks to identify and correct problems in the data product before the 
product is published.1  

Query  
A request to find data with certain metadata characteristics (e.g., find groundwater data 
from Idaho).  

Registration Getting an unique identifier for a sample.  

Relational database 
A database that allows the user to find data related to one another by various metadata 
(e.g., are there data for porewater and mineralogy and organic matter for this soil 
horizon in this location?).  

Sample  A physical entity that could be archived.  

Template Form with pre-set structure for data input.  
1 NATIONAL ACADEMY OF SCIENCES ENGINEERING AND MEDICINE (2019) 811 
2 WILKINSON et al. (2016) 812 
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Table 3. Examples of LTG data currently without a dedicated public database 814 

Data type Notes 
X-ray diffractograms for specimens and 
reference materials 

International Centre for Diffraction Data maintains a 
database behind a paywall 

Data from LTG laboratory experiments  

Synchrotron data  

2D images (spectra, SEM photomicrographs, 
aerial photographs) 

Some photographic, thin section, SEM, and other 
type libraries are available for teaching purposes 
(not for depositing research data) 

3D datasets (computer-enhanced tomographic 
images, etc.) 

 

 815 
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Table 4. Lessons learned and what LTG needs for the future data-scape 817 

Six Lessons Learned 818 
1. The data enterprise from measurement to meta-analysis is complex and provides multiple 819 

opportunities for error, but systematic management of data and metadata leads both to 820 
improvements in the quality of the dataset and identification of large-scale trends within the data. 821 

2. As determined by their specific goals, LTG scientists participate in many different workflows, 822 
produce data with different structures and metadata, and make different choices with respect to 823 
how and where they publish their data, contributing to a proliferation of data management 824 
systems. 825 

3. LTG scientists often resist sharing data in data management systems. 826 
4. Scientists generally have not developed standards for data and metadata in LTG, and the resulting 827 

lack of data harmonization makes use of shared datasets cumbersome. 828 
5. The activities of development and maintenance of shared relational databases are highly time- and 829 

resource-consuming. 830 
6. Where geochemical databases have been successful, they have been focused on specific data types 831 

and have either been funded over long periods of time or organized by small groups of dedicated 832 
scientists. 833 

 834 

Nine Needs of the LTG Community with Respect to Data Management 835 
1. LTG scientists should use globally unique sample identifiers. 836 
2. LTG scientists should publish all their primary data with appropriate metadata at the time of 837 

journal publication. 838 
3. LTG scientists should streamline data management and appropriate data management should be 839 

rewarded. 840 
4. LTG scientists need a dynamic “bazaar” of data management systems. 841 
5. The LTG “bazaar” should include both structured and unstructured data management systems. 842 
6. The LTG community should develop pathways to identify and develop highly structured databases 843 

that contain important data for priority questions. 844 
7. Data management systems chosen by LTG scientists should be certified for reliable long-term 845 

access. 846 
8. The LTG community needs to develop better data-search tools and portals that enable data 847 

discovery. 848 
9. The LTG community must prioritize educational activities to promote geochemical data science. 849 

 850 
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Figures 852 

 853 

Figure 1. A schematic of different analyses and types of sub-samples or extractions that are sometimes 854 

completed on a given soil sample.  Many of these would be applicable to other types of LTG samples. 855 

The schematic is shown to provide a sense of the number of analyses and sub-samples and extractions 856 

that are often completed in creating a LTG dataset, even from a single sample. The format of the data for 857 

each box could take the form of tabular data, photographs, spectra, diffractograms, etc. and the metadata 858 

associated with each box could include information about sample collection, field notes, geological and 859 

environmental details, filtration/separation/extraction/etc. details, instrumentation details, analytical 860 

details, and data processing details.    861 
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 863 

Figure 2. A schematic showing relationships among different types of management of LTG data. Data are 864 

shown schematically as the pink-colored shaded area. Currently, LTG scientists need to store more data in 865 

online data repositories. Only datasets that are prioritized by the community or funding agencies will be 866 

stored in the most structured (and costly) repositories. Other LTG data should be deposited in generalized 867 

data repositories that provide flexibility in management of data and metadata.  868 
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 870 

Figure 3. Schematic emphasizing how the ease of development of standardized data management 871 

protocols increases across the range from data that are highly non-routine (on the left in purple) to those 872 

that are highly routine (on the right in green). Figure adapted from a similar figure for management of 873 

data quality (RIEDL AND DUNN, 2013; NATIONAL ACADEMY OF SCIENCES ENGINEERING AND MEDICINE, 874 

2019). 875 
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 877 

Figure 4. Summary of the circular nature of choices driving data management by LTG scientists. The 878 

culture of LTG has not established a need for data standards, data harmonization, nor data reporting, and 879 

this may impact the type of science that is completed.    880 
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