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ABSTRACT OF THE DISSERTATION

A Family of Sparsity-Promoting Gradient Descent Algorithms
Based on Sparse Signal Recovery

by

Ching-Hua Lee

Doctor of Philosophy in Electrical Engineering (Signal and Image Processing)

University of California San Diego, 2020

Bhaskar D. Rao, Chair

Sparsity has played an important role in numerous signal processing systems. By leveraging

sparse representations of signals, many batch estimation algorithms and methods that are efficient,

robust, and effective for practical engineering problems have been developed. However, gradient

descent-based approaches that are less computationally expensive have become essential to the

development of modern machine learning systems, especially the deep neural networks (DNNs).

This dissertation examines how we can incorporate sparsity principles into gradient-based learning

algorithms, in both signal processing and machine learning applications, for improved estimation

and optimization performance.

xv



On the signal processing side, we study how to take advantage of sparsity in the system

response for improving the convergence rate of the least mean square (LMS) family of adaptive

filters, which are derived from using gradient descent on the mean square error objective function.

Based on iterative reweighting sparse signal recovery (SSR) techniques, we propose a novel

framework for deriving a class of sparsity-aware LMS algorithms by adopting an affine scaling

transformation (AST) methodology in the algorithm design process. Sparsity-promoting LMS

(SLMS) and Sparsity-promoting Normalized LMS (SNLMS) algorithms are introduced, which

can take advantage of, though do not strictly enforce, the sparsity of the underlying system if it

already exists for convergence speedup. In addition, the reweighting–AST framework is applied

to the conjugate gradient (CG) class of adaptive algorithms, which in general demonstrate a

much higher convergence rate than the LMS family. The resulting Sparsity-promoting CG (SCG)

algorithm also demonstrates improved convergence characteristics for sparse system identification.

Finally, the proposed algorithms are applied to the real-world problem of acoustic feedback

reduction encountered in hearing aids.

On the machine learning side, we investigate how to exploit the SSR techniques in gradient-

based optimization algorithms for learning compact representations in nonlinear estimation tasks,

especially with overparameterized models. In particular, the reweighting–AST framework is

utilized in the context of estimating a regularized solution exhibiting some desired properties such

as sparsity without having to incorporate a regularization penalty. The resulting algorithms in

general have a weighted gradient term in the update equation where the weighting matrix provides

certain implicit regularization capabilities. We start by establishing a general framework that can

possibly extend to various regularizers and then focus on the sparsity regularization aspect. As

notable applications of nonlinear model sparsification, we propose i) Sparsity-promoting Stochastic

Gradient Descent (SSGD) algorithms for DNN compression and ii) Sparsity-promoting Kernel

LMS (SKLMS) and Sparsity-promoting Kernel NLMS (SKNLMS) algorithms for dictionary

pruning in kernel methods.
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Chapter 1

Introduction

This dissertation focuses on novel applications of sparse signal recovery (SSR) techniques

to the family of gradient descent-based learning algorithms for the optimization of signal processing

and machine learning systems. In this chapter, we briefly discuss the background and motivation

of the work, followed by an overview of the remaining chapters in the dissertation.

1.1 SSR and Iterative Reweighting Methods

Sparsity has been an important attribute in many successful signal processing applications

[1, 2, 3]. Specialized algorithms can exploit the parsimony in signals and systems to provide

faster sampling rates in acquisition devices, more efficient digital communications, better model

compression, and improved robustness to outliers, interference, and noise [4, 5, 6, 7, 8, 9, 10, 11].

Many of the algorithms are developed based on SSR techniques that search for a sparse solution

to an underdetermined system of linear equations where there are infinitely many solutions.

More formally, the problem of SSR considers finding a solution to: b = Ax, where

A ∈ R#×" represents an overcomplete or redundant basis assuming # < " and rank(A) = # ,

x ∈ R" is the vector of unknown coefficients to be learned, and b ∈ R# is the measurement vector.
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As the system has fewer equations than unknowns, it has infinitely many solutions. In the SSR

problem, it is assumed that the solution of interest is sparse, i.e., only very few of its elements are

nonzero. The sparse structure can thus be utilized as additional information to identify which of

these candidate solutions is indeed the desirable one.

To approach a sparse solution, one possibility is to restrict the search space of possible

solutions. It is natural to start from considering the search of the minimal ℓ0 “norm”1 solution:

min
x
‖x‖0, s.t. b = Ax. (1.1)

The ℓ0 “norm” term serves as a measure of diversity (as opposite to sparsity) of the solution vector.

Minimizing it is equivalent to looking for the sparsest (or least diverse) solution in terms of the

count of nonzero elements.

To accommodate for measurement noise in practice, we instead consider the alternative

regularized problem:

min
x
‖b−Ax‖22 +_‖x‖0, (1.2)

where _ > 0 is the weight for the ℓ0 “norm” regularization penalty and is related to the measurement

noise variance.

Unfortunately, finding the optimal solution in such a case is in general NP-hard [12, 1]. To

allow for tractable computation, one usually resorts to approximations of the ℓ0 “norm” penalty.

For example, consider the following optimization problem instead:

min
x
‖b−Ax‖22 +_� (x), (1.3)

where � (·) : R" ↦→ R, usually referred to as the general diversity measure, is a function employed

as a simpler alternative to the ℓ0 “norm” that when minimized also encourages sparsity in its
1The ℓ0 “norm” of a vector is defined as the number of its nonzero entries. The quotation marks are used to warn

that it is not a proper norm.
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argument. For x = [G0, G1, . . . , G"−1]) , a separable form is commonly used: � (x) =∑"−1
8=0 6(G8),

where 6(·) has the following properties [13]:

Property 1: 6(I) is symmetric, i.e., 6(I) = 6(−I) = 6( |I |);

Property 2: 6( |I |) is monotonically increasing with |I |;

Property 3: 6(0) is finite;

Property 4: 6(I) is concave in |I | or I2.

Any function that holds the above properties is a candidate for effective SSR algorithms. For

example, popular choices include:

6(I) = |I |?, 0 < ? ≤ 2 [14]

6(I) = log(I2 + n), n > 0 [15]

6(I) = log( |I | + n), n > 0 [16]

However, the concave nature of the diversity measure function poses challenges to the

optimization problem. Consequently, in practical situations there is a need for approximate

methods that efficiently solve (1.3) in most cases. Many SSR algorithms rely on iterative schemes

that produce more focal estimates as optimization progresses [13]. In every iteration, a new upper

bound is created for the concave penalty � (x) as a surrogate function, resulting in a simpler

problem that can be solved more efficiently. This has led to the development of useful and effective

reweighted norm minimization algorithms. Typically, ℓ2 and ℓ1 norms are selected because of

their convex nature and the former because of the closed form solution at each iteration. We now

discuss them in more detail.

3



1.1.1 Iterative Reweighted ℓ2

To apply the reweighted ℓ2 method, first note that the function 6(I) has to be concave in

I2 for Property 4; i.e., it satisfies:

6(I) = 5 (I2), (1.4)

where 5 (I) is concave for I ∈ R+ (the positive orthant). Now, given an estimate x: at iteration

: , the solution estimate of the next iteration x:+1 is given by solving the weighted ℓ2 norm

minimization problem:

x:+1 = argmin
x

‖b−Ax‖22 +_‖W
−1
: x‖22, (1.5)

where W: = diag{F8,: } is a diagonal matrix with

F8,: =
©­«d 5 (I)

dI

����
I=G2

8,:

ª®¬
− 1

2

, (1.6)

where d denotes the differential operator.

This algorithm refines the estimate of x by iteratively solving the weighted ℓ2 norm

minimization problem (1.5) which has a closed form solution:

x:+1 =W2
:A

)
(
_I+AW2

:A
)
)−1

b, (1.7)

until some convergence criterion is met.

One useful example of the diversity measure applicable to the reweighted ℓ2 framework is

the ?-norm-like diversity measure [14]:

� (x) =
"−1∑
8=0
|G8 |?, 0 < ? ≤ 2. (1.8)
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Since it satisfies Properties 1–4 (note that for Property 4 we have |G8 |? concave in G2
8
for 0 < ? ≤ 2),

we can use (1.6) to obtain the update equation for W: as:

F8,: =

(
2
?
|G8,: |2−?

) 1
2

. (1.9)

This algorithm is known as the FOCUSS (FOcal Underdetermined System Solver) algorithm [14].

Another famous example is the log-sum penalty function used in [15]:

� (x) =
"−;∑
8=0

log(G2
8 + n), n > 0. (1.10)

As it satisfies Properties 1–4 with the concavity of log(G2
8
+ n) in G2

8
holding for Property 4, we

can use (1.6) to obtain the update equation for W: as:

F8,: =

(
G2
8,: + n

) 1
2
. (1.11)

Note that in practice, one would gradually decrease n with increasing iteration number to obtain

better performance of the algorithm as suggested by [15].

1.1.2 Iterative Reweighted ℓ1

To apply the reweighted ℓ1 method, first note that the function 6(I) has to be concave in

|I |; i.e., it satisfies:

6(I) = 5 ( |I |), (1.12)

where 5 (I) is concave for I ∈ R+. In this case, given an estimate x: at iteration : , the solution

estimate of the next iteration x:+1 is given by solving the weighted ℓ1 norm minimization problem:

x:+1 = argmin
x

‖b−Ax‖22 +_‖W
−1
: x‖1, (1.13)
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where W: = diag{F8,: } is now given differently as:

F8,: =

(
d 5 (I)

dI

����
I=|G8,: |

)−1

. (1.14)

This algorithm refines the estimate of x by iteratively solving the weighted ℓ1 norm

minimization problem (1.13) until some convergence criterion is met. Note that in this case

there is no closed form solution. However, (1.13) is still a tractable convex problem that can be

efficiently solved by numerical programs (e.g., interior point method).

As an example, the ?-norm-like diversity measure can also be utilized for the reweighted

ℓ1 framework with a different range of ?:

� (x) =
"−1∑
8=0
|G8 |?, 0 < ? ≤ 1. (1.15)

Since it satisfies Properties 1–4 (note that for Property 4 we have |G8 |? concave in |G8 | for 0 < ? ≤ 1),

the reweighted ℓ1 scheme can be applied. Using (1.14) we obtain the update equation for W: as:

F8,: =
1
?
|G8,: |1−? . (1.16)

Another widely seen diversity measure is the log-sum penalty proposed in [16]:

� (x) =
"−;∑
8=0

log( |G8 | + n), n > 0. (1.17)

As it satisfies Properties 1–4 with the concavity of log( |G8 | + n) in |G8 | holding for Property 4, we

can use (1.14) to obtain the update equation for W: as:

F8,: = |G8,: | + n . (1.18)
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Note that in this case, a fixed n is typically adopted as suggested in [16].

1.1.3 Discussions

The reweighting techniques actually belong to the more general class of majorization-

minimization algorithms [17]. In each of the reweighting schemes, the weighted ℓ2 or ℓ1 norm

term serves as an upper bound for � (x) in every iteration. More specifically, the matrix W: , as a

function of the current estimate x: , provides a majorizer w.r.t. x: for the objective function to be

minimized. This allows the iterative algorithms to produce more focal estimates as optimization

progresses. Hopefully when the number of iterations is large enough, the optimal solution can be

well approached or even achieved [13].

Note that (1.5) and (1.13) have assumed thatW: to be invertible, though it is not necessarily

required as the final algorithm like (1.7) does not involve inverting W: . However, it is still

favorable to have all the diagonal elements of W: strictly positive for avoiding instability and

algorithm stagnation. The positive definiteness of W: can be shown to hold for a wide variety

of diversity measures used in SSR. However, in cases where it is not (e.g., the W: updates (1.9)

and (1.16) using the ?-norm-like function), practically some small regularization constant can be

properly added to ensure the positive definiteness.

1.2 Gradient Descent-Based Learning and Optimization

Many learning and optimization problems rely on gradient descent-based algorithms as

they are simple, effective, and suitable for stochastic estimation especially useful for tasks with

large datasets, in which batch estimation algorithms like that in SSR are not easily applicable due

to computational constraints. Typically, gradient-based algorithms learn the model parameters by
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updating them in an iterative manner:

©­­«
updated

parameters

ª®®¬ =
©­­«

old

parameters

ª®®¬+
©­­«
learning

rate

ª®®¬×
©­­«
search

direction

ª®®¬ , (1.19)

where the learning rate (also known as step size) determines how large a step is taken in each

iteration along the search direction that is obtained based on the gradient information of the

underlying objective function to be minimized.

Gradient-based algorithms have a long history in the signal processing domain and have

been widely deployed since a few decades ago. In particular, the classic least mean square

(LMS) algorithm [18], which was developed based on using a simple gradient descent on the

mean square error objective, has motivated a bunch of LMS-type adaptive filtering algorithms

[19, 20, 21] that are popular in many signal processing systems and applications. For estimating

signals or systems with sparse structures, sparsity has naturally been leveraged to improve the

convergence characteristics of the adaptive algorithms [22, 23, 24, 25]. The most well-known

adaptive algorithms for exploiting sparsity may be the proportionate class of adaptive filters [26].

However, most of the proportionate algorithms were not developed based on any optimization

criterion but were based on good heuristics [27, 28, 29]. Consequently, they might not be easy to

generalize or adapt for different applications in a systematic way.

Furthermore, owing to the rise of deep learning since the introduction and success of

AlexNet in 2012 [30], the gradient descent family of algorithms have attracted considerable

attention due to their simplicity and effectiveness for optimizing deep neural networks (DNNs). In

particular, the stochastic gradient descent (SGD) algorithm has been an essential optimization tool

for DNNs, and many SGD variants have been proposed to achieved better learning outcomes, e.g.,

AdaGrad [31], Adam [32], RMSProp [33], to name a few. In the machine learning community,

much effort has been invested into developing novel, effective SGD-type learning algorithms

[31, 33, 32], or researching their capabilities of finding good models despite the highly nonlinear,
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nonconvex objective function [34, 35, 36, 37, 38, 39, 40, 41]. However, there seems to have

relatively less discussion on the aspect of exploiting the notion of sparsity with the optimization

algorithms for deep learning applications.

1.3 Contributions of the Dissertation and Overview

In this dissertation, we present a general framework that incorporates sparsity into

gradient descent-based learning algorithms for improving the optimization process or outcome

for several machine learning and signal processing systems. Specifically, a family of sparsity-

promoting algorithms are developed based on utilizing the iterative reweighting SSR techniques

and incorporating an affine scaling transformation (AST) methodology [42] into the algorithm

design process. We show that when the reweighting–AST framework is applied in the context of

adaptive filtering, a general class of proportionate adaptive algorithms are obtained in a systematic

way that achieve faster adaptation for identifying sparse systems. Based on the success in adaptive

filters, we extend the framework to more general optimization problems where the models are not

limited to be linear and are assumed to have multiple solutions that result in the same optimum.

We show that for such scenarios as commonly encountered in deep learning, sparse models that are

beneficial for pruning and compression purposes can be obtained using the developed algorithms.

This dissertation is organized as follows. An overview diagram is presented in Figure 1.1

to summarize the organization.

• Chapter 2 presents a novel reweighting–AST framework for developing a large class of adaptive

filters that leverage the sparse nature of the system responses. The developed LMS-type

sparse adaptive filters lie at the intersection of the proportionate-class [27, 28, 29, 26] and

SSR-inspired [24, 25, 43, 44] adaptive algorithms and provides an interesting bridge. Under the

framework, two new proportionate algorithms, namely, Sparsity-promoting LMS (SLMS) and

Sparsity-promoting NLMS (SNLMS) are introduced, which permit incorporation of a broad
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class of diversity measures that have proved effective for SSR. In this sense, our framework

provides a systematic way of designing the proportionate factors for the algorithms in contrast

to existing approaches that are mostly ad hoc.

• Chapter 3 extends the reweighting–AST framework developed in Chapter 2 to another class of

adaptive filters, i.e., the conjugate gradient (CG) family of adaptive algorithms [45, 46, 47, 48,

49, 50], and devices a novel CG-type adaptive filter that we call Sparsity-promoting CG (SCG).

The SCG algorithm generally has a faster convergence rate than the SLMS and SNLMS while

with a higher computational complexity. When processing power is less of a constraint, the

SCG may be a better choice.

• Chapter 4 discusses a real-world engineering problem where the proposed sparsity-promoting

adaptive algorithms can be useful, i.e., the acoustic feedback reduction problem in hearing aids,

where LMS-based adaptive feedback cancellation (AFC) algorithms are typically employed

[51]. We show that the (quasi-) sparse nature of the acoustic feedback path impulse responses

can be suitably leveraged to achieve better speech quality and higher system stable gain via

our SLMS algorithm which offers control over the sparsity degree. Moreover, we introduce a

novel decorrelation approach called “freping,” which utilizes a network of all-pass filters to

realize nonlinear frequency warping, to further enhance the AFC system on top of SLMS by

mitigating the Nyquist stability criterion. The algorithms developed in this chapter have been

implemented and run real-time on the Open Speech Platform [52, 53].

• Chapter 5 gives attention to the general optimization problem in machine learning where

gradient descent plays an important role, e.g., in DNN optimization. Specifically, we discuss

potential ways of leveraging the implicit regularization property of gradient descent to

estimate a regularized model with desirable properties, e.g., sparsity, without explicitly using a

regularization penalty. The reweighting–AST algorithmic framework developed in Chapter

2 turns out to be suitable for this purpose as well. While this time, instead of speeding up
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convergence, the aim becomes to approach a desired solution when there are many. Based on

the framework, we propose i) Sparsity-promoting SGD (SSGD) algorithm for neural network

compression and ii) Sparsity-promoting Kernel LMS (SKLMS) and Sparsity-promoting Kernel

NLMS (SKNLMS) algorithms for dictionary pruning in kernel methods.

SSR + Gradient Descent
(Reweighting-AST)

Sparsity-Aware
Adaptive Filtering

Nonlinear Model
Sparsification

SLMS/SNLMS
[Chapter 2]

SCG
[Chapter 3]

SSGD
[Chapter 5]

SKLMS/SKNLMS
[Chapter 5]

to improve
adaptation rate to learn a sparse model

steepest
descent

conjugate
gradient neural networks kernel methods

AFC
[Chapter 4]

applied to

Figure 1.1: Overview of the dissertation.

1.4 Notation

Let R" denote the "-dimensional real Euclidean space. R#×" denotes the set of # ×"

real matrices. R+ denotes the set of non-negative real numbers. Superscript ) denotes the

transpose of a vector or matrix. E[·] denotes the mathematical expectation. Vectors and matrices

are denoted by boldface lowercase and uppercase letters, respectively. Scalars are denoted by

italics. For a vector x = [G0, G1, . . . , G"−1]) ∈ R" , the ℓ? norm2 (where ? > 0) is defined as:

‖x‖? = (
∑"−1
8=0 |G8 |?)1/?. We use diag{G8} to denote the "-by-" diagonal matrix whose 8-th

diagonal element is G8. We use sgn(·) to denote the component-wise sign function. ∇x denotes
2Note that ‖x‖ ? for 0 < ? < 1 does not satisfy the required axioms for a norm and therefore it is not technically a

norm. For exposition simplicity, since the range of ? considered is from 0 to 2, we use the norm terminology to cover
this range.
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the gradient operator3 w.r.t. x. d denotes the differential operator. R(X), N (X), and rank(X)

denote the range space, nullspace, and rank of a matrix X, respectively. tr(X) denotes the trace

of a square matrix X. I denotes the identity matrix. 1 denotes the vector of all ones. 0 denotes

the vector of all zeros. We use N (·, ·) to denote the normal distribution with the first and second

arguments being the mean and (co)variance, respectively.

3By abusing the notation we use ∇x also for the subgradient operator without explicitly noting it.
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Chapter 2

Proportionate LMS-Type Adaptive Filters

Derived Using Iterative Reweighting SSR

Techniques

In this chapter, based on sparsity-promoting regularization techniques from the sparse

signal recovery (SSR) area, least mean square (LMS)-type sparse adaptive filtering algorithms are

derived. The approach mimics the iterative reweighted ℓ2 and ℓ1 SSR methods that majorize the

regularized objective function during the optimization process. We show that the reweighting

formulation naturally leads to an affine scaling transformation (AST) strategy, which effectively

introduces a diagonal weighting on the gradient, giving rise to new algorithms that demonstrate

improved convergence properties. Interestingly, setting the regularization coefficient to zero in

the proposed AST-based framework leads to the Sparsity-promoting LMS (SLMS) and Sparsity-

promoting Normalized LMS (SNLMS) algorithms, which exploit but do not strictly enforce the

sparsity of the system response if it already exists. The SLMS and SNLMS realize proportionate

adaptation for convergence speedup should sparsity be present in the underlying system response.
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In this manner, we develop a new way for rigorously deriving a large class of proportionate

algorithms, and also explain why they are useful in applications where the underlying systems

admit certain sparsity.

2.1 Introduction

Adaptive filters [18, 19, 20, 21] have been an active research area over the past few decades

for their capabilities of estimating and tracking time-varying systems. In several applications, the

impulse responses (IRs) of the underlying systems to be identified are often sparse or compressible

(quasi-sparse), i.e., only a small percentage of the IR components have a significant magnitude

while the rest are zero or small. Examples include network and acoustic echo cancellation

[27, 54, 23], hands-free mobile telephony [55], acoustic feedback reduction in hearing aids

[56, 57, 58], and underwater acoustic communications [59], to mention a few. Designing adaptive

filters that can exploit the sparse structure of the underlying system response for performance

improvement over the conventional approaches, e.g., the least mean square (LMS) and normalized

LMS (NLMS), is of great interest and importance especially for acoustic and speech applications.

In this chapter, we utilize the iterative reweighted ℓ2 and ℓ1 algorithms that have been developed

in the sparse signal recovery (SSR) area to minimize diversity measures as a starting point [13].

By incorporating an affine scaling transformation (AST) strategy [42, 60] into the algorithm

design process, a new methodology for developing a large class of adaptive filters is presented

that leverage the sparse nature of the system responses.

An early and influential work on identifying sparse IRs is the proportionate NLMS

(PNLMS) algorithm proposed by Duttweiler [27] for acoustic echo cancellation. The main

idea behind the approach is to update each filter coefficient using a step size proportional to

the magnitude of the estimated coefficient, as opposed to the NLMS which assigns a uniform

adaptation gain to all coefficients. Consequently, when the system is sparse, larger coefficients
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are adapted using relatively large steps compared to the smaller ones with PNLMS. The overall

convergence can thus be sped up by focusing on adjusting the significant coefficients, rather then

treating them all equally as in NLMS. Although PNLMS was developed in an intuitive way, i.e.,

the equations used to calculate the proportionate factors that realize step-size control were not

based on any optimization criterion but were based on good heuristics, it has motivated many

new proportionate variants for sparse system identification. The proportionate class of algorithms

represent an important subset among sparsity-aware adaptive filters.

The recent progress on SSR has led to a number of computational algorithms, e.g.,

[61, 14, 62, 63, 15, 16], among others. This makes available a plethora of approaches for

systematically designing sparsity-aware adaptive algorithms that are a natural complement to the

SSR batch estimation techniques. As a result, different from the proportionate approaches, another

class of sparse adaptive filters have been introduced by utilizing sparsity-inducing regularization

to speed up the adaptation of near-zero coefficients in sparse systems. This has led to several

sparse adaptive filtering algorithms and even obtaining a general framework of adaptive filters

that incorporate sparsity. SSR-motivated adaptive algorithms represent another important class of

sparsity-aware adaptive filters. We now discuss a few works on the proportionate class followed

by the SSR variants.

Several variations of the PNLMS have been proposed and [26] provides a good summary.

Examples include the improved PNLMS (IPNLMS) [28], IPNLMS based on the ℓ0 “norm”1

(IPNLMS-ℓ0) [29], etc. In [64], Martin et al. utilized a natural gradient framework to deduce

adaptive filters having similar features to the PNLMS that can exploit the sparse structure. Rao

and Song [65] and Jin [66] proposed a framework for promoting sparsity in adaptive filters based

on minimizing diversity measures. The framework is quite general and encompasses a broad

range of adaptive filtering algorithms having similarity with the PNLMS algorithm. Benesty et al.

[67] derived the PNLMS from a different perspective by using a basis pursuit [63] formulation.
1The ℓ0 “norm” of a vector is defined as the number of its nonzero entries. The quotation marks are used to warn

that it is not a proper norm.
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Following them, Liu and Grant [68] proposed a general framework of proportionate adaptive

filters based on convex optimization and sparseness measures, which covers many traditional

proportionate algorithms.

Several SSR-inspired algorithms have been introduced by integrating a sparsity-inducing

regularizer into the original LMS objective function to accelerate the convergence of near-zero

coefficients in sparse systems. For example, Chen et al. [24] proposed the zero-attracting LMS

(ZA-LMS) derived by including the ℓ1 norm penalty in the objective function. They also proposed

the reweighted ZA-LMS (RZA-LMS) obtained by incorporating the log-sum penalty. Later,

using the approximation of the ℓ0 “norm” as a sparsity-inducing term, Gu et al. [25] proposed

the ℓ0-LMS that is capable of better estimating sparse systems. In [43], the authors utilized the

?-norm-like penalty and considered the quantitative learning of the regularizer. Another work in

this area is the new reweighted ℓ1 norm penalized LMS algorithm proposed and studied in [44]

for improving the ZA-LMS and RZA-LMS .

Recently, some works have considered both proportionate adaptation and sparsity-inducing

regularization together. For example, [69] presents a modified PNLMS update equation with a

zero attractor as in the ZA-LMS for all the taps, derived by introducing a carefully constructed

ℓ1 norm penalty in the PNLMS objective function. Other than the ℓ1 norm, [70, 71] apply the

ℓ? norm penalty to the PNLMS cost function and derive ℓ?-norm-constrained proportionate

algorithms for improved broadband multipath channel estimation and active noise control. [72]

encompasses a number of sparsity-aware adaptive filtering algorithms that go beyond the LMS and

NLMS, including proportionate and regularization-based approaches. [73, 74] provide a general

framework to combine proportionate updates and sparsity-inducing regularizers. In Section 2.3,

we will derive algorithms whose update rules also consist of a proportionate term and another

term due to regularization. However, our derivation follows a very different path from these

previous works.
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In this chapter, inspired by the conceptual similarity with SSR,2 our goal is to add to this

interesting body of work on adaptive filtering and sparsity. The contributions of this work are the

following:

1. The sparsity-aware adaptive filters developed lie at the intersection of the proportionate-class

and SSR-inspired adaptive algorithms and provide an interesting bridge. We start with the

rigorous formulation of a regularization framework and derive novel sparse adaptive filtering

algorithms. Specifically, based on diversity measure minimization in SSR, we adopt the

iterative reweighted ℓ2 and ℓ1 approaches [13] and utilize an AST methodology [42, 60] in the

algorithm development, naturally leading to a general class of proportionate adaptive filters.

This is an unique feature of this work. The combination of AST and the reweighting frameworks

contribute to the main innovation of our adaptive algorithm development framework.

2. Under the proposed framework, we introduce Sparsity-promoting LMS (SLMS) and Sparsity-

promoting NLMS (SNLMS) algorithms that promote sparsity without having to bias the

adaptation process by adopting _ = 0, where _ is the regularization coefficient associated with

the sparsity penalty. This is not possible for the class of algorithms currently in existence that

utilize a sparsity-inducing regularization penalty.3 The SLMS and SNLMS can be viewed as

realizing proportionate adaptation like the PNLMS class of algorithms [27]. Therefore, our

framework provides theoretical support to existing proportionate algorithms which were mostly

developed based on good heuristics rather than on optimization criteria, and paves the way

for explaining why they are useful in circumstances where the channels to be estimated admit

certain sparsity. More importantly, unlike most of them that design the proportionate factors

heuristically, our SSR-motivated framework leads to a more systematic way of designing the
2This similarity has been noticed in [75] where sparse adaptive filtering techniques were utilized for solving the

SSR problem. Here we take the opposite direction as we are interested in utilizing SSR techniques for assisting
the adaptive filtering algorithms. Both cases exploit the connections between SSR and adaptive filtering but the
objectives are different.

3The algorithms usually reduce to the standard LMS or NLMS algorithm if the regularization coefficient _ is set
to zero.
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factors, and permits incorporation of a broad class of diversity measures that have proved

effective for SSR in our algorithms.

3. Compared to existing derivations of proportionate-type algorithms, using the proposed

framework we derive the algorithms in a more natural way in terms of incorporating sparsity

using a regularization framework. For instance, in some of the existing works modified

objective functions were proposed that impose sparsity on the “change” of the filter rather than

on the filter itself, e.g., [65, 66, 67, 68, 69]. However, since the assumption is that the filter

itself is sparse, the motivation for enforcing sparsity on the “change” rather than on the filter is

not clear and at best indirect. In contrast, we work with the general mean squared error (MSE)

criterion in which sparsity can be directly imposed via regularization on the filter.

4. Steady-state analysis of the proposed algorithms is conducted and simulation results are

provided to demonstrate the effectiveness of the proposed algorithms compared to existing

approaches. Examples with the acoustic channel response measured on a real-world hearing

aid device using speech input are also presented.

Organization of the Chapter: The rest of the chapter is organized as follows. Section

2.2 provides background on adaptive filters and iterative reweighting SSR algorithms. Section

2.3 derives adaptive filters that incorporate sparsity based on diversity measure minimization

by utilizing the reweighted ℓ2 and ℓ1 frameworks together with the AST methodology. Section

2.4 introduces the SLMS and SNLMS that adopt _ = 0. Section 2.5 discusses the steady-state

analysis. Section 2.6 presents simulation results. Section 2.7 concludes the chapter.

2.2 Adaptive Filtering and SSR

We provide some preliminaries of adaptive filters in the context of system identification

and present several examples of existing sparsity-aware adaptive filtering algorithms. We also
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discuss the iterative reweighting frameworks in SSR for developing our adaptive algorithms in

later sections.

2.2.1 Adaptive Filters for System Identification

Let h= = [ℎ0,=, ℎ1,=, . . . , ℎ"−1,=]) denote the adaptive filter of length " at discrete time

instant =. Assume the IR of the underlying system is h> = [ℎ>0, ℎ
>
1, . . . , ℎ

>
"−1]

) , and the model

for the observed or desired signal is 3= = u)=h> + E=. u= = [D=, D=−1, . . . , D=−"+1]) is the vector

containing the " most recent samples of the input signal D= and E= is an additive noise signal. The

output of the adaptive filter u)=h= is subtracted from 3= to obtain the error signal 4= = 3=−u)=h=.

The goal in general is to sequentially update the coefficients of h= upon the arrival of a new data

pair (u=, 3=), such that eventually h= = h>; i.e., to identify the unknown system.

The most classic adaptive filtering algorithms are the LMS and NLMS [18, 19, 20], which

can be derived based on minimizing the MSE objective function:

min
h

� (h) , E
[
42
=

]
= E

[(
3=−u)=h

)2
]
. (2.1)

The method of steepest descent (gradient descent) for optimizing (2.1) suggests the

following recursion for updating the filter coefficients [19]:

h=+1 = h=−
`

2
∇h� (h=), (2.2)

where ` > 0 is the step size. To develop adaptive algorithms, in practice the gradient ∇h� (h=) =

−2E[u=4=] is replaced by the instantaneous estimate −2u=4=, i.e., the stochastic gradient [19, 20],

leading to the standard LMS algorithm:

h=+1 = h= + `u=4=. (2.3)
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The normalized version of (2.3), i.e., the NLMS algorithm, can be derived based on the

principle of minimum disturbance [19]. Alternatively, it can be obtained by performing exact line

search for the optimal step size for each iteration [49]. Then, practically, a scaling factor ˜̀ > 0 is

introduced to exercise control over the adaptation4 and a small regularization constant X > 0 is

also employed to avoid division by zero [19], leading to the standard NLMS algorithm:

h=+1 = h= +
˜̀u=4=

u)=u= + X
. (2.4)

Sparsity-Aware Adaptive Filtering Algorithms

When the underlying system response is sparse, a class of algorithms realizing proportionate

adaptation [26] are able to take advantage of the structural sparsity. A typical update rule with

proportionate adaptation is:

h=+1 = h= + `�=u=4=, (2.5)

or the normalized version:

h=+1 = h= +
˜̀�=u=4=

u)=�=u= + X
, (2.6)

where

�= = diag{W0,=, W1,=, . . . , W"−1,=} (2.7)

is an "-by-" diagonal matrix assigning different weights to the step sizes for different filter taps,

referred to as the proportionate matrix. It redistributes the adaptation gains among all coefficients

and emphasizes the large ones in order to speed up their convergence. Typically, at the =-th
4Formally, ˜̀ is called the normalized step size. For brevity, we still refer to it as the step size but keep in mind

that it does not have the same significance as the ` in (2.3). Note that it is also common in the literature that the same
notation of the step size is shared for both LMS and NLMS without explicit distinction.
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iteration the diagonal entries are computed as:

W8,= =
c8,=∑"−1
9=0 c 9 ,=

, (2.8)

∀8 = 0,1, . . . , "−1, where c8,= is algorithm-dependent and examples of such algorithms include the

PNLMS [27], IPNLMS [28], IPNLMS-ℓ0 [29], etc. In general, if the estimated filter coefficients

ℎ8,= are sparse, the resulting c8,= (thus W8,=) will also tend to be sparsely distributed (with positive

values).

Another class of algorithms, inspired by developments in the SSR area, take sparsity into

account using a regularization-based approach, e.g., [24, 25, 43, 44]. The algorithms are obtained

by adding a sparsity-inducing term � (h) to the MSE objective function:

min
h

�� (h) , � (h) +_� (h), (2.9)

where _ > 0 is the regularization coefficient. By simply applying (stochastic) gradient descent5

on (2.9):

h=+1 = h= + `u=4=−
`_

2
∇h� (h=), (2.10)

various algorithms can be obtained with different sparsity-inducing functions � (·). Examples

include the ZA-LMS [24], RZA-LMS [24], and ℓ0-LMS [25, 76].

2.2.2 Iterative Reweighting Algorithms in SSR

The optimization of (2.9) is actually an SSR problem. The sparsity regularization term

� (·) represents the general diversity measure that when minimized encourages sparsity in its

argument. A separable function of the form � (h) =∑"−1
8=0 6(ℎ8) is commonly used, where 6(·)

has the following properties [13]:
5By abusing the terminology we implicitly use “gradient” also for subgradient whenever appropriate.
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Property 1: 6(I) is symmetric, i.e., 6(I) = 6(−I) = 6( |I |);

Property 2: 6( |I |) is monotonically increasing with |I |;

Property 3: 6(0) is finite;

Property 4: 6(I) is concave in |I | or I2.

Any function that holds the above properties is a candidate for effective SSR algorithm development.

The concave nature of the regularization penalty � (h) poses challenges to the diversity

measure minimization problem (2.9). The iterative reweighted ℓ2 [14, 15] and ℓ1 [16] methods

are popular batch estimation algorithms for solving such minimization problems in SSR. By

introducing a weighted ℓ2 or ℓ1 norm term as an upper bound for the diversity measure term in

each iteration, they form and solve a convex optimization problem at each step to approach the

optimal solution [13]. Specifically, instead of (2.9), at iteration = the reweighted ℓ2 framework

suggests solving:

min
h

�ℓ2= (h) , � (h) +_‖W−1
= h‖22, (2.11)

and the reweighted ℓ1 framework suggests solving:

min
h

�ℓ1= (h) , � (h) +_‖W−1
= h‖1, (2.12)

where W= = diag{F8,=} is positive definite6 and each F8,= is computed based on the current

estimate ℎ8,=, depending on which framework (reweighted ℓ2 or ℓ1) and diversity measure (choice

of � (·)) are used.

To elaborate, for using the reweighted ℓ2 (2.11), the diversity measure function 6(I) has to

be concave in I2 for Property 4; i.e., it satisfies 6(I) = 5 (I2), where 5 (I) is concave for I ∈ R+.
6The positive definiteness can be shown to hold for a wide variety of diversity measures used in SSR. In cases

where it is not, the positive definiteness can still be ensured by utilizing some small regularization constant.
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Based on [13], we have F8,= given as:

F8,= =
©­«d 5 (I)

dI

����
I=ℎ2

8,=

ª®¬
− 1

2

. (2.13)

For using the reweighted ℓ1 (2.12), 6(I) has to be concave in |I | for Property 4; i.e., it satisfies

6(I) = 5 ( |I |), where 5 (I) is concave for I ∈ R+. In this case, F8,= is given as:

F8,= =

(
d 5 (I)

dI

����
I=|ℎ8,= |

)−1

, (2.14)

To utilize the reweighting frameworks, we first choose an appropriate diversity measure

� (h) and then use (2.13) or (2.14) to obtain the corresponding update form of W=. Several

examples will be presented is Section 2.4.2.

2.3 Proposed Framework for Incorporating Sparsity in

Adaptive Filters

Our framework for developing sparse adaptive filters is also based on (2.9). However, we

will be deriving algorithms in a different way rather than using a simple gradient descent as is

typically done in existing regularization-based adaptive filtering approaches, e.g., (2.10). Our

novel derivation consists of two stages: i) adapting the iterative reweighting frameworks [13]

popular in SSR to the adaptive filtering setting, followed by ii) incorporating the AST strategy

[42, 60] from the optimization literature to obtain new adaptive filtering algorithms.

2.3.1 Reweighting Methods for Adaptive Filtering

The reweighting methods introduced in Section 2.2.2 actually belong to the more general

class of majorization-minimization (MM) algorithms [17]. In each iteration =, the weighted ℓ2 or
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ℓ1 norm term majorizes� (h) at the current estimate h=, thereby providing a surrogate function (or

majorizer) �ℓ2= (h) or �ℓ1= (h) for the regularized objective function �� (h). Sequentially minimizing

the surrogate functions allows the algorithm to produce more focal estimates as optimization

progresses. Hopefully when the number of iterations is large enough, the optimal solution can be

well approached or even achieved [13].

In SSR, it is typical that the surrogate function is exactly minimized in each iteration =.

For the purpose of developing adaptive filtering algorithms, here we consider performing only

one step of gradient descent per iteration. In this sense, it corresponds to the generalized MM

[77] where one does not need to minimize the majorizer but only to assure that it decreases in

every iteration. Indeed, the MM viewpoint provides an interesting observation of using gradient

descent for optimizing (2.9) and the reweighting formulations (2.11) and (2.12), as stated in the

following proposition:

Proposition 2.1. For any point h= at which � (h) is differentiable, the gradient vector of the

surrogate function �ℓ2= (h) or �ℓ1= (h) evaluated at h= coincides with that of the regularized objective

function �� (h), i.e., ∇h�
ℓ2
= (h=) = ∇h�

� (h=) for the reweighted ℓ2 case and ∇h�
ℓ1
= (h=) = ∇h�

� (h=)

for the reweighted ℓ1 case.

Proof: Since the surrogate function majorizes �� (h) at h=, the tangent plane (supporting

hyperplane) of the majorizer coincides with that of �� (h) at h=. Consequently, the gradient

vectors are the same at h=.

The observation in Proposition 2.1 implies that, if the gradient descent (when using a

fixed step size) is utilized for optimization,7 then adopting the reweighting frameworks (2.11) and

(2.12) will be equivalent to directly working on (2.9) and lead to the existing regularization-based

algorithms such as the ZA-LMS. In the following, we introduce the AST strategy naturally

suggested by the reweighting frameworks, leading to new algorithms markedly different from
7For a point at which � (h) is non-differentiable, this can still hold by properly choosing the subgradients.
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those obtained by directly optimizing (2.9) with gradient descent.

2.3.2 AST-Based Adaptive Filtering Algorithms

The reweighting frameworks (2.11) and (2.12) naturally suggest the following reparame-

terization in terms of the (affinely) scaled variable q:

q ,W−1
= h. (2.15)

This step can be interpreted as the AST commonly employed by the interior point approach to

solving linear and nonlinear programming problems [42], where W= is used as the scaling matrix.

It is pre-calculated and treated as a given matrix at iteration = to perform a change of coordinates

(variables) [78] from h to q, acting as a scaling technique in gradient descent methods [79]. In

the optimization literature, AST-based methods transform the original problem into an equivalent

one, favorably positioning the current point at the center of the feasible region for expediting the

optimization process [60]. While we do not claim this argument is rigorous in the context of

adaptive filtering, where the convergence behavior is hard to characterize due to the nonlinear

nature of the update equations and the long term dependency on the data, the numerical results

appear to support this observation of enjoying the benefits of AST for convergence speedup.

Now we apply (2.15) to reparameterize the objective functions �ℓ2= (h) and �ℓ1= (h) and

perform minimization w.r.t. q, that is:

min
q

�̃ℓ2= (q) , �ℓ2= (W=q) = � (W=q) +_‖q‖22 (2.16)

and

min
q

�̃ℓ1= (q) , �ℓ1= (W=q) = � (W=q) +_‖q‖1, (2.17)

for the reweighted ℓ2 and ℓ1 cases, respectively. A gradient descent procedure will then be applied.
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The overall update process conceptually can be summarized as follows: i) given an h compute

W= followed by reparameterization q as (2.15). ii) Update q using a gradient descent algorithm.

iii) Use this new q to obtain the updated h. iv) Repeat Steps i)–iii) till convergence.

More formally, to proceed with gradient-based updates, following [49] we define the a

posteriori AST variable at time =:

q=|= ,W−1
= h= (2.18)

and the a priori AST variable at time =:

q=+1|= ,W−1
= h=+1. (2.19)

The recursive update by using gradient descent in the q domain can be formulated as:

q=+1|= = q=|=−
`

2
∇q �̃

ℓ2
= (q=|=) (2.20)

and

q=+1|= = q=|=−
`

2
∇q �̃

ℓ1
= (q=|=), (2.21)

for optimizing (2.16) and (2.17), respectively.

Using the chain rule8 and the AST relationships (2.15) and (2.18), we can write (2.20)

and (2.21) respectively as:

q=+1|= = q=|=−
`

2
W=∇h�

ℓ2
= (h=) (2.22)

and

q=+1|= = q=|=−
`

2
W=∇h�

ℓ1
= (h=). (2.23)

Premultiplying W= on both sides of (2.22) and (2.23) and noting the relationships (2.18)

and (2.19), we transform the q domain updates (2.22) and (2.23) back to the h domain respectively
8Note that the chain rule here is basically ∇q =W=∇h as a result of the change of variables (2.15) for a given W=

at iteration =.
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as:

h=+1 = h=−
`

2
W2

=∇h�
ℓ2
= (h=) (2.24)

and

h=+1 = h=−
`

2
W2

=∇h�
ℓ1
= (h=). (2.25)

By Proposition 2.1, we can replace ∇h�
ℓ2
= (h=) and ∇h�

ℓ1
= (h=) with ∇h�

� (h=). Thus, (2.24)

and (2.25) can both be written as:

h=+1 = h=−
`

2
W2

=∇h�
� (h=). (2.26)

Note that based on the aforementioned update process i)-iv), we can in fact directly apply (2.15)

to reparameterize �� (h) to obtain (2.26) without going through the reweighting formulation, as

long as the scaling matrix W= is specified. In this sense, the reweighing methods essentially play

the role of suggesting a suitable W= that eventually becomes a diagonal weighting matrix W2
= on

the gradient ∇h�
� (h=) in the update rule. Hopefully, it alters the ordinary descent direction in

such a way that leads to convergence improvement. We should also emphasize that the scaling

matrix W= suggested by (2.24) and (2.25) will in general be different for a given � (h) despite the

fact that both can be expressed as (2.26).

In practice, the following update rule is suggested over (2.26) for avoiding instability and

slow convergence issues:

h=+1 = h=−
`

2
S=∇h�

� (h=), (2.27)

where

S= =
W2

=

1
"
tr

(
W2

=

) , (2.28)

referred to as the sparsity-promoting matrix, is the normalized version of W2
=. As a fixed step size

` is used, performing normalization of the weighting matrix compensates for any arbitrary scaling
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inherent in W2
= that might cause instability (scaling too large) or slow convergence (scaling too

small). Note that by (2.28) we always have tr(S=) = " , aligned with the non-AST case (i.e., using

the ordinary gradient descent) which essentially has S= = I whose trace is also " .

Finally, to obtain the adaptive algorithm, we follow the standard procedure of replacing

∇h�
� (h=) =−2E[u=4=] +_∇h� (h=) in (2.27) with its instantaneous estimate−2u=4=+_∇h� (h=),

leading to:

h=+1 = h= + `S=u=4=−
`_

2
S=∇h� (h=). (2.29)

We see that there is a term with a diagonal weighting S= on the LMS update vector u=4=, similar

to that in proportionate algorithms (2.5) and (2.6). We also see another term weighted by _ which

is due to the introduction of the regularizer, like that of (2.10). Therefore, the AST framework

leads to a more general algorithm comprised of proportionate adaptation and sparsity-inducing

regularization. We thus refer to (2.29) as the generalized sparse LMS algorithm.

2.3.3 Discussions

It may seem at the first glance that applying the reweighting techniques to (2.9) straightfor-

wardly leads to our algorithm. We stress that it is not true. If the AST (2.15) was not considered,

adopting the reweighting schemes would still end up with an update rule like (2.10) according

to Proposition 2.1, rather than the proposed (2.29). It is also worth mentioning that there is

considerable difference between the proposed algorithm (2.29) and existing SSR algorithms

based on (2.11) and (2.12) – the conventional SSR techniques are batch estimation methods for

recovering the underlying sparse representation, while the proposed algorithm is specifically

tailored for the adaptive filtering scenario. That being said, as gradient descent is adopted for

optimization, we actually perform a gradual update of the filter coefficients in each iteration =,

rather than looking for an exact minimizer of the surrogate function as is typically pursued in SSR.

This enables the algorithm to track temporal variations and environmental changes. Certainly,
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considering the gradient noise in real scenarios, it may post the issue of whether the algorithm

is convergent. However, even the standard LMS and NLMS that are based on gradual updates,

work well in many practical situations with gradient noise. In Section 2.6, experimental results

will demonstrate that the proposed algorithm, like the LMS and NLMS, also behaves well when

certain level of environmental noise is present.

Finally, the following theorem establishes the convergence of the q domain recursions

(2.20) and (2.21) and their relationships to (2.9) to shed light on the convergence of the adaptive

algorithm (2.29) developed based on them:

Theorem 2.1. For the objective function �� (h) in (2.9) with the general diversity measure � (h)

satisfying Properties 1-4 in Section 2.2.2,9 there exists a step size sequence {`=}∞==0 such that each

of the update recursions (2.20) and (2.21) monotonically converges to a local minimum (or saddle

point) of (2.9) under a wide-sense stationary (WSS) environment, i.e., u= and 3= are jointly WSS.

Proof: See Appendix 2.8.1.

2.4 Sparsity-Promoting Algorithms Adopting _ = 0

An interesting situation arises when we consider the limiting case of _→ 0+ for the

proposed framework. By setting _ = 0 in (2.29), we see the _-weighted term due to regularization

vanishes, leading to a simpler equation:

h=+1 = h= + `S=u=4=. (2.30)

The main feature of (2.30) is that it is able to promote sparsity of the system (through S=) if it

already exists while not strictly enforcing it (as _ = 0). This property shall become clearer in later

discussions. We refer to the algorithm (2.30) as the Sparsity-promoting LMS (SLMS).
9Note that for Property 4, Theorem 2.1 holds for (2.20) of the reweigthed ℓ2 framework if 6(I) is concave in I2.

On the other hand, it holds for (2.21) of the reweighted ℓ1 framework if 6(I) is concave in |I |.
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The normalized version of (2.30) can also be developed by performing exact line search

for the optimal step size at iteration = just like that when deriving the NLMS:

`= = argmin
`

(
3=−u)=

(
h= + `S=u=4=

) )2
=

1
u)=S=u=

. (2.31)

Similar to the NLMS, we introduce ˜̀ > 0 to exercise control over the adaptation and X > 0 to

avoid division by zero, resulting in:

h=+1 = h= +
˜̀S=u=4=

u)=S=u= + X
. (2.32)

We refer to the algorithm (2.32) as the Sparsity-promoting NLMS (SNLMS).

An obvious benefit of adopting _ = 0 is that the computation for the term due to

regularization is no longer needed, and we do not have to tweak this coefficient anymore (which is

typically not a trivial task in practice). Still, the SLMS and SNLMS have the ability to leverage

sparsity owing to the diagonal weighting S=, which is similar to the proportionate matrix �= in

(2.5) and (2.6). Again, this is made possible due to the use of the AST (2.15), wherein the gradient

descent update is performed w.r.t. the q variable rather than in the original h domain. Otherwise,

we will end up with algorithms like (2.10) that reduce to the ordinary LMS/NLMS when using

_ = 0.

The SLMS and SNLMS can in fact be viewed as a broader class of proportionate algorithms.

Actually, with certain choices of diversity measures and corresponding parameters, we can have

the PNLMS (approximately) as a special case. For example, as we will see in Section 2.4.2,

using ? = 1 in (2.34) for W=, the sparsity-promoting matrix S= approximates the proportionate

matrix �= of the PNLMS. Indeed, one of the main advantages of the SLMS and SNLMS is

their ability to incorporate flexible diversity measures. It allows the algorithms to fit the sparsity

level of the system response by optimizing corresponding sparsity control parameters in a more

informed manner due to the underlying connections to SSR. Furthermore, the derivations provide
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theoretical support to the class of proportionate algorithms that were mostly motivated based on

heuristics, explaining why they are useful in practical identification tasks with sparse channels,

e.g., in acoustic echo/feedback cancellation, from an SSR viewpoint.

2.4.1 Interpretation of _ = 0 from Optimization Perspective

We further discuss the interpretation of using _ = 0 in our framework from an optimization

perspective. Recall that the AST reparameterization (2.15) results in the optimization problems

(2.16) and (2.17). Setting _ = 0 leads both to:

min
q
� (W=q). (2.33)

This actually applies a change of coordinates to the unregularized problem (2.1) via (2.15). Since

W= is invertible, the problem of finding the h that minimizes � (h) is equivalent to finding the

q which minimizes � (W=q). Therefore, the advantage of solving (2.33) is that the solution

is guaranteed to also be a solution of (2.1), which is not true for (2.9) with _ > 0. Thus, the

optimization is unbiased while promoting sparsity – it is able to take advantage of sparsity whereas

without having to supplement a sparsity penalty that incurs bias to the MSE objective. As noted

in [79], the performance of gradient-based methods is dependent on the parameterization – a new

choice may substantially alter convergence characteristics. Introducing variable scalings may

speed up convergence by altering the descent direction toward the optimum. In our case, solving

(2.33) with appropriately selected W= can expedite the adaptation procedure toward the optimum

of (2.1).

This observation can also be illustrated by looking at (2.9) which indicates a trade-off

between estimation quality, as reflected in the MSE objective function, and solution sparsity

as controlled by _. In the limiting case of _→ 0+, the objective function exerts diminishing

impact on enforcing sparsity on the solution, meaning that eventually no sparse solution is favored
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over other possible solutions. To elaborate, with _ = 0 and under a WSS environment, all the

algorithms derived from (2.9) minimize the MSE and converge toward the Wiener-Hopf solution.

However, not surprisingly, the path they take is different and depends on how the iterations are

developed. If the Wiener-Hopf solution is sparse, then all will converge toward the same sparse

solution asymptotically. Interestingly, the SLMS and SNLMS, because of their proportionate

nature similar to the PNLMS-type algorithms, can take advantage of the sparsity and are capable

of speeding up convergence without compromising estimation quality should sparsity be present.

This observation will later be supported by experimental results in Section 2.6.2.

2.4.2 Example Diversity Measures and Corresponding W=

To illustrate the flexibility of the proposed framework, we provide example algorithms

instantiated with popular diversity measures that have proved effective in SSR.

Consider the ?-norm-like diversity measure with 6(ℎ8) = |ℎ8 |?, 0 < ? ≤ 2 for the reweighted

ℓ2 framework [14, 42]. Using (2.13) leads to the update form of W=:

F8,= =

(
2
?

(
|ℎ8,= | + 2

)2−?
) 1

2

. (2.34)

Note that we have empirically added a small regularization constant 2 > 0 for avoiding algorithm

stagnation and instability,10 which also ensures the positive definiteness ofW= [80]. The parameter

? ∈ (0,2] in (2.34) is responsible for controlling the sparsity degree, as the ?-norm-like diversity

measure is associated with super-Gaussian prior distributions. In general, a smaller ? corresponds

to a heavier-tailed distribution, encouraging stronger sparsity in the parameters. It is worth noting

that using ?→ 1 in (2.34) results in a proportionate factor close to that of the PNLMS. On the

other hand, letting ? = 2 recovers the standard LMS/NLMS.

The ?-norm-like diversity measure can also be adopted in the reweighted ℓ1 framework if
10We suggest that 2 be kept relatively small as compared to the amplitude of the filter coefficients so that it would

not affect the convergence significantly.
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0 < ? ≤ 1. Applying (2.14), we obtain the update form of W= in this case:

F8,= =
1
?

(
|ℎ8,= | + 2

)1−?
. (2.35)

Again, a small constant 2 > 0 is added. The sparsity control parameter of (2.35) is now ? ∈ (0,1].

In this case, using ?→ 0.5 in (2.35) results in a proportionate factor close to that of the PNLMS,

whereas letting ? = 1 recovers the standard LMS/NLMS.

We can also consider the log-sum penalty with 6(ℎ8) = log(ℎ2
8
+n), n > 0 for the reweighted

ℓ2 framework [15]. The function is readily amenable to the use of (2.13) to obtain the update

form of W= as:

F8,= =

(
ℎ2
8,= + n

) 1
2
. (2.36)

Or consider the log-sum penalty with 6(ℎ8) = log( |ℎ8 | + n), n > 0 for the reweighted ℓ1 framework

[16]. Using (2.14), the update form of W= becomes:

F8,= = |ℎ8,= | + n . (2.37)

The sparsity control parameter is n > 0 for the two log-sum penalty cases. From (2.36) and (2.37)

we can see that n controls how much proportionate adaptation is encouraged: as n becomes

smaller, the term ℎ2
8,=

or |ℎ8,= | becomes more dominant. Consequently, they exhibit a stronger

proportionate adaptation characteristic. On the contrary, as n becomes larger, the influence of ℎ2
8,=

or |ℎ8,= | reduces. Thus, the algorithm will approach the standard LMS/NLMS when n � ℎ2
8,=

or

n � |ℎ8,= |. In practice, one can start from a large n and reduce it to find a suitable value.

More example functions can be found in [81, 68], including 6(ℎ8) = arctan( |ℎ8 |/n), n > 0

also suggested in [16], which works for both the reweighted ℓ2 and ℓ1 frameworks. Note that

different diversity measures can result in different computational complexity for calculating W=.

Notably, for example, the ?-norm-like function resulting in (2.34) or (2.35) might incur extra
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computation for calculating the quantity to the power 2− ? or 1− ? for some ? value (e.g.,

non-integer power).

Algorithm 1 summarizes the proposed SLMS and SNLMS algorithms.

Algorithm 1: The proposed SLMS and SNLMS adaptive filtering algorithms
1 Input: step size ` > 0 (or ˜̀ > 0), regularization constant X > 0, input signal u=,

desired signal 3=, and the choice of the diversity measure
2 Output: estimated filter h=
3 Initialize: h0
4 for = = 0,1,2, . . . do
5 Compute error signal: 4= = 3=−u)=h=
6 Compute scaling matrix: W= according to the specified diversity measure (e.g.,

using (2.34), (2.35), (2.36), or (2.37))
7 Compute sparsity-promoting matrix: S= by (2.28)
8 Update adaptive filter coefficients:

* SLMS: h=+1 = h= + `S=u=4=

* SNLMS: h=+1 = h= +
˜̀S=u=4=

u)=S=u= + X

9 end for

2.4.3 Comparison to Existing Work on PNLMS-Type Algorithms

Note that in IPNLMS [28] and IPNLMS-ℓ0 [29] there is also a parameter for fitting

the sparsity degree, which was heuristically introduced to weight between proportionate and

non-proportionate updates. However, this empirical parameter does not reflect the sparsity level

of the underlying system directly. In our algorithms, we have the sparsity control parameters

that play a similar role for fitting different sparsity levels. However, based on diversity measures

in SSR, they have direct connections to the system sparsity, thereby offering a more intuitive

parameter selection procedure. Our algorithms thus have the advantages of enjoying theoretical

support and leveraging sparsity more straightforwardly.

In terms of algorithm derivations, PNLMS-type algorithms were mostly developed
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from a constrained optimization problem following the principle of minimal disturbance, e.g.,

[65, 66, 67, 68, 69], in which modified objective functions have been proposed that impose

sparsity on the “change” of the filter rather than on the filter itself. For example, [65, 66, 69]

considered enforcing sparsity on the difference between the current and updated filters; [67, 68]

imposed sparsity on the so-called correctness component as defined in [67] which also represents

the change in the filter coefficients. However, since the assumption is that the filter itself is sparse

rather than the difference between successive updates, the motivation to enforce sparsity on the

“change” of the filter is less clear. Sparsity, in turn, does not seem to fit in straightforwardly under

the commonly adopted constrained optimization framework. In contrast, we work with the general

MSE criterion in which filter sparsity can be directly imposed via regularization, which is more

straightforward and also makes intuitive sense.

2.5 Steady-State Performance Analysis

The signal model of system identification described in Section 2.2.1 is employed for

performance analysis. We further assume the noise E= is i.i.d. according to N (0,f2
E ). We also

introduce several other assumptions useful for simplifying analysis. Although these assumptions

may seem restrictive, they make meaningful analysis possible without significant loss of insight

and are also commonly adopted in the literature. We shall later see that these assumptions lead to

theoretical results that are supported by experiments.

Assumption 1: The input data vector u= is independent of u: for = ≠ : . Furthermore, u=

is independent of E: for all = and : . In practice and from past experience in adaptive filters, this

assumption simplifies the analysis and does lead to useful insights [19, 20], despite the fact that it

does not in general hold true.

Assumption 2: The input data vector obeys u= ∼ N (0,R) for all =. This technical

assumption facilitates the analysis by taking advantage of the useful results on Gaussian random
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variables [21].

Assumption 3: At steady-state, the diagonal matrix W= in the update equations can be

view as a fixed matrix. As suggested in [27, 64], when the system is at steady-state and when the

step size is sufficiently small, the coefficients converge in both mean and mean squared senses.

Thus, replacing W= by a fixed matrix becomes reasonable and convenient.

For convenience we shall consider the algorithm of the following form for performance

analysis:

h=+1 = h= + `Su=4=, (2.38)

where S = diag{B8} with B8 > 0, ∀8 = 0,1, . . . , " −1.

For a fixed underlying system h>, define the steady-state excess MSE [21]:

�ex , lim
=→∞

E
[(

u)=
(
h> −h=

) )2
]
. (2.39)

Under Assumption 1, we have the steady-state MSE:

� , lim
=→∞

E
[
42
=

]
= f2

E + �ex. (2.40)

The following theorems characterize the steady-state behavior of (2.38):

Theorem 2.2 (Steady-state excess MSE). Under Assumptions 1-2 with a sufficiently small ` and

assume R = f2
D I, for the adaptive filter (2.38), the steady-state excess MSE is given by:

�ex =
`
∑"−1
8=0

f2
D B8

2−2`f2
D B8

1− `∑"−1
8=0

f2
D B8

2−2`f2
D B8

f2
E . (2.41)

Proof: See Appendix 2.8.2.
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Theorem 2.3 (Convergence conditions). Under Assumptions 1-2 with a sufficiently small ` and

assume R = f2
D I, for the adaptive filter (2.38):

i) It converges in the mean sense if:

|_max{I− `f2
DS}| < 1, (2.42)

where _max{X} denotes the largest eigenvalue of a square matrix X in magnitude.

ii) It converges in the mean squared sense if:

0 < ` < ©­«
"−1∑
8=0

f2
D B8

2−2`f2
D B8

ª®¬
−1

. (2.43)

Proof: See Appendix 2.8.3.

2.5.1 Steady-State Performance of SLMS

Consider the case where Assumptions 1-3 are in position and R = f2
D I. For analyzing the

proposed SLMS (2.30), first we need to recognize an appropriate S with regard to Assumption

3. A useful approximation at steady-state is to replace the occurrence of h= by the true system

h>; that is, to use S = W2
1
"
tr(W2) , where W = diag{F8} with F8 given by (2.13) for the reweighted

ℓ2 case, or by (2.14) for the reweighted ℓ1 case, both computed based on the corresponding true

coefficient ℎ>
8
. Now, since tr(S) = " , the excess MSE (2.41) can be approximated as:

�ex ≈
`
∑"−1
8=0

f2
D B8
2

1− `∑"−1
8=0

f2
D B8
2

f2
E =

`
f2
D

2 tr(S)

1− `f
2
D

2 tr(S)
f2
E =

`

2
"f2

D
− `

f2
E , (2.44)

where for the approximation we assume a sufficiently small step size ` such that 2`f2
D B8 � 2,

∀8 = 0,1, . . . , " −1.
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Now, for the mean squared convergence condition, although the upper bound in (2.43) of

Theorem 2.3 contains ` itself, after some inspection it is clear that the lowest stability limit on `

occurs when S has its diagonal elements nonzero at one tap position (with a value of ") and zero

at all others [27]. With such an S, it leads to:

0 < ` <
2

3"f2
D

. (2.45)

On the other hand, the largest stability limit is associated with a proportionate matrix assigning

equal gains at each position [27], i.e., S = diag{B8} with B8 = 1, ∀8 = 0,1, . . . , " −1. With such an

S we have:

0 < ` <
2

(2+")f2
D

. (2.46)

For a large ", the largest stability limit can be approximated as 2
"f2

D
= 2
tr(R) , which is also the

stability limit of the LMS [21]. This result is not surprising since using an S that assigns uniform

gains essentially becomes the LMS.

2.5.2 Steady-State Performance of SNLMS

Consider the case where Assumptions 1-3 are in position and R = f2
D I. For analyzing the

proposed SNLMS (2.32), first we must identify a fixed S to approximate the term S=

u)= S=u=
(where

we have ignored X), for which an exact characterization seems difficult, if at all possible, to obtain.

However, if we fix W= =W at steady-state by Assumption 3, where W is again computed based

on the true system h>, then we have:

S =
W2

1
"
tr(W2)

u)=
(

W2
1
"
tr(W2)

)
u=
=

W2

u)=W2u=
≈ W2

f2
D tr

(
W2) , (2.47)
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with the approximation u)=W2u= ≈ E
[
u)=W2u=

]
= f2

D tr
(
W2

)
utilized. A useful fact of (2.47) is

that tr(S) = (f2
D )−1. We can thus use the following approximation for (2.41) to express the excess

MSE (and replace ` by ˜̀):

�ex ≈
˜̀
∑"−1
8=0

f2
D B8
2

1− ˜̀
∑"−1
8=0

f2
D B8
2

f2
E =

˜̀f2
D

∑"−1
8=0 B8

2− ˜̀f2
D

∑"−1
8=0 B8

f2
E =

˜̀f2
D tr(S)

2− ˜̀f2
D tr(S)

f2
E

=
˜̀f2

D (f2
D )−1

2− ˜̀f2
D (f2

D )−1
f2
E =

˜̀
2− ˜̀

f2
E ,

(2.48)

for ˜̀ sufficiently small such that 2 ˜̀f2
D B8 � 2, ∀8 = 0,1, . . . , " −1,

For the mean squared convergence condition, using the same argument as in the SLMS

case for (2.45) and (2.46), we can obtain the lowest stability limit as:

0 < ˜̀ <
2
3

(2.49)

and the largest stability limit as:

0 < ˜̀ <
2

1+ 2
"

. (2.50)

For a large " , we have (2.50) approximately as 0 < ˜̀ < 2, which is the classic result of the NLMS

[21].

2.6 Simulation Results

The proposed algorithms are evaluated using computer simulations in MATLAB. We

consider three system IRs as shown in Figure 2.1 which represent different sparsity levels:

quasi-sparse, sparse, and dispersive systems. The IR of the quasi-sparse system is an acoustic

feedback path between the microphone and the loudspeaker of a hearing aid that was measured

from a real-world scenario. It represents a typical IR of many practical system identification

problems where certain degree of structural sparsity exists. The sparse and dispersive IRs were
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artificially generated. Each of these IRs has 256 taps. We conducted experiments to obtain the

MSE learning curves (i.e., the ensemble average of 42
= as a function of iteration =) for performance

comparison. The ensemble averaging was performed over 1000 independent Monte Carlo runs

for obtaining each curve. In all experiments, the adaptive filter coefficients were initialized with

all zeros. For the input signal, we mainly consider two types of D= for theoretical analysis: i) a

zero mean, unit variance white Gaussian process and ii) a first order autoregressive (AR) process

according to D= = dD=−1 +[=, where d = 0.8 and [= is i.i.d. according toN (0,1). We also include

results of speech inputs for demonstrating the algorithm performance with non-stationary signals.

The system noise E= is i.i.d. according to N (0,0.01). Regarding the algorithms, when using

(2.34) for updating W=, a small positive constant 2 = 0.001 was always used.

2.6.1 Comparison of Algorithms with and without AST

Figure 2.2 compares the proposed generalized sparse LMS (2.29), i.e., the AST-based

approach, to some existing regularization-based algorithms of (2.10), i.e., the regular gradient

descent without AST. Specifically, we use the ?-norm-like penalty ‖h‖?? with ? = 1 and the log-sum

penalty
∑"−1
8=0 log( |ℎ8 | + n) with n = 0.1 as examples. These two choices of the sparsity-inducing

function I (h) in (2.10) result in the ZA-LMS and RZA-LMS [24], respectively. We compare

them with the corresponding AST-based algorithms obtained from (2.29), also adopting the two

penalty functions for � (h) that lead to (2.34) and (2.37) for computing W=, respectively. We

set ` = 0.0025 and _ = 0.001 in all cases and used the white Gaussian process input. Figure 2.2

(a) shows the results of identifying the sparse IR and Figure 2.2 (b) is the case of estimating the

quasi-sparse IR. From the results we see that the AST strategy leads to algorithms (dotted lines)

that demonstrate faster convergence than the existing approaches (solid lines).
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Figure 2.1: IRs of (a) quasi-sparse, (b) sparse, and (c) dispersive systems. The quasi-sparse IR
is an acoustic feedback path of a hearing aid that was measured from a real-world scenario. The
sparse and dispersive IRs were artificially generated.

2.6.2 Effect of Sparsity Control Parameter on SLMS and SNLMS

In this experiment we investigate the effect of the sparsity control parameter on the

convergence of SLMS (2.30) and SNLMS (2.32). We use the ?-norm-like diversity measure

‖h‖?? within the reweighted ℓ2 framework, i.e., using (2.34) for updating W=, for demonstration

purposes. We study the cases of the sparsity control parameter ? = 1,1.2,1.5,1.8,2. We also
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Figure 2.2: Comparison of algorithms with and without AST for identifying (a) sparse and (b)
quasi-sparse IRs with white Gaussian process input. Solid lines are existing approaches as given
by (2.10). Dotted lines are their corresponding AST-based algorithms given by (2.29). It can be
seen that AST leads to improved performance.

include the LMS (2.3) and NLMS (2.4) performance curves for reference. For LMS and SLMS

we used ` = 0.0025. For NLMS and SNLMS we used ˜̀ = 0.5 and X = 0.01.

Figure 2.3 and Figure 2.4 show the resulting MSE curves for SLMS using the white

Gaussian noise input and SNLMS using the AR process input, respectively. Recall that the

proportionate factors of SLMS/SNLMS using (2.34) for W= approximate that of the PNLMS

when ?→ 1, and regenerate the LMS/NLMS when ? = 2, as has been discussed in Section 2.4.2.

Therefore, the parameter ? plays the role for fitting different sparsity levels and the selection

of ? can be crucial for obtaining optimal performance for IRs with different sparsity degrees.

The results in both Figure 2.3 and Figure 2.4 suggest that for the quasi-sparse case, the fastest

convergence is given by ? ∈ [1.2,1.5], which seems reasonable in terms of finding a balance

between PNLMS (?→ 1) and LMS/NLMS (? = 2). On the other hand, for the sparse system,
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? ∈ [1,1.2] gives the best results, which is also reasonable since as the sparsity level increases, a

more PNLMS-like algorithm can be more favorable. Finally, for the dispersive system we see that

? ∈ [1.8,2] results in the fastest convergence and is comparable to, if not better than, the LMS

and NLMS. This indicates that a more LMS/NLMS-like algorithm is preferable when the system

IR is far from sparse. To conclude, the results show that the algorithms exploit the underlying

system structure in the way we expect.
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Figure 2.3: Effect of sparsity control parameter ? on convergence of SLMS for (a) quasi-sparse,
(b) sparse, and (c) dispersive IRs with white Gaussian process input. It can be seen that the
optimal ? value varies with the sparsity degree.
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Figure 2.4: Effect of sparsity control parameter ? on convergence of SNLMS for (a) quasi-sparse,
(b) sparse, and (c) dispersive IRs with AR process input. In the colored input case here we have
similar observations to the white input case of Figure 2.3.

2.6.3 Effect of Step Size on SLMS and SNLMS

Figure 2.5 studies the effect of the step size on the convergence behavior of the SLMS and

SNLMS. We again used (2.34) for updating W=. Figure 2.5 (a) shows the resulting MSE curves

obtained by running the SLMS with ? = 1.2 on the sparse IR with various ` values, using the

white Gaussian noise input. Figure 2.5 (b) shows the resulting MSE curves obtained by running
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the SNLMS with ? = 1.5 on the quasi-sparse IR with various ˜̀ values, using the AR process input.

The dotted lines indicate the theoretical steady-state MSE levels computed from (2.40) using

(2.44) and (2.48) for SLMS and SNLMS, respectively. We can see that similar to the well-known

trade-off in LMS and NLMS, a larger step size results in faster convergence while at the expense

of steady-state performance. We also see that as the step size increases the theoretical prediction

becomes less accurate; this is probably due to the approximation made based on the small step

size assumption for arriving at (2.44) and (2.48). Nevertheless, the prediction agrees well with

the stead-state MSE in most cases for a small step size. In addition, though several assumptions

have been made to arrive at (2.40), (2.44) and (2.48), the results show that they predict reasonably

well in the case of white input and even for correlated input.
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Figure 2.5: Effect of step size ` or ˆ̀ on convergence of (a) SLMS for the sparse IR with
white Gaussian process input and (b) SNLMS for the quasi-sparse IR with AR process input.
Dotted lines indicate the theoretical steady-state MSE levels. It can be seen that the theoretical
prediction agrees reasonably well with the experimental results especially for a small step size.
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2.6.4 Comparison with Existing Algorithms

We compare the proposed SLMS and SNLMS using (2.34) for W= with existing LMS-type

and NLMS-type algorithms. To see how the algorithms behave in a changing environment, in

each of the following experiments, a change in the underlying system was introduced by shifting

the IR to the right by 16 samples in the middle of the adaptation process [82].

Figure 2.6 compares the LMS-type algorithms using the white Gaussian process input.

Figure 2.6 (a) and Figure 2.6 (b) show the MSE curves obtained with the quasi-sparse and sparse

IRs, respectively. For LMS we used ` = 0.0025. For ZA-LMS, RZA-LMS, and ℓ0-LMS we

fixed ` = 0.0025 and then experimentally optimized the remaining parameters to obtain the best

performance. For SLMS we used ? = 1.5 and ` = 0.002 in the quasi-sparse case and ? = 1.2 and

` = 0.0005 in the sparse case. The results show that all the sparsity-aware algorithms outperform

the LMS, with SLMS demonstrating the best result. Comparing Figure 2.6 (a) and Figure 2.6 (b),

we also see that the benefit brought by existing sparsity-aware algorithms becomes limited when

the system is less sparse, while the SLMS still provides significant improvement.

Figure 2.7 compares the NLMS-type algorithms using the AR process input. Figure

2.7 (a) and Figure 2.7 (b) show the MSE curves obtained with the quasi-sparse and sparse IRs,

respectively. For all the algorithms we used ˜̀ = 0.5. For NLMS we used X = 0.01. For PNLMS,

IPNLMS, and IPNLMS-ℓ0 we set X = 0.01/" according to [82], and experimentally optimized

the remaining parameters to obtain the best performance in each case. For SNLMS we used

? = 1.5 in the quasi-sparse case and ? = 1.2 in the sparse case. We used X = 0.01 for SNLMS,

same as NLMS.11 From the results we again observe the benefit of using sparsity-aware adaptation.

In addition, the SNLMS demonstrates performance as good as, if not better than, the other

proportionate algorithms.

Figure 2.8 considers a more practical scenario where we used a speech signal as the
11Due to the division by 1

"
in (2.28) which is not present in (2.8) of existing PNLMS-type algorithms, the division

by " is not needed for X in SNLMS.
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Figure 2.6: Comparison of LMS-type algorithms with white Gaussian process input on (a)
quasi-sparse and (b) sparse IRs. One can see that the proposed SLMS outperforms all the other
approaches in both cases.

input and the quasi-sparse IR, which represents an acoustic channel of practical interest, as the

underlying system. The input signal-to-noise ration (SNR) was set to 20 dB using white Gaussian

noise. For the SLMS and SNLMS we used ? = 1.5 which is a suitable choice for quasi-sparse

systems. For evaluation we compare the normalized misalignment ‖h> −h=‖22/‖h
>‖22. In Figure

2.8 (a) we see that SLMS performs much better than the LMS, while the ℓ0-LMS fails to provide

any improvement. This may be due to the fact that existing regularization-based algorithms tend

to enforce sparsity in a more aggressive manner as they work with _ > 0, and this may not be

beneficial, if not harmful, when the underlying system is not truly sparse. In Figure 2.8 (b) we see

that SNLMS demonstrates superior convergence behavior than the NLMS, and is also better than

the IPNLMS and IPNLMS-ℓ0.

Figure 2.9 shows the results for a noisier environment, i.e., 0 dB input SNR, for the same

experimental setting of Figure 2.8 (only the step size parameters were further tuned due to the
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Figure 2.7: Comparison of NLMS-type algorithms with AR process input on (a) quasi-sparse
and (b) sparse IRs. One can see that the proposed SNLMS performs better than all the other
approaches in both cases.

stronger noise). We see that in Figure 2.9 (a) the SLMS significantly outperforms the LMS, while

the ℓ0-LMS performs worse. The SNLMS in Figure 2.9 (b), on the other hands, still performs

better than the NLMS, and is comparable to other proportionate algorithms. This indicates that

our observation on the SLMS and SNLMS superiority may be robust to the noise condition.

2.7 Conclusion

In this chapter, we developed a mathematical framework for rigorously deriving adaptive

filters that exploit the sparse structure of the underlying system response. We started with the

regularized objective framework of SSR and developed algorithms that are of the proportionate

type. As a result, the adaptive algorithms are quite general and can accommodate a range of

regularization functions. The framework utilizes the AST methodology within the iterative
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Figure 2.8: Comparison of (a) LMS-type and (b) NLMS-type algorithms for identifying the
quasi-sparse acoustic channel response with speech input at 20 dB SNR. In can be seen that the
SLMS and SNLMS perform the best in both cases.

reweighted ℓ2 and ℓ1 schemes, which is shown to be crucial for obtaining improved adaptive

filtering performance over existing algorithms when gradient descent is concerned. We further

introduced the SLMS and SNLMS by adopting a zero regularization coefficient, which take

advantage of, though do not strictly enforce, the sparsity of the underlying system if it already

exists. Note that the proposed framework is not limited to the algorithms that we have presented

so far. Any other penalty function that satisfies the conditions imposed on the diversity measure

can potentially be a good candidate for obtaining effective adaptive algorithms by utilizing the

framework.
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Figure 2.9: Comparison of (a) LMS-type and (b) NLMS-type algorithms for identifying the
quasi-sparse acoustic channel response with speech input at 0 dB SNR. In the noisier setting here
the SLMS and SNLMS perform comparably well, if not better than, the competing algorithms.
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2.8 Appendix

2.8.1 Proof of Theorem 2.1

The proof follows the idea in [83]. We wish to show that the regularized objective function

�� (h) in (2.9) is decreased in each iteration when optimized via (2.20) and (2.21). Before

proceeding, we need the following lemmas:

Lemma 2.1. For the general diversity measure � (h) =∑"−1
8=0 6(ℎ8) that satisfies Properties 1-4

in Section 2.2.2, with 6(I) being strictly concave in I2 for Property 4, we have:

� (h=+1) −� (h=) < ‖W−1
= h=+1‖22− ‖W

−1
= h=‖22, (2.51)

where W= = diag{F8,=} with F8,= given by (2.13).

Proof: Since 6(I) is strictly concave in I2, it satisfies 6(I) = 5 (I2) where 5 (I) is concave

for I ∈ R+. Due to the concavity, we have the following inequality:

5 (I2) − 5 (I1) < 5 ′(I1) (I2− I1) (2.52)

hold for some I1, I2 ∈ R+. Note that we use 5 ′(I1) to denote the first order derivative of 5 (I) w.r.t.

I evaluated at I = I1.

Substituting I1 = ℎ
2
8,=

and I2 = ℎ
2
8,=+1 into (2.52) gives:

5 (ℎ2
8,=+1) − 5 (ℎ

2
8,=) < 5 ′(ℎ2

8,=) (ℎ2
8,=+1− ℎ

2
8,=). (2.53)
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Noting that 5 (ℎ2
8,=+1) = 6(ℎ8,=+1) and 5 (ℎ

2
8,=
) = 6(ℎ8,=), we have:

6(ℎ8,=+1) −6(ℎ8,=) < 5 ′(ℎ2
8,=) (ℎ2

8,=+1− ℎ
2
8,=). (2.54)

From (2.13) we have 5 ′(ℎ2
8,=
) = F−2

8,=
. Therefore,

6(ℎ8,=+1) −6(ℎ8,=) < F−2
8,= (ℎ2

8,=+1− ℎ
2
8,=). (2.55)

Summing over 8 = 0,1, . . . , " −1 on both sides of (2.55) justifies (2.51) of Lemma 2.1.

Lemma 2.2. For the general diversity measure � (h) =∑"−1
8=0 6(ℎ8) that satisfies Properties 1-4

in Section 2.2.2, with 6(I) being strictly concave in |I | for Property 4, we have:

� (h=+1) −� (h=) < ‖W−1
= h=+1‖1− ‖W−1

= h=‖1, (2.56)

where W= = diag{F8,=} with F8,= given by (2.14).

Proof: Since 6(I) is strictly concave in |I |, it satisfies 6(I) = 5 ( |I |) where 5 (I) is concave

for I ∈ R+. Again, the inequality (2.52) holds due to the concavity of 5 (I).

Substituting I1 = |ℎ8,= | and I2 = |ℎ8,=+1 | into (2.52) gives:

5 ( |ℎ8,=+1 |) − 5 ( |ℎ8,= |) < 5 ′( |ℎ8,= |) ( |ℎ8,=+1 | − |ℎ8,= |). (2.57)

Noting that 5 ( |ℎ8,=+1 |) = 6(ℎ8,=+1) and 5 ( |ℎ8,= |) = 6(ℎ8,=), we have:

6(ℎ8,=+1) −6(ℎ8,=) < 5 ′( |ℎ8,= |) ( |ℎ8,=+1 | − |ℎ8,= |). (2.58)
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From (2.14) we have 5 ′( |ℎ8,= |) = F−1
8,=
. Therefore,

6(ℎ8,=+1) −6(ℎ8,=) < F−1
8,= ( |ℎ8,=+1 | − |ℎ8,= |). (2.59)

Summing over 8 = 0,1, . . . , " −1 on both sides of (2.59), we have (2.56) of Lemma 2.2 justified.

Now we are ready to show that �� (h) decreases in each iteration by using the update

recursions (2.20) and (2.21).

First, for the reweighted ℓ2 framework with �ℓ2= (q) in (2.16), we have:

�� (h=+1) − �� (h=) =
[
� (h=+1) +_� (h=+1)

]
−

[
� (h=) +_� (h=)

]
<

[
� (h=+1) +_‖W−1

= h=+1‖22
]
−

[
� (h=) +_‖W−1

= h=‖22
]

=

[
� (W=q=+1|=) +_‖q=+1|=‖22

]
−

[
� (W=q=|=) +_‖q=|=‖22

]
=�ℓ2= (q=+1|=) − �ℓ2= (q=|=).

(2.60)

The inequality follows from Lemma 2.1. The AST relationships (2.18) and (2.19) are also utilized.

As we perform optimization of (2.16) with gradient descent, we can have �ℓ2= (q) decrease in

each iteration =, i.e., �ℓ2= (q=+1|=) − �ℓ2= (q=|=) < 0, using some `=. Therefore, the choice of {`=}∞==0

ensures the decrease in �� (h) according to (2.60), and the update recursion (2.20) monotonically

converges to a local minimum (or saddle point) of (2.9) under a WSS environment.

On the other hand, for the reweighted ℓ1 framework with �ℓ1= (q) in (2.17), we have:

�� (h=+1) − �� (h=) =
[
� (h=+1) +_� (h=+1)

]
−

[
� (h=) +_� (h=)

]
<

[
� (h=+1) +_‖W−1

= h=+1‖1
]
−

[
� (h=) +_‖W−1

= h=‖1
]

=
[
� (W=q=+1|=) +_‖q=+1|=‖1

]
−

[
� (W=q=|=) +_‖q=|=‖1

]
=�ℓ1= (q=+1|=) − �ℓ1= (q=|=).

(2.61)

The inequality follows from Lemma 2.2. The AST relationships (2.18) and (2.19) are also utilized.
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Similar to the above argument of the reweighted ℓ2 case, there exists a choice of {`=}∞==0 that

ensures the decrease in �� (h) according to (2.61), and the update recursion (2.21) monotonically

converges to a local minimum (or saddle point) of (2.9) under a WSS environment.

2.8.2 Proof of Theorem 2.2

The proof follows the discussion in [21, 27, 66]. Substituting 4= = 3=−u)=h= into (2.38)

we have:

h=+1 = h=− `Su=u)=h= + `Su=3=. (2.62)

Using the fact that 3= = u)=h> + E=, we have:

h=+1 = h= + `Su=u)=
(
h> −h=

)
+ `Su=E=. (2.63)

Define the misalignment vector 9= as:

9= = h> −h=. (2.64)

Then from (2.63) we have:

9=+1 =
(
I− `Su=u)=

)
9=− `Su=E=. (2.65)

Next, based on (2.65) we have:

9=+19
)
=+1 =

(
I− `Su=u)=

)
9=9

)
=

(
I− `u=u)=S

)
+ `2E2

=Su=u)=S+�, (2.66)

where � represents the remaining cross terms whose expectations are zero.

54



Let 
= = E[9=9)= ]. Taking expectation on both sides of (2.66) we have:


=+1 = E
[(

I− `Su=u)=
)
9=9

)
=

(
I− `u=u)=S

)]
︸                                           ︷︷                                           ︸

,�

+`2f2
E SRS. (2.67)

Note that:

� =
=− `SR
=− `
=RS+ `2SE
[
u=u)=9=9)=u=u)=

]
S. (2.68)

With Assumptions 1 and 2 it can be shown that [21]:

E
[
u=u)=9=9)=u=u)=

]
= 2R
=R+Rtr(R
=). (2.69)

Thus,

� =
=− `SR
=− `
=RS+2`2SR
=RS+ `2SRtr(R
=)S. (2.70)

Then, with R = f2
D I, in steady-state, i.e., =→∞,


∞ =
∞− `f2
DS
∞− `f2

D
∞S+2`2f4
DS
∞S+ `2f4

DStr (
∞)S+ `2f2
Df

2
E S2. (2.71)

This implies:

8∞ = 8∞−2`f2
DS8∞ +2`2f4

DS28∞ + `2f4
D s21)8∞ + `2f2

Df
2
E s2, (2.72)

where 8∞ and s are the vectors consisting of the diagonal elements of 
∞ and S, respectively,

and s2 denotes the element-wise squares of the vector s.

The steady-state excess MSE is then:

�ex , lim
=→∞

E
[(

u)=
(
h> −h=

) )2
]
= lim
=→∞

E
[(

u)=9=
)2

]
= lim
=→∞

tr
(

=E

[
u=u)=

] )
= f2

D tr (
∞) = f2
D1)8∞.

(2.73)
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Using (2.73) for (2.72) and rearrange the equation, we have:

l8,∞ =
`2f2

D B
2
8
�ex + `2f2

Df
2
E B

2
8

2`f2
D B8 −2`2f4

D B
2
8

. (2.74)

Then it leads to:

�ex = f
2
D

"−1∑
8=0

l8,∞ =
"−1∑
8=0

`2f2
D B

2
8
�ex + `2f2

Df
2
E B

2
8

2`B8 −2`2f2
D B

2
8

, (2.75)

which yields:

�ex =
`
∑"−1
8=0

f2
D B8

2−2`f2
D B8

1− `∑"−1
8=0

f2
D B8

2−2`f2
D B8

f2
E . (2.76)

This justifies Theorem 2.2.

2.8.3 Proof of Theorem 2.3

Note that Assumption 1 ensures that h=, u=, and E= are mutually independent. Thus, taking

expectation of both sides of (2.65) gives:

E [9=+1] = (I− `SR)E [9=] . (2.77)

Therefore, the following condition is sufficient for convergence in the mean sense [21]:

|_max{I− `SR}| < 1. (2.78)

With R = f2
D I, Theorem 2.3-i) is justified.

From (2.76) we see, by requiring:

1− `
"−1∑
8=0

f2
D B8

2−2`f2
D B8

> 0, (2.79)
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we obtain the stability bound for ` as:

0 < ` < ©­«
"−1∑
8=0

f2
D B8

2−2`f2
D B8

ª®¬
−1

, (2.80)

which justifies Theorem 2.3-ii).
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Chapter 3

A Sparsity-Aware CG-Type Adaptive

Filtering Algorithm

In this chapter, we propose a novel adaptive filter of the conjugate gradient (CG) type for

online estimation of system responses that admit sparsity. Specifically, the Sparsity-promoting

CG (SCG) algorithm is developed based on iterative reweighting methods popular in the sparse

signal recovery area. We propose an affine scaling transformation strategy within the reweighting

framework, leading to an algorithm that allows the usage of a zero sparsity regularization

coefficient. As a result, it enables SCG to leverage the sparsity of the system response if it already

exists, while not compromising the optimization process. Simulation results show that SCG

demonstrates improved convergence and steady-state properties over existing methods.

3.1 Introduction

In many applications of adaptive filters [18, 19, 20, 21], the underlying system impulse

responses (IRs) to be identified are often sparse or compressible (quasi-sparse), e.g., in acoustic

echo and feedback cancellation [27, 54, 55, 23, 56, 57, 58]. Thus, designing adaptive filters that
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can exploit the sparse structure of the system IR has been a research topic of great interest. Not

so surprisingly, sparse signal recovery (SSR) techniques [61, 14, 62, 15, 16] that have proven

successful in learning compact solutions to linear problems have fueled the trend of sparsity-aware

adaptive filtering research.

Based on SSR, a great amount of work has focused on developing sparse variants of the

least mean square (LMS) [24, 25, 76, 73, 43, 44, 72, 74, 69] and recursive least squares (RLS)

[84, 85, 86, 87, 88, 89, 90, 91, 92] adaptive filters. The complexity of LMS-type algorithms

scales only linearly, however, they suffer from slow convergence in the presence of strong signal

correlation. In contrast, RLS-type algorithms in general have a faster convergence speed but with

increased computational complexity [19, 20].

A more recent class of adaptive filters is the conjugate gradient (CG) method [45, 46, 47,

48, 49, 50]. The CG adaptive filter can be viewed as an alternative algorithm which inherits the

virtues of LMS and RLS, while mitigating some of their drawbacks – it has a faster convergence

rate and is less sensitive to signal correlation than LMS, while being numerically more stable

than the conventional RLS [49]. Surprisingly, given its effectiveness, CG has yet to receive

considerable attention in the adaptive filtering literature.

In this chapter, we propose a novel sparsity-aware CG adaptive filter that we call Sparsity-

promotingCG (SCG). Starting by formulating an optimization problemwith sparsity regularization,

SCG is developed based on iterative reweighting methods [13] popular in SSR. Moreover, an

affine scaling transformation (AST) [42, 60] strategy is utilized to allow the usage of _ = 0, where

_ is the sparsity regularization coefficient. This leads to the algorithm developing a better path

toward the optimum without biasing or compromising the optimization objective, and taking

advantage of sparsity should it be present in the system IR. To our knowledge, it is the first study

on sparsity-aware CG adaptive filtering.

Organization of the Chapter: The rest of the chapter is organized as follows. Section 3.2

provides background on CG-based adaptive filtering. Section 3.3 presents the CG adaptive filter
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framework for incorporating sparsity based on iterative reweighting SSR techniques and an AST

methodology, leading to the proposed SCG algorithm. Section 3.4 presents simulation results.

Section 3.5 concludes the chapter.

3.2 CG-Based Adaptive Filtering

Let h= = [ℎ0,=, ℎ1,=, ..., ℎ"−1,=]) denote the adaptive filter of length " at discrete time

instant =. Assume the IR of the underlying system is h> = [ℎ>0, ℎ
>
1, ..., ℎ

>
"−1]

) , and the model for

the observed or desired signal is 3= = u)=h> + E=, where u= = [D=, D=−1, ..., D=−"+1]) is the vector

containing the " most recent samples of the input signal D= and E= is an additive noise signal. The

output of the adaptive filter u)=h= is subtracted from 3= to obtain the error signal 4= = 3=−u)=h=.

The goal in general is to sequentially update the coefficients of h= upon the arrival of a new data

pair (u=, 3=), such that eventually h= = h>; i.e., to identify the unknown system.

To develop algorithms, we consider minimizing the objective function of the weighted

squared error at time =:

min
h

�= (h) ,
=∑
g=0

W=−g42
g =

=∑
g=0

W=−g
(
3g −u)gh

)2
, (3.1)

where 0� W ≤ 1 is called the forgetting factor [19]. Since �= (h) is convex and quadratic in h,

minimizing it corresponds to solving the linear equation: R=h = b=, where

R= ,
=∑
g=0

W=−gugu)g and b= ,
=∑
g=0

W=−gug3g (3.2)

are the correlation matrix estimate of u= and the cross-correlation vector estimate between u= and

3=, respectively. Note that both entities can be updated recursively as:

R= = WR=−1 +u=u)= and b= = Wb=−1 +u=3=. (3.3)
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In adaptive filtering, we seek an algorithm of the form:

h=+1 = h= +p=U=, (3.4)

where p= is the search direction and U= is the step size. The standard CG in the optimization

literature [60, 79] uses orthogonality, or conjugacy, of the search directions to simplify the steps

necessary for convergence. In adaptive filtering, however, the sample-by-sample update of R=

and b= causes a loss of the search direction conjugacy and in turn results in loss of convergence.

Thus, some modifications are necessary to relax the standard conjugacy constraint, e.g., see

[46, 47, 48, 49]. The authors of [49] have considered several methods under the umbrella of

Markov conjugacy:

Definition 3.1. A set of search directions {p=} are said to be Markov conjugate w.r.t. symmetric

matrices {R=} if, at any iteration =, we have p)=R=p=−1 = 0.

To develop CG algorithms for (3.1), first recognize that solving R=h = b= indirectly

minimizes the quadratic function:

�= (h) ,
1
2

h)R=h−h)b=. (3.5)

Utilizing the Markov conjugacy w.r.t. R=, the search direction is recursively updated according to:

p= = −g= +p=−1V=, (3.6)

where g= denotes the gradient vector:

g= = ∇h�= (h=) = R=h=−b=, (3.7)
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and V= is a scaling factor to sustain Markov conjugacy:

V= =
p)
=−1R=g=

p)
=−1R=p=−1

, (3.8)

obtained by premultiplying both sides of (3.6) with p)
=−1R= and noticing that the right-hand side

is zero by Definition 3.1.

Finally, the step size U= is obtained via exact line search:

U= = argmin
U

�= (h= +p=U) = −
p)=g=

p)=R=p=
. (3.9)

The above are summarized in Algorithm 2, which is essentially the <4<>AH-normalized LMS

(<-NLMS),1 proposed in [49].

Algorithm 2: The <-NLMS adaptive filtering algorithm proposed by Variddhisaï
and Mandic in [49]

1 Input: W, X, u=, 3=
2 Output: h=
3 Initialize: h0 = 0, R−1 = 0, b−1 = 0, p−1 = 0;
4 for = = 0,1,2, . . . do
5 R= = WR=−1 +u=u)= ; ⊲ corr. matrix update
6 b= = Wb=−1 +u=3=; ⊲ cross-corr. vector update
7 g= = R=h=−b=; ⊲ compute gradient vector

8 V= =
p)
=−1R=g=

p)
=−1R=p=−1+X

; ⊲ for Markov conjugacy
9 p= = −g= +p=−1V=; ⊲ search direction update
10 U= = − p)= g=

p)= R=p=+X
; ⊲ compute step size

11 h=+1 = h= +p=U=; ⊲ adaptive filter update
12 end for

1In [49], a recursive update for the gradient vector is further utilized to achieve more computational savings. For
illustration purposes, we only outline the major steps here. Note that we have also introduced a small regularization
constant X > 0 for preventing division by zero.
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3.3 Proposed Sparsity-Aware CG Adaptive Filter Framework

To incorporate sparsity, we add a sparsity regularization term to the objective function in

(3.1):

min
h

�= (h) +_� (h), (3.10)

where � (·) represents the general diversity measure in SSR that induces sparsity in its argument

and _ is the regularization coefficient. Commonly used is a separable form: � (h) =∑"−1
8=0 6(ℎ8),

where 6(·) has the following properties [13]:

Property 1: 6(I) is symmetric, i.e., 6(I) = 6(−I) = 6( |I |);

Property 2: 6( |I |) is monotonically increasing with |I |;

Property 3: 6(0) is finite;

Property 4: 6(I) is strictly concave in |I | or I2.

Any function that holds the above properties is a candidate for effective SSR algorithms.

3.3.1 Iterative Reweighting Methods

In SSR, the iterative reweighted ℓ2 [14, 15] and ℓ1 [16] methods are popular batch

estimation algorithms for solving diversity measure minimization problems. By introducing a

weighted ℓ2 or ℓ1 norm term as an upper bound for the diversity measure term in each iteration,

they form and solve for a new optimization problem to approach the optimal solution [13]. We

adapt the reweighting methods to the online estimation setting here, where instead of (3.10), the

following is suggested based on the reweighted ℓ2 framework:

min
h

�= (h) +_‖W−1
= h‖22, (3.11)
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or based on the reweighted ℓ1 framework:

min
h

�= (h) +_‖W−1
= h‖1, (3.12)

where W= = diag{F8,=} is positive definite2 and each F8,= is a function of the current estimate ℎ8,=

whose form depends on which framework and diversity measure are used.

To elaborate, for using the ℓ2 framework (3.11), 6(I) has to be concave in I2 for Property

4; i.e., it satisfies 6(I) = 5 (I2), where 5 (I) is concave for I ∈ R+. Based on [13], we have F8,=

given as:

F8,= =
©­«d 5 (I)

dI

����
I=ℎ2

8,=

ª®¬
− 1

2

. (3.13)

For using the ℓ1 framework (3.12), 6(I) has to be concave in |I | for Property 4; i.e., it satisfies

6(I) = 5 ( |I |), where 5 (I) is concave for I ∈ R+. In this case, F8,= is given by:

F8,= =

(
d 5 (I)

dI

����
I=|ℎ8,= |

)−1

. (3.14)

To utilize the reweighting scheme, we first choose an appropriate diversity measure � (h)

and then use (3.13) or (3.14) to obtain the update form of F8,=. For example, consider the

?-norm-like diversity measure [14, 42] with 6(ℎ8) = |ℎ8 |?, 0 < ? ≤ 2 for (3.11). Using (3.13)

gives the W= update [80]:

F8,= =

(
2
?

(
|ℎ8,= | + 2

)2−?
) 1

2

. (3.15)

Note that we have added a small regularization constant 2 > 0 for stability purposes.3 The

?-norm-like diversity measure can also be adopted for (3.12) if 0 < ? ≤ 1. In this case, we apply
2The positive definiteness can be shown to hold for a wide variety of diversity measures used in SSR. In cases

where it is not, the positive definiteness can still be ensured by utilizing some small regularization constant.
3We suggest that 2 be kept relatively small as compared to the amplitude of the filter coefficients so that it would

not affect the convergence significantly.
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(3.14) to obtain the update equation for W= [93]:

F8,= =
1
?

(
|ℎ8,= | + 2

)1−?
. (3.16)

Again, a small constant 2 > 0 is added. In general, using a smaller ? for (3.15) and (3.16) promotes

stronger sparsity.

More options of the diversity measure � (h) that have proved effective in SSR and the

resulting W= update forms can also be utilized as have been discussed in Section 2.4.2.

3.3.2 AST Methodology

We propose to reparameterize the problems (3.11) and (3.12) in terms of the (affinely)

scaled variable q:

q ,W−1
= h, (3.17)

in which W= is used as the scaling matrix. This step can be interpreted as the AST commonly

employed by the interior point approach to solving optimization problems [42, 60].

Now apply (3.17) to reparameterize the objective functions in (3.11) and (3.12) and

perform minimization w.r.t. q, that is:

min
q

�= (W=q) +_‖q‖22 (3.18)

and

min
q

�= (W=q) +_‖q‖1 (3.19)

for the reweighted ℓ2 and ℓ1 cases, respectively. Interestingly, if we set _ = 0, then both (3.18) and

(3.19) become:

min
q

�= (W=q), (3.20)
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which actually applies a change of coordinates to the original problem (3.1) using (3.17). Since

W= is invertible, the problem of finding the h which minimizes �= (h) is equivalent to finding the

q which minimizes �= (W=q). Therefore, the advantage of solving (3.20) is that the solution is

guaranteed to also be a solution of (3.1), which is not true for (3.10) with _ > 0.

To proceed, define the a posteriori AST variable at time =:

q=|= ,W−1
= h= (3.21)

and the a priori AST variable at time =:

q=+1|= ,W−1
= h=+1. (3.22)

We can optimize (3.20) via CG recursion in the q domain:

q=+1|= = q=|= + p̃=Ũ=. (3.23)

For computing p̃= and Ũ=, note that since �= (W=q) is convex and quadratic in q, minimizing it

corresponds to solving the linear equation: W=R=W=q =W=b=. Recognizing that it indirectly

minimizes the quadratic function:

�̃= (q) , �= (W=q) =
1
2

q)W=R=W=q−q)W=b=, (3.24)

we can use Markov conjugacy w.r.t. W=R=W= for the search directions. Thus, similar to (3.6),

we update the search direction as: p̃= = −g̃= + p̃=−1 Ṽ=, where:

g̃= = ∇q�̃= (q=|=) =W=∇h�= (h=) =W= (R=h=−b=) (3.25)
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by using the chain rule, (3.17), and (3.21), and

Ṽ= =
p̃)
=−1W=R=W=g̃=

p̃)
=−1W=R=W=p̃=−1

(3.26)

to sustain Markov conjugacy. For computing the step size, exact line search is performed:

Ũ= = argmin
Ũ

�̃= (q=|= + p̃=Ũ) = −
p̃)= g̃=

p̃)=W=R=W=p̃=
. (3.27)

Finally, noting that premultiplying both sides of the q domain update rule (3.23) by W= and using

the relationships (3.21) and (3.22), we have the equivalent update form in the h domain:

h=+1 = h= +W=p̃=Ũ=. (3.28)

The above are summarized in Algorithm 3, which is the Sparsity-promoting CG (SCG) algorithm.

Algorithm 3: The proposed SCG adaptive filtering algorithm
1 Input: W, X, u=, 3=, choice of diversity measure
2 Output: h=
3 Initialize: h0 = 0, R−1 = 0, b−1 = 0, p̃−1 = 0;
4 for = = 0,1,2, . . . do
5 R= = WR=−1 +u=u)= ; ⊲ corr. matrix update
6 b= = Wb=−1 +u=3=; ⊲ cross-corr. vector update
7 Compute W= according to the specified diversity measure (e.g., using (3.15) or

(3.16));
8 g̃= =W= (R=h=−b=); ⊲ compute gradient vector

9 Ṽ= =
p̃)
=−1W=R=W=g̃=

p̃)
=−1W=R=W=p̃=−1+X

; ⊲ for Markov conjugacy
10 p̃= = −g̃= + p̃=−1 Ṽ=; ⊲ search direction update
11 Ũ= = − p̃)= g̃=

p̃)= W=R=W=p̃=+X
; ⊲ compute step size

12 h=+1 = h= +W=p̃=Ũ=; ⊲ adaptive filter update
13 end for
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3.3.3 Discussion

By adopting _ = 0, SCG actually aims at solving (3.1), which is same for <-NLMS.

Therefore, mathematically both SCG and <-NLMS should adapt toward the same optimum of

(3.1). However, SCG utilizes W= for leveraging sparsity. Effectively, as F8,= is typically a function

of |ℎ8,= |, it tends to assign larger steps to coefficients with large magnitudes (e.g., see (3.28)).

In this sense, it is similar to the proportionate NLMS (PNLMS) [27, 26], which redistributes

the adaptation gains among all coefficients and emphasizes the large ones to speed up their

convergence. The PNLMS has been widely used in sparse system identification. The SCG takes

advantage of sparsity in a similar manner. Actually, if we use the instantaneous estimates u=u)=

and u=3= for R= and b=, respectively, and adopt the steepest descent by forcing Ṽ= = 0, then

Algorithm 3 reduces to a form similar to PNLMS. Note that in the preconditioned CG [94] there

is also a matrix (preconditioner) used in a similar way as W= for SCG, but the matrix is fixed

though all iterations and its role is to reduce the condition number.

Complexity: SCG involves matrix-vector products and is thus in general of O("2)

per-sample complexity, comparable to RLS but higher than LMS. Compared to the conventional

RLS (without advanced techniques for improved stability [19]), SCG does not involve inverting

the correlation matrix estimate and is thus numerically more stable like <-NLMS [49].

Convergence: We have the following theorem that establishes the convergence of SCG.

While we do not prove it for a more general case, numerical results in Section 3.4 support the

convergence of SCG in noisy, nonstationary environments.

Theorem 3.1. Under a stationary environment assuming no measurement noise, SCG converges

in the squared deviation sense.

Proof: see Appendix 3.6.1.
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3.4 Simulation Results

The proposed SCG algorithm is evaluated using MATLAB simulations. We set X = 10−4

and used (3.15) for W=, setting 2 = 0.001. We compare the mean squared deviation (MSD)

learning curves, i.e., the ensemble average of ‖h>−h=‖22 as a function of iteration =. The ensemble

averaging was performed over 1000 independent Monte Carlo runs. In each run, the unknown

channel IR with 100 taps was generated by randomly assigning the locations of the nonzeros. Each

nonzero entry was drawn from N (0,1). The system noise E= ∼N (0,0.01). In all experiments,

the adaptive filter coefficients were initialized with all zeros.

Figure 3.1 demonstrates the effect of the parameter ? on SCG. The <-NLMS [49] is also

compared. We used W = 0.95 for both SCG and <-NLMS. The input was a zero mean, unit

variance white Gaussian process. Figure 3.1 (a) considers the case of sparse systems with 5

nonzeros and Figure 3.1 (b) is the case of compressible systems with 20 nonzeros. The results

indicate that SCG exploits the underlying system structure in the way we expect – a smaller

? is favorable for a sparser system while a larger ? is preferable for a less sparse system. In

addition, with an appropriate ? < 2, SCG can outperform <-NLMS should sparsity be present in

the underlying system IR. Note that when ? = 2, SCG is equivalent to <-NLMS according to

(3.15), and the corresponding curves overlap with each other.

Next, we compare SCG with existing approaches for identifying sparse systems with 5

nonzeros. We set ? = 1 for SCG and used W = 0.98 for all algorithms. To see the behavior in a

changing environment, we shifted the system IR to the right by 16 samples in the middle of the

adaptation process.

Figure 3.2 compares SCG with several sparsity regularized RLS-type algorithms, namely,

the ℓ1-RLS [90, 91], ℓ1-RRLS [91], and ℓ0-RLS [90]. These algorithms utilize _ > 0 in order to

incorporate sparsity. The input was a first order autoregressive process according to D= = dD=−1+[=,

where d = 0.8 and [= ∼N (0,1). The standard RLS [19] is also compared. From the results we
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Figure 3.1: Effect of ? on SCG for (a) sparse and (b) compressible systems using white Gaussian
process as input.

see that SCG demonstrates fast convergence and achieves the lowest steady-state error. This could

be attributed to _ = 0 in SCG which enables it to exploit the sparsity of the system IR if it already

exists, while avoiding the potential bias incurred by strictly enforcing it.
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Figure 3.2: Comparison of SCG with sparsity regularized RLS-type algorithms using autore-
gressive process as input.

Figure 3.3 compares SCG with existing CG-type adaptive filtering algorithms, namely,

the (standard) CG [45], modified CG [46], CG-CLF [47], and <-NLMS [49] algorithms. We

used a speech signal as input and the signal-to-noise ratio was set to 20 dB. The normalized

misalignment, i.e., ‖h> −h=‖22/‖h
>‖22, was used for performance evaluation. It can be seen that

SCG, by taking advantage of sparsity, demonstrates superior convergence performance over the
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other CG-type algorithms that do not incorporate sparsity.
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Figure 3.3: Comparison of SCG with existing CG adaptive filtering algorithms using speech as
input.

3.5 Conclusion

In this chapter, we introduced SCG, a CG-based adaptive filter that leverages sparsity for

improved adaptation when the underlying system IR is sparse. The SCG is derived by utilizing AST

within the iterative reweighting SSR framework, which leads to admitting a zero regularization

coefficient of the regularizer while promoting sparsity. Simulation results demonstrated that SCG

is effective for system identification problems with sparse IRs.
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3.6 Appendix

3.6.1 Proof of Theorem 3.1

The proof follows the idea in [48]. Define the instantaneous squared deviation as:

9=+1 , ‖h> −h=+1‖22 and the difference of 9=+1 as:

Δ9=+1 , 9=+1−9= = ‖h> −h=+1‖22− ‖h
> −h=‖22. (3.29)

Substituting the filter update rule (3.28) into (3.29), we have:

Δ9=+1 = −2Ũ=p̃)=W= (h> −h=) + Ũ2
=p̃)=W2

=p̃=. (3.30)

If we focus on the “homogeneous” case [95] that 3= is exactly given as u=h>, we have b= = R=h>.

In this case, we can rewrite Ũ= in (3.27) using (3.25), leading to:

Ũ= =
p̃)=W=R= (h> −h=)

p̃)=W=R=W=p̃=
≈

p̃)=W= (h> −h=)
p̃)=W2

=p̃=
, (3.31)

where the approximation is used under the assumption of stationary input [48]. Substituting (3.31)

into (3.30) we obtain:

Δ9=+1 = −

(
p̃)=W= (h> −h=)

)2

p̃)=W2
=p̃=

≤ 0, (3.32)

by noting the positive definiteness of W2
=. From (3.29), we have:

lim
=→∞

9=+1 = lim
=→∞

9= + lim
=→∞

Δ9=+1 = 90 + lim
=→∞

=∑
g=0
Δ9g+1 ≥ 0. (3.33)
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This implies:

lim
=→∞

=∑
g=0
Δ9g+1 ≥ −90. (3.34)

By (3.32), it indicates that the term Δ9=+1 is summable for infinite =. Therefore, we can conclude

that lim=→∞ΔY=+1 = 0. From (3.32), it implies lim=→∞ p̃)=W= (h> −h=) = 0. Since W=p̃= and

h> −h= are unlikely to be orthogonal, it can be concluded that the filter estimate h= tends to the

optimal h> as =→∞.
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Chapter 4

Improved Acoustic Feedback Reduction

Using Novel Sparse Adaptive Filtering and

Frequency Warping Techniques

In hearing aids (HAs), the acoustic coupling between the microphone and the receiver

(i.e., the loudspeaker) results in the system becoming unstable under certain conditions and causes

acoustic feedback artifacts commonly referred to as whistling or howling. Adaptive feedback

cancellation (AFC) techniques have been the work horse for acoustic feedback reduction, where

the feedback path is modeled as a finite-impulse-response filter whose filter coefficients are

continuously adjusting to emulate the feedback path characteristics. Due to their simplicity and

effectiveness, the least mean square (LMS) class of algorithms are commonly used in AFC.

Furthermore, the sparse nature of the feedback path impulse response enables improved AFC by

leveraging the sparsity. In this chapter, we apply the Sparsity-promoting LMS (SLMS) algorithm

to the AFC problem in HAs and show that improvements in terms of speech quality and stable

gain are possible by exploiting sparsity. Moreover, on top of the SLMS we introduce a frequency
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warping technique that we call “freping” based on a novel use of all-pass networks to further

improve the AFC by mitigating the Nyquist stability criterion.

4.1 Introduction

To compensate for mild to moderate hearing loss, commercial hearing aids (HAs) provide

an average gain of 35−38 dB. In the emerging form factors for advanced HAs and hearables, there

is a significant acoustic coupling between the microphones and loudspeakers (called receivers

in the telephony and HA communities). This acoustic coupling varies significantly based on

surroundings (e.g. hats, scarves, hands, and walls that come in close proximity to the transducers)

and can cause the system to become unstable, when the audio content includes characteristic

frequencies of the system. This instability results in acoustic feedback artifacts such as brief

“howling” that can be of immense annoyance to the HA users. As a result, acoustic feedback

reduction continues to be a challenging problem due to the emerging form factors in advanced

HAs and hearables.

Howling artifacts manifest when multiple factors collude to fulfill the magnitude and

phase conditions of the Nyquist stability criterion (NSC) [96]. Adaptive feedback cancellation

(AFC) has been the work horse for breaking NSC to avoid instabilities in many audio applications

[51], including HAs [97, 98, 99]. Typically, the AFC deploys the least mean square (LMS)

based approaches to mitigate the magnitude condition in NSC [100, 101, 56]. On the other hand,

frequency shifting (FS) [102, 103, 104] and other ad hoc methods [105, 106, 107] mainly deal

with the phase condition. In this chapter, we focus on spectral manipulations following LMS

based approaches to break NSC in both magnitude and phase conditions.

In AFC, an adaptive filter is continuously adjusting to approximate the impulse response

(IR) of the acoustic feedback path. In the adaptation stage, LMS algorithms [19] are the most

widely used techniques due to computational simplicity and their effectiveness. However, the

75



conventional LMS suffers from slow convergence especially at the presence of correlated signals.

As a result, it might fail to track the changes of the feedback path IR in a highly time-varying

environment.

A natural question of interest is: can we further improve the convergence behavior of the

LMS-based AFC from other aspects? Observing that typical feedback path IRs are (quasi-) sparse

as shown in Figure 4.7, one might think of taking advantage of this sparseness for improvements.

This can actually be carried out by the concept of proportionate adaptation that originated from

the proportionate normalized LMS (PNLMS) algorithm [27]. The main idea behind proportionate

adaptation is to update each filter coefficient independently of the others by assigning to the

corresponding step size a weight in proportion to the magnitude of the estimated coefficient. In

other words, it redistributes the adaptation gains among all coefficients and emphasizes the large

ones in order to speed up their convergence.

However, the original PNLMS has the problem that it is more beneficial for systems with

very sparse structures. For AFC application where the feedback path IRs are usually quasi-sparse,

other proportionate-type LMS algorithms can be more suitable. For example, the improved

PNLMS (IPNLMS) [28] and the IPNLMS-ℓ0 [29] have the flexibility for identifying systems of

different levels of sparsity. Attempts have been made to incorporate these proportionate algorithms

into AFC [108, 109, 110] and improvements have been reported. However, these proportionate

algorithms were not formally derived by minimizing any underlying objective functions so that

their usage can be further optimized. Moreover, the parameters within these algorithms do not

have direct connections to the sparsity degree of the underlying system they aim to identify.

In this chapter, we apply the Sparsity-promoting LMS (SLMS) algorithm to AFC which

is found to be suitable for estimating the quasi-sparse feedback path IRs. The benefit of SLMS

is brought by its direct connection to the system sparseness which provides a practical way of

parameter selection, and it enjoys theoretical support, simpler parameter optimization, and more

straightforward leverage of (quasi-) sparsity in acoustic feedback paths. In addition, on top of
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SLMS we further propose a novel decorrelation algorithm called “freping,” a portmanteau for

frequency warping, to improve the AFC. We show that SLMS and freping, when utilized together,

can achieve significant improvements for AFC in terms of speech quality and stable gain. The

algorithms developed in this chapter have been implemented and run real-time on the Open

Speech Platform [52, 53].

Organization of the Chapter: The rest of the chapter is organized as follows. Section 4.2

provides background on the AFC problem in HAs. Section 4.3 applies the SLMS to improve AFC

by leveraging the sparsity nature of the acoustic feedback paths. Section 4.4 presents the freping

technique for decorrelation in AFC. Section 4.5 discusses the trade-off between speech quality and

stable gain in AFC, and introduces a novel AFC evaluation approach based on a quality metric.

Section 4.6 presents simulation results. Section 4.7 concludes the chapter.

4.2 Acoustic Feedback Problem

In HAs, the output sound at the receiver can be picked up by the microphone due to the

short distance between the two, resulting in acoustic feedback as illustrated in Figure 4.1. The

acoustic feedback phenomenon not only degrades the audio quality of the HA output signal but

also limits the amount of amplification, or the maximum stable gain (MSG), that a HA device can

provide to the user. To overcome this problem many AFC techniques have been proposed for

modern HAs [51]. In AFC, an adaptive finite impulse response (FIR) filter is used to emulate the

feedback path IR, aiming at increasing the MSG while minimizing speech distortion.

4.2.1 AFC System

A typical AFC framework is depicted in Figure 4.2. The AFC filter �= (I), placed

in parallel with the HA processing �= (I), is the transfer function of an "-tap adaptive filter

h= = [ℎ0,=, ℎ1,=, . . . , ℎ"−1,=]) that continuously adjusts its coefficients to capture the time-varying
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Figure 4.1: Illustration of acoustic feedback in HAs.

nature of the acoustic feedback path �= (I). 3= is the microphone input which contains the clean

signal G= and the feedback signal H= caused by the HA output >= passing through the feedback

path. Ĥ= is the feedback estimate. 4= = 3= − Ĥ= is the feedback-compensated signal. �= (I) is a

time-varying pre-filter to decorrelate the input and output signals based on the prediction error

method (PEM) [97]. �(I) is a band-limited filter to concentrate on the frequency region where

oscillation is more likely to occur [100].

Typically, LMS-type algorithms are carried out for coefficient adaptation using the

pre-filtered signals D 5= and 4 5= to update the AFC filter h= as:

h(=+1) = h= +
`

"f̂2
= + X

u 5
= 4

5
= , (4.1)

where u 5
= = [D 5= , D 5 (=−1), . . . , D 5 (=−" +1)]) , ` > 0 is the step size parameter, X > 0 is a small

constant to prevent division by zero, and

f̂2
= = df̂

2
=−1 + (1− d)

(
(D 5= )2 + (4 5= )2

)
(4.2)
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Figure 4.2: Block diagram of the AFC framework.

is the power estimate with a forgetting factor 0 < d ≤ 1. Using (4.2), the update rule (4.1) is

actually the “modified” LMS using the sum method proposed in [111] to accommodate the

time-varying nature of speech signals. It has been widely adopted in many AFC and speech

processing systems [97, 100, 101].

4.2.2 Mitigating NSC

Without any feedback control mechanism, the frequency responses of the HA processing

�= (4 9l) and the feedback path �= (4 9l) form a closed-loop system which exhibits instability that

leads to howling. The NSC [96] states that the closed-loop system becomes unstable whenever

the following magnitude and phase conditions are both fulfilled [98]:


|�= (4 9l)�= (4 9l) | ≥ 1, (magnitude condition)

∠�= (4 9l)�= (4 9l) = 2c;, ; ∈ Z (phase condition)
, (4.3)

where Z denotes the set of integers.
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When AFC in employed, it becomes:


|�= (4 9l) (�= (4 9l) − �̂= (4 9l)) | ≥ 1,

∠�= (4 9l) (�= (4 9l) − �̂= (4 9l)) = 2c;, ; ∈ Z
, (4.4)

where �̂= (4 9l) = �(4 9l),= (4 9l) is the estimated feedback path frequency response. The AFC

aims at minimizing |�= (4 9l) − �̂= (4 9l) | to mitigate the magnitude condition.

4.3 Sparsity-Promoting LMS for AFC

Observing that typical feedback path IRs are sparse (to some degree) as, for example,

the one shown in Figure 4.7, one might think of taking advantage of this sparseness for AFC

improvements. Based on the iterative reweighting framework introduced in the previous chapters,

we can leverage the sparsity of the feedback path IR via a sparsity-promoting matrix S= to achieve

faster convergence for improvement. Furthermore, to account for speech characteristics, we adopt

the power estimate of the “modified” LMS (4.1), i.e., (4.2), leading to the “modified” SLMS

update rule for AFC:

h=+1 = h= +
`

"f̂2
= + X

S=u 5
= 4

5
= , (4.5)

where S= = diag{B8,=} is an "-by-" diagonal matrix and the diagonal elements are updated

according to:

B8,= =
F2
8,=

1
"

∑"−1
9=0 F2

9 ,=

, (4.6)

for 8 = 0,1, . . . , " −1 where F8,= depends on the reweighting framework and diversity measure

used (for more details see Section 2.2.2). For example, using the ?-norm-like diversity measure
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‖h‖?? within the reweighted ℓ2 framework we have:

F8,= =

(
2
?

(
|ℎ8,= | + 2

)2−?
) 1

2

, (4.7)

where ? ∈ (0,2] is the sparsity control parameter and 2 > 0 is a small positive constant to avoid

stagnation of the algorithm. Note that the parameter ? is influential: a sparse system would benefit

more from a smaller ? while for a dispersive system, ? close to 2 would be more preferable. For

the quasi-sparse feedback IRs like that in Figure 4.7 in AFC, we expect that the optimal ? value

would lie between 1 and 2.

4.4 Mitigating Acoustic Feedback with Frequency Warping

by All-Pass Networks

It is well-known that the LMS-type algorithms widely used in AFC suffer from biased

estimation due to signal correlation [112]. Consequently, the feedback path estimate can be

erroneous if decorrelation is not carefully considered. Although the PEM-based pre-filter [97]

has provided certain amount of decorrelation, further improvement is achievable by inserting

additional signal processing into the forward path of the HA [104], usually placed at ★ as shown

in Figure 4.2, to manipulate the HA output. As a result, quality degradation might be introduced

by these decorrelation methods and thus there is generally the compromise between the sound

quality and the decorrelation ability for AFC improvement. Existing methods for decorrelation

include FS [102, 103, 104], phase modulation [105], time-varying all-pass filters to introduce

phase shifts [106], linear predictive coding vocoder [107], to name a few.

Different from the previous works, we present a novel use of well-known all-pass filters in

a network to perform frequency warping that we call “freping.” Freping helps in breaking the NSC

criterion and improves AFC further. This frequency warping is accomplished using an all-pass
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network proposed by Oppenheim and Johnson [113], which realizes a nonlinear mapping of the

frequency axis as controlled by a single warping parameter U. More formally, let l = 2c( 5 / 5B)

be the normalized angular frequency where 5 is the original frequency and 5B is the sampling rate.

The nonlinear frequency mapping q(·) is according to [113]:

l̂ = q(l) = l+2arctan
(
U sinl

1−U cosl

)
, −1 < U < 1, (4.8)

where l̂ = 2c( 5̂ / 5B) and 5̂ is the warped frequency.

It can be shown that the mapping (4.8) between the original signal E(=) and the frequency-

warped signal @(:) can be achieved by passing the time-reversed signal E(−=) through a linear

time-invariant system ): (I) given as:

): (I) =


(1−U2)I−1

(1−UI−1)2

(
I−1−U

1−UI−1

) :−1

, : > 0

1
1−UI−1 , : = 0

, (4.9)

and taking the output of ): (I) at = = 0 as @(:). It can thus be implemented as the network

shown in Figure 4.3. The first two stages act as i) low-pass filters when U is positive and the

network warps frequencies higher and ii) high-pass filters when U is negative and the network

warps frequencies lower. The remaining stages realize the actual frequency warping based on the

bilinear transformation [114]. Note that when U = 0, it simply passes through the input without

any spectral modifications.

The frequency-warped output is given by sampling @̃: (=), the output signal at the :-th

stage, along the cascade chain at = = 0, i.e., @(:) = @̃: (0). In other words, the input sequence is

first flipped and then passed through the network; the last sample of the output sequence at the

:-th stage is taken as the :-th sample of the final frequency-warped sequence [115].
It is worth noting that in practice we need to truncate the signal for the all-pass network to
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Figure 4.3: The all-pass network for frequency warping.

be realizable. Therefore, the warping performance will depend on other factors such as the length

and the type of the window function used.

4.4.1 Freping: Real-Time Frequency Warping

The all-pass networks described above are adopted for real-time frequency manipulations

as illustrated in Figure 4.4. The input signal is first divided into overlapping frames and windowed

using a proper window function. Each windowed segment then goes through the all-pass network

to perform frequency warping with a specified warping parameter U. Finally, the overlap-add

method [116] is applied to produce the frequency-warped signal.

Framing
&

windowing

All-pass
network (α)

Overlap-add

Freping

Original
signal

Frequency-
warped
signal

1

Figure 4.4: Short-time frequency warping using all-pass network.

To allow a more flexible way of manipulating spectral characteristics, we propose the

multichannel freping as illustrated in Figure 4.5. The system utilizes a set of band-pass filters

(BPFs) which divide the input signal into " frequency bands and a set of warping parameters

" = [U1, ..., U"]) . Each band goes through an independent all-pass networkwith the corresponding

warping parameter. The output signals of all the frequency bands are summed up to produce the

frequency-warped signal.

In many practical situations, it is convenient to reuse the multichannel compression

modules [117] in HA processing for freping. For specific types of hearing loss (e.g. sloping,
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cookie-bite, etc.), increasing the gain in higher frequency bands aids to fulfill the magnitude

condition of NSC and freping hinders the phase condition to occur. Thus, freping provides a

way for simultaneously optimizing the parameters of multichannel compression and frequency

lowering [118] in HAs for individual hearing loss. In this work, we limit ourselves to negative

values of U so that freping always shifts spectral content lower.
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Figure 4.5: Multichannel freping.

Freping is an extreme version of FS [119] and it plays a similar role for decorrelation. It

introduces nonlinear frequency shifts and the distortions appear to be perceptually benign based

on informal subjective assessments. As instability is most likely to occur at the high-frequency

region, it is reasonable to manipulate the high-frequency content while keeping the low-frequency

region intact to avoid degradation in quality. By providing additional decorrelation, freping can

reduce the AFC bias and thus a better feedback path estimate can be obtained, thereby improving

the magnitude condition in NSC. On the other hand, freping also helps avoid the microphone and

receiver signals from remaining continuously in phase with each other. This prevents the phase

condition in NSC to hold at the same frequency at two consecutive instants. Consequently, the

input and output sounds could not build up in amplitude as effectively. Therefore, the likelihood

of instability is reduced.

4.5 Speech Quality and Stable Gain Trade-Offs

To quantify the AFC performance, one useful measure is the added stable gain (ASG)

defined as the amount of additional MSG brought by AFC that the HA can still operate in the stable
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state. We discuss the trade-off between speech quality and stable gain in AFC, by introducing a

novel ASG estimation approach based on the hearing-aid speech quality index (HASQI) [120].

4.5.1 Quality Metric: HASQI

The impact of acoustic feedback on perceived speech quality is estimated using the HASQI

version-2 speech quality metric [120]. The HASQI metric was trained on a large database of

subject quality ratings, including nonlinear distortion and frequency response modifications that

duplicated the resonance peaks typical of acoustic feedback. The metric was validated on data

from a feedback cancellation experiment [121], and a value of 0.93 was found for the correlation

coefficient between the subject ratings and the HASQI quality predictions [120]. In addition,

recent papers have shown high degrees of correlation for perceptual metrics used to predict quality

ratings for feedback cancellation in HAs [122, 112]. However, the idea of using HASQI as an

objective metric for optimizing AFC is novel.

HASQI compares the processed HA signal to a reference signal. In this work, the

reference signal is the unmodified computer audio file G=, and the processed HA signal is the

feedback-compensated signal 4=. Both the reference and processed signals are passed through

a model of the auditory periphery. The auditory model includes auditory frequency analysis,

the dynamic range compression mediated by the outer hair cells, two-tone suppression and the

firing-rate adaptation present in the inner hair cell neural response. The metric compares the

time-frequency envelope modulation, temporal fine structure, and long-term spectra between the

processed and reference signals to produce the quality prediction. The HASQI model represents a

distillation of listener ratings for a large number of linear filtering, noise, and distortion conditions.

Since the metric was fit to these responses, the perceptual ratings are built into the predicted

quality scores. In addition, HASQI has been validated by several perceptual quality experiments

[123, 124, 125]. HASQI is therefore sensitive to changes in the speech spectrum introduced by

acoustic feedback, whistling or ringing in the HA, and any nonlinear distortion introduced by the
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feedback-cancellation processing.

4.5.2 Proposed HASQI-Based ASG Estimation Approach

For the purpose of estimating the ASG of the AFC algorithm, a uniform gain of the HA

processing over all the sub-bands is applied. That is, we use �= (I) = 6I−g, where 6 represents the

gain of the HA and g corresponds to the HA processing delay. The ASG by definition is given as

the difference between the MSG of the system with the use of the AFC algorithm and that without

the use of AFC (in dB):

�(� = "(�F/ ��� −"(�F/> ��� . (4.10)

To obtain the ASG estimate, we propose the following procedure:

i) Define a threshold \ ∈ (0,1).

ii) Start from 6 = 1,

a) Run theAFC algorithm on a given audio signal G= and obtain the feedback-compensated

signal 4=.

b) Compute the HASQI of 4= using G= as the reference signal. Record the obtained

HASQI score.

c) If the obtained score ≥ \,

Increase 6 by some small increment, e.g., Δ6 = 0.1, and then repeat from ii)-a).

Else,

Use the previous 6 value as the estimate of the MSG. Terminate.

iii) Perform ii) for both with AFC and without AFC cases to obtain "(�F/ ��� and

"(�F/> ��� , respectively. Use (4.10) to obtain the ASG estimate (convert into dB

first) of the AFC algorithm.
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iv) Repeat ii) and iii) for multiple audio files. Average over the resulting ASG numbers to

obtain the final ASG estimate.

We will also obtain a quality vs. gain curve once the above procedure has been done for a

particular AFC algorithm with a given audio file. Typically, the quality score will decrease as the

gain value increases. Figure 4.6 presents some example curves for various AFC algorithms. We

can see that without AFC the curve falls rapidly as gain increases. On the other hand, the SLMS

with decorrelation (here using PEM filters) retains the highest quality even for higher gain values.

This demonstrates the importance of a good AFC system for HAs.
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Figure 4.6: Block diagram of the AFC framework.

Once the score falls below the pre-defined threshold \, the speech quality is considered

unacceptable: we therefore consider the gain at which the system enters the unacceptable state

as the MSG of the system. In our work, a HASQI score of 0.8 was used as the threshold for

acceptable/unacceptable states. Table 4.1 presents some examples of the measured ASG values

using the approach. The HASQI value of 0.8 is consistent with a high quality rating as reported

for HA quality evaluations [123]. Because the data are simulation results with no other sources of

noise or distortion, the maximum possible HASQI score is 1; a value of 0.8 thus represents a

measurable degradation in signal quality. Nevertheless, the proposed methodology can still be
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used for any value of HASQI. For example, a resource constrained HA may target lower speech

quality to save power.

Table 4.1: Estimated ASG (in dB) of different AFC algorithms.

Input MSG ASG ASG ASG
File w/o AFC LMS LMS w/ decorr. SLMS w/ decorr.

male 1 18.89 5.35 10.74 13.60
male 2 18.59 5.38 7.73 10.63
male 3 18.99 5.41 10.64 14.21
female 1 18.99 5.25 9.57 12.09
female 2 18.89 5.46 9.96 12.61
female 3 18.89 5.35 7.60 10.59
classical 18.99 5.41 12.26 15.36
jazz 19.08 5.63 11.10 14.21
choir 18.99 5.36 11.82 14.72
pop 18.79 5.40 10.25 12.81

Average 18.91 5.40 10.17 13.08

4.6 Simulation Results

4.6.1 SLMS

The proposed SLMS AFC algorithm (4.5) using (4.7) for promoting sparsity is evaluated

using computer simulations in MATLAB at a sampling rate of 16 kHz. The PEM-AFC framework

described in Figure 4.2.1 was adopted. The HA processing �= (I) = 6I−g with 6 = 20 and g

corresponding to a delay of 8 ms. The feedback path IRs were measured using a behind-the-ear

HAwith open fitting on a dummy head and truncated to a length of 263 samples as shown in Figure

4.7. The AFC filter length was " = 100 to cover the significant part of the IRs. The forgetting

factor d = 0.985. The step size parameter ` = 0.005. Small positive constants X = 2 = 10−6. The

band-limited filter �(I) = 1−1.8I−1 +0.81I−2 as used in [126]. The pre-filter �= (I) was an FIR

filter of order 20 updated every 10 ms via linear prediction of 4= [127].
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Figure 4.7: Measured acoustic feedback path IRs of (a) f1: no obstruction, (b) f2: with a
cellphone close to the ear, and (c) f3: with a cellphone right on the ear. Mind the different scales
of the y-axis (Amplitude).
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We ran the AFC system with the SLMS on 25 male and 25 female speech signals from

TIMIT database and measured the corresponding HASQI of the feedback-compensated signal 4=.

Average HASQI scores over the 50 speech files for different values of ? are shown in Figure 4.8.

We can see that the optimal ? almost lies in the same range even as the feedback IR differs. This

means, for a given HA device, if we have some rough knowledge about the sparsity degree of its

feedback channel, the SLMS is robust since ? is not very sensitive near the optimal point. From

the results we found ? around 1.5 to be a good choice.

We also compare the SLMS (using ? = 1.5) with the LMS (4.1) and other proportionate

algorithms:

h=+1 = h= +
`

"f̂2
= + X

�=u 5
= 4

5
= , (4.11)

where �= uses the proportionate matrices of the PNLMS [27], IPNLMS [28], and IPNLMS-ℓ0

[67]. The algorithms were run on the speech dataset and the average HASQI were measured

under 4 different feedback scenarios as shown in Figure 4.9. We see that the SLMS outperforms

all the other ones, especially obvious under an adverse feedback situation such as the last two

cases (about 0.25 HASQI improvement compared to the NLMS in the last case).

4.6.2 Freping

We evaluate the proposed freping system using computer simulations in MATLAB at a

sampling rate of 16 kHz. We implemented a 6-band system using a set of BPFs with non-uniform

bandwidth whose center frequencies are 250, 500, 1000, 2000, 4000, and 6000 Hz, respectively.

Frames of 128 samples with 50% overlap were utilized. The Hann function was applied for

windowing. 25 male and 25 female speech signals from TIMIT database were used for simulations.

The PEM framework in Figure 4.2 is again considered. We study freping with " =

U[0,0,0,0,1,1]) on top of the LMS (4.1) and the SLMS (4.5). As instability is most likely to

occur at the high-frequency region in HAs, it is reasonable to manipulate the high-frequency
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Figure 4.8: Effect of ? on speech quality of SLMS for (a) f1, (b) f2, and (c) f3.

content while keeping the low-frequency region intact to avoid degradation in quality. Based on

informal subjective assessments, distortions due to freping are fairly benign. The experimental

setup was as follows. The HA processing �= (I) = 6I−g where 6 is the HA gain and g is the
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cases were fixed environments with f1, f2, and f3. The last case f123 was the feedback path
changing from f1 to f2 then f3 at 1/3 and 2/3 of the input sequence, respectively.

sample delay chosen to have a total HA latency under 10 msec (from 3= to >=). The feedback

path IR of Figure 4.7 (c) was considered. For the AFC, we used " = 100, ` = 0.005, d = 0.985,

and X = 10−6 for both LMS and SLMS. For the SLMS we used ? = 1.5 and 2 = 10−6 for (4.7). In

all simulations, the AFC filter coefficients were initialized as all zeros.

Figure 4.10 presents example spectrograms of the feedback-compensated signal for several

cases. We can see that freping effectively reduces the howling components present in the red

boxes, resulting in improved quality.

We compare performance with an existing FSmethod based on the analytical representation

of signal using the Hilbert transform [51, 102]. The amount of shift was set to 12 Hz, only

applied to frequency region above 1.5 kHz as suggested by [103, 104]. Figure 4.11 demonstrates

advantage of using freping by showing the average HASQI score over the 50 speech files for

various gain settings. From the results we see that both the basic (LMS) and advanced (SLMS)

AFC algorithms can benefit from freping. This indicates the ability of the proposed frequency

warping method to further improve feedback reduction on top of many AFC approaches. Moreover,

compared to the FS, freping demonstrates better performance under all the gain settings.

Finally, we compare the ASG for the cases of AFC, AFC with FS, and AFC with freping

using the proposed HASQI-based ASG estimation approach, where a HASQI below \ = 0.8 is
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Figure 4.10: Spectrograms of feedback-compensated signal. The top row is for LMS with HA
gain at 20 and the bottom row is for SLMS with HA gain at 30. Freping is disabled in the left
column and enabled with U = −0.02 in the right column. The HASQI scores are (a) 0.81, (b)
0.84, (c) 0.79, and (d) 0.82.

considered of unacceptable quality. The results are shown in Table 4.2, obtained from the average

of 5 male and 5 female speech files. We can see that freping can improve the ASG on top of both

the basic and advanced AFC algorithms. Compared to the FS, a higher ASG can be achieved by

using freping.
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Figure 4.11: HASQI of feedback-compensated signal for AFC using (a) LMS and (b) SLMS.
With freping, HASQI improvements of 0.65 to 0.78 and 0.66 to 0.73 can be seen for LMS with
HA gain at 20 and SLMS with HA gain at 30, respectively.

Table 4.2: ASG (in dB) comparison.

AFC algorithm AFC only AFC+FS AFC+freping

LMS 14.41 15.05 16.90
SLMS 17.87 18.47 19.31

4.7 Conlusion

In this chapter, we introduced the acoustic feedback problem associated with HAs, and

applied the SLMS algorithm to improve AFC by leveraging the (quasi-) sparse structure of

feedback path IRs. The SLMS has been shown to provide higher speech quality and stable gain

compared to LMS in AFC. We further introduced freping, a frequency warping method that

utilizes all-pass networks to decorrelate the signal for better feedback control with only negligible

distortion incurred.
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Chapter 5

Weighted Gradient Descent Algorithms for

Learning Regularized Models with

Applications to Nonlinear Model

Sparsification

In this chapter, we show that weighted gradient descent algorithms introduce implicit

weighted norm regularization, which can be exploited for learning regularized models without

having to dealwith the complex and often overlooked task of selecting aweight for the regularization

penalty. Specifically, we study a reparameterization framework that leads to learning algorithms

wherein it is possible to set the regularization penalty to zero in a limiting manner, thereby

minimizing the original unpenalized objective function. However, the resulting weighted gradient

algorithm is able to capture the regularization information through the weighting matrix which

can be iteration dependent in an implicit manner. The form of the matrix depends on the type of

regularization considered, e.g., parameter sparsity, total variation, model complexity, etc. The
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framework is thus general and it enables searching for solutions with some desirable properties

without incorporating a regularization penalty. As a main application of the framework, we

propose novel sparsity-promoting algorithms beneficial for i) deep neural network compression

and ii) dictionary pruning in kernel methods. Simulation results are presented to demonstrate that

the proposed algorithms find sparse models without incurring a regularization bias, and can be

useful for learning compact representations in many nonlinear estimation problems.

5.1 Introduction

Many signal processing and machine learning problems consider the empirical risk

minimization (ERM):

min
)

� ()) = 1
#

#−1∑
==0

!
(
ℎ(x=;)),y=

)
, (5.1)

where {(x=,y=)}#−1
==0 is a training dataset of # input-output pairs, ) is the parameter set of the

model hypothesis ℎ(·;)), ! (·, ·) is the loss function, and � ()) is called the empirical risk. Recently,

overparameterized models that are equipped with many more parameters than statistically needed

have becomewidely seen in practice, either due to the lack of guidance on themodel size [128, 129],

or because of potentially better generalization capabilities [130, 131, 132]. Overparameterization,

in turn, leads to the problem having multiple solutions ) that result in the same optimum. The

question is how to approach, if not select, a particular solution exhibiting desirable properties

among the many others. In this chapter, we study a novel algorithmic framework for developing

learning algorithms that optimize (5.1) while implicitly finding regularized models that exhibit

the desired properties.

To obtain a “good” solution, regularization techniques can be suitably employed by

supplementing the objective function with an additional penalty as: min) � ()) +_'()), where

'(·) is a regularizer function that outputs a scalar and _ > 0 is the regularization coefficient

(weight). The regularizer embeds our prior knowledge about how a “good” solution should be like.
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For example, when ) is known to be sparse, then the regularizer can use some diversity measures

of ) to promote sparsity [14, 42, 15, 16]; if a simple model is desired, then the regularizer can

use some capacity (complexity) measures [133, 134, 135, 136, 137]. The coefficient _ controls

the trade-off between model fitting and the regularization penalty. However, the selection of _

is often non-trivial. Although regularization helps in restricting the search space for a desired

solution, it often comes at the expense of model fitting due to explicitly using the regularizer as a

penalty term – the solution does not minimize the original objective function but the penalized

objective function which incurs a regularization bias.

Recently, there has been an increasing interest in studying implicit regularization of the

gradient descent family of algorithms [35, 36, 37, 38, 39, 40, 138, 139, 41]. By “implicit” we mean

that the learning algorithm still solves the unpenalized problem (5.1) while being aware of the

designated regularizer, leading towards a specific minimizer if there are many [36]. For example,

the gradient descent algorithm is known to be associated with the ℓ2 norm regularization [37].

Despite a well-known result for linear regression, it is only recently that implicit regularization of

gradient descent has received considerable attention for more general problems. For example

in deep learning, due to the surprising observation that many highly overparameterized models

learned by gradient-based algorithms do not overfit even without explicit regularization [130],

studying implicit regularization properties for explaining generalizability has become an active

research topic [35, 36, 37, 38, 39, 40, 41]. On the other hand, implicit regularization has recently

been studied for sparse signal recovery problems in [138, 139], which have observed several

advantages in using implicit over explicit regularization for incorporating sparsity.1

In this chapter, we follow this line of research to explore implicit regularization aspects

of gradient-based algorithms. However, different from most of the prior work that focuses on

generalization capabilities or computational advantages of complex models, we aim to get rid
1However, early stopping is required in [138, 139] for obtaining the regularized (sparse) models. This could be a

potential limitation given that in the overparameterized regime, “double-descent” risk curves have been observed
[140], which in turn would suggest a longer training time for achieving even better performance.
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of the biasing effect that arises from explicit regularization schemes via a properly designed

algorithmic framework. The main contributions of this work are as follows:

1. We propose a reparameterization scheme based on an affine scaling transformation (AST)

methodology [42, 60] that enables setting _ to zero for the regularizer in a limiting manner,

leading to learning algorithms that estimate regularized models without having to deal with the

complex and often overlooked task of selecting a weight for the regularizer.2 The algorithms

in general have a weighted gradient term in the update equation, where the weighting matrix

can be iteration dependent and the form of the matrix depends on the type of regularization

considered.

2. We present design options of the weighting matrix with regularizers for parameter sparsity

(and group sparsity), total variation, and model complexity to demonstrate flexibility of the

framework. In this sense, we associate weighted gradient learning algorithms with implicit

weighted norm regularization. In overparameterized models, the framework enables searching

for solutions with some desirable properties without having to incorporate a regularization

penalty, and thus can be useful to modern signal processing and machine learning systems

utilizing large models.

3. Based on iterative reweighting techniques [13] popular in the sparse signal recovery (SSR)

area, we develop sparsity-promoting weighted gradient algorithms for learning compact

representations of nonlinear models. Specifically, we propose i) Sparsity-promoting Stochastic

Gradient Descent (SSGD) algorithm for neural network compression and ii) Sparsity-promoting

Kernel Least Mean Square (SKLMS) and Sparsity-promoting Kernel Normalized Least Mean

Square (SKNLMS) algorithms for dictionary pruning in kernel methods.
2Our approach of advocating implicit regularization (_ = 0) is based on the recent observation that, in the

overparameterized regime (e.g., in many deep networks), the learned models do not overfit even without explicit
regularization (_ > 0), e.g., in [35, 36, 37, 38, 39, 40, 41]. In addition, implicit regularization has bee observed to be
more advantageous than explicit regularization in some cases, e.g., [138, 139].
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4. Simulation results are provided to demonstrate the capabilities of SSGD, SKLMS, and

SKNLMS of learning sparse models, with sparsification performance compared to explicit

regularization techniques.

Organization of the Chapter: The rest of the chapter is organized as follows. Section 5.2

discusses implicit regularization properties associated with gradient descent and weighted gradient

descent in the linear regression setting. Section 5.3 presents a more generic framework of weighted

gradient algorithms for the general ERM setting (5.1), taking into account an iteration dependent

weighting matrix. Section 5.4 studies implicit sparsity regularization under the weighted gradient

algorithmic framework, by utilizing popular reweighting techniques in SSR together with an

AST methodology. Section 5.5 introduces sparsity-promoting weighted gradient algorithms for

stochastic optimization of neural networks and online learning of kernel methods. Section 5.6

presents simulation results. Section 5.7 further discusses a complexity regularization example as

an extension of the framework. Section 5.8 concludes the chapter.

5.2 Gradient Descent Algorithms for Linear Regression with

Weighted Norm Regularization

Let us first consider for (5.1) the linear regression setting with # training data pairs

(x=, H=) ∈ R" ×R, = = 0,1, · · · , # −1, parameter set ) ∈ R" , and model ℎ(x=;)) = x)=) . Assuming

the squared loss ! (0, 1) = 1
2 (0− 1)

2, for 0, 1 ∈ R, this amounts to the least squares (LS) problem:

min
)

� ()) = 1
2#
‖y−X) ‖22, (5.2)

where y = [H0, H1, . . . , H#−1]) ∈ R# is the measurement vector andX = [x0,x1, . . . ,x#−1]) ∈ R#×"

is the input data matrix. We further assume # < " and rank(X) = # , resulting in (5.2) being an

underdetermined system of equations having infinitely many solutions.
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Consider a regularizer for (5.2) interpreted as the weighted ℓ2 norm in terms of some

invertible matrix W:

min
)

� ()) +_‖W−1) ‖22, (5.3)

and W characterizes our prior knowledge about the desired properties of the solution. One

example is total variation-like regularization which uses W−1 = D, where D is a finite-difference

operator [141]. Note that for _ > 0, (5.3) is strictly convex in ) and thus it has a unique minimizer

)∗.

In the limiting case as _→ 0+, the solution attempts to do data fitting with an eye towards

seeking a regularized solution with minimal compromise. However, the problem can become

highly ill-conditioned; optimization algorithms like gradient descent may get “stuck” and “never”

achieves the (unique) limiting solution. Indeed, these converged solutions are potential global

minima once _ becomes zero, which is when the problem has infinitely many solutions. In such a

case, the optimization outcome may depend on the specific algorithm used to obtain the estimate.

To see this, notice that when using the gradient descent scheme for optimizing (5.3), setting

_ = 0 for the resulting update equation basically reduces to the gradient descent algorithm of the

unconstrained data fitting problem (5.2):

) C+1 = ) C −[C∇)� () C), (5.4)

where C is the timestep and [C > 0 is the learning rate. The following observations characterize the

convergence of (5.4):

Proposition 5.1. For the LS problem (5.2), starting from an initial )0 and with sufficiently small

learning rates [C , the gradient descent algorithm (5.4) converges to: )∗gd = )min +PN (X) ()0),

where )min = argmin) ‖) ‖22 s.t. y = X) is the minimum ℓ2 norm solution and PN (X) denotes the

projector onto N (X).
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Proof: See Appendix 5.9.1.

Corollary 5.1. Assuming the same conditions of Proposition 5.1, the gradient descent algorithm

(5.4) converges to the minimum ℓ2 norm solution )min if and only if )0 ∈R(X) ).

Proof: See Appendix 5.9.2.

Remark 5.1. Assuming the same conditions of Proposition 5.1, if )0 ∉R(X) ) is close to the origin,

we have )∗gd ≈ )min. This can simply be seen by noting the fact that )∗gd = argmin) ‖)−)0‖22 s.t. y=

X) .

The above well-known results characterize the “implicit” regularization property of

gradient descent associated with ℓ2 norm: without explicitly using it as a penalty, the gradient

descent (5.4) (with proper initialization) finds the smallest ℓ2 norm solution (or something close

to it).

Now consider the reparameterization in terms of the (affinely) transformed variable:

q ,W−1). Reparameterizng the objective function in (5.3), the problem is equivalent to first

solving:

min
q

� (Wq) +_‖q‖22 (5.5)

and then obtaining the solution as )∗ =Wq∗, where q∗ is the minimizer of (5.5).

We may also optimize (5.5) by using gradient descent w.r.t. q. Since we are interested in

the limiting case, we set _ = 0 for the resulting gradient update equation, leading to:

qC+1 = qC −[C∇q� (WqC). (5.6)

Using the chain rule3 and noting the relationship between q and ), it can be shown that the
3This is basically ∇q =W) ∇) .
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equivalent update form of (5.6) in the ) domain is:

) C+1 = ) C −[CWW)∇)� () C). (5.7)

Comparing (5.7) to (5.4), we see that an additional weighting term WW) is introduced before

the gradient of the ordinary objective ∇)� () C). Adopting _ = 0, the weighted gradient descent

algorithm (5.7) also optimizes the unpenalized problem (5.2) just like (5.4). However, the path

it takes is different and may eventually converge to a different solution. As noted in [79], the

performance of gradient-based methods is dependent on the parameterization – a new choice may

substantially alter convergence characteristics. In the case of multiple solutions here, weighted

gradients in (5.7) may push the algorithm toward a specific one. Indeed, we have the following

results for (5.7):

Proposition 5.2. For the LS problem (5.2), starting from an initial )0 and with sufficiently

small learning rates [C , the weighted gradient descent algorithm (5.7) converges to: )∗wgd =

)wmin +WPN (XW) (W−1)0), where )wmin = argmin) ‖W−1) ‖22 s.t. y = X) is the minimum

weighted ℓ2 norm solution and PN (XW) denotes the projector onto N (XW).

Proof: See Appendix 5.9.3.

Corollary 5.2. Assuming the same conditions of Proposition 5.2, the weighted gradient descent

(5.7) converges to the minimum weighted ℓ2 norm solution )wmin if and only if )0 ∈R(WW)X) ).

Proof: See Appendix 5.9.4.

Remark 5.2. Assuming the same conditions of Proposition 5.2, if )0 ∉R(WW)X) ) is close to the

origin, we have )∗wgd ≈ )wmin. This can be simply seen by the fact that )∗wgd = argmin) ‖W−1() −

)0)‖22 s.t. y = X) .
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The above observations indicate thatweighted gradient descent (5.7) is implicitly associated

with weighted ℓ2 norm. This is a natural extension of the well-known relation between gradient

descent and ℓ2 norm. To the best of our knowledge, we have not seen previous work that explicitly

characterizes this property. Moreover, little attention has been paid on taking advantage of such

implicit regularization, though weighted gradient algorithms are so simple and commonly seen in

practice. The main contribution in this work is a generalization of this idea: by introducing a

suitable W (maybe iteration dependent) that potentially characterizes the desired properties of

the solution, we show that via weighted gradient algorithms it is possible to achieve a desirable

solution (specified by W) without having to penalize the problem (using a zero _).

5.3 Weighted Gradient Learning Algorithms for Estimating

Regularized Models

We aim to broaden the scope of the framework in Section 5.2 by considering the general

ERM problem (5.1) and thereby going beyond the simple linear regression setting. Moreover,

for the weighted ℓ2 norm regularizer, we take into account an iteration dependent WC for each

timestep C, which is typically a function of the estimated parameters ) C , instead of a fixed W.

Making it an iterative process, we allow WC to also be refined as ) C gets updated. It is helpful in

practice as a good W may not be trivial to find in advance. We further assume WC symmetric

positive definite for simplicity, and often a diagonal matrix for pragmatic reasons [79].

Now we have the penalized ERM problem at iteration C as:

min
)

� ()) +_‖W−1
C ) ‖22. (5.8)

Based on the discussion in Section 5.2, (5.8) naturally leads to the following reparameterization
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in terms of the (affinely) scaled variable:

q ,W−1
C ) . (5.9)

Note that when applying (5.9), in each iteration the WC is pre-calculated based on the estimate ) C

and treated as a given matrix to perform a change of coordinates (variables) [78] from ) to q,

acting as a scaling technique in gradient descent methods [79]. Viewing WC as the scaling matrix,

(5.9) can be interpreted as the AST commonly employed by interior point methods for solving

linear and nonlinear programming problems [42]. In the optimization literature, AST-based

methods transform the original problem into an equivalent one, favorably positioning the current

point at the center of the feasible region to facilitate the optimization [60]. Typically, optimization

problems concerned with the AST usually admit a unique solution and the main purpose is to

speed up adaptation toward that particular solution. Differently, here we recognize the usage of

AST for problems with multiple solutions with a different purpose: to guide the learning process

toward a more desirable solution.

Following the discussion in Section 5.2, we reparameterize the penalized ERM objective

in (5.8) using the AST (5.9), leading to the equivalent problem in the q domain:

min
q

� (WCq) +_‖q‖22. (5.10)

A gradient descent procedure will then be applied. The overall update process conceptually can

be summarized as follows: i) given a ) compute WC followed by reparameterization q as (5.9).

ii) Update q using a gradient descent algorithm. iii) Use this new q to obtain the updated ). iv)

Repeat Steps i)–iii) till convergence.

More formally, to proceed with gradient-based updates, following [49] we define the a
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posteriori AST variable at iteration C:

qC |C ,W−1
C ) C (5.11)

and the a priori AST variable at iteration C:

qC+1|C ,W−1
C ) C+1. (5.12)

The recursive update by using gradient descent for (5.10) in the q domain can be formulated

in terms of the two AST variables as:

qC+1|C = qC |C −[C
(
∇q� (WCqC |C) −2_qC |C

)
. (5.13)

Setting _ = 0 for (5.13) yields:

qC+1|C = qC |C −[C∇q� (WCqC |C). (5.14)

Using the chain rule4 and the AST relationships (5.9) and (5.11), we can write (5.14) as:

qC+1|C = qC |C −[CWC∇)� () C). (5.15)

Premultiplying WC on both sides of (5.15) and noting the relationships (5.11) and (5.12),

we can transform the q domain update (5.15) back to the ) domain as:

) C+1 = ) C −[CW2
C ∇)� () C). (5.16)

This weighted gradient algorithm can potentially learn regularized models (_→ 0+) without
4Note that the chain rule here is basically ∇q =WC∇) as a result of the change of variables (5.9) for a given WC at

iteration C.
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incurring a regularization penalty – even though adopting _ = 0, it still exhibits regularization

properties through the weighting matrix W2
C and thus exploits prior information. This is also

revealed by our argument regarding implicit regularization of weighted gradient descent in Section

5.2, but now with a changing weighting matrix. However, with such a time-varying matrix analysis

of convergence becomes nontrivial. Nevertheless, we have the following theorem that sheds light

on the convergence of (5.16):

Theorem 5.1. For the ERM problem (5.1), there exists a learning rate sequence {[C}∞C=0 such that,

using [C at iteration C, (5.16) monotonically converges to a local minimum (or saddle point) of the

empirical risk objective.

Proof: See Appendix 5.9.5.

Note that Theorem 5.1 applies not only to linear regression but the general problem setting

in (5.1). In addition, even though with an iteration dependent WC , Theorem 5.1 indicates that

(5.16) still solves (5.1). This is actually not surprising, since (5.16) optimizes (5.10) with a zero

_, meaning that it solves minq � (WCq) which is an equivalent problem to (5.1) given that WC is

invertible.

It is also worth mentioning the similarity of (5.16) with preconditioning methods [60, 79]

by viewing the weighting matrix as the preconditioner. Traditionally, the preconditioner is fixed

though all iterations and its role is mainly to reduce the condition number for convergence speed-up.

Whereas in (5.16), the matrix is iteration dependent so that it adapts as time evolves, and its role

is to help approach a desired solution. In this sense, algorithms like (5.16) can also be viewed as

using an adaptive preconditioner W2
C [142]. However, compared to the preconditioning viewpoint,

our reparameterization framework better incorporates the implicit regularization property of the

weighting matrix for flexible class of regularizers, thereby adding additional insights into the

algorithms.
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5.3.1 Practical Considerations for Constant Learning Rate

In some practical scenarios, a constant [C = [ may be preferably used to avoid potentially

expensive evaluation of the “best” learning rate by, e.g., line search methods. When this is the

case, if the weighting matrix W2
C scales arbitrarily, a fixed [ may not be able to compensate for

the scaling. This, in turn, may lead to instability (scaling too large) or slow convergence (scaling

too small) issues as gradient-based algorithms are sensitive to the learning rate. To remedy it, in

practice we can normalize the weighting matrix by some scalar UC to compensate for arbitrary

scalings, which corresponds to dividing the learning rate by UC . Empirically, for example, for a

diagonal weighting matrix W2
C it is useful to normalize it such that the diagonal elements sum

up to the number of parameters ", e.g., using UC = 1
"

∑"−1
8=0 F2

8,C
. In other words, the following

update rule is suggested over (5.16) when using a fixed [:

) C+1 = )=−[SC∇)� () C), (5.17)

where

SC =
W2

C

1
"
tr

(
W2

C

) , (5.18)

is the normalized version of a diagonal W2
C . Later, we will see slightly modified SC matrices for

accommodating different algorithms as we propose.

5.4 Implicit Sparsity Regularization via Weighted Gradient

Learning Algorithms

Sparsity has been an important attribute in many successful signal processing and machine

learning systems especially for the last two decades. We study weighted gradient algorithms for
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such aspects. To begin, we start with a sparsity-inducing penalty regularized ERM problem:

min
)

� ()) +_� ()), (5.19)

where � (·) represents the general diversity measure in SSR that when minimized encourages

sparsity in its argument. For ) ∈ R" , a separable form is commonly used: � ()) =∑"−1
8=0 6(\8),

where 6(·) has the following properties [13]:

Property 1: 6(I) is symmetric, i.e., 6(I) = 6(−I) = 6( |I |);

Property 2: 6( |I |) is monotonically increasing with |I |;

Property 3: 6(0) is finite;

Property 4: 6(I) is concave in |I | or I2.

Any function that holds the above properties is a candidate for effective SSR algorithm development.

One popular example is the ?-norm-like diversity measure [14, 42] with 6(·) = |·|?, ? ∈ (0,2],

i.e., � ()) =∑"−1
8=0 |\8 |?, which is associated with super-Gaussian prior distributions. In general,

a smaller ? corresponds to a heavier-tailed distribution, encouraging stronger sparsity in the

parameters.

5.4.1 Iterative Reweighting Algorithms for SSR

The concave nature of the diversity measure penalty � ()) poses challenges to the

optimization of (5.19). For solving it, many algorithms rely on iterative reweighting schemes

that produce more focal estimates as optimization progresses [13]. One popular method is the

iterative reweighted ℓ2 algorithm [14, 15] that introduces a weighted ℓ2 norm term as an upper

bound for � ()) per iteration. Specifically, it suggests sequentially solving a series of weighted ℓ2

penalized problems of (5.8), where in each iteration WC = diag{F8,C} is positive definite5 and each
5The positive definiteness can be shown to hold for a wide variety of diversity measures used in SSR. In cases

where it is not, the positive definiteness can still be ensured by utilizing some small regularization constant.
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F8,C is computed based on \8,C as [13]:

F8,C =
©­«d 5 (I)

dI

����
I=\2

8,C

ª®¬
− 1

2

, (5.20)

where 6(I) = 5 (I2) and 5 (I) has to be concave for I ∈ R+, i.e., 6(I) is concave in I2, for Property

4.

For example, choosing the ?-norm-like diversity measure with ? ∈ (0,2] and using (5.20)

results in:

F8,C =

(
2
?

(
|\8,C | + 2

)2−?
) 1

2

. (5.21)

Note that a small regularization constant 2 > 0 is empirically added for avoiding algorithm

stagnation and instability, which also ensures the nonsigularity of WC .

The reweighting method is actually based on the majorization-minimization (MM)

framework [17], as the objective function in (5.8) serves as a majorizer of the objective function

in (5.19) for every iteration. To approach a solution, one can sequentially minimize the majorizers

as typically done in conventional SSR; or more generally, utilize gradient update schemes6 since

exact minimization of (5.8) may not be trivial.

5.4.2 Sparsity-Promoting Weighted Gradient Algorithm

For our discussion concerning the gradient update scheme, the reweighted ℓ2 framework

naturally suggests using the WC given by (5.20) for the AST reparameterization (5.9), resulting in

the weighted gradient algorithm (5.16) demonstrating sparsity-promoting characteristics.

To further see that (5.16) potentially converges toward a sparse solution with (5.20), let

us again consider the LS problem setting of (5.2). According to Proposition 5.2, we can view

(5.16) as aiming for the weighted ℓ2 norm minimization: min) ‖W−1
C ) ‖22 s.t. y = X). From the

6It corresponds to the generalized MM [77] where one does not need to minimize the majorizer but only to assure
that it decreases in every iteration.
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MM viewpoint, sequentially solving the weighted ℓ2 norm minimization problems approaches a

solution to the diversity measure minimization: min) � ()) s.t. y = X) . This reveals the intention

of (5.16) to promote sparse solutions. Note that it is not to guarantee that (5.16) converges to a

solution of the diversity measure minimization problem, since the minimum weighted ℓ2 norm

solution might not be exactly found in each iteration as we only carry out a gradient descent

update. Nevertheless, this connection hints at the sparsity-promoting characteristics of (5.16) with

(5.20) and will be supported by simulation results later in Section 5.6.

In terms of the general ERM setting (5.1), given the complication of the problem it is

nontrivial to characterize the properties of the solution found by (5.16). Currently, the best we

can do is really to “expect” the solution to be implicitly regularized. However, our empirical

studies in Section 5.6 show that sparsity-promoting algorithms like (5.16) are capable of finding

regularized models in practical problems.

5.4.3 Extensions

Incorporating Reweighted ℓ1 Framework

In addition to the reweighted ℓ2 framework, another approach popular in SSR is the

reweighted ℓ1 algorithm proposed in [16], which introduces a weighted ℓ1 norm term as the

majorizer for � ()). In other words, it suggests that (5.19) be iteratively approached where in

each iteration we solve:

min
)

� ()) +_‖W−1
C ) ‖1, (5.22)

where the matrix WC is now given as [13]:

F8,C =

(
d 5 (I)

dI

����
I=|\8,C |

)−1

, (5.23)
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where 6(I) = 5 ( |I |) and 5 (I) has to be concave for I ∈ R+, i.e., 6(I) is concave in |I |, for Property

4.

As an example, the ?-norm-like function can also be adopted in the reweighted ℓ1

framework if ? ∈ (0,1]. Using (5.23), in this case we have:

F8,C =
1
?

(
|\8,C | + 2

)1−?
, (5.24)

where a small regularization constant 2 > 0 is again utilized.

Adopting the AST (5.9) with the WC given by (5.23) for the reweighted ℓ1 framework

(5.22), one can also perform q domain gradient descent as we have done in the reweighted ℓ2

case. If further setting _ = 0 in the resulting update equation, it will lead to the same form of

the weighted gradient algorithm (5.16)! This indicates that gradient descent on the reweighted

ℓ1 (5.22) with AST reparameterization reduces to an implicit weighted ℓ2 norm regularization

algorithm when _ goes to zero, whilst with a differently defined WC . The benefit of incorporating

the reweighted ℓ1 framework is that a broader class of WC for promoting sparsity is now possible,

as both reweighted ℓ2 and ℓ1 frameworks can be considered for obtaining the weighting matrix.

Table 5.1 presents several examples of the diversity measure � ()) and the corresponding forms

of WC . More example functions can be found in [81].

Table 5.1: Example diversity measures and corresponding update forms of WC .

Diversity � ()) function Parameter Reweighting WC update
measure type 6(\8) = range framework F8,C =

?-norm-like [14, 42] |\8 |? 0 < ? ≤ 2 reweighted ℓ2

(
2
?

(
|\8,C | + 2

)2−?
) 1

2

?-norm-like [14, 42] |\8 |? 0 < ? ≤ 1 reweighted ℓ1
1
?

(
|\8,C | + 2

)1−?

log-sum [15] log(\2
8
+ n) n > 0 reweighted ℓ2

(
\2
8,C
+ n

) 1
2

log-sum [16] log( |\8 | + n) n > 0 reweighted ℓ1 |\8,C | + n
inverse tangent [16] arctan( |\8 |/n) n > 0 reweighted ℓ1 \2

8,C
/n + n
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Group Sparsity Regularization

Structured sparsity are sometimes more preferable than the commonly seen unstructured

sparsity, e.g., in neural network pruning [143]. It can be imposed by grouping parameters and

encouraging sparsity among groups. Note that the sizes of groups need not be equal, e.g., in

neural networks a group can be the parameters associated with a node, a filter, a channel, or even

a layer.

To illustrate, let ) ( 9) denote the 9-th group parameters and |) ( 9) | denote its cardinality. As

an example, we consider the group sparsity regularizer based on the ?-norm-like diversity measure:

� ()) =∑�−1
9=0 ‖) ( 9) ‖

?

2 , ? ∈ (0,2], where � is the number of groups. Based on the reweighted ℓ2

framework in Section 5.4.1, the majorizer at timestep C is suggested as:

�−1∑
9=0
(F ( 9)C )−2‖) ( 9) ‖22, (5.25)

where

F
( 9)
C =

(
2
?

(
‖) ( 9) ‖2 + 2

)2−?
) 1

2

. (5.26)

Note that (5.25) can be further written as
∑"−1
8=0 F−2

8,C
\2
8
, where F8,C = F ( 9)C , ∀\8 ∈ group 9 . This

means that all the \8 belonging to the 9-th group share the same weight F ( 9)C . Consequently,

(5.25) can also be expressed as ‖W−1
C ) ‖22, where WC = diag{F8,C} = diag{F ( 9)C I|) ( 9) |} and I|) ( 9) | is

the |) ( 9) | × |) ( 9) | identity matrix. Then, the weighted gradient algorithm (5.16) utilizing such

WC can therefore promote group sparsity, in which all the parameters in a group share the same

weight that is computed based on the ℓ2 norm of the group. Following the same argument, similar

algorithms can also be developed for the reweighed ℓ1 class.
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Total Variation Regularization

We demonstrate that the proposed framework can suitably incorporate the total variation

regularizer widely used in image processing tasks [77]. For simplicity we only consider the one

dimensional case here, where regularization is employed to help recover a piecewise constant

signal ) ∈ R" whose variation, i.e., the difference between consecutive samples, is sparse [141].

For such signals, a total variation-like regularizer � ()̃) can be suitably used to impose sparsity on

the variation vector )̃ , D) , where D ∈ R"×" is a finite-difference operator consisting of −1’s on

the diagonal and 1’s on the first upper off-diagonal. Based on the reweighted ℓ2 or ℓ1 framework,

the majorizer ‖W−1
C )̃ ‖22 or ‖W

−1
C )̃ ‖1 is suggested for � ()̃), where WC = diag{F8,C} is computed

as (5.20) or (5.23) but with \8,C replaced by \̃8,C . It naturally suggests the AST in this case:

q ,W−1
C )̃ =W−1

C D) . (5.27)

This leads to having W−1
C D as the scaling matrix and eventually results in the weighted gradient

algorithm:

) C+1 = ) C −[CD−1W2
C (D−1))∇)� () C) (5.28)

for implicit total variation-like regularization.

5.5 Sparsity-Promoting Algorithms for Stochastic

Optimization and Online Learning

When one has a large dataset or model, it would be preferable to carry out stochastic

optimization or online learning schemes over batch updates, e.g., in deep neural network (DNN)

training. Often a constant learning rate [ may also be preferably used in such scenarios. In the

following, we introduce stochastic/online variants of the sparsity-promoting weighted gradient
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descent for finding compact nonlinear models in i) deep learning and ii) kernel methods.

5.5.1 Sparsity-Promoting Stochastic Optimization for DNNs

Consider the ERM problem (5.1) for the case where the hypothesis ℎ(·;)) is a neural

network with " trainable parameters (weights and biases). We treat ) = [\0, \1, . . . , \"−1]) as a

vector consisting of all the parameters. In neural network training, the stochastic gradient descent

(SGD) is widely used for learning the parameters:

) C+1 = ) C −[∇)�C () C), (5.29)

where �C ()) denotes the empirical risk computed only on a subset (mini-batch) of the training

dataset given to the network at timestep C. Note that SGD is simply the gradient descent algorithm

(5.4) using the stochastic gradient ∇)�C () C) and a constant learning rate [ instead.

Using the WC from the SSR reweighting methods, i.e., (5.20) or (5.23), together with the

AST reparamterization (5.9), we can develop the weighted gradient version of SGD that promotes

sparsity:

) C+1 = ) C −[W2
C ∇)�C () C), (5.30)

which essentially uses the stochastic gradient and a fixed learning rate for the weighted gradient

algorithm (5.16). We refer to (5.30) as the Sparsity-promoting SGD (SSGD) algorithm for

learning compact neural network models.

In practice, we find that normalizing the W2
C term in (5.30) helps stabilize SSGD as a

constant learning rate is used (see Section 5.3.1). We heuristically propose the practical SSGD

update rule:

) C+1 = ) C −[SC∇)�C () C), (5.31)

where SC = diag{B8,C}, referred to as the sparsity-promoting matrix, is the (layer-wise) normalized
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version of W2
C computed according to:

B8,C =
F2
8,C

1
|I (:) |

∑
9∈I (:)

F2
9 ,C

, for 8 ∈ I (:) , (5.32)

where I (:) denotes the index set of the parameters of layer : and |I (:) | is the cardinality of I (:) .

Algorithm 4 summarizes the proposed SSGD algorithm which can be implemented using standard

deep learning libraries without much effort. Later in Section 5.6.1, we show that SSGD is useful

for DNN compression purposes.

Algorithm 4: SSGD for learning sparse DNN connections. wC and sC denote the
vectors consisting of the diagonal elements of WC and SC , respectively. � denotes
element-wise multiplication.

1 Input: learning rate [ > 0, mini-batch of training data, and the choice of the diversity
measure

2 Output: estimated model parameters ) C
3 Initialize: )0
4 for C = 0,1,2... do
5 Compute gradient ∇)�C () C) via backpropagation
6 Compute scaling factors: wC according to the specified diversity measure (e.g., see

Table 5.1)
7 Compute sparsity-promoting factors: sC by (5.32)
8 Update parameters: ) C+1 = ) C −[ · sC �∇)�C () C)
9 end for

5.5.2 Sparsity-Promoting Online Learning for Kernel Methods

We demonstrate that the weighted gradient algorithmic framework can suitably extend

to nonlinear estimation techniques using kernels. To begin, let the input space X be a compact

subset of R! . We aim to estimate a nonlinear mapping q(·): X ↦→ R with sequentially arriving

input-output pairs (xC , HC) ∈X ×R, where C is the discrete time index. The function q(·) is modeled

as an element of a reproducing kernel Hilbert space,H, associated with aMercer kernel ^(·, ·):
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X ×X ↦→ R, which satisfies ^(x8,x 9 ) =
〈
q(x8), q(x 9 )

〉
H, ∀x8,x 9 ∈ X , where 〈·, ·〉H: H×H ↦→ R

is the inner product ofH [144].

Consider a training set of # input-output pairs (x=, H=) ∈ X ×R, = = 0,1, . . . , # −1. To

estimate q(·), the following nonlinear LS problem can be formulated:

min
q(·)∈H

J (q(·)) = 1
2#

#−1∑
==0

(
H=−q(x=)

)2
. (5.33)

The representer theorem [145] states that any optimal solution q∗(·) = argminq(·)∈H J (q(·)) can

be expressed as a kernel expansion in terms of available training data, i.e., q∗(·) =∑#−1
8=0 \8^(·,x8),

where the elements of the set D̄ =
{
^(·,x8)

}#−1
8=0 form a basis, or dictionary, and the \8 are the

corresponding expansion coefficients of the dictionary elements. By virtue of the representer

theorem, we have the equivalent linear LS problem [146]:

min
)∈R#

� ()) = 1
2#

#−1∑
==0

(
H=− +̄)=)

)2
, (5.34)

where +̄= = [^(x=,x0), ^(x=,x1), . . . , ^(x=,x#−1)]) ∈ R# is the kernelized input data vector formed

by evaluating x= over the entire dictionary D̄.

For online learning upon the arrival of (xC , HC), instead of (5.34) we consider the instanta-

neous squared error:

min
)∈RC

�C ()) =
1
2

(
HC − +)C )

)2
, (5.35)

where +C = [^(xC ,x0), ^(xC ,x1), . . . , ^(xC ,xC)]) ∈ RC+1 is given by evaluating xC over the updated

dictionary DC+1 =
{
^(·,x8)

}C
8=0. Note that the dictionary size gets increased by 1 when the new

input xC becomes available, i.e., DC+1 = {DC , ^(·,xC)}. Thus, the final dictionary size is equal to

the number of samples seen. It is likely that redundancy is exhibited when the dictionary becomes

larger.

The kernel least mean square (KLMS) algorithm [146, 147, 148, 149] for updating the
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coefficients ) can be obtained by using the gradient descent update for (5.35), given as:

) C+1 =


) C

0

 +[+C4C , (5.36)

where 4C = HC − +)C [))C 0]) is the instantaneous error and the term +C4C is the (negative) gradient of

�C ()). The 0 element inserted after ) C in (5.36) is to account for the new entry ^(·,xC) that has

just been included to the dictionary.

To incorporate sparsity, we employ the diversity measure for (5.35): min) �C ()) +_� ()).

Then, the reweighted ℓ2 or ℓ1 framework in Section 5.4 suggests solving: min) �C ()) +_ | |W−1
C ) | |22

or min) �C ()) +_ | |W−1
C ) | |1 instead, where WC is evaluated based on ) C as given by (5.20) or

(5.23). Based on the discussion in Section 5.3, we can obtain the weighted gradient version of

(5.36) for promoting sparsity:

) C+1 =


) C

0

 +[

W2

C 0

0 1

 +C4C , (5.37)

where a diagonal weighting matrix W2
C is present before the (negative) gradient +C4C , and to

account for the newly included entry we simply assign a weight of 1. For stability purposes,

practically we would normalize the weighting matrix to account for a fixed learning rate as

discussed in Section 5.3.1. We heuristically suggest normalizing W2
C by the mean value of its

diagonal elements, leading to the following update equation instead of (5.37):

) C+1 =


) C

0

 +[SC+C4C , (5.38)
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where

SC =


W2

C
1
C
tr(W2

C ) 0

0 1

 , (5.39)

is the sparsity-promoting matrix responsible for encouraging sparsity in ) . We refer the algorithm

(5.38) as the Sparsity-promoting KLMS (SKLMS).

The KLMS has a normalized version, i.e., the kernel normalized LMS (KNLMS) [147]:

) C+1 =


) C

0

 +
[̃+C4C

+)C +C + X
, (5.40)

where [̃ is the “normalized” learning rate [19] and X > 0 is a regularization constant for avoiding

singularity. The KNLMS can be derived by the projection method [147], or by performing exact

line search for the optimal learning step using the instantaneous objective, similar to the NLMS for

LMS [49] in the linear case. Adopting the latter approach we can similarly derive the normalized

version of SKLMS:

) C+1 =


) C

0

 +
[̃SC+C4C

+)C SC+C + X
, (5.41)

where SC is given by (5.39). We refer to the algorithm (5.41) as the Sparsity-promoting KNLMS

(SKNLMS).

Algorithm 5 summarizes the proposed SKLMS and SKNLMS algorithms. Later in

Section 5.6.2, we present experiments showing their capabilities of obtaining compact dictionaries

in nonlinear estimation tasks using kernels.
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Algorithm 5: SKLMS and SKNLMS for learning sparse representations in kernel
methods.

1 Input: learning rate [ > 0 (or [̃ > 0), regularization constant X > 0, input-output pair
(xC , HC), kernel function ^(·, ·), and the choice of the diversity measure

2 Output: expansion coefficients ) C and dictionary DC

3 Initialize: )0 and D0 as empty set
4 for C = 0,1,2, . . . do
5 Update dictionary: DC+1 = {DC , ^(·,xC)}
6 Compute +C = [^(xC ,x0), ^(xC ,x1), . . . , ^(xC ,xC)]) by evaluating xC over DC+1
7 Compute error: 4C = HC − +)C [))C 0])
8 Compute scaling matrix WC according to the specified diversity measure (e.g., see

Table 5.1)
9 Compute sparsity-promoting matrix SC as in (5.39)
10 Update expansion coefficients:

* SKLMS: ) C+1 =
[
) C
0

]
+[SC+C4C

* SKNLMS: ) C+1 =
[
) C
0

]
+ [̃SC+C4C
+)C SC+C + X

11 end for

5.6 Simulation Results

5.6.1 SSGD

We evaluate the proposed SSGD algorithm for neural networks using the PyTorch [150]

library. We first consider a simple multilayer perceptron (MLP) example for studying the effect

of model size and initialization on the sparsification results. Then, examples of sparsifying

more complex convolutional neural networks (CNNs) for realistic image classification tasks are

presented. The rectified linear unit (ReLU) activation is used for all the models considered. For

all the results, we use (5.21) for WC in SSGD, setting 2 = 0.001. To visualize the sparsification

performance, we measure the excess kurtosis of the parameters within each layer.7

7Distributions with excess kurtosis higher than 0 are called super-Gaussian, meaning that they have higher peaks
at 0 and heavier tails compared to the Gaussian distribution, which has an excess kurtosis of 0. Excess kurtosis can
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Effect of Model Size and Initialization

We study how the model size and initialization would affect the performance of SSGD

using a simple MLP architecture. We consider the regression problem with # = 10 data pairs

(x8, H8) ∈ R20×R, where H8 is generated by a pre-defined one-hidden-layer MLP with 100 hidden

units using x8 as input – a highly overparameterized scenario – where the pre-defined network

parameters are drawn from i.i.d. Gaussian with zero mean and 0.01 variance, and the elements of

x8 are drawn from i.i.d. standard Gaussian. The generated data pairs are used to train another

one-hidden-layer MLP with � hidden units for comparing the learning performance. For reference,

we also include the results of using SGD (5.29) for training. The same initialization is used for

both SGD and SSGD in each case for fair comparison, where the initial parameters )0 are drawn

from i.i.d. Gaussian with zero mean and f2 variance. � and f2 are to be specified in different

experiments. A learning rate [ = 0.001 and a batch size of 1 are used for all cases. The squared

error loss is considered for optimization.

Figure 5.1 (a) investigates the effect of the model size on the sparsity-promoting perfor-

mance. We train networks with different � to zero loss using SGD and SSGD with ? = 1, and

measure the excess kurtosis. We use f2 = 10−5 for the initialization in each case. We see that

SSGD consistently achieves higher sparsity than SGD. In addition, the first layer (Layer 1) is

constantly sparser than the second layer (Layer 2) since it has much more parameters. Moreover,

when the size increases, there is a trend of increasing sparsity for SSGD. This may be reasonable,

as the degree of overparameterization increases with the model size, and thus there is more likely

the presence of higher redundancy.

Figure 5.1 (b) studies the effect of initialization where we experiment with different f2.

We use the network with � = 100 hidden units and train to zero loss to measure the excess kurtosis

in each case. We again see that SSGD constantly finds a sparser solution than the SGD across

different initialization variances. Notably, we see that when the initialization variance increases,

thus serve as a measure of sparsity (the higher, the sparser).

121



sparsity decreases to some degree. This is as expected, as indicated by Remark 5.2, when the

initialization is closer to the origin, the regularization effect becomes more obvious and thus

the algorithm should be finding a sparser model; otherwise, initialization would dominate. This

indicates that as long as we keep the initialization close to the origin, which is not uncommon in

practice, SSGD is able to attain a sparse network.
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Figure 5.1: Effect on sparsity-promoting performance of (a) model size and (b) initialization
variance.

Sparsifying CNNs for Image classification

We consider two image classification tasks with different CNN architectures consisting

of fully-connected (FC) and convolutional (CONV) layers, both using the cross-entropy loss for

optimization:

• CNN-1 on MNIST database [151]: We define a model (referred to as CNN-1) that has 2 CONV

layers (# input channels × # output channels: 1×32−32×64) using 5×5 kernels followed by

3 FC layers (# input neurons × # output neurons: 2304×128−128×64−64×10) for this task.

Max pooling is performed after each CONV layer.
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• CNN-2 on CIFAR-10 database [152]: We define a more complicated model (referred to as

CNN-2) with 6 CONV layers (3×64−64×64−64×128−128×128−128×256−256×256)

using 3×3 kernels followed by 3 FC layers (4096×256−256×128−128×10) for this task.

Each of the CONV layer is followed by batch normalization [153] before activation. Max

pooling is performed after the second, forth, and last CONV layers. Dropout [154] with a rate

of 0.2 is applied to the first and second FC layers.

We compare SSGD with SGD (5.29). In addition, to compare with explicit regularization

techniques, we also include the results of using SGD for optimizing an ℓ1 regularized objective,

which is equivalent to using the following update rule:

) C+1 = ) C −[∇)�C () C) −[_sgn() C). (5.42)

We set _ = 10−6 and 10−5 for CNN-1 and CNN-2, respectively, and refer to (5.42) as ‘ℓ1-SGD’. A

learning rate [ = 0.1 and a batch size of 64 are used for all the algorithms.

Figure 5.2 shows the training loss vs. epochs for SGD, ℓ1-SGD, and SSGD with ? = 1.0,

1.2, and 1.5. We train CNN-1 on MNIST for 100 epochs and CNN-2 on CIFAR-10 for 150

epochs. The same initialization is used among different algorithms for each model by using the

default scheme of PyTorch. For reference, CNN-1 and CNN-2 achieve 99.27% and 85.21% test

accuracy with normal SGD training, respectively. The results show that SSGD is able to converge

toward the same loss as SGD, supporting the argument that SSGD finds solutions to the original

unpenalized problem. The ℓ1-SGD, however, ends up at a higher loss due to the bias induced by a

nonzero _ for the ℓ1 norm regularizer.

Figure 5.3 monitors the excess kurtosis vs. epochs for SSGD with various ? values. We

see that a smaller ? leads to greater sparsity as expected. Note that when using (5.21) with ? = 2,

SSGD reduces to SGD, resulting in near 0 excess kurtosis.

Figure 5.4 confirms the observations in Figure 5.3 by comparing the weight distribution
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Figure 5.2: Training loss vs. epochs for (a) CNN-1 on MNIST and (b) CNN-2 on CIFAR-10.

densities of the models trained by SGD and SSGD (using ? = 1). It can be seen that SSGD learns

a heavier-tailed distribution with a higher peak at 0, meaning greater sparsity in the parameters.

The sparsity is shown to be beneficial for DNN compression purposes as presented next.

*Application to DNN compression: Han et al. [155] have proposed a 3-stage compression

scheme: i) learning important connections, ii) pruning unimportant parameters by hard threshold-

ing, and iii) fine-tuning the remaining ones. We adopt the same scheme, using SSGD in stage

i). In [155], it is observed that, ℓ1 regularization leads to sparser networks after stage i), but the

network loses significant accuracy after stage ii), and is not able to recover from this accuracy

drop even after stage iii). The authors posit that the discrepancy between using ℓ1 regularization

during stage i) and not using it during stage iii) leads to poor performance. SSGD circumvents

such issues because it finds sparse solutions by optimizing the original unpenalized problem
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Figure 5.3: Excess kurtosis vs. epochs for (a) first FC layer weights of CNN-1 and (b) last
CONV layer weights of CNN-2.

directly, instead of switching between penalized and unpenalize problems like [155].

Figure 5.5 shows the test accuracy vs. % of nonzeros after pruning for different cases.

We use the magnitude-based strategy from [155] to fix small weights to 0 in stage ii). As can

be seen in Figure 5.5, after pruning (solid lines), accuracy drops with decreasing % of nonzeros

(more aggressive pruning). SSGD (using ? = 1) retains the highest accuracy after pruning in

both Figure 5.5 (a) and Figure 5.5 (b). ℓ1-SGD also maintains higher accuracy than SGD in

Figure 5.5 (b). As both cases are sparsity-aware training, this supports the argument that sparsity

is important for learning compact connectivity of models [156, 157]. Now, to regain accuracy,

fine-tuning is necessary. Compared to the iterative process suggested in [155], one-shot pruning

and retraining is more desirable [156]. In addition, the retraining period should also be kept short.

Therefore, we fine-tune the pruned models once (CNN-1 for 35 epochs and CNN-2 for 50 epochs
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Figure 5.4: Distribution of (a) first FC layer weights of CNN-1 and (b) last CONV layer weights
of CNN-2. Training with SSGD results in a super-Gaussian like distribution of parameters that
has a higher peak at 0 and heavier tails than SGD.

only) by optimizing the unpenalized problem using the Adam optimizer [32] with a learning

rate of 0.001. From Figure 5.5, we see that after fine-tuning (dashed lines, labeled with ‘(FT)’),

accuracy can be regained to a certain degree for all cases. Note that ℓ1-SGD is not necessarily

better than the normal SGD after retraining, e.g., in Figure 5.5 (a). The proposed SSGD, on

the other hand, achieves the highest accuracy after fine-tuning. This demonstrates that SSGD

can learn better network connectivity in the training phase by leveraging the implicit sparsity

regularization property, which happens to also be beneficial for avoiding possible issues due to

change of optimization modes in the fine-tuning stage.

Table 5.2 compares the sparsification performance of the proposed SSGD-based approach

to some recent pruning methods. We compare with [158], which also utilizes the iterative

reweighting concept in their pruning framework. However, their method prunes a pre-trained

network via log-sum minimization in a layer-by-layer fashion. Our approach, on the other hand,

sparsifies all layers simultaneously during training. Moreover, we have a broader framework

that covers the log-sum penalty as a special case. For comparison purposes, we adopt the same

network architectures as in their paper, namely, a multi-layer perceptron on MNIST (referred to as

126



30 25 20 15 10 8 6 4 2
% of nonzeros

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

SGD
SGD (FT)
ℓ1-SGD
ℓ1-SGD (FT)
SSGD
SSGD (FT)

(a)

30 25 20 15 10 9 8 7 6 5 4 3
% of nonzeros

20

40

60

80

Ac
cu

ra
cy

 (%
)

(b)

Figure 5.5: Test accuracy vs. % of nonzeros for (a) CNN-1 on MNIST and (b) CNN-2 on
CIFAR-10. ‘FT’: fine-tuned.

MLP) which consists of 4 FC layers, and a CNN on CIRAF-10 (referred to as CNN-3) which

consists of 2 CONV layers (each with batch normalization added before activation) followed

by 3 FC layers. We also compare with Net-Trim [159], another pruning method also compared

with in [158]. For the proposed method, we train the models with SSGD using ? = 1. Then, we

prune the models once and fine-tune using Adam. From the results, we can see that the proposed

method achieves the highest sparsity with comparable, if not better, accuracy compared to existing

methods.

5.6.2 SKLMS and SKNLMS

We present two examples of nonlinear estimation problems using computer simulations in

MATLAB to demonstrate the proposed SKLMS and SKNLMS for obtaining a compact dictionary
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Table 5.2: Comparison of sparsification results.

Model Method Accuracy % of nonzeros

MLP

Original 98.62% 100.0
Net-Trim [159] 97.70% 30.5

Iter. Reweight. [158] 97.46% 14.8
Proposed 98.39% 3.7

CNN-3

Original 77.44% 100.0
Net-Trim [159] 75.92% 17.8

Iter. Reweight. [158] 74.17% 7.9
Proposed 74.54% 5.1

in kernel methods. Besides the KLMS (5.36) and KNLMS (5.40), we also compare to:

) C+1 =


) C

0

 +[+C4C −_[sgn(

) C

0

) (5.43)

and

) C+1 =


) C

0

 +
[̃+C4C

+)C +C + X
− _[̃

+)C +C + X
sgn(


) C

0

), (5.44)

where the _-weighted terms with the sgn(·) function are referred to as the zero attractor (ZA) [24].

The algorithms in (5.43) and (5.44) are thus referred to as the ZA-KLMS [160] and ZA-KNLMS,

respectively, which represent methods that explicitly use _ > 0 for imposing sparsity – they can be

derived from: min) �C ()) +_‖) ‖1, where �C ()) is the instantaneous objective in (5.35).

• Mackey-Glass (MG) chaotic time series prediction: We follow the experiment in [161] for

predicting a MG chaotic time series DC . A segment of 3000 samples is used for training

and another segment of 2000 samples for testing. A time embedding ! = 12 is used, i.e.,

xC = [DC−1, DC−2, ..., DC−12]) , to predict the present sample, i.e., HC = DC . The signal is corrupted

by a white Gaussian noise with zero mean and 0.01 variance before processing. KLMS-type

algorithms are compared in this task.
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• Nonlinear channel equalization: We follow the experiment in [161] for nonlinear channel

equalization. A binary signal 1C ∈ {−1,+1} is fed into a nonlinear channel which is modeled as

a Wiener system, where the output of the linear part ;C = 1C +0.51C−1 is input to the nonlinear

part that gives the system output >C = ;C −0.9;2C . The received signal AC = >C + EC , where EC is a

white Gaussian noise with zero mean and 0.01 variance. A time embedding ! = 5 and time

lag g = 2 are used, i.e., xC = [AC , AC−1, ..., AC−4]) , to predict the delayed sample, i.e., HC = 1C−2.

We generate 10000 samples for training and another 5000 samples for testing. KNLMS-type

algorithms are compared in this task.

For all the algorithms we use the Gaussian kernel ^(x8,x 9 ) = exp(−0‖x8−x 9 ‖22) with 0 = 1.

We use the same [ = 0.001 and [̃ = 0.1 for KLMS-type and KNLMS-type algorithms, respectively.

For SKLMS and SKNLMS, we use (5.21) for WC , setting 2 = 0.001. For KNLMS-type algorithms

we use X = 0.01. For ZA-KLMS and ZA-KNLMS we use _ = 0.015 and _ = 0.002, respectively,

which are chosen such that they achieve the highest sparsity with minimal bias incurred. All the

mean squared error (MSE) results are obtained by ensemble averaging over 100 Monte Carlo runs.

Figure 5.6 compares the training results of the two tasks. In both cases, one can see that

SKLMS and SKNLMS converge to the same MSE level as KLMS and KNLMS, respectively,

whereas ZA-KLMS and ZA-KNLMS result in a higher MSE – a consequence of trading off model

fitting for regularization (sparsity). The results demonstrate that the proposed algorithms do not

incur a regularization bias to the optimization.

Table 5.3 compares sparsity levels of the converged coefficients ) learned by different

algorithms in terms of the sparseness measure from [162] (range from 0 to 1, the higher the

sparser). We see that for SKLMS and SKNLMS, a smaller ? results in a higher degree of sparsity

as expected. ZA-KLMS and ZA-KNLMS also yield sparser solutions than KLMS and KNLMS.

However, the increased sparsity comes with increased MSE bias (see Figure 5.6). Moreover,

also based on the ℓ1 norm, SKLMS and SKNLMS with ? = 1 achieve sparser solutions than

ZA-KLMS and ZA-KNLMS.
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Figure 5.6: Training results of (a) KLMS-type algorithms for MG chaotic time series prediction
and (b) KNLMS-type algorithms for nonlinear channel equalization.

Table 5.3: Sparseness of learned expansion coefficients ) of (a) KLMS-type algorithms for
MG chaotic time series prediction and (b) KNLMS-type algorithms for nonlinear channel
equalization.

(a)

Algorithm KLMS ZA-KLMS
SKLMS

? = 2.0 ? = 1.8 ? = 1.5 ? = 1.2 ? = 1.0

Sparseness 0.59 0.64 0.59 0.63 0.72 0.80 0.85

(b)

Algorithm KNLMS ZA-KNLMS
SKNLMS

? = 2.0 ? = 1.8 ? = 1.5 ? = 1.2 ? = 1.0

Sparseness 0.78 0.80 0.78 0.79 0.83 0.86 0.88
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Figure 5.7 presents the pruning results, where we prune the learned models and see how

they perform on the test data. Specifically, we remove elements of the final dictionary based on the

least magnitude criterion [163] of the learned ) . We experiment with different pruned dictionary

sizes  . It can be seen that SKLMS and SKNLMS using a small ? can retain a relatively low

error even for aggressive pruning (small  ), as the learned ) is sufficiently sparse.
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Figure 5.7: Test results on pruning performance of (a) SKLMS for MG chaotic time series
prediction and (b) SKNLMS for nonlinear channel equalization.
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5.7 Implicit Complexity Regularization Using Fisher-Rao

Norm Capacity Measure

The Fisher-Rao norm (FR norm) proposed in [137] acts as a capacity measure of neural

network models, which can potentially be used as a regularizer for reduced model complexity. It

is defined as: ‖) ‖FR , ‖F
1
2 ())) ‖2, where F()) is the Fisher information matrix (FIM). The FR

norm can also serve as a measure of flatness of minima, which is hypothesized to be related to

generalization of deep nets [164], since the FIM approximates the Hessian at a minimum of the

loss under certain conditions. Thus, a model with a smaller FR norm could be associated with

better generalization capabilities.

If wemake the modeling assumption of the joint probability that ?(x,y;)) = ?(x)?(y|x;)),

as we identify the loss function ! (ℎ(x;)),y) = − log ?(y|x;)), we have the FIM as F()) =

Ex,y
[
∇)! (ℎ(x;)),y)∇)! (ℎ(x;)),y))

]
. However, the FIM may not be available in practice and

has to be estimated. For neural networks, one possible alternative is the running sum estimate:

FC =
1
C +1

C∑
g=0
∇)�g ()g)∇)�g ()g)) , (5.45)

where �g ()) is the empirical risk computed only on a subset (mini-batch) of the training data

given to the network at timestep g. Therefore, we can adopt ‖F
1
2
C ) ‖22 as the regularizer for

capacity control purposes, which in turn suggests using F−1
C as the weighting matrix, leading to

the (stochastic) weighted gradient algorithm:

) C+1 = ) C −[F−1
C ∇)�C () C). (5.46)

This actually corresponds to the (full matrix) adaptive gradient algorithm proposed in [31]. By

using only the diagonal approximates of FC , the root of FC instead, or introducing some empirical

132



gradient smoothing operations, (5.46) can be connected to many popular algorithms like AdaGrad

[31], RMSProp [33], and Adam [32]. In this sense, we interpret the algorithms from an implicit

regularization viewpoint for practicing capacity control. This possibly indicates their effectiveness

in tending to a solution with a smaller model complexity, which could be associated with better

generalization properties. Further studies with rigorous arguments and supporting experimental

results are left for future research.

5.8 Conclusion

In this chapter, we studied a novel AST reparameterization scheme to associate weighted

gradient descent with weighted norm regularization. We argued that by leveraging implicit

regularization, through weighted gradient algorithms it is possible to obtain regularized models

that exhibit desired properties without incorporating a regularization penalty, given that a suitable

weighting matrix is provided. We presented weighting matrix examples for sparsity, group sparsity,

total variation, and capacity control to demonstrate flexibility of the weighted gradient algorithmic

framework. Utilizing the reweighting SSR techniques within the framework, we further introduced

the SSGD, SKLMS, and SKNLMS algorithms for learning sparse representations in nonlinear

estimation tasks.
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5.9 Appendix

5.9.1 Proof of Proposition 5.1

Despite the fact that Proposition 5.1 is well-known in the literature, we provide a proof

here for completeness.

For the LS problem (5.2), using the gradient ∇)� ()) = 1
#

X) (X) − y) for the gradient

descent update (5.4) and starting with )0, we have:

) C+1 =) C −[C
1
#

X) (X) C −y)

=)0−
C∑
g=1

[g
1
#

X) (X)g −y)

=)0 +X) #, for some # ∈ R# .

(5.47)

For sufficiently small learning rates, gradient descent converges to a solution )∗gd when

C→∞. According to (5.47), we must have )∗gd = )0 +X) #∗, for some #∗ ∈ R# .

Due to convexity, )∗gd must be a global minimizer. As we assume y ∈R(X), the global

optimum must be zero, i.e., � ()∗gd) =
1

2# ‖y−X)∗gd‖22 = 0. Thus, we have:

X)∗gd = y ⇒ X()0 +X) #∗) = y

⇒ #∗ = (XX) )−1(y−X)0).
(5.48)
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Therefore, we have the minimizer:

)∗gd =)0 +X) #∗

=)0 +X) (XX) )−1(y−X)0)

=X) (XX) )−1y+ (I−X) (XX) )−1X))0.

(5.49)

Note that X) (XX) )−1y = argmin) ‖) ‖22 s.t. y = X) is the minimum ℓ2 norm solution )min and

I−X) (XX) )−1X is the the projection matrix onto N (X). Therefore, we have the converged

solution:

)∗gd = )min +PN (X) ()0). (5.50)

5.9.2 Proof of Corollary 5.1

Let )0 ∈ R(X) ). Then we have )0 ⊥ N (X), as R(X) ) and N (X) are orthogonal

complements. This implies the projection PN (X) ()0) = 0. Thus, by Proposition 5.1, we have

)∗gd = )min.

Let )∗gd = )min. Then from Proposition 5.1 we know that PN (X) ()0) = 0. This indicates

)0 ⊥N (X) and thus ) ∈R(X) ).

Therefore, )∗gd = )min if and only if )0 ∈R(X) ).

5.9.3 Proof of Proposition 5.2

First note that the q domain update rule (5.6) is the gradient descent update for solving:

min
q

� (Wq) = 1
2#
‖y−XWq‖22. (5.51)
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Based on the discussion in Proposition 5.1, starting from q0 and with sufficiently small [C , we

have (5.6) converge to:

q∗gd = qmin +PN (XW) (q0), (5.52)

where qmin =W)X) (XWW)X) )−1y = argminq ‖q‖22 s.t. y = XWq.

Since the the weighted gradient descent (5.7) is the equivalent ) domain update of (5.6),

we have it converge to )∗wgd =Wq∗gd. Using (5.52), we have:

)∗wgd =Wqmin +WPN (XW) (q0)

=WW)X) (XWW)X) )−1y+WPN (XW) (q0).
(5.53)

By noting the fact thatWW)X) (XWW)X) )−1y= argmin) ‖W−1) ‖22 s.t. y=X) is theminimum

weighted ℓ2 norm solution )wmin and q0 =W−1)0, we have:

)∗wgd = )wmin +WPN (XW) (W−1)0). (5.54)

5.9.4 Proof of Corollary 5.2

Let )0 ∈R(WW)X) ). Then )0 =WW)X) #0, for some #0 ∈ R# . Since q0 =W−1)0 =

W)X) #0, we haveq0 ∈R(W)X) ) and thusq0⊥N (XW). Therefore, the projectionPN (XW) (q0) =

0. By Proposition 5.2, we thus have )∗wgd = )wmin.

Let )∗wgd = )wmin. From Proposition 5.2, we know that WPN (XW) (W−1)0) = 0. Since

W is nonsingular, we must have PN (XW) (W−1)0) = 0 and therefore W−1)0 ⊥N (XW). This

implies W−1)0 ∈ R(W)X) ) and thus W−1)0 = W)X) #0, for some #0 ∈ R# . This suggests

)0 =WW)X) #0, for some #0 ∈ R# , i.e., )0 ∈R(WW)X) ).

Therefore, )∗wgd = )wmin if and only if )0 ∈R(WW)X) ).
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5.9.5 Proof of Theorem 5.1

We prove that there exists at least a sequence {[C}∞C=0 such that the weighted gradient

algorithm (5.16) monotonically converges to a local minimum (or saddle point) of the ERM

problem (5.1), by showing that � ()) is decreased at each iteration.

First we note that the q domain update rule (5.14) is the gradient descent update for

solving:

min
q

� (WCq). (5.55)

Therefore, there exists an [C for (5.14) such that

� (WCqC+1|C) − � (WCqC |C) < 0, (5.56)

for each C. Since (5.16) is equivalent to (5.14), this means that there exists an [C for (5.16) such

that (5.56) holds for each C. By the AST relationships (5.11) and (5.12), we have:

� () C+1) − � () C) = � (WCqC+1|C) − � (WCqC |C) < 0, (5.57)

for using (5.16) with [C for iteration C. This means that there exists a sequence {[C}∞C=0 for (5.16)

such that � ()) is decreased at each iteration. Thus, it monotonically converges to a local minimum

(or saddle point) of the empirical risk.

Another way to interpret the above is that the correction term W2
C ∇)� () C) in (5.16) is

a descent direction for (5.1). Just as in gradient descent (5.4) the term ∇)� () C) is a descent

direction for (5.1) and thus it monotonically converges to a local minimum (or saddle point) for

some sequence of learning rates, the same argument applies for (5.16).
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Chapter 6

Conclusions

This dissertation presented a family of gradient descent algorithms which employ SSR

techniques for promoting sparsity to achieve improved convergence characteristics or obtain

desirable solutions. In the following, we review the main contributions delineated in this

dissertation.

In Chapter 2, we developed a mathematical framework that utilizes an AST methodology

within the iterative reweighted ℓ2 and ℓ1 frameworks for deriving LMS and NLMS adaptive

filtering algorithms of the proportionate type. In particular, we introduced the SLMS and SNLMS

algorithms by adopting a zero regularization coefficient in our framework, which takes advantage

of, though do not strictly enforce, the sparsity of the underlying system if it already exists. Unlike

most of the existing proportionate algorithms that design the proportionate factors heuristically,

our SSR-motivated framework leads to a more systematic way of designing the factors, and

permits incorporation of a broad class of diversity measures that have proved effective for SSR in

our algorithms.

In Chapter 3, we utilized the reweighting and AST strategies in the context of CG-type

adaptive filtering and developed the SCG algorithm. To our knowledge, it is the first work on
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sparsity-aware CG adaptive filtering. The SCG in general has a much higher convergence rate than

the LMS-type algorithms while having a higher computational complexity. Compared to other

existing adaptive algorithms with the same order of complexity but not leveraging sparsity (e.g.,

the <-NLMS and other CG-type adaptive filters), SCG also demonstrates superior convergence

characteristics for identifying sparse systems.

In Chapter 4, we presented an important engineering application of the SLMS, i.e., the

AFC problem in HAs. We showed that the SLMS is suitable for improving AFC by leveraging

the “quasi-” sparse structure of feedback path IRs, given that it has the flexibility to incorporate

different degrees of sparsity. To further improve AFC, we also introduced “freping,” a frequency

warping method that utilizes a network of all-pass filters to decorrelate the signal and mitigate the

NSC for better feedback reduction with negligible distortion incurred. Finally, to quantify the

trade-off between speech quality and stable gain performance of AFC systems, we proposed an

off-line, HASQI-based ASG estimation approach. The approach was utilized to verify that the

proposed SLMS+freping AFC system outperforms existing methods in the literature.

In Chapter 5, we turned our attention to model optimization of the empirical risk

minimization problem over a given dataset, and studied a novel AST-based reparameterization

scheme to associate weighted gradient descent with weighted norm regularization. We argued

that by leveraging implicit regularization, through weighted gradient algorithms it is possible to

obtain regularized models that exhibit desirable properties without having to deal with the task of

selecting a weight for the regularization penalty. We presented weighting matrix examples for

incorporating various regularizers to demonstrate flexibility of the weighted gradient algorithmic

framework. In particular, two sparsity regularization applications utilizing the reweighting SSR

techniques were presented, namely, i) the SSGD algorithm for neural network compression in

deep learning and ii) the SKLMS and SKNLMS algorithms for dictionary pruning in kernel

methods. The proposed algorithms were shown to be capable of learning sparse representations

in several nonlinear estimation tasks without explicitly incorporating a regularization penalty.
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