Lawrence Berkeley National Laboratory
Recent Work

Title

Permalink
https://escholarship.org/uc/item/1qs8x55w

Author
Folden, Margaret Foss.

Publication Date
1951-04-04
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
Some of the results reported in this document may be of a preliminary or incomplete nature. It is the request of the Radiation Laboratory that the document not be circulated off the project nor the results quoted without permission.
Summary of the Research Progress Meeting
of November 16, 1950
Margaret Foss Folden
Radiation Laboratory, Department of Physics
University of California, Berkeley, California
April 4, 1951

Carbon Reactions in Nuclear Emulsions. James F. Miller.

The program for the study of nuclear emulsions, exposed to the ^{12}C and ^{13}C beam has continued. Ilford E-1 plates have been used and over three hundred thousand tracks have been examined. A number of elastic collisions have been observed; however, not an exceptional number of inelastic collisions are evidenced. No hammer tracks have been observed, such as might arise from Li8 knocked out of the nucleus. No alpha emission at the end of the tracks has been found. When gold foil was placed over the plates no evidence of fission fragment was discovered. Stars of 2, 3, 4 and 5 prongs have been seen. Results are tabulated in Table I.

Table I

<table>
<thead>
<tr>
<th></th>
<th>^{12}C</th>
<th>^{13}C</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 prong inelastic</td>
<td>11</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>16</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>$\frac{2}{28}$</td>
<td>$\frac{1}{32}$</td>
</tr>
</tbody>
</table>

A photograph of the apparatus, see Fig. 1, and several mosaics of track found in the emulsion were shown. Fig. 2 shows comparatively an alpha, a ^{13}C and a ^{12}C track. Fig. 3 is an example of a 5 prong star.

The 28 stars found from the ^{12}C beam were obtained from scanning 43,000
tracks. The 32 stars found from the $^{6}^{13}$ beam were obtained from scanning 150,000 tracks. The m.f.p. for star production is $\lambda = 25.8$ cm or 101 grams/cm2. $\lambda = 42.5$ cm or 166.5 grams/cm2 if all two pronged stars are omitted. In previous work by L. Germain, with 95 Mev protons, $\lambda = 6.9$ grams/cm2 and with 285 Mev protons $\lambda = 345$ grams/cm2. The cross section for star production equals 0.49 barn. It is apparent that the energy balance in the stars is not good, so it is thought that quite a number of neutrons must be given off. Further work will be done on this problem.

Lipoproteins are macro-molecules of a repetitious structure of several types. They contain all the lipids present in the circulating blood, including the fats and fatty substances. The lipoproteins are divided into two classes: the alpha and the beta lipoproteins. Most studies at this laboratory have been on the β structures, for this type seems the most closely related to the problem of arterial sclerosis. So far eight classes have been identified within the β' group. Most persons have only the first class in dominant number. Separation of these classes is accomplished with the use of the ultracentrifuge. One class has a molecular weight of about 1,000 with 3 to 6 Svedberg units; another 6 to 8, another 13, etc. Molecules of Svedberg 20 have increased to a molecular weight of about 6×10^6. The main group has a molecular weight of about 1×10^6. The extreme groups go as high as a molecular weight of 30×10^6. By labeling the molecules with various radioactive atoms such as 32P and 3H, it has been found that the turn-over rate is 16 to 20 minutes. In arterial sclerosis the molecules of atomic weight of two to four million seem to be the most significant. It is still thought that these molecules may found the arterial lesions which bring about the disease. So far, however, this theory has not been traced.

In cases of animals with thyroid disturbances, the principal form of the
lipoprotein is in the molecules of the type associated with arterial sclerosis. In hypo-thyroidism these molecules reach a great height. In xanthoid metabolic disturbances, lipoid fractions are deposited in the skin like the arterial lesions. Treatments are now being carried out with thyroid extract and these show a variation in the pattern and a reduction in the number of the lipoprotein molecules. Various lipotropic agents to aid fat metabolism, like methionine and choline, are being tested. To date the effectiveness is questioned and diet is still apparently the most effective agent is reducing the number of lipoprotein molecules. It is possible that the reduction of these molecules by diet may relieve only one of several symptoms of arterial sclerosis rather than all of them. Endocrine studies are also being made. ACTH, it appears, will lower the lipoproteins as a general group. Another hormone, heparin, decreases the blood clotting time. It will decrease the level of protein but seems to do so especially on atypical ones. This will be investigated further. Irradiated rabbits have also been studied. These rabbits developed bleeding tendencies. Their atypical large molecules disappear, probably producing heparin. It has been found that the opalescence discovered by Rosenthal in the blood or serum of irradiated rabbits is due to the large molecules of around 90 Svedberg units and six million molecular weight. These are the animals which usually die. Studies are continuing on the various factors affecting the development of arterial sclerosis.