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Abstract

Response time (RT) is an oft-used but ”noisy” behavioral mea-
sure in psychology. Here, we combine modeling and psy-
chophysics to examine the hypothesis that RT variability may
reflect ongoing statistical learning and consequent adjustment
of behavioral strategy. We utilize the stop-signal task, in which
subjects respond to a go stimulus on each trial, unless in-
structed not to by a subsequent, rare stop signal. We model
across-trial learning of stop signal frequency (P(stop)) and
stop-signal onset time (SSD) with a Bayesian hidden Markov
model, and within-trial decision-making as optimal stochas-
tic control. The model predicts that RT should increase with
expected P(stop) and SSD, a prediction borne out by our hu-
man data. Thus, it appears that humans continuously moni-
tor environmental statistics and adjust behavioral strategy ac-
cordingly. More broadly, our approach exemplifies the use of
”noisy” RT measures for extracting insights about cognitive
and neural processing.

Keywords: Bayesian modeling, decision making, learning, re-
sponse time, behavioral psychophysics

Introduction
Response time (RT) is an oft-reported behavioral measure in
psychology and neuroscience studies. As RT can vary greatly
across trials of apparently identical experimental conditions,
average or median RT across many identical trials is typically
used to examine how task performance or an internal speed-
accuracy tradeoff might be affected by different experimental
conditions. Separately, a specialized subfield of quantitative
psychology has used not only the first-order statistics (e.g.
mean and median) but also second-order (e.g. variance) and
higher-order (e.g. skewness, kurtosis) statistics to make infer-
ences about the cognitive or neural processes underlying be-
havior (Laming, 1968; Luce, 1986; Smith, 1995; Ratcliff &
Rouder, 1998; Gold & Shadlen, 2002; Bogacz et al., 2006).
In general, RT is considered a very noisy experimental mea-
sure, with single-trial responses yielding little useful informa-
tion about the underlying mental processes.

In this work, we approach RT modeling from a different
angle, attempting to capture trial-to-trial variability in RT as
a consequence of statistically normative learning about en-
vironmental statistics and corresponding adaptations within
an internal decision-making strategy. We focus on behav-
ior in the stop-signal task (SST) (Logan & Cowan, 1984), a
classical inhibitory control task, in which subjects respond
to a go stimulus on each trial unless instructed to with-
hold their response by an infrequent stop signal that appears

some time after the go stimulus (stop-signal delay; SSD). We
model trial-by-trial behavior in SST, using a Bayesian hidden
Markov model to capture across-trial learning of stop signal
frequency (P(stop)) and onset asynchrony (SSD), and a ra-
tional decision-making control policy, which combines prior
beliefs and sensory data to produce behavioral outputs un-
der task-specific constraints/objectives, to model within-trial
decision-making.

This work builds on several previous lines of modeling
research. The new model combines a within-trial rational
decision-making model for stopping behavior (Shenoy & Yu,
2011) and an across-trial statistical learning model (Dynamic
Belief Model; DBM) that sequentially updates beliefs about
P(stop) (Yu & Cohen, 2009; Ide, Shenoy, Yu*, & Li*, 2013);
it also incorporates a novel across-trial learning component,
essentially a Kalman filter, that updates beliefs about the tem-
poral statistics of the stop-signal onset (SSD). Using this new
model, we can then predict how RT on each trial ought to
vary as a function of the sequence of stop/go trials and SSD’s
previously experienced by the subject, and compare it to the
subject’s actual RT.

Several key elements of the combined model have previ-
ously received empirical support. For example, we showed
that the rational decision-making model for stopping behavior
(Shenoy & Yu, 2011), which separately penalizes stop error,
go (discrimination and omission) error, and response delay,
can account for both classical effects in the SST (Logan &
Cowan, 1984), such as an increase in rate of stop errors as a
function of SSD and the faster stop-error responses (relative
to correct go responses), as well as some recently discovered,
subtle influences on stopping behavior by contextual factors,
such as motivation/reward (Leotti & Wager, 2009) and the
baseline frequency of stop trials (Emeric et al., 2007). We
also showed that the across-trial learning model, DBM, can
account for sequential adjustment effects not only in SST (Ide
et al., 2013), but also more broadly in simple 2AFC percep-
tual decision-making tasks (Yu & Cohen, 2009) and a multi-
target visual search task (Yu & Huang, 2014). Neurally, we
have evidence from fMRI studies that a key prediction error
signal related P(stop) is encoded in the brain region known
as dorsal anterior cingulate cortex (dACC) (Ide et al., 2013),
and that dACC response is altered in young adults at-risk for
developing stimulant addiction (Harlé et al., 2014).
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In the following, we first describe the experimental design,
then the modeling details, followed by the results; we finally
conclude with a discussion of broader implications and future
directions for research.

Experiment
22 UCSD students participated in the stop signal task. On
each trial, the subject was presented with a two alterna-
tive forced-choice (2AFC) perceptual discrimination task,
in which he must press a left or right arrow depending on
whether the stimulus was a square or circle or the direction
of random dot motion(stimulus-key association was counter-
balanced across subjects). On approximate 25% of trials, an
auditory ”stop” signal was presented some time after the go
(discrimination) stimulus, indicating that the subject should
withhold their response to the go stimulus. Trials containing
a stop signal are stop trials; otherwise they are go trials. The
delay in presentation between the go stimulus and the the stop
signal is known as the stop-signal delay (SSD), which was
uniformly and randomly sampled from 100 ms, 200 ms, 300
ms, 400 ms, 500 ms, and 600 ms in stop trials. Each sub-
ject participated in 12 blocks, with each block containing 75
trials.

Models
In this section, we give a brief description of the three com-
putational models: a stochastic control model for within-trial
sensory processing and decision-making, a hidden Markov
model (DBM) for across-trial learning of stop signal fre-
quency, and a Kalman filter model for across-trial learning
of SSD.

Stochastic Control Model for Within-Trial
Processing
We briefly summarize the rational decision-making model for
stopping behavior here; a more detailed description can be
found elsewhere (Shenoy & Yu, 2011).

(B)(A)

Figure 1. Within-trial sensory processing and decision-
making. (A) Bayesian generative model of iid sampled sen-
sory observations (x1, . . . ,xt , . . .) conditioned on Go stimulus
identity (d = 0, d = 1), and an independent stream of obser-
vations (y1, . . . ,yt , . . .) conditioned on the presence (zt = 1)
or absence (zt = 0) of the Stop signal. (B) The decision of
whether to Go, when to do so, and which Go response to
select are modeled as a sequential decision-making process,
where the subject chooses at each moment in time whether to
select a Go response (δ = 0 for square, δ = 1 for circle), or to
wait at least one more time point.

Sensory processing as Bayes statistical inference. Fig-
ure 1A graphically illustrates the Bayesian generative model,
whereby the two hidden variables correspond respectively to
the identity of the go stimulus, d ∈ {0,1}, and whether or
not this trial is stop trial, s ∈ {0,1}. The priors of d and s
are P(d = 1) and r = P(s = 1). Conditioned on the go stim-
ulus identity d, a sequence of iid sensory inputs are gener-
ated on each trial, x1, ... ,xt , ... ,where t indexes time steps
within a trial. The likelihoods of the sensory inputs given d
are f0(xt) = p(xt |d = 0) and f1(xt) = p(xt |d = 1), which are
assumed to be Bernoulli distribution with respective rate rate
parameters qd and 1− qd . The dynamic variable zt denotes
the presence/absence of the stop signal. z1 = ... = zθ−1 = 0
and zθ = zθ+1 = ... = 1 if a stop signal appears at time θ,
where θ represents stop signal delay SSD. For simplicity,
we assume that the onset of the stop signal θ (SSD) follows
an geometric distribution: p(θ = t|s = 1) = q(1− q)t . The
mean of θ is equal to 1

q which is the expected SSD (E [SSD])
within a trial. Conditioned on zt , a stream of iid observations
are generated. The likelihoods of the the sensory inputs, as-
sociated with the stop signal, are p(yt |zt = 0) = g0(yt) and
p(yt |zt = 1) = g1(yt). We assume that the likelihood func-
tions, g0 and g1, are also Bernoulli distributions with respec-
tive rate parameters qs and 1−qs.

In Bayesian statistical inference process, Bayes’ Rule is
applied in the usual iterative manner way to compute the
sequential posterior probability associated with go stimulus
identity, pt

d := P(d = 1|xt), and the presence of the stop sig-
nal, pt

s := P(s = 1|xt), where xt = {x1,x2, ...,xt} denotes all
the data observed so far. pt

z := P(θ < t|yt) denotes the pos-
terior probability that the stop signal is already present. The
belief state at time t is defined to be the vector bt = (pt

d , pt
s),

which can be iteratively computed from step to step via
Bayes’ Rule, by inverting the generative model (Figure 1).

Decision process as optimal stochastic control. Fig-
ure 1B graphically illustrates the sequential decision-making
process. On Go trials, if the Go action is taken by the re-
sponse deadline D, it is recorded as a Go response (correct on
Go trials, stop error on Stop trials); otherwise the trial termi-
nates and a Stop response is recorded (omission error on Go
trials, correct on Stop trials). We define a cost (loss) function
to account for the cost and penalty structure of the stop-signal
task. The observer is assumed to minimize the expected value
of this loss function in choosing whether to Go or Wait at each
tilmestep, based on the current belief state. A Go response
terminates the current trial, while a Wait response lengthens
the current trial by at least one more time step (unless termi-
nated by the externally imposed response deadline).

Let τ denote the trial termination time, so that τ = D if no
response is made before the deadline D, and τ < D if a Go
action is chosen. δ ∈ {0,1} represents the possible binary Go
choices produced by making a Go response. We also assume
there is a basic cost c per unit time on each trial, a stop error
penalty of cs for choosing to respond on a stop-signal trial,
and a unit cost for making a discrimination error on a go trial

1447



(since the cost function is invariant with respect to scaling,
we can normalize one of the cost parameters to 1 without loss
of generality). We assume the cost function to be:

l(τ,δ;d,s,θ,D) = cτ+ cs1{τ<D,s=1}+1{τ<D,δ6=d,s=0}

+1{τr=D,s=0}

The optimal decision policy minimizes the expected loss,
Lπ = E [l(τ,δ;d,s,θ,D)]. It is computationally intractable to
directly minimize Lπ over the policy space. Fortunately, Bell-
man’s dynamic programming principle provides an iterative
relationship between the optimal state-value function and op-
timal action-value function. The Bellman optimality equation
for optimal state-value function, V t(bt), is

V t(bt) = min
a
[
∫

P(bt+1|bt ;a)V t+1(bt+1)dbt+1]

where a ranges over all possible actions. The optimal pol-
icy is to choose the action corresponding to the smallest ac-
tion cost. Using the Bellman optimality equation for optimal
action-value function, we can obtain the cost functions

Qt
g(b

t) = ct + cs pt
s +(1− pt

s)min(pt
d ,1− pt

d)

Qt
w(b

t) = 1{D>t+1}E
[
V t+1(bt+1)|bt]

bt +1{D=t+1}(1−Pt
s)

V t(bt) = min(Qt
g,Q

t
w)

Since the observer can no longer update the belief state nor
take any action at the deadline, the optimal state-value func-
tion can be initially computed at D as V t(bD) = 1− pD

s . The
recursive relationship between the optimal action-value and
state-value functions in Bellman optimality equation allows
us to the compute the optimal state-value functions and Q
factors backwards in time from t = D−1 to t = 1. In our sim-
ulation, we discretize the space of pt

d and pt
z each into 200

bins.
With this model, the mean Go RT can be obtained by simu-

lating the model for a certain parameter setting (variability in
outcome arises entirely from assumed observation noise, pa-
rameterized by qd and qs, thus providing a way to study how
the Go RT is related to expectation of environmental statis-
tics, e.g. P(stop) and E [SSD]. E [SSD] is the mean of geo-
metrically distributed prior of SSD (E [SSD] = 1

q ) and P(stop)
(P(stop) = r) represents the expectation of the probability of
seeing a stop trial.

Dynamic Belief Model for learning P(stop)
We use a previously proposed Bayesian hidden Markov
model, the Dynamic Belief Model (DBM) (Yu & Cohen,
2009; Ide et al., 2013), to model trial-by-trial evolution of
prior (and posterior) beliefs about P(stop). We briefly de-
scribe the model here; more details can be found elsewhere
(Yu & Cohen, 2009; Ide et al., 2013).

Dynamic Belief Model (DBM) was proposed to explain se-
quential effects in reaction time and accuracy in 2AFC tasks,
as a function of experienced trial history (Yu & Cohen, 2009).
In DBM, γk is the probability the subject will see a stop trial

at time step k and has a Markovian dependence on γk−1, so
that with probability α, γk = γk−1, and probability 1−α, γk
is redrawn from a fixed Beta distribution p0(γk). The ob-
servation sk represents the occurrence of a stop trial and is
assumed to be drawn from a Bernoulli distribution with pa-
rameter γk. The predicted value of γk is the mean of its poste-
rior: < γk|sk−1 >=

∫
γp(γ|st−1)dγ. The posterior and iterative

prior of γk can be updated by

p(γ|sk−1) = αp(γk−1 = γ|sk−1)+(1−α)p0(γk = γ)

p(γk|sk) ∝ p(γ|sk−1)

We adapt DBM to model the prior probability of observ-
ing a Stop trial (as opposed to Go trial) based on trial history
(see Figure 2A for a graphical illustration of the generative
model, and Figure 2B for simulated dynamics of DBM given
a sequence of sample observations). We briefly describe the
model here; more details can be found elsewhere (Yu & Co-
hen, 2009; Ide et al., 2013).

Kalman Filter Model for Learning Expected SSD
We use a classical linear-Gaussian dynamical systems model,
otherwise known as a Kalman Filter (Welch & Bishop, 2006),
to model the trial-by-trial estimation of the mean and vari-
ance of SSD in the stop-signal task. As shown in Figure 2C,
Kalman Filter tries to estimate the state h of a discrete-time
controlled process governed by the linear stochastic equation

hk = Ahk−1 +Buk−1 +wk−1

with a measurement z which is

zk = Hhk + vk

The random variable wk and vk represent the process and mea-
surement noise, respectively. They are assumed to be inde-
pendent, white and with normal distribution

p(w)∼ N(0,Q)

p(v) = N(0,R)

The equation for the Kalman filter consists of two parts: time
update equations and measurement update equation. The
time update equation obtains a prior estimate from the next
time step. ĥ−k is defined as a priori estimate at step k given
information before step k ,and ĥk as a posteriori estimate at
step k given the measurement zk. P̂−k is defined to be a priori
estimate of error covariance and P̂k to be a posterior estimate.

ĥ−k = Aĥk−1 +Buk−1

P−k = APk−1AT +Q

The measurement update equations incorporates a new mea-
surement into the priori estimate to obtain an improved a pos-
terior estimate of the state.

Kk = P−k HT (HP−k HT +R)−1

ĥk = ĥ−k +Kk(zk−Hĥ−k )

P−k = (I−KkH)P−k
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Figure 2. Bayesian sequential inference model for learning P(stop) and E [SSD]. (A) Graphical model for DBM. γ ∈ [0,1], sk
∈ {0,1}. p(γk|γk−1) = αδ(γk−γk−1)+(1−α)p0(γk), where p0 = Beta(a,b). Numbers inside circles indicate example random
variable values. (B) Evolution of predictive probability mass for DBM p(γt |sk−1) (grayscale) and its mean, the predictive
probability P(sk = 1|sk−1) (cyan), for a randomly generated sample sequence of observations (red dots valued 1 or 0). P(sk =
1|sk−1) fluctuates with transient runs of stop (e.g. starting at trial 11) and go trials (e.g. starting at trial 6). Simulation
parameters: α = 0.75, p0 = Beta(2.5,7.5). (C) Graphical model for the Kalman filter. p(hk|hk−1) = N (hk−1,Q), p(zk|hk) =
N (hk,R), p(h1) = N (h0,P0). Numbers inside circles indicate example random variable values. (D) Evolution of posterior
mean (cyan) and probability mass (grayscale) of SSD over time, for a randomly generated sequence of observations (red
circles) with values in {0.1,0.2,0.3,0.4,0.5,0.6}. E [SSD] tends to increase when a number of large SSD have been observed
(e.g. starting at trial 6) and decrease when a number of small SSD (e.g. starting at trial 11) have been observed. Simulation
parameters: Q = 0.034, R = 0.15, h0 = 0.35, P0 = 1. Unless otherwise stated, these parameters are used in all the subsequent
simulation.

In this paper, we use a simple Kalman Filter model, where
B = 0, A = 1 and H = 1, to compute the E [SSD] (ĥ−k ) by in-
corporating real observed SSD (zk) to the filter. Figure 2D
shows simulated dynamics of the Kalman filter given a se-
quence of sample observations.

Results
Our main modeling goal here is to develop a principled ex-
planation for how Go RT ought to vary from trial-to-trial in
the stop-signal task. We can then compare model predictions
with human data to see whether our assumptions about the
underlying computational processes hold. There are two key
components to the model: (1) how subjects’ beliefs about task
statistics vary across trials as a function of previously expe-
rienced outcomes, and (2) how subjects’ behavioral strategy
within each trial depends on prior beliefs (learned from prior
experience). For the first component, we separately model
the evolution of subjects’ beliefs about the frequency of stop
trials, P(stop), using a Bayesian hidden Markov model known
as the Dynamic Belief Model (DBM), and their beliefs about
the temporal onset of the stop signal, stop-signal delay (SSD),
using a Kalman Filter model. For the second component, we
use an optimal stochastic control model to predict when and
whether the subject produces a GO response on each trial, as
a function of prior beliefs about P(stop) and SSD, dynami-
cally evolving posterior beliefs about the type of Go stimulus
and presence of stop signal, as well as the relative cost of
GO now and WAIT another time-step depending on the ex-
pected costs associated with making a go (discrimination or
omission) error, a stop error (not stopping on a stop trial), and
response delay (Shenoy & Yu, 2011) . Details of the model
can be found in the Models section.

We first simulate the stochastic control model to demon-

strate how Go RT ought to vary as a function of prior beliefs
about P(stop) and SSD. Intuitively, we would expect that Go
RT ought to increase as prior P(stop), since the higher prob-
ability of encountering a stop signal should make the subject
more willing to wait for the stop signal despite the cost associ-
ated with response delay. We also expect that Go RT ought to
increase with E [SSD] for the prior distribution, since expecta-
tion of an earlier SSD should give confidence to the observer
that no stop signal is likely to come after a shorter amount
of observations and thus respond earlier. Simulations of the
stochastic control model (Figure 3) shows that Go RT indeed
increases monotonically with both P(stop) and E [SSD], and
does so linearly. Note that P(stop) and E [SSD] are specified
explicitly in the statistical model here (details in the Models
section), so we only need to change these parameters and ob-
serve their normative consequences by running the stochastic
control model.

Next, we want to examine how subjects’ actual Go RT
varies with prior beliefs about P(stop) and SSD. Since the
experiment does not explicitly manipulate the baseline fre-
quency of stop signals or SSD, we estimate these psychologi-
cal quantities by assuming that subjects continuously modify
their prior beliefs according to experienced trial history. We
apply the across-trial learning models to a subject’s experi-
enced sequence of go/stop trials and SSD to estimate their
priors on each trial, and then plot how Go RT varies with
the model-based estimates of P(stop) and E [SSD] Figure 4
shows that the subjects’ Go RT increases approximately lin-
early with prior P(stop) and E [SSD], just as predicted by the
model (Figure 3). These result imply that subjects both con-
tinuously monitor and update internal representations about
environmental statistics, and adjust their behavioral strategy
rationally according to those evolving representations.
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Figure 3. Model prediction of Go RT versus P(stop) and E [SSD]. (A) Go RT vs. P(stop): simulated Go RT for a ranged of
P(stop) values (.1, .15, ..., .75). Data averaged over 10000 simulated Go trials for each value of P(stop). Straight line denotes
best linear fit. Error bars denote s.e.m. 1/q = E [SSD] = 7. (B) Go RT vs. E [SSD]: simulated Go RT for a range of SSD values
(8, 9, ..., 18). Data averaged over 10000 simulated Go trials for each value of E [SSD]. Straight line denotes best linear fit. Error
bars denote s.e.m. P(stop) = 0.25. (C) Go RT vs. P(stop) and E [SSD]: simulated Go RT for a range of P(stop) and E [SSD])
values, where P(stop) varies between .1 and .75, and E [SSD] varies between 8 and 18. Data averaged over 10000 simulated Go
trials for each (P(stop), E [SSD]). Simulation parameters for A-C: qd = 0.55, qs = 0.72, D = 50, cs = 0.4, c = 0.002. Initial string
of Go trials in each block (on average 3 trials, 1/4 time none at all) are excluded from all analyses, as subjects’ initial beliefs
about task statistics may vary widely and unpredictably before any stop trials are observed.

Discussion
In this paper, we presented a rational inference, learning, and
decision-making model of inhibitory control, which can ac-
count for significant variability of human RT in the stop-
signal task. Unlike most previous models of human response
time, which assumes RT variability to be due to irreducible
noise, we conclude that this variability is largely driven by
fluctuations in experienced empirical statistics, which ob-
servers use to continuously update their internal representa-
tion of environmental statistics and rationally adjust their be-
havioral strategy as needed.

The reader may well wonder why we choose to use a dif-
ferent model for capturing sequential effects in SSD (Kalman
Filter) than for P(stop) (DBM). The Kalman Filter primarily
differs from DBM in that the hidden variable s is assumed
to undergo (noisy) continuous dynamics, such that the mean
of the new variable is centered at the old s (it is a Martin-
gale process), whereas DBM assumes that the new hidden
variable s is either identical to its value at the last time step,
or redrawn from a generic prior distribution p0(s), which is
identical on each trial. This means that hidden variables dy-
namics in DBM are not Martingale, and the variable s can
readily undergo large, discrete jumps, which are not likely
in the Kalman Filter. We used both the Kalman Filter and
an adapted version of DBM to model subjects’ beliefs about
E [SSD], and found that the Kalman Filter does a significantly
better of accounting for trial-by-trial variability in RT than
does DBM (data not shown).

The work is also important for making a substantial con-
tribution in advancing the understanding of inhibitory con-
trol. Inhibitory control, the ability to dynamically modify
or cancel planned actions according to ongoing sensory pro-
cessing and changing task demands, is considered a fun-
damental component of flexible cognitive control (Barkley,

1997; Nigg, 2000). Stopping behavior is also known to be
impaired in a number of psychiatric populations with pre-
sumed inhibitory deficits, such as attention-deficit hyperac-
tivity disorder (Alderson, Rapport, & Kofler, 2007), sub-
stance abuse (Nigg et al., 2006), and obsessive-compulsive
disorder (Menzies et al., 2007). The work shown here
elucidates the psychological and potential neural underpin-
nings of inhibitory control, and makes powerful predictions
that can be validated using experimental methods. For ex-
ample, this work can investigate how different individuals’
ability to represent and respond to those expectations, e.g.
P(stop) and E [SSD], may be correlated with eventual devel-
opment/absence of abusive stimulant behavior, as we have al-
ready done in some previous work in collaboration with neu-
roimaging researchers (Ide et al., 2013; Harlé et al., 2014).
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