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Introduction 

In the NOIR Lab at UCR, our goal is to apply optics to the study of the nervous 

system. The currently available technology that is best suited for this task is Optical 

Coherence Tomography (OCT) because of its ability to penetrate tissue and create depth-

resolved images in a label free manner. Furthermore, using changes in optical scattering that 

occur during activity, OCT is able to detect neural activity. OCT is able to obtain a lateral 

resolution on the order of microns, which is needed to image neurons. The ability of OCT 

to resolve images of this size is determined by the wavelength of the laser source and the 

numerical aperture. A larger numerical aperture results in a higher resolution but also leads 

to a smaller depth of focus. It is of interest to maintain a high resolution and also increase 

our depth of focus. In order to do this, I propose to implement synthetic aperture 

technology, which has been previously demonstrated to work in an OCT system.1,2 Though 

it has previously been demonstrated that synthetic aperture can be used to increase the 

intensity, or SNR, of images, the effect on phase has not been studied. Since we use phase 

measurements for the detection of activity, it is of interest to us to see what effect this 

technology may have on the phase in addition to the intensity. 

In this project, I will apply synthetic aperture technology to our OCT system to 

improve the depth of focus and analyze the effects on phase. 

Background 

Optical Coherence Tomography (OCT) is an optical method that uses light 

scattering to form 3D images.3 OCT is based on low-coherence interferometry which means 

light from two sources, the sample arm and reference arm, are superimposed to extract 

information about the waves, such as phase and amplitude, which is important for resolving 
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3D images. OCT is useful because it is non-invasive, doesn’t require labels, and is able to 

penetrate more deeply into tissue than other optical methods, such as confocal microscopy. 

OCT is typically used in biological applications including ophthalmology, cardiology, and, 

more progressively, neuroscience.  

The sample arm of an OCT apparatus is where the tissue of interest is located. The 

reference arm contains a source of reference, typically a mirror, which reflects light back and 

gives us a basis for our measurements. After being reflected from these two arms, the light is 

then recombined (interferometry) and diverted to a recording device by a beam splitter. The 

data is stored as complex arrays in a computer to be processed later.  

In the sample arm, there is a mechanism that scans light over the tissue of interest. 

Each time light is directed at tissue, a line is obtained which corresponds to the point of light 

and its total depth of penetration; this is called an A-line. A series of these A-lines can form 

2D images that correspond to the scanned plane; this is called a B-line. A series of B-lines 

can then be combined to form a 3D image of the scanned tissue.  

Historically, the first type of OCT was Time Domain OCT (TD-OCT). This method 

involves the movement of the reference mirror. By moving the mirror, the interference 

patterns received then will correspond to a depth of the sample corresponding to the 

distance the mirror has been moved. This method, though straightforward, has limitations in 

data collection and image quality due to the relatively long amount of time needed to move 

the mirror.4 

After this method, two other techniques took precedence: Spectral Domain OCT 

(SD-OCT)5 and Swept-Source OCT (SS-OCT).6 SD-OCT involves the implementation of a 

broadband light source. A broadband light source possesses a range of wavelengths with a 
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central wavelength surrounded by a spectrum of others. The drop off of the intensity of 

these wavelengths can be characterized by a Gaussian function. Upon return from the 

sample, the interference pattern is broken up into its components by a grating. By applying a 

Fourier transform to the data, we can extract the component frequencies from the spectral 

information. The frequency patterns correspond to the depth of penetration and this 

information, then, can be used to code for depth.  

Swept-source OCT works similarly but, rather than sending a broadband wave in and 

breaking it up into components, SS-OCT applies narrow-band beams sequentially to a 

sample. SS-OCT can potentially provide many advantages including increased imaging speed 

and better resolution.  

The systems we currently use are SD-OCT systems. We have an 800 nm system and 

a 1310 nm system which allows us to image systems at different numerical apertures 

(discussed later). A schematic of our 800nm system is given below (Figure 1). 

 

Figure 1: Schematic of 800nm SD-OCT system with implemented synthetic aperture. 
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One trade-off for the increased depth of imaging in OCT is a decrease in resolution. 

This can be a problem particularly in neuroscience applications when the detectable changes 

are on the order of nanometers. In order to increase the capabilities of our system and the 

effectiveness of our research it is, therefore, paramount that we increase the resolution 

across a larger depth. An intuitive understanding of this can be derived when we consider 

the Rayleigh range.6 The Rayleigh range is the depth across which we consider the resolution 

useable and is defined as √2𝑤0 where w0 is the beam waist. A smaller beam waist 

corresponds to a better resolution (Figure 2). 

 

This relationship can be further explained in terms of numerical aperture.7,8 

Numerical aperture (NA) is a dimensionless number that characterizes the range of angles 

over which the system can accept or emit light. The equation that describes the NA is given 

as follows: 

𝑁𝐴 = 𝑛𝑠𝑖𝑛𝜃 

Figure 2: Image demonstrating the difference between a Low NA and High NA. A higher NA decreases 
the size of the beam waist, but also a decrease in the Rayleigh Range. 
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Where n is the refractive index of the medium of the lens and θ is the measure of the half-

angle of the maximum cone of light. The resolution of an imaging system describes its ability 

to resolve detail. The resolution is directly proportional to NA and its equation is given as 

𝑟 =
1.22𝜆

2𝑁𝐴
=

0.61𝜆

𝑁𝐴
 

Where r is the minimum distance between distinguishable points and λ is the wavelength of 

the light. Therefore, when NA is higher, the minimum distance between distinguishable 

points is lower which means the resolution is higher. The depth of field (DOF) is the range 

near and far objects can be considered effectively focused. DOF is inversely proportional to 

NA and its equation is given as follows: 

𝐷𝑂𝐹 =
𝜆𝑛

𝑁𝐴2
 

The DOF, then, is inversely proportional to NA. Therefore, there exists a trade-off between 

better resolution and DOF; a high NA lens will provide a better resolution over a smaller 

depth. 

Synthetic Aperture technology is an optical manipulation used to extend the limits of 

an aperture beyond its normal limits. Synthetic aperture has been most popularly applied in 

satellite systems.10 In these systems, a satellite uses radar to record images of the Earth. The 

movement of the satellite is used as a scanning mechanism to obtain an image larger than 

what would be recorded otherwise by the small aperture. The technology works by taking 

many separate images equivalent to the size of the aperture and then recombining these 

images based on the reception time and the known Doppler effects into a continuous image 

that could usually only be obtained with a larger aperture.  
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From this technology, we can apply further a principle known as aperture synthesis. 

Aperture synthesis involves an overlap in recorded images. By extracting the best 

information from each image corresponding to a particular area, we can form a new image 

with better overall resolution.  

The same principles discussed in the context of satellites can be used in optical 

applications. Previously, a method was demonstrated that relied completely on optical theory 

to mathematically improve upon the resolution.11 This method, however, as may be gleaned 

from the description, was computationally intensive. A simpler and elegant way that has 

more recently been demonstrated involves the use of an annular glass plate to create a 

change in the optical path length of the light.1  

A simple and intuitive way of describing this technology is in terms of the 

wavefronts (Figure 3). Objects that are in focus correspond to a flat wavefront when passing 

through the lens. Anything outside of the focus has a curved wavefront when passing 

through the lens. The more curved the wavefront, the poorer the resolution of the image will 

be. Using the annular phase plate, we can break up the wave into multiple segments where 

the inner segments, for a fair distance, can be approximated as being flat. The outer images 

we can correct by a factor dz which corresponds to how much the wave is curved. This 

allows us to process the wavefront into a flatter form which will increase the resolution.  
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Experimental Design 

In order to test if this technology can be applied to our system, we first create a glass 

plate with parameters based on the following calculations. Rather than ordering custom glass 

immediately, we first focus on creating a glass plate using a glass slide of known thickness to 

ensure the theory matches the measurements. We will later want to order custom glass to 

optimize the depth of focus for our system. The first step in this process is calculating the 

diameter of the hole needed which is based on the thickness of the beam of light and its 

Gaussian profile. We want to use this information to create a hole that lets through 50% of 

the total intensity of light while the rest goes through the glass. Once we have designed this 

set-up, we need to write code that can split up the three distinct images and then recombine 

them into an image with an increased resolution through phase manipulations. Theoretically 

this should be dependent on the thickness and index of refraction of the glass, but we will 

Figure 3: (From de Boer paper) Image showing intuitive description of resolution improvement with 
synthetic aperture. A) A beam front from in focus being separated into two images of different depth by the 
annular phase plate. B) Correction of the change in path length caused by the phase plate in image A. C) A 
beam front from out of focus being separated into two images of different depth by the annular phase plate. 
D) Correction of the change in path length caused by the phase plate in image C and correction for the small 
extra delay dz caused by the image being out of focus.  

 



 

8 
 

design an algorithm that optimizes the parameters through iterative methods. If the system 

works correctly, we expect to see an increased lateral resolution over a larger depth of focus. 

The annular phase plate is created from a normal glass plate of a specific thickness 

by inserting a hole in the center of the plate (Figure 4). 

 

 

 

This hole must be of a specific size which corresponds to the beam diameter and its 

Gaussian profile. The ideal size for the hole can be derived from properties of a Gaussian 

beam. Ideally, we want an equal amount of light moving through the hole as we have 

moving through the glass, as mentioned previously. If we imagine the hole and surrounding 

lens as a circle, the intensity across an area can be expressed as the integral of the intensity 

function multiplied by the circumference of a circle relative to the radius. To ensure we have 

an equal amount of intensity moving through the hole and the glass, we integrate from the 

center to the edge of the hole (the diameter) and set this equal to the integral of the edge of 

the hole to the end of the beam. This equation is given as 

∫ 2𝜋𝑟 ∗ 𝐼(𝑟) =  ∫ 2𝜋𝑟 ∗ 𝐼(𝑟)
𝑤

𝑑

𝑑

0
 (1) 

Figure 4: A schematic of the annular phase plate. The arrows represent the different possible paths of 
light, through the glass and through the hole. 
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Where r is the radius, d is the diameter of the hole, w is the width of the beam, and I(r) is the 

intensity as a function of radius. For a Gaussian beam, the intensity function can be 

described with the following equation: 

𝐼(𝑟) = 𝐼0𝑒
− 

𝑟2

𝑤2  (2) 

Where I0 is the intensity at the peak, r is the full radius of the beam, w is the radius at which 

the intensity of the beam drops to 1/e of its initial value. We can solve for w by setting the 

above equation equal to I0 multiplied by a factor of 1/e2. The full radius of the beam is 

constant for a given wavelength and can be found from the THORlabs website for a given 

beam.  

Using equations 1 and 2, we can solve for the ideal diameters for each wavelength 

800nm 

1

𝑒2
𝐼0 = 𝐼0𝑒

−
.52

𝑤2 

𝑤 =  0.3535 

∫ 2𝜋𝑟 ∗ 𝑒−
𝑟2

.125 =  ∫ 2𝜋𝑟 ∗ 𝑒−
𝑟2

.125

8𝑚𝑚

𝑑

𝑑

0

 

−0.0625𝑒−8𝑑2
+ 0.0625 = −0.0625𝑒−8∗82

+ 0 . 0625𝑒−8𝑑2
 

0.125𝑒−8𝑑2
= 0.0625 

−8𝑑2 = −0.69 

𝒅 = 𝟎. 𝟐𝟗 
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1300nm 

1

𝑒2
𝐼0 = 𝐼0𝑒

−
.712

𝑤2  

𝑤 =  0.5021 

∫ 2𝜋𝑟 ∗ 𝑒−
𝑟2

0.252 =  ∫ 2𝜋𝑟 ∗ 𝑒−
𝑟2

0.252

8𝑚𝑚

𝑑

𝑑

0

 

−0.126𝑒−3.96𝑑2
+ 0.126 = −0.126𝑒−3.96∗82

+ 0 . 126𝑒−3.96𝑑2
 

0.25𝑒−3.96𝑑2
= 0.126 

−3.97𝑑2 = −0.69 

𝒅 = 𝟎. 𝟒𝟐 

The presence of a hole allows the possibility for light to take three different paths: in 

and out through the hole, in the hole and out through the glass (or vice-versa), or in and out 

through the glass. Each of these paths will have different optical path lengths (OPLs) based 

on the index of refraction of the glass and its thickness. The change in path length can be 

described as  

𝛥𝑂𝑃𝐿 =  𝛥𝑧(𝑛 − 1) 

Where Δz is the thickness of the glass and n is the index of refraction of the medium. For 

the light that goes through the hole when traveling towards the sample and when returning, 

there is no change in the OPL. For light that travels through the hole once and through the 

glass once, the change in OPL is 𝛥𝑧(𝑛 − 1). For light that travels through glass twice, the 

change in is 2𝛥𝑧(𝑛 − 1). 
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Each of these images corresponds to a different depth of focus based on the change 

in the optical path length. We can then use the known information about phase and 

reception time to manipulate these three separate images into one image with an increased 

depth resolution through aperture synthesis.  

This aperture synthesis works on the known theory surrounding OCT. The intensity 

function for an OCT signal is given: 

𝐼(𝑘) = 𝐼𝑟(𝑘) + 𝐼𝑠(𝑘) + 2√𝐼𝑟(𝑘)𝐼𝑠(𝑘)𝛼cos (2𝑘𝑧) 

Where k is the wavenumber, Ir(k) represents the intensity from the reference arm, Is(k) 

represents the intensity from the sample arm, and α is the square root of the scattering object 

reflectivity at depth z. As discussed previously, when the annular phase plate is used, the 

image is split into three images each encoded to a different depth. These new images add 

new interference terms to the equation based on the change in optical path lengths and so 

the equation for the interference term from the previous equation becomes the following: 

𝐼(𝑘) =  √𝐼𝑟(𝑘)𝐼𝑠(𝑘)𝛼(𝑒𝑖2𝑘𝑧 + 𝑒𝑖2𝑘𝑧+𝑖𝑘(𝛥𝑧(𝑛−1)+𝑑𝑧) + 𝑒𝑖2𝑘𝑧+𝑖𝑘2(𝛥𝑧(𝑛−1)+𝑑𝑧)) + 𝐶. 𝐶.  

Where Δz(n-1) is the optical path difference based on the thickness and index of refraction 

of the phase plate, C.C. is the complex conjugate, and dz is the curvature of the wavefront, 

which we aim to modify. You can see that when there is no change in OPL, the second and 

third images become the same as the first image and the equation reduces back to its initial 

form.  
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From this equation, we can separate out the interference terms for each of the 

images into their own equations. We split k into the initial wavenumber, k0, and any change 

in wavenumber, Δk, as this facilitates coherent summing into a single image. We then get 

two equations for the second and third image respectively: 

𝐼(𝑘)𝑚𝑖𝑑𝑑𝑙𝑒 =  𝑒𝑖(𝜑𝑚𝑖𝑑𝑑𝑙𝑒)√𝐼𝑟(𝑘)𝐼𝑠(𝑘)𝛼𝑒𝑖2𝑘𝑧𝑒𝑖∆𝑘∆𝑧(𝑛−1) + 𝐶𝐶 

𝑤𝑖𝑡ℎ 𝜑𝑚𝑖𝑑𝑑𝑙𝑒 = 𝑘0𝛥𝑧(𝑛 − 1) + 𝑘0𝛿𝑧 

𝐼(𝑘)𝑏𝑜𝑡𝑡𝑜𝑚 =  𝑒𝑖(𝜑𝑏𝑜𝑡𝑡𝑜𝑚)√𝐼𝑟(𝑘)𝐼𝑠(𝑘)𝛼𝑒𝑖2𝑘𝑧𝑒𝑖2∆𝑘∆𝑧(𝑛−1) + 𝐶𝐶 

𝑤𝑖𝑡ℎ 𝜑𝑏𝑜𝑡𝑡𝑜𝑚 = 2𝑘0𝛥𝑧(𝑛 − 1) + 2𝑘0𝛿𝑧 

 We can use these derived equations to modify and coherently sum the images. First 

we depth decode the images by modifying the term that involves the change in OPL and 

then we modify the phase constant (which involves dz) in both images. The depth decoding 

factor should correspond to the OPL and, therefore, the value for the bottom image will be 

twice that of the middle image. Theoretically, we should be able to predict these values but, 

in order to maximize the resolution, we simply use an iterative method that finds the best 

values. The same method is used to find the ideal values for the phase constants.  

This technology has been demonstrated to work in an OCT system to increase 

intensity over a larger DOF. However, our lab also utilizes methods for image resolution 

that involves phase. So beyond applying this technology to our system to improve the 

resolution over a larger DOF, we would also like to ensure that the phase is still useable and, 

hopefully, improved. We know the SNR corresponds directly to phase noise. We can use 

this relationship to analyze how phase data changes as a consequence of the annular phase 

plate.  
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Results and Analysis 

Synthetic Aperture Initial Tests 

We initially tested the system using plain glass slides and drilling a 0.5 mm hole in the 

center. We found that we were able to detect two separate images but that they were 

exceptionally close together. (Figure 5a) 

 

We understood that this meant that the glass was too thin (creating a short change in 

path length) and so we ordered some thicker optical quality glass from Edmund Optics. The 

thicker glass produced images with a larger separation (Figure 5b). From this recording, we 

were able to obtain information about the intensity distribution of the images. (Figure 6). 

Figure 5: OCT images of glass slide obtained with synthetic aperture: a) 1mm glass; .5mm hole; 1300 
system; Δz(n-1) = .52mm; b) 2.3mm glass; .7mm hole; 1300 system; Δz(n-1) = 1.19mm  
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As demonstrated earlier, we can use Equations 1 and 2 and the known parameters of 

the laser source to calculate the ideal hole size for image separation. With a more ideal hole 

size, we expect to see a more equal distribution of intensities across the three images. 

Following the procurement of this data, we gathered data more specifically on the relative 

intensity of only the top two images. The synthetic aperture technology is designed to collect 

different information from three different images and manipulate and combine said data to 

maximize the intensity.  

Intensity 
(dB value) 

Depth (pixel number) 

Figure 6: Intensity of all three images. From left to right, we have an increase in depth caused by the 

annular phase plate. 2.3mm glass; .7mm hole; 1300 system 

Figure 7: a) OCT image of glass slide with synthetic aperture; only two of the three images are shown. b) 
Plot of the intensity values of the two images as a function of depth. It can be seen from these images that 
the intensity across the images varies as a function of the change in path length. c) Overlap of the phase 
noise from the two images 
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As can be seen in Figure 7b, the intensity varies across the image as a function of the 

change in path length. We can use this variation in intensity to form a final image with a 

greater overall resolution. In this figure, for example, we would like to take information from 

point 1 of the first image and point 4 of the second image to form a new image with a higher 

SNR. 

As mentioned earlier, we do not want to only maximize intensity, we would also like 

to see the effect this technology has on phase. In Figure c, we see that the phase noise 

between the two images is similar, which gives us a good indication that this is the case. To 

quantify this further, we use the known mathematical relationship between SNR and phase, 

which is given as the following: 

𝜎𝛷 =
1

2𝑆𝑁𝑅
 

Where σΦ represents the standard deviation of the phase. We can use this information to 

compare the trends between the standard deviation of the phase and the SNR of the first 

two peaks (which represents the top and bottom of the first image respectively) and compare 

this with the trend between the standard deviation of the phase and the SNR of the first and 

fourth peaks (which represents the top of the first image and the bottom of the second 

image). If the same trend is observed then we have evidence that the phase is maintained 

across the image before manipulation.  

 From the data gathered (Figure 8) we see that the phase trend does remain constant 

across both images. This is promising in that we know that the phase trend is not altered as a 

consequence of the annular phase plate. The next step then is to check if the phase is 

improved following the synthetic aperture manipulations. 
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Developing a New Apparatus 

When the preliminary data was taken, the setup was rudimentary and lacked stability. 

Therefore, we developed a new apparatus that had a more stable arm for the annular phase 

plate, and also adopted other useful features not present in our earlier system, including a 

light based camera (Figure 9). 

 

Upon creating this new apparatus, we discovered issues with the scanning; consistent 

artifact was observed in the images taken (Figure 10). We proceeded to diagnose and address 

Figure 8: a) The comparison of the standard deviation of the phase vs the average SNR for peaks 1 and 2. 
b) The comparison of the standard deviation of the phase vs the average SNR for peaks 1 and 4. 

 

Figure 9: Picture of newly developed apparatus 
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this issue. After many tests were conducted, it was concluded that the artifact was being 

caused by issues with the input signal: the MEMS mirror works by using voltage changes to 

sweep the mirror across the desired angle. Originally, we were sending in a saw tooth wave 

to the MEMS mirror which was causing the return to baseline to occur too rapidly. This fast 

sweep was causing ringing of the MEMS mirror. To address this issue, I wrote code that 

would send in a modifiable wave which resembled a saw tooth but had a more relaxed return 

to baseline.                                                     

 

  

The logic for the code is as follows: the wave is split into two functions: a linear 

function defines the initial sweep and a cosine function defines the return sweep. The slope 

of the linear function is defined by the user and determines how long the initial sweep is: the 

slope must always be greater than or equal to one, where a slope of one causes the sweep to 

cover all 2048 A-lines (which would lead to a sudden jump back to baseline and, therefore, 

be equivalent to a saw tooth). Any slope greater than one will cause the line to stop short of 

the full length of the sweep and an “if” statement then switches the function to a cosine 

function. The code is designed so that the linear function will always stop when the y-

Figure 10: a) Image taken on new apparatus with no scanning. b) Image taken with scanning. Note jittery 
artifact.  
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coordinate of the linear function is equal to the input voltage (which should define the 

amplitude of the wave). The following cosine function is defined so that it will intersect with 

the linear function at the max point (input voltage) and be continuous. The cosine function 

then takes the wave back to baseline. The original code and obtained scanning is given in 

Figure 11. 

 

 

The key to this code is rather than having a straight drop to baseline, as a saw tooth 

wave has, the cosine function should bring the MEMS mirror gently back to baseline. 

However, if the cosine is too steep, then we would have the same issue as previously 

demonstrated with the saw tooth wave. So we had to find the input value that yielded the 

longest range (largest sweep) and was still able to remove artifact. For an input voltage of 

one, this was found to be an input slope of 1.04. Further, we know that if we increase the 

Figure 11: a) The scanning obtained with the new code; note that there is no remaining artifact. b) The 

waveform produced from the new code as recorded with an oscilloscope 
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voltage, we will have a larger amplitude and, therefore, with the same slope, we will get a 

sharper return to baseline. This means that if we maintain the same slope value for higher 

input voltages, we will certainly obtain artifact. Therefore, the ideal value of 1.04 must 

increase as a function of voltage. 

To find out exactly what kind of increase in the slope value needed, I took the 

derivative of the cosine function at the midpoint. This told us the acceptable rate of decline 

for the function that would yield no artifact and the maximum range. I then looked at what 

input slope would maintain, at least approximately, this value at higher voltages. A linear 

relationship was found in which an increase of one volt corresponded to an increase in the 

input slope of 0.05. The code was modified to include this.  

Optimizing the Synthetic Aperture 

As described previously, there are certain mathematical relations that govern the way 

light propagates through the synthetic aperture (see Background section). In order to obtain 

the best results from our synthetic aperture, we want to optimize the synthetic aperture so 

that we have an even distribution of the laser for all three images, which directly relates to 

the hole size, and we want to obtain a separation of images that allows for maximal size with 

no overlap, which directly relates to the thickness of the aperture. This optimization present 

two separate problems, both previously described.  

For the first problem involving the diameter of the hole, we have obtained a 

theoretical value of 0.42 mm. In order to test this theoretical value, drill bits of 0.4 mm were 

ordered and a synthetic aperture was constructed using this drill bit.  

For the second problem, glass was ordered of a few different thicknesses and the 

separation of the images was quantified. The total size of the imaging field was known to be 
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3 mm. With this knowledge, we could create ratios of images to the total field to find the 

physical size of what we were imaging. When imaging glass cover slips, as shown previously, 

we know that the optical path length should be greater than the physical size of the slip 

because glass has a higher index of refraction. Upon measurement however, we found that 

the optical size of the glass slide was not exactly what was expected. From this, it was 

gathered that the index of refraction could differ slightly in our system since the index of 

refraction is dependent on wavelength. To quantify this, I imaged a mirror and then imaged 

a mirror with a coverslip on top of it; the mirror movement in the image corresponded to 

the change in the optical path, which would then allow me to quantify the index of refraction 

of the glass in our system. The index of refraction, using this method, was found to be 1.42, 

a bit less than the literature value for glass. This new found value for the index of refraction 

reconciled the obtained data; the measured size of the obtained image for the glass cover 

slips matched the predicted value and the total image size matched the known size.  

Though this information was reconciled, a consistent discrepancy between the 

measured separation of the images and the predicted value based on the thickness of the 

synthetic aperture was noted; the measured separation always fell short of the predicted 

value. In order to optimize our synthetic aperture, this has to be understood so that a 

synthetic aperture could be designed to yield an ideal image separation.  

Recombination of separated images: Intensity Information 

 As was demonstrated previously,1 implementing a synthetic aperture into an OCT 

system can allow for the manipulation and recombination of said images which results in a 

higher resolution for the image. The logic behind this method involves the known defining 

mathematical equations surrounding OCT. Based on these equations, when we cause a 



 

21 
 

separation within the image based upon an optical path difference, we obtain additional 

exponentials which contain both the optical path difference, Δz(n-1) for the first image and 

2Δz(n-1) for the second image, and the change in wave curvature, dz. We can then use these 

new variables to first manipulate the optical path difference and “depth decode” the two 

additional images. Finally we can manipulate the wave curvature dz and recombine the 

images to obtain a new image with an increased resolution.  

 The code that performs this task first performs the depth decoding. Theoretically, 

the values for this step should be equivalent to Δz(n-1) for the first image and 2Δz(n-1) for 

the second image. However, theory often deviates from practice and the best way to find the 

values that will depth decode the image is algorithmically running through all possible values, 

which fall between 0 and 2π, and finding which values yield the best overlap. What we find is  

that the values found don’t quite match up with the predicted values, though the value for 

the second image is twice the value for the first image, as expected (Figure 12).  

Figure 12: a) The three separated images before depth decoding. b) The three images recombined after 
depth decoding. 
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Once we have one recombined image through depth decoding, we remove the left 

over noise by limiting the range to the size of the image. Once in this form, we can modify 

the phase constant, which contains the wavefront curvature variable, dz, through a similar 

process. To find this value we plug in all possible values, which again fall between 0 and 2π, 

and find which value yields the highest value for the coherent sum, which yields the image 

with the best resolution (Figure 13). 

Though the second image looks better than the first, a better quantification of the 

increase in SNR is by looking at the standard deviation of the phase. A smaller deviation, as 

demonstrated previously, correspond to a better SNR and, thus, a better resolution (Figure 

14). From this data, it is clear that phase manipulation following the use of the synthetic 

aperture allows for an improvement upon the resolution of the image 

Figure 13: a) The recombined image before phase manipulation. b) The recombined image following phase 
manipulation. 
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Recombination of separated images: Phase Information 

 After demonstrating that we can indeed emulate the results from previous studies 

and increase the resolution of our images through phase manipulation, we wanted to observe 

what effect this has on the phase information, as phase is useful for our purposes. To 

understand this, we compared the phase information of the peaks between the image 

without the synthetic aperture in place to the phase information from the final processed 

image utilizing the synthetic aperture.  

 There is a known relationship between the SNR of an image and the standard 

deviation of the phase difference between two points, also known as the phase noise. This 

relationship is given as follows: 

𝜎𝜑1−𝜑2
= √

1

2𝑆𝑁𝑅1
+

1

2𝑆𝑁𝑅2  

 

Where 𝜎𝜑1−𝜑2
 is the standard deviation of the difference in phase between two depth 

locations and SNR1 and SNR2 are the SNR values at depth locations 1 and 2 respectively. We 

Figure 14: a) Phase data vs. linear fit for image before phase manipulation. b) Phase data vs. linear fit for 
image after phase manipulation. 
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can use recorded SNR values then to calculate the “ideal” values for the standard deviation 

of the phase. By comparing these theoretical values to those found from the data, we can 

know how closely our phase information aligns with the best possible values.  

Upon first observations, it seemed that the recombined images had worse phase 

noise than the individual images, which is what is typically expected. Since we would like to 

minimize the phase noise as much as possible, code was designed that would focus on 

improving the phase noise of the image rather than the intensity. The code was successful in 

fulfilling this purpose and, interestingly, also yielded slightly better intensity information than 

the code that focused purely on intensity (Figure 15). Based on these findings then, we 

should utilize this new code for future experiments. 

Conclusion 

 Improving the resolution of our system is very important for our purposes as we are 

trying to utilize OCT to image neurons, which are on the scale of microns. Furthermore, we 

would like to be able to use OCT to measure neural activity which is made possible by 

nanometer changes in the size of the neuron that occurs during activity and changes the 

optical properties of the tissue. Based on previous findings, the best way to increase our 

resolution was through the use of a synthetic aperture technology method which involved an 

annular phase plate and phase manipulation. In consideration of our purposes with phase, 

we also wanted to see what effect this technology had on the useable phase data.  

As shown in this paper, we were able to not only emulate the previously 

demonstrated results and increase the resolution of our images, but we were also able to 

increase the useable phase values. Interestingly, when applying the algorithm to minimize 

phase noise and increase in the intensity was also observed. Whether or not this was a result 
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of an issue with the original intensity algorithms or if the phase code is just an altogether 

better method remains to be seen. Using this technology, moving forward, we hope to image 

and detect neurons and neural activity respectively.  

 

 

 

 

 

 

 

Figure 15: a) Comparison of theoretical phase values for individual images to recorded values. b) 

Comparison of theoretical phase values to recombined image using phase-focused manipulation algorithm 
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Chapter 2 

Introduction 

Phase measurements can be utilized to measure neural activity due to changes in the 

optical properties of the tissue during activity. It is understood that the detectable optical 

patterns happen as a result of volumetric changes. What causes these volumetric changes to 

occur, however, is not clear. Various hypotheses have been proposed1, 2, 3 though no 

conclusion has been reached. From the literature, we gather that the volume change that 

occurs is typically on the order of 10-6 – 10-7 of the magnitude of the baseline volume (Table 

1). Using this information, we can assess if specific models can explain the observed change 

in volume. In this chapter, I will analyze various hypotheses in this context and try to 

develop a fuller explanation of the phenomenon through mathematical computation and 

reference to the current literature.  

Paper 

Corresponding 
Distention 
(μm) 

Corresponding 
Volumetric 
change (mm3) 

Original 
volume (mm3) 

Magnitude of 
volumetric change 
((original – change)/ 
original) 

Hill (1950)4 0.11 

7.6x10-8 0.57 10-7 

Cohen 
(1973)5 

0.04 
2.8x

Tasaki and 
Byrne 
(1990)6* 

0.31-0.83 

1.0-2.6x10-6 11.78 10-7 

Kim et al 
(2007)7 

0.005 – 0.01 

2.0–3.0 x 10-9 11.78 10-10 
Table 1: Volume change of nerves from literature. If values for nerve size were not given directly in paper, 
sizes were estimated based on experimental setup and literature. Volume values were converted to a common 
scale in which the volume change was compared to the overall volume of the cell. The volume change was 
assumed to take place over 1 micron of neuron (the area of activity), the length of the nerve was assumed to be 
15mm unless otherwise specified, and the diameter was assume to be 1mm unless otherwise specified.   
*This paper looked at volumetric changes by measuring the changes in the volume of water surrounding the 
cell, thereby removing any water component 
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Background  

Water Flux Hypothesis 

When volumetric changes were first observed, they were thought to be directly a 

consequence of water flux and, to this day, much of the literature on the subject suggests 

that neuronal swelling is solely a result of this flux.  

One study attempted to correlate water influx with the optical activity observed and 

created various experimental set-ups to demonstrate this.7 In one of these set-ups, the 

neuron was placed in a solution that was hypertonic to the cell. This means that, regardless 

of changes in the intracellular sodium or potassium concentrations, water should have a 

tendency to leave the cell. However, within this experimental set-up, swelling was still 

observed, though it was reduced in magnitude. The authors still concluded, however, that 

the swelling was a result of water influx. 

Another group measured the swelling of a neuron through expansion of the fluid 

medium surrounding the cell.6 By measuring the expansion of the fluid, the authors noted 

that any changes in the size of the neuron could not be attributed to water influx as this 

would cause the extracellular volume to proportionally decrease, causing overall no measured 

volume increase, implying that the expansion was caused by more than simply water influx. 

Most experimentation has demonstrated that the swelling of the neuron is typically 

on the order of about 10-6 - 10-7 of the original size of the cell (Table 1). In order to best 

understand if water can account fully for this change, we can mathematically model the flux 

and estimate the magnitude of change that would result from it.  
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Thermal Expansion of Axoplasm 

There is a known and recorded temperature change associated with action potentials. 

It is thought that this change in temperature could be responsible for a thermal expansion of 

water which could then be responsible for the volumetric change. One paper, however, 

specifically states that this hypothesis is highly unlikely since the known temperature change 

should correspond to a negligible change in volume.2 We can analyze this hypothesis by 

using established mathematics for water expansion and see if the estimated expansion could 

explain the measured change in neurons.   

Kinetic model 

When a neuron is activated via transmitter, channels will open causing a 

depolarization of the cell. If this depolarization exceeds threshold, voltage-gated Na+ 

channels open. Because of the resting negative potential of the cell, Na+ ions will rush 

inward. The Na+ ions then propagate down the axon causing further opening of voltage-

gated Na+ channels (Figure 1a). This activity has been shown to correlate directly with a 

change in the volume of the axon as well as a change in temperature. When the voltage-

gated channels are open, the potential energy in the resting state is converted to kinetic 

energy associated with these ions. I hypothesize that this kinetic energy could cause 

increased pressure within the cell which could cause increased collisions with the walls of the 

axon. These collisions then can impart energy onto the walls causing an expansion, 

reminiscent of the classical relationship PV=nRT (Figure 1b). I hope to prove or disprove 

this hypothesis through mathematical analysis. 
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Figure 1: a) Model axon drawing that shows the general flow of Na+ ions down their concentration and 
voltage gradient from the left and the outside of the axon to the right and inside the axon respectively. b) 
Demonstrates the general movement of ions down their concentration gradient with some random movement 
caused by collision and interaction.  

 
Phase Change Hypothesis 

Ichiji Tasaki made valuable contributions to the study of neuronal swelling across his 

more than fifty years of research on the subject. In this time, he developed an idea, based on 

the empirical evidence he had gathered, as to how this swelling might be occurring: Tasaki 

observed that the levels of Ca++ in a solution and, more specifically, the ratio of Ca++ to Na+ 

ion, could affect the cell’s swelling.7, 8 Tasaki hypothesized that Ca++, under normal 

circumstances, would interact with the anionic groups of the phospholipid bilayer, allowing 

for greater stability of the bilayer. When there was an influx of Na+ during activity, the 

increased concentration of Na+ near the surface would cause displacement of Ca++ ion and 

replacement by Na+ ion. Because Na+ has half the charge Ca++ has, the interactions it 

possesses with the anionic groups would be weaker, causing decreased interaction which 

allowed for increased movement normal to the membrane leading to membrane expansion. 

In his later work, Tasaki showed further that, while varying the Ca++ to Na+ concentration, 

there was a very sudden jump in thickness, indicating a more sudden phase change. Based on 

other work, it was hypothesized that at this point, the phospholipid bilayer had “loosened 
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up” to a threshold that allowed water to fill in between the layers, causing a sudden jump in 

expansion.9  

This phase change can be related to another recently proposed hypothesis in the field 

of neuroscience: the soliton hypothesis.10 The soliton hypothesis purports that neuronal 

signals are propagated by a phase change in the membrane, from a “fluid” to a “gel” phase. 

From a thermodynamic perspective, this phase change can act as a self-propagating wave, 

leading to the term “soliton.” This hypothesis is made in contrast to the Hodgkin-Huxley 

hypothesis which purports that the signal is transduced by the influx of ions through 

voltage-gated channels. This hypothesis provides explanations for certain phenomenon that 

the reporters believe the Hodgkin-Huxley model doesn’t adequately explain, namely volume 

changes, temperature changes, and anesthetic effects. It is the opinion of this author that a 

phase change may occur during activity, but this phase change is a consequence of signaling 

rather than a mechanism of signaling. 

Flexoelectricity model 

Another proposed hypothesis involves a change in the membrane caused by the 

voltage change during activity. Flexoelectricity is an observed physical phenomenon in which 

a strain on a solid causes a polarization. The converse flexoelectric effect then is when a 

voltage change causes bending of a solid. It is proposed that during the action potential the 

change in voltage results in a converse flexoelectric effect which can cause folding of the 

membrane.11 This implies that the volume change observed is a consequence of curving of 

the membrane during activity. The flexoelectric effect in the context of cells was put forth as 

an explanation to physiological bending of cochlear hair cells12 and later proposed as a 

possible explanation for observed optical activity.3  
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Analysis 

Water Flux Hypothesis 

In a paper on the subject, a group used modified versions of the Hodgkin-Huxley 

equations to demonstrate that the volumetric changes of the cell correlated well with the 

measured optical activity.1 Though the authors did not make the magnitude of the 

volumetric changes the focus of their paper, this information can be obtained from the given 

equations.  

By plugging in the derived differential equations and using an ODE45 solver, we 

obtain the solutions below which reflects the results discussed in the original paper (Figure 

2). There is an increase in the overall volume of the cell during the rising and most of the 

falling phase. During the hyperpolarization, however, we see a slight shrinkage of the cell. At 

the peak of expansion, which occurs around -55 mV during the falling phase, the change in 

volume obtained is 5.59 x 10-21 m3. We have an input volume of 5.24 x 10-16 m3 which means 

that the magnitude of the change is on the order of 10-5.  

However, a volume of 5.24 x 10-16 m3 is completely unrealistic for a neuron with a 

diameter of 10μm, as was given in the paper. This would essentially result in a neuron that is 

1μm long. This would make sense if we were looking at just the area of the activity, which 

might be appropriate for their mathematical model, but this would then not reflect the 

overall volume change but rather the volume change at the area of activity. A more realistic 

volume for a neuron of this size is on the order of 1 x 10-12 m3. However, with a larger and 

more realistic volume for the cell, the volume actually decreases as a function of time which 

is caused by the fact that the flux of ions is based on the overall concentration and a higher 

volume would change the overall concentration, which indicates the model is dependent on 
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focusing on the smaller area where activity is occurring. Though the model does 

appropriately demonstrate an action potential and the corresponding volume changes, if we 

consider the total measured volume changes in reference to, what should theoretically be, 

the entire cell, the magnitude is much smaller, around 10-9. Since the literature shows a 

change more on the order of 10-6 – 10-7, even when water effects are excluded,6 it seems 

water plays only a minor, if not negligible role, in the overall change.  

 

Figure 2: Action potential modeled in MATLAB using modified Hodgkin-Huxley equations. Voltage changes 
are plotted against volumetric changes as a function of time for an initial volume of 5.24 x 10-16 m3 
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Thermal Expansion Hypothesis 

We can mathematically evaluate this hypothesis since the thermal expansion of water 

is well understood. The equation for thermal expansion is given by 

𝑑𝑉 =  𝑉0 𝛽 (𝛥𝑡)  

Where V is the volume, β is the volumetric expansion coefficient, and Δt represents the 

change in temperature. The maximal change in temperature according to the literature is 

around 2.3 x 10-5 ⁰C.2 The coefficient for water is given as 2.07 x 10-4 ⁰C-1 at room 

temperature. Regardless of the initial volume, these two coefficients will cause the same 

magnitude of change which comes out to 10-9. Because the overall volumetric change is on 

the order of 10-6 – 10-7, the volumetric change associated with temperature is small if not 

negligible. 

Kinetic Hypothesis 

In order to test if Na+ influx can cause distention of the axon, we first test to see if 

the force generated by these ions can cause distention neglecting all other forces. In order to 

understand this problem, we must look at the material properties of the axon membrane. A 

model has been developed in previous work for the force required to distend a membrane.13 

The equation takes the following form: 

𝐹 = 𝑘 (
𝐿𝑥

2
) 𝜃3 + 2𝑇0𝜃         (1) 

Where k is the elasticity, Lx is the length of axon being distended, θ is the angle of 

distention, and T0 is the initial tension on the membrane. These values correspond to a 

geometry as shown in Figure 3. The values of k and T0 were found to be 0.1 - 0.7 mN m-1 

and 0-2 nN respectively. Lx would be the length specific to our problem. Since we are 
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looking at the distention of the membrane caused by a Na+ ion, it makes sense for us to use 

the diameter of a Na+ ion which is about 0.18 nm.  θ is the angle that corresponds to the 

amount the axon is distended. The literature tells us that, during activity, the neuron is 

distended between 1.0 x 10-6 and 2.6 x 10-6 mm3.6 This is a 3D value however and our model 

requires a 1D value. To convert from volume to area we first divide by the total length of 

the axon which in our model, which approximates the literature, is about 15 mm.  To go 

from area to length we need to divide this area by the total circumference of our axon which 

in our model is about 0.314 mm (the radius is 50 μm). Dividing our original values by these 

two values gives us a total distention of 0.21 - 0.55 μm, which corresponds well with finding 

of Hill.4 Modeling the distention of the membrane as a right triangle with the height equal to 

the total distention and the base equal to half of our Lx value we find that θ is equal to 89.75⁰ 

- 89.90⁰ (or 1.57 in radians). Now we have all the values we need for our equation. If we 

plug them in we find that the force needed to generate the distention needed in our problem 

is 3.48 x 10-14 N – 6.00 x 10-9 N. This is a very large range but is based on the parameters 

given for our problem. We should notice though that the T0 term has a large effect on the 

upper values of our force and, if this term is neglected, the range is 3.48 x 10-14 N – 2.43 x 

10-13 N which is appreciably smaller range.  
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Figure 3: The geometrical model of membrane distention that explains equation (1) 

Now that we have found the force needed to distend our membrane, we need to see 

if a Na+ ion traveling down its gradient will have enough force to cause this distention. 

There are two forces acting on a Na+ ion when it is moving down its concentration gradient: 

the electrical gradient and the concentration gradient. Both of these forces are described by 

the Nernst-Planck equation with the time derivatives set to zero as follows: 

𝐽 =  − [𝐷𝛻𝑐 +
𝐷𝑧𝑒

𝑘𝑏𝑇
𝑐(𝛻𝛷)]          (2) 

Where J is the flux, D is the diffusivity, c is the concentration, z is the valence of the 

ion, e is the elementary charge, kB is the Boltzmann constant, T is the temperature, and 𝛻𝛷 is 

the potential difference. Since we are modeling movement in one dimension, we can replace 

the gradient with a change in one dimension; we will use x here. The diffusion coefficient for 

Na+ in axoplasm is 0.65 x 10-9 - 1.3 x 10-9 m2s-1.14 Voltage-gated Na+ channels open around    

-50 mV and so we define the potential difference as such for our model. We will assume a 

standard temperature of 25⁰C.  Plugging our constants into our equation we get a simplified 

version: 
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𝐽 =  1.27 𝑥 10−9𝑐 + 6.5 𝑥 10−10
𝜕𝑐

𝜕𝑥
           (3) 

Now we must define the concentration in our problem. A typical neuron has a [Na+]I 

of 12 mM and  a [Na+]o of 120 mM. We are looking at flux across this membrane and so we 

choose a point on the inside. At this point our concentration will be 12 mM. The derivative 

of the concentration with respect to our position is a consequence of the difference between 

the inner and outer concentrations and the distance between them, namely the membrane 

thickness. We will estimate the membrane thickness to be 4 nm. From these numbers we get 

that J = 0.01755 mol m-2 s-1. This tells us how many moles of Na+ are flowing in through a 

channel as a function of area and time. We know that the molar mass of sodium is 22.99 g 

mol-1. Using these values we obtain a mass flux of 0.403 g m-2 s-1. With this mass flux, we can 

then find the velocity of the particles using the vector definition: 

𝐽 = 𝜌𝑣  (4) 

Where J is the flux vector, v is the velocity vector (pointing in the same direction as the flux), 

and ρ is the density. The density of Na+ is 0.968 g cm-3 (or 968 g m-3). With this value we find 

the velocity on the particles to be 4.17 x 10-4 m s-1. 

The kinetic energy on each of these atoms can be expressed by the relation: 

𝐾𝐸 =
1

2
𝑚𝑣2   (5) 

Where KE is kinetic energy, m is mass, and v is velocity. With this relation we find the 

kinetic energy on any individual Na+ ion to be 1.20 x 10-28 J. Energy can do work where 

work is force times distance. We know from our previous calculations that we need 3.48 x 

10-14 N – 6.00 x 10-9 N to move the membrane a distance of 0.21 - 0.55 μm. If we take our 
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KE divided by this distance we obtain a force of 2.18 x 10-22 – 5.71 x 10-22 which is not 

within our range.  

This preliminary problem shows us that, without consideration of any drag forces, 

our sodium ions are unlikely to be able to provide enough force to distend the membrane.

 However, to further quantify what magnitude this phenomenon plays in the swelling, 

if any, the next thing to look at are the drag forces acting on the Na+ ions. The drag force is 

defined by the equation: 

𝐹𝐷 =
1

2
𝜌𝑣2𝐶𝐷𝐴   (6) 

Where ρ is the density of the fluid, v is the velocity of the particles relevant to the 

fluid, CD is the drag coefficient, and A is the cross-sectional area of the particle. The fluid our 

particle is moving through is axoplasm. From the literature, we know axoplasm has a density 

of 0.31 g cm-3.15 During activity, the axoplasm should not be flowing but rather the ions 

should be flowing relative to the axoplasm which means our velocity value will be directly a 

consequence of the velocity of the particle. The drag coefficient can be estimated from the 

literature.16 We model our particle as a smooth sphere but we must find the Reynold’s 

number to know precisely what to model the coefficient as. The Reynold’s number can be 

expressed as follows: 

𝑅𝑒 =
𝑣𝐷

𝜈
   (7) 

Where v is the velocity, D is the characteristic diameter, and ν is the kinematic 

viscosity. From the literature we find that the dynamic viscosity is 1 mPa s-1.17 The kinematic 

viscosity can be obtained by dividing the dynamic viscosity by the density of the fluid (stated 

earlier to be 0.31 g cm-3). This gives us a kinematic viscosity of 4.03 x 10-7 m2 s-1. The 
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characteristic diameter is relevant to the diameter of whatever the fluid is flowing through. In 

our model, we will make this equal to the diameter of the Na+ channel which we know to be 

0.4 nm. Using the velocity we found previously, we find our Reynold’s number to be 4.13 x 

10-7. We can then plug this into our equation for the drag coefficient which is: 

𝐶𝐷 = 4.5 +
24

𝑅𝑒
    (8) 

Using this we find a value for our drag coefficient of 5.81 x 107. Finally, we need the 

cross-sectional area of our particle which we can find using the atomic radius. We know the 

atomic radius of Na to be 0.19 nm. We can use this to solve for the cross-sectional area 

using the formula for the area of a circle. We find the cross-sectional area to be 1.13 x 10-19 

m2. Now we can calculate the drag force to be 1.77 x 10-13 N at the given velocity. 

In order to find out the force that our Na+ ion will produce after passing across the 

axon we first divide our force by the mass of the Na+ ion. This tells us the negative 

acceleration acting on the particle. We find a negative acceleration of 1.27 x 108 m s-2. So we 

can now write a velocity equation for our particle as follows: 

𝑣(𝑡) =  4.16 x 10−4 − (1.27 x 108)𝑡      (9) 

We also know that the location of our particle in space can be described by the function: 

𝑥(𝑡) = (4.16 x 10−4)𝑡 −  (. 64 x 108)𝑡2    (10) 

We find that this function has a maximum of 6.86 x 10-16 m at time 0.00042 s which is a 

much smaller distance than the diameter of our axon. However, we know that the drag force 

is directly proportional to the velocity. Thus as the velocity goes down, our drag force should 

also go down. This makes our model a bit more complicated and we can use some code to 

calculate this. I wrote a C++ program to calculate this value. 
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From our code, we see that the velocity and negative drag force balance out around 

1.11x 10-13 m. This is larger than our previously calculated value but still not nearly enough to 

traverse the axon.  

If the ions coming into the cell are not able to traverse the axon, let alone distend the 

membrane, then what else could be causing this distension? We know, besides the sodium 

ions flowing into the cell, we have sodium ions flowing parallel to the propagation. These 

ions, after being accelerated by the voltage force, may have enough velocity to distend the 

membrane. Our path of interest begins inside the cell (after the sodium ions have entered 

through the dendrite and are moving towards the axon hillock) and, since the concentration 

change in the cell is negligible, we can ignore the concentration term. However, we do not 

want to just look at the flux at a point here but rather we want to look at the acceleration of 

the particles as they are continuously pulled towards a negative potential. To find the velocity 

on these flowing particles, we can look again at the electric field generated by the voltage. 

This electric field multiplied by the conjugate charge will give us an electrical force. The 

dendrite is about 800 microns from the axon hillock. We must also keep in mind that as the 

ions enter the cell they are themselves changing the voltage near them. For now we will 

focus on the first bit of Na+ entering the cell which would have a negligible effect on the 

voltage. We know that -50 mV is around the voltage required to induce the opening of the 

voltage-gated ion channels so we will consider this to be the voltage surrounding our first bit 

of Na+ ions. This ion will want to move towards the axon hillock with the more negative 

charge. This electric field can be described in terms of the voltage difference (15 mV) and 

the distance (0.8 mm) as 18.75 V/m. This electric field can then be multiplied by the charge 

on the ion to yield the force. We find this force to be 3.00 x 10-18 N. If we divide this force 
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by the mass of the ion we will find the acceleration imparted on it over this distance.  We 

find the acceleration to be 2167.00 m s-2. As the distance between the ion and the voltage 

decreases the force and consequently the acceleration will increase. To obtain an accurate 

expression we therefore have to use code again. Unfortunately the code for this model was 

cyclical and had some behavior that was hard to control; since the acceleration was 

dependent on the net force, the velocity was dependent on the acceleration, and the net 

force was dependent on the velocity, there was a point in the sequence in which the 

acceleration would become negative which would cause the net force to jump down which 

would cause the acceleration to jump down which would cause the net force to jump up 

which would cause the acceleration to jump up etc. in a sort of positive feedback mechanism 

that made the solution useless.  Even though switches were implemented to make the code 

iterate until a solution was obtained, it is questionable whether or not this code resembled 

any physical reality since it involved changing the fundamental relations. The code tells us 

that the velocity at the end of the path is equal to 7.857 x 10-4 m s-1. If we convert this value 

to kinetic energy and then to force we find that we have a force of 5.62 x 10-23 N across a 

distance of 0.21 μm, which is again not within our range.  

We must consider further that this kinetic energy will not all be directly imparted 

onto the membrane. In fact, it will majorly be focused in the direction of the action potential 

with a tendency towards the center of the axon since the space near the membrane will be 

more immediately depolarized. We can consider the force imparted on K+ as it leaves the 

cell since these ions will be directed towards the membrane. However, it is unlikely that the 

K+ will have acquired any kinetic energy before exiting the cell through the channel.  At a 

maximum value, the kinetic energy of the ions seems to play a negligible role in the overall 
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process and, based on the physical manifestation of the action potential, it is unlikely that 

this force will be directed at the membrane in a significant enough manner to play a relevant 

role in the distention.  

Phase Change Hypothesis 

The claim of a phase change induced by ionic flux during activity is well supported 

by the studies of Tasaki and others.8,9 However, this theory does not lend itself very easily to 

mathematical quantification as far as what magnitude of effect such a transformation could 

have on the membrane. The best way to try to quantify such a problem would be to look at 

the difference between a Na+ and Ca++ ion in terms of the strength of the attraction to the 

phospholipids. Using this information we should be able to derive a difference in the bond 

length which can then be integrated across the membrane surface to find the total possible 

distention. However, the only way to model the differential pull of the ions is from the 

Lennard-Jones Potential or a similar expression. These expressions are able to give an 

energetic relationship with given distances but, since we are attempting to find the distance, 

it is not possible to use these relationships for our purposes. We would need to reference 

optical data on the subject. However, the literature on the subject is arcane and lacking. We 

know that ultimately the distance of the phospholipids is a consequence of the ionic 

interactions can be described in terms of Coulomb’s Law. Therefore, Ca++, which we assume 

to be the principle component bonding to the phosphate heads at baseline, will have twice 

the force of Na+, all other things constant. So, if we look at the literature for the normal 

distance between phospholipids, if all other forces remain the same, we can estimate the 

change in packing to be twice the distance it is at baseline. Realistically, this is probably an 

overestimate of the difference that such a change would make, but it will help us understand 
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the possibility. From the literature, we find the baseline distance to be about 0.9 nm which 

means with a Na+ ion associated, we would have a separation of 1.8 nm in our model. We 

assume in our previous calculations that the area of activity is around 1 μm in length. Since 

phospholipids are around 1 nm thick, we can imagine this activity could affect millions of 

phospholipids.  A change in the phospholipid spacing of this magnitude could have a 

significant effect on the size of the membrane.  

Unfortunately, there were many assumptions made for this modeling, primarily in 

the realm of the distance between phospholipids, and it is hard to say what bearing it has on 

reality but, due to the lack of literature on the subject, it is hard to be more precise.  

We can, however, reference physiological data about the expansion effect of a phase 

change as observed in lipid membranes. According to the literature,10 a phase change from 

the “fluid” to “gel” phase would result in approximately a 16% expansion of the membrane. 

In our model, the membrane is estimated to be 8 nm and so this corresponds to a change of 

around 1.3 nm. This, however, applies to all individual neurons within a nerve and, since 

there exists hundreds of neurons within a nerve, this magnitude of change is consistent with 

the literature.  

One idea further proposed by Tasaki and colleagues was that the phase change 

allowed for increased spacing within the membrane which would allow for water to diffuse 

into the membrane, causing expansion. However, this idea would be in contrast to the data 

that showed the volume changes maintained a similar magnitude without the contribution of 

water.6 

The authors who put forth the soliton hypothesis were unclear about mechanistic 

possibilities, and even the ionic hypothesis put forth by Tasaki was a bit vague. It is the 
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opinion of this author that the anionic residues that Ca++ associates with is most likely the 

phosphate heads of the lipids since these are in large quantity in the membrane and past 

experimentation supports the idea that Ca++ associates with these groups.  

Though there is evidence demonstrating the possibility of this mechanism, the 

current physiological data suggests that the induced changes would not be sufficient to 

explain the observed changes in the membrane. Further evidence is needed to evaluate this 

hypothesis.  

Flexoelectricity Hypothesis 

Based on a previous model proposed for the flexoelectricity of membranes,12 the 

change in voltage is related directly to the change in the longitudinal curvature by the 

following equation: 

∆𝑐 =
𝑓∆𝑉

𝑘𝑒𝑓𝑓ℎ
 

Where Δc is the change in curvature in the longitudinal direction, f is a constant given as 10-18 

– 10-20 C, keff is a constant given as 2 x 10-19 J, and h is the thickness of the membrane which 

we will assume to be 4 nm. Solving this equation we find that the change in curvature for a 

membrane depolarized by a 100 mV will have a resulting change of 625,000 –  

125,000,000 m-1, which corresponds to a radius of curvature 8 - 1600 nm. This is an 

incredibly large range, which comes mainly as a consequence of the large range for the 

constant f. From the literature, we know that the total length change of the axon is found to 

be in the range of 20-80 nm which should correspond directly to the arc length of the curve, 

assuming there is only one fold.18 If we utilize the full range of values for the possible radius 

of curvatures, we find that the lower range of values for our radius of curvature does not 
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work, as the size of the arc then is greater than the possible circumference. Since we assume 

that this distention could, at most, compensate for half of the circle, we find that the 

minimum radius needed is in the range of 6.36 – 25.46 nm, dependent on the arc length of 

the distention. Using the radius of curvature in conjunction with the arc length, we can find 

the length of distention to be in the range of 0.03 - 25.46 nm. This is a very large range, 

spanning three orders of magnitude. Because again this value would correspond to individual 

neurons, it is possible that the magnitude of the change is within our range. We have to 

consider though that the magnitude of the change could be reduced with increased folds.   

Beyond the math we have already looked at, we have to consider if this theory makes 

sense in consideration of the empirical evidence. Because voltage changes are inherent to any 

action potential and the flexoelectric effect is completely a consequence of voltage changes, 

it is impossible to remove the cause of this effect and still observe activity. However, we can 

consider at least one known change that must happen if the converse flexoelectric effect was 

to occur: if the flexoelectric theory holds true, we should see a shortening of the axon during 

expansion since the curve in the membrane would pull both sides towards itself. Tasaki and 

colleagues did indeed observe a change in length that accompanied the volumetric changes,2 

lending further support to this hypothesis. 

Conclusion 

 Although water flux has often been cited as the cause of the volumetric expansion of 

neurons during activity, the mathematical model for this phenomenon derives a theoretical 

value that is a few magnitudes smaller than what the literature suggests the volumetric 

expansion to be. Furthermore, a change in volume is still observed when water flux changes 

are removed either by measuring the changes as a function of water or eliminating the 
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driving force on water during activity. This implies that water may play a role in the change, 

but it is not the only contributor and likely not the major contributor. 

 The thermal expansion of water may play a small role, but is most likely negligible to 

the overall change. Kinetic effects induced by ion flux, after modeling, appear to be 

negligible compared to the overall change in volume as well. 

The two most novel hypotheses to explain the overall change in volume observed, 

phase change and flexoelectric hypotheses, seem to be, based on our analysis, a reasonable 

explanation for the phenomenon, though understanding these phenomena was difficult 

based on the available information. Both the phase change and the flexoelectric hypothesis 

could reasonably explain the phenomenon based on this analysis so we must consider then, 

which of the two hypotheses to be the most likely. Is it possible that both factors are at play? 

Both phenomena would affect the membranous properties which could cause issues with for 

the other phenomenon. For example, the previous flexoelectric measurements may have 

been measured in the “fluid” like phase and a conversion to the “gel” like phase might cause 

less flexing. Conversely, the flexoelectric effect could change the spacing of phospholipids 

and affect the ability for a phase change to occur. It is, however, possible that both of these 

processes work in conjunction to yield the total change or that other changes in the 

membrane, such as changes in elasticity, also play a role.  

It seems then that the two most novel hypotheses in regards to swelling may be the 

most accurate but further investigation of both phenomena are needed to understand their 

applicability to the action potential. The promising nature of these ideas in the context of the 

current literature on the subject suggests that the change in the volume of the cell is very 

likely attributed to changes in the membranous properties and, therefore, future studies 
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should focus on what kind of changes may occur and piecing apart which effects, whether it 

be the ones discussed here or elsewhere, may play a role in the membrane changes observed.  
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