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(Manuscript received 19 March 2008, in final form 12 September 2008)

ABSTRACT

One element of a complete verification system is the ability to determine why forecasts behave as they

do. This paper describes and demonstrates an operationally feasible method for conducting this type of

diagnostic verification analysis. Hindcasts are generated using different configurations of the forecast

system and then the skill of the generated hindcasts is compared. The hindcasts and comparisons are con-

structed to isolate individual elements of the forecast process. The approach is used to evaluate the role of

model calibration, model initial conditions, and precipitation forecasts in generating skill for deterministic

river forecasts. The authors find that calibration and initial conditions provide skill for the short lead-time

forecasts, with precipitation forecasts providing the majority of the skill in forecasts of high stages at longer

lead times. At all lead times, this study shows model calibration is essential, as the calibration makes forecasts

reliable.

1. Introduction

Recently, Welles et al. (2007) evaluated National

Weather Service (NWS) river stage forecasts. They

found the forecast skill may not have improved as much

as expected because, as they suggested, forecast system

updates were not driven by objective measures of

forecast skill. Many people have studied elements of the

forecast process—calibration, state updating, and pre-

cipitation forecasts—but the forecast process itself with

the various elements linked together has not been

studied. This paper presents a hindcasting experiment

used to analyze stage forecasts that illustrates a system-

atic method for using the distributions-oriented verifi-

cation of Murphy and Winkler (1987) to identify sources

of forecast skill.

Standard meteorological verification metrics are ap-

plied to a set of hindcasts to address the following

questions: What is the primary source of skill in the

hindcasts at each lead time?1 What is the role of cali-

bration, initial conditions, and quantitative precipita-

tion forecasts (QPFs) in the hindcast skill? How does

the quality of the calibration and the initial conditions

affect the total hindcast error given the uncertainty in

the QPF? This study focuses on precipitation-driven

headwater basins with forecast lead times up to only

three days. Numerous similar studies on downstream

forecast locations, snow-covered basins, reservoir out-

flow points and the like will be required to build a robust

understanding of hydrologic forecast skill and the as-

sociated uncertainties.

It is worth noting that in this article, we approach the

hydrologic forecast problem from the perspective of the

forecast process itself, as was done recently in Shi et al.

(2008). Most studies aimed at improving hydrologic

Corresponding author address: Dr. Edwin Welles, Deltares

USA, Inc., 1010 Wayne Ave., Suite 800, Silver Spring, MD 20910.

E-mail: edwin.welles@deltares-usa.us

1 Lead time is the difference between the time a forecast is is-

sued (the forecast basis time) and the time that forecast is valid

(the forecast valid time). NWS-issued hydrologic warnings are is-

sued from model output. One way to increase the warning lead

time is to make the models more accurate at longer lead times.

Therefore, it is important to understand how the skill character-

istics of the models change with lead time.
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forecasts focus on analyzing and modeling of basin

processes, taking the processes as the object of study. In

this research, the forecast process itself is the object of

study. By focusing on the forecast process itself, a new

line of inquiry for improving hydrologic forecasts can be

opened. In fact, current assumptions regarding the most

effective methods for improving hydrologic forecasts

can be evaluated. For example, the assumption that im-

proved hydrologic modeling will always improve forecast

skill can be validated. A review of this assumption is

provided in section 4.

a. Error and skill in hydrologic forecasts

The uncertainty in hydrologic forecasts is traditionally

divided into two categories: meteorological error and

hydrologic error. Meteorological error refers to the error

in hydrologic forecasts caused by error in the meteoro-

logical forecasts. Hydrologic error consists of the errors

caused by the hydrologic modeling. This study focuses on

the meteorological error resulting from QPFs. QPFs are

single-valued precipitation forecasts, reported as depth

of rain expected to fall over a basin in a given time. While

the QPFs have improved over the past decades, they

remain highly uncertain (refer to National Research

Council 2006) when evaluated at the short modeling time

steps and the fine spatial scales used for hydrologic

models, even if those models run at 6-h time steps over

lumped basins hundreds of square kilometers in area.

Temperature forecasts can be critical to short-term fore-

casts on basins where the precipitation type, rain or snow,

determines if a flood event will or will not occur. How-

ever, the basins to be studied here are never snow cov-

ered; consequently, QPFs are the only meteorological

forecasts considered in this analysis.

Within the broad category of hydrologic errors, there are

many contributing sources of uncertainty: model parame-

ters, model initial conditions, upstream flows routed into a

basin, reservoir operations, rating curves, and the structure

of the models. This study focuses on the hydrologic error

for a single headwater basin. In particular, this study focuses

on the error from model calibration and the model initial

conditions. The hydrologic and meteorological error terms

are interrelated, and errors of one type may exaggerate

or mask errors of another type. In addition, the spatial–

temporal scales of the forecast area will affect the interac-

tion between the errors. On large basins, where most of the

river flow is routed water, the affect of meteorological error

will be attenuated, while on small basins the affect of me-

teorological error will be considerable. This study focuses

on small basins and, as will be seen in the hindcasts, the

interaction between the types of error changes with lead

time, which is an important element in understanding the

sources of error and skill in the hindcasts.

b. Hydrologic hindcast experiments

With the growing availability of inexpensive com-

puting power and disk space, hindcasting, which aims at

retroactively generating forecasts using a fixed forecast

scenario, is becoming a more usable tool for analyzing

forecasts. The experimenter sets up a system to refore-

cast a set of events based upon the prior observations

(obs) and forecasts (fcst). The forecast model is run with

observed precipitation up to a date marked as ‘‘pres-

ent;’’ the initial conditions for the model system are

stored and then the model is restarted with forecast

precipitation. The reforecast is computed and stored,

and the model is run forward with observed precipita-

tion to a new date marked as ‘‘present.’’ Each reforecast

is called a hindcast. For the hindcasts to be valid, it is

critical no observation be used in the calculations during

the ‘‘forecast’’ period. During the hindcasting process,

the computational methods, the input observations,

and the input forecasts can be manipulated to evaluate

alternate forecast procedures, or the probable effects

of improved inputs upon the forecasts. Comparisons of

alternate scenarios are facilitated because the same cli-

matic period is used for all computations, thereby elimi-

nating the differences in forecast skill as a result of

annual variability in the local climate.

A few previous authors have used hindcasts to analyze

hydrologic forecasts. Krzysztofowicz and Herr (2001) and

Krzysztofowicz and Maranzano (2004) used hindcasts

to parameterize their Bayesian Forecast System (BFS),

which integrates the hydrologic and meteorological un-

certainty into a single probability forecast. Franz et al.

(2003) used hindcasts to evaluate the skill of long-range

ensemble water supply forecasts. They recomputed initial

conditions for past years and then generated hindcasts

with the National Weather Service (NWS) Ensemble

Streamflow Prediction System from these reconstructed

initial conditions. Werner et al. (2004) used hindcasts to

evaluate several methods of computing temperature en-

sembles for use in mid- to long-range hydrologic fore-

casts. Using the methods of Franz et al. (2003), they

reconstructed initial conditions for past years and com-

pared seasonal volume hindcasts from various tempera-

ture ensembles. Demargne et al. (2007) analyzed the

affect of two sets of input ensembles—climatology and

QPF-based precipitation ensembles—on the quality of

streamflow ensembles. They used both observed and

simulated flows to divide the total uncertainty into the

input uncertainty and hydrologic uncertainty. Deter-

ministic forecasts are studied here, but the hindcast

methods apply equally well to ensemble forecasts, as

was demonstrated by Franz et al. (2003) and Werner

et al. (2004), or by Krzysztofowicz and Herr (2001) and
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Krzysztofowicz and Maranzano (2004). The results of a

deterministic study like this one can be used to param-

eterize a model of forecast uncertainty. As was recom-

mended by the National Research Council (2006), though

hindcasting has not been used extensively in hydrol-

ogy, it can be an effective tool for analyzing hydrologic

forecasts.

c. Diagnostic verification

The verification method demonstrated here follows

the diagnostic approach of Murphy and Winkler (1987).

Murphy and Winkler suggested an approach based on

the concepts of discrimination and reliability, which are

derived from factoring the joint distribution of forecasts

and observations p( f,o) into the conditional distribu-

tions p( f |o) for discrimination, or p( o |f) for reliability.

Each conditional distribution yields different informa-

tion about the relations between the forecasts and the

observations. Within the diagnostic framework, discrim-

ination refers to the ability of the forecasts to distinguish

between future events. Reliability refers to the forecasts’

ability to forecast an event correctly; that is, if an event

was forecast, did it occur.

When applying this diagnostic approach, the forecasts

are sorted into discrete subsets and then each subset is

evaluated. For example, when sorting stage forecasts into

two categories, as was done in this analysis, the distri-

butions to be evaluated when assessing discrimination

skill are p[( f,o)|o , T] for the low stage category and

p[( f,o)|o $ T] for the high stage category, where T is a

stage threshold (e.g., flood stage). To assess the reliability

of the forecasts, the forecast–observation pairs are sub-

setted based upon the forecast value. The distributions to

be assessed are then p[( f,o)|f , T] for the low stage

category and p[( f,o)|f $ T] for the high stage category.

The terms discrimination and reliability are also used

to describe probability forecasts, with discrimination

diagrams used to assess the resolution of the forecasts

and reliability referring to the quality of the probability

statements. In addition, the term discrimination is as-

sociated with the measure proposed by Murphy et al.

(1989), which is labeled DIS. In this description, dis-

crimination refers to the skill of the forecasts when

measured for subsets sorted by the observations, and

reliability refers to the skill of the forecasts when mea-

sured for subsets sorted by the forecasts.

2. The hindcast experiment

a. Algorithms used to compute the hindcasts

The forecast process to be analyzed here is the typical

NWS short-term, deterministic river stage forecast pro-

cess. For precipitation-driven headwater basins, the NWS

generally uses a calibrated Sacramento model (Burnash

1995) at 6-h time steps to compute runoff from rainfall,

a unit hydrograph to route runoff to the basin outlet

(Linsley et al. 1975), and manual state updating to as-

similate observed stages into the simulations. Precip-

itation forecasts are used for all lead times, although

modeled precipitation is only used in the first 24 h and

zero is used after 24 h. The hydrologic model output is

postprocessed using a simple linear difference scheme

(National Weather Service 2002) to remove current model

biases. The forecast flows are then converted to stages

with a rating curve and the stage time series is issued as the

forecast. For a more detailed description of the NWS

short-term hydrologic forecast process, refer to Welles

et al. (2007). The components of the forecast process to

be analyzed here are the calibration of the Sacramento

model, the model state updating as it is reflected in the

model initial conditions, and the QPF. For the basins

studied here, the initial conditions are soil wetness and

channel flow, as described by the states of the Sacramento

model and the unit hydrograph.

The forecast process cannot be reproduced exactly in

the hindcast process because of three differences. Most

obviously, the manual state updating cannot be recre-

ated, as it would be too expensive and nonobjective.

The variational assimilation method (VAR) proposed

by Seo et al. (2003) is used to update these hindcasts. In

general, the forecasters are able to integrate more infor-

mation through the manual state updating process than

can be done automatically, and this ability can be impor-

tant for basins with complex hydrology, for example,

basins that include snow, upstream routed flows, or res-

ervoir operations. However, as was demonstrated by Seo

et al. (2003), on the precipitation-driven headwaters stud-

ied here, the automated state updating can be effective.

A second difference between the operational forecast

process and the hindcast process is that the simulation

postprocessing is not used in the hindcasts, as it obscures

the differences between the hindcast scenarios. The post-

processing algorithm forces the simulations to run through

the last observed value; therefore, if the postprocessing

were included, all the hindcasts would start at the same

value and the only differences between them would be

those discernible at the longer lead times. Like the many

physical basin characteristics requiring analysis (refer to

the introduction), elements of the forecast process itself

require analysis and the affect of postprocessing on the

forecast skill is identified for a future study.

The third difference between the actual forecast op-

erations and the hindcasts is the forecast issuance time.

The actual forecasts are issued once daily, at 1200 UTC,

unless flooding is imminent, in which case the forecasts

are issued on an as-needed basis. The hindcasts are
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‘‘issued’’ twice daily, at 0000 and 1200 UTC, and the

schedule is not changed even if there is flooding.

b. The data

One obstacle to effective hindcasting is data archiving.

Without a proper archive of the input to the original

forecasts, they cannot be recreated. Three basins for which

there was a suitable archive of the input data were found:

the Illinois River at Watts, Oklahoma, and the Blue River

at Blue, Oklahoma; and the Elk River at Tiff City,

Missouri. These basins have been used in the Distributed

Model Intercomparison Project (DMIP; Smith et al. 2004)

and in testing the VAR (Seo et al. 2003), and they are

selected here for the same reasons they have been selected

previously: good data and well-understood hydrology. The

basin locations are mapped in Fig. 1. The three basins

range in size from 1230 to 2250 km2, typical sizes for NWS

forecast operations. Annual rainfall is approximately 1200

with 350 mm annual runoff. The topography is rolling hills,

resulting in moderately fast hydrograph responses, with

the Blue River having steeper hydrograph recessions than

the Elk and Illinois Rivers. For a more detailed descrip-

tion of the basin geo–hydrology, refer to Smith et al.

(2004). The observed precipitation used for the hindcasts

was taken from the NWS Stage III grids (Young et al.

2000) computed at the Arkansas–Red Basin River Fore-

cast Center (ABRFC). The QPF was also provided by the

ABRFC from their archive of operational QPFs. The river

stage data is the operational stage data collected by the

U.S. Geological Survey (USGS) and archived by the

ABRFC. There was sufficient data for these basins to run

in a hindcast mode for four years from 1997 to 2000.

c. The hindcast scenarios

Three forecast process elements were studied here:

calibration, state updating, and QPF. For each forecast

process element, a ‘‘skilled’’ implementation and an

‘‘unskilled’’ implementation was developed. For the

skilled calibration, parameters were derived by NWS

experts within the NWS Hydrology Laboratory using

manual calibration methods described in the NWS cal-

ibration handbook (Anderson 2002). For the unskilled

calibration, model parameters were derived from the

pedological equations of Koren et al. (2003), with no ad-

ditional manual calibration performed on the pedological

results. These parameters are commonly used as an initial

parameter set to begin the manual calibration process and

are referred to as the uncalibrated or a priori parameters.

There are a number of methods for calibrating hydrologic

models—manual, automated, and semiautomated—in

addition to postprocessing techniques used to account

for model bias. A comparison of these different tech-

niques to determine the one most suitable for skillful

forecasting merits additional hindcast analysis but is

beyond the scope of this discussion.

The skilled and unskilled state updating was computed

by running the hindcasts with the VAR turned on for the

skilled implementation and turned off for the unskilled

implementation. Three QPF implementations were used:

skilled, unskilled, and perfect. For the unskilled imple-

mentation, the QPF is set to zero for the entire forecast

period; this is called the zero QPF scenario. For the

skilled implementation, the operationally modeled QPF

is used for the first 24 h and then the QPF is set to zero for

the remaining two days of the hindcast period; this is

called the real QPF scenario. For the perfect QPF sce-

nario, the observed precipitation is used as the QPF. The

first two QPF implementations are commonly used in the

NWS operational forecast process. Although the zero

QPF scenario may not appear as a reasonable QPF al-

ternative, it has been commonly used in forecast opera-

tions for many years. The calibration, the state updating,

and the QPF types are matched for a total of 12 hindcast

scenarios on each basin. Table 1 lists each hindcast sce-

nario. Persistence (pers) hindcasts were also generated

and are used to provide a perspective on the hindcast

skill. Persistence is defined as the observation at the basis

time2 of the forecast.

FIG. 1. The location of the basins used in this study.

2 The basis time of a forecast is the time when the forecast is

issued.
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d. Hindcast analysis process

Once the hindcasts have been generated, they are

sorted into subsets according to the purpose of the

analysis, for example, by lead time, season, or basin size.

The subsets of hindcasts can then be compared using a

variety of statistical and verification measures. Distri-

butions can be compared directly through parametric or

nonparametric tests, or verification metrics can be com-

puted and then compared. There is considerable latitude

within this process to allow for analyses of numerous

forecast types and characteristics.

For the purpose of this study, which is focused on flood

forecast skill, the forecasts and observations were sorted

into two subsets: high and low stages. It is possible to sort

into finer categories, and when this was done, the char-

acterization of the hindcast–observed relation was similar

to that for the two-category sorting. Therefore, a stage just

below the NWS alert stage was selected for each basin to

ensure sufficient sample sizes in the high stage category

(4.0 m for the Illinois River at Watts, OK; 6.1 m for the

Blue River at Blue, OK; and 3.7 m for the Elk River at Tiff

City, MO). In addition to sorting by stage height, the

hindcasts were sorted into lead times at 6-h time steps.

Statistics for each subset were computed on the forecast

observation pairs collected from all three basins and then

these statistics were compared to isolate the changes in

skill provided by each forecast process element.

The sets were characterized with the following sum-

mary statistics: the mean absolute error, the root-mean-

square error (RMSE), the mean error (ME), the false

alarm ratio (FAR), the probability of detection (POD),

the critical success index (CSI), the area under the rel-

ative operating characteristics (ROC) curve, a ROC

discrimination distance, and the Pearson correlation

coefficient (R). It was found the measures themselves

were not the key to understanding the error in the

hindcasts but rather the comparisons among the hind-

casts and subsets made the verification meaningful.

Therefore, the RMSE is used in the presentation of the

hindcast comparisons. For the description of the cali-

brations, the ME and R are also reported.

For each hindcast scenario, including the persistence

hindcasts, and for each lead time, the RMSE is com-

puted for the high stage and low stage reliability and

discrimination subsets across all three locations. For

TABLE 1. The names of the hindcast scenarios.

Scenario Abbreviation

Perfect QPF with VAR and calibrated

parameters

P-V-C

Perfect QPF without VAR and calibrated

parameters

P-NV-C

Real QPF with VAR and calibrated parameters R-V-C

Real QPF without VAR and calibrated

parameters

R-NV-C

Zero QPF with VAR and calibrated parameters Z-V-C

Zero QPF without VAR and calibrated

parameters

Z-NV-C

Perfect QPF with VAR and uncalibrated

parameters

P-V-U

Perfect QPF without VAR and uncalibrated

parameters

P-NV-U

Real QPF with VAR and uncalibrated

parameters

R-V-U

Real QPF without VAR and uncalibrated

parameters

R-NV-U

Zero QPF with VAR and uncalibrated

parameters

Z-V-U

Zero QPF without VAR and uncalibrated

parameters

Z-NV-U

TABLE 2. A priori parameter scenarios compared to

calibrated parameter scenarios to assess calibration affects.

Scenarios compared

DRMSE(P,V) 5 RMSE(P-V-U) – RMSE(P-V-C)

DRMSE(P,NV) 5 RMSE(P-NV-U) – RMSE(P-NV-C)

DRMSE(R,V) 5 RMSE(R-V-U) – RMSE(R-V-C)

DRMSE(R,NV) 5 RMSE(R-NV-U) – RMSE(R-NV-C)

DRMSE(Z,V) 5 RMSE(Z-V-U) – RMSE(Z-V-C)

DRMSE(Z,NV) 5 RMSE(Z-NV-U) – RMSE(Z-NV-C)

TABLE 3. No variational assimilation scenarios compared to

variational assimilation scenarios to assess data updating affects.

Scenarios compared

DRMSE(P,C) 5 RMSE(P-NV-C) – RMSE(P-V-C)

DRMSE(P,U) 5 RMSE(P-NV-U) – RMSE(P-V-U)

DRMSE(R,C) 5 RMSE(R-NV-C) – RMSE(R-V-C)

DRMSE(R,U) 5 RMSE(R-NV-U) – RMSE(R-V-U)

DRMSE(Z,C) 5 RMSE(Z-NV-C) – RMSE(Z-V-C)

DRMSE(Z,U) 5 RMSE(Z-NV-U) – RMSE(Z-V-U)

TABLE 4. QPF scenarios compared to assess precipitation

forecast affects.

Scenarios compared

DRMSE(RVC,PVC) 5 RMSE(R-V-C) – RMSE(P-V-C)

DRMSE(RNVC,PNVC) 5 RMSE(R-NV-C) – RMSE(P-NV-C)

DRMSE(ZVC,PVC) 5 RMSE(Z-V-C) – RMSE(P-V-C)

DRMSE(ZNVC,PNVC) 5 RMSE(Z-NV-C) – RMSE(P-NV-C)

DRMSE(ZVC,RVC) 5 RMSE(Z-V-C) – RMSE(R-V-C)

DRMSE(ZNVC,RNVC) 5 RMSE(Z-NV-C) – RMSE(R-NV-C)

DRMSE(RVU,PVU) 5 RMSE(R-V-U) – RMSE(P-V-U)

DRMSE(RNVU,PNVU) 5 RMSE(R-NV-U) – RMSE(P-NV-U)

DRMSE(ZVU,PVU) 5 RMSE(Z-V-U) – RMSE(P-V-U)

DRMSE(ZNVU,PNVU) 5 RMSE(Z-NV-U) – RMSE(P-NV-U)

DRMSE(ZVU,RVU) 5 RMSE(Z-V-U) – RMSE(R-V-U)

DRMSE(ZNVU,RNVU) 5 RMSE(Z-NV-U) – RMSE(R-NV-U)
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each forecast process element, the scenarios that are

similar except for the forecast process element of in-

terest were compared. For example, to evaluate the

contribution to the hindcast skill from the calibration,

the hindcasts with the skilled and unskilled calibration

but the same QPF and updating treatments were com-

pared. The same was done to isolate the contribution of

the initial conditions to the hindcast skill: the hindcasts

with skilled and unskilled updating but the same QPF

and calibration treatments were compared. For the QPF,

the same procedure was followed: the state updating and

the calibration were held constant and the different QPF

scenarios were compared. A list of the comparisons is

provided in Tables 2–4. The hindcast results are introduced

by reporting the RMSE for the scenarios (Figs. 2–5).

The comparisons between the scenarios are presented

as differences (Figs. 6–13). That is, the RMSE for the

skilled hindcast is subtracted from the RMSE for the

unskilled hindcast, resulting in a delta RMSE, noted as

DRMSE. Positive DRMSE indicates an improvement in

the forecast RMSE when moving from the unskilled to

the skilled method. Negative DRMSE indicates there

was no improvement when moving from the unskilled

to the skilled method. Sample sizes are used to indicate

confidence in the metrics (Figs. 14 and 15). Developing

constructive methods for computing confidence intervals

for these metrics is an area requiring further research.

Interested readers may find an initial approach de-

scribed in Welles (2003).

3. Results

a. The two calibrations

Because calibration is such an important aspect of

hydrologic modeling, the skilled and the unskilled cali-

bration are described and compared. The perfect QPF

hindcast with no state updating (P-NV-C and P-NV-U)

is the same as a standard calibration simulation: there is

no state updating and observed precipitation is used to

drive the models. It is customary within the NWS to use

the ME to evaluate a calibration; therefore, the ME is

reported in addition to the RMSE. For completeness,

the R is also reported. The statistics computed from

this hindcast scenario for the calibrated and uncali-

brated parameters are summarized in Table 5.

For the low stage discrimination and reliability, both

the calibrated and the uncalibrated parameters have

almost no ME. The uncalibrated low stage discrimina-

tion RMSE (1.07 m), however, is more than twice the

calibrated RMSE (0.40 m), and the uncalibrated correla-

tion (0.51) is only 60% of the calibrated correlation (0.85).

The low stage reliability metrics show similar differences.

For the high stages, for both discrimination and reliability,

the expert calibration has almost no ME, a high correla-

tion (0.65 for discrimination and 0.75 for reliability) and a

modest RMSE (0.85 for discrimination and 0.91 m for

reliability). The uncalibrated model, on the other hand,

tends to overforecast the observed high stages (discrimi-

nation ME of 0.98 m), and it tends to forecast too many

high stages (reliability ME of 3.20 m). In addition, the high

stage discrimination and reliability correlations for the

uncalibrated model are low (0.55 for discrimination and

0.35 for reliability). It is possible to make extensive com-

parisons of model calibrations but from this brief sum-

mary, it can be seen that the expert calibration provides a

considerable improvement to the simulations.

b. The QPF skill

A short summary of the QPF skill is presented to help

explain the behavior of the hindcasts. For the QPF, the

ME is reported in addition to the RMSE because the bias

characteristics of the QPF are important to understand-

ing the effect of the QPF on the hindcasts. The threshold

(25 mm) was selected, so the number of observations in

the high precipitation category was near that for the high

stage category. A zero QPF forecast was used as a base-

line rather than persistence because zero QPF is a com-

mon alternative to modeled QPF, while persistence is not.

In addition, it was found there is little variation in the QPF

skill across the four lead times, so the 6-h forecasts were

pooled into a single sample set to simplify the reporting.

(They were not added together to produce a single 24-h

QPF; they were collected into a single sample set for the

24-h period.) The metrics reported in Table 6 are for the

24-h collection.

For both discrimination and reliability, the NWS–

ABRFC issued forecasts have lower RMSE and ME than

the zero QPF, demonstrating that the NWS–ABRFC

QPF forecast process adds skill over a zero QPF. How-

ever, there is still considerable uncertainty in the QPF. For

example, the discrimination RMSE (25.7) and ME (222.8

mm) for the issued forecasts are almost equal to the mean

of the high precipitation observations (33.2 mm). For the

lower category, the discrimination ME for the issued QPF

is small (0.2 mm), but the accumulated depth of incor-

rectly forecast rain for this category is 6136 mm. On the

other hand, in those critical times when there were large

rain events (obs . 25 mm), the forecasts are too low. The

accumulated depth of rain underforecast for the high

discrimination category is 23329 mm. These characteris-

tics of the QPFs—not enough rain when there should be

rain and too much rain when there should not be any—are

seen later in the hindcasts.

To provide some perspective on the quality of these

QPFs in relation to the QPF across the United States

(and, therefore, the relevance of these results to other
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places in the United States), the statistics from the

NWS National Precipitation Verification Unit (NPVU;

McDonald et al. 2000; available online at http://www.

hpc.ncep.noaa.gov/npvu/index.shtml) are provided in

Table 7. The POD and the FAR are included because

they are commonly used for meteorological verification.

As can be seen from the table, the differences between

these national statistics and the local statistics are small.

The uncertainty seen in the QPFs on the hindcast basins

may be considered representative of the uncertainty in

the QPFs across the country, and the error in the hy-

drologic simulations caused by the QPF in the hindcasts

representative of the QPF-driven error elsewhere in the

United States.

c. Hindcasts and persistence

The persistence provides a baseline for comparison to

the hindcast skill. For low stage discrimination and re-

liability, the only hindcasts that perform better than

persistence are the well-calibrated scenarios with per-

fect QPF at lead times greater than 18 h for the VAR

and 30 h for nonVAR scenarios (see Fig. 2). The un-

calibrated parameters for both the low stage discrimi-

nation and reliability never perform better than persis-

tence; even for the perfect QPF scenarios (see Fig. 3).

In the case of the high stages, however, the value of

the NWS forecast process is more evident, as the hind-

casts generally perform better than persistence. For the

high stage discrimination, all the calibrated scenarios

(Fig. 4) perform better than the persistence for the first

24 h. After 30 h, the zero QPF scenarios converge to

the persistence and the real QPF scenarios converge to

persistence at hour 72. The perfect QPF scenarios per-

form better than the persistence for all lead times. For

the high stage reliability (not shown), the RMSE for the

calibrated parameters is almost a factor of 2 smaller than

the persistence RMSE, while the uncalibrated RMSE

(Fig. 5) is larger than the persistence RMSE. By com-

paring the relations to persistence, it can be seen that

the forecast process adds more reliability to the fore-

casts than it adds discrimination because, as will be seen

FIG. 4. Same as Fig. 2 but for calibrated parameters, discrimination

statistics for high stage events.

FIG. 5. Same as Fig. 2, but for a priori parameters, reliability

statistics for high stage events.

FIG. 2. Calibrated parameters, discrimination statistics for low

stage events. Scenarios shown are P-V, P-NV, R-V, R-NV, Z-V,

Z-NV, and pers. Refer to Table 1.

FIG. 3. Same as Fig. 2, but for a priori parameters.
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later, most discrimination skill comes from QPF, while

the model calibration adds reliability skill when the

calibration is done well.

d. Hindcast skill from calibration

The results of comparing the skill of the calibrated

and uncalibrated hindcast scenarios indicate calibration

is important for the low stage skill and for the high stages

when the lead time is ,1 day. However, the skill calibra-

tion can provide to the high stages at lead times .1 day is

limited when the QPF is poor. The differences between

the hindcast RMSEs for the low stage discrimination

(Fig. 6) indicate the calibration provides considerable im-

provement to the hindcasts, reducing the RMSE to half

of the original uncalibrated RMSE (shown in Fig. 3).

The calibration provides the most improvement to the

perfect and real QPF scenarios, as opposed to the zero

QPF scenarios, because both the real and the perfect

QPF include precipitation that must be converted to run-

off. The improvement to the real QPF scenario matches

the improvement to the perfect QPF scenario until the

real QPF turns to zero (at 24 h) and then the real QPF

scenarios parallel the zero QPF scenario. The zero QPF

scenario sees little benefit from the calibration except in

the early lead times because there is no rainfall to convert

to runoff.

As was noted above (section 3a), the expert calibra-

tion provides an improvement of slightly more than

0.85 m to the high stage simulations, half the a priori

RMSE. The hindcasts without state updating realize this

0.85 m improvement in the first time steps (Fig. 7), but

the updated scenarios benefit much less (0.3 m). As with

the low stages, this difference indicates the calibration

provides skill through good initial conditions, and, as will

be seen in the next section, the calibration and the state

updating provide comparable skill in the first day. Un-

fortunately, at the later lead times, when the real or the

zero QPF is used instead of the perfect QPF, the mag-

nitude of the improvement to the discrimination skill

from the calibration falls to zero at 36 h and then be-

comes negative. This fall in the benefit of the calibration

is caused by the meteorological error overwhelming the

value of the skilled calibration. Though calibration pro-

vides skill to the short lead times, it only resolves a small

portion of the total discrimination uncertainty at the

longer lead times because at longer lead times, the un-

certainties in the input overwhelm the model, no matter

how well structured and well calibrated the model is.

Another important result seen in Fig. 7 is the complex

interaction between the hydrologic and meteorological

errors. For example, the dipping and rising pattern for

the real QPF scenarios in days 2 and 3 is caused by the

tendency of the QPF to underforecast the interaction

with the tendency of the uncalibrated hydrologic model to

overforecast. During the early lead times, the over forecast

precipitation in the real QPF causes the uncalibrated

model to overreact and improving the calibration can

improve the hindcasts. After the first 24 h, zeros are used

in the real QPF and the zeros tend to mitigate the ten-

dency of the uncalibrated model to overforecast, while at

the same time causing the calibrated model to under-

forecast. Therefore, calibrating the models does not im-

prove the hindcasts after the first 24 h. At the longest

lead times, when the QPF has been zero for 24 h, the
FIG. 6. Differences between calibration scenarios, discrimination

statistics for low stage events. Refer to Table 2 for scenarios.

FIG. 7. Same as Fig. 6, but for high stage events.

TABLE 5. Summary statistics to compare the model calibrations

(P-NV-C and P-NV-U).

Discrimination Reliability

RMSE

(m)

ME

(m) R

RMSE

(m)

ME

(m) R

Low: Calibrated 0.40 0.061 0.85 0.40 0.61 0.85

Low: Uncalibrated 1.07 20.30 0.51 0.79 20.18 0.50

High: Calibrated 0.85 0.0 0.65 0.91 0.0 0.75

High: Uncalibrated 1.77 0.98 0.55 3.50 3.20 0.35
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overforecasting in the hydrologic models does not miti-

gate the underforecast QPF and the calibration begins

to add skill again. This rising and falling is a clear in-

dication the hydrologic and the meteorological errors

are neither independent nor additive. The common as-

sumption that forecasts will always improve when an

element of the forecast process is enhanced turns out

not to be true. Therefore, it is imperative that proposed

improvements to the forecast process be considered

within the context of the entire forecast process and not

independently.

While the discrimination skill is only slightly sensitive

to the calibration, the reliability skill is very sensitive to

the calibration. The improvement provided to the high

stage reliability skill by the calibration (Fig. 8) is more

than half the total error of the a priori parameters. For

the zero QPF scenarios, this improvement falls quickly.

For the real QPF scenario, on the other hand, the im-

provement holds up for the first 24 h before it begins to

fall because the QPF becomes zero and the value of the

calibration is reduced, as there is no rain to convert to

runoff. A good calibration contributes reliability skill

but little discrimination skill, partially explaining the

results seen in the comparison to persistence.

e. Hindcast skill from state updating

As one might expect, the comparison of the state up-

dating procedures shows the uncalibrated model benefits

the most from the skilled state updating. For the low stage

discrimination (Fig. 9), the hindcasts group themselves

by the type of calibration. This is the same phenomenon

seen in the calibration comparisons, with the updated

and the nonupdated scenarios grouping themselves. The

improvement provided by the initial conditions drops

steeply until the end of day 1. Although the improve-

ment does not drop all the way to zero, it flattens to less

than 0.2 m at 42 h. While the calibration and the state

updating interact with one another, the QPF treatment

has little influence upon the value of the state updating,

as there is little distinction between the QPF scenarios.

The patterns seen in Figs. 9 and 10 indicate the skill

derived from the initial conditions is independent of the

QPF skill and comparable to the skill derived from a good

calibration. For the low stages, the calibration provides

slightly more improvement (0.7 m) to the 6-h lead time

than the state updating (0.45 m); however, for the high

stages, the calibration and the state updating bring an

equal amount of improvement (0.9 m) to the 6-h lead time.

For the high stage reliability, the pattern of improvement

is the same, but the magnitude is less (0.6 m). For the high

stage discrimination (see Fig. 10), the same pattern is ap-

parent. The way the scenarios are grouped, by calibration

not by QPF, indicates a good state updating scheme, and a

good calibration can provide similar skill to the hindcasts

through the initial conditions.

f. Hindcast skill from QPF

For the low stage discrimination (Fig. 11), the type of

QPF makes little difference to the hindcasts; the im-

provement to the RMSE due to improving the QPF

stays below 0.1 m for all the scenarios and only reaches

0.1 m in day 3. This is much less than the minimum 0.3-m

improvement provided by the calibration and the state

updating in the early lead times. The nonlinear inter-

action of the meteorological and hydrologic errors is,

again, visible in these comparisons. Changing the QPF

from the zero QPF to the real QPF results in near-zero

change in the RMSE of the calibrated model. On the

other hand, in the case of uncalibrated model, improv-

ing the QPF from the zero QPF scenario to either the

real or the perfect QPF actually harms the hindcast

RMSE (improvement of 20.37 m) at hour 30. These

rises and falls can be traced to the changes in the

FIG. 8. Same as Fig. 6, but for reliability statistics for high

stage events.
FIG. 9. Differences between state updating scenarios, discrimination

statistics for low stage events. Refer to Table 3 for scenarios.
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forecast variance, as the uncalibrated model responds

too strongly to the nonzero QPF where previously the

zero QPF had mitigated this tendency. The same pat-

tern is visible in the low stage reliability statistics,

though it is muted.

For the high stage discrimination (Fig. 12), the QPF

plays a central role in the success of the hindcasts, with

all the scenarios showing improvements due to im-

proved QPF. Like the low stages, the QPF improve-

ment does not depend upon the initial conditions, as all

the scenarios begin near zero for the first lead time. It is

worth noting that the comparisons between the real

QPF and the zero QPF scenarios fall toward zero after

24 h for the calibrated model [see comparisons (Z-NV-C,

R-NV-C) and (Z-V-C, R-V-C)]. These comparisons fall

toward zero because the QPF is zero after 24 h in the

real QPF scenario. This fall confirms the importance of

the modeled QPF to the forecast skill. The transition to

the perfect QPF shows the large potential improvement

possible from improving the QPF.

While the improvement to the discrimination skill

from the three QPF scenarios was similar for the cali-

brated and uncalibrated models, the improvement to the

high stage reliability (Fig. 13) shows marked differences

between the calibrated and the uncalibrated results. For

the calibrated high stages, switching between the QPF

types makes no change to the hindcast reliability for the

first 18 h. After 18 h switching to perfect QPF improves

the hindcast reliability but switching from the zero to

real QPF causes a negative change. That is, when switch-

ing to a more skillful QPF scenario, the skill of the un-

calibrated model falls, again demonstrating the com-

plexity of the interaction between the hydrologic and

meteorological errors. In addition, these results show

the importance of a good calibration. A good cali-

bration ensures the forecasts will improve as the QPF

FIG. 10. Same as Fig. 9, but for high stage events.

FIG. 11. Differences between QPF scenarios, discrimination

statistics for low stage events. Comparisons of scenarios

DRMSE(RVC,PVC), DRMSE(RNVC,PNVC); DRMSE(ZVC,PVC),

DRMSE(ZNVC,PNVC); DRMSE(ZVC,PVC), DRMSE(ZNVC,

PNVC); and scenarios with DRMSE(RVU,PVU), DRMSE(RNVU,

PNVU); DRMSE(ZVU,PVU), DRMSE(ZNVU,PNVU); and

DRMSE(ZVU,PVU), DRMSE(ZNVU,PNVU). Refer to Table 4.

FIG. 12. Same as Fig. 11, but for high stage events and

DRMSE(ZVU,RVU) and DRMSE(ZNVU,RNVU) instead of

DRMSE(ZVU,PVU) and DRMSE(ZNVU,PNVU).

FIG. 13. Same as 12, but for reliability statistics.

516 J O U R N A L O F H Y D R O M E T E O R O L O G Y VOLUME 10



skill improves, validating the consistent drive by hy-

drologic forecasters to calibrate their models.

g. Hindcast sample sizes

The sample sizes can be used to assess the uncertainty

in the computed metrics. The low stage category sample

sizes for both discrimination and reliability are all above

7500 samples at each time step. Even though there is

serial correlation between the samples, this large num-

ber of samples provides confidence to the low stage

metrics. The high stage metrics, on the other hand, are

computed from many fewer samples. For the discrimi-

nation metrics, the sample sizes for each time step are

all greater than 39 samples. The reliability sample sizes

(Figs. 14 and 15) vary from reasonably high (400) to

very small (5). Clearly, there is much greater uncer-

tainty associated with the high stage category metrics.

Several experiments were conducted with changes to

the threshold between the high and low stages. The

ordering and patterns seen in the metrics remained

consistent. It seems reasonable, therefore, to believe the

ordering from the comparisons, though the absolute

magnitudes of the metrics may be uncertain. The higher

stage threshold was used in this presentation because

the primary purpose of any operational hydrologic

service is flood forecasting; therefore, it is the high

stages that are critical.

4. Discussion

a. Hindcast skill and the forecast process

The role of the three forecast process elements in

contributing to the skill of the hindcasts changes with

lead time and with the type of skill being measured. For

the very short lead times (18 h or fewer), the discrimi-

nation skill for both the high and the low stages is

controlled by the initial conditions (Figs. 7, 9, and 10).

Good initial conditions can be derived from a good

calibration or from effective state updating procedures.

While improved initial conditions lead to improved

hindcasts, these improvements are limited to the first

few time steps when the initial conditions can influence

the skill of the forecasts. In addition, the initial states

control the forecast skill at these short lead times irre-

spective of the QPF and the calibration, indicating it is

possible to take advantage of good initial conditions

even with the present QPF skill and without extensive

model calibration. For the poorly calibrated model, the

state updating provides greater benefit because there is

more error to be corrected. The duration of the im-

provement continues for longer with the poorly cali-

brated model as well, again, because the well-calibrated

model requires less correction.

At the longer lead times, uncertain meteorological

input is the largest source of uncertainty in the hindcast

discrimination skill. This can be seen in the large

FIG. 14. Sample sizes of calibrated parameter scenarios for high

stage reliability statistics. Same scenarios as for Fig. 2.

FIG. 15. Same as Fig. 14, but for a priori parameter scenarios.

TABLE 6. The actual QPF compared to the zero QPF for the three hindcast basins.

(mm)

ME by

obs (mm)

RMSE by

obs (mm)

ME by

fcst (mm)

RMSE by

fcst (mm)

Samples by obs

(No. samples)

Samples by fcst

(No. samples)

Actual QPF #25 0.2 2.5 0.1 3.0 31 800 31 920

Zero QPF #25 20.7 2.6 20.7 3.5 31 800 31 946

Actual QPF .25 222.8 25.7 15.5 20.3 146 26

Zero QPF .25 233.2 34.7 NA NA 146 NA
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differences between the perfect and the real QPF sce-

narios (Figs. 4 and 12) and at the same time the much

smaller differences between the well-calibrated and

uncalibrated models when using zero or real QPF (Fig.

7). Although the QPF is the largest source of error in

the hindcasts at the longer lead times for the high stage

discrimination skill, the control of the forecast skill is

not limited to the QPF but rather a mix of the QPF and

the calibration. Neither one of them controls the skill

independently of the other; therefore, no assumption

can be made with respect to the likely result in the

discrimination skill when changes are made to one or

the other. Improving the calibration may have little

influence upon the forecast skill if the QPF has little

skill, as was seen in the calibration comparisons for the

zero QPF scenarios (Fig. 7). At the same time, im-

proving the QPF may degrade the forecasts if the cali-

bration is biased; this bias is accounting for errors in the

QPF, as was seen in the QPF comparisons for the

transition from the zero QPF to the real QPF (Fig. 12).

This interaction between the hydrologic and the mete-

orological errors is the same phenomenon noted by

Krzysztofowicz (1999) when he found the common no-

tion that the hydrologic and meteorological errors are

additive was false.

Model calibration and improved hydrologic process

modeling have been the traditional focus for improving

forecast skill. Similar to the Shi et al. (2008) study, the

results here indicate hydrologic model accuracy (derived

via model calibration or improved process descriptions)

may not improve hydrologic forecast skill on small head-

water basins, as is usually expected. Rather, ensemble

techniques used to capture precipitation uncertainty (e.g.,

Schaake et al. 2007) may be more likely to yield improved

forecast skill. It is important to note though, while the

present day QPF skill limits the improvement possible in

the hindcasts as a result of improving the model calibra-

tions, this does not mean calibration is not an essential

element of the hydrologic forecast model implementa-

tion. In these hindcasts, improving the QPF improved the

hindcast discrimination skill most with a well-calibrated

model. In addition, the reliability skill is controlled by

the calibration, indicating an accurate, well-calibrated

hydrologic model is an important foundation for a skillful

hydrologic forecast system.

b. Implications for hydrologic verification

The analysis presented here also provides some di-

rection for the integration of verification analyses with

real-time forecasting. Using simple comparisons of

forecasts combined with analysis of the input forecasts

can be used to establish objective insight into the sources

of forecast skill and error. Therefore, storing a persis-

tence baseline and the perfect QPF simulation without

state updating will provide substantial objective infor-

mation to support operational forecasters. The persis-

tence forecast will provide an objective baseline for

minimum forecast performance, while the perfect QPF

simulation allows the forecast verifier to distinguish

between model calibration error and error in the initial

conditions or the QPF, depending upon the lead time. A

well-performing forecast system will show better skill

than persistence at all lead times. If the perfect QPF

simulation for the high stages is not as good as the

persistence, this indicates there is a problem with the

calibration. At the short lead times, the discrimination

skill of the actual forecasts should be better than the

perfect QPF scenario for the high and the low stages. If

the early periods of the actual forecasts are not better

than the perfect QPF simulation, then the initial state

updating is not adding much skill. If the initial state

updating does not add much skill, it may be the result of

having a good calibration, or a poor state updating

procedure. Comparisons to the persistence or reliability

metrics can be used to determine which is the case. If

the initial state updating adds substantial skill to the

forecasts, then it is likely the model calibration could be

improved. As the initial conditions become less influ-

ential and the QPF becomes important, the discrimi-

nation statistics for the actual forecasts will perform less

well than the perfect QPF scenario. At the longer lead

times, the magnitude of the difference between the

metrics for the forecasts and the perfect QPF scenario

is an indicator of the size of the error caused by erro-

neous QPF. The insight from these types of simple

comparisons can provide the means for hydrologists to

TABLE 7. NPVU QPF statistics and the QPF statistics for the three hindcast basins.

Category

(mm)

ME

by obs

(mm)

RMSE

by obs

(mm)

ME

by fcst

(mm)

RMSE

by fcst

(mm) FAR POD

National #25 0.1 2.4 0.1 2.4 — —

Hindcast basins #25 0.2 2.5 0.1 3.0 — —

National .25 224.7 29.1 16.0 23.0 0.76 0.10

Hindcast basins .25 222.8 25.7 15.5 20.3 0.77 0.04
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expand the objective description of the forecast skill

beyond the precipitation-driven headwaters studied

here.

5. Conclusions

From this hindcast experiment, several fundamental

elements of a hydrologic forecast verification process

can be defined.

d First, sorting forecasts into appropriate subsets is a

necessary and effective means of determining ele-

ments of the forecast skill. Different methods of sort-

ing expose different characteristics of the forecasts.
d Second, to support effective error analysis, both con-

trol and unskilled baseline forecasts are required to

make the verification meaningful. Without these ad-

ditional forecasts, there is not sufficient background

information to determine sources of error or skill.
d Third, it is essential that all the input forecasts to the

system are verified alongside the hydrologic forecasts.

This requirement is likely to become more important

as verification analyses move downstream into more

complex basin configurations where reservoir outflow

forecasts will have a substantial influence on the

forecast skill.
d Fourth, and perhaps most importantly, hydrologists

need to do more studies like this one. This initial study

provides only a start on the larger project of devel-

oping an objective description of hydrologic forecast

skill. Analysis of the error at downstream forecast lo-

cations (nonheadwater locations) is important and

requires study as well. Unfortunately, such studies

are hampered by the cost of developing the infra-

structure to compute hindcasts along the length of a

large river across hundreds of basins. However, such

studies are needed if a complete understanding of

the hydrologic forecast process is to be established.

Developing an objective and comprehensive under-

standing of the forecast error and skill sources is an

essential step toward improving hydrologic forecasts.

Well-designed verification systems that include analysis

procedures, such as the one illustrated here, are at the

center of developing this comprehensive understanding.
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