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Abstract

Structural and functional connectomes are emerging as important instruments in the study of

normal brain function and in the development of new biomarkers for a variety of brain disorders.

In contrast to single-network studies that presently dominate the (non-connectome) network

literature, connectome analyses typically examine groups of empirical networks and then compare

these against standard (stochastic) network models. Current practice in connectome studies is to

employ stochastic network models derived from social science and engineering contexts as the

basis for the comparison. However, these are not necessarily best suited for the analysis of

connectomes, which often contain groups of very closely related networks, such as occurs with a

set of controls or a set of patients with a specific disorder. This paper studies important extensions

of standard stochastic models that make them better adapted for analysis of connectomes, and

develops new statistical fitting methodologies that account for inter-subject variations. The

extensions explicitly incorporate geometric information about a network based on distances and

inter/intra hemispherical asymmetries (to supplement ordinary degree-distribution information),

and utilize a stochastic choice of networks' density levels (for fixed threshold networks) to better

capture the variance in average connectivity among subjects. The new statistical tools introduced

here allow one to compare groups of networks by matching both their average characteristics and

the variations among them. A notable finding is that connectomes have high “smallworldness”

beyond that arising from geometric and degree considerations alone.
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Introduction

The study of the empirical brain networks has taken great strides in recent years, allowing

analysis of the brain “system” with its complex interconnections. The construction of the

brain networks, or connectomes, from clinical MR data is becoming commonly available

and is providing both deep insights into the functioning of the human brain and also into the

differences between normal and abnormal (diseased or injured) brains. (Bullmore and

Sporns 2009, Sporns 2011).

The foundations of these approaches have been largely based on techniques developed in the

social sciences and engineering, in particular for networks of people or computer networks

(Albert et. al. 1999, Watts 2004, Jackson 2010), as well as applications in biological and

biochemical networks (Jeong et. al. 2001). In these settings one typically has only a single,

very large network (or several related but fundamentally different networks) to analyze,

which has led to the development of very powerful approaches in those settings (Newman

2003).

However, current study of groups of brain networks requires different tools. Here, one often

has groups of closely related networks wherein although the exact edges may differ from

subject to subject, nonetheless the number and basic attributes of nodes remain comparable

between subjects. This comparability of nodes between different networks allows for a

variety of new types of analyses and models, including the construction of detailed

geometric properties of the network.

This consideration also allows one to view a group of networks from a distributional sense –

for example, one can ask what is the distribution of networks for a population of subjects of

a certain type, such as controls or those with a specific disorder or injury. In many instances,

understanding the entire distribution is in fact crucial, as simple averages may sometimes

conceal critical information (as noted but not formalized in Simpson et. al. 2012). For

instance, a recent paper analyzing structural connectomes in subjects with agenesis of the

corpus callosum (AgCC) revealed that a key difference between the AgCC subjects and the

controls was that the AgCC patients exhibited higher inter-subject variability in their

networks (Owen et. al. 2012).

In order to understand these distributions of networks, an underlying stochastic network

model is commonly assumed in brain network studies. The choice of underlying model

figures implicitly in the design of network measures. For example, computations of

modularity and the clustering of nodes in a connectome typically employ a definition of

“modularity” that is inherently based on the assumption of an underlying Degree-Distributed

stochastic network, since it “weights” edges based on the degree of the nodes that it

connects (e.g. if two nodes are both of high degree then an edge between them is not as

“informative” as an edge between two low-degree nodes, which is in some sense less likely
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to arise by chance (Girvan and Newman 2002)). The choice of underlying model also

figures prominently in computing the significance of a network measure. For example, the

“smallworldness” of a network is often compared to the smallworldness of a matched

random network (Sporns and Zwi 2004). The choice of such a comparison network can

prove to be crucial. For example, for resting state fMRI networks, the smallworldness of the

two most popular random network models -- the Erdos-Renyi model and the Degree

Distributed random model -- typically differ by a factor of 2 on empirical brain networks

(Newman 2009). Alternatives include choosing the average or median consensus network or

a single representative one (Simpson et. al. 2011). As well discussed in Simpson et. al.

(2012) there are many more examples exposing the importance of the underlying model

network, ranging from their use as null networks as discussed above, to modularity analyses

(Joyce et al., 2010; Meunier et al., 2009a,b; Valencia et al., 2009), to representing an

individual's network based on several experimental runs (Zuo et al., 2011), to visualization

tools (Song et al., 2009; Zuo et al., 2011), to their ability to assess a group of networks

(Achard et al., 2006), to identifying hub/node types (Joyce et al., 2010), to constructing

representative networks for brain dynamics studies (Jirsa et al., 2010). Additional examples

for modularity include Expert et. al. (2012), Bassett et. al. (2013) and Henderson and

Robinson (2013).

The goal of modeling a group of networks, as in this paper, does affect our choices for

analysis. The goal is to have a stochastic model that generates networks that “fits the entire

group of networks” and is constructed to match basic network properties, such as degree

distribution or geometry. This is in stark contrast to random network models that try to fit

network measures, such as implemented by Vertes et. al. (2013) or Simpson et. al. (2011)

which consider classes of random networks and then fit them to the empirical measures –

while these can provide deep insights into the structure of the empirical networks, they do

not provide simple intuitive models for comparison.

To see this point more clearly, consider the work by Vertes et. al. (2013) which considers

similar stochastic network models to those in this paper. While there are important

differences in the models such as the use of preferential attachment terms in their models

and inter/intra-hemispheric terms in ours, the differences in implementation are more

significant. They choose important parameters in their models (such as those for the distance

and preferential attachment terms) by maximizing an energy function that tries to match the

mean of the subjects' global network measures (efficiency, clustering and modularity) to

those of the stochastic networks. (Note that their models use the variability in network

measures to scale the energy function but do not match the variability of these measures, as

we do below.) This generates a network that fits the means of the data closely, but because

of the complex nonlinear interactions between the parameters and the network measures can

lead to networks with different parameters than would have been attained by directly fitting

to the baseline network information. For example, the distribution of edge lengths in their

models often differ significantly from the empirical distribution as seen clearly in their

figures.

To see why this arises, consider a simple stochastic network model in which the probability

of an edge between two nodes is given by a function of the distance between those two
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nodes. Clearly one could find a distance function that differs significantly from the true one

that yields the same specified clustering coefficient. Similarly, one could likely fit the

random networks to exactly match the small-worldness of the empirical networks, but then

one cannot discuss the excess small-worldness (as we do later in this paper). In addition,

standard random network modeling, such as that typically used for degree distributions

(wherein each empirical network is individually matched to one or several random networks

with the exact same degree distribution) differs significantly from our approach as this is in

some sense over-fitting and only generates networks that have the exact degree distribution

of one of the empirical networks (Newman 2009), while one would expect that a new

subject would not exactly match the degree distribution of one of the existing networks.

(One could see this statistically using standard cross-validation techniques, such as the well

know leave-one-out cross-validation.)

Another key difference between connectomes and most traditional network models is that

nodes in connectomes have a physical location. This is extremely important as connections

between different areas of the brain definitively depend upon relative location, particularly

the distance between various regions (Scannel 1999, Kaiser and Hilgetag 2004a,b, Sporns et

al. 2004). As we will show, the use of such geometric information appears to be important in

the development of good generative models, as was suggested by Expert et al. (2011),

applied in Vertes et. al. (2013) and motivated by the analysis in Alexander-Bloch (2013).

Figure 1 (which will be explained more fully later), previews the various stochastic network

models (both traditional ones and newer ones incorporating geometric information) that will

be considered and compared in this paper.

An additional important aspect in the study of connectomes is the choice of threshold type

and value, as both fMRI and dMRI generate continuous valued matrices that are then

thresholded to create a binary matrix representing the network, where the network density is

determined by the threshold value which can be chosen for fixed density (every network has

exactly the same density) or variable density (every network uses the same threshold). While

we do not directly analyze the optimal choice of threshold type and value (if there indeed is

one; see van Wijk et al. 2010), we do consider the effects of such a threshold on the

distribution of generated networks. Note that, as discussed in van Wijk et. al. (2010), while

fixed threshold networks may be superior in certain settings to fixed density networks, they

are also more difficult to analyze due to the effects of the density variations on network

measures; however we believe that the use of appropriate null networks can mitigate these

difficulties. We also note that recent work has also considered using weights directly in the

network analysis and not thresholding the data (e.g.,Rubinov et al. 2011 and Liu et al. 2013).

Alternatively, one can treat “multiple thresholds simultaneously” (Ginestet et al. 20110;

Bassett et al. 2012).

One important but unrecognized consequence of applying a fixed threshold to all the

empirical networks in the group is that it leads to wide variations in their densities, which, as

we show later, well exceed those appearing in standard stochastic network models.

Accordingly, we will demonstrate that in order to effectively capture the variability found in

real connectome studies, one needs to allow density to vary in the underlying stochastic

network models. (See Figure 2)
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In this paper, we take a principled empirical approach towards these issues. We compare a

variety of stochastic network models on both functional and structural brain networks to

understand which of the standard network metrics are well captured and which are not and

how to design models that better capture these properties of connectome data. In addition,

we extend some traditional statistical methods so as to quantify and illuminate the variation

in these groups of networks. Towards this end, we develop a novel, natural distributional

measure that encompasses the observed variation of networks, and implement an exact

nonparametric test, Cross-match (Rosenbaum 2005), which allows one to evaluate the

closeness of two groups of networks.

To reiterate, our analysis demonstrates the effectiveness of combining geometric

information with degree-distribution information when constructing generative models of

empirical brain networks. Moreover, we introduce novel statistical tools that provide a way

of comparing network by matching not only their averages but also their variations. We

discuss several interesting properties (and differences) between functional and structural

brain networks revealed by our analysis.

Closely Related Work

Recent work by Alexander-Bloch et. al. (2013) incorporates geometric distance information

in brain network analyses and thus provides an underpinning for our approach. Others have

taken complementary approaches: As discussed in (Simpson et.al. 2011), these include

various empirical approaches such as taking either the mean of the network (which will

correspond to a “matched ER model” in our language) or taking a simple representative

network (which discards a large amount of important statistical information). Another

approach (Simpson 2011,2012) considers the class of p* network models, in which one

constructs a distribution of networks that correspond to the group of empirical networks on

specified network measures, such as degree or clustering coefficient. This allows one to

construct an (admittedly ad-hoc) distribution over networks which, though it has many

useful applications (Achard et al., 2006; Joyce et al., 2010; Jirsa et al., 2010; Meunier et al.,

2009a,b; Song et al., 2009; Valencia et al., 2009; Zuo et al., 2011), nonetheless provides less

intuition and understanding of the network structure than our geometric and degree based

models.

There has been much work on the basic geometric properties of brain connections. One key

insight into the physical structure of the connections arises from the metabolic costs of long

range functional and structural connections in the brain (Attwell and Laughlin SB 2001,

Niven and Laughlin 2008) and related work which has shown that the geometric structure of

these connections balances out cost minimization with robustness and computational ability

(Kaiser M, Hilgetag 2006, Chen et. al. 2006, Bassett et. al. 2008 and 2010, Bullmore and

Sporns 2012). This can be seen in other animals ranging from humans to C. Elegans (Bassett

2008, Itzhack and Louzoun 2010, Bullmore and Sporns 2012). It can also be seen in

development, as human children appear to have more local connections than adults (Fair et.

al. 2009) and task dependence, as increased cognitive effort appeared to increase long

distance functional connections (Kitzbichler et. al. 2011).
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In addition, these properties are often disrupted by brain disorders, such as schizophrenia

(Bassett et. al. 2010) and Alzheimer's disease (Liu et. al. 2013), with an increase in long-

range connections in the former and a loss of them in the latter among other changes.

These geometric insights can also be used to create sophisticated, but abstract models that

capture key properties of brain networks (Henderson and Robinson 2013) or deep insights

into the underlying structure of these networks (Vertes et. al. 2012).

Methods

Subjects

We recruited 40 right-handed healthy controls (mean age 28.1+-8.8 years; 27 males and 13

females). Written informed consent was obtained from all participants and/or their legal

guardians under a study protocol approved by the institutional review board at UCSF

medical center.

Image Acquisition

MR imaging was performed on a 3T EXCITE MR scanner (GE Healthcare, Waukesha, WI,

USA) using an 8-channel head phased-array radio-frequency head coil. High-resolution

structural MR imaging of the brain was performed with an axial 3D inversion recovery fast

spoiled gradient-recalled-echo T1-weighted sequence (TE =1.5 ms, TR = 6.3 ms, TI=400

ms, flip angle of 15°) with a 230 mm FOV, and one hundred fifty-six 1.0 mm contiguous

partitions at a 256×256 matrix. Structural MR images of all subjects were interpreted by an

attending neuroradiologist certified by the American Board of Radiology.

Whole-brain diffusion was performed with a multislice 2D single-shot spin-echo echo-

planar sequence with 55 diffusion-encoding directions, the array spatial sensitivity encoding

technique for parallel imaging with a reduction factor of 2, a diffusion-weighting strength of

b = 1000 s/mm2; TR/TE=14,000/63 ms; NEX=1; interleaved 1.8-mm axial sections with no

gap; in-plane resolution of 1.8 × 1.8 mm with a 128×128 matrix; and a field of view of 230

mm. An additional image set was acquired with minimal diffusion weighting (b =10 s/mm2).

The total acquisition time for diffusion imaging was 13 minutes.

A 7 minute BOLD fMRI multislice gradient echo echoplanar acquisition used a FOV 22×22

cm, 64×64 matrix, 4 mm interleaved slices with no gaps, and repetition time (TR) of 2 sec

and echo time (TE) of 28 msec. After 10 dummy volumes to reach equilibrium longitudinal

magnetization, 200 volumes were collected with the subject's eyes closed to minimize

exogenous visual activation and with instructions to remain awake.

Connectome Construction

Structural Connectome—The data were preprocessed using tools from FSL (Jenkinson

et. al. 2012) including eddy and motion correction, brain extraction, and calculation of

fractional anisotropy (FA) maps. The T1-weighted MR images were automatically

segmented using FreeSurfer 5.1.0 (Fischl et al., 2004) resulting in 68 cortical regions, 34 per

hemisphere, and 14 subcortical regions, 7 per hemisphere. These 82 regions represent the

nodes of the network and were used as the seeds for the probabilistic fiber tractography
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performed with probtrack×2 (Behrens et al, 2007). The tractography results from each of the

82 seeds were masked by each of the other 81 regions, referred to as targets, and then the

number of streamlines was summed across voxels obtaining a connection strength between

each seed and target pair. This measure of connection strength was then divided by the total

number of voxels in the seed and target regions to account for differences in volume

between the various cortical and subcortical regions (Owen et. al. 2012, Li et. al. 2012).

Since tractography cannot determine directionality due to the antipodal symmetry of

diffusion imaging, the normalized connection strength between each seed and target pair in

both directions was summed and the connection strength of a seed with itself was set to zero.

The resulting connection matrix is a symmetric matrix and yields an undirected connectome

for each control. A more detailed description of the pipeline can be found in Owen et al.

(2012,2013).

Functional Connectome—All pre-processing for the fMRI data was performed with

FSL tools. Motion correction was applied by registering each fMRI volume with the median

volume with six degrees of freedom. Brain extraction was performed and the fMRI image of

each subject was first registered to the same subject's T1-weighted image, then the T1-

weighted image was registered to the MNI152 2mm standard template. The transformation

in the latter step was then applied to the registered fMRI image in the first step to obtain the

fMRI images registered to the MNI152 atlas space. Spatial smoothing was applied by

spatially convolving each fMRI volume with a 5×5×5mm Gaussian kernel. Band-pass

filtering was applied to each voxel time series with the pass band between 0.01 to 0.125Hz.

T1-weighted image of each subject was segmented to obtain the masks for white matter and

cerebrospinal fluid (CSF). The masks of the two regions were inverse-registered to the fMRI

data to extract the mean time series in those three regions in fMRI. A linear regression was

applied to the fMRI time series at each voxel to regress out a constant baseline, a linear

trend, the six motion parameters from motion correction, and the two mean time series from

white matter and CSF. The residual time series were then masked by the 116 regions in the

Automatic Anatomic Labeling (AAL) atlas (Tzourio-Mazoyer et. al. 2002) and the mean

time course was calculated for each region. The Pearson's correlation coefficient was

calculated between each pair of regions and the correlation was taken as the strength of

functional connectivity. As in the structural connectomes, the resulting networks are

undirected and the correlation of a region with itself was set to zero.

Two types of networks were constructed. For the “fixed threshold” networks a common

threshold was set for each type of network, one for all functional networks and a different

one for all structural networks, while for the “fixed density” networks individualized

thresholds (i.e., one for each individual network) was chosen. These thresholds are then used

to binarize the networks, retaining edges for any correlation/weight above that threshold. For

convenience, we will discuss networks where the thresholds chosen so that the average

degree is 9 for the FNs and 8 for the SNs, which correspond to average density ratios of

(9/89) = 0.101 and (8/81)= 0.099 respectively. Our qualitative results are unchanged under

the standard density ratios that appear in the literature, 0.05-0.3, which give rise to well

connected but reasonably sparse networks, and to simplify the presentation we focus on the

given density ratio. (Note that for ratios outside this range many of the standard network
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measures are not particularly informative.) In addition, we will discuss functional networks

without the cerebellar regions as is common; however, including the cerebellar regions did

not significantly change any of the results.

Network Measures

We consider a variety of common network measures. Some are global, with a single value

for each network, while others are node based, with a potentially different value for each

node in each network. For node-based metrics we report the mean (over nodes in a specific

network) and two important measures of variation: the standard deviation (sd) and the

quintile score (qui), the latter serving to capture the existence of “heavy tails” or the extent

to which the nodal distribution adheres to the so-called 80:20 rule (Newman 2005). The

quintile score is the sum of the values of the measure for the top 20% of the nodes divided

by the sum over all the nodes. Thus, in a heavy tailed case where the top 20% of the nodes

contain 80% of the measures the quintile score is 0.8, while if the distribution is less skewed

with the top 20% of the nodes containing 20% of the measures the quintile score is 0.2. For

example, if there are 10 nodes with degree 1,2,3,…,9,10, the top two nodes have degree 9

and 10, and contain (9+10)/(1+2+…+10)=0.35 which is far less than 80%, so this

distribution is not heavy tailed, while the distribution 1,1,1, …,1,100 is heavy tailed with a

quintile score close to 1.

The specific network measures used in this paper to assess and summarize the individual

and consensus connectomes include: (1) fraction of nodes in the giant component (GIANT),

(2) nodal degrees (DEG), (3) diameter (DIAM), (4) average path length (APL), (5) global

efficiency (GEFF), (6) clustering coefficient (CLUST), (7) local efficiency (LEFF), (8)

smallworldness (SW), (9) Girvan Newman modularity (MOD), and (10) betweeness

centrality (CEN). The reader is referred to Rubinov and Sporns (2010) for a comprehensive

discussion of these network metrics and their significance. The mean and standard deviation

are calculated across the individuals for each network metric for both the functional and

structural networks. Note that this is done for all network metrics discussed above, including

dispersion statistics over nodes, e.g. the variance (over subjects) of the variance of degree

(over nodes).

Stochastic Network Models

In the following analysis we consider a variety of stochastic network models. The first of

these (#1-3 below) are standard models commonly used in connectome analyses, while the

remaining models (#4-7) are motivated by the insights of Expert et al. (2011), Alexander-

Bloch (2013) and represent novel extensions that capture geometric information about the

network. They are:

1. The Erdos-Renyi model (ER) takes the average density measure of the networks in

the group, p, as the key parameter. It then generates each edge in the network

randomly with probability p.

2. The Consensus model (CON) is a probabilistic consensus where the probability of

an edge between a given pair of nodes is chosen to be the empirical probability in

the original group for that pair. Note that this captures the edge probabilities
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exactly but ignores correlations between edges. Nonetheless, one would expect this

to provide an excellent fit for groups with small inter-network variations.

3. The Degree Distributed model (DD) creates a vector of degrees, where DEG(i) is

the average degree (number of edges) for node i. It then constructs an edge between

nodes i and j with probability min(q*DEG(i)*DEG(j), 1) where q is a normalization

factor chosen so that the expected density of the network will be the same as the

average density for the group. For the networks studied in the paper, this model

creates networks where the average degree of each node is very close to the

empirical average for the group at every node, something that has been shown to be

extremely important in many models of real world networks (Newman 2009).

(Note however that they are only approximately equal.)

4. The Geometric model (Geo) estimates the probability of edges between two nodes

as a function of their (Euclidean) distance, f(d(i,j)) for some function f(d) where

d(i,j) is the distance between nodes i and j. In analysis that follows, the function

f(d) was computed by dividing the set of distances into 36 equal sized bins which

provides a middle ground between accuracy and robustness due to small sample

sizes.

5. The Geometric Hemisphere Models (GeoH) are computed similarly to the GEO

models except the function f(d) is estimated separately for inter-hemispheric node

pairs and intra-hemispheric pairs. This attempts to capture important structural

effects, such as the effect of the corpus callosum on edge formation in the

developing brain.

6. The Geometric Degree Distributed model (GDD) combines the GEO model's

distance-based modeling with the DD model's degree-based modeling, which is

expected to be important in some contexts (Expert et al. 2011) and seems natural

for connectomes. This model has a similar weakness as the DD model, where one

can get an incorrect density ratio. Unfortunately, on the empirical connectome data,

this problem is significant (due to the stratification by distances) leading to

noticeably reduced density ratios. To remedy this we developed the following

model (#7):

7. The Normalized Geometric Degree Distributed model (NGDD) which computes

the same probabilistic adjacency matrix as in the GDD but then rescales and

truncates this matrix so that is has the correct density. (Algorithmically, one

repeatedly multiplies the matrix by 1.01 and then truncates until the density is

within 1% of its desired value.)

See Figure 1 for illustrative examples that highlight some of the differences of the above

network models.

Note that our stochastic models are constructed from the entire group of networks and not

specifically for each network individually as is commonly done when matching exact degree

distributions using double edge swaps (Newman 2009). Using such individualized

approaches are often powerful and easy to implement, but are difficult to interpret as a

stochastic distribution over networks. For example, matching exact degree distributions
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using double edges swaps least to a stochastic model that only generates sets of degrees that

exactly match one of the previously seen sets; however, one would expect different sets of

degrees to arise if additional subjects were added a zero probability event in that model, but

not unlikely in the class of models we use.

Importantly, as hinted at previously and as we shall discuss in more detail later, it turns out

that all these models display far less variability than found in the actual empirical

connectome data sets, specifically, the variability of the density ratio for the fixed threshold

networks. This observed discrepancy is critical. However, we demonstrate how to

effectively treat it by introducing a randomly chosen density ratio into each of the above

stochastic network models: In particular, we first compute the empirical density ratio of the

given group of networks and then for each network that we randomly generate we rescale it

to have the chosen density ratio. We denote the variable-density versions of the above

models with a V at the end of their acronym, e.g. ER becomes ER_V and GDD becomes

GDD_V. (See Figure 2 for an illustration of this.)

For the analysis, we fit the parameters of each model to the average parameter of the data

(groups of functional networks or structural networks) and then generate 40 networks at

random from the model. This group of networks is then compared to the empirical group of

networks. Note that unlike p* modeling (Simpson et al. 2011 and 2012) and the “energy

maximization” approach in Vertes et. al. (2013), we directly fit the models based on the

basic properties, including density, average degree distribution and distance between nodes,

and not on more complex network measures, such as average path length or clustering

coefficient. This is perhaps more natural, but also avoids over-fitting, as the evaluative

measures differ from those used for fitting.

Statistics over Groups of Networks

In order to compare a pair of networks, we compute the normalized Hamming distance,

which is the total number of edges that are in one network but not the other divided by the

total number of potential edges, which is n(n-1)/2 for a network on n nodes (Banks and

Carley1994). Note that this requires that the two networks have the same set of nodes,

something that does arise in most brain network studies. Note that the concordance between

nodes relies on the reliability of the parcellation into the requisite atlas. For standard

resolution data, ∼100 nodes or so (as used in this paper), this is quite feasible. In addition,

note that this metric is a true metric since it is the (scaled) matrix distance between the two

adjacency matrices for the networks.

While the comparison of two networks is reasonably straightforward, the comparison

between two groups is not. The most well known approaches compare the means or medians

in some way (Simpson et. al. 2011). For example, one can compute the matrix difference

between the averaged adjacency matrix or the Hamming distance between the consensus

matrices for each group. Unfortunately, these measures do not capture the variability with

the groups. In order to do that, we introduce two approaches.

The first is a simple heuristic that captures the basic variability in a natural manner. For a

single group, we consider the average Hamming distance between all pairs of networks in
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the group, and denote this as the “span” of the group. Thus, a group with more variability

will have a larger span. For two different groups, a base group and a secondary group (such

as a comparison between the empirical and a randomly generated functional connectome),

we define the “cross-span” to be the average distance between pairs of networks where one

network is chosen from the base group and the other from the secondary group. If the cross-

span is much larger than the span of the base group, then clearly the secondary group does

not significantly overlap with the base group. Thus, we define the “span-ratio” of the

secondary and base groups to be the ratio of the cross-span to the span (of the base group).

The second approach for quantifying variability of groups of networks is somewhat more

complex algorithmically but allows for statistically rigorous analyses. This is the “cross-

match ratio” and is a nonparametric similarity test of distributions (Rosenbaum 2005), which

can be applied to any groups where one can compute the distance between any pair of

objects in the groups. To compute the cross-match ratio, one considers the union of the

networks in both groups and constructs a matching where all the networks are paired up in a

way that minimizes the sum of the distances between all of the matched pairs. This can be

computed efficiently using Edmond's blossom technique after affine transformation of the

Hamming distances (Edmonds 1965). One then computes the fraction of pairs that cross the

two groups, i.e. when the networks in the pair are not from the same group. One can

compute the distribution of cross-match ratio exactly, under the null hypothesis, since the

pairing is random if the two distributions are identical. This allows one to compute the p-

values of the non-parametric test of identicality of the underlying distribution of groups,

which we will use to rigorously compare groups of networks.

See figure 3 for a graphical explanation of the span-ratio and cross-match statistic for two

examples.

Results

In the following four sections we discuss the network measures (such as average path

lengths or clustering coefficients) for all models except the CON models, which we discuss

separately in the fifth section. We then return to measures over groups of networks, which

use the cross-span ratios and cross-match statistic on the Hamming distances.

We will refer to Figures 4, 5 and 6, which contain the normalized measures for means and

STDs, which allow for easy comparison, since the normalized measures are the ratios of the

specific model measure to that for the data. (e.g. if the mean clustering coefficient for the

data is 0.2 but for the model is 0.4 then we say that the normalized clustering coefficient for

the model is 2.0, which is larger than 1, that maximum value for the un-normalized

clustering coefficient.) We have also included Table 1, which contains the un-normalized

means for the fixed threshold networks and stochastic models to provide a baseline. The full

data tables can be found in the supplementary materials.

Means of Network Measures (Functional Connectomes)

In the following note that the normalized measures (means) for fixed threshold networks are

within 3% of those for the fixed density networks, so to simplify the presentation we will
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focus (in this section) on the fixed threshold networks for discussion as the main results

apply to the other networks.

First, we consider the most basic property of networks, their degree distribution. As seen in

Figure 4 the average degree matches closely (within ∼1%), as expected, since the average

degree is essentially a fitting parameter in the models with the notable exception of the GDD

models, which, as discussed earlier, have some definitional problems that are rectified in the

NGDD (normalized) model. For the higher-order statistics, namely the standard deviation

and quintile score, it is clear that none of the models are fully capturing the true diversity of

nodal degrees of the empirical FNs, since all have smaller standard deviations (∼35%

smaller) and quintile statistics (∼17% smaller) than the actual data. However, observe that

adding either degree distribution information (DD) or geometric information (GEO)

improves the result, and that the combination of the two (NGDD) yields the best match.

Note too that there is little significant difference between the models with fixed density

ratios and those with variable density ratios for matching the means.

One sees similar results for average path length, although in this case the DD models are the

closest, but all have significantly shorter APLs (∼30%) than the functional network data.

This is also true for global efficiency, which is closely related to APL, where the data has

lower GEFF and modularity. This can be seen in the extreme for the clustering coefficient

where the data has a value of about 0.51 while the models all have CLUST less than 0.16,

again with NGDD the highest. Combining these two we see that the smallworldness of the

functional connectome data is approximately 2.5 times larger than any of the models,

providing further strong evidence that functional networks really are small world networks

(Sporns and Zwi 2004).

This is also seen in the distribution of centrality (see the supplementary material) where the

standard deviations are much smaller (∼60%) for all the models, with NGDD again the best;

however, in contrast to the standard deviations, which capture diversity in nodal centralities,

the models do a much better job of capturing the quintile statistic of the metrics (∼20%

smaller), which reflects the extreme nodal centralities.

Means of Network Measures (Structural Connectomes)

As in the previous section, the normalized fixed threshold measures (means) are again

within 3% of the normalized measures for the fixed density networks, so for ease of

presentation we restrict our discussion in this section to the former.

For the structural networks the models appear to capture the means of the network measures

better than for the functional networks as seen in Figure 4. For example, all models, except

the ER models, seem to capture the standard deviations (∼20%) and quintile statistics

(∼7%) of the nodal degrees reasonably well; however, in this case the models that build in

degree distributions explicitly (DD, NGDD) produce too much nodal variability in degree

distributions.

For the average path lengths, the models all underestimate the structural data by about 10%.

Interestingly, the closest fit comes from the GEOH model which is ∼10% larger than the
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GEO model which suggests that the path length structure of the data depends on the physical

hemispheres and the corpus callosum. This advantage of GEOH over GEO is seen in several

other measures.

The models capture the clustering coefficients much better in the structural networks (∼30%

smaller) than in the functional networks (∼70% smaller). In addition, here the importance of

geometry is manifest, as CLUST is about 60% larger in the GEO model than in the DD

model. However, combining the two in the NGDD model yields another 50% increase,

showing the power of incorporating both influences. Combining this with the discussion on

the APLs one sees that much of the smallworldness in the structural network appears to arise

from the geometric structure, a common motivation in the discussion of small-world

networks, going back to Milgram's original experiment and Kleinberg's analysis (Milgram

1967, Kleinberg 2000).

Standard Deviations of Network Measures

Next we consider the standard deviations of the metrics to understand the variability of the

data and the models. Unlike the study of the means, just above, the variable density models

differ significantly from the fixed density models when considering the SDs, as the networks

generated by the fixed density models show far less variability in network measures than the

empirical networks.

Note that we are focusing on the model variations (over different realizations of the random

networks), which we signal by SD as opposed to the standard deviations, by node, which are

specific measures for a single network. Thus, for example, one can consider the SD of the

standard deviation of the nodal degree.

Standard Deviations of Network Measures (Functional Connectomes)

For the nodal distributions of the fixed threshold networks, one can see the advantage of the

variable density models immediately from the average (by node) nodal degree by comparing

the first and second rows in Figure 5. In this case the fixed density models have 80% smaller

SDs than the data, while the variable density models are within about 10% of the data's SD.

However, for the standard deviations and quintile statistics both classes of models are not

very accurate, although the variable density models are better.

For the fixed threshold networks, this pattern repeats for many measures. For example SDs

of the APL are almost 90% smaller for the fixed density models than the data while they are

“only” about 50% smaller for the variable density models. For SDs of CLUST the

comparable numbers are 75% and 45%. Interestingly, these combine so that the comparable

numbers are 80% and 35% for the SDs of smallworldness. Overall, the SDs do not vary

significantly among the variable density models but do vary significantly among the fixed

density models.

For the fixed density networks, as seen in Figure 6, the results are similar to those for the

fixed threshold networks (using fixed density models) with the obvious exception of the

average DEG, since this is 0 for the fixed density networks by construction.
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Standard Deviations of Network Metrics (Structural Connectomes)

For the fixed threshold structural networks the variable density models appear to model the

SDs reasonably well and significantly better than the fixed density models (Figure 5). For

example, the SD of the average degrees for the variable density models are within ∼10% of

the data while the fixed density models differ by ∼80%. Even for the SDs of the standard

deviations and quintile statistics of nodal degree, they are within ∼20% and 1% respectively

compared to ∼70% and ∼30%. The results for SDs of other measures behave similarly, with

the variable density models being much more accurate than the fixed density ones.

Interestingly for the fixed density structural networks some of the models seem to capture

the SDs well (see Figure 6). In particular, the GEOH and the NGDD models are close for

most measures, while the ER is quite inaccurate and the DD only somewhat less so.

Consensus Networks

The consensus networks capture the exact probabilities for every edge without capturing the

correlations. Thus, if the networks in the group do not vary too much then one would expect

the CON model to capture at least the network measures. For the fixed threshold structural

networks and the variable density models (Figure 4, second row) one can see this well as the

CON model captures most of the means accurately, with most within 5% and all within

10%. For the fixed threshold functional connectomes (Figure 4, second row) the CON model

is not nearly as accurate, with errors for the means of measures varying around 50% and

more for most measures. The results are similar for the SDs where the errors for the fixed

threshold structural networks vary from about 0-40% for most measures while those for the

fixed threshold functional networks are mostly from 40-70%. For the fixed density

functional networks the results are similar for the functional networks, while for the

structural networks the fit is similar to that for the variable density models and much better

than that for the fixed density models of the fixed threshold networks (see Figure 6).

Group Metrics

To understand the distribution of the entire group of networks we consider several metrics.

The first is the average (Hamming) distance among the networks in a single group that we

compare to the average (Hamming) distance between the networks in a pair of groups,

where one group arises from the empirical data and the other from a model.

In the following, the results for the fixed threshold networks are quite similar to those for the

fixed density networks, so we focus our discussion on the former.

First, we note that the self-span of the functional network data is about 0.135 while the self-

span for the structural network data is about 0.044, while the self-spans of the models for the

functional networks range from 1.28-1.75 without much difference between the variable

density models and the fixed density ones (see supplementary materials). For the structural

networks the models self-spans range from 0.042-0.174. The self-spans for the models of the

structural networks vary more, ranging from 0.064 (NGDD) to 0.169 (DD_V) and 0.174

(ER_V). Interestingly the cross-spans for the models are all fairly close (<10%) to their self-

spans.
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As seen in Figure 6 the span ratios are minimized for the CON models with values of 1.00 to

two decimal places for both structural and functional groups, with little difference between

the variable and fixed density ratio models. Excluding the CON models the best fits are

shown by the GDD and NGDD models with span ratio of about 1.07 for the functional

network groups and 1.7 for the structural ones. The largest span ratios are for the ER and

DD models with values of about 1.3 for the functional and 3.9 for the structural groups.

For the cross-match statistics, all p-values are <0.001, showing that all of the models

generate groups of 40 networks that are easily distinguished from the subjects' networks.

The CON_V models lead to the smallest t-values (∼2.9 functional and ∼1.8 for structural)

and the CON and CON_V are the only models with any cross-matches at all.

Discussion

Means of Measures

The analysis of the network measures highlights the varying degrees of inaccuracies of all

the well-known stochastic network models as well as the extensions introduced here. In

general though we find that all models tend to capture the network measures for structural

networks much more accurately than the functional networks. In part, this may be due to the

structural networks having less variation, as seen in the strong fit by the consensus model

and the small self-span of the structural data.

However, within these models our findings clearly illustrate the importance of including

both distance and degree distribution information. The importance of incorporating degree

distribution is well known (Newman 2003, 2009), while the importance of geometric

information is less so, as network data sets often do not have geometric information, and

moreover usually one does not have groups of networks on the same set of nodes, which is

fundamental to the analysis.

However, none of the models succeed in capturing the clustering coefficient, which shows

the significance of high clustering coefficients in connectome data, but also highlights a still

unresolved deficiency in that these models are missing this key feature of brain networks.

This is also seen to a lesser extent in the average path lengths. It is tempting to enforce

higher CLUST and longer APLs in the models, but this is problematic. For the former, there

are models which can fit any value of CLUST (Newman 2009) but these are constructed in a

somewhat artificial manner (triangular clusters are explicitly added) that seems to overfit the

data, while for the latter there do not appear to be known techniques (aside from p* models,

discussed elsewhere in this paper) for adjusting the APL of a network model directly.

It is unclear how important it is to accurately model the intra- versus inter-hemispheric

connectivity. For the APLs of the structural networks this appears to be significant, but for

other measures this does not appear to be significant (e.g. Figure 4).

SDs of Network Measures

The SDs of the network measures attempt to capture the variability of brain networks, which

is a fundamental but often overlooked consideration in modeling and analysis. Overall, the
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SDs do not vary significantly among the variable density models but do vary significantly

among the fixed density models. This finding seems to suggest that much of the variability

in measures arises from variability in density ratios, indicating the need to develop models

with more intrinsic variability.

An interesting finding is that the for the fixed density functional networks, the fits for the

SDs are similar to the fixed density models for the fixed threshold functional networks but

for the fixed density structural networks the fits for the SD are similar to the variable density

models for the fixed threshold structural networks

Group Metrics

Recall that the self-span is about 0.135 for the fixed threshold functional networks, 0.044 for

the structural, and ranges from 1.28-1.75 for the models. To understand the significance of

these distances, consider the probability that a randomly chosen edge in one randomly

chosen network exists in another randomly chosen network of the same kind, which can be

computed from the self-span using the mathematical properties of the Hamming distance.

For the structural networks this probability is approximately 0.8; in the functional networks

this probability is approximately 0.35. Thus, the existence of an edge in one structural

network leads one to expect a similar edge in another structural network, but this statement

is not true for functional networks. This helps explain the strong significance of the CON

models for structural networks but their weaker fitting for the functional networks.

It is clear that none of the models generate groups that are close enough to be confused with

the real data under rigorous statistical tests (e.g. cross-match), but nonetheless they provide

reasonable approximations. In particular, the group metrics do show the value of including

degree distribution and geometric information in modeling (and the normalization process

used in extending the GDD model to the NGDD model improves the modeling in several

respects).

Comparing the results from network measures to those from group metrics provides

interesting insights. First, notice that even though the structural networks appear to be more

accurately modeled than the functional ones for the network measures, the group metrics

appear to show the opposite. Essentially, they show that due to the large variability in

subjects' functional networks it is easy to construct models that are close in a relative sense,

whereas the structural networks are so much less variable that any model that doesn't specify

edge probabilities, like the CON model, can be easily distinguished from the data.

This can also be seen clearly in the data ER models, which have a large Hamming distance

but tight network measures. This arises because many network measures depend on the

statistics of the edge distribution, while Hamming distance depends in detail on the actual

edge by edge distributions.

This leads to important questions on how best to model groups of brain networks, and draws

clear the distinction between our approach and those using models which are fitted to the

network measures, like the p* models (Simpson 2011,2012) and those in Vertes et. al.

(2013).
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Fixed density vs. fixed threshold networks

Our analysis included both fixed density and fixed threshold networks as the former is

widely used, while the latter is becoming more popular. For the means of the network

measures, there is very little difference in the evolution of stochastic models for fitting these

as all network measures were within 3% of each other. Similarly, for the group measures the

results for the different thresholding methods are also quite similar. However, the group SDs

did differ between the fixed threshold and fixed density networks, which is surprising in

contrast to the group measures which also depend heavily on variability but did not show

these differences. In particular, for SDs the fixed density structural networks are more

closely fitted by the models than the fixed density functional networks are fitted.

Future Directions

Our findings show many important directions for further study. Clearly, the development of

better stochastic network models is an important first step. Are there natural models that

capture the means and variations of empirical brain networks? Can we extend variable-

density models like those introduced here to include other types of variability, such as

randomized degree distributions? In addition, it would be interesting to combine our models

with the approaches used in p* and energy based models. Would it, for example, be sensible

or advantageous to choose the parameters for the heuristic models to match the network

measures more accurately using the p* approach?

In addition, this work points out the additional need for a better statistical framework for

analyzing groups of networks. Our first approach based on cross-spans appears to be a

reasonable first step, but remains insufficiently precise to fully capture the details of the

comparisons between groups of networks, while the exact statistical approach (the cross-

match ratio) appears to be too precise, pointing out with statistical surety that the groups

generated by the models are distinguishable from the data but failing to provide a good

measure of which models are better.

Conclusions

To summarize, we have shown that random models of both functional and structural

connectomes are improved when geometric information about the network is included

alongside degree distributions. Moreover, to appropriately capture the empirical variability

in the connectome data, one must explicitly incorporate additional variability into the model,

as can be achieved by allowing density variations in the underlying stochastic networks. In

this manner, our analysis underscores the importance of quantifying variability in groups of

connectomes. This explicit analysis of variability is crucial for accurate modeling and should

be included in connectome analyses. Lastly, we note that these new models highlight the

smallworldness intrinsic in these networks, which is not captured even by the combination

of a skewed degree distribution and local geometric structure, both contributors to

smallworldness.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Stochastic Network Models. (a) Illustrative example of a network with local geometric

structure and a skewed degree distribution. Here, all nodes have local edges, while the

middle node's edges (shown darker) include some nonlocal ones. (b) A Matched Erdos

Renyi model (ER) (matched to the network shown in (a)). Note that the ER model loses all

geometric and topological structure, which leading to a lower clustering coefficient

(CLUST). (c) Matched Degree Distributed model (DD) (again, matched to (a)) captures high

degree nodes (e.g., compare the middle nodes in (c) with (a)), but loses geometrical

structure, leading to low CLUST. (d) Geometric model (GEO) captures geometrical

structure but loses high degree nodes; it preserves high CLUST but increases average path

length (APL). (e) Matched Geometric Degree Distributed model (GDD) matches both

geometric structure and high degree nodes but has too few edges. (f) Normalized Geometric

Degree Distributed model (NGDD) provides an excellent match to the original network (a).
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Figure 2.
Effects of variable density random networks. This figure shows heatmaps for connection

matrices for randomly generated Erdos-Renyi networks. The top row (a) contains three

Erdos-Renyi networks with fixed density (p=0.5 -- chosen for visual clarity), while the ones

in the bottom row (b) vary in density from p=0.3 to p=0.7, which is comparable to the 95%

confidence interval for densities in the functional connectomes. Note in particular that the

variance in density in the fixed density networks (top row) due to random variation is

significantly smaller: the 95% confidence interval is about [0.45,0.55].
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Figure 3.
Schematic for group statistics. Filled disks represent single networks from a group of

empirical networks while unfilled disks represent single networks from a group of a matched

random network model, such as ER networks. The distance between disks represents their

Hamming distances. a) An example where the mean of the two groups are similar but the

empirical networks have significantly less variation between networks. b) Another example:

the average length of the solid lines is the self-span of the empirical networks while the

average length of the dashed lines is the cross-span of the two groups. c) A matching

between the two networks which is not minimal. d) The minimum matching between the

two groups, showing a cross-match of 0, since there are no edges between the two groups. e)

A minimal matching for the groups in part (b), showing a cross-match of 1, since all edges

join networks from different groups.
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Figure 4.
Normalized selected network measures (means) for fixed threshold functional (left) and

structural (right) networks. Note that the bottom row uses variable density random network

models while the top uses fixed density random network models.
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Figure 5.
Normalized selected network measures group standard deviations (SDs) for fixed threshold

functional (left column) and structural (right column) networks. Note that the bottom row

uses variable density random network models while the top uses fixed density random

network models.
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Figure 6.
Normalized selected network measures group standard deviations (SDs) for functional (left

column) and structural (right column) fixed density networks. SDs for the average DEG are

not shown as they are infinite, but labels are included for comparison with other plots.
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Figure 7.
Span-ratios for groups of functional and structural connectomes and the random network

models for both fixed threshold and fixed density (FD) networks.
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Table 1

Average values and standard deviations (over the group) for network measures for functional connectomes

(FN) and structural connectomes (SN) for both fixed threshold and fixed density (FD) networks.

FN FN_FD SN SN_FD

GIANT 0.985 (0.017) 1.00 (0.002) 0.987 (0.017) 1.00 (0)

DEG (avg) 9.00 (1.786) 8.00 (1.254) 9.000 (0) 8.00 (0)

DEG (sd) 4.864 (0.956) 3.661 (0.526) 4.892 (0.646) 3.691 (0.207)

DEG (qui) 1.873 (0.125) 1.749 (0.062) 1.872 (0.138) 1.754 (0.044)

DIAM 7.725 (1.516) 5.675 (0.848) 7.7 (1.536) 5.675 (0.468)

APL 3.262 (0.305) 2.836 (0.268) 3.238 (0.353) 2.795 (0.067)

GEFF 0.38 (0.035) 0.423 (0.03) 0.384 (0.025) 0.425 (0.006)

CLUST 0.516 (0.047) 0.484 (0.052) 0.516 (0.039) 0.495 (0.019)

LEFF (avg) 0.767 (0.021) 0.743 (0.024) 0.767 (0.021) 0.748 (0.009)

LEFF (sd) 0.106 (0.014) 0.096 (0.009) 0.102 (0.01) 0.096 (0.005)

LEFF (qui) 1.224 (0.04) 1.244 (0.021) 1.212 (0.028) 1.241 (0.016)

SW 0.16 (0.025) 0.173 (0.03) 0.16 (0.014) 0.177 (0.008)

MOD 0.525 (0.049) 0.483 (0.032) 0.513 (0.042) 0.482 (0.019)

CEN (avg) 0.025 (0.003) 0.023 (0.003) 0.024 (0.003) 0.022 (0.001)

CEN (sd) 0.026 (0.006) 0.036 (0.006) 0.027 (0.012) 0.036 (0.004)

CEN (qui) 2.77 (0.232) 3.483 (0.181) 2.759 (0.369) 3.5 (0.169)
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