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Abstract 

Mechanizing the manual harvesting of fresh market fruits constitutes one of the biggest 

challenges to the sustainability of the fruit industry. During manual harvesting of some fresh-

market crops like strawberries and table grapes, pickers spend significant amounts of time 

walking to carry full trays to a collection station at the edge of the field. A step toward increasing 

harvest automation for such crops is to deploy harvest-aid robots that transport the empty and 

full trays, thus increasing harvest efficiency by reducing pickers’ non-productive walking times. 

Given the large sizes of commercial harvesting crews (e.g., strawberry harvesting in California 

involves crews of twenty to forty people) and the expected cost and complexity of deploying 

equally large numbers of robots, this dissertation explored an operational scenario in which a 

crew of pickers is served by a smaller team of robots. Thus, the robots are a shared resource with 

each robot serving multiple pickers. 

If the robots are not properly scheduled, then robot sharing among the workers may 

introduce non-productive waiting delays between the time when a tray becomes full and a robot 

arrives to collect it. Reactive scheduling (e.g., “start traveling to a picker when the tray becomes 

full”) is not efficient enough, because robots must traverse large distances to reach the pickers in 

the field, thus introducing long wait times. Predictive scheduling (e.g., “predict when and where 

a picker’s tray will become full and dispatch a robot to start traveling there earlier, at an 

appropriate time”) is better suited to this task, because it can reduce or eliminate pickers’ waiting 

for robot travel. However, uncertainty is always present in any prediction, and can be detrimental 

for predictive scheduling algorithms that assume perfect information. Therefore, the main goal of 

this dissertation was to develop a predictive scheduling algorithm for the robotic team that 
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incorporates prediction uncertainty and investigates the efficiency improvements in simulations 

and field experiments.  

In the first part of this dissertation, strawberry harvesting was modeled as a stochastic 

process and dynamic predictive scheduling was modeled under the assumption that, once a 

picker starts filling a tray (a stochastic event), the time and location when the tray becomes full - 

and a tray transport request is generated - are known exactly. The resulting scheduling is 

dynamic and deterministic, and we refer to it as ‘deterministic predictive scheduling’ to 

juxtapose it against stochastic predictive scheduling under uncertainty, which is addressed 

afterwards. Given perfect ‘predictions’, near-optimal dynamic scheduling was implemented to 

provide efficiency upper-bounds for stochastic predictive scheduling algorithms that incorporate 

uncertainty in the predicted requests. Robot-aided harvesting was simulated using manual-

harvest data collected from a commercial picking crew. The simulation results showed that given 

a robot-picker ratio of 1:3 and robot travel speed of 1.5 m/s, the mean non-productive time was 

reduced by over 90% and the corresponding efficiency increased by more than 15% compared to 

all-manual harvesting. 

In the second part, the uncertainty in the predictions of tray-transport requests was 

incorporated into scheduling. This uncertainty is a result of stochastic picker performance, 

geospatial crop yield variation, and other random effects. Robot predictive scheduling under 

stochastic tray-transport requests was modeled and solved by an online stochastic scheduling 

algorithm, using the multiple scenario approach (MSA). The algorithm was evaluated using the 

calibrated simulator, and the effects of the uncertainty on harvesting efficiency were explored. 

The results showed that when the robot-to-picker ratio was 1:3 and robot speed was 1.5 m/s, the 
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non-productive time was reduced by approximately 70%, and the corresponding harvesting 

efficiency improved by more than 8.5% relative to all-manual harvesting. 

The last part of the dissertation presents the implementation and integration of the co-

robotic harvest-aid system and its deployment during commercial strawberry harvesting. The 

evaluation experiments demonstrated that the proof-of-concept system was fully functional. The 

co-robots improved the mean harvesting efficiency by around 10% and reduced the mean non-

productive time by 60%, when the robot-to-picker ratio was 1:3. The concepts developed in this 

dissertation can be applied to robotic harvest-aids for other manually harvested crops that 

involve a substantial human-powered produce transport, as well as to in-field harvesting logistics 

for highly mechanized field crops that involve coordination of harvesters and autonomous 

transport trucks. 
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Chapter 1 Introduction 

Mechanizing the manual harvesting of fresh market fruits constitutes one of the biggest 

challenges to the sustainability of the fruit industry. Depending on the commodity, labor for 

manual harvesting can contribute up to 60% of the yearly operating costs per acre (Bolda et al., 

2016). Additionally, recent studies indicate that the farm labor supply cannot meet demand in 

many parts of the world because of socioeconomic, structural, and political factors (Charlton et 

al., 2019; Guan et al., 2015). Despite recent progress on shake-catch approaches for mechanical 

harvesting of apples (He et al., 2017) and cherries (Zhou et al., 2016), fruit quality and collection 

efficiency are still not adequate to justify the adoption of these technologies for fresh market tree 

fruits that have delicate skin. Shake-catch harvesting is also not applicable to high-value crops 

like fresh strawberries, raspberries, blackberries, and table grapes, which are very fragile and 

must be harvested selectively, based on ripeness criteria, without damage.  

Robotic harvester prototypes are being developed and field-tested for high-volume, high-

value crops such as apples (Silwal et al., 2017), kiwifruit (Williams et al., 2020), sweet pepper 

(Arad et al., 2020), and strawberries (Xiong et al., 2020). However, the developed robots have 

not, to date, successfully replaced the judgment, dexterity, and speed of experienced pickers at a 

competing cost; the challenges of high fruit picking efficiency and throughput remain largely 

unsolved (Bac et al., 2014).  

As an intermediate step to full automation, mechanical labor aids have been introduced to 

increase worker productivity by reducing workers’ non-productive times. For example, orchard 

platforms eliminate the need for climbing ladders and walking to unload fruits in bins (Baugher 

et al., 2009; Fei & Vougioukas, 2021). Autonomous vehicle prototypes have been developed to 
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assist in bin management in orchards (Bayar et al., 2015; Ye et al., 2017), to reduce the need for 

forklift operators.  

In strawberry production, mobile conveyors have been introduced to reduce the time 

pickers spend walking to get the produce from the plants to the designated loading stations and 

return to resume picking (Rosenberg, 2003). However, such conveyors are specific to 

strawberries and cannot be adapted to other crops. Furthermore, their adoption has been very 

slow, partly because of their questionable profitability, due to high purchase cost and limited 

efficiency gains. Two reasons for their inadequate efficiency are: 1) row-turning in the field is 

time-consuming because of their large size, and 2) because conveyors move slowly to 

accommodate slower pickers, often resulting in underutilization of faster pickers (Doody, E., 

2019).   

The walking time to carry harvested crops constitutes a significant non-productive part of 

the harvesting cycle for several fresh-market crops, like strawberries (Figure 1), raspberries, 

blackberries, and table grapes. For strawberries, walking time has been measured to reach up to 

22% of the total harvest time (Khosro Anjom et al., 2018); higher inefficiencies are often 

reported, anecdotally. 
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Figure 1. The working cycle of manual harvesting in an open commercial field: a) the picker is picking 

strawberries inside the furrow; b) the picker transports the full trays to the collection station on the headland; c) 

the picker loads the trays in the collection station; d) the picker takes an empty tray back to resume picking. 

In this dissertation, a collaborative robotic system (aka, co-robotic system) was 

investigated to assist in such harvesting operations by transporting trays, with strawberries as a 

case study (USDA REEIS, 2013). During the proposed robot-aided harvesting, each picker walks 

inside a furrow, harvests ripe fruits, and puts them in a standard-sized tray located on a special 

instrumented cart (Figure 2.a), in the same way as in all-manual harvesting. These carts are 

equipped with load cell sensors to measure the weight of the tray and a GNSS (Global 

Navigation Satellite System) module to record the geodetic locations of the carts (Khosro Anjom 

et al., 2018). The cart sends data wirelessly in real-time to a computer in the field (we refer to it 

as the “operation server”). Software running on the server predicts when and where a tray will 

become full (Khosro Anjom & Vougioukas, 2019). A full tray results in a tray-transport request 

to the scheduling software running on the server, which dispatches a team of crop-transport 

robots to serve those requests. The robots travel between the collection station and pickers to 

bring empty trays (Figure 2.b). The picker walks a small distance to the robot, loads the full tray, 

gets an empty tray, and pushes a button to command the robot to travel back to the collection 

station (Figure 2.c). 
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 Figure 2. The working cycle of co-robotic harvesting in an open commercial field: a) the picker is picking 

strawberries inside the furrow in the same way as the manual harvesting; b) the picker walks a small distance to 

the serving robot; c) the picker loads the trays on the robot;  

Given the large sizes of commercial harvesting crews (e.g., strawberry harvesting in 

California involves crews of twenty to forty people) and the expected cost and complexity of 

deploying equally large numbers of robots, this work explored an operational scenario in which a 

crew of pickers is served by a smaller team of robots. Thus, the robots are a shared resource with 

each robot serving multiple pickers. Given that robots travel at relatively low speeds for safety 

purposes (in our case, 0.5 – 1.5 m/s), and that the distance to a picker can be up to 100 m long, 

robot sharing among the workers may introduce non-productive waiting delays between the time 

when a tray becomes full and a robot arrives to collect it, if the robots are not properly scheduled. 

Hence, efficient robot dynamic scheduling is essential to ensure that the overall reduction in 

walking time is larger than the waiting time introduced by robot operation.  

Two main types of scheduling exist: reactive and predictive. In reactive scheduling 

(Blazewicz et al., 2019), a machine/vehicle/robot at the collection station is allocated to a task 

only after the scheduler receives the task request. In the context of tray-transport robots for 

harvesting, reactive scheduling refers to the situation where a robot starts traveling to a picker 

when the picker’s tray becomes full. Seyyedhasani et al. (2020b) showed that when tray-
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transport robots were scheduled reactively, picker waiting time was reduced when the robot-to-

pickers ratio increased. However, above a certain ratio, adding more robots did not reduce 

further the waiting time. The reason is that a picker’s waiting time is at least as much as the time 

needed for a robot to travel the distance from the collection station to the picker.  

Predictive scheduling policies incorporate information about future demand into the 

scheduling (Ritzinger et al., 2016). In the context of harvesting, ‘future demand’ refers to 

knowledge about when and where a worker’s currently used tray will become full, giving rise to 

a tray-transport request. If the time and location are known in advance, a robot can be dispatched 

– and start moving toward that location - before the tray becomes full; hence, waiting times due 

to robot travel can be reduced or eliminated. The locations and times of tray-transport requests  

contain uncertainty because of stochastic picker work-rate and varying – unknown - yield density 

(Khosro Anjom & Vougioukas, 2019). Uncertainty can be detrimental for predictive scheduling 

algorithms that assume perfect information (Bertsimas & Ryzin, 2017; Blazewicz et al., 2019). 

Hence, in this work, dynamic stochastic scheduling algorithms were investigated to account for 

the prediction uncertainty and improve the performance (Bent & Van Hentenryck, 2004; 

Blazewicz et al., 2019; Ichoua et al., 2006).   

1. Thesis Objectives 

The overall goal of this research was to develop a co-robotic harvest-aiding system which 

performs in-field tray logistics by serving human pickers’ fruit-transport requests. At a high 

level, the research objectives are as follows: 

(1) Develop a modeling framework for manual strawberry harvesting supported by a 

robot team providing crop-transport logistics in a simulation environment. 
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(2) Mathematically model the predictive scheduling of the robot team in the context of 

co-robotic harvesting and have the scheduling problem solved in an online fashion.  

(3) Develop a prototype of a fully functional co-robotic system that performs tray 

transportation in real-world harvesting and evaluate its performance. 

To achieve these objectives, the following research activities were conducted and 

presented as follows. 

Chapter 2 presents a modeling framework for a simulator of strawberry harvesting 

activities supported by crop-transport logistics of a robot team. The framework utilizes a hybrid 

system approach to model the coupled picker and robot activities. Finite state machines model 

discrete operating states, and difference equations describe motion and mass transfer within each 

discrete state. In this chapter, the predictive scheduler has access to accurate information of the 

pickers’ next tray-transport requests, referred as “perfect predictions”, after their trays start being 

filled. The effect of prediction timeliness and robot/picker ratio on the scheduling was 

investigated. In consideration of the operational feasibility and human safety, the simulated robot 

speed was mainly 1.5 m/s and at most 2 m/s. The optimizing goal of the scheduling problem was 

to minimize the mean of non-productive waiting time of the pickers. Optimized scheduling is 

implemented to provide efficiency upper bounds for any predictive scheduling algorithms that 

incorporate uncertainty in the predictive requests.  

Chapter 3 introduces the practical scenarios into the developed simulator including the 

uncertainty of the prediction and slower robot speed based on the limitations of our mobile robot. 

Prediction uncertainty was processed by adapting a multiple scenario approach (MSA) in the 

robot scheduling. Given slower robot speed and small robot-picker ratio, request rejections to 

some pickers’ requests were considered in the scheduling decision. This is to guarantee that the 
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non-productive waiting time for a robot to arrive at a picker will be less than the non-productive 

time if a picker were to transport the tray himself. The stochastic predictive scheduler is 

embedded into the simulator, and extensive simulation experiments are performed. The results 

are analyzed to study the effect of predictive uncertainty on scheduling performance. 

In Chapter 4, the physical implementation of the co-robotic system is presented, along 

with its evaluation during commercial strawberry harvesting. In the system implementation, a 

request button was designed on the pickers’ instrumented carts to allow pickers to control if they 

want to be served by the robots. The experimental results are processed and analyzed to 

investigate the system performance.  

In Chapter 5, the main conclusions of the thesis are summarized and potential directions 

for future work are explored.  

2. Contributions of the thesis 

The contributions of this thesis are the following: 

(1) Development of a stochastic hybrid systems model to model the activities of workers 

and robots involved in strawberry harvesting; human picking model calibration using 

data from commercial strawberry harvesting. 

(2) Development of a mathematical model for optimal dynamic deterministic predictive 

scheduling in the context of co-robotic harvesting, with robots offering automated 

tray logistics. The model was solved using exact and approximate methods.  

(3) Extensive simulation experiments that studied the effects of robot-to-picker ratio and 

prediction timeliness on scheduling performance, and the explanation of the resulting 

performance curves. 
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(4) Adaptation of an online dynamic scheduling solver for crop-transport robots under 

stochastic transport requests, with application in strawberry harvesting. 

(5) Simulation experiments that investigated the effect of prediction uncertainty on the 

performance of the developed scheduling algorithm. 

(6) Software and hardware development of a complex co-robotic harvesting system that 

includes picking carts, crop-transport robots, a communication system and operations 

software, and integration of parts into a fully functional system. 

(7) Field experiments during commercial strawberry harvesting and assessment of system 

performance. 
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Chapter 2 Deterministic predictive scheduling of robot 

team  

Notations 

𝑿𝒑,𝒌 state vector of pth picker at 

any time step k, in operating 

state 𝑆𝑝 

𝑣𝑤 the picker walks carrying a cart 

and tray to relocate (not pick), 

stochastic variables defined in 

section 6 

𝑆𝑝 pth picker’s operation states 𝑆𝑟 rth picker’s operation states 

𝑥𝑝,𝑘, 𝑦𝑝,𝑘 x, y coordinate picker’s 

location at any time step k 
𝑣𝑟 robot speed: it is assumed to be 

constant in all operation states in 

Chapter 2 

𝑥𝑟,𝑘, 𝑦𝑟,𝑘 x, y coordinate robot’s 

location at any time step k 
𝒮𝒫 set of pickers in a crew 

𝑊𝑝,𝑘 gross weight of pickers’ tray 

at any time step k 
𝒮ℱ set of robots in a team 

𝑇𝑝,𝑘 the elapsed time inside the 

current state of the pth picker 
𝐿𝑠 collection station coordinate 

�̂�𝑠𝑝
 fruit picking rate 𝒮ℛ set of requests available to the 

scheduler 

𝜃𝑠𝑝
 picker’s heading direction in 

state 𝑠𝑝 

Ri ith request inside 𝒮ℛ 

𝜃𝑠𝑟
 robot's heading direction in 

state 𝑠𝑝 

𝑇𝑟,𝑘 the elapsed time inside the 

current state of the rth robot  

https://www.codecogs.com/eqnedit.php?latex=%5Cmathbf%7BL_s%7D%250
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𝑣𝑝 moving speed of picker in the 

state of “PICK”, stochastic 

variables defined in section 6 

𝑳𝑖 predicted coordinates of the 

cart’s (and picker’s) locations 

𝑳𝑠 Coordinate of the active 

collection station 
∆𝑡𝑖

𝑓
 the interval when the tray 

becomes full 

𝑚𝑐 the capacity of the tray, 

assumed to be constant 

Dsi corresponding Manhattan 

distance from 𝑳𝑠 to 𝑳𝑖 along the 

path 

𝛥𝑡𝑖
𝑝𝑖𝑐𝑘

 the time spent in filling the 

ith tray (in state “PICK”), 

stochastic variables defined 

in section 6 

𝑡𝑘𝑖
𝑑  the dispatch instant of the robot 

∆𝑡𝑖
𝑢 one-way travel time for a 

robot from collection station 

to the full tray location 

∆𝑡𝑘𝑖
𝑤  waiting time of picker at the full 

tray location 

𝑡𝑘𝑖
𝑎  the instant when the robot 

arrive at the full tray location 
𝛥𝑡𝑈𝐿 idle time of robots at collection 

station, assumed to be constant 

∆𝑡𝑖
𝑝
 The total time required by a 

robot to serve request Ri and 

be available to serve another 

request 

𝛥𝑡𝑘
𝐴 the time interval when robot is 

available to be dispatched again 

𝑡𝑘𝑖
𝐶  the completion time of 

service of request Ri by robot 

𝐹𝑘 

𝛥𝑡𝑖
𝑟 release constraint of picker’s 

request 

𝛥𝑡𝐿 time interval of a picker 

loading the full tray on the 

robot, it is assumed to be a 

constant 

Z assignments of 𝒮ℛ on 𝒮ℱ 

𝑡𝑘𝑖
𝐶  the completion time of 

service of request Ri by robot 

𝐹𝑘 

∆𝑡𝑖
𝑒𝑓

 time interval of ith  tray from 

empty to full (productive time) 

FR fill ratio of a tray  ∆𝑡𝑖
𝑓𝑒

 time interval of ith  tray from full 

to empty (non-productive time) 
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𝛥𝑇𝑤 mean of wait time of the 

picker crew  
𝐸𝑓𝑓 mean of harvesting efficiency 

[𝑝𝑟] relative precision of 

estimated true mean 
𝛥𝑇𝑓𝑒 mean of nonproductive time of 

the picker crew  

 

1. Introduction 

As explained in the previous chapter, dynamic predictive scheduling policies incorporate 

information about current and future demand into the scheduling. Two issues related to dynamic 

predictive scheduling are very important: uncertainty and  prediction timeliness. In the context of 

harvesting, ‘future demand’ refers to the prediction of when and where a picker’s currently used 

tray will become full, giving rise to a tray-transport request. Uncertainty will be always present in 

such prediction. It is known that uncertainty can be detrimental for scheduling algorithms that 

assume perfect information (Bertsimas & Ryzin, 2017; Blazewicz et al., 2019). Dynamic 

stochastic scheduling algorithms that incorporate prediction uncertainty can improve performance 

(Ichoua et al., 2006; van Hentenryck et al., 2010). However, to evaluate and compare such 

algorithms (existing and new ones) in the context of robot-aided harvesting, one needs to compare 

them against a baseline, i.e., the “best possible” situation. The best possible situation – from an 

uncertainty point of view - is ‘deterministic predictive scheduling’, i.e., when the scheduler knows 

exactly – without uncertainty – where and when the next tray-transport request will take place. 

Although there is no ‘prediction’ in deterministic predictive scheduling, the term is used in this 

dissertation to juxtapose it against ‘stochastic predictive scheduling’ under uncertainty, which is 

also addressed.  
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Prediction timeliness refers to how early a prediction becomes available to the dynamic 

scheduling algorithm before the actual request takes place. In the envisioned robot-aided 

harvesting approach, after a picker fills a part of the tray, she/he pushes a button on the cart to 

indicate that they want a robot to serve them., when they finish harvesting the tray. The scheduler 

does not have access to a prediction for this next-tray transport request before the button is pushed.  

The investigation of the effect of prediction timeliness on the performance of predictive scheduling 

is important. Khosro Anjom and Vougioukas (2019) showed that the earlier a tray-transport 

prediction is made – while a tray is being filled – the larger the uncertainty will be. Even if 

predictions are perfect, tray-transport request predictions arriving too late (too close to the actual 

request) will result in increased picker waiting times, because robots need time to travel to the 

location of the request.  

The first goal of this chapter is to model the stochastic harvesting operation and 

implement an optimal deterministic predictive scheduling algorithm for tray-transport requests 

and study its performance for different robot-to-picker ratios. The second goal is to explore the 

effect of prediction timeliness on the mean waiting time of the pickers, under optimal 

deterministic predictive scheduling. To achieve these goals, a strawberry harvesting simulator 

was developed based on a hybrid system approach that models the harvest-related activities and 

motions of all agents (pickers and robots) involved in harvesting. This chapter is organized as 

follows: Section 2 describes a model for manual picking activities and robot tray-transport 

operations in strawberry harvesting. In Section 3, a mathematical model for predictive 

scheduling is developed, and in Section 4, an exact and an approximate algorithm to solve the 

model are reviewed and implemented. Section 5 briefly presents the simulator and the embedded 

tray-transport request and predictive scheduling modules. Section 6 presents the experimental 
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design of our experiments and section 7 presents the results and their discussion. Finally, the 

main conclusions of this chapter are summarized in section 8. 

2. Modeling of harvesting activity under deterministic request 

predictions 

Strawberries are planted in rows with furrows between them that accommodate human 

and machine traffic (Figure 3.a). The field headlands are used for collection/parking/inspection 

stations and traffic of people, forklifts and trucks involved in the handling and transportation of 

the harvested crops. A typical harvesting block consists of approximate 80~120 rows, of about 

100 meters in length. Before harvesting, collection stations and empty trays are placed at one 

side of the field, at the headland. The crew (say, N people) start picking as a team in the first N 

rows on the left or right side of the block. Although there may be several collection stations, the 

one that is closest to the crew is the active one. To reduce the walking needed to transport full 

trays to the collection station, the standard harvesting practice is to have workers start picking 

from the middle of the field block and walk outward, toward one of its edges. Once that section 

of the block is harvested, the collection stations are moved to the other edge, and the other 

section (half of the block) is harvested. This method essentially ‘splits’ a harvesting block into 

two sections (an example is given in Figure 3.b, where there is an upper and a lower block, 

above and below the blue dotted line, respectively). The field can be modeled using points at the 

edges of each furrow; two points to represent the middle line, and points for each collection 

station.   
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Figure 3 - a) Layout of a typical raised-bed strawberry field; 3b) schematic figure of the strawberry harvesting 

field block with two sections (upper and lower); furrows; plant beds; field split line, and collection stations. 

In the envisioned robot-aided harvesting approach, after a picker starts filling a tray, 

she/he pushes a button on the cart to indicate that they want a robot to serve them. The push-

button event is transmitted wirelessly to the server, where a software module predicts the 

location and time where the tray will become full (next tray transport request). The scheduling 

software module acknowledges the request (an LED lights up on the cart) and schedules a robot 

to go to the picker (in Chapter 3, requests may be rejected to guarantee that robot-aided 

efficiency is always better than all-manual harvesting efficiency). When the tray is full, the robot 

will either be there, or the picker must wait at that location for the robot to arrive. The picker will 

take an empty tray from the robot, place the full tray on it, push a button to send the robot back 

to the collection station, and resume picking. All robots wait at the active collection station and 

return to it after serving one picker, where they wait for the next dispatch command.  

In our previous work (Seyyedhasani et al., 2020b a), a discrete-time hybrid system was 

developed to model and simulate the activities and motions of all agents involved in all-manual 

and robot-aided harvesting. A Finite State Machine (FSM) was utilized to model the discrete 

operating states/modes of the agents and the transitions between the operating modes. In this 
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chapter, for the purposes of simulating predictive scheduling, the FSM was simplified (since all-

manual harvesting was not modeled). The activities of a picker during robot-aided harvesting 

were classified into seven discrete operating states/modes (Table 1), and the operations of a tray-

transport robot into eight states (Table 2). The operating states of pickers and robots, and the 

possible transitions amongst them are shown in Figure 4.  

Table 1- States defined to represent a picker’s operating states during robot-aided harvesting 

Operating state Action 

START A picker leaves the collection station with an empty 

tray in hand, to start picking. 

WALK_TO_FURROW_ENTRANCE A picker walks in the headland, toward an empty 

(unoccupied) furrow. 

WALK_TO_FURROW_SPLITLINE A picker walks inside an empty (unoccupied) furrow 

until the field’s split line is reached. 

PICK A picker is picking inside a furrow, with direction 

from the field split line toward the collection station. 

WAIT_FOR_ROBOT_ARRIVAL A picker waits (idle), with a full tray, for a robot to 

come. 

EXCHANGE_TRAYS A picker takes the empty tray brought by the robot 

and places a full tray on the robot. 

STOP A picker stops picking after reaching the end of the 

last row they harvested in the field block 
 

Table 2 - States defined to represent a robot’s operating states during robot-aided harvesting 

Operating state Action 

START Robot is idle at the collection station with no tray on it. 

AVAILABLE  Robot with one empty tray on it is waiting at the collection 

station to be dispatched to a tray-transport request. 

TRAVEL_TO_PICKER Robot travels from collection station – carrying an empty 

tray – toward the location of the transport request. 

WAIT_UNTIL_TRAY_FILLS Robot arrives at the location of the tray-transport request and 

waits for the picker to finish harvesting. 

EXCHANGE_TRAYS Robot is idle while picker exchanges the empty tray with a 

full tray. 

TRANSPORT_FULL-TRAY Robot travels toward the collection station to deliver a full 

tray. 

IDLE_IN_QUEUE Robot with a full tray waits in a queue at the collection 

station to have its full tray unloaded, and an empty tray 

loaded. In this work we assume this tray exchange is fast and 

very few – if any – robots arrive together. 
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STOP Robot stops its operation at the collection station after the 

last tray has been unloaded; end of harvesting of this block. 
 

 

Figure 4. Two coupled finite state machines model human picker and robot operations during robot-aided 

harvesting, where robots transport full and empty trays 

Following our previous work (Seyyedhasani et al., 2020b a) the operation of the pth 

picker at any time step k, in operating state 𝑆𝑝 is represented by a state vector, 𝑿𝒑,𝒌 =

(𝑥𝑝,𝑘, 𝑦𝑝,𝑘, 𝑊𝑝,𝑘, 𝑇𝑝,𝑘) that contains as state variables the picker position coordinates 𝑥𝑝,𝑘, 𝑦𝑝,𝑘; 

the gross weight 𝑊𝑝,𝑘 of the pickers’ tray, and the elapsed time 𝑇𝑝,𝑘 inside the current state. The 

coordinate system is defined in Figure 3.b above. The variables are updated with state-dependent 

difference equations that model picker kinematics (Eq 1), crop harvesting (Eq 3) and elapsed 

time (Eq 4): 
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𝑥𝑝,𝑘+1 = 𝑥𝑝,𝑘 + 𝛥𝑡 𝑉𝑆𝑝
𝑐𝑜𝑠𝜃𝑠𝑝

 (Eq 1) 

𝑦𝑝,𝑘+1 = 𝑥𝑝,𝑘 + 𝛥𝑡 𝑉𝑆𝑝
 𝑠𝑖𝑛𝜃𝑠𝑝

 (Eq 2) 

𝑊𝑝,𝑘+1 = 𝑊𝑝,𝑘 + 𝛥𝑡 �̂�𝑠𝑝
 (Eq 3) 

𝑇𝑝,𝑘+1 = 𝑇𝑝,𝑘 + 𝛥𝑡 (Eq 4) 

In state 𝑆𝑝, 𝑉𝑠𝑝
 is the pickers’ travel speed, 𝜃𝑠𝑝

is the picker’s heading direction, and �̂�𝑠𝑝
, 

is the fruit picking rate. The parameters are assumed constant within 𝑆𝑝, i.e., fixed values are 

used over the duration of the state. Parameters 𝑉𝑠𝑝
, �̂�𝑠𝑝

 depend on individual picker performance, 

yield, and external factors that cannot be modeled (e.g., answering a phone call, stretching), and 

thus, their values are modeled as stochastic variables. The heading 𝜃𝑠𝑝
is set by the direction of 

the furrow or the headland that the picker travels in, depending on the state. The walking 

speed 𝑉𝑆𝑝
is the same inside states “WALK_TO_FURROW_ENTRANCE” and 

“WALK_TO_FURROW_SPLITLINE”, because the picker walks carrying a cart and tray to 

relocate (not pick), and is equal to a value 𝑣𝑤; inside state “PICK”,  𝑉𝑆𝑝
is equal to a slow moving 

speed, 𝑣𝑝 .  𝑉𝑆𝑝
is equal to zero in operating states “WAIT_FOR_ROBOT_ARRIVAL” and 

“EXCHANGE_TRAYS”. If the capacity of the tray is 𝑚𝑐, and the time spent in filling the ith 

tray (in state “PICK”) is 𝛥𝑡𝑖
𝑝𝑖𝑐𝑘

, the picking rate, �̂�𝑠𝑝
in the “PICK” state can be estimated as 

�̂�𝑠𝑝
= 𝑚𝑐/𝛥𝑡𝑖

𝑝𝑖𝑐𝑘
. Distributions for stochastic parameters 𝑣𝑤, 𝑣𝑝 and 𝛥𝑡𝑖

𝑝𝑖𝑐𝑘
 can be estimated 

experimentally (see Section 7.1). 

At any time step k, the operation of the rth robot in operating state 𝑆𝑟 is represented by a 

continuous state vector, 𝑿𝒓,𝒌 = (𝑥𝑟,𝑘, 𝑦𝑟,𝑘, 𝑇𝑟,𝑘), that contains the robot’s position coordinates 

𝑥𝑟,𝑘, 𝑦𝑟,𝑘 and the elapsed time 𝑇𝑟,𝑘 inside the current operating state. Simple robot kinematics are 

modeled by (Eq 1), (Eq 2), where 𝜃𝑠𝑟
is the robot’s moving direction; time is updated using (Eq 
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4) ( “r” is used instead of “p” in the subscripts). Robot speed 𝑉𝑆𝑟
 is equal to a parameter 𝑣𝑟 that is 

assumed constant in all operating states in which the robot is travelling. The robot’s heading is 

the same as the direction of the headland or the furrow.  In this work we assume that the time 

duration of state “IDLE_IN_QUEUE” is constant, i.e., the unloading of the full tray and loading 

of the empty tray is very fast and very few – if any – robots arrive together. The time duration of 

the state “EXCHANGE_TRAYS” is also assumed to be constant. 

3. Deterministic predictive scheduling of harvest-aid robots 

Deterministic predictive scheduling of a team of crop-transport robots is a variant of the 

well-known Capacitated Vehicle Routing Problem (CVRP) (Vougioukas et al., 2012). However, 

in the current system, each robot can only serve one tray-transport request, with each robot route 

starting and ending at the collection station. Hence, the scheduling of these crop-transport robots 

can be modeled as a parallel machine scheduling problem (PMSP) with the objective of 

minimizing the mean of waiting times of all transport requests (Lawler et al., 1993). Essentially, 

servicing a tray-transport request with one robot is the equivalent of executing one individual job 

by one machine in PMSP; robots correspond to independent parallel machines. The optimal 

criterion of the scheduling system is to minimize the mean waiting time, 𝛥𝑇𝑤, of all tray-

transport requests.  

In the envisioned robot-aided strawberry harvesting operation, each picker from a set 

𝒮𝒫 = {𝑃1,   𝑃2,   … ,  𝑃𝑄} of Q pickers places harvested fruits in a tray that lies on a picking cart. 

When the tray fills, a robot 𝐹𝑘 from a team of M identical transport robots 𝒮ℱ =

{𝐹1,   𝐹2,   … ,  𝐹𝑀} brings an empty tray to the picker and carries the full tray to a collection 

station; the station’s coordinates 𝐿𝑠 are known at each time instant. The robot scheduling 

https://www.codecogs.com/eqnedit.php?latex=%5Cmathbf%7BL_s%7D%250
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algorithm has access to a set of predicted tray-transport requests 𝒮ℛ = {𝑅1,   𝑅2,   … ,  𝑅𝑁}, where 

0 ≤  𝑁 ≤  𝑄 and computes an updated schedule every time a new predicted request enters 𝒮ℛ 

and there is a robot available to be dispatched. The dispatching of a robot is non preemptive 

which means that the scheduler does not change the dispatching decision after the robot starts 

executing the dispatching command. 

Let us assume that at some time t, a new predicted request 𝑅𝑖 is generated and entered 

into 𝒮ℛ. Ri  contains the following information: (1) a prediction of the remaining time interval 

∆𝑡𝑖
𝑓
 (with respect to t) until the tray becomes full with fruit and ready to be transported, and (2) 

the predicted coordinates 𝑳𝑖 of the cart’s (and picker’s) locations at time 𝑡𝑖
𝑓
 when the tray 

becomes full (𝑡𝑖
𝑓

= 𝑡 + ∆𝑡𝑖
𝑓

) The travel time required for a robot  to travel from the collection 

station location at 𝑳𝑠 to 𝑳𝑖 – and back – is computed by approximating the path by one straight 

line segment on the headland and another straight line segment inside the furrow that 

corresponds to 𝑳𝑖 (Figure 5). The one-way traveled distance Dsi is the corresponding Manhattan 

distance from 𝑳𝑠 to 𝑳𝑖 along the path. The corresponding one-way travel time is ∆𝑡𝑖
𝑢 = 𝐷𝑠𝑖 𝑣𝑟⁄ ,  

where 𝑣𝑟 is the robot’s velocity (assumed to be constant and the same for all robots). 

 

https://www.codecogs.com/eqnedit.php?latex=R_i%250
https://www.codecogs.com/eqnedit.php?latex=D_%7Bsi%7D%250
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Figure 5- To compute robot travel time when serving a request, the robot’s path from the collection station location 

(𝐿𝑠) to the tray-transport request location (𝐿𝑖) – and back – is approximated by a straight line segment on the 

headland and another straight line segment inside the furrow that corresponds to 𝑳𝑖 

Let us now assume that the scheduling algorithm selects robot Fk to serve some request 

Ri and dispatches the robot at some time 𝑡𝑘𝑖
𝑑  (Figure 6). The robot will arrive at Li at time instant 

𝑡𝑘𝑖
𝑎 : 

𝑡𝑘𝑖
𝑎 = 𝑡𝑘𝑖

𝑑 + ∆𝑡𝑖
𝑢         (Eq 5) 

Then, the waiting time for request Ri to be served by robot Fk will be ∆𝑡𝑘𝑖
𝑤 :   

∆𝑡𝑘𝑖
𝑤 = 𝑚𝑎 x(𝑡𝑘𝑖

𝑎 − 𝑡𝑖
𝑓

, 0) (Eq 6) 

The reason for using the ‘maximum’ operator is because the scheduling is predictive, and 

therefore, it is possible that robot 𝐹𝑘 arrives at 𝑳𝑖 before the predicted tray fill-up time, 𝑡𝑖
𝑓
; in this 

case, there is no waiting time, i.e., 𝛥𝑡𝑘𝑖
𝑤  is zero. Once the tray is full and the robot is at 𝑳𝑖 the 

picker will take the empty tray from the robot and will load the full tray on the robot (and then 

resume picking). This corresponding time is assumed constant and equal to 𝛥𝑡𝐿. Next, the robot 

will transport the tray back to the collection station; the required time will be ∆𝑡𝑖
𝑢 When the 

robot arrives at the collection station it will take 𝛥𝑡𝑈𝐿 seconds until all previously arrived robots 

in the queue are served, the full tray it carries is unloaded and an empty tray is loaded on it, so 

that it is ready to be dispatched again; 𝛥𝑡𝑈𝐿 is assumed to be a reasonable constant based on idle 

time of pickers at collection station in the scenario of manual harvesting. The total time, ∆𝑡𝑖
𝑝
, 

required by a robot to serve request Ri and be available to serve another request is shown in (Eq 

7). So, the completion time of service of request Ri by robot 𝐹𝑘, is the time instant is (Eq 8). 

∆𝑡𝑖
𝑝 = 2∆𝑡𝑖

𝑢 + ∆𝑡𝐿 + ∆𝑡𝑈𝐿 (Eq 7) 

https://www.codecogs.com/eqnedit.php?latex=%5Cmathbf%7BL_i%7D%250
https://www.codecogs.com/eqnedit.php?latex=R_i%250
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𝑡𝑘𝑖
𝐶 = 𝑡𝑘𝑖

𝑑 + ∆𝑡𝑖
𝑝
 (Eq 8) 

At any time t, robot 𝐹𝑘 is either serving some request Ri or is idle. In the former case, the 

robot is available to be dispatched again, after a time interval 𝛥𝑡𝑘
𝐴 (Eq 9) that is needed to serve 

request 𝑅𝑖−1. 

𝛥𝑡𝑘
𝐴 = 𝑚𝑎𝑥(0,   𝑡𝑘(𝑖−1)

𝐶 − 𝑡)   (Eq 9) 

 

If it is idle at the collection station, it is available to be dispatched immediately (𝛥𝑡𝑘
𝐴 =

0). 

 
Figure 6 - Timelines of request 𝑹𝒊 served by robot  𝑭𝒌 

Let us now focus on the robot dispatch time 𝑡𝑘𝑖
𝑑 . Scheduling becomes more effective as 

the number of requests in 𝒮ℛ is larger (Lu et al., 2003). If the robot dispatch time is delayed by 

some amount ∆𝑡𝑖
𝑟 (also referred to as ‘release delay’, i.e., 𝑡𝑘𝑖

𝑑   ≥  𝑡 + 𝛥𝑡𝑖
𝑟), each new request that 

may arrive during ∆𝑡𝑖
𝑟 will cause an updated schedule to be computed. However, too long a 

release delay may increase the request waiting time, as the robot could depart too late. To select 

∆𝑡𝑖
𝑟, one can note that if the robot arrives early at 𝑳𝑖 (𝑡𝑘𝑖

𝑎 < 𝑡𝑖
𝑓
), it will have to wait idle until the 

tray is full. The greatest value for ∆𝑡𝑖
𝑟 that eliminates robot idle time at 𝑳𝑖

𝑓
is:  
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𝛥𝑡𝑖
𝑟 = 𝑚𝑎𝑥(𝛥𝑡𝑖

𝑓
− 𝛥𝑡𝑖

𝑢, 0) (Eq 10) 

The introduction of the release delay ensures that the robot will not arrive at 𝑳𝑖 before 

∆𝑡𝑖
𝑓
 and the calculation of picker waiting time (Eq 7) can be simplified as ∆𝑡𝑘𝑖

𝑤 = 𝑡𝑘𝑖
𝑎 − 𝑡𝑖

𝑓
. By 

combining (Eq 7), (Eq 8), (Eq 9), (Eq 10),  ∆𝑡𝑘𝑖
𝑤  can be expressed as Eq (11). 

𝛥𝑡𝑘𝑖
𝑤 = 𝑡𝑘𝑖

𝑎 − 𝑡𝑖
𝑓

= 𝑡𝑘𝑖
𝐶 − 𝛥𝑡𝑖

𝑝 + 𝛥𝑡𝑖
𝑢 − (𝑡 + 𝛥𝑡𝑖

𝑓
) = 𝑡𝑘𝑖

𝐶 − 𝛥𝑡𝑖
𝑝 − 𝛥𝑡𝑖

𝑟 − 𝑡 (Eq 11) 

The timelines integrating all temporal items in a schedule of request 𝑅𝑖 served by 𝐹𝑘 are 

shown in Figure 7.  

 

 

 

Figure 7 - Timelines of request 𝑅𝑖 served by robot  𝑭𝒌 

At any time t, 𝛥𝑡𝑖
𝑝

 and  𝛥𝑡𝑖
𝑟 are obtained from (𝑳𝑖, 𝛥𝑡𝑖

𝑓
), which are independent from the 

schedule. Hence, minimizing the sum of the waiting times of all generated requests (∑ ∑ 𝛥𝑡𝑘𝑖
𝑤𝑁

1
𝑀
1 ) 

is equivalent to minimizing the sum of completion times, ∑ ∑ 𝑡𝑘𝑖
𝐶𝑁

1
𝑀
1  of all requests in 𝒮ℛ. A 

feasible schedule solution includes two parts: the assignments of all generated requests 𝒮ℛ to 

robots 𝒮ℱ, and the schedules of each robot 𝐹𝑘. An M×N matrix Z represents the assignments of 

https://www.codecogs.com/eqnedit.php?latex=R_i%250
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𝒮ℛ on 𝒮ℱ. Each element 𝑧𝑘𝑖 of Z is 1 if request 𝑅𝑖 is served by robot 𝐹𝑘; otherwise, 𝑧𝑘𝑖 is 0. The 

schedule for each robot Fk is composed of a list of dispatching tuples. Each dispatching tuple 

includes the dispatching location 𝑳𝑖 and the dispatching time 𝑡𝑘𝑖
𝑑  . 

The mathematical model of predictive scheduling of crop-transport robots is expressed 

with equations (11-18), which define a minimization problem with associated constraints: 

(1) Schedules should consider all the generated requests 𝒮ℛ (Eq 12) 

(2) Each request is assigned only to one robot (Eq 13). 

(3) The robot is not dispatched until the release constraint of scheduled request (Eq 16). 

(4) The robots start from the active collection station and end with the same one in the 

planning schedule (Eq 17). 

(5) Each robot serves only one picker when dispatched, and no preemption is allowed, i.e., a 

robot dispatched to a request 𝑅𝑖 cannot be re-assigned to another request 𝑅𝑗 (Eq 19). 

𝑚𝑖𝑛 ∑ ∑ 𝑡𝑘𝑖
𝐶

𝑁

𝑖=1

𝑀

𝑘=1

 

𝑠. 𝑡.   

 

∑ ∑ 𝑧𝑘𝑖

𝑁

𝑖=1

𝑀

𝑘=1

= 𝑁 (Eq 12) 

∑ 𝑧𝑘𝑖

𝑀

𝑘=1

= 1 (Eq 13) 

𝑡𝑘𝑖
𝐶 = 𝑡𝑘𝑖

𝑑 + 𝛥𝑡𝑖
𝑝

 (Eq 14) 

𝛥𝑡𝑖
𝑟 = 𝑚𝑎𝑥(𝛥𝑡𝑖

𝑓
− 𝛥𝑡𝑖

𝑢, 0) (Eq 15) 

𝑡𝑘𝑖
𝑑 ≥ 𝑡 + 𝛥𝑡𝑖

𝑟 + 𝛥𝑡𝑘
𝐴 (Eq 16) 

𝛥𝑡𝑖
𝑝 = 2𝛥𝑡𝑖

𝑢 + 𝛥𝑡𝐿 + 𝛥𝑡𝑈𝐿 (Eq 17) 

𝛥𝑡𝑖
𝑢 =

𝐷𝑖

𝑣𝑟
 (Eq 18) 

∀𝑅𝑖, 𝑅𝑗 ∈ 𝒮ℛ ,  𝑎𝑛𝑑 𝑖 ≠ 𝑗, [𝑡𝑘𝑖
𝐶 − 𝛥𝑡𝑖

𝑝, 𝑡𝑘𝑖
𝐶  ) ∪ [𝑡𝑘𝑗

𝐶 − 𝛥𝑡𝑗
𝑝 , 𝑡𝑘𝑗

𝐶  ) = ∅         (Eq 19) 

 

https://www.codecogs.com/eqnedit.php?latex=F_k%250
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4. Exact and approximate solution methods 

The above formulated parallel machines scheduling problem with release dates (Nessah 

et al., 2007, 2008) is a variant of the well-known job shop problem (JSP) (Lawler et al., 1993). 

Following symbol notations defined by Lawler et al. (1993), the problem can be expressed as 

𝑃𝑚|𝑟𝑖| ∑ 𝐶𝑖 where 𝑃𝑚 represents identical parallel machines, ri means that the ith job cannot be 

processed until its release time, and ∑ 𝐶𝑖 represents that the objective criterion is to minimize the 

sum of the completion times of all jobs. Meanwhile, a sub-optimal - but faster - approximation 

algorithm was also implemented because scheduling must be performed in the field with limited 

computational resources, and deterministic scheduling is an important component of stochastic 

predictive algorithms that incorporate uncertainty, such as the scenario-based method (R. W. 

Bent & Van Hentenryck, 2004). The branch-and-bound (BAB) algorithm converges to the global 

optimal solution of each modelled problem, while the efficient approximate algorithm, converges 

to a sub-optimal solution; both were applied and compared. The scheduling algorithms were 

implemented in C++ and a Python wrapper (Cython) was used to package the algorithm into a 

Python version that was embedded in the simulator.   

4.1. Exact branch and bound (BAB)  

The BAB algorithm computes a systematic enumeration of all the candidate solutions by 

creating a tree, using state-space search (Land & Doig, 1960). The root of the tree represents the 

full set of solutions. BAB explores branches of this tree, which represent subsets of the solution 

set. It uses estimated upper and lower bounds of the optimal solution along with the value of the 

best solution found so far to “prune” branches of the tree that will result in suboptimal solutions. 

Hence, the efficiency of the BAB algorithm depends on the accurate and efficient estimation of 

the lower bound of the optimal solution.  

https://www.codecogs.com/eqnedit.php?latex=r_i%250
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In this chapter, two lower bounds were applied by relaxing certain constraints (Nessah et 

al., 2007). One lower bound was obtained by relaxing the release constraints of jobs. When the 

release time of each job is removed, all jobs can be processed immediately. The optimal solution 

to this no-release-constraint problem was optimally solvable by the policy of Shortest Processing 

Time (SPT) (Baker & Trietsch, 2013), which means that the machines serve jobs with the 

shortest process time first. The second lower bound was achieved by allowing job splitting and 

preemptive dispatching, which converted the problem to 𝑃𝑚|𝑝𝑚𝑡𝑛, 𝑟𝑖| ∑ 𝐶𝑖  , where “pmtn” 

means that preemptive processing is allowed in the scheduling). The optimal solution to this 

problem was achieved by the policy of the Shortest Remaining Processing Time (SRPT): at any 

time, a released job with the shortest remaining process time is simultaneously processed on all 

the available machines. The processing is interrupted if another job becomes available with a 

processing time strictly shorter than the remaining processing time of the job in the process.  

4.2. SRPT-convert approximation algorithm 

Approximation algorithms compute approximate solutions to NP-hard (Non-deterministic 

polynomial-time hardness) problems with provable guarantees on the distance – given some 

metric - of the returned solution to the optimal one (Williamson & Shmoys, 2011). The 

approximation of such algorithms is always guaranteed to be within a multiplicative or additive 

factor of the optimal solution even in the worst cases. In this work, the efficient CONVERT 

algorithm was used (Phillips et al., 1998) to solve the original 𝑃𝑚|𝑟𝑖| ∑ 𝐶𝑖 problem. CONVERT 

firstly relaxes the original problem by allowing preemption and job-splitting, thus turning it into 

a 𝑃𝑚|𝑝𝑚𝑡𝑛, 𝑟𝑖| ∑ 𝐶𝑖 problem, which can be solved in polynomial time. SRPT-CONVERT was 

proven to be guarantee 6-approximate algorithm (Phillips et al., 1998). Then, the solution of the 

relaxed problem is adjusted, to generate a solution to the original problem.  
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5. Implementation of harvest simulator  

Simulator software was developed to simulate robot-aided strawberry harvesting based 

on the hybrid systems model presented in Section 2. This simulator constitutes a significant 

extension and adaptation of the simulator developed by Seyyedhasani et al., (2020a) to 

incorporate the predictions of requests and the predictive scheduling of robots. The architecture 

of the simulator is shown in Figure 8. The simulator is initialized with the geometrical 

description of the strawberry field (furrow endpoints, split line, collection station locations), the 

picking crew and robot team parameters, and the initial locations of pickers, robots and active 

collection station. Modules for “Picker operations” and “Robot operations” implement the 

coupled hybrid system models of the pickers and robots, respectively. A “Crop, crew & 

collection station distribution” module updates the harvest status of each furrow 

(harvested/unharvested/currently harvesting) and the status of the active collection station.  It 

also calculates the sequence of furrows picked by the crew (after harvesting from a furrow, a 

picker moves to the furrow of the closest unharvested bed). During simulated harvesting, the 

picker states are input to the “Tray-transport request prediction” module that computes predicted 

transport requests, and the predicted requests and current robot states are used by the “Predictive 

scheduling” module to compute robot schedules and output dispatch commands to the robots.  
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Figure 8 - Architecture of integrated harvesting simulator and predictive scheduling system 

The simulator uses a global time variable t to represent the current time of the harvesting 

activity; time starts at t = 0 s and increases by Δ𝑡 (0.5s was used). Before the start of fruit harvest 

for each tray, the harvesting parameters (𝑣𝑝, 𝑣𝑤 , 𝛥𝑡𝑝𝑖𝑐𝑘) are sampled randomly using their 

respective experimentally derived frequency histograms. The states of pickers and robots are 

updated at each time step and the simulation terminates when the entire field block is harvested. 

There are four pre-allocated collection stations on each half of the split block, and at any point in 

time, only one collection station is active (the one closest to the crew). This procedure is standard 

practice in commercial harvesting and reflects what was done when the harvesting data were 

collected. 

Figure 9 presents a time-lapse image of the visualization of the robot-aided harvesting 

process. The currently active collection station is shown as a red star symbol. The locations 

where trays became full (tray-transport request locations) are marked as green hexagons and are 

exactly the same as the robot pickup locations (marked as golden crosses), since request 

predictions are perfect. 
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Figure 9 Visualization of robot-aided harvesting simulator in a commercial strawberry field 

5.1. Tray-transport request prediction module  

In the simulator, the time 𝛥𝑡𝑘 of the tray-transport request (when tray fills up) and 

moving velocity 𝑣𝑠𝑝
of the picker was accessible to the scheduling module after a predicting time 

is reached. The location of the tray-transport request is predicted as 𝛥𝑡𝑘 × 𝑣𝑠𝑝
; if the cart will not 

become full by the end of the current furrow, the prediction is not inserted in the request set 𝒮ℛ 

because it is not possible to predict the next furrow the picker will enter to continue picking and 

filling the tray. The fill-ratio (FR) is defined as the current weight of a tray divided by the tray’s 

maximum weight (capacity); it is zero when the tray is empty and one when the tray becomes 

full. To study the effect of the timing of the availability of request predictions to the scheduler, 

the tray fill-ratio (FR) was used as a proxy of the prediction timeliness. The reason that weight 

was used instead of time is that in real-world operation, the time to fill a tray is unknown until 

the tray becomes full. However, tray capacity is known in advance (trays are standard), and the 
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weight of each tray is transmitted to the robot scheduling system in real-time; hence, FR can be 

computed before the tray is full. 

In the simulator, the tray-transport request prediction module has access to the pickers’ 

states at each timestamp, so the location and time of the tray-transport request can be predicted 

perfectly as soon as the pickers start picking (at FR=0). In the real world, perfect “prediction” is 

only possible when the tray becomes full (FR=1), which is equivalent to reactive scheduling, 

since in that case the robots are only scheduled when the tray becomes full. To evaluate the 

effect of prediction timeliness on predictive scheduling, the same harvesting operations were 

simulated for FR values ranging from zero to one.  

5.2. Predictive scheduling module  

At each time step, the predictive scheduling module receives and checks the updated 

robot states and tray transport requests. The scheduling algorithm is executed only when there 

are robots available in the collection station and new predictive transport requests enter the tray-

transport request set 𝒮ℛ. The scheduling module will solve the modeled problem and store the 

computed schedules in a schedule table. Each schedule consists of the available robot index 𝐹𝑘, 

the request location 𝑳𝑖, and the dispatch time 𝑡𝑘𝑖
𝑑  ; the dispatch command is sent to the scheduled 

robot when actual time equals dispatch time. After a dispatching command is sent, the 

corresponding request and schedule are removed from 𝒮ℛ and from the schedule table, 

respectively.  

6. Experimental design  

The simulation experiments were designed to investigate the effects of the configuration 

parameters on the predictive scheduling. We defined three evaluation metrics for the scheduling 
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performance in Section 7.1: mean waiting time, mean non-productive time, and mean harvesting 

efficiency of collected trays. The factorial parameters for the predictive scheduling include: the 

number of robots, the robot speeds, FRs and scheduling policy applied (BAB search or SRPT). 

The dimension of the harvested block was fixed, and consisted of 100 furrows spaced 1.65 

meters apart and furrows of length equal to 100 m. The size of the picking crew was 25 pickers, 

and there was one additional worker at the collection station. In the simulator, the distributions of 

three stochastic parameters (𝑣𝑤, 𝑣𝑝, 𝛥𝑡𝑝𝑖𝑐𝑘) for manual harvesting were generated from data 

collected in a commercial strawberry field during high-yield season (Seyyedhasani et al., 2020b).  

 

Figure 10. Frequency histogram of picker walking speed (𝑣𝑝) during picking (inside state “PICK”). 
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Figure 11. Frequency histogram of picker walking speed (𝑣𝑤) while picker relocates carrying the tray and cart (in 

states “WALK_TO_FURROW_ENTRANCE” and “WALK_TO_FURROW_SPLITLINE”). 

 

Figure 12. Frequency histogram of the pickers’ picking time (∆𝑡𝑝𝑖𝑐𝑘). 

The above distributions were derived experimentally (frequency histograms) and 

represent the specific combination of season, field, crew and crop conditions. The methodology 

itself can be applied to any distributions. 



32 

 

A Monte Carlo sampling approach was applied to compute the mean and standard 

deviation of the waiting time and the non-productive time given the distributions of the worker 

stochastic variables (𝑣𝑤, 𝑣𝑝, 𝛥𝑡𝑝𝑖𝑐𝑘). These distributions were sampled at the start of each tray 

harvesting. Given the sampled values, the states of pickers were updated with the model 

equations defined in Eq (1,2,3,4). The measurement of each Monte-Carlo experiment is referred 

to as a harvesting simulation for the whole field block with the size mentioned above. 

Approximately 360~400 trays were harvested in the modeled block. The number of Monte Carlo 

experiments was determined based on the metrics of relative precision introduced in section 6.2. 

The selected configuration parameters to estimate the relative precision were: number of robots 

equal to 8, robot speed equal to 1.5 m/s and FR equal to 0.5. The hypothesis was that the relative 

precision did not vary too much for other harvesting configurations given the same number of 

Monte-Carlo experiments. We applied this number for the evaluation of all simulation 

experiments. 

The performance of the predictive scheduling was evaluated under different configuring 

parameters. In section 7.2, two scheduling policies were compared in the metrics of mean 

waiting time and policy computation time under a harvesting configuration of 8 robots, 4 levels 

of FRs and robot speed at 1.5 m/s. In section 7.3, the robot speed was set as 1.5 m/s and the 

scheduling performance versus 4 levels of FRs, and 7 different robot numbers was investigated. 

In section 7.4, the robot speed was set as 1.5 m/s and the scheduling performance versus 8 levels 

of FRs, and 4 different robot numbers was measured. In section 7.5, the effect of robot speed on 

the scheduling performance was investigated given 6 robots and different FRs. Grid 

combinations of 5 different speeds and 13 levels of FR were examined.  
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6.1. Evaluation metrics 

In both the all-manual and robot-aided strawberry harvesting trials, the productive time 

per tray – denoted as ∆𝑡𝑖
𝑒𝑓

 – is defined in the same way: it is the time required by a picker to fill 

the ith tray to its capacity, starting from an empty tray. Productive time includes picking and 

walking to relocate to a new furrow to resume picking when the tray cannot be finished in the 

current furrow. Non-productive time per tray – denoted as ∆𝑡𝑖
𝑓𝑒

– is defined as the time interval 

that is not spent picking or relocating to pick from another furrow. In manual strawberry 

harvesting, ∆𝑡𝑖
𝑓𝑒

 includes the picker’s walking time to transport the full tray to the unloading 

station, the waiting time in a queue to deliver the tray and get an empty one, and the walking 

time required to return to the previous position to resume picking. In contrast, in robot-aided 

harvesting, ∆𝑡𝑖
𝑓𝑒

 is the sum of the time (∆𝑡𝑖
𝑤)  the picker spends waiting for a robot to arrive in 

state “WAIT_FOR_ROBOT_ARRIVAL”, plus the time (𝛥𝑡𝐿) needed to place the full tray on 

the robot and take an empty tray from the robot, in state “EXCHANGE_TRAYS”. ∆𝑡𝑖
𝑤 is highly 

dependent on the robot scheduling policy, whereas 𝛥𝑡𝐿 is small and is assumed to be constant. 

𝛥𝑇𝑤 was the average waiting time and 𝛥𝑇𝑓𝑒represents the average non-productive time of all the 

trays measured in a simulation experiment.  

The mean harvesting efficiency, 𝐸𝑓𝑓, when harvesting N trays with or without robots, is 

defined as the averaged sum of ratios of productive time over total time spent for each tray; it is 

calculated by (Eq 20): 

𝐸𝑓𝑓 =
1

𝑁
∑

∆𝑡𝑖
𝑒𝑓

∆𝑡𝑖
𝑒𝑓

+ 𝛥𝑡𝑖
𝑓𝑒

𝑁

𝑖=1

 (Eq 20) 
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𝛥𝑇𝑓𝑒and  𝐸𝑓𝑓 can be used to evaluate the overall performance of all-manual and robot-

aided harvesting, and 𝛥𝑇𝑤 can be used to evaluate the performance of the scheduling algorithm. 

6.2. Determination of number of Monte Carlo runs 

Since the parameters (𝑣𝑤, 𝑣𝑝, 𝛥𝑡𝑝𝑖𝑐𝑘) of the picker operating states are stochastic 

variables, harvesting was simulated using a Monte-Carlo approach. The parameters are sampled - 

before the start of each tray picking - from the experimentally derived frequency histograms that 

approximate the respective probability distributions (Figure 12-15). Next, the number M of 

Monte-Carlo repetitions that are needed to achieve a given value of desired relative precision for 

the mean waiting time will be derived (Figliola & Beasley, 1995).  

Let a picker’s waiting time for the ith tray be ∆𝑡𝑖
𝑤, and let ∆𝑡̅̅ ̅𝑤 be the sample mean waiting time 

for all N trays; ∆𝑡̅̅ ̅𝑤is predicted by one execution of the harvest simulation. The variation in the 

sample statistics is characterized by a normal distribution of the sample mean values about the 

true mean. ∆𝑡̅̅ ̅𝑤 will be different each time the harvest simulation is executed (∆𝑡̅̅ ̅𝑤is a random 

variable). If harvesting is simulated M times, a pool of ∑ 𝑁𝑖
𝑀
𝑖=1  measurements will be available. 

The pooled standard deviation of 〈∆𝑡̅̅ ̅𝑤〉 is expressed as  [𝑆𝛥𝑡𝑤] in Eq (26). [𝑆𝛥𝑡𝑤] represents the 

absolute precision of the estimation of the true mean 𝛥𝑇𝑤: 

Finally, the relative precision [𝑝𝑟] of our estimation of the true mean is given by (Eq 21). 

[𝑝𝑟] =
[𝑆𝛥𝑡𝑤]

〈∆𝑡̅̅ ̅𝑤〉
⁄  (Eq 21) 
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In this work, a relative precision equal to 1% was deemed adequate. The number M of 

Monte-Carlo repetitions to achieve 1% relative precision was determined experimentally and is 

reported in Section 7.1.  

7. Experimental results and discussion 

7.1. Determination of sufficient number of Monte Carlo runs 

As explained in Section 6.2, when more Monte-Carlo runs are executed for the same 

harvesting scenario, better precision can be achieved for the estimate of true mean 〈∆𝑡̅̅ ̅𝑤〉. To 

quantify the relative precision given different times of measurements, one harvesting scenario 

was simulated that involved six robots, FR=0.5, robot velocity at 1.5m/s, and the SRPT-

CONVERT scheduling algorithm. The relative precision [𝑝𝑟] was computed as a function of 

increasing number of Monte-Carlo runs. Figure 13, shows that 100 executions resulted in a 

relative precision of approximately 1%, which corresponds to 0.081s of absolute precision, given 

that  〈∆𝑡̅̅ ̅𝑤〉 was 8.1s. Therefore, the evaluated metrics (𝛥𝑇𝑤, 𝛥𝑇𝑓𝑒) in all our experiments were 

estimated based on the pooled means of M=100 Monte-Carlo runs. We hypothesized that the 100 

sampled means of each evaluated metric were normally distributed in different group of setting 

parameters.  



36 

 

 

Figure 13. Relative precision of the estimated mean waiting time 〈∆𝑡̅̅ ̅𝑤〉 as a function of the number of simulation 

repetitions for Monte-Carlo sampling 

7.2. Comparison of exact and approximate Solutions 

The approximate (SRPT) and the exact algorithm (BAB search) were used to compute 

the average scheduling time for FRs equal to 0.3, 0.5, 0.7, 0.8, 0.9. The resulting picker average 

waiting time was calculated by the total time of executing the scheduling function divided by the 

number of times running that function. Table 3 shows the relative discrepancy of the 

approximate solutions compared to the exact ones and the corresponding resulting picker average 

waiting time for the two algorithms. The largest discrepancy was 6.8%, and in terms of absolute 

value, it corresponded to a difference of 1.5 seconds for the evaluated average waiting time. 

However, the BAB algorithm required long computation times and was 110 to 240 times slower 

than the approximate algorithm.  

Table 3 Relative error between the picker mean waiting time calculated by the exact scheduling algorithm (BAB) 

and the approximate algorithm (SRPT) 
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FR Average 

scheduling time 

with SRPT 

Average 

scheduling time 

with BAB 

Discrepancy in waiting times 

between 

BAB and SRPT (%) 

0.3 0.02 min 12.8 min 2.0 

0.5 0.03 min 10.6 min 3.3 

0.7 0.01 min 9.5 min 6.8 

0.8 0.02 min 8.2 min 3.1 

0.9 0.01 min 5.9 min 2.3 

 

Since the goals of this work are to investigate changes in performance as the number of 

robots increases and the FR varies, small errors (in the order of several seconds) in absolute 

waiting times were not deemed as important. On the other hand, each Monte-Carlo simulation 

repeats the harvest operation 100 times, and therefore, computational speed was more important 

than the optimality. Also, the sub-optimal and efficient algorithm is important for the system 

implementation given the limited computation resources and need for real-time operation. 

Therefore, the approximate SRPT algorithm was used for all simulation results. 

7.3. Reactive and predictive schedule performance vs. number of robots 

It is expected that as the robot-to-picker-ratio increases and request predictions become 

available earlier (FR decreases), non-productive time (𝛥𝑇𝑓𝑒) and waiting time (𝛥𝑇𝑤) will 

decrease, causing efficiency to increase. To quantify this behavior, simulations were executed 

with4, 5, 6, 8, 10, 12, 14 robots and FRs at 0.8, 0.9, 0.95, 1.0. Figure 14 shows the mean non-

productive time and its 95% confidence interval (CI) as a function of the robot-to-picker-ratio, 

with FR as a parameter, and robot speed held constant at 1.5 m/s. The dotted line shows the 

baseline, i.e., the mean non-productive time for all-manual harvesting, which was 84.5 s, based 
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on data collected in the field (Section 7.1). The curve at FR=1 corresponds to reactive scheduling 

based on the Shortest Remaining Processing Time criterion (Sections 7.1, 7.2).  

  

Figure 14. Mean (points) and its 95% CI (shaded area) of non-productive time as a function of the number of 

robots, with different Fill-Ratios (FRs); robot speed is 1.5 m/s. The manual harvesting non-productive time (84.5 s) 

was measured in the field, with a 25-people commercial harvesting crew. 

When only four robots were used, reactive and predictive scheduling did not improve 

non-productive time dramatically compared to manual harvesting. Deploying fewer than four 

robots led to worse non-productive time than manual harvesting, and hence these data points 

were not presented. Introducing five to eight robots decreased non-productive time drastically, 

and when ten or more robots were used, waiting time was reduced by 64.6% (reactive 

scheduling) and up to 93.7% (predictive scheduling, with early prediction at FR=0.8).  
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When reactive scheduling was used, non-productive time plateaued (at 29.9 s) when more 

robots (in this case ten) were deployed, because picker waiting time cannot be less than the robot 

travel time from the collection station to the picker. The same was true for predictive scheduling; 

however, the availability of request predictions reduced non-productive time down to 5.3 s, when 

predictions were available early enough (FR=0.8). Even very late access to request predictions 

(FR=0.95) improved the non-productive time (15.5 s). It was noticed that when FR was less than 

0.8, robot-aided harvest performance did not improve (hence those curves are not depicted); the 

reason will be discussed in Section 7.4. The curve at FR=0.8 (and even FR=0) plateaued at 5.3 s. 

The reason is that the time ∆𝑡𝑝𝑖𝑐𝑘required to fill a tray is a random variable that can take small 

values (e.g., 120 seconds) and in many instances the distance of the picker from the collection 

station can be large; thus, even when prediction is available immediately when tray-filling starts, 

the robot will need more time to travel to the picker than ∆𝑡𝑝𝑖𝑐𝑘. 

Figure 14 shows harvesting efficiency (Eff) curves, for all-manual harvesting (black 

dotted horizontal line), and for robot-aided harvesting with varying number of robots and 

prediction timeliness (FR) parameters. The efficiency curves exhibit a “reciprocal” behavior to 

the non-productive time curves (𝛥𝑡𝑖
𝑓𝑒

is in the denominator of the efficiency terms, in Eq. 19) and 

the above discussion about non-productive time vs. robot-to-picker ratio applies to them too.  

Next, an analysis is presented to explain the plateaus of the picker waiting (non-

productive) time in reactive scheduling, in Figure 14. Each picker needs to wait for the serving 

robot to traverse from the collection station to them. Given enough robots, if reactive scheduling 

is used, 𝛥𝑇𝑤 can be approximated to be the mean of this distance divided by robot speed, plus 

the constant tray exchange time. During the simulations, the distances Di were recorded. These 
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distances depend on the dimension of the field and on yield distribution. Their histogram is 

shown in Figure 15. 

 

Figure 15 Frequency histogram of the distance Di from the collection station to the location of the full-tray request; 

the mean value is 39.74 m 

The mean running distance was 𝐷 ≈ 39.74 m. Since tray loading time (𝛥𝑡𝐿) was 

assumed constant –equal to 5 s, in this study - the value of 𝛥𝑇𝑓𝑒at the “plateau” - for reactive 

scheduling - can be estimated from Eq (30).  

𝛥𝑇𝑓𝑒 ≈
𝐷

𝑣𝑟
+ 5 ≈ 31.13𝑠   (Eq 22) 

The result matches approximately the mean of non-productive time of the curve labeled 

as “FR = 1.0”, in Figure 14. When predictive scheduling is used early enough (FR<0.8) and 

many robots are available, the robots start traversing Di early enough to reach pickers before or 

exactly when the tray becomes full. Hence, the value of the plateau is dominated by the loading 

time (𝛥𝑡𝐿=5 s). 
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7.4. Predictive schedule performance vs. prediction timeliness of request 

predictions 

Figure 16 shows the relationship between the picker mean waiting time (〈∆𝑡̅̅ ̅𝑤〉) and 

prediction timeliness (FR), when robot speed is 1.5 m/s. When FR was smaller than 

approximately 0.8,  〈∆𝑡̅̅ ̅𝑤〉 was almost independent of FR, but it started increasing when FR 

became larger than this value. The rate of increase became larger as FR got closer to one.  

 

Figure 16. Mean (points) and its 95% CI (shaded area) of waiting time, ∆𝑡̅̅ ̅𝑤 , as a function of FR, with different the 

number of robots; robot speed is 1.5 m/s 

To explain this behavior, the concept of the “timeliness” of a predicted request was 

introduced. The one-way robot travel time from the collection station to the request location 𝑳𝑖
𝑓
, 
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is 𝛥𝑡𝑖
𝑢.  A request is characterized as “early” if the robot travel time to the predicted location of 

the request is shorter than the remaining time, 𝛥𝑡𝑖
𝑓
, needed to fill the tray (i.e., when 𝛥𝑡𝑖

𝑢 ≤ 𝛥𝑡𝑖
𝑓
). 

When a request is “early” and a robot is available to be dispatched immediately, the 

corresponding picker will not need to wait for the arrival of a robot. If 𝛥𝑡𝑖
𝑢 > 𝛥𝑡𝑖

𝑓
, then 𝑅𝑖 is a 

“late” request, because even if a robot is available to serve 𝑅𝑖 immediately, that picker will still 

need to wait for the robot, for a time interval equal to (𝛥𝑡𝑖
𝑢 − 𝛥𝑡𝑖

𝑓
). The value of 𝛥𝑡𝑖

𝑢 depends on 

robot speed, and the value of 𝛥𝑡𝑖
𝑓
is determined by FR (if FR=1, 𝛥𝑡𝑖

𝑓
=0; if FR=0,  𝛥𝑡𝑖

𝑓
= ∆𝑡𝑝𝑖𝑐𝑘, 

else 0 < 𝛥𝑡𝑖
𝑓

< ∆𝑡𝑝𝑖𝑐𝑘). 

Based on the scheduling model presented in section 3, a robot will not be dispatched to a 

request until the request’s release constraint is satisfied. Therefore, early requests, with an FR 

value below a certain FR threshold, cannot change the current schedule, and thus will not affect 

the performance of the system (see the Appendix for the formal proof, and derivation of the 

threshold equation (Eq. A.8)). This threshold was calculated for our example, as follows.  Since 

the robot velocity is 1.5m/s, (Δ𝑡𝑗
𝑢)𝑚𝑎𝑥 can be calculated by the largest possible one-way 

transport distance, which corresponds to the distance when the collection station is at the center 

of the headland, and the tray becomes full at the most distance corner of the field from the 

collection station. Given the dimensions and geometry of the field, and the spacing and 

dimensions of the beds and furrows, this distance is equal to 71 m. Given that the mean picking 

time is 275.5s (from the histogram of Fig 13), the FR threshold, according to (Eq A.8) is 0.83. 

𝛥𝑇𝑤 would be expected to start increasing significantly when FR is above this threshold, a 

behavior that is seen in Figure 16.   
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7.5. Predictive schedule performance vs. robot speeds 

As mentioned above, the robot’s one-way travel time 𝛥𝑡𝑖
𝑢 for request 𝑅𝑖 depends on robot 

speed 𝑣𝑟; higher speeds result in smaller one-way travel times and (𝛥𝑡𝑖
𝑢)𝑚𝑎𝑥 also increases. 

Hence, the FR threshold increases. We defined 𝐹𝑅𝑡 as the significant changing point for the 

mean of wait time compared to FR=0.5 on each curve. In Figure 17, one can see that the turning 

points of 𝐹𝑅𝑡 of the curves does shift right (increase) as the robot speed increases. To find the 

𝐹𝑅𝑡, Tukey’s HSD (honestly significant difference) tests were made for a list of candidate FRs 

that cover 𝐹𝑅𝑡 based on the observation of Figure 17. The inspected candidate FRs for different 

robot speeds are listed in Table 4.  
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Figure 17. Mean (points) and its 95% CI(shaded area) of picker waiting time (∆𝑡̅̅ ̅𝑤) as a function of FR, at various 

robot speeds; robot-to-picker ratio is 6/25 

Table 4. FR candidates to make Tukey’s HSD test based on the observation from Figure 17 

Robot speed (m/s) FR candidates 

1 {0.50,0.75,0.80,0.82,0.85} 

1.2 {0.50,0.80,0.82,0.85,0.87} 

1.5 {0.50,0.82,0.85,0.87,0.90} 

1.7 {0.50,0.87,0.90,0.92,0.95} 

2.0 {0.5,0.90, 0.92,0.95} 

The null hypothesis of Tukey’s HSD test was that all mean wait times for all the FR in 

the candidate list were the same for each evaluated speed. The alpha value for the tests was set to 

1% (Type I error). Taking as an example for the robot speed of 1m/s, the Tukey’s HSD table of 

all comparing combinations of candidate FRs is presented in Table 5. From the column of “Null 

rejections”, one can see that the mean waiting time was significantly different from FR=0.5 when 

FR was at 0.85. Thus, the start turning point 𝐹𝑅𝑡 was chosen at FR=0.85 for the curve of the 

robot speed of 1 m/s. Similarly, the 𝐹𝑅𝑡 and the respective p-values compared to the mean wait 

times at FR=0.5 for the other robot speeds are listed in column 5 of Table 6 (square points in 

Figure 17).  

Table 5. Tukey’s HSD testing results for all comparing combinations of the candidate FRs for the robot speed at 

1m/s 

FR comparing 

combinations 

Adjusted p-values Null rejections 

0.50 0.75 0.901 False 

0.50 0.80 0.732 False 

0.50 0.82 0.301 False 

0.50 0.85 0.001 True 

0.75 0.80 0.851 False 

0.75 0.82 0.612 False 

0.75 0.85 0.001 True 

0.80 0.82 0.901 False 

0.80 0.85 0.001 True 

0.82 0.85 0.004 True 

Table 6. 𝐹𝑅𝑡 from the simulation results, 𝐹𝑅𝑡̂  estimated from Eq 29 and their discrepancy percentage 
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Robot velocity 

(m/s) 
 FRt  FR thresholds  Discrepancy (%) P values  

1.0 0.85 0.74 12.9% 0.0012 

1.2 0.82 0.79 3.67% 0.0053 

1.5 0.87 0.83 4.59% 0.0005 

1.7 0.90 0.85 5.56% 0.0014 

2.0 0.92 0.87 5.43% 0.0008 

The estimated FR thresholds from Eq A.8 were shown in the third column in Table 6. FR 

threshold gave a conservative instructive timeliness for the predictive module to generate the 

predictive requests. As a result, it can be concluded that FR affects predictive scheduling 

performance significantly when it is over the estimated threshold. Thus, it is important to utilize 

the FR below the estimated threshold. 

8. Summary and conclusions 

In this chapter, strawberry harvesting under the assistance of tray-transporting robots was 

investigated. Dynamic predictive scheduling was modeled and implemented, assuming accurate 

information of the locations and times of the next tray-transport requests (deterministic 

predictions). Also, the influence of the earliness of the availability of transport requests on 

scheduling performance was studied. The study was based on a harvesting simulator that 

modeled human pickers and transport robots and utilized manual harvesting model parameters 

estimated from data collected one day during harvesting of a commercial strawberry block in 

2018.  

Experimental results showed that to achieve a dramatic reduction in picker mean non-

productive time and increase harvest efficiency, the robot-to-picker ratio had to be above 1:5 (1 

https://www.codecogs.com/eqnedit.php?latex=FR%5E%7Bt%7D%250
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robot for every 5 pickers); deploying fewer than four robots led to worse non-productive time 

than manual harvesting without robots. When the robot-to-picker ratio was larger than 

approximately 1:3 (8 robots for 25 pickers) the waiting time and efficiency plateaued, regardless 

of how early the prediction was available to the scheduler (i.e., how small FR was). The reason is 

that, if a robot is always available to serve a predicted request, the picker mean waiting time is 

the sum of mean travel time plus the tray exchange time, which are both constant; when 

predictions are made very early, waiting time is lower bounded by the tray exchange time. When 

ten or more robots were used, non-productive time was reduced by 64.6% (reactive scheduling) 

and up to 93.7% (predictive scheduling) with respect to all-manual non-productive time. The 

corresponding efficiency increases were 15% and 24%. Reactive dispatching (FR = 1) performed 

always worse than deterministic predictive scheduling (FR < 1), because robot travel time to the 

pickers contributed significantly to picker waiting times.  

When the robot/picker ratio is up to 1/4 under the predictive scheduling policy SRPT-

Convert, the non-productive time is reduced around 40% compared to the reactive scheduling 

method and over 70% compared to manual harvesting. The influence of request prediction 

earliness, FR, on the predictive scheduling was also analyzed.  FR starts affecting the 

performance of the predictive scheduling after a FR threshold is reached. The FR threshold can 

be estimated in advance, given a specific harvesting configuration. 
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Chapter 3 Stochastic predictive scheduling of robot team  

1. Introduction 

In this Chapter, the developed simulation system integrated some practical scenarios. 

During harvesting, the predicted transport requests must rely on real-time sensor data and will 

always contain uncertainty, as a result of unknown ripe fruit distribution, picker work patterns 

and sensor noise (Khosro Anjom & Vougioukas, 2019). Also, the robot speed cannot be very fast 

on the shared headland area where the harvesting facilities and human workers are located. 

Given the slower robot speed, it may happen that the pickers may need to wait for a too long 

time if they are constrained to wait for the robot to transport their trays in the low robot/picker 

ratio. Thus, request rejections are included in the scheduling decisions, which means that the 

scheduler is to signal some pickers to transport the full tray themselves to minimize average non-

productive time of all pickers. In field logistical operations, primary units (equipment, human 

pickers, etc.) and support vehicles form a closed system.  The delays introduced by the support 

vehicles affect the primary units’ temporal distributions of future service requests. During 

strawberry harvesting, the uncertainty in transport requests is gradually revealed as the 

harvesting activity progresses, so the scheduling decisions may need to be adjusted in real-time 

given the dynamically updated input information.  

The agricultural vehicle scheduling (or in-field logistics) problem falls under the broad 

category of online stochastic combinatory optimization (OSCO) (van Hentenryck et al., 2010).  

Solving the online problem with stochastic programming could guarantee convergence to the 

optimal solution (Pillac et al., 2013), but may take too long to compute for a single machine.. In 

our case, a fast and near-optimal solution is pursued to exploit the stochastic predictive requests, 

as the decision time and computation resources for the scheduler are quite limited in the field 
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operation. Bent & Van Hentenryck (2004) proposed a scenario sampling-based algorithm, 

Multiple Scenario Approach (MSA), on the partially dynamic vehicle routing problem with time 

windows. In the planning stage, MSA sampled multiple scenarios when the distributions of 

stochastic request predictions are accessible. Given each sampled scenario, the scheduling was 

deterministic and solved quickly into a scenario plan. At the decision instant, an optimized plan 

is formulated by a consensus function (R. Bent & Van Hentenryck, 2004 June) that generates an 

executing plan most consistent with the optimal solution of the sampled scenarios. This 

methodology can be adapted and applied to different OSCO problems by building two case-

dependent modules: a scenario sampling function to get multiple deterministic scheduling 

scenarios and a scheduling solver for each sampled deterministic scenario.  

2. Scheduling of crop-transport robots under stochastic requests 

In the previous chapter, the predictive scheduling of crop-transport robot was modelled as 

a parallel machine scheduling problem (PMSP) with a release time constraint, where the 

objective was to minimize total waiting time. In this chapter, three practical adaptions were 

added to the model: (1) predictive tray transport requests are expressed as predicted stochastic 

distributions; (2) the robot speed is set slower for the consideration of safety; (3) request 

rejections are included in the decision process of the scheduling algorithm. In the previous 

chapter, it was assumed that a picker must wait for the robot to come after they fill the tray, even 

if the waiting time of the picker is longer than the time it would take them to walk and deliver the 

tray themselves. However, this will not be acceptable by the pickers in real situations, as the 

pickers are paid based on the number of trays collected and long waiting time leads to less salary. 

As a result, the rejection of requests was introduced in this chapter (when robot service would 
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result in slower-than-manual transport) as a feature of our scheduling algorithm. The objective is 

to minimize the expected total non-productive time of all the transport requests.  

In robot-aided harvesting, each picker from a set 𝒮𝒫 = {𝑃1,   𝑃2,   … ,  𝑃𝑄} of Q pickers 

harvests fruits in a tray that lies on a picking cart. A team of M identical transport robots 𝒮ℱ =

{𝐹1,   𝐹2,   … ,  𝐹𝑀} bring empty trays to the picker and carries the full tray to a collection station; 

the station’s coordinates Ls are known. The robot scheduling algorithm has access to a set of 

predicted tray-transport requests 𝒮ℛ = {ℛ1,   ℛ2,   … ,  ℛ𝑁} where 0 ≤  𝑁 ≤  Q.  

Let us assume that at an instant 𝑡0, ℛ𝑖 is different from the deterministic request that 

contains the following (known) information: (1) a prediction distribution of the remaining time 

interval ℵ(∆𝑡𝑖
𝑓

) with respect to 𝑡0 until the tray becomes full of harvested fruit, (2) the predicted 

moving speed along the row ℵ(𝑣𝑖
𝑦

) while picking, and (3) the current location of the picker 𝑳𝒊. 

ℵ(∆𝑡𝑖
𝑓

) is calculated from recent measurements from the load cells and ℵ(𝑣𝑖
𝑦

) is computed from 

recent GPS readings. . The main methodology for building these predictions is explained in this 

work (Khosro Anjom & Vougioukas, 2019). The distribution of  ℵ(∆𝑡𝑖
𝑓

) and ℵ(𝑣𝑖
𝑦

) followed 

Gaussian distributions. ℵ(∆𝑡𝑖
𝑓

) was achieved by linear regression model to predict the value of 

full tray time at the weight of the tray capacity. Mean of ℵ(𝑣𝑖
𝑦

) was obtained by linear regression 

to estimate the slope parameter and standard deviation of ℵ(𝑣𝑖
𝑦

) was obtained from the standard 

error of the regression coefficient.  

A fast and near-optimal approach, MSA (Pillac et al., 2013), was adopted and adapted to 

incorporate the dynamic stochastic predictive requests in the computation of the schedule, 

assuming a limited computational power is available in this agricultural simulation. To 

implement MSA, two application-dependent functions must be setup: (1) a function GET-

https://www.codecogs.com/eqnedit.php?latex=%5Cmathbf%7BL_s%7D%250
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SAMPLES (𝒮ℛ , 𝑀) which returns a set of M deterministic scenarios 𝒮𝜉 = {𝒮𝜉1 , 𝒮𝜉2 , . . . , 𝒮𝜉𝑀}. 

Each scenario 𝒮𝜉𝑖 contains a set of N sampled requests. Each of the deterministic requests 𝑅𝑖 is 

sampled from predictive transport request distributions ℵ(∆𝑡𝑖
𝑓

), ℵ(𝑣𝑖
𝑦

) of ℛ𝑖 in 𝒮ℛ; (2) a 

function OPTIMAL-SCHEDULE (𝒮𝜉𝑖) which returns an optimal schedule given a deterministic 

sampled scenario 𝒮𝜉𝑖. The schedule includes the request rejections to some pickers and serving 

order for the remaining requests (3) a consensus function that combines all the individual 

scenario solutions into a single execution plan. For the function GET-SAMPLES (𝒮ℛ , 𝑀), the 

Monte Carlo sampling method was used to get the M sampled scenarios from two distributions 

ℵ(𝑣𝑖
𝑦

) and ℵ(∆𝑡𝑖
𝑓

).  

In a sampled scenario 𝒮𝜉𝑖, each deterministic predictive request 𝑅𝑖 is composed of two 

sampled components, ∆𝑡𝑖
𝑓
and 𝑣𝑖

𝑦
. Given them, a deterministic full tray location 𝑳𝒊

𝒇
. can be 

calculated. Then, the variables relevant to the modeled scheduling problem can be calculated 

shown as Table 7 (Peng & Vougioukas, 2020). 

Table 7. Definitions of Symbols used in the modeling of deterministic predictive scheduling 

𝑳𝑠: the collection station location; 

𝑳𝑖
𝑓
 the full tray location in the field frame.  

𝐷𝑠𝑖: one-way traveling distance, the Manhattan distance from 𝑳𝑠 to 𝑳𝑖
𝑓
 along the path; 

∆𝑡𝑖
𝑢: the corresponding robot’s one-way travel time calculated by 𝐷𝑠𝑖 and robot speed; 

∆𝑡𝐿: time interval when the picker takes the empty tray from the robot and loads the full 

tray on the robot (and then resumes picking); 

Δ𝑡𝑈𝐿: the time interval for the collection station to unload the carried tray from the 

picker/robot and return an empty tray to the picker/robot; 

∆𝑡𝑖
𝑝
: The total processing time required by a robot to serve request Ri and be available to 

serve another request; 

Δti
r: release delay of request Ri, the greatest value that eliminates robot idle time at 𝑳𝒊.  

𝛥𝑡𝑖
𝑟 = 𝑚𝑎𝑥(𝛥𝑡𝑖

𝑓
− 𝛥𝑡𝑖

𝑢),0) 
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𝛥𝑡𝑘
𝐴: The robot is available to be dispatched again, after a time interval 𝛥𝑡𝑘

𝐴. 𝛥𝑡𝑘
𝐴 = 0, if 

the robot is available at the collection station; 

𝑡𝑘𝑖
𝑑 : The dispatch time instant of robot 𝐹𝑘 to the request 𝑅𝑖, which is no earlier than 

𝑡0+Δ𝑡𝑖
𝑟. 

The pickers’ requests may be rejected by the scheduler. In this case, they need to 

transport the full tray themselves and their self-transporting behavior is modeled following our 

previous work (Seyyedhasani et al., 2020b, 2020a). If the picker transports the tray themselves 

the total time ∆𝑡𝑖
𝑇, required to deliver the full tray and take an empty tray back to resume picking 

is shown as (Eq 23). ∆𝑡𝑖
𝑢𝑃  is the one-way travel time interval from full tray location 𝑳𝑖 to 𝑳𝑠 by 

the picker in 𝑅𝑖. ∆𝑡𝑖
𝑢𝑃 is calculated based on 𝐷𝑠i and an estimated picker self-transport speed 𝑣𝑝

𝑖  

from the historic data of pickers. 𝛥𝑡𝑈𝐿 is assumed to be constant depending on the crew 

management in the harvesting field. 

∆𝑡𝑖
𝑇 = 2∆𝑡𝑖

𝑢𝑃 + ∆𝑡𝑈𝐿 
 

(Eq 23) 

The tray completion time instant, 𝑡𝑖
𝐶𝑃 if the full tray is transported by the picker himself, 

is shown in (Eq 24) with ∆𝑡𝑖
𝑇 representing the estimated tray-transport time by the picker. 

𝑡𝑖
𝐶𝑃 = 𝑡𝑖

𝑓
+ ∆𝑡𝑖

𝑇 (Eq 24) 

If the request is served by a robot 𝐹𝑘, the time instant, 𝑡𝑖
𝐶𝑅 to resume picking is expressed 

as (Eq 25). The picker can start picking the next tray after the robot arrived at the full tray 

location and the full tray is exchanged with the empty tray from the robot.  

𝑡𝑖
𝐶𝑅 = 𝑡𝑖𝑘

𝑑 + ∆𝑡𝑖
𝑢 + ∆𝑡𝐿 (Eq 25) 

The nonproductive time, ∆𝑡𝑖
𝑁of 𝑅𝑖 can be calculated as (Eq 26). The objective of the 

modeled problem is to minimize the mean of the nonproductive time of all the pickers. In the 
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objective function, both 𝑡𝑖
𝐶𝑃 and 𝑡𝑖

𝐶𝑅  are represented by 𝑡𝑖
𝐶  which is decided by the decision 

variables. 

∆𝑡𝑖
𝑁 = 𝑡𝑖

𝐶 − ∆𝑡𝑖
𝑓
 (Eq 26) 

After building the mathematic equations of these modeled variables, the function 

OPTIMAL-SCHEDULE (𝒮𝜉𝑖) was built to find the solution for each scenario. First, the exact 

solution is computed using integer programming to get the best possible solution. Second, a fast 

and sub-optimal heuristic policy is implemented to get a near-optimal solution in less time, so 

that the pickers do not need wait for long time caused by the scheduling computation. The results 

of the exact and heuristic solutions are compared in the proposed performance metrics in Section 

7 of this chapter. 

2.1.  Scenario solution with integer programming 

The deterministic predictive scheduling problem of each sampled scenario was modelled 

using an integer linear program. 𝒮𝒯 is used to represent the discretized time set, {1, 2, 3..., TB}. 

TB is the upper bound makespan of all requests (from 𝑡0 to 𝑡0 + 𝑚𝑎𝑥𝑖{𝑡𝑖
𝐶}). For this problem, 

the upper bound TB can be expressed as (Eq 27). It is easy to prove that the completion time of 

any request cannot be larger than the maximum completion time of self-transporting, otherwise 

that request should be transported by the picker themselves 

𝑇𝐵 ≤ 𝑡0 + 𝑚ax𝑖{Δ𝑡𝑖
𝑓

} + max𝑖{Δ𝑡𝑖
𝑇} (Eq 27) 

The decision variable is defined as 𝜒𝑖𝑘𝑡, where 𝑖 is the index of request Ri. k is the index 

of the serving robot if 1 ≤ 𝑘 ≤ 𝑀; 𝑘 = 𝑀 + 1 means that the picker transports the tray himself. t 

is the index of discrete-time instant. 𝜒𝑖𝑘𝑡 is equal to 1 if Ri is served by a robot Fk (1 ≤ 𝑘 ≤ 𝑀) 
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or transported by the picker himself (𝑘 = 𝑀 + 1) at the time instant t. The problem can be 

modeled using an integer linear programming (ILP) as follows. 

    

𝑚𝑖𝑛 ∑ ∆𝑡𝑖
𝑁

𝑁

𝑖=1

 

s.t. 

 

∑ ∑ χ𝑖𝑘𝑡

Δ𝑡𝑖
𝑟

𝑡=1

𝑀

𝑘=1

= 0,  𝑅𝑖 ∈ 𝒮ℛ  (Eq 28) 

∑ ∑ 𝜒𝑖𝑘𝑡

𝛥𝑡𝑘
𝐴

𝑡=1

𝑁

𝑖=1

= 0,  1 ≤ 𝑘 ≤ 𝑀 (Eq 29) 

∑ ∑ χ𝑖(𝑀+1)𝑡

𝑡𝑖
𝑓

𝑡=1

𝑀

𝑘=1

= 0,  𝑅𝑖 ∈ 𝒮ℛ (Eq 30) 

∑ ∑ χ𝑖𝑘𝑡

𝑇𝐵

𝑡=1

𝑀+1

𝑘=1

= 1,  𝑅𝑖 ∈ 𝒮ℛ (Eq 31) 

∑ ∑ χ𝑖𝑘𝑡

𝑡

𝑡=𝑚𝑎𝑥(1,𝑡−Δ 𝑡
𝑖
𝑝

)

𝑀

𝑘=1

≤ 0,  𝑅𝑖 ∈ 𝒮ℛ (Eq 32) 

𝑡𝑖
𝐶 = ∑ ∑(𝑡 + 𝑡𝑖

𝑈 + Δ𝑡𝐿)χ𝑖𝑘𝑡

𝑇𝐵

𝑡=1

𝑀

𝑘=1

,  𝑅𝑖 ∈ 𝒮ℛ (Eq 33) 

𝑡𝑖
𝐶 = ∑(𝑡 + 𝑡𝑖

𝑇)χ𝑖(𝑀+1)𝑡

𝑇𝐵

𝑡=1

,  𝑅𝑖 ∈ 𝒮ℛ (Eq 34) 

∆𝑡𝑖
𝑁 = 𝑡𝑖

𝐶 − ∆𝑡𝑖
𝑓

,  𝑅𝑖 ∈ 𝒮ℛ  (Eq 35) 

The objective function is the sum of the non-productive time of all requests and the 

required constraints are explained as follows. In (Eq 28), it represents that any request cannot be 

served by a robot before their release constraints. (Eq 29) means that the robot's start serving 
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time cannot be earlier than their initial available time. If the request is transported by the picker 

himself, the start time cannot be earlier than the full tray instant 𝑡𝑖
𝑓
 as (Eq 30). (Eq 31) represents 

that all requests must be served either by a robot or by the picker himself. (Eq 32) shows that any 

requests can be served by only one robot (preemption is not allowed). (Eq 33) expresses the tray 

completion time of the request served by the robots, while (Eq 34) is the tray completion time 

served by the pickers themselves. (Eq 35) shows the non-productive time of request Ri. 

As explained in the previous chapter, predictive scheduling of crop-transport robots is a 

variant of the Parallel Machine Scheduling Problem (PMSP). Following symbol notations 

defined by Lawler et al. (1993), the problem is referred to as 𝑃𝑚|𝑟𝑖| ∑ 𝐶𝑖, where 𝑃𝑚 represents 

identical parallel machines, 𝑟𝑖 means that the ith job cannot be processed until its release time, 

and ∑ 𝐶𝑖 represents that the objective criterion is to minimize the sum of the completion times of 

all jobs. It has been shown that this problem is NP-hard in a strong sense and hence the optimal 

solution cannot be obtained in polynomial time (Du et al., 1991). In this paper, the modeled ILP 

was solved by a commercial solver (Gurobi Optimization, LLC., 2020) at the cost of long 

computation. 

2.2.  Scenario solution with heuristic policy 

A heuristic policy, namely, the shortest release time with long process time first 

(SRLPT), is proposed to achieve a fast but sub-optimal result in each sampled deterministic 

scenario. The requests reaching the release constraint (Δ𝑡𝑖
𝑟 = 0) will enter a scheduling pool and 

the request with the longest process time in the pool is ordered to be served by the first available 

robot. The non-productive time of those requests with large self-transport time can be reduced 

significantly by the service of available robots. The requests with a shorter transport time are 

served late, as even if they are rejected, the non-productive time will not be that large. The 

https://www.codecogs.com/eqnedit.php?latex=r_i%250
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requests with a full tray location less than 5 meters away from the end of the row are rejected, as 

those pickers only need to walk a small distance back and forth to resume picking. The 

performance comparison between the heuristic policy and ILP is shown in Section 6.1. 

2.3.  Consensus function 

Given solutions in multiple sampled scenarios, the consensus function is to select the 

distinguished plan from the current pool of scheduling plans. Bent and Pascal (2004) first applied 

the consensus function into a modeled partially dynamic vehicle routing problem with a time 

window. They pointed out that this approach is essentially domain independent. Hence, they 

applied a similar consensus approach on the classic scheduling problem, the online packet 

scheduling problem in computer networks. The key idea is to solve each sampled scenario once 

and to select the packet which is most often in the optimal solution of each scenario. The 

heuristic idea behind the consensus function is the least-commitment approach, a well-known 

approach in the artificial intelligence community (R. Bent & Van Hentenryck, 2004 June). By 

choosing the job that occurs the most often, the consensus algorithm takes a decision that is 

consistent with the optimal solution of many samples.  

This consensus approach was applied to our modeled scheduling problem. After all the 

deterministic scenarios are solved with the function of OPTIMAL-SCHEDULE, the scheduling 

plan of each scenario is converted to a serving order based on their scheduled serving times. A 

score function is defined for each request in one scenario. If the request is rejected, the score 

value of that request is counted as -1. If the request is served by a robot in the order of 𝑂𝑖  among 

all the serving requests in that scenario, the score of that request is counted as (𝑁 − 𝑂𝑖). The 

score of each request is obtained by adding the scores of the requests among all the sampled 

scenarios. The consensus serving order is the descending order of the scores of all the requests in 
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𝒮ℛ. The available robots were dispatched to the first request in the consensus order at the instant 

when the expected release time of that request is reached. The rejection flags are sent to the 

pickers if they are not served by the robot at the instant when their trays are full. The scheduler 

will run to update the scheduling plan only when there are robots available and new transport 

requests entering the set.  

3. Modeling harvesting activity under uncertain request prediction  

In Chapter 2, a discrete-time hybrid systems model was developed to model and simulate 

the activities and motions of all agents involved in robot-aided harvesting. A Finite State 

Machine (FSM) was utilized to model the discrete operating states/modes of the agents and the 

transitions between the operating modes. In this chapter, the FSM is significantly extended to 

consider more possible cases for serving stochastic transport requests and integrate the tray-

transport request rejection policy in pickers’ harvesting activities. The activities of a picker 

during robot-aided harvesting were classified into 14 discrete operating states/modes (Table 8), 

and the operations of a tray-transport robot into 9 states (Table 9). The operating states of pickers 

and robots and the possible transitions amongst them are shown in Figure 18. In FSM of pickers, 

they need to transport the trays themselves if they receive the request rejections. In FSM of 

robots, it may happen that the robot is dispatched to a row where the served picker cannot fill 

their tray and take the half-filled tray to the next unharvested row. In this case, the robot drives 

back to the collection station to wait for the next dispatching command. 
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Figure 18. State diagram of picker states and transport robot states during human-robot collaborative harvesting  

Table 8. States defined to represent a picker’s operating states during robot-aided harvesting 

Operating state Action 

Start A picker leaves the collection station with an empty tray in 

hand, to start picking. 

Walk-Empty-Tray-Headland A picker walks with an empty tray on the headland, toward 

an empty (unoccupied) furrow. 

WALK-Empty-Tray-Furrow A picker walks inside an empty (unoccupied) furrow with an 

empty tray until the field’s split line is reached. 

Picking A picker is picking inside a furrow, with direction from the 

field split line toward the collection station. 

Waiting-For-Robot A picker waits (idle), with a full tray, for a robot to come. 

Exchange-Trays A picker takes the empty tray brought by the robot and places 

a full tray on the robot. 

Walk-Partly-Full-Tray-

Headland 

A picker takes partly full tray on the headland, toward an 

empty (unoccupied) furrow. 

Walk-Partly-Full-Tray-Furrow A picker takes a partly full tray inside an empty (unoccupied) 

furrow until the field’s split line is reached. 

Transport-Full-Tray-Furrow A picker takes a full tray inside a furrow towards the 

headland 

Transport -Full-Tray-

Headland 

A picker takes a full tray on the headland towards the 

collection station 

Idle-In-Queue A picker waits in a line at the collection station to deliver 

her/his full tray and receive an empty tray. 

Empty-Tray-Back-Headland A picker walks in the headland - toward the last full tray 

furrow - carrying an empty tray, to continue harvesting. 
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Empty-Tray-Back-Furrow A picker walks back to the last full tray location with an 

empty tray, to continue harvesting. 

STOP A picker stops picking after the last tray is picked up by a 

robot. 

Table 9. States defined to represent a robot’s operating states during robot-aided harvesting 

Operating state Action 

Start A robot at the collection station starts operation with no tray 

on it. 

Available A robot with one empty tray on it is waiting at the collection 

station to be dispatched to a tray-transport request. 

Transp-Empty-Tray-to-

Dispatch-Location 

A Robot travels from a collection station – carrying an empty 

tray – toward the dispatched location. 

Wait-At-Dispatch-Location A robot arrives at the location of the tray-transport request 

and waits for the picker to finish harvesting. 

Drive-To-Full-Tray-Location A robot drives to picker’s full tray location after served 

picker fills the full tray in its dispatched row. 

Empty-Tray-Back A robot runs back to collection stations as the served picker 

cannot fill the tray in its dispatched row 

Exchange-Trays A robot is idle while the picker exchanges the empty tray 

with a full tray. 

Transp-Full-Tray-Back A robot travels toward the collection station to deliver a full 

tray. 

Idle-In-Queue A robot with a full tray waits in a queue at the collection 

station to have its tray unloaded, and an empty tray loaded. 

Stop A robot stops its operation at the collection station after the 

last tray has been unloaded. 
 

Request rejections are integrated into the operation of pickers. When the rejection flags 

are received, the pickers will transport the full tray by themselves as in manual harvesting. The 

relevant pickers’ states are “Transport-Full-Tray-Furrow”, “Transport -Full-Tray-Headland”, 

“Idle-In-Queue”, “Empty-Tray-Back-Headland” and “Empty-Tray-Back-Furrow”. If the picker 

is served by a scheduled robot, they will wait at their full tray locations to exchange trays from 

the coming robot. In this case, the states after picking are “Waiting-For-Robot” and “Exchange-

Tray”. Time interval spent between the full tray instant, and the starting instant of next tray 

picking is denoted as “non-productive” time. The other pickers states, like our previous work 

(Seyyedhasani, Peng, Jang & Vougioukas, 2020a), are represented in the same form and updated 
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with the same state-dependent difference equations. The stochastic parameters are estimated 

experimentally with the same distribution (Peng & Vougioukas, 2020). 

Since the predictions of tray-transport requests contain uncertainty, the exact location 

when the tray will become full is not known. Therefore, instead of sending the robot to the 

predicted location, a safety distance to the full tray location was introduced for the robots’ goal 

points. The robot is dispatched 5 meters away from the predicted full tray location to wait for the 

picker to fill his/her tray. The pickers need to travel this small distance to load the tray onto the 

robot and take an empty tray back. Also, given the imperfect full tray predictions, it may happen 

that a picker who is predicted to fill his/her tray inside the current furrow may not fill the tray in 

that furrow, but the robot has been dispatched at that furrow before the picker travel to the new 

row. In this case, the robot must return to the active collection station (“Empty-Tray-Back”) and 

become available there. The other states of the crop-transport robots are updated like our 

previous work (Peng & Vougioukas, 2020). 

4. Implementation of the harvest simulator  

Software was developed to simulate robot-aided strawberry harvesting based on the 

hybrid systems model presented in Section 3. This simulator constitutes a significant extension 

and adaptation of the simulator developed by Seyyedhasani et al., (2020a) to incorporate the 

stochastic predictions of requests and the MSA scheduling of robots. The architecture of the 

simulator is shown in Figure 19. The simulator is initialized with the geometrical description of 

the strawberry field (furrow endpoints, split line, collection station locations), the picking crew 

and robot team parameters, and the initial locations of pickers, robots, and active collection 

station. The “Picker operations” and “Robot operations” modules implement the coupled hybrid 

system models of the pickers and robots, respectively. The “Crop, crew & collection station 
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distribution” module updates the status of each furrow (harvested/unharvested/currently 

harvesting) and the active collection station and calculates the sequence of furrows picked by the 

crew (after harvesting from a furrow, a picker moves to the furrow of the closest unharvested 

bed).  

During simulated harvesting, the picker states are input to the “Tray-transport request 

prediction” module that generates stochastic predicted transport requests given the state of 

pickers. The stochastic predicted transport requests include a Gaussian distribution of full tray 

time interval expressed as its estimated mean and variance, and Gaussian distribution of picker’ 

moving speed. Those predicted distributions and robot states are used by the “MSA scheduling” 

module to compute a schedule plan for the robots and pickers. Given the calculated schedule, the 

MSA scheduling module will output dispatch commands to the available robots and request 

rejections to the pickers.  
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Figure 19. The architecture of integrated harvesting simulator and predictive scheduling system. 

The simulator uses a global time variable t to represent the current time of the harvesting 

activity; time starts at t = 0 s and increases by Δ𝑡 (0.5s was used). The stochastic harvesting 

parameters are sampled randomly for each tray - before the tray starts getting filled – from the 

experimentally derived frequency histograms mentioned in Chapter 2. The states of pickers and 

robots are updated at each time step and the simulation terminates when the entire field block is 

harvested.  

The commanded robot speed is 0.4 m/s when it is on the headland and 1.2 m/s when 

inside the furrow. These speeds were set based on field experiments with the mobile robot 

(Chapter 4). When the picker harvesting parameters and the field dimensions are known, the FR 

threshold can be estimated using Eq. 36 (Peng & Vougioukas, 2020).  
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FR ≤ 1 −
(Δ𝑡𝑢)𝑚𝑎𝑥

Δ𝑡𝑝𝑖𝑐𝑘̅̅ ̅̅ ̅̅ ̅̅
 

(Eq 36) 

 

In this equation, (Δ𝑡𝑢)𝑚𝑎𝑥 is the maximum one-way travel time from the collection 

station to the location of the request; Δ𝑡𝑝𝑖𝑐𝑘̅̅ ̅̅ ̅̅ ̅̅  is the mean time required to fill one tray. Using the 

parameter values from our experiments, the FR threshold was equal to 0.7.  

The uncertainty of the predictive requests is generated based on the results from the work 

of Khosro Anjom & Vougioukas (2019). They introduced a grey box model to predict the online 

full tray time of the filling tray. The mean average percentile error (MAPE) 𝑝𝑒 was used to 

evaluate the bias of the predicted mean relative to the ground truth and the standard error σ𝑒 to 

represent the deviation of the prediction relative to the predicted mean.  In the real situation, 𝑝𝑒 

and σ𝑒 are dynamically updated in a time series. The performance of MSA scheduling under 

different possible combinations of 𝑝𝑒 and σ𝑒 are evaluated. The results of 𝑝𝑒 and σ𝑒 at FR=0.7 

were taken from (Khosro Anjom & Vougioukas, 2019) as an example case when each tray enters 

the request set 𝒮ℛ. In the simulator, the bias of the mean of each tray was assumed to come from 

a uniform distribution ℧(−𝑝𝑒 ⋅ 𝛥𝑡𝑝𝑖𝑐𝑘̅̅ ̅̅ ̅̅ ̅̅ , 𝑝𝑒 ∙ 𝛥𝑡𝑝𝑖𝑐𝑘̅̅ ̅̅ ̅̅ ̅̅ ). For each transport request, a bias value is 

sampled from ℧. The ground truth of the full tray interval plus the sampled bias is used as the 

predicted mean of full tray interval. σ𝑒 is kept as a constant for each tray. The stochastic full tray 

interval is expressed as a Gaussian distribution, 𝛮(∆𝑡𝑒𝑓
𝑔𝑡

+ 𝑏𝑖𝑎𝑠, 𝜎𝑒).  

In the simulation, a uniform noise 𝒰(−𝑙, +𝑙) was added to the y locations of the picker. 𝑙 

was set to 0.5m, to represent the localization accuracy of the Satellite Based Augmented System 

(SBAS). Linear regression was used to estimate the moving speed 𝑣𝑦 of the picker along the row 

based on successive noisy location measurements. 
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5. Experimental design 

Monte-Carlo simulations were performed to investigate the performance of the MSA 

approach. The field block dimension, crew size, collection station locations, and pickers’ 

parameters were the same as in Chapter 2. The robot speed was 0.4m/s on the headland and 1.2 

m/s inside the furrows, and the FR threshold was 0.7. Each harvesting scenario was simulated by 

running 100 Monte-Carlo runs, as described in Chapter 2. The main underlying assumption in 

our analyses of the results, is that the 100 sampled means of each evaluated metric were 

normally distributed. 

5.1. Evaluation metrics 

As introduced in Section 6.1 of chapter 2, the mean harvesting efficiency, 𝐸𝑓𝑓, and 

nonproductive time ∆𝑇𝑓𝑒 of N harvested trays were utilized as the metrics for evaluating the 

performance of the harvesting operations. 𝐸𝑓𝑓 is estimated with the averaged sum of ratios of 

productive time over total time spent for each tray; it is calculated by (Eq 20). 

The number of harvested trays per hour – denoted as 𝑁𝑢𝑚𝑇𝑟𝑎𝑦𝑠ℎ𝑜𝑢𝑟 was used to 

express the harvesting rate of a crew of pickers. Naturally, if there are more pickers in a crew, a 

higher number of trays will be harvested per hour. Given a field with a typical dimension, the 

time interval to harvest the whole field is denoted as 𝑇ℎ𝑎𝑟𝑣𝑒𝑠𝑡 hours and the number of trays 

harvested from that field denoted as 𝑁ℎ𝑎𝑟𝑣𝑒𝑠𝑡. 𝑁𝑢𝑚𝑇𝑟𝑎𝑦𝑠ℎ𝑜𝑢𝑟 can be calculated by Eq 37. The 

average of 𝑁𝑢𝑚𝑇𝑟𝑎𝑦𝑠ℎ𝑜𝑢𝑟 of multiple Monte-Carlo experiments were used as the evaluation 

metrics for the crew harvesting rate. 
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𝑁𝑢𝑚𝑇𝑟𝑎𝑦𝑠ℎ𝑜𝑢𝑟 =
𝑁ℎ𝑎𝑟𝑣𝑒𝑠𝑡

𝑇ℎ𝑎𝑟𝑣𝑒𝑠𝑡
 Eq 37 

5.2. Experiment introduction 

The targets of the experiments in this chapter are as follows: (1) evaluate the effect of 

request rejections; (2) compare the performance differences between the heuristic and exact 

algorithms in OPTIMAL-SCHEDULE functions introduced in Section 2; (3) select the number 

of scenarios the MSA must sample; (4) evaluate the performance of the system using a given 

prediction uncertainty.  

In section 6.1, the effect of request rejections was investigated given the deterministic 

requests for different robot numbers with the exact algorithms. For the case without request 

rejections, we applied the BAB search algorithm developed in Chapter 2. For the case with 

request rejections, we applied the ILP solver introduced in section 2.1. In section 6.2, the 

scenario scheduling policies in the OPTIMAL-SCHEDULE module of MSA were compared for 

different robot numbers. In section 6.3, the performance of MSA under different sampling 

numbers was displayed with the robot number at 8. For MSA, when more scenarios are sampled, 

better performance MSA can be achieved, but it takes a longer time to calculate a solution. The 

requests were under the uncertainty measured by Khosro Anjom et al. (2019): the mean of bias 

for the full tray time prediction is less than 10% of one tray picking time (∆𝑇𝑒𝑓) and the standard 

error of the prediction is 30 s. From the results, we chose the critical sampling number that did 

not improve the scheduling performance dramatically. In section 6.4, the performance of the 

MSA was evaluated given different numbers of robots. The scenario sampling number was from 

the result of the last experiment. Also, the crew harvesting rate of 25 pickers under the harvest-
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aiding system with different numbers of robots was investigated and compared with the manual 

harvesting with different crew sizes. 

6. Experimental results and discussion 

6.1.  Comparison of transport scheduling with and without rejections 

In this section, the simulation experiment was run to compare the deterministic 

scheduling performance with request rejections and without rejections. Figure 20 showed that the 

predictive scheduler with request rejections obviously performs better than without rejections 

when the robot/picker ratio is smaller than 10/25. The efficiency data of two policies for 10, 11, 

and 12 robots was evaluated with T-tests to compare their differences, as the 95% confidence 

intervals of the two mean efficiencies intersected when the number of robots was more than 10. 

The null hypothesis for the T-tests was that the mean efficiencies of the two policies have no 

significant differences in the robot ratios of 10/25, 11/25 and 12/25. The alpha value for the tests 

was set to 1% (Type I error). From the results in Table 10, when the robot number was at 10, the 

harvesting efficiency with request rejections performs significantly better than the efficiency 

without requestion rejections given the small p values of the T-test results. However, when the 

number of robots was 11 or more, there was no significant difference as p value was greater than 

0.05. 
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Figure 20. Mean (points) and its 95% CI (shaded area) of harvesting efficiency as a function of the number of 

robots for the scheduler with request rejections and without request rejections. 

Table 10. P values of T-test of scheduling efficiencies with/without request rejections for 10, 11, and 12 robots 

Number of Robots 10 11 12 

P value 5.24e-11 0.823 0.141 

6.2. Comparison of serving transport request with ILP and SRLPT 

The goal of this experiment was mainly to investigate the performance difference 

between the ILP and SRLPT methods for the OPTIMAL-SCHEDULE module, given 

deterministic requests (as in Chapter 2). The comparison of evaluation metrics 𝐸𝑓𝑓 is shown in 

Figure 21 for an increasing number of robots.  
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Figure 21. Mean values of harvesting efficiency (points) and their 95% CI (shaded areas) as a function of the 

number of robots for the scheduler with ILP and heuristic SRLPT. 

T-tests were applied for the mean efficiencies of the two policies under different robot-

picker ratios. The null-hypothesis of each T-test was that the mean efficiencies of the two 

policies were the same. The alpha value for the tests was set to 5% (Type I error). The results are 

presented in Table 11, where one can see that the performance of two policies was not 

significantly different when the robot/picker ratio was over 8/25, as all p values of the T-test 

results were over 0.05. 

Table 11. P values of T-tests for the efficiencies of two policies in different robot/picker ratios 

Robot/picker 

ratio 

4/25 5/25 6/25 7/25 8/25 9/25 10/25 11/25 12/25 

P values 0.030 0.015 0.013 0.024 0.055 0.118 0.140 0.379 0.488 
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6.3. Scheduling performance under different sampling scenarios 

In this section, we investigated the performance of the MSA scheduler as a function of 

the number of sampled scenarios, given the experimentally measured distribution of the request 

prediction uncertainty from the work of Khosro Anjom et al. (2019). The simulation results 

Mean values of harvesting efficiency (points) and their 95% CI (shaded areas) as a function of 

the number of sampling scenarios are shown in Figure 22. 

 

 

Figure 22. Mean values of harvesting efficiency (points) and their 95% CI (shaded areas) as a function of the 

number of sampling scenarios, under uncertain transport request predictions. The harvesting efficiency (blue lines) 

under perfect transport request predictions and the manual harvesting efficiency (green lines) are also presented. 

From the results, one can see that as the number of scenarios in MSA increases, the mean 

harvesting efficiency (red curve) increases when the sampling scenarios are smaller than 50. 

However, when the scenario number is over 50, the efficiency and non-productive time come to 

a plateau. Tukey’s HSD tests were used for different sampling scenarios {10,20,30,40,50} to 
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examine their efficiency differences, which is presented in Table 12. The null hypothesis was 

that the mean efficiency of MSA in different sampling scenarios were the same. The alpha value 

for the tests was set to 5% (Type I error). From the combinations of {30, 40}, {30, 50} and {40, 

50} in Table 12, one can see that the scheduling performance of MSA did not show significant 

improvement when the number sampling scenarios was over 30.  

Table 12. Tukey’s HSD results of harvesting efficiencies for different sampling scenarios in MSA 

Scenarios comparing 

combinations 

Adjusted p-values Null rejections 

10 20 0.0012 True 

10 30 0.0013 True 

10 40 0.0010 True 

10 50 0.0005 True 

20 30 0.0022 True 

20 40 0.0031 True 

20 50 0.0020 True 

30 40 0.7631 False 

30 50 0.0752 False 

40 50 0.1221 False 

However, the mean of computation time for a schedule with 50 scenarios is 

approximately 5 seconds (on the Intel Core i7-3770@3.40 GHZ laptop used as a server), which 

is adequate for real-time operation. As a result, we set the number of sampling scenarios for the 

MSA to be 50. 

6.4.  Scheduling performance under experimentally derived prediction 

uncertainty 

This section was to evaluate the performance of MSA under different robot/picker ratios. 

The number of sampling scenarios for MSA was set to 50. The harvesting efficiencies of robot-

aided harvesting with stochastic scheduling (using the MSA) and deterministic scheduling 

(perfect predictions) are compared against all-manual harvesting in Figure 23. As expected, the 
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MSA performed better than manual harvesting and worse than deterministic scheduling with 

perfect predictions. T-tests were applied for the case of 4 robots, as the confidence intervals of 

the mean efficiencies (banded areas in Figure 23) intersected. The null hypothesis was that there 

was no significant difference between the mean harvesting efficiency of stochastic and 

deterministic scheduling. The alpha value for the tests was set to 1% (Type I error). The 

evaluated p-value was 1.6e-7, so the harvesting efficiency was significantly better under perfect 

predictions. 

  

Figure 23. Mean values of harvesting efficiency (points) and their 95% CI (shaded areas) as a function of the 

number of robots, for stochastic scheduling (with MSA), deterministic scheduling with perfect predictions and 

manual harvesting 

The number of trays per hour, 𝑁𝑢𝑚𝑇𝑟𝑎𝑦𝑠ℎ𝑜𝑢𝑟, is used to denote the harvesting rate of 

the entire crew of pickers. Of course, given a fixed field size, the more pickers participating in 

harvesting, the higher the crew harvesting rate will be. In Figure 24, the red line shows how the 

𝑁𝑢𝑚𝑇𝑟𝑎𝑦𝑠ℎ𝑜𝑢𝑟 improves as the number of pickers increases (top X-axis is the number of 
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pickers). Similarly, the crew harvesting rate 𝑁𝑢𝑚𝑇𝑟𝑎𝑦𝑠ℎ𝑜𝑢𝑟 will increase when more robots 

(bottom X-axis is the number of robots) are introduced in the harvesting given a fixed crew size 

of 25 (shown as a navy line in Figure 24). One can observe that, for a picker crew size of 25, the 

crew’s mean harvesting rate improves even when only a few robots are introduced compared to 

manual harvesting. The mean harvesting rate of 25 pickers with the assistance of crop-transport 

robots was similar to that of 30 pickers with manual harvesting, but obviously smaller than with 

35 pickers. T-tests were conducted to compare the harvesting rates of a 25-picker crew working 

with 6, 7, and 8 crop-transport robots with the harvesting rate of a 30-picker crew doing manual 

harvesting. The null hypothesis was that there were no significant differences between the 

harvesting rate of 25 pickers under the assistance of 6, 7, and 8 robots and that of 30 pickers with 

purely manual harvesting. The significance level of p-values (alpha) for rejecting the null 

hypothesis (Type I error) was chosen as 1%.  The calculated p values are shown in Table 13.  

Table 13. P values of T-tests that compare the mean harvesting rate of a 30-picker crew picking manually, against 

the mean harvesting rates of a 25-picker crew aided by 6, 7 or 8 robots  

Robot 

numbers 
6 7 8 

P values 0.022 2.3e-8 3.4e-17 

The results show that when more than 7 robots were introduced, the 𝑁𝑢𝑚𝑇𝑟𝑎𝑦𝑠ℎ𝑜𝑢𝑟 of 

the 25-picker crew using robots was significantly higher than that of the 30-picker crew without 

robots.  
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Figure 24. Mean and its 95% CI of harvesting trays per hour for different crew sizes (red line) and harvesting trays 

per hour for 25 pickers but different number of crop-transport robots 

7. Summary and conclusions 

In this part, robot-aided strawberry harvesting was developed further by considering more 

realistic conditions: uncertainty in the predicted transport requests and slower robot speeds. 

Predictive scheduling of crop-transport robots under stochastic predictive transport requests was 

investigated. Given slow/safe travel speeds for the robots, tray-transport request rejection is 

essential to guarantee that the harvesting efficiency with robots cannot be worse than the 

efficiency of all-manual harvesting, regardless of the number of robots deployed. We also 

evaluated the influence of uncertainty on the performance of the stochastic predictive scheduling, 
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as well as the performance in typical uncertainties of prediction from previous work (Khosro 

Anjom & Vougioukas, 2019) 

Experimental results showed that the scheduling performance without request rejections 

was significantly worse than the scheduling with request rejections when the robot picker ratio 

was smaller than 11/25. Under typical uncertainty of full tray prediction and a robot picker ratio 

of 1:3, the adapted MSA scheduling algorithm increased harvesting efficiency by more than 8% 

and was only 2.5% worse than deterministic scheduling under perfect predictions. When we 

introduce over 7 robots for a crew of 25 pickers, the harvesting rate of the whole crew under the 

assistance of crop-transport robots is significantly better than 30 pickers harvesting manually.  
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Chapter 4 System design, implementation, and evaluation  

1. Introduction  

In this chapter, the implementation and integration of the co-robotic system and its 

deployment in a commercial strawberry harvesting operation is presented. In the envisioned 

crop-transport robotic aided harvesting, each picker enters an unoccupied furrow to start picking 

strawberries selectively from the plants on the raised beds on each side of that furrow. When a 

certain fill ratio is reached (Peng & Vougioukas, 2020), the picker will press a request push-

button on their instrumented cart. The button allows a picker to decide for themself if they want a 

robot to carry their tray. For example, if a picker prefers to walk to deliver a tray - to take a break 

from stooped work - they can do so. The button also helps to establish a simple communication 

protocol between the workers and the robotic system: a transport request is initiated and is either 

accepted by the system or rejected. The automated weighing system is still used by the transport-

request prediction module, after the button has been pressed. The scheduling system signals the 

picker (LEDs on their instrumented carts) if their transporting request will be served by a 

dispatched robot or rejected by the system. If the picker will be served, the dispatched robot 

starts from the active collection station, drives with an empty tray to the assigned picker’s full 

tray location, waits for the picker to switch empty and full trays, and takes the full tray back to 

the active collection station, where it waits for the next dispatching. If a tray-transport request is 

rejected, the picker transports the full tray to the collection station, just like in manual harvesting.  

The co-robotic harvest-aiding system comprises three sub-systems: instrumented carts, 

robots (aka FRAIL-Bots), and an operation server. The carts used by pickers weigh 

approximately 2.2 kg and our instrumented carts should have the same form factor and not be 

significantly heavier, to be accepted by pickers (4 kg max). The volume and weight constraints 
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introduced a battery size – and available energy – constraint. Also, small amounts of data from 

each cart must be transmitted to the field computer/operation server over distances that span 

typical fields (> 300 m) at rates of approximately 1 Hz; communication must be bidirectional, 

since the scheduler must inform pickers if their requests are rejected or will be served. The 

robots must also communicate in real-time with the operation server to send their state and 

receive dispatching commands and reference paths. Robot collision avoidance on the headlands 

is performed centrally on the server and thus the robot-server communication system must have 

high-bandwidth. The complexity of the software running on the carts, robots and operation 

server requires a distributed software architecture that can provide real-time performance.  

The system architecture is shown in Figure 25, and is described next in greater detail. 

 

Figure 25. Diagrams of harvest-aiding system components and their communications 
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The data from instrumented carts are transmitted wirelessly to the server module that runs 

on a field computer at a collection station through LoRa (“LoRa”, 2020). The LoRa server, 

scheduling server, and FRAIL-Bots communicate with each other using a ROS network (Figure 

25) that utilizes different physical layers. The LoRa server module is connected through a USB 

cable to the scheduling server computer that works under the same Wi-Fi network with FRAIL-

Bots. Each functional module in the ROS network is implemented and packaged into a ROS 

node which can subscribe and advertise the ROS messages from the other nodes. On the 

scheduling server, the tray request prediction module receives data from the cart and generates 

predictions of full tray requests. Given the subscribed ROS messages of robots’ states and the 

predicted full tray requests, the predictive scheduling module calculates an optimized schedule. 

Then, the scheduling module publishes the dispatching commands, which are received by the 

available robots. After the robots arrive at the predicted full tray location, the picker will load 

their harvested full trays and take the empty tray from the arrived robot. Then they press a button 

on the robot to signal it back to the collection station. When the robots arrive back at the station, 

they will wait for the worker at the station to unload the full tray and replace it with an empty 

tray.   

2. System components  

2.1. Sub-system I: instrumented cart 

The instrumented picking cart was modified and fabricated from a standard strawberry 

harvest cart (Figure 26). During harvesting, the cart system measures the mass of strawberries 

inside the tray located on the cart with two load cells underneath the supporting frame and 

receives the GPS coordinates from a GNSS receiver module (Piksi-Multi, Swift navigation, US) 

that receives WAAS (Wide Area Augmentation System) corrections. An IMU (BM160, Bosch, 
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German) is integrated on the Piksi-Multi to observe the instantaneous motion of the cart which is 

used to filter the tray mass measurements. The mass and GPS locations are transmitted to the 

scheduling server by a LoRa module (RFM96W LoRa Radio, Adafruit, US) sitting on the control 

board. A momentary contact button is installed for the picker to notify the system that he/she 

wants to be served by the robot.  

The cart messages, composed of measured mass, GPS locations, and the button state, are 

transmitted at 1 Hz interval to the LoRa module on the server-side. The LoRa is a low-power 

wide-area network protocol, which uses license-free sub-gigahertz radio frequency bands 

(“LoRa”, 2020). An SD card module installed on the control board is used to store all the sensor 

data during harvesting. Two LEDs (red and yellow) are used as indicators to communicate 

informative signals to the picker: a yellow LED represents that the tray transport request has 

been assigned to a robot; red LED means that the request is rejected, and the picker needs to 

transport the tray by themself.  

 

Figure 26. The instrumented picking cart: A. Control box with Arduino Due, LoRa module, battery, and SD card 

logger inside, Piksi Multi GPS unit; B. GPS antenna; C. Supporting frame on the top of load cells; D. Load cells; E. 

Momentary push button, yellow and red LEDs.  

https://en.wikipedia.org/wiki/Radio_frequency
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2.2. Sub-system II: FRAIL-Bot 

Two identical crop-transport robots (aka FRAIL-Bots) were designed and built for this 

work (Figure 27). The bill of materials for each robot is approximately 10,000 USD; fabrication 

cost is not included. Constraints related to budget, available time and field deployment restricted 

the number of robots to two. Still, the developed approach is applicable – and can be tested – 

with two robots, and by using a crew size of six to eight people, reasonable robot-picker ratios 

can be used. The robots are designed to straddle the bed and occupy two furrows when driving 

inside the field. To avoid any interference of the robot with pickers in adjacent rows, pickers 

need to be spaced two furrows apart (with one empty furrow between them). Based on 

discussions with growers, and on the settings of the field experiments reported later, this 

arrangement was acceptable by the growers and the pickers. 

Each robot works under supervised autonomy and its collaborative operation is governed 

by a finite state machine (Peng & Vougioukas, 2020). The hardware components for the FRAIL-

Bot are labeled in Figure 27. The robot weighs approximately 50 kg, and it is driven by two DC 

motors with gearboxes and incremental encoders attached to the rear wheels (D and E). The 

steering system is integrated with two screw drives and angle sensors attached on their rotation 

axis (F and H). Two GPS module antennas (Swift navigation, US) are installed for getting the 

position and heading of the robot in open fields (C).  An emergency stop button (I) is installed on 

the side of the robot to stop the driving system.  A return button (E) on the front of the robot is 

used by the pickers to signal the robot that the full tray has been loaded and the robot must drive 

back to the collection station. The electronic devices including batteries, mini-computer (Intel 
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NUC, Intel Inc, US), driving motor controllers for rear-wheel motors, steering motor controllers, 

and two GPS modules are installed inside two wooden boxes (A and B).  

 

Figure 27. Components of FRAIL-Bot: A. control box-I with a mini-computer, battery-I, motor controllers for the 

two rear driving motors and two steering motors B; Control box-II with two GPS modules; C. GPS antennas; D, G. 

DC motors with gearbox and incremental encoders; E. Return button; F, H. Steer-driving system; I Emergency 

button. 

The software architecture on each assigned FRAIL-Bot is shown in Figure 28. The FSM 

node first subscribes to the schedule message from the operation server including the dispatching 

time and dispatching location, from the operation server (explained in the section 3.2). When the 

dispatching time is reached, the navigation node generates the planning path from the current 

location of the robot to the assigned location inside the row. Given the planned path and the 

current robot location and heading, the path tracking module continuously outputs the control 

command to the motion control node, which converts the motion command of the robots to the 

commands of driving motors. A robot localization node fuses the subscribed sensor information, 
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including GPS measurements, IMU data, and wheel odometry to estimate the pose and publishes 

the current pose of the robot into the ROS network.  

 

Figure 28. The architecture of the FRAIL-Bot software under ROS  

The activity of FRAIL-Bot is guided by a finite state machine (FSM) introduced in our 

previous work (Peng & Vougioukas, 2020). The FSM implemented in the ROS node is shown in 

Figure 28. The state transitions are based on current states and designed external events (green 

oval in Figure 29) during the harvesting activity. Each FRAIL-Bot navigates autonomously from 

the collection station to the picker it will serve after receiving the dispatching command from the 

predictive scheduler. Upon arrival at the dispatch location, the robot waits until the picker fills 

their tray (if it is not full upon arrival), loads the full tray, takes an empty tray from the robot, and 

presses the momentary contact button to command the robot back. The robot navigates back to 

the collection station and enters the state “IDLE_IN_QUEUE”, i.e., it waits for a worker at the 

collection station to remove the full tray and place an empty tray on the robot. Afterwards, this 
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worker presses the momentary contact button to have the robot transit to the “AVAILABLE” 

state, where it waits to be dispatched again. 

 

Figure 29. FSM of FRAIL-Bot in the harvest-aiding system  

2.2.1. Motion control 

The hardware diagram for the motion control node of the FRAIL-Bot is shown in Figure 

30. A dual-channel motor controller is used to drive the two rear motors by UART serial 

communication. The left and right steering systems are driven by two DC motor control boards 

(1065B, Phidget Inc, Canada) with the PID controllers based on the feedback from angle 

encoders. 
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Figure 30. Hardware diagram for FRAIL-Bot motion control 

The Ackerman model (Figure 31) was applied for the motion control of the FRAIL-Bot 

to have it maneuver smoothly (minimum skidding) in the field navigation. Given the motion 

command, linear velocity (𝒗𝒄) and steer angle (𝛄𝒄), the steer angle command (γ𝑐
𝑳, γ𝑐

𝑹) for left and 

right steering systems can be calculated using the Ackerman model.  



83 

 

 

Figure 31. Ackerman model for the calculated control command of FRAIL-Bot 

The response time of the steering angle control system is slower than the response of the 

speed control system of the wheel driving motors. Therefore, the wheel motor speeds are 

commanded to “follow” the robot rotational velocity that corresponds to the sensed steering 

angles of the front wheels (cascade control). The real-time control commands for each motor are 

calculated based on the motion control command (𝒗𝒄, 𝛄𝒄) shown in Figure 32. The rear motor 

commands (𝑣𝑐
𝑳, 𝑣𝑐

𝑹) are calculated from the current steering angle (𝛾𝑐
𝒕) and the linear velocity 

command (𝒗𝒄). 
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Figure 32. Motors control in the motion control of the FRAIL-Bot 

2.2.2. Localization 

The localization and heading of the FRAIL-Bot is mainly dependent on the RTK (Real 

Time Kinematic) solutions of two GNSS modules on the FRAIL-Bot. The GPS antennas on 

FRAIL-Bots are above the strawberry plants and the strawberry field is normally in an open area 

without nearby high buildings or tree canopies which might attenuate or occlude satellite radio 

signals. Thus, the RTK solutions are stable for most of the time. The Internet-based (NTrip) RTK 

system was used to get the geodetic solution of the rear GPS antenna under the transmission 

protocol of Radio Technical Commission for Maritime (RTCM) (Weber et al., 2005). The NTrip 

casters used in California are managed by UNAVCO community service (Bendick, 2012). As the 

GPS location of the NTrip caster is well surveyed on the geodetic frames before releasing, the 

RTK rover solutions corrected by the same base station in a mapped field are consistent over 

time. The front GPS also works in RTK mode with the real-time corrections from the rear GPS 

that works as the moving base station based on the same satellites’ observation over their 

antenna attitudes (Swift Navigation, 2020). Using this feature, the attitude of the robot, heading 

angle, in the geodetic frame from the front GPS solution was obtained. Combining these two 
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results, the complete localization solution of the robot in 2D space can be obtained in a mapped 

field.  

The localization node of the FRAIL-Bot is implemented with the EFK node on the ROS 

package, named robot-localization (Moore & Stouch, 2016) by fusing the measurements of GPS 

modules, wheel odometry, and IMU as shown in Figure 33. The sensor information, including 

2D pose estimation from two GPS modules, wheel odometry on the robot frame (base link 

frame), acceleration, and angular velocity on the IMU frame are packaged and published as ROS 

messages. The robot localization node works to combine the motion model and transformed 

sensor readings with EKF.  

 

Figure 33. FRAIL-Bot localization with robot-localization EKF node 

2.2.3. Field navigation 

To transport trays during harvesting, the FRAIL-Bots travel back and forth from fixed 

“parking” locations next to the collection station on the headland to dynamic locations inside the 

field. A field map (Figure 3.b) with the geometric information of the plant beds and the 
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collection station is essential for the FRAIL-Bots to generate feasible paths to their serving 

locations. The map is built with the RTK system and includes the end of bed points in the 

vicinity of the headland and pre-allocated collection stations.  

To implement point-to-point navigation in the field, the path planner needs to generate a 

smooth path that allows the robot to enter the row with heading parallel to the row. A speed 

profile is also generated to vary the robot speed at different sections of the path. When driving on 

the headland the robot must execute maneuvers of large curvature and thus must travel at low 

speed. Also, when the robot is near a picker, the robot needs to run at a low speed, for safety 

purposes. Inside the rows, the robot can run at a higher speed. The path is planned as soon as the 

robot receives the dispatching command (Figure 34). 

  

Figure 34. An example of a formatted planning path from the robot parking location at the depot center to the 

dispatching location inside the row 
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A pure-pursuit algorithm was used to have the robot track the path. The algorithm 

parameter, look ahead distance, is well-tuned and set differently given the designed speed 

profile. The look-ahead distance was tuned given different planned speed along the trajectory. 

2.3. Sub-system III: operation server 

The hardware of the operation server sub-system is composed of two parts: a LoRa server 

board and a scheduling server computer (Figure 35). The LoRa server board is connected to the 

server computer by a USB cable. It collects the cart states from the distributed instrumented carts 

in the field and publishes the received states as ROS messages. The FRAIL-Bots publish their 

states in the ROS network through a local Wi-Fi. The scheduling server module, running on the 

server computer, integrates the cart states and robot states to formulate and publish an online 

schedule message in the ROS network. FRAIL-Bots directly subscribe to the ROS schedule 

messages and execute the dispatching decisions. The LoRa server module also subscribes to the 

ROS schedule messages and transmits them to each instrumented cart through LoRa.   

2.3.1. LoRa server module 

The messages of each cart need to be reliably transmitted to the scheduling server in a 

high enough frequency (≥1 Hz) to build an online spatiotemporal full tray request (Khosro 

Anjom et al., 2019). The same LoRa module on the cart is used on the server. The module has 

adjustable parameters for bandwidth, spreading factor, code rating, and transmission power. The 

parameters need to be adjusted based on different application scenarios (Cattani et al., 2017). For 

our case, the module needed to transmit real-time data (25 bytes) from the cart to the collection 

station, across the whole harvesting block with a relatively high update rate (no less than 1 HZ). 

Based on our testing, this group of setting parameters for the RFW9X module meet our 

requirements well: bandwidth at 250 kHz, spreading factor at 6, code rate 4, and transmission 
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power at 14 dBm. The data transmission covers the whole field block with low latencies. On the 

server side, the same module was used to receive the transmitted cart messages.  

During transmission, each module can only work in a single channel, which means that 

the server can only get the message from one cart even if multiple carts send their messages at 

the same time. Our goal was to have the communication channel of the server evenly shared by 

all the carts in the time space. Based on our testing, the transmission of each cart state to the 

server takes around 100ms, so given N carts, the server takes at least N*100ms to receive the cart 

states from all the carts once. If the size of the picking crew is over 10 (a typical number is 20 to 

25), a LoRa gateway with multiple channels would be needed to meet our transmission 

requirements. In our experiment, we deployed two robots and a picker crew with 6 pickers, so a 

single channel LoRa server was used. A centralized time-split network communication protocol 

was developed in our work, as shown in Figure 35. Each period, the server broadcasts a reporting 

‘command’ which is a short message containing the ID of a cart and a ‘serve’ or ‘reject’ flag 

updated from the predictive scheduler on the server computer. After that, the LoRa server waits 

for 100ms for the polled cart to report their cart states. The cart with that ID broadcasts its 

message after receiving the command message. The other carts will ignore the messages on the 

channel and keep waiting for their ID to be requested to report their states. If the server received 

the message from that cart or the wait time expires, it will move on to the next cart.  
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Figure 35. The centralized topology of communication between LoRa modules on each cart and the server 

The above-described functionality of the LoRa server module is packaged into two ROS 

nodes (Figure 36): 

a) Cart-states-pub node: It receives the data of cart states from the LoRa module on the 

server board, packages them into ROS messages, and advertises them to the server computer 

through a USB cable. 

b) Server-reject-sub node: It subscribes to the ‘serve’ or ‘reject’ flags advertised by the 

predictive scheduling node and transmitted to each cart via LoRa. 

2.3.2. Scheduling server module 

Each functionality of the scheduling server module running on the server computer is 

packaged into a single ROS node. This module plays a centralized role in the whole system 

shown in Figure 36. The nodes running on the server computer are briefly explained as follows.  
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a) Tray-request-prediction node: It subscribes to the cart messages from the LoRa server 

board and updates the prediction of picking parameters, harvesting rate, and moving speed while 

picking. The predictive requests are generated and published on the ROS network when a certain 

fill ratio of the tray is reached, and the request button is pressed by the pickers.  

b) FRAIL-Bot-scheduling node: It subscribes to robot states from the “FSM node” on 

each FRAIL-Bot and predictive tray transport requests from the tray-request-prediction node. 

Given them, this node runs a stochastic predictive scheduling algorithm and advertises a 

dispatching command to the FRAIL-Bots, as well as the rejection and serve flags to the LoRa 

server boards. The online solver of this node is explained in chapter 2. 

c) FRAIL-Bots coordination node: It functions as the traffic management for the robots in 

the shared area of the headland, which is explained in section 2.3.2.2. 

d) Operation visualization node: This node subscribes the messages from multiple nodes 

of different modules for visualization of the cart/robot states. It also provides some user interface 

to tune the parameters during the field operation, which is explained in section 2.3.2.1. 
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Figure 36. The system architecture of the operation server modularized as ROS nodes. 

2.3.2.1. Operation visualization node 

The user interface of the operation visualization module is shown in Figure 37. The sub-

plot of “Field Map” shows the current locations of FRAIL-Bots and instrumented carts; the 

subplot of “Measured Weights” displays the measured weight of each cart over time. The other 

states of the carts are represented with four flags: “Full-tray”, “Request”, “Serving”, “Reject”. 

The “Full-tray” box turns green for 4 seconds after the picker lifts the full tray from the cart. The 

“Request” box turns green if the requesting button on that cart is pressed. The “Serving” box is 

changed to green when a FRAIL-Bot is dispatched to that cart and “Rejection” is changed to 

green when the scheduling server rejects the transport requests of that cart.  
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Figure 37. System visualization for the states of instrumented carts and FRAIL-Bots and user interface for the 

parameters tuning. 

2.3.2.2. FRAIL-Bots coordination node 

As the field headland space is shared by the robot team, a coordination node is required 

to prioritize the motion of one robot to solve the trajectory intersection. In this work, the harvest 

efficiency improvement was investigated after introducing the harvest-aiding system in the 

studied case. The function of the FRAIL-Bots coordination node is mainly to coordinate the 
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robots so that they do not collide with each other when their paths are projected to intersect on 

the shared headland space.  

The coordination node made the decision on which robot moves earlier based on the 

received planned trajectories and current locations of the two robots. When robots are driving on 

the headland, the robot coordinator node builds polygons encompassing the future paths from the 

robots’ current pose to the end of their paths in the headland space, as shown in Figure 38. If the 

polygons intersect and one of the two robots has entered the intersected area, the coordinator will 

prioritize the robot inside the intersection area to go out of the intersecting area to avoid 

collision. As it is shown in the example in Figure 38, Robot1 has entered the intersection area 

while Robot2 has not yet. Given the planned paths and the robots’ current poses, the coordinator 

predicts two instants for the robots: when they enter (𝑡𝑟1
1 , 𝑡𝑟2

1 ) and exit (𝑡𝑟1
2 , 𝑡𝑟2

2 ) the intersection 

area relative to current time instant. As Robot1 (blue block) has been inside the intersection area, 

𝑡𝑟1
1 = 0 and 𝑡𝑟1

2  is predicted given the planned path. If the two robots’ time intervals [𝑡𝑟1
1 , 𝑡𝑟1

2 ] 

and [𝑚𝑎𝑥(0, 𝑡𝑟2
1 − 𝑚𝑎𝑟𝑔𝑖𝑛), 𝑡𝑟2

2 ] intersect, the robot outside the intersection area (Robot2 in 

this case) will be commanded to stop before entering the intersection area, and wait until the 

robot time intervals do not intersect. A safety margin of 5 seconds is set when calculating the 

entering instant of the robot outside the intersection area.  
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Figure 38. Robots’ coordination with online built encompassing polygons of their paths visualized on ROS-RVIZ 

 

3. Experimental design  

The main goal of this chapter was to evaluate the harvest-aiding system with a crew of 

professional human pickers in commercial strawberry harvesting. Given the complexity of the 

system, subsets of the system were tested in multiple steps. In a first step, the implementation of 

the predictive scheduling module and the physical FRAIL-Bots was tested on a campus field, 

without actual pickers or carts; simulated tray-transport requests were generated and used to 

dispatch the actual robots. This is referred as “Robot-in-the-loop Simulation Experiment”. In a 

second step, the instrumented carts were introduced, and lab members acted as pickers who 

collected fake strawberries from the ground to generate real weight for the carts and real tray-

transport requests for the scheduler. This is referred to “Robot-and-cart experiment”. The first 

two experiments were done on the same campus field, near the Western Center for Agricultural 

Equipment (WCAE) with ridged beds resembling the beds and furrows in commercial strawberry 

fields (Figure 39). Finally, the whole system was deployed and tested during commercial 

strawberry harvesting, with professional pickers, near Lompoc, CA; a crew of 6 pickers 
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harvested a field block with the assistance of two robots. This is referred as ‘Commercial field 

system experiment’. For the campus experiment, all participating lab members were updated with 

departmental field safety training and had read a safety guidelines document prepared for this 

work ("Safety Guidelines for Data Collection for FRAIL-Bot"). The field experiments were 

conducted under the UC Davis Institutional Review Board (IRB) compliance protocol “IRB 

575389-8”. 

As mentioned earlier, the FRAIL-Bot is designed to straddle the bed and occupy two 

furrows when driving inside the field. In all experiments, pickers were spaced two furrows apart 

(with one empty furrow between them). In a typical harvesting activity, they start from the 

midpoint of the row and move toward the collection station. Based on our previous work (Peng, 

Vougioukas, 2020), the FR threshold for requesting tray-transport service was selected at 70%, 

corresponding to pressing the call-robot button when 6 out of 8 clamshells became full. The 

predictive scheduler only served pickers who pushed the button. 

3.1.  Experiments on campus 

3.1.1. Robot-in-the-loop simulation experiment 

The functionality of the predictive scheduling module and FRAIL-Bots were first tested 

in a campus field with simulated pickers (Figure 39). The navigation module of the FRAIL-Bots 

was tested by inspecting the tracking errors while following designated paths from the collection 

station to locations inside rows. The activities of the simulated pickers ran on the server laptop 

with their cart messages published on ROS. These cart messages were processed by the 

predictive scheduling module in real-time (Peng et al., 2020).  
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Figure 39. a) Testing field block with raised beds near the campus of UC, Davis; b) schematic figure of the 

strawberry harvesting field block with two sections (upper and lower); furrows; plant beds; field split line, and 

collection stations. 

The field had twenty 80-meter-long rows and one collection station on the headland. Two 

FRAIL-Bots were deployed to serve simulated picking crews of sizes 4,5,6,7,8. The picking 

crew was simulated to harvest the shaded area (50-meter length) of the field block shown in 

Figure 39.b. Each crew size was evaluated once, and approximately 140 trays were collected 

from the harvested areas. Pickers’ harvesting parameters were sampled from the histograms in 

Figure 10, Figure 11, and Figure 12 and their states were updated with the FSM defined in 

Chapter 3. The experimentally derived prediction uncertainty in Chapter 3 was used for the 

transport requests. The MSA algorithm ran on the predictive scheduler to dispatch FRAIL-Bots 

to serve these simulated pickers. The cart messages and robot states were saved into a ROS bag 

during the experiments. This experiment was to examine the implementation of the developed 

functional modules of sub-system II and III in the actual field environment. The evaluation 

metrics, 𝛥𝑇𝑓𝑒 and 𝐸𝑓𝑓, were used to evaluate the performance of the robot-aided harvesting. 
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Figure 40. (a) Two FRAIL-Bots are running in the testing field block; (b) The visualizer of the scheduling system to supervise 

the state of robots and simulated instrumented cart messages. 

 

3.1.2. Robot-and-cart experiment 

In this experiment, we mainly investigated the implementation and integration of the 

whole system. Also, the intermediate functional modules of sub-system I and III were evaluated 

including the tray weighing system, transport request prediction module, as well as the 

communication system depicted in Figure 25. 

After testing the scheduling module and FRAIL-Bots, the instrumented carts were 

integrated into our testing on the campus field, where 20 trays of red-painted rocks were 

distributed on the ground to emulate ripe strawberries (Figure 41.a). Four human pickers 

mimicked the picking activities of professional pickers by gathering the rocks and placing them 

in clam shells on their tray (Figure 41.b). One person stayed at the collection station to switch the 

empty tray with full trays transported by the robots. The pickers pressed the request button when 

6 clam shells on the tray became full. The predictive module on the server side kept buffering the 

subscribed cart messages and used the collected data ahead of the button pressed instant to make 
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the prediction of a full tray with the simple linear regression model (Khosro Anjom & 

Vougioukas, 2019).  

  

Figure 41. a) Fake strawberries distributed on the testing field block; b) Four pickers and two FRAIL-Bots are 

working together to “harvest” on the testing field 

3.2. Commercial field system experiment 

On Nov 10th and Nov 11th, 2020, the harvest-aiding system was evaluated with a crew of 

six professional pickers in a commercial field near Lompoc, CA shown as Figure 42. Each day, 

the pickers’ working schedule was divided into 2 sessions. The first session was from 8:00 am to 

11:00 am and the second session was from 11:30 am to 2:30 pm. In the first session, on 

November 10th, our system was set up and tested on the mapped field while the crew harvested 

the orange-colored field block (Figure 42b) in their usual manner, using our instrumented carts. 

The pickers collected the strawberries in 500-gram carton box trays. The gross mass of a full tray 

was around 4.5 Kg (10 lbs). Their harvesting data was collected and saved on the SD card 

modules of the carts. The robot states were saved on the server laptop. Data was processed based 

on the methods described in Section 3.3. From the data in that session, their walking speeds 

when transporting full trays were estimated. This data was used to estimate the performance of 

manual harvesting.  
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In the second session of November 10th and first session of Nov 11th, all 6 pickers started 

harvesting from the field’s middle line and moved toward the unloading station in their typical 

harvesting manner. The crew harvested with the assistance of two FRAIL-Bots (blue area for 

Nov 10th and red area for Nov 11th on Figure 42b). The harvesting data using the co-robotic 

harvest-aiding system were recorded into ROS files on the server laptop, as well as in the SD 

cards of the carts. The evaluation results of our harvest-aiding co-robotic system (Section 2.2) 

were obtained from these two sessions. During robot-aided harvesting the pickers were asked to 

press the request button on the cart, when 6 of 8 clamshell boxes were full on their trays. It was 

explained to them that if their transport request was accepted by the robots, the yellow LED on 

their cart would turn on. In this case, they were instructed to wait for a robot, in case they filled 

their tray and a robot had not arrived. The scheduling system dispatched robots to serve the 

requests by solving online the stochastic predictive scheduling problem. The FRAIL-Bots were 

scheduled and dispatched to the predicted full-tray locations inside the rows. Upon arrival at the 

commanded location, the robots would stay still until the picker placed their tray on the robot 

and pressed a button that sent the robot back to the collection station.    
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Figure 42. a) Satellite picture of commercial field block near Lompoc, CA from Google Maps; b). Map of the field 

block built with RTK: blue and orange shaded areas were evaluated on Nov 10th; red and white shaded areas were 

evaluated on Nov 11th 

 The system components are shown in Figure 43. The full-empty tray swap location was 

approximately 5 meters away from the depot center where the server laptop locates (red star in 

Figure 42.a), on its right-hand side, facing the field.  
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Figure 43. Components of robotic harvest-aiding system: a) Instrumented carts; b) Collection station (aka, depot 

center) with scheduling server; c) Two FRAIL-Bots parked at the depot center; d) Scheduling server user interface 

built with Python Matplotlib and ROS RVIS for visualization and monitoring of the robots motions 

In the first session on Nov 10th, 33 trays of fruit were harvested manually in the field 

block. In the second session on Nov 10th, 41 trays were harvested by the 6 pickers working with 

the co-robotic harvest-aiding system. In the first session on Nov 11th, the same picking crew of 6 

people harvested 24 trays of fruit using the harvest-aiding system. The data from these three 

sessions was processed and analyzed in Section 3.3. Non-parametric tests were used to compare 

the performance of manual and co-robotic harvesting. 
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3.3. Experimental data processing 

 The collected experimental data processing is introduced in this section. Table 14 shows 

the data fields recorded on the SD cards of the instrumented cart and transmitted wirelessly to the 

LoRa server. On the SD card, the data was recorded at the GPS epoch update frequency, i.e., at 

10 HZ. The LoRa message transmission frequency of each cart was 1.6 Hz. 

Table 14 Data protocol recorded in the SD card on the instrumented cart 

Item Time stamp Longitude Latitude Filtered mass Button state 

Description 

GPS epoch 

with 

accuracy of 

100ms  

Geodetic coordinates 

of the cart location 

Filtered mass 

readings of the 

tray by the 

instrumented cart 

Status of button 

on the cart: 0 

represents 

pressed and 1 

represents not 

pressed 

Data Type 

(Arduino 

Due) 

Unsigned 

Int 

(32 bits) 

Double  

(64 bits) 

Double  

(64 bits) 
Float (32 bits) 

Unsigned short 

(8 bits) 

 

After receiving and processing a LoRa message, the “Cart-states-pub node” (Figure 36) 

converted it into a ROS message whose contents are shown in Table 15. The geodetic 

coordinates of the cart were converted to the coordinates in the field map.  

Table 15. Cart messages in ROS, converted by the LoRa server ROS node 

Item Header Cart’s ID X Y Button Request  

Description 

Time stamp of the 

data received. 

Frame ID of the data 

(local field frame); 

1~6  

Coordinate of the 

cart in the field 

map 

Request of the 

picker: 1 represents 

requesting and 0 

represents not 

requesting 

Data type 

(ROS) 
std_msgs/Header.msg std_msgs/Byte std_msgs/Float32 std_msgs/Byte 
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The methodology described in previous work (Khosro Anjom & Vougioukas, 2019) was 

used to compute these metrics from the cart and picker data; the time instants shown in Figure 44 

were extracted from the logged data. The time instant 𝑡𝑖
{𝑒𝑛𝑑}

when picking of a tray ended was 

identified by detecting a big drop in the measured mass of the tray, after the measured mass 

exceeded 4,000 grams. The instant 𝑡𝑖
{𝑠𝑡𝑎𝑟𝑡}

 that picking started was found by detecting the 

moment when the measured mass was around 500 grams. A tray-transport request time instant 

corresponded to a change in the state of the request button from “0” to “1”. After extracting 

𝑡𝑖
{𝑠𝑡𝑎𝑟𝑡}

 and 𝑡𝑖
{𝑒𝑛𝑑}

 for each tray, the productive interval ∆𝑡𝑖
𝑒𝑓

 was calculated by Eq 38 and the 

non-productive interval ∆𝑡𝑖
𝑓𝑒

 was calculated using Eq 39. The efficiency of the tray was 

calculated by Eq 40.  

∆𝑡𝑖
𝑒𝑓

= 𝑡𝑖
{𝑒𝑛𝑑}

 −  𝑡𝑖
{𝑠𝑡𝑎𝑟𝑡}

 Eq 38 

 

∆𝑡𝑖
𝑓𝑒

= 𝑡𝑖+1
{𝑠𝑡𝑎𝑟𝑡}

 −  𝑡𝑖
{𝑒𝑛𝑑}

 Eq 39 

 

Ef𝑓𝑖
=

∆𝑡𝑖
𝑒𝑓

∆𝑡𝑖
𝑒𝑓

+ 𝛥𝑡𝑖
𝑓𝑒

 
Eq 40 
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Figure 44. Visualization of tray mass measurements and time stamps from the collected data: blue dots represent 

picking start points; yellow dots represent tray-request events (button pressed); red stars represent picking end 

points. 

4. Experimental results and analysis 

4.1. Results from Robot-in-the-loop experiment  

The robot’s navigation module was evaluated in the mapped field. The robots drove to 

their dispatched locations and then back to the collection station. The actual and planned paths 

are shown in Figure 45. All the paths were executed successfully. The tracking error was 

calculated by computing the Euclidean distance of each trajectory point to the closest planned 

path. The mean tracking error was 0.091m, the standard deviation was 0.078 m, and the 

maximum tracking error was 0.37m. Larger tracking errors occurred when the robot turned to 

enter or exit the rows.  

 

Figure 45. FRAIL-Bot’s real trajectory (red) and the planned path (cyan) from the navigation experiments in the 

mapped field 
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In the ‘Robot-in-the-loop' experiments, different numbers of simulated pickers harvesting 

the whole field with the assistance of two FRAIL-Bots were evaluated. At the full tray instant 

(red star in Figure 44), the locations of those pickers could also be obtained from the simulation. 

Given these locations, the time required to transport these trays was estimated by approximating 

the transport speed from the mean value of the collected data (Seyyedhasani et al., 2020a). 

Hence, the evaluation metrics were estimated, if all these trays were transported by pickers 

instead of robots. Experimental results with different numbers of pickers are shown in Table 16. 

These mean values of the evaluated metrics were similar to the simulation results of Figure 23 in 

Chapter 3. 

Table 16. Mean harvesting efficiencies and non-productive times of co-robotic harvesting and manual harvesting for 

the experiment of simulated pickers in the campus field 

Number of 

pickers  

Co-robotic harvesting Manual harvesting 

Average 

Harvesting 

efficiency per tray 

Average Non-

productive time per 

tray(s) 

Harvesting 

efficiency 

Non-productive 

time (s) 

4 0.889 33.8 0.791 76.3 

5 0.876 45.2 0.785 77.5 

6 0.873 46.2 0.783 73.1 

7 0.861 49.1 0.794 76.6 

8 0.848 52.0 0.797 75.9 

4.2. Results from Robot-and-cart experiment 

In the ‘Robot-and-cart' experiment on the campus field, the tray request prediction 

module shown in Figure 46 was evaluated. Simple linear regression was used to estimate the 

instant of next-tray transport request from the measured weights. The weight data up to one 

minute before the button was pressed were used for the regression. Purple points represent the 

data used to predict the next-tray transport request and black bars represent the prediction of the 

tray transport request time instants. The middle point of each black bar represents the mean of 

the predicted Gaussian distribution, while the width represents the standard deviation.  
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Figure 46. The gray curves represent the tray’s weight measurements over time. Purple points represent the data 

points used to predict the full tray time instant. The lengths of yellow segments represent the non-productive 

intervals during picking (each segment starts from a blue point and ends at a cyan point). Black bars represent the 

prediction of the times when trays become full. 

The temporal and spatial next-tray transport request predictions were evaluated in the 

experiments. The predicted full-tray locations (green polygons) and the true full-tray locations 

(gold cross) are shown in Figure 47. The mean distance error along the y direction was 

approximately 3.5 m. The temporal predictions of the collected 20 trays were evaluated using as 

metrics the mean average error (MAE) and mean standard error (MSE) (Anjom Khosro, 2019). 

The MAE of the prediction was 25.35s and MSE was 7.8s. 
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Figure 47. Predicted full tray locations (green polygon) and the true full tray locations (gold cross) 

4.3. Results from the commercial field system experiment  

The data from each instrumented cart was processed with the method described in Section 

3.3 to get the productive time, ∆𝑡𝑖
𝑒𝑓

, (aka ‘one-tray-picking time’) and non-productive time, 

∆𝑡𝑖
𝑓𝑒

, of each tray. The distance traversed to pick a single tray (‘one-tray-picking distance’) was 

obtained by calculating the Euclidean distance of the cart locations at the instances when picking 

started and ended for the tray. The results were combined and presented in this section.  

4.3.1. Results for workers’ harvesting parameters 

The distributions of the one-tray-picking time, one-tray picking distance, and picker 

walking speed parameters were generated from the data. The one-tray picking time and one-tray 
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picking distance parameters were assumed to be mainly dependent on the geospatial fruit 

distribution, for the same picking crew.  

Figure 48 shows the distributions of the one-tray picking time of the crew for the co-

robotic harvesting blocks of Nov 10th (session 2) and Nov 11th (session 1). The Mann-Whitney 

rank test was used to compare the two distributions. The null hypothesis was that for randomly 

selected values from the distribution of harvesting time per tray on Nov 10th and Nov 11th, the 

probability of the selected values on Nov 10th being greater than Nov 11th was equal to the 

probability of selected values on Nov 11th being greater than Nov 10th. The significance level of 

p-values (alpha) for rejecting the null hypothesis (Type I error) was chosen as 1%. The 

calculated p value was 2.13e-9, so the distributions of the two days differed significantly. A 

comparison of their mean values shows that, on average, the harvest crew took a longer time to 

harvest one tray on Nov 11th (894.62 s) than on Nov 10th (548.71 s). 

 

Figure 48.  Histogram of the time it took pickers to fill one tray, on Nov 10th and Nov 11th 

Figure 49 shows the distributions of the one-tray picking distance, for the two days. The 

p value from the Mann-Whitney rank test of the two distributions was 2.21e-7, so they were 
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significantly different. On average, the pickers moved a longer distance to collect a tray of 

strawberries on Nov 11th (33.31 m) than Nov 10th (17.92 m).  

 

 

Figure 49.  Histogram of the distance traveled by pickers to fill one-tray, on Nov 10th and Nov 11th   

During manual harvesting, each picker would take their filled tray to the collection 

station, attach a sticker with their personal barcode on the tray, take an empty tray and walk back 

to the field to resume picking. Based on our observations, the pickers took around 8 seconds to 

stick their bar code on the tray and take an empty tray. Thus, the walking time to deliver a tray 

can be estimated by subtracting these 8 seconds from ∆𝑡𝑖
𝑓𝑒

. The exact locations 𝑳𝑖
𝑓
when a picker 

start walking are detected by the weight change and the corresponding time instants are 𝑡𝑖
{𝑒𝑛𝑑}

. 

The transport distance can be computed from the coordinates of the collection station and 𝑳𝑖
𝑓
. 

Hence, each picker’s walking speed can be estimated from the computed transport distance and 

the measured time interval. The manual harvesting data from the first session of Nov 10th was 

used to estimate the mean walking speeds of the 6 pickers, as shown in Table 17. 
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Table 17. The estimated mean walking speeds of the pickers, when they transport full trays to the collection station 

Picker 

ID# 

Sample mean of 

walking speed (m/s) 

Sample standard 

deviation of walking 

speed (m/s) 

Number of manual 

transport measurements 

1 0.78 0.05 5 

2 0.49 0.10 5 

3 0.81 0.06 6 

4 0.74 0.11 5 

5 0.91 0.07 6 

6 1.02 0.03 6 

4.3.2. Harvesting performance of co-robotic harvesting 

The non-productive time ∆𝑡𝑖
𝑓𝑒

 and the efficiency Ef𝑓𝑖
 for each tray was obtained from the 

data collected during the co-robotic harvesting sessions. Obviously, it is impossible to have the 

picking crew re-harvest manually a field block that was harvested using the robots. Ideally, a 

large trial would use a large field and divide it into smaller blocks and then randomly assign 

manual and robotic treatments to the blocks.  However, such a large trial was not acceptable by 

the grower; commercial harvesting is a costly operation that is planned based on the weather, 

crop condition, labor availability and customer demand.  Hence, an estimation of the manual 

harvesting efficiency was made for the same field block that was harvested using robots, given 

the pickers’ estimated walking speed and the measured locations where their trays had filled up.  

As mentioned above, the location 𝑳𝑖
𝑓
 of each tray can be indexed from the instant 𝑡𝑖

{𝑒𝑛𝑑}
 

the tray becomes full. Thus, the non-productive time and the manual harvesting efficiency for 

each tray were estimated from 𝑳𝑖
𝑓
 , the collection station position and the estimated walking 

speeds (from Section 2.1), In summary, the picking crew’s harvesting performance with the co-

robotic harvest-aiding system was measured directly, and the manual harvesting performance of 

the same picking crew for the same field block was estimated indirectly, using the above method. 
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Given the significant difference in the yields of the two fields, which manifested itself in 

very different one-tray picking time and distance statistics, the harvesting performance was 

evaluated on the two days separately. The frequency histograms of non-productive time for the 

manual harvesting and co-robotic harvesting on Nov 10th are shown in Figure 50.a, and the 

histograms of harvesting efficiency on that day are shown in Figure 50.b. The P-value of Mann-

Whitney testing results of the performance data (non-productive time and harvesting efficiency) 

of manual harvesting and co-robotic harvesting on that day are shown in Table 18. Based on the 

calculated P-values, the manual and co-robotic distributions of the non-productive time and 

efficiency are significantly different, with a significance level at 1%.  

 
 

Figure 50. Harvesting performance on Nov 10th: a) Frequency histogram of non-productive time of co-robotic and 

manual harvesting; b) Frequency histogram of harvesting efficiency of co-robotic and manual harvesting.  

Table 18 Mann-Whitney rank test results for the means of the measured and estimated non-productive time and 

harvesting efficiency of the co-robotic and manual harvesting, respectively, on Nov 10th. 

Item Mean Non-productive time Mean Harvesting efficiency 

P value 3.778e-6 1.3705e-6 

 

Their mean values are shown in the figure. The mean non-productive time of co-robotic 

harvesting was reduced by more than half of the manual harvest non-productive time. The mean 
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co-robotic harvesting efficiency increased by around 12% compared to manual harvesting. These 

results are shown in the corresponding pie charts, in Figure 51. 

 

Figure 51. Comparison between the mean harvesting efficiency of co-robotic and manual harvesting, based on 

experimental data, on Nov 10th. 

Similarly, the performance distributions of manual and co-robotic harvesting on Nov 11th 

are shown in Figure 52, and the Mann-Whitney rank test results are shown in Table 19. Based on 

the calculated P-values, the manual and co-robotic distributions of the non-productive time and 

efficiency are significantly different, at a significance level of 1%.  From Figure 52b, one can see 

that the mean non-productive time with the robots is 33% lower than that of manual harvesting. 

Figure 53 shows that the mean harvesting efficiency after introducing the robots improved by 

8.8 %. 



113 

 

 
 

Figure 52. Harvesting performance on Nov 11th: a) Histogram of non-productive time of co-robotic and manual 

harvesting; b) Histogram of harvesting efficiency of co-robotic and manual harvesting. 

Table 19 Mann-Whitney rank test results for the measured and estimated non-productive time and harvesting 

efficiency of the co-robotic and manual harvesting, respectively, on Nov 11th 

Item Mean Non-productive 

time 

Mean Harvesting efficiency 

P value 2.409e-7 3.723e-7 

 

Figure 53. Comparison between the mean harvesting efficiency of co-robotic and manual harvesting, based on 

experimental data, on Nov 11th. 

5. Discussion and conclusions 

This chapter investigated the development and deployment of a harvest-aiding system 

comprising two tray-transport robots. The functionality of the modules inside the system was 

described and explained in detail. The core module, i.e., the predictive scheduling of the robot 
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team, was mathematically modeled as an online dynamic scheduling problem with uncertain 

requests. The problem was solved with an adapted scenario-sampling based method (MSA) 

which output in real-time a fast and sub-optimal solution. The whole system was integrated and 

successfully deployed in commercial strawberry harvesting.  

The field experiments demonstrated that the proof-of-concept system was functional in 

real-world commercial harvesting operations. The experimental results showed that the two 

harvest-aid robots significantly reduced the non-productive time of the six-person crew by 

around 60% and improved the harvesting efficiency by up to 10%, for the given crop load 

(which was low due to the season).  
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Chapter 5 Summary, conclusions, and future work 

In this dissertation, a co-robotic harvest-aiding system was developed to help alleviate the 

increasing labor shortage in strawberry harvesting. Dynamic robot scheduling under predictive 

transport requests was modeled and implemented. Two primary characteristics of the transport 

request predictions on scheduling performance were studied: earliness of prediction availability 

and uncertainty of predictions. These were studied on a harvesting simulator that modeled human 

pickers and transport robots and utilized manual harvesting model parameters estimated from 

data collected during harvesting of commercial strawberry fields. Finally, the whole system was 

integrated and deployed during commercial strawberry harvesting. 

In Chapter 2, it was found that FR starts affecting the performance of the predictive 

scheduling after a FR threshold is reached. The FR threshold can be estimated in advance, given 

a specific harvesting configuration.  The best possible case of predictive scheduling was 

examined. Given the robot-picker ratio of 1:3 and a robot travel speed of 1.5 m/s, the waiting 

time can be reduced by over 85% and the corresponding efficiency increase was over 15% with 

respect to all-manual harvesting. 

In Chapter 3, more practical cases were integrated into the simulation platform: (1) the 

uncertainty of predictive transport requests was considered; (2) the robots traveled at a safer 

speed of 0.5 m/s on the headland and 1.2 m/s inside the furrow. From the simulation experiment 

results, when the robot picker ratio was 1:3, it was found that the harvesting efficiency improved 

over 8% relative to the manual harvesting and was 4% worse than the efficiency achieved by 

deterministic scheduling under perfect predictions. Also, when 7 or more robots aided the crew 

of 25 pickers, the co-robotic harvesting rate was higher than a 30-picker crew under manual 

harvesting. 
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In Chapter 4, the development of the harvest-aiding system was integrated and evaluated 

in real fields. These proof-of-concept experiments demonstrated that the whole system was 

implementable and applicable in a commercial harvesting scenario. Experimental results in a 

commercial field – during low-yield season - showed that when two robots aided a crew of six 

pickers, the harvesting efficiency increased by around 10% and the non-productive time was 

reduced by nearly 60%.  

The simulations conducted in this thesis were based on picker data that were collected 

from specific crews, compensation schemes, fields, and picking seasons. The performance of the 

co-robotic harvest-aiding system – in simulation and in reality - depends strongly on these data 

and future work could apply the same methodology in different harvesting scenarios.  

 The following extensions to this thesis can support the deployment of harvest-aiding 

robots in real-world harvesting operations, and will be explored in future research: 

(1) Since the capacity of the current FRAIL-Bot is more than one tray, the robot does not 

need to go back to the collection station immediately after getting one tray from a 

picker. Serving multiple pickers before returning to the collection station is expected 

to increase the efficiency. The problem is more complex and must be modelled 

explicitly and solved in real-time and render the system more applicable to other 

crops. 

(2)  Real-world interaction of human pickers and robots will involve unexpected events 

that will require increased autonomy, and safe, reactive behavior from the robots. 

Using existing sensor data and adding perception modalities (e.g., onboard cameras) 

to estimate the operating states of the pickers in the hybrid systems model could 

enhance human-robot collaboration and safety. 
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(3) At a technical level, the localization of the robots relies solely on RTK-GNSS. Errors 

in the field map or intermittent GNSS signal deterioration are not unlikely, and 

vision-aided navigation would enhance the robots’ operational availability and 

robustness.   
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Appendix 

Here, it is shown that early requests, with an FR value below a certain threshold, cannot 

change the current schedule, and thus will not affect the performance of the system. 

Let 𝒮𝑃 be the set of all the next tray-transport requests. The size of 𝒮𝑃, |𝒮𝑃| is equal to Q, 

the number of pickers. Given an FR value, the set  𝒮𝑅 of the predicted next tray-transport 

requests is a subset of  𝒮𝑃(𝒮𝑅 ⊆ 𝒮𝑃). When FR is 0, 𝑆𝑅 is equal to 𝑆𝑃, at any time instant. Let 

𝑆𝑅′ be set of requests that have not been predicted yet, i.e., they are not available to the 

scheduler; 𝑆𝑅′ is the complement set 𝑆𝑃\𝑆𝑅. The size of 𝑆𝑅′ depends on FR. When FR is too 

small, some of the early requests - with too late release times – do not need to be considered at 

the instant when the scheduler dispatches the robot to the request whose release constraint has 

been reached. At a dispatching instant, the scheduler decides to schedule robot 𝑘 to request 𝑅𝑖. 

We assume this dispatch command will not be affected by ignoring any requests in 𝑆𝑅′, so, for 

∀𝑅𝑗 ∈ 𝑆𝑅′, sum of the wait time of schedule {𝑅𝑗 , 𝑅𝑖} must be larger than sum of the wait time of 

schedule {𝑅𝑖, 𝑅𝑗} for robot k. We can get wait times for these two possible schedules in Table 

A1, based on Eq 9. 

Schedule Wait time of 𝑹𝒊 Wait time of 𝑹𝒋 Sum of wait times 

{𝑅𝑗 , 𝑅𝑖} Δ𝑡𝑗
𝑝 + Δ𝑡𝑗

𝑟 + Δ𝑡𝑖
𝑢 − Δ𝑡𝑖

𝑓
 0 Δ𝑡𝑗

𝑝 + Δ𝑡𝑗
𝑟 + Δ𝑡𝑖

𝑢 − Δ𝑡𝑖
𝑓
 

{𝑅𝑖, 𝑅𝑗} Δ𝑡𝑖
𝑢 − Δ𝑡𝑖

𝑓
 Δ𝑡𝑖

𝑝
 Δ𝑡𝑖

𝑢 − Δ𝑡𝑖
𝑓

+ Δ𝑡𝑖
𝑝

 

Table A1. Wait times of two possible schedules: {𝑅𝑗, 𝑅𝑖} and {𝑅𝑖, 𝑅𝑗} 

The sum of wait times of schedule {𝑅𝑗 , 𝑅𝑖} must be larger than that of {𝑅𝑖, 𝑅𝑗}; therefore:  

Δ𝑡𝑗
𝑝 + Δ𝑡𝑗

𝑟 + Δ𝑡𝑖
𝑢 − Δ𝑡𝑖

𝑓
 ≥  Δ𝑡𝑖

𝑢 − Δ𝑡𝑖
𝑓

+ Δ𝑡𝑖
𝑝
 (Eq A.1) 

 

The expression can be simplified further: 
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Δ𝑡𝑗
𝑝

+ Δ𝑡𝑗
𝑟  ≥  Δ𝑡𝑖

𝑝
 (Eq A.2) 

Substituting Δ𝑡𝑗
𝑟 = Δ𝑡𝑝𝑖𝑐𝑘

𝑖 (1 − 𝐹𝑅𝑗) − Δ𝑡𝑗
𝑢 into Eq A.2, we get: 

Δ𝑡𝑗
𝑝 + Δ𝑡𝑝𝑖𝑐𝑘

𝑖 (1 − 𝐹𝑅𝑗) − Δ𝑡𝑗
𝑢  ≥  Δ𝑡𝑖

𝑝
 (Eq A.3) 

where 𝐹𝑅𝑗 is the fill ratio of request 𝑅𝑗. Using Eq 15 for 𝑅𝑗 and 𝑅𝑖, Eq A.3 can be written 

as: 

Δ𝑡𝑗
𝑢 + Δ𝑡𝑝𝑖𝑐𝑘

𝑖 (1 − 𝐹𝑅𝑗)  ≥ 2Δ𝑡𝑖
𝑢 (Eq A.4) 

Solving for 𝐹𝑅𝑗 results in Eq A.5. 

𝐹𝑅𝑗 ≤ 1 −
2Δ𝑡𝑖

𝑢 − Δ𝑡𝑗
𝑢

Δ𝑡𝑝𝑖𝑐𝑘
𝑖

 
(Eq A.5) 

This inequality must always exist, even when the right-hand side is at minimum, i.e.: 

𝐹𝑅𝑗 ≤ (1 −
2Δ𝑡𝑖

𝑢 − Δ𝑡𝑗
𝑢

Δ𝑡𝑝𝑖𝑐𝑘
𝑖

)

𝑚𝑖𝑛

 
(Eq A.6) 

Approximating Δ𝑡𝑖
𝑢 ≈ Δ𝑡𝑗

𝑢 and  Δ𝑡𝑖
𝑝𝑖𝑐𝑘 ≈ Δtpick̅̅ ̅̅ ̅̅ ̅̅ , we get Eq A.7.  

𝐹𝑅𝑗 ≤ (1 −
Δ𝑡𝑗

𝑢

Δ𝑡𝑝𝑖𝑐𝑘̅̅ ̅̅ ̅̅ ̅̅
)

𝑚𝑖𝑛

 
(Eq A.7) 

When Δ𝑡𝑗
𝑢 takes its maximum value, the right-hand side is minimized:  

𝐹𝑅𝑗 ≤ 1 −
(Δ𝑡𝑗

𝑢)𝑚𝑎𝑥

Δ𝑡𝑝𝑖𝑐𝑘̅̅ ̅̅ ̅̅ ̅̅
 

(Eq A.8) 

 

Therefore, when a request in 𝑆𝑅′meets Eq A.8, it can be ignored at the dispatching 

instant. 
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