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Abstract

Objective—The M184V mutation in the HIV-1 reverse transcriptase (RT) gene is frequent (> 50 

%) in patients, both in resource-rich and resource-limited countries, conferring high-level 

resistance (> 100-fold) to the cytosine analog RT inhibitors 3TC and FTC. The RT enzyme of 

M184V HIV-1 mutants has reduced processivity, resulting in reduced viral replication, 

particularly at low nucleotide (dNTP) levels. We hypothesized that lowering intracellular dNTPs 

with Resveratrol (RV), a dietary supplement, could interfere with replication of M184V HIV-1 

mutants.

Design and Methods—Evaluation of the activity of RV on infection of primary peripheral 

blood lymphocytes (PBLs) by wild type and M184V mutant HIV-1. We assayed both molecular 

clones and primary isolates of HIV-1, containing M184V alone and in combination with other RT 

mutations. Viral infection was quantified by p24 ELISA and by quantitative real-time PCR 

analysis. Cell viability was measured by MTT assays.

Results—In virus infectivity assays, RV did not inhibit replication of wild-type NL43 (RV EC50 

> 10 µM), but it inhibited NL43 184V mutant (RV EC50 = 5.8 µM). These results were confirmed 

by real-time PCR analysis of early and late products of reverse transcription. RV inhibited 

molecular clones and primary isolates carrying M184V, alone or in combination with other RT 

mutations (RV EC50 values ranging 2.5–7.7 µM).

Conclusions—RV inhibits HIV-1 strains carrying the M184V mutation in RT. We propose RV 

as a potential adjuvant in HIV-1 therapy, particularly in resource limited settings, to help control 

FTC-resistant M184V HIV-1 mutants.
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INTRODUCTION

Resveratrol (RV), a natural ingredient found in certain plants and plant products, inhibits 

ribonucleoside reductase, the key enzyme step that converts deoxy-nucleotides (dNTPs) 

from their ribose precursor [1]. RV also arrests the cell cycle at the S/G2 transition, 

prolonging the S phase and increasing nuclear nucleoside utilization [2].

We have previously reported that RV, which lacks activity against wild-type HIV-1 or 

against HIV-1 carrying thymidine or adenosine analog resistance mutations, enhances the 

antiviral activity of nucleoside analog RT inhibitors (NRTIs) [3, 4]. RV antiviral 

enhancement is highest (up to 10-fold) with the adenosine analogs didanosine (DDI) and 

tenofovir (TDF), consistent with RV preferential depletion of dATP (natural competitor of 

DDI and TDF) [5]. Importantly, RV restores the TDF sensitivity of TDF-resistant HIV-1 

[4].

The cytosine analogs lamivudine (3TC) and emtricitabine (FTC) select for the M184V 

mutation, which confers high-level drug resistance (100 to 1000-fold) [6]. However, the gain 

of function in the mutated 184V RT enzyme is offset by a decreased processivity (i.e.; 

average number of nucleotides incorporated each time RT engages a primer) and thereby 

reduced replicative capacity of the mutant virus [7]. Decreased processity of the mutant RT 

is further reduced at low dNTP levels [8, 9]. Thus, we tested the hypothesis that reduction of 

dNTP levels with RV might impair the replication of HIV-1 carrying the M184V mutation. 

Our data demonstrate that RV by itself has activity against viruses with the M184V 

mutation, unlike what has been shown with wild type HIV-1 or with HIV-1 carrying 

thymidine/adenosine analog resistance mutations [3, 4].

METHODS

Viruses and Drugs

The HIV-1 molecular clone NL4-3 and its derivatives carrying RT sequences amplified 

from the plasma of patients with drug resistant HIV-1 were obtained from Dr. Robert Shafer 

(Stanford University School of Medicine, Stanford, CA) through the NIH AIDS Repository 

(Germantown, MD). Primary isolates 4742, BG05, BG15 and their corresponding FTC-

resistant mutants were provided by Dr. Mark Wainberg [10]. Multi-drug resistant primary 

isolates were provided by Dr. Steven Deeks. Emtricitabine (FTC) was obtained from the 

NIH AIDS Repository, and RV (trans form) was purchased from Sigma (St Louis, MO).

Cells and infectivity assays

Peripheral blood lymphocytes (PBLs) were separated from buffy coats of HIV-1 

seronegative donors (New York Blood Center, NY) by density centrifugation over Ficoll-
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Hypaque (Sigma). For infection, PBLs, cells were stimulated with 2.5 µg/ml 

phytohemagglutinin (PHA; Boehringer Mannheim, Indianapolis, IN) for 3 days. Stimulated 

PBLs were infected by incubation with virus at a multiplicity of infection (MOI) of 0.001 

for 2 hours. PBLs were then washed three times with PBS and cultured in 5% CO2 at 37° C, 

in RPMI/10% FBS supplemented with 10 units/ml IL-2 (Boehringer Mannheim) and drugs. 

PBLs were seeded in 96-well flat-bottom plates at a density of 2×105 PBLs/200 µl. 

Following 3 days of culture, half of the medium was replaced with fresh medium containing 

IL-2 and drugs. On day 7, HIV-1 p24 antigen production in the culture supernatant was 

assayed by ELISA (Coulter, Hialeah, FL).

MTT assays

Cell viability was measured by the colorimetric MTT test using a commercial kit (Roche). 

This test is based on the reduction of the yellow colored MTT [3–(4,5-dimethylthiazol-2-

yl)-2,5-diphenyltetrazolium bromide] to blue formazan by mitochondrial dehydrogenases. 

The quantity of formazan produced (absorbance at 490 nm) is directly proportional to the 

number of living cells. Briefly, cell aliquots were seeded in 96-well plates (100 µl) and 

incubated with 10 µl of MTT solution for 4 h at 37°C. A solubilization solution (50 µl) was 

added and plates incubated overnight at 37°C. MTT conversion to formazan by 

mitochondrial dehydrogenase was assayed by optical density at 490 nm measured in an 

ELISA plate reader.

Real-Time PCR

DNA was isolated from HIV-1 infected cells using Miniblood kit (Qiagen, Germantown, 

MD) following the manufacturer’s recommendations. PCR amplification was performed 

using Quantitect SYBR Green PCR Kit (Qiagen), in reactions containing 100 ng of DNA 

and primers to detect early or late HIV-1 reverse-transcribed DNA. Detection of early 

transcripts was done with primer pairs 5’-GCTCTCTGGCTAACTAGGGAAC-3’ and 5’-

TGACTAAAAGGGTCTGAGGGAT-3’ (R/U5 region), and late transcripts with 5’- 

TGGCATGGGTACCAGCACA-3’ and 5’-CTGGCTACTATTTCTTTTGCTA-3’ (R/gag 

region). Samples were also amplified with primers for the housekeeping gene α–tubulin. 

Amplifications were done in a LightCycler (Biorad, Hercules, CA) at an annealing 

temperature of 56°C. Amplified products were analyzed by denaturation/renaturation to 

verify the specific Tm. The PCR cycle at which the signal entered the exponential range was 

used for quantification, and HIV-1 copy numbers corrected for those of α–tubulin. Standard 

curves for HIV-1 and α–tubulin copy numbers were generated by analyzing serial dilutions 

of plasmids carrying the corresponding sequences.

RESULTS

RV inhibits FTC-resistant HIV-1 carrying the M184V mutation

We evaluated the activity of RV against wild-type NL4-3 and mutant NL4-3/184V 

infectious molecular clones in PBLs. We conducted these experiments in the absence and 

presence of 10 µM FTC to confirm the FTC sensitivity phenotype of the tested viruses. As 

expected, in the absence of RV, 10 µM FTC completely inhibited wild-type NL4-3 but not 

NL4-3/184V (Fig 1a). Also as expected, RV treatment alone did not have activity against 
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wild-type NL4-3. In contrast, RV alone inhibited NL4-3/184V (Fig 1a). RV inhibition of 

NL4-3/184V was slightly increased by FTC. We confirmed the RV inhibitory activity 

against NL4-3/184V infection of PBLs by performing real-time PCR analysis with HIV-1 

primer pairs specific for R/U5 (initial region of reverse transcription) and R/gag (last region 

of reverse transcription) (Fig 1b). At 72 h after infection, RV did not inhibit DNA synthesis 

of wild-type HIV-1 (as expected), but 5 µM RV markedly (>10-fold) and 10 µM RV 

completely inhibited DNA synthesis of NL4-3/184V (both R-U5 and R-gag transcripts). 

Together, these data suggest that RV depletion of dNTPs is sufficient to reduce the 

enzymatic activity of 184V RT, which has less processivity than wild-type RT at low dNTPs 

levels [7–9].

We next evaluated RV against HIV-1 primary isolate pairs, with and without the M184V 

mutation as the sole mutation in RT, derived from the same patient. These isolates (4742, 

BG05 and BG15) have been described previously [10]. We chose viruses with M184V as 

single mutation to avoid confounding of the data by additional mutations that might 

compensate for the viral growth disadvantage conferred by M184V. Results are shown in 

Table 1. In each WT/M184V virus pair, RV inhibited M184V mutant (EC50 values ranging 

between 2.5 and 6.7 µM), but not WT (EC50 > 10 µM). These results demonstrate that RV 

has antiviral activity against viruses with the M184V mutation as the sole mutation in RT.

RV inhibits multi-drug resistant viruses carrying the M184V mutation

The M184V mutation is frequently observed in conjunction with RT mutations conferring 

resistance to other NRTIs. We tested the activity of RV against NL4-3 clones containing the 

RT region amplified from plasma of patients with multi-drug resistance (Table 1). RV failed 

to inhibit drug-resistant NL4-3 clones lacking the M184V mutation, but inhibited all drug-

resistant clones containing M184V (EC50 values ranging between 2.7 and 5.8 µM). To 

further confirm inhibition of RV against multi-drug resistant HIV-1, we next evaluated RV 

against isolates from patients with multi-drug resistance (isolates 3212, 6061 and 6017). 

Similar to the data with NL4-3 molecular clones, RV inhibited the multi-drug resistant 

isolate with the M184V mutation but not those lacking it. Collectively, the data demonstrate 

antiviral activity of RV against HIV-1 carrying the M184V mutation, alone or in 

combination with other mutations in RT.

DISCUSSION

The dietary supplement RV modulates cell proliferation by inhibiting ribonucleotide 

reductase, preferentially depleting dATP and prolonging the cellular S phase [1, 2]. RV 

inhibition of cell proliferation is more potent in cancer cells (EC50 < 10 µM) than in normal 

cells or PBLs (EC50 >10 µM) [11, 12]. We have previously demonstrated that RV, which 

had no direct antiviral effects against wild-type HIV-1 or against thymidine or adenosine 

analog-resistant mutants, enhances the antiviral activity of NRTIs [3, 4]. Clouser et al. have 

shown that RV and nucleoside analog decitabine are synergistic against HIV-1 [13].

We now demonstrate that treatment with RV alone is sufficient to inhibit HIV-1 mutants 

with the M184V mutation, present in > 50 % of treated patients [14]. RV inhibited viruses 

carrying M184V, singly or in combination with other mutations. These data are consistent 
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with reduced processivity of 184V mutant RT [7], particularly at low dNTP levels [8, 9]. 

The decreased processivity of 184V RT mutants confers a viral replication disadvantage that 

has clinical benefit [15]. As such, maintenance of the M184V mutation is considered to be 

clinically useful to sustain this replication disadvantage even in the presence primary drug 

resistance. Our data suggest that RV could be used as an adjuvant in the treatment of HIV-1, 

helping to control replication of drug-resistant M184V mutants. In addition to this anti-HIV 

activity, adjuvant treatment with RV may be beneficial to HIV-1 patients by decreasing 

oxidative stress induced by thymidine analogs [16], and by decreasing protease inhibitor 

toxicity [17].

RV administration has shown no significant toxicity in humans [18, 19]. However, one 

caveat with its use is low bioavailability, with rapid metabolism into glucuronides and 

sulfates [20, 21]. Despite low bioavailability, it is intriguing that RV has shown beneficial 

effects in the treatment of some cancers, diabetes and cardiovascular disease, both in 

animals and in humans [18, 19]. It is possible that RV metabolites (mainly glucuronides and 

sulfates) may be converted back to active RV by cellular esterases and sulfatases [20, 21]. It 

is also possible that enterohepatic recirculation through biliary secretion of metabolites and 

subsequent deconjugation by gut microflora could explain the in vivo activity of RV [22]. In 

an effort to boost RV bioavailability, several derivatives and delivery approaches are being 

pursued [13, 23, 24].

Together, adjuvant treatment with RV, or with more bioavailable derivatives, may increase 

antiretroviral treatment success in patients by helping control replication of highly prevalent 

FTC-resistant M184V HIV-1 mutants.
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Figure 1. Resveratrol (RV) inhibits FTC-resistant HIV-1 NL4-3184V
A) Activated PBLs infected with wild-type NL4-3 (top) or FTC-resistant NL4-3184V 

(bottom) were cultured in the absence and presence of RV and FTC, alone and combined. 

Virus production was measured on day 7 by p24 ELISA. Note differences in scale in y axis 

between plots. B) Quantification of HIV-1 transcripts (R-U5 and R-Gag) in PBLs infected 

with NL4-3 or NL4-3184V and cultured in the presence of various concentrations of RV for 

72 h. HIV-1 copy numbers were corrected after amplification with α–tubulin primers. The 
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dotted line indicates the limit of detection of the PCR assay. In both A and B, data are means 

± S.D. of two independent experiments.
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Table 1

Resveratrol inhibits HIV-1 with the M184V mutation, alone or in combination with other mutations in reverse 

transcriptase

Virus1 Drug Resistance Mutations in RT Geometric mean
RV EC50, µM (95%

CI)2

HIV-14762 none >10

HIV-14762/3TC 184V 6.7 (2.34–19.4)

HIV-1BG05 none >10

HIV-1BG05/3TC 184V 2.5 (0.76–8.4)

HIV-1BG15 none >10

HIV-1BG15/3TC 184V 4.3 (1.86–9.86)

NL43 none >10

NL437303-3 41L,67N,210W,215Y,69D,44D,118I >10

NL437324-1 41L,67N,70R,215F,219E,69N >10

NL437324-4 41L,70R,215F,219E, >10

NL4371361-1 65R >10

NL43184V 184V 5.8 (5.81–5.82)

NL437295-1 67N,70R,215F,219Q,184V,69N 4.1 (2.76–6.03)

NL438415-2 184V,65R 3.9 (3.28–4.75)

NL4310076-4 41L,215Y,184V 3.6 (1.25–10.60)

NL434755-5 41L,67N,210W,215Y,184V,69D,44D,118I 5.5 (2.84–10.76)

NL436463-13 41L,67N,210W,215Y,184V,118I 3.5 (2.60-4-60)

NL431617-1 70G,184V,69K,75I,77L,116Y,151M 3.3 (2.57–4.35)

NL4329129-2 41L,67N,210W,215Y,184V, 5.2 (4.13–6.60)

NL4352534-2 41L,210W,215Y,184V,InsSS,74V 2.7 (1.55–4.70)

HIV-13212 103N,181C >10

HIV-16061 41L,67N,70R,210W,215Y,219E >10

HIV-16017 41L,67N,69D,70R,103N,184V,219Q 7.7 (6.44–9.21)

RV denotes Resveratrol; RT denotes reverse transcriptase.

1
Viruses with the HIV-1 prefix are primary isolates, whereas those with the NL43 prefix are molecular clones.

2
EC50 values determined by variable slope non-linear regression analysis using GraphPad Prism software. Each virus was run in at least 2 

independent assays, with different donors in each assay.
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