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Abstract

Stratification of Derived Categories of Tate Motives

by

David Rubinstein

We classify the localizing tensor ideals of the derived categories of mixed Tate

motives over certain algebraically closed fields. More precisely, we prove that

these categories are stratified in the sense of Barthel, Heard and Sanders. A

key ingredient in the proof is the development of a new technique for transport-

ing stratification between categories by means of Brown–Adams representability,

which may be of independent interest.
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Chapter 1

Introduction

Categories are pervasive in mathematics, and whenever there is a category there

is a notion of isomorphism, or sameness. A goal we might strive towards therefore

is to classify all the objects in a category up to this notion of sameness. However,

it was understood early on that we are often confronted with ‘wild’ classification

problems: there is usually no hope of classifying up to isomorphism all finite

dimensional representations of a group G in positive characteristic; no hope of

classifying topological spaces up to homotopy equivalence; no hope of classifying

all vector bundles on an algebraic variety up to isomorphism; and so on and so

forth.

In light of this impossibility, there has been an important paradigm shift in the

last few decades: one changes perspective and works ‘stably.’ In other words, one

changes the category and asks for a weaker notion of classification in an associated

‘stable’ category. For example, rather than working in the category of represen-

tations of a group, rep(kG), one works in the category of ‘stable representations,’

stab(kG). Similarly, rather than considering the category of topological spaces up

to homotopy, Ho(Top), one considers the ‘stable homotopy category,’ SH. A uni-

fying theme is that these stable categories have a tensor-triangulated structure —
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they are ‘tensor-triangulated categories.’ In these tensor-triangulated categories,

one asks not for a classification of objects ‘on the nose,’ but rather a classification

of objects up to a weaker notion of equivalence in which two objects are deemed

equivalent if they can build each other using the tensor-triangulated structure.

What this technically amounts to is a classification of the so called ‘thick tensor

ideals’ of the stable category. This new perspective led to a myriad of landmark

theorems in the late 1990s in algebraic topology [HS98], modular representation

theory [BCR97] and algebraic geometry [Nee92], [Tho97].

These important theorems were greatly clarified and unified via the work of

Paul Balmer [Bal05], who gave an abstract classification theorem for tensor-

triangulated categories. In short, Balmer constructed a topological space Spc(K),

called the Balmer spectrum, out of a tensor triangulated category K. This topo-

logical space comes equipped with the universal notion of support for the objects

in K, and this universal notion of support always classifies the objects in K up to

the above weak notion of equivalence; namely, two objects are equivalent if and

only if their supports coincide. From this perspective, the classification of objects

in K is equivalent to a computation of the Balmer spectrum Spc(K). Indeed,

the aforementioned landmark theorems can be phrased as statements about the

Balmer spectrum.

While the theory of the Balmer spectrum is conceptually very satisfying and

powerful, there is an issue with the scope of its applicability: many of the stable

categories of interest arise as a ‘finite’ piece of a larger stable category (e.g. finite

dimensional vs infinite dimensional stable representations stab(kG) ⊂ Stab(kG);

or perfect complexes rather than arbitrary complexes Dperf(R) ⊂ D(R)). Techni-

cally, these categories arise as the subcategories of “compact” objects of a larger

stable category, and Balmer’s classification theorem only applies to these cate-
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gories of compact objects. However, these larger objects are some of the most

interesting: for example, one of the main insights of stable homotopy theory is

that all cohomology theories become representable when working stably, but the

objects that represent them are not compact.

Barthel, Heard, and Sanders, motivated by earlier work of Neeman and Benson,

Iyengar and Krause, have made significant progress in deducing a classification

theorem for such ‘large’ tensor-triangulated categories [BHS23b]. In particular,

they develop a theory of stratification for a rigidly-compactly generated tensor-

triangulated category T which provides a framework for classifying the localizing

ideals of T . At its heart is a support theory Supp for the large category T that

takes value in the Balmer spectrum of compact objects Spc(T c). This support

theory is given by tensoring with certain tensor idempotent objects g(P) ∈ T

associated to each P ∈ Spc(T c). Explicitly, we have

Supp(t) = {P ∈ Spc(T c) : t⊗ g(P) 6= 0}

for each t ∈ T . The category T is stratified if this support theory provides an

order-preserving bijection between the collection of localizing tensor ideals of T

and the collection of all subsets of Spc(T c).

In this thesis, we study a particular example of a rigidly-compactly gener-

ated tensor-triangulated category, arising from the theory of Motives. Motives

originated in the work of Grothendieck and his students in the 1960s in their

study of algebraic cycles and cohomology theories in algebraic geometry (see

[Gro69, Man68]). The unifying idea was that there should be a “universal co-

homology theory” in algebraic geometry, which they called motivic cohomology.

Unfortunately, they never succeeded in constructing the conjectured category of

motives, from which motivic cohomology arises. However, much later on, Vo-

3



evodsky [Voe00] introduced a “derived category” of motives, denoted DM(F , R),

which is morally the ‘stable version’ of the conjectured category of motives. His

groundbreaking work (see [Voe98, MV99, VSF00]) greatly increased our under-

standing of motivic cohomology, and using this theory, Voevodsky was able to

solve some longstanding fundamental conjectures in algebraic geometry: namely,

the Milnor conjecture and the Bloch–Kato conjecture [SV00, Voe11, Voe10].

This category DM(F , R) contains an extraordinary amount of information: for

example, every algebraic variety over the field F gives rise to an object in this

category. To avoid some of this complexity, a common approach is to restrict

our attention to a smaller tensor-triangulated subcategory. One of these is the

subcategory of Tate Motives, denoted DTM(F , R) ⊂ DM(F , R).

Recent progress has been made in understanding the structure of the compact

part of this category over certain algebraically closed fields, through the beautiful

computation of its Balmer spectrum by Martin Gallauer [Gal19].

Theorem 1.0.1 (Gallauer). The Balmer spectrum of DTM(Q,Z)c is the follow-

ing topological space:

m2 m3 · · · mp · · ·

Spc(DTM(Q,Z)c) = e2 e3 · · · ep · · ·

m0

These primes correspond to vanishing of various étale and motivic cohomology

groups. We will explain in more detail this computation in Chapter 5. Our main

theorem is the following (see Theorem 10.0.1):

Theorem 1.0.2 (Stratification). The category DTM(Q,Z) is stratified.
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To reiterate, this provides classification of Tate motives in DTM(Q,Z): two

Tate motives t1, t2 are equivalent precisely when their supports agree, that is

Supp(t1) = Supp(t2). There are many consequences of a category T being strati-

fied (see, e.g. [BHS23b, Part III]). For example, if T is stratified and Spc(T c) sat-

isfies a mild topological assumption, then we can answer a version of the telescope

conjecture (see [BHS23b, Theorem 9.11]). This famous conjecture [DHS88, Rav84]

was phrased originally for SH (and has recently been shown to be false in SH!

see [BHLS23]) but it can be translated to any tensor-triangulated category, see

Remark 3.2.5. The mild topological condition holds for Spc(DTM(Q,Z)c) for

example, so as a corollary to our main theorem, we get (see Theorem 10.0.2):

Theorem 1.0.3 (Telescope Conjecture). The Telescope Conjecture holds for

DTM(Q,Z).

Proving that a category is stratified amounts to establishing two properties:

(a) the ‘local-to-global’ principle, which morally says every object can be recon-

structed from its local pieces; and (b), the ‘minimality’ property, which says the

localizing ideals generated by the tensor idempotents g(P) are minimal. Impor-

tantly, Barthel, Heard and Sanders, building off the earlier work of Stevenson,

prove that if the spectrum is noetherian, as the above spectrum of Tate motives

is for example, the local-to-global principle always holds, and so the problem

reduces to proving the minimality property. Moreover, minimality is a local con-

dition, so the bulk of the thesis is devoted to proving that minimality holds at

the unique closed points in the corresponding local categories for each prime in

Spc(DTM(Q,Z)c). While there are infinitely many primes in Spc(DTM(Q,Z)c),

there are qualitatively only 3 distinct primes to consider: m0, ep, and mp.

The local category associated to the generic point m0 is equivalent to the cat-
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egory of rational motives DTM(Q,Q). We prove this category is stratified in

Chapter 6 using an extension of work on t-structures for rational motives by Pe-

ter and Levine [Pet13, Lev93].

For the heights one and two primes, ep and mp, we use a result similar in spirit to

the quasi-finite descent of [BCH+23] to reduce to the following two local categories:

1. DTM ét(Q,Z/p), which corresponds to ep (see Chapter 7), and

2. DTM(Q,Z/p), which corresponds to mp (see Chapter 9).

Stratification of DTM ét(Q,Z/p) is an immediate consequence of the ‘Rigidity

Theorem’ for étale motives with finite coefficients (see Theorem 7.0.2). On the

other hand, in proving DTM(Q,Z/p) is stratified in Chapter 9, we are led natu-

rally to the following question, which may be of independent interest.

Question 1.0.4. Suppose T1 and T2 are two rigidly-compactly generated tensor-

triangulated categories with a tt-equivalence between their compact parts T c
1 '

T c
2 . If T1 is stratified, does it follow that T2 is stratified as well?

In Chapter 8 we investigate this question through the lens of Brown–Adams

representability. More precisely, given a rigidly-compactly generated tt-category

T , we study the module category A := Add((T c)op,Ab) along with the restricted

Yoneda functor

h : T −→ A

t −→ t̂ := Hom(−, t)|T c .

The essential image of restricted Yoneda lies in the subcategory of homological

functors, and in certain examples a much stronger relationship holds. For example,

Adams showed in [Ada71] that for the stable homotopy category T = SH, every
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homological functor H : (T c)op → Ab is the restriction to T c of a representable

functor on T , and every map between homological functors is induced by a (non-

unique) map between the representing spectra. Due to this historical example,

a tt-category is said to satisfy Brown–Adams representability if it satisfies those

above two properties. Determining whether or not a category satisfies Brown–

Adams representability is a challenging problem in general. Importantly for us

however, Neeman, generalizing a theorem of Brown, showed in [Nee97] that a

sufficient condition is that the subcategory of compact objects T c is equivalent to

a countable category.

The category of modules A, and its relation to T , has also been studied by

Balmer, Krause and Stevenson in a series of recent papers [BKS19, BKS20, Bal20a,

Bal20b]. In particular, they use A to define a new spectrum, the so-called homo-

logical spectrum Spch(T c). Associated to each ‘homological prime’ β ∈ Spch(T c)

is a certain pure-injective object Eβ ∈ T , and these can be used to define a new

support theory for T . These Eβ objects are often much better behaved than

the analogous g(P) objects are. For example, they are often field objects (see

Remark 8.2.3). Our main theorem for this section is the following (see Theo-

rem 8.2.16):

Theorem 1.0.5. Suppose T1 and T2 are two rigidly-compactly generated tensor-

triangulated categories with a tt-equivalence between their compact parts T c
1 ' T c

2 .

Suppose further that:

(1) T1 is stratified;

(2) T c
1 is equivalent to a countable category;

(3) The Eβ objects in T1 are field objects; and
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(4) For every nonzero homological functor t̂ ∈ A1 there exists a nonzero map

Êβ ⊗ x̂→ t̂ for some β ∈ Spch(T c
1 ) and compact x ∈ T c

1 .

Then T2 is also stratified.

As mentioned above, we use this theorem to prove that DTM(Q,Z/p) is strati-

fied. The compact part of this category is known to be equivalent to the (bounded)

derived category of filtered Z/p vector spaces (see Chapter 9), and this category

is well understood and amenable to the techniques of stratification. In particular,

it satisfies the hypothesis of the above theorem. This allows us to conclude that

DTM(Q,Z/p) is stratified (see Theorem 9.0.11), and hence deduce that minimal-

ity holds at the height two prime mp.

A final comment to make is that, while we are only considering motives over

Q in this thesis, our results hold for other algebraically closed fields satisfying

a certain vanishing condition, as in [Gal19, Hypothesis 6.6]. In particular, this

vanishing condition holds for F p, see [Gal19, Remark 6.8]. Moreover, our results

are conjectured to hold for C. More specifically, the conjecture is as follows: for

any real closed field F , there is a canonical surjective comparison map (see [Bal10,

§5])

ρ : Spc(DTM(F ,Z)c)→ Spec(Z)

and so the Balmer spectrum can be found by identifying the fibers of this map. For

fields satisfying the vanishing hypothesis, the fiber of the generic point (0) is known

to be a singleton (for example, the fiber of (0) is m0 for the case DTM(Q,Z)c),

whereas the fiber is only conjecturally a singleton for F = C (see [BG22, Re-

mark 11.8]). If the fiber is a singleton as conjectured, then our proofs hold in

their entirely for C as well.

The thesis is structured as follows. In Chapter 2 we establish some preliminary
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material about triangulated categories. In particular we introduce the various

localization theories they admit. In Chapter 3 we turn to tensor-triangulated cat-

egories, and provide a bare-bones account of the Balmer spectrum for an essen-

tially small tensor-triangulated category K, and the corresponding classification

theorem. In Chapter 4 we introduce the theory of stratification, and prove the

needed form of descent we will use in later chapters. Chapter 5 is dedicated to

describing the computation of the Balmer spectrum of DTM(Q,Z)c by Gallauer.

In Chapter 6 we prove minimality holds at the height 0 prime, m0. In Chapter 7

we show how our descent proposition, combined with the Rigidity Theorem dis-

cussed earlier immediately gives minimality at the height 1 prime, ep. This estab-

lishes stratification for the derived category of étale Tate motives, DTM ét(Q,Z).

The final two chapters are dedicated towards proving minimality at the height 2

prime, mp. Chapter 8 provides an account of Brown–Adams representability for a

rigidly-compactly generated tensor-triangulated category, culminating in our The-

orem 1.0.5. We then apply this theorem in Chapter 9 to prove minimality at the

final prime, which establishes that DTM(Q,Z) is stratified.

9



Chapter 2

Preliminaries

In this chapter we will review the basic theory of triangulated categories. We

will not prove much in what follows, and will instead refer the reader to standard

references, the main one being [Nee01].

2.1 Definitions and Basic Properties

Definition 2.1.1. Let T be an additive category and let Σ : T ∼−→ T be an

auto-equivalence. Then we say that:

1. A triangle in T is a diagram

X
f−→ Y

g−→ Z
h−→ ΣX

2. A morphism of triangles is a commutative diagram of the form

X Y Z ΣX

X ′ Y ′ Z ′ ΣX ′

f g h

α1 α2 α3 Σα1

f ′ g′ h′

10



Definition 2.1.2. An additive category T is said to be a triangulated category

if we have an auto-equivalence Σ : T ∼−→ T , which we refer to as the suspension,

along with a distinguished class of triangles satisfying the following axioms:

(TR0) Triangles are closed under isomorphisms. Moreover the triangle

X
id−→ X −→ 0→ ΣX

is a distinguished triangle for all X ∈ T .

(TR1) Triangles are closed under rotations. That is, a triangle

X
f−→ Y

g−→ Z
h−→ ΣX

is a distinguished triangle if and only if

Y
g−→ Z

h−→ ΣX
−Σf−−→ ΣY

is a distinguished triangle.

(TR2) Any morphism X
f−→ Y in T can be completed to a distinguished triangle

X
f−→ Y

cf−→ Cf
∂−→ ΣX

This object Cf is called a cone of the morphism f .

(TR3) A commutative diagram

X Y Z ΣX

X ′ Y ′ Z ′ ΣX ′

f g h

α1 α2 Σα1

f ′ g′ h′

where the rows are distinguished triangles can be filled in to get a mor-

11



phism of triangles

X Y Z ΣX

X ′ Y ′ Z ′ ΣX ′

f g h

α1 α2 Σα1

f ′ g′ h′

α3

(TR4) The “octahedral axiom:” This axiom tells us how cones of composible

morphisms interact. Given two composible maps

X
f−→ Y

g−→ Z

and three distinguished triangles

X
f−→ Y

cf−→ Cf
∂1−→ ΣX

Y
g−→ Z

cg−→ Cg
∂2−→ ΣY

X
g◦f−−→ Z

cg◦f−−→ Cg◦f
∂3−→ ΣX

the octahedral axiom states that there exists a distinguished triangle

Cf
u−→ Cg◦f

v−→ Cg
∂4−→ ΣCf

such that, if we denote maps into a suspension as dotted maps, the fol-

lowing diagram commutes:

Y

X Z

Cf Cg

Cg◦f

g

cf

f

g◦f
cg

cg◦f

∂1

u

∂2

∂4∂3

v

Moreover, we require the two maps from the top to the bottom to coincide,

12



and we require the two maps from the bottom to the top to coincide.

Remark 2.1.3. It follows from Lemma 2.1.8 below that the third object appear-

ing in the triangle Cf as in (TR2) is unique up to isomorphism. However, a

fundamental issue with triangulated categories is that Cf is only unique up to

a non-unique isomorphism. Nonetheless, we will often refer to it as ‘the cone’

instead of the more accurate ‘a cone.’

Remark 2.1.4. While triangulated categories are rarely abelian categories, one

often views the collection of distinguished triangles as being modeled on the col-

lection of exact sequences in an abelian category. Indeed, consider the following

lemma:

Lemma 2.1.5. Let

X
f−→ Y

g−→ Z
h−→ ΣX

be a distinguished triangle. Then g ◦ f = h ◦ g = 0.

Proof. By (TR0) the triangle X
id−→ X → 0 → ΣX is a distinguished triangle.

Then we have maps

X X 0 ΣX

X Y Z ΣX

id

id f

f g h

which by (TR3) can be completed to a morphism of distinguished triangles

X X 0 ΣX

X Y Z ΣX

id

id f

f g h

u

which shows that g ◦ f = 0. A similar proof shows that h ◦ g = 0.

13



Remark 2.1.6. A similar proof as in the above lemma can also be given to

demonstrate that g is a ‘weak cokernel’ of f , in the sense that any other map

out of f that composes to 0 must factor, non-uniquely, through g. In particular,

for any morphism X
f−→ Y we have that Cf is a weak cokernel of f . Let us

for a moment then drastically abuse notation and write the cone as Cf = Y /X.

Doing so provides some motivation for the octahedral axiom (TR4), which is

by far the most mysterious, and the one that initially brings the most dread

to any budding stable homotopy theorist. Indeed, with this abusive notation,

(TR4) is the ‘triangulated’ version of the third isomorphism theorem, ie that

Z/X ' (Z/Y )/(Y /X).

Remark 2.1.7. For any a ∈ T the functor Hom(a,−) : T → Ab sends a distin-

guished triangle

X
f−→ Y

g−→ Z
h−→ ΣX

to an exact sequence of abelian groups

Hom(a,X)
f∗−→ Hom(a, Y )

g∗−→ Hom(a, Z)

(see [Nee01, Lemma 1.1.10]). Moreover, if we define Hi := Hom(a,Σ−i(−)) then

the rotation axiom implies we get a long exact sequence

· · · → H1(Z)→ H0(X)→ H0(Y )→ H0(Z)→ H−1(Z)→ · · ·

In this sense, the morphism Z
h−→ ΣX in a distinguished triangle can be thought

of as the ‘connecting morphism’ one typically has in long exact sequences of ho-

mology.

14



Lemma 2.1.8 (5-lemma). Consider a morphism of distinguished triangles:

X Y Z ΣX

X ′ Y ′ Z ′ ΣX ′

f g h

α1 α2 Σα1

f ′ g′ h′

α3

If two of the αi’s are isomorphisms then so is the third.

Proof. By the rotation axiom we can assume that α1 and α2 are isomorphisms

and show that α3 is as well. Fix a ∈ T and let us apply Hi := Hom(a,Σ−i(−))

to obtain

H0(X) H0(Y ) H0(Z) H−1(X) H−1(Y )

H0(X
′) H0(Y

′) H0(Z
′) H−1(X

′) H−1(Y
′)

H0(f) H0(g) H0(h) H−1(f)

H0(α1) H0(α2) H0(α3) H−1(α1) H−1(α2)

H0(f ′) H0(g′) H0(h′) H−1(f ′)

a commutative diagram of abelian groups with exact rows. Hence by the ‘normal’

5-lemma in abelian categories, we get that H0(α3) is an isomorphism since the

outer 4 vertical maps are by assumption. Since a was arbitrary, Yoneda tells us

α3 is also an isomorphism.

Remark 2.1.9. Continuing to naively think of Cf as a ‘quotient’ Y /X can be

instructive. Indeed, for f : X → Y the cone Cf provides a measurement of how

far off f is from being an isomorphism:

Proposition 2.1.10. Let f : X → Y be a morphism. Then Cf ' 0 if and only if

f is an isomorphism.

Proof. Suppose that f : X → Y is an isomorphism. Then we consider the diagram

X X 0 ΣX

X Y Cf ΣX

id

id f id

f cf
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where the rows are distinguished triangles. We can fill this in to a morphism of

triangles
X X 0 ΣX

X Y Cf ΣX

id

id f id

f cf

h

By lemma 2.1.8 this shows h is an isomorphism. Now assume that Cf ' 0. Then

we can obtain a morphism of triangles

0 X X ΣX

0 X Y ΣX

id

id id f id

f

and so again by lemma 2.1.8 we get that f is an isomorphism.

Remark 2.1.11. At this point, the author feels the reader may be getting antsy

waiting for an example of a triangulated category. While the author does not

necessarily expect the reader to know about the following examples of triangulated

categories, he nonetheless hopes the reader takes solace in seeing this theory is

not a vacuous one:

1. Let R be a commutative ring. The homotopy category K(R) and the

derived category D(R) are triangulated. More generally, for X a nice

enough scheme, the derived category of complexes of OX -modules with

quasi-coherent homology, D(X ) is triangulated.

2. Let G be a finite group and k a field of characteristic dividing the order of

G. The stable module category Stab(kG) is triangulated.

3. The stable homotopy category SH is triangulated.

4. The derived category of (étale) motives over a field F , DM (ét)(F ) is trian-

gulated.
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5. The stable A1-homotopy category over a field F , SHA1

(F ) is triangulated.

Definition 2.1.12. Let T be a triangulated category and let S ⊆ T be a full,

replete, additive subcategory. Then we say that:

(a) S is triangulated if S is closed under (de)suspensions and cones of morphisms

between objects in S.

(b) S is thick if it is a triangulated subcategory closed under direct summands.

(c) S is localizing if it is a thick subcategory closed under coproducts.

Definition 2.1.13. For any subset S ⊂ T we will write Thick(S) and Loc(S) to

be the smallest thick and localizing subcategory containing S.

Remark 2.1.14. In a triangulated category which admits all coproducts, any

triangulated subcategory which is closed under coproducts is automatically also

thick. Indeed, any triangulated category which admits all coproducts is idempo-

tent complete (see [Nee01, Proposition 1.6.8]), and so any category closed under

coproducts contains all direct summands by an Eilenberg swindle argument.

2.2 Verdier and Bousfield Localization

Definition 2.2.1. Let T1, T2 be triangulated categories. Then a triangulated

functor F : T1 → T2 is an additive functor equipped with a natural isomorphism

of functors F ◦ ΣT1 ' ΣT2 ◦ F such that for every distinguished triangle in T1

X → Y → Z → ΣX

the triangle

F (X)→ F (Y )→ F (Z)→ ΣF (X)
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is distinguished in T2.

Definition 2.2.2. Let F : T1 → T2 be a triangulated functor. The kernel of F is

Ker(F ) := {X ∈ T1 : F (X) ' 0}.

Lemma 2.2.3. Let F : T1 → T2 be a triangulated functor. The kernel of F is a

thick subcategory. If moreover, T1 and T2 admit all coproducts, and F is coproduct

preserving, then Ker(F ) is a localizing subcategory.

Proof. That Ker(F ) is a thick subcategory is [Nee01, Lemma 2.1.5]. If F preserves

coproducts, then it is clear that Ker(F ) is closed under coproducts and hence

localizing.

Remark 2.2.4. When the author was first learning this material, he found it use-

ful to think of triangulated categories as abelian groups, and tensor-triangulated

categories (to be discussed shortly) as rings. In this analogy, thick subcategories

are morally normal subgroups, and triangulated functors are group homomor-

phisms. Keeping in mind the classic result in group theory that normal subgroups

are nothing more than kernels of group homomorphisms, the following result be-

came more clear to the author.

Proposition 2.2.5 (Verdier Localization). Let S ⊆ T be a thick category. Then

there exists a triangulated category denoted T /S along with a triangulated functor

F : T → T /S

which is the universal functor with S ⊆ Ker(F ). Moreover, T /S can be described

as follows: let MorS denote the collection of all morphisms f : X → Y in T such

that Cf ∈ S. Then T /S ' T [Mor−1
S ]. That is, T /S is the category obtained by
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inverting all morphisms whose cone lies in S. Furthermore, T [Mor−1
S ] admits a

calculus of left-fractions in the sense of [GZ67].

Proof. See [Nee01, Theorem 2.1.8].

Example 2.2.6 (Derived Category). Let A be a Grothendieck abelian category,

and let K(A) be the homotopy category of chain complexes. Let

S = {X• ∈ K(A) : H i(X•) = 0 for all i ∈ Z}

be the subcategory of acyclic complexes. Then the derived category of A is the

Verdier localization

D(A) = K(A)/S.

Moreover, in this example, f ∈ MorS if and only if f is a quasi-isomorphism.

Hence in the derived category, all acyclic complexes are (isomorphic to) 0 and all

quasi-isomorphisms are honest isomorphisms.

Remark 2.2.7. Since T /S has a calculus of left-fractions, we can provide a simple

description of the category as:

(a) Obj(T /S) = Obj(T ), and

(b) Mor(T /S) =equivalence classes of morphisms

X
f−→ Y

s←− Z

with s ∈ MorS , where two fractions X
f1−→ Y1

s1←− Z and X
f2−→ Y2

s2←− Z are
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equivalent if there exists a commutative diagram

Y1

X Y3 Z

Y2

f1

f3

f2

s1

s3

s2

with s3 ∈MorS .

Nonetheless, we still may have set-theoretic size issues in general. A way to insure

there are no size issues is the following.

Definition 2.2.8. Let T be a triangulated category and let S ⊆ T be a subset.

Then we denote:

S⊥ = {X ∈ T : Hom(Y,X) = 0 for all Y ∈ S}

⊥S = {X ∈ T : Hom(X, Y ) = 0 for all Y ∈ S}.

Definition 2.2.9. A Bousfield localization on a triangulated category T is a

triangulated functor L : T → T along with a natural transformation η : id → L

such that

1. Lη = ηL, and

2. Lη is an isomorphism.

Given a Bousfield localization L, we say that

1. A morphism f : X → Y is an L-equivalence if Lf is an isomorphism.

2. An object X is L-local if X is in the essential image of L.

3. An object X is L-acyclic if X ∈ Ker(L).
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Proposition 2.2.10. Let T be a triangulated category and let S ⊆ T be a thick

subcategory. Then the following are equivalent:

1. There exists a Bousfield localization L : T → T with Ker(L) = S.

2. The inclusion functor S ↪→ T admits a right adjoint.

3. For each X ∈ T there is a distinguished triangle

X ′ → X → X ′′ → ΣX ′′

with X ′ ∈ S and X ′′ ∈ S⊥.

4. The quotient functor T → T /S admits a fully faithful right adjoint.

5. The composite

S⊥ ↪→ T → T /S

is an equivalence.

6. The inclusion S⊥ ↪→ T admits a left adjoint and ⊥(S⊥) = S.

Moreover, in this case we have S = Ker(L) = ⊥Im(L) and S⊥ = Im(L)

Proof. See [Kra10, Proposition 4.9.1] and [Kra10, Proposition 4.10.1].

2.3 Compact Objects and Compact Generation

In this section, we make precise the notion of ‘finite objects’ for a triangulated

category, and discuss how many of the important examples are generated from

these objects.
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Definition 2.3.1. Let T be a triangulated category. An object x ∈ T is said to

be compact if the functor

HomT (x,−) : T → Ab

preserves coproducts. We will let T c ⊆ T denote the subcategory of compact

objects. It is an easy exercise to check that T c is a thick subcategory of T .

Remark 2.3.2. An equivalent characterization, which helps explain the name

‘compact,’ is that any map from x to an infinite coproduct of objects factors

through a finite coproduct.

Definition 2.3.3. We say that T is compactly generated if T has small coproducts

and there exists a set of compact objects G such that Loc(G) = T .

Remark 2.3.4. Compactly generated triangulated categories satisfy a very im-

portant representability condition, originally discussed by Brown in the papers

[Bro62, Bro63], and then generalized by Neeman (see below).

Theorem 2.3.5 (Brown Representability). Let T be a compactly generated tri-

angulated category. Let

H : T op → Ab

be a functor that sends distinguished triangles to exact sequences, and sends co-

products in T to products in Ab. Then H is representable.

Proof. See [Nee01, Theorem 8.3.3].

Corollary 2.3.6. Let T be a compactly generated triangulated categories and let S

be any triangulated category. If F : T → S is a coproduct preserving triangulated

functor then F has a right adjoint.
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Proof. This is [Nee01, Theorem 8.4.4]. The point is that, for any s ∈ S the functor

H := HomS(F (−), s)

satisfies the hypothesis in the theorem above. Hence, there is an object, denoted

G(s) ∈ T such that

HomS(F (−), s) ' HomT (−, G(s))

This can then be extended to give a functor G : S → T , which is the sought after

adjoint.

2.4 Finite Localization

In this section, we show how Brown-representability can be used to produce lo-

calization functors.

Definition 2.4.1. Let L : T → T be a Bousfield localization functor on a trian-

gulated category T . We say L is a finite localization if the subcategory of L-acylic

objects, Ker(L) is generated as a localizing subcategory by a set of compact

objects.

Theorem 2.4.2. Let T be a compactly generated triangulated category and let

S ⊂ T be a localizing subcategory. If there exist a set of compact objects C such

that S = Loc(C) then there exists a finite localization L : T → T with Ker(L) = S.

Proof. The assumptions on S mean it is itself compactly generated. Moreover,

since it is a localizing subcategory of T , the inclusion ι : S → T is a coproduct

preserving triangulated functor. Hence by Corollary 2.3.6 it admits a right adjoint,
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which, by Proposition 2.2.10, shows there is a Bousfield localization functor

L : T → T

with Ker(L) = S.
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Chapter 3

Tensor-Triangulated Categories

In this chapter, we cover the basic theory of tensor-triangulated categories. In

particular, we go over the appropriate analogue of compact generation in the

tensor-world. We end with an account of Balmer’s abstract classification theo-

rem for an essentially small tensor-triangulated category, and give some example

classifications. Our goal for this chapter is to set the stage for the theory of

stratification in the following chapter.

Definition 3.0.1. A tensor-triangulated category is a triangulated category T

equipped with a compatible closed symmetric monoidal structure, as in [HPS97,

Appendix A]. In particular, the functors

−⊗− :T × T → T

[−,−] :T op × T → T

are triangulated functors, where [−,−] denotes the internal-hom. We will write

1T for the unit object, and will often drop the subscript and just write 1 if it is

clear which category we are talking about.

Definition 3.0.2. Let S ⊆ T be a full, replete subcategory of a tensor-triangulated
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category. We say S is a tensor-ideal if a ⊗ s ∈ S for all a ∈ T , s ∈ S. We write

Thickid(S) and Locid(S) for the smallest thick tensor-ideal and smallest localizing

tensor-ideal containing S.

Remark 3.0.3. To further the author’s analogy of a triangulated category as

abelian group from Remark 2.2.4, a tensor-triangulated can be thought of as a

kind of suped-up ring. This naive intuition can actually get us quite far, as we

shall see in §3.3.

Definition 3.0.4. Let T and S be tensor-triangulated categories. Then a tensor-

triangulated functor F : T → S is a triangulated functor that is also a strong-

monoidal functor. In particular, we have natural isomorphisms F (1T ) ' 1S and

F (a⊗T b) ' F (a)⊗S F (b) for all a, b ∈ T .

3.1 Rigidly-Compactly Generated tt-Categories

Definition 3.1.1. An object x in a tensor-triangulated category K is said to be

dualizable if there exists an object Dx and morphisms 1 η−→ Dx⊗x and x⊗Dx
ε−→ 1

such that the two maps

x ' x⊗ 1
1⊗η−−→ x⊗Dx⊗ x

ε⊗1−−→ 1⊗ x ' x

Dx ' 1⊗Dx
η⊗1−−→ Dx⊗ x⊗Dx

1⊗ε−−→ Dx⊗ 1 ' Dx

are the identity.

Definition 3.1.2. A tensor-triangulated category K is called rigid if every object

x ∈ K is dualizable.

Remark 3.1.3. Let T be a tensor-triangulated category that has all small co-

products. Then we have two candidate subcategories of ‘finite’ objects:
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(a) The subcategory of compact objects T c, and

(b) The subcategory of dualizable objects.

An analogue for a compactly generated triangulated category in the tensor world

are those where these two candidates for finite objects coincide.

Definition 3.1.4. Let T be a tensor-triangulated category that has all small

coproducts. We say that T is a rigidly-compactly generated tensor-triangulated

category if:

(a) T is compactly generated, and

(b) The compact objects coincide with the subcategory of dualizable objects.

In particular, the unit object 1 is compact.

Remark 3.1.5. Many of the examples given in Remark 2.1.11 are rigidly-compactly

generated tensor-triangulated categories (see for example, [HPS97, Example 1.2.3]):

(a) Let R be a commutative ring. Then D(R) is rigidly-compactly gener-

ated. The tensor structure is the derived tensor product, − ⊗L −, and

the unit is given by R. The subcategory of perfect complexes, Dperf(R) :=

Db(proj(R)), i.e the subcategory of bounded complexes of finitely-generated

projective modules, is the subcategory of compact-dualizable objects.

(b) Let G be a finite group and k a field of characteristic dividing the order

of G. Then Stab(kG) is a rigidly-compactly generated tensor-triangulated

category. The tensor structure is given by tensoring over k with the diagonal

action of the group, and the unit is the trivial module k. The subcategory of

finite-dimensional kG modules, stab(kG) forms the subcategory of compact-

dualizable objects.
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(c) The stable homotopy category SH is rigidly-compactly generated. The ten-

sor product is the smash product −∧−, and the unit is the sphere-spectrum

S. The subcategory of compact-dualizable objects, SHfin, is the Spanier–

Whitehead category of finite CW-complexes.

Remark 3.1.6. Moreover, the various forms of localizations discussed in the pre-

vious sections all apply to tensor-triangulated categories. We state them without

proof below:

Proposition 3.1.7. Let S ⊂ T be a thick tensor-ideal of a tensor-triangulated cat-

egory T . The localization T /S is a tensor-triangulated category and the canonical

localization functor

F : T → T /S

is a tensor-triangulated functor.

Remark 3.1.8. The above proposition applies to Bousfield localizations as well.

Moreover, if the kernel of a Bousfield localization Ker(L) is a tensor-ideal, then

Im(L) is itself a tensor-triangulated category through the equivalence Im(L) '

T /Ker(L) from Proposition 2.2.10. One should be warned however that Im(L)

is not a tensor-triangulated subcategory of T ! For example, its unit is L(1T ).

3.2 Smashing Localization

In this section we introduce the final kind of localization we will be interested

in. We put off this form of localization until after having introduced tensor-

triangulated categories, because we feel its most natural setting (and how to ex-

plain the name) lies in the world of tensor-triangulated categories.
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Definition 3.2.1. Let T be a triangulated category (not necessarily tensor for

now). A Bousfield localization L : T → T is a smashing localization if it preserves

coproducts. The reason for the name is the following proposition:

Proposition 3.2.2. Let T be a rigidly-compactly generated tensor-triangulated

category and let L : T → T be a Bousfield localization such that Ker(L) is a tensor

ideal. Then L is smashing if and only if the natural map αt : L(1) ⊗ t→ L(t) is

an isomorphism for all t ∈ T .

Proof. This is a standard result, see for example [HPS97, Definition 3.3.2]. Nonethe-

less, we give the proof below so that the reader can see some general techniques

one uses in proofs in the world of rigidly-compactly generated tt-categories. The

map αt is defined as follows. We have the natural map η : 1→ L(1) since L is a

Bousfield localization. Then this map fits into a distinguished triangle

X → 1
η1−→ L(1)→ ΣX

with X ∈ Ker(L) by Proposition 2.2.10. Now fix t ∈ T and apply L(− ⊗ t) to

the triangle. L(X ⊗ t) = 0 by assumption, and so we have

L(η1 ⊗X) : L(t)→ L(L(1)⊗ t)

is an isomorphism. The map αt is thus defined as the composite

L(1)⊗ t
ηL(1)⊗t−−−−→ L(L(1)⊗ t)

L(η1⊗X)−1

−−−−−−→ L(t).

Since the tensor-product preserves coproducts we get that if the natural map

above is an isomorphism then L preserves coproducts. Now a general argument

shows that the set of all objects for which αt is an isomorphism is thick, and if L

preserves coproducts it is also localizing. Since T is rigidly-compactly generated,
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it thus suffices to show that αt is an isomorphism for t dualizable. Moreover,

again by Proposition 2.2.10, it suffices to show that L(1)⊗ t ∈ Ker(L)⊥. So take

s ∈ Ker(L) and t ∈ T c and we compute:

Hom(s, L(1)⊗ t) ' Hom(s, L(1)⊗D2(t))

' Hom(s, L(1)⊗ [D(t),1])

' Hom(s, [D(t), L(1)])

' Hom(s⊗D(t), L(1))

= 0

where the last equality holds since s ⊗ D(t) ∈ Ker(L) since we are assuming

Ker(L) is a tensor-ideal.

Remark 3.2.3. This explains the origin of the name. The above proposition

tell us the smashing localization is given by tensoring by L(1), and recall from

Remark 3.1.5 the tensor product in SH is called the smash product.

Corollary 3.2.4. Every finite localization is a smashing localization.

Proof. See, for example [Kra10, Theorem 5.6.1].

Remark 3.2.5. The content of the so-called telescope conjecture is the reverse

implication. We say a rigidly-compactly generated tt-category T satisfies the

telescope conjecture if every smashing localization is a finite localization. An

equivalent characterization of this conjecture was originally phrased for SH in

[Rav84] (and was recently shown to be false! [BHLS23]), while its current form

can be asked in any rigidly-compactly generated tt-category.

Remark 3.2.6. There is another instructive way to think about smashing and

finite localizations, via so-called idempotent triangles. We put off this perspective
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until the beginning of the next chapter so that we can discuss it in the context of

stratification.

3.3 The Balmer Spectrum and Classification

For the rest of this chapter, we will let K denote an essentially small tensor-

triangulated category (for example, K = T c can be the compact-dualizable objects

of some rigidly-compactly generated category T ). In this section we provide an

account of the Balmer spectrum of K, which allows for a geometric approach to

the study of K, much as Spec(R) allows for a geometric approach to the study of

a commutative ring R. We shall see that computing the Balmer spectrum of K

is essentially equivalent to computing the thick-tensor ideals of K. The original

reference for what follows is [Bal05].

3.3.1 Balmer Spectrum

Definition 3.3.1. We say a proper thick tensor-ideal P ⊂ K is a prime ideal, if,

whenever a⊗ b ∈ P then a ∈ P or b ∈ P . The Balmer spectrum of K, Spc(K) is

the set:

Spc(K) = {P ⊂ K : P is prime}.

For a collection of objects G ⊆ K let

Z(G) = {P ∈ Spc(K) : G ∩ P = ∅}.

The collection {Z(G) : G ⊆ K} are the closed subsets for a topology on Spc(K).

We call this corresponding topology the Balmer topology.
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Definition 3.3.2. The support of an object a ∈ K is the set

supp(a) = {P ∈ Spc(K) : a /∈ P}.

Note that these are precisely the primes for which a is not killed in the localization

K/P . Moreover, the support satisfies the following properties:

(i) supp(a) is closed for all a ∈ K.

(ii) supp(0) = ∅ and supp(1) = Spc(K).

(iii) supp(Σa) = supp(a).

(iv) supp(a⊕ b) = supp(a) ∪ supp(b).

(v) supp(c) ⊆ supp(a) ∪ supp(b) for any distinguished triangle

a→ b→ c→ Σa.

(vi) supp(a⊗ b) = supp(a) ∩ supp(b).

Remark 3.3.3. The collection {supp(a) : a ∈ K} forms a basis of closed subsets

for Spc(K), see [Bal05, Remark 2.7].

Theorem 3.3.4. The pair (Spc(K), supp) is the universal notion of support for

K that satisfies properties (a)-(f) above.

Proof. See [Bal05, Theorem 3.2] for the precise statement and proof.

Proposition 3.3.5. Let P ∈ Spc(K). Then its closure is given by

{P} = {Q ∈ Spc(K) : Q ⊆ P}.

In particular, the minimal primes are the closed points.
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Proof. See [Bal05, Proposition 2.9].

Proposition 3.3.6. Let F : K1 → K2 be a tensor-triangulated functor. Then we

obtain an induced continuous map on spectra

Spc(F ) : Spc(K2)→ Spc(K1)

given by Spc(F )(Q) = F−1(Q) for all Q ∈ Spc(K2).

Proof. See [Bal05, Proposition 2.6].

3.3.2 Classification Theorem

In this section we will show how the Balmer spectrum gives us a classification of

thick tensor-ideals of K. First, some preliminary definitions.

Remark 3.3.7. The Balmer spectrum Spc(K) is a spectral space, in the sense of

[Hoc69], see [Bal05].

Definition 3.3.8. We say a subset Z ⊆ Spc(K) is a Thomason subset if it is a

union of closed subsets, where each has quasi-compact complement. If Spc(K) is

moreover a noetherian space, then Z being Thomason is equivalent to Z being

specialization closed.

Definition 3.3.9. Let J ⊆ K be a thick tensor-ideal of K. Then the radical of

J is
√
J := {a ∈ K : a⊗n ∈ J for some n ≥ 1}.

Moreover, we say J is radical if J =
√
J .

Remark 3.3.10. When K is rigid, for example when K = T c is the category

of compact-dualizable objects of a rigidly-compactly generated category T , then

every thick tensor-ideal is radical, see [Bal05, Proposition 4.4].
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Definition 3.3.11. We say K is a local tensor-triangulated category if Spc(K) has

a unique closed point. This is equivalent to any of the following conditions (see

[Bal10, Proposition 4.2]):

(a) Spc(K) is a local topological space; ie, every open cover Spc(K) =
⋃

i∈I Ui

is trivial, in the sense Spc(K) = Uj for some j.

(b) K has a unique minimal prime ideal.

(c) The ideal
√
0 ⊆ K is the unique minimal prime.

(d) Whenever we have a ⊗ b = 0 we have that a is tensor-nilpotent or b is

tensor-nilpotent.

If K is rigid, then by Remark 3.3.10 these conditions are further equivalent to

saying that (0) is the unique minimal prime.

Definition 3.3.12. Let G ⊆ K be a collection of objects. Define

supp(G) :=
⋃
a∈G

supp(a).

For Y ⊆ Spc(K) define

KY := {a ∈ K : supp(a) ⊆ Y }.

Theorem 3.3.13 (Classification Theorem). The two assignments supp(G) and

KY above induce order-preserving bijections between

{radical thick tensor-ideals of K} ↔ {Thomason subsets of Spc(K)}

Proof. See [Bal05, Theorem 4.10].

Corollary 3.3.14. Let a1, a2 ∈ K. Then Thickid(a1) = Thickid(a2) if and only

if supp(a1) = supp(a2).
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Remark 3.3.15. Keeping in mind Remark 3.3.10, we can often strengthen the

theorem to provide a classification for all thick tensor-ideals.

3.3.3 Examples

As mentioned in the introduction, various landmark classification theorems from

the 1990s can be expressed as the computation of their Balmer spectrum.

Theorem 3.3.16 ([HS98, Bal10]). The Balmer spectrum of SHc is the following

topological space:

C2,∞ C3,∞ . . . Cp,∞ . . .

... ... ...

C2,n+1 C3,n+1 . . . Cp,n+1 . . .

C2,n C3,n . . . Cp,n . . .

... ... ...

C2,2 C3,2 . . . Cp,2 . . .

C0,1

In this picture, each point Cp,n is the kernel of the (n−1)th p–local Morava K-theory,

and the specialization relations are depicted by the lines going upwards.

Theorem 3.3.17 ([BCR97, Bal10]). Let G be a finite group and k a field of

characteristic p dividing the order of G. The Balmer spectrum of the stable
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module category is

Spc(stab(kG)) ' Proj(H•(G, k)).

Here Proj(H•(G, k)) is the projective variety associated to the group cohomology

ring.

Theorem 3.3.18 ([Nee92, Tho97, Bal10]). Let R be a commutative ring. The

Balmer spectrum for the derived category of perfect-complexes Dperf(R) is given

by Spc((Dperf(R)) ' Spec(R). For example, the Balmer spectrum for the derived

category of the integers is homeomorphic to Spec(Z):

Spc(Dperf(Z)) ' (2) (3) . . . (p) . . .

(0)

Remark 3.3.19. Unfortunately we cannot simply extend Theorem 3.3.13 to a

rigidly-compactly generated tensor-triangulated category T . The problem is that

the axioms for Balmer’s universal notion of support are not appropriate for big

objects. For example, the support of a compact object should be closed but this

should not be expected for the support of an arbitrary object. Nonetheless, in the

next chapter, we introduce how another notion of support, the so-called Balmer–

Favi support, can be used to classify the localizing tensor-ideals of T in certain

nice contexts.
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Chapter 4

Balmer–Favi Support and Stratification

Throughout this chapter T will denote a rigidly-compactly generated tensor-

triangulated category and we will let T c denote the subcategory of compact-

dualizable objects. The goal for this chapter is to provide a framework for classi-

fying the localizing tensor ideals of T .

4.1 Idempotent Triangles

Let us first explain a useful equivalent characterization of smashing localizations

from Balmer and Favi [BF11].

Proposition 4.1.1. Let e γ−→ 1
λ−→ f → Σe be a distinguished triangle. Then the

following are equivalent:

(1) γ ⊗ ide : e⊗ e
∼−→ e is an isomorphism.

(2) e⊗ f = 0.

(3) λ⊗ idf : f
∼−→ f ⊗ f is an isomorphism.

Moreover, in this case Ker(−⊗ f) = Im(e⊗−) and Ker(e⊗−) = Im(f ⊗−).
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Definition 4.1.2. We call a distinguished triangle

e
γ−→ 1

λ−→ f → Σe

an idempotent triangle if it satisfies any of the above equivalent conditions.

Proof. This is [BF11, Proposition 3.1].

Theorem 4.1.3. All smashing localizations for T arise as idempotent triangles.

More precisely we have:

(1) Let L : T → T be a smashing localization. Then the distinguished triangle

we get for the unit, as in Proposition 2.2.10 (Part 3)

e→ 1→ f → Σe

is an idempotent triangle.

(2) Let

e
γ−→ 1

λ−→ f → Σe

be an idempotent triangle. Then the functor Lf := − ⊗ f : T → T is a

smashing localization.

Proof. This is [BF11, Theorem 3.5].

Remark 4.1.4. Let Y ⊆ Spc(T c) be a Thomason subset, and denote by

T c
Y = {x ∈ T c : supp(x) ⊆ Y }

the corresponding thick tensor ideal, as in Theorem 3.3.13. Then we get an

associated idempotent triangle

eY → 1→ fY → ΣeY
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where

Ker(−⊗ fY ) = Im(eY ⊗−) = Locid(eY ) = Locid(T c
Y )

Now let V := Spc(T c) \ Y denote the complement of Y . We denote

T (V ) := T /Locid(T c
Y ) ' Im(−⊗ fY ) = Locid(fY )

to be the associated localization. Since the localization functor T → T (V ) is

smashing, it preserves coproducts and hence compact objects, so we get an as-

sociated map on spectrum Spc(T (V )c) → Spc(T c). Moreover, (see for example,

[BHS23b, Remark 1.23]) this map induces a homeomorphism

Spc(T (V )c) ' V ↪→ Spc(T c).

Definition 4.1.5. As a specific case of the above discussion, let P ∈ Spc(T c) and

consider the associated Thomason subset YP :=
⋃

x∈P supp(x) from the Classifi-

cation Theorem 3.3.13. We let TP denote the finite localization T /Locid(P) as

in the above remark. This is a local category as in Definition 3.3.11, and we will

refer to it as the local category at the prime P . Its Balmer spectrum is the set of

generalizations of P ,

Spc(T c
P) ' gen(P) = {Q ∈ Spc(T c) : P ∈ {Q}}.

4.2 Balmer–Favi Support

We now introduce the main support theory we will use to study localizing tensor

ideals. This notion of support was first introduced by Balmer and Favi in [BF11],

and further properties of it were studied in [BHS23b].

Definition 4.2.1. Let P ∈ Spc(T c) be a prime. We say P is weakly visible if
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{P} is the intersection of a Thomason subset and the complement of a Thomason

subset. We say P is visible if its closure is Thomason. Note that a visible prime is

weakly visible. If every prime P ∈ Spc(T c) is weakly visible (respectively visible)

we say Spc(T c) is weakly noetherian (respectively noetherian).

Definition 4.2.2. Associated to each weakly visible prime P ∈ Spc(T c) is a

nonzero tensor idempotent object g(P) defined by

g(P) = eY1 ⊗ fY2

for any choice of Thomason subsets Y1, Y2 of Spc(T c) such that {P} = Y1 ∩ Y c
2 .

This does not depend on choice of Thomason subsets, see [BF11, Corollary 7.5].

Remark 4.2.3. Let us make a quick remark about these g(P) objects in a special

case. Let T be a rigidly-compactly generated tt-category, and suppose Spc(T c)

consists of two, connected points

Spc(T c)

M

P .

That is, a closed pointM and a generic point P . Consider the idempotent triangle

eM → 1→ fM → ΣeM

associated to the finite localization for Y = {M}. We have that

(1) g(M) = eM, and

(2) g(P) = fM.
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Definition 4.2.4 (Balmer–Favi). Suppose that Spc(T c) is weakly noetherian and

let t ∈ T . The Balmer-Favi support of t is

Supp(t) := {P ∈ Spc(T c) : t⊗ g(P) 6= 0}.

Remark 4.2.5. This theory satisfies the expected properties of a support theory,

that is:

1. Supp(0) = ∅ and Supp(1) = Spc(T c).

2. Supp(Σt) = Supp(t) for all t ∈ T .

3. Supp(c) ⊆ Supp(a)∪Supp(b) whenever we have a triangle a→ b→ c→ Σa.

4. Supp(
∐

i∈I ti) =
⋃

i∈I Supp(ti) for any collection of objects ti ∈ T .

Remark 4.2.6. The Balmer-Favi support extends the universal Balmer support

for compact objects. That is, for x ∈ T c we have Supp(x) = supp(x); see [BHS23b,

Lemma 2.18].

Definition 4.2.7 (Local-to-Global Principle). Suppose that Spc(T c) is weakly

noetherian. We say T satisfies the local-to-global principle if

Locid(t) = Locid〈t⊗ g(P) : P ∈ Spc(T c)〉

for any t ∈ T .

Remark 4.2.8. Note that if T satisfies the local-to-global principle, then it also

satisfies the so-called detection property:

Supp(t) = ∅ ⇐⇒ t = 0.

Remark 4.2.9. While there is no general characterization for when the local-to-

global principle holds, a sufficient condition is that Spc(T c) is noetherian. This
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is established in [BHS23b, Theorem 3.22], building off the work of Stevenson

[Ste13, Ste17].

4.3 Stratification

Now we come to the main characterization of stratification established in [BHS23b,

Theorem 4.1]:

Theorem 4.3.1 (Stratification). Suppose Spc(T c) is weakly noetherian. Then

the following are equivalent:

(a) The local-to-global principle holds for T and for each prime P ∈ Spc(T c)

we have that Locid(g(P)) is a minimal localizing tensor ideal of T .

(b) For all t ∈ T , Locid(t) = Locid〈g(P) : P ∈ Supp(t)〉.

(c) The map

{Localizing ideals of T } Supp−−−→ {Subsets of Spc(T c)}

L −→ Supp(L) :=
⋃
t∈L

Supp(t)

is a bijection.

Definition 4.3.2. We say that T is stratified if any of the equivalent conditions

(a)-(c) from above hold. We will say that T has “minimality at P”, or satis-

fies the minimality property at P , if Locid(g(P)) is a minimal localizing ideal.

Importantly, the minimality property is a condition that can be checked locally:

Theorem 4.3.3. [BHS23b, Proposition 5.2] Suppose T satisfies the local-to-global

principle and has weakly noetherian spectrum. Then T has minimality at the prime
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P ∈ Spc(T c) if and only if the local category TP has minimality at its unique closed

point.

Remark 4.3.4. Thus, assuming the local-to-global principle holds, to establish T

is stratified it suffices to check if each local category T /Locid(P) has minimality

at its unique closed point.

Remark 4.3.5. The theory of stratification is amenable to various descent tech-

niques (see, for example [BCH+23, BCHS23]). Let us close out this section with

a slight modification of ‘quasi-finite descent’ [BCHS23, Theorem 17.16] that we

will use throughout the paper.

Definition 4.3.6. Let T and S be rigidly-compactly generated tt-categories. A

coproduct preserving tt-functor f ∗ : T → S is called a geometric functor. We

denote the right adjoint by f∗ (which exists by Corollary 2.3.6). Moreover, there

is the so-called projection formula

f∗(f
∗(t)) ' f∗(1)⊗ t

for all t ∈ T , see for example [BDS16].

Proposition 4.3.7. Let T and S be rigidly-compactly generated tensor-triangulated

categories. Let f ∗ : T → S be a geometric functor and let

ϕ := Spc(f ∗) : Spc(Sc)→ Spc(T c)

denote the induced map on spectra. Suppose that:

(a) T is local and satisfies the detection property;

(b) There exists a unique P ∈ Spc(Sc) such that ϕ(P) = M, the unique minimal

prime in Spc(T c); and
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(c) g(M) ∈ Locid(f∗(1)).

Then minimality at P implies minimality at M.

Proof. First we will show that f ∗ is conservative on all objects 0 6= t such that

Supp(t) ⊆ {M}. Let 0 6= t be such an object supported on M and suppose that

f ∗(t) = 0. Then we have

0 = f∗(f
∗(t)) = f∗(1)⊗ t

showing that f∗(1) ∈ Ker(− ⊗ t). This gives a containment of localizing tensor

ideals Locid(f∗(1)) ⊆ Ker(−⊗ t). By assumption however g(M) ∈ Locid(f∗(1))

so we get that g(M) ∈ Ker(−⊗ t). This implies however that Supp(t) = ∅ which

means that t = 0 since T satisfies the detection property by assumption. Hence

f ∗ is conservative on objects supported on M. Now let 0 6= t ∈ Locid(g(M)) and

we note that:

0 6= f ∗(t) ∈ Locid(f ∗(g(M))) = Locid(g(P))

where f ∗(g(M)) = g(ϕ−1({M})) = g(P) by [BS17, Proposition 5.11] and by the

hypothesis on the pre-image of {M}. Since we are assuming minimality at P we

have an equality

Locid(f ∗(t)) = Locid(f ∗(g(M))).

Hence we get f∗f ∗(g(M)) ∈ f∗(Locid(f
∗(t))) ⊆ Locid(t) by [BCHS23, 13.4]. Then

observe that

g(M) ∈ Locid(f∗(1)) =⇒ g(M) ' g(M)⊗ g(M) ∈ Locid(g(M)⊗ f∗(1)).

Using the projection formula we have g(M) ⊗ f∗(1) ' f∗f
∗(g(M)) which gives

us g(M) ∈ Locid(f∗f
∗(g(M))) ⊆ Locid(t) as desired. Hence minimality holds at

the closed point M.
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Remark 4.3.8. The inspiration for the previous proposition comes from the fol-

lowing example. Let R be a commutative, local noetherian ring with maximal

ideal m. Then we have the geometric functor

f ∗ := κ(m)⊗− : D(R)→ D(κ(m))

where f∗(1) = κ(m). Then one has, see for example [BHS23b, Theorem 5.8], that

g(M) ∈ Locid(Km) is in the localizing ideal of the Koszul complex. Since Km

has finite length-homology, Km ∈ Locid(κ(m)). Hence we are in the setting of

Proposition 4.3.7 and we can conclude that minimality holds at M. This hints to

the author that the previous proposition can be used in situations where we have

a more concrete description about g(M). We we will not use it however in what

follows. The following result however, will be used throughout. Moreover, one

should compare how similar the proof of the following proposition is to the proof

of the above.

Proposition 4.3.9. Let f ∗ : T → S be a geometric functor and let

ϕ := Spc(f ∗) : Spc(Sc)→ Spc(T c)

denote the induced map on spectra. Assume that:

(1) T is local and satisfies the detection property;

(2) f∗(1S) ∈ T is compact; and

(3) There exists a unique P ∈ Spc(Sc) such that ϕ(P) = M is the unique closed

point in Spc(T c).

Then minimality at P implies minimality at M.
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Proof. Our first step will again be to show that f ∗ is conservative on all objects

supported on M. Let Supp(t) ⊆ {M} and suppose f ∗(t) = 0. Then 0 = f∗f
∗(t) '

f∗(1S)⊗ t. Hence

∅ = Supp(f∗(1)⊗ t) = supp(f∗(1S)) ∩ Supp(t)

where the second equality holds from the half-tensor product formula (see [BHS23b,

Lemma 2.18]). Since S 6= 0 we have that 1S = f ∗(1T ) 6= 0 and so f∗(1S) 6= 0

since f∗ is conservative on the image of f ∗ (see [BCHS23, Remark 13.9]). Now

supp(f∗(1S)) is closed since we are assuming f∗(1S) is compact, and so it contains

the unique closed point M, which forces Supp(t) = ∅. Hence we conclude that

t = 0 since T satisfies the detection property. This establishes that f ∗ is conser-

vative on on all objects supported on M. Now suppose 0 6= t ∈ Locid(g(M)) and

note that

0 6= f ∗(t) ∈ Locid(f ∗(g(M))) = Locid(g(P))

where f ∗(g(M)) = g(ϕ−1({M})) = g(P) by the same argument from the above

proposition. Moreover, since we are assuming minimality at P we again obtain

an equality

Locid(f ∗(t)) = Locid(f ∗(g(M))).

Just as before, this implies f∗f ∗(g(M)) ∈ f∗(Locid(f
∗(t))) ⊆ Locid(t). Finally we

compute:

g(M) ∈ Locid(g(M)⊗ f∗(1)) (by [BHS23b, Lemma 3.7])

= Locid(f∗f
∗(g(M)))

⊆ Locid(t)

which establishes minimality at the prime M as desired.
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Chapter 5

Motives

In this chapter we recall the computation of the Balmer spectra of certain motivic

categories by Martin Gallauer. We will follow [CD19, CD16] for the general theory

of motives, and will also refer heavily to [Gal19] and the references therein.

5.1 Derived Categories of Motives

Definition 5.1.1. [CD19, 11.1.1, 11.1.2] We fix a commutative ring R, and the

field Q. The derived category of motives over Q is the tt-category, denoted

DM(Q, R), that is constructed out of the derived category of Nisnevich sheaves

with transfers of R–modules on the category of smooth, finite type Q–schemes;

see [CD19, 11.1.1, 11.1.2] for further details.

Remark 5.1.2. This category comes equipped with a functor

R(−) : Sm/Q→ DM(Q, R)

that sends a smooth Q-scheme X to its underlying ‘motive’, which is denoted

R(X). Moreover, the construction of DM(Q, R) inverts the motive of the projec-

tive line, which we denote by R(1). For any integer n, we then denote the ‘Tate-
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twist’ of weight n by R(n) := R(1)⊗n, and one gets that R(i) ⊗ R(j) = R(i + j)

for all i, j ∈ Z.

Definition 5.1.3. The derived category of Tate motives, denoted DTM(Q, R),

is defined as DTM(Q, R) = Loc(R(n) : n ∈ Z). It is a rigidly-compactly gener-

ated tensor-triangulated category; see for example [San22, Example 5.17] and the

references therein.

Remark 5.1.4. Given a ring homomorphism R → R′ there is an induced geo-

metric functor

γ∗ : DM(Q, R)→ DM(Q, R′)

which restricts to a geometric functor on Tate motives

γ∗ : DTM(Q, R)→ DTM(Q, R′).

The right adjoint γ∗ of this geometric functor is always conservative (see [CD16,

5.4.2]). Moreover, if R′ ∈ D(R)c, then γ∗ preserves compact objects [Gal19, §3].

5.2 Derived Categories of Étale Motives

There is a similar, parallel story to tell about the so-called étale motives:

Definition 5.2.1. [CD16, Gal19] We again fix a commutative ring R, and the

field Q. The derived category of étale motives over Q is the tensor-triangulated

category denoted DM ét(Q, R), that is constructed out of the derived category of

étale sheaves with transfers of R–modules on the category of smooth, finite type

Q-schemes; see [CD16] and [Gal19, §4] for further details.
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This category again comes equipped with an ‘étale’ motive functor:

Rét(−) : Sm/Q→ DM ét(Q, R),

and we again have invertible étale Tate objects Rét(n) arising from the étale motive

of the projective line.

Definition 5.2.2. The derived category of étale Tate motives is the tt-category

DTM ét(Q, R) = Loc(Rét(n) : n ∈ Z). When R is any localization or quotient of

the integers Z then DTM ét(Q, R) is also rigidly-compactly generated (see [Gal19,

§4]).

Remark 5.2.3. Given a ring map R → R′, we again have a geometric functor

γ∗ : D(T )M ét(Q, R)→ D(T )M ét(Q, R′) with conservative right adjoint γ∗ which

preserves compacts whenever R′ ∈ D(R)c.

Remark 5.2.4. Essentially since every Nisnevich sheaf is also an étale sheaf,

there is a canonical ‘étalification’ tt-functor

αét : DTM(Q, R)→ DTM ét(Q, R)

that commutes with change of coefficients. Moreover, whenever Q ⊆ R this

functor is an equivalence of categories [CD19, 16.1.2].

An important result by Gallauer provides another deep connection between

étale Tate motives and Tate motives:

Theorem 5.2.5. [Gal19, Theorem C.4] Let p be a prime number and let βp :

Z/p(0)→ Z/p(1) denote the Bott map. Consider the geometric functor

γ∗ : DTM(Q,Z(p))→ DTM(Q,Z/p)
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induced by the ring map Z(p) → Z/p and let

γ∗ : DTM(Q,Z/p)→ DTM(Q,Z(p))

denote its right adjoint. Then the étalification functor

αét : DTM(Q,Z(p))→ DTM ét(Q,Z(p))

is a finite localization with kernel Locid(γ∗(cone(βp))). In particular, we have an

equivalence

DTM(Q,Z(p))/Locid(γ∗(cone(βp))) ' DTM ét(Q,Z(p)).

5.3 Balmer Spectrum of Tate Motives

Armed with this, we can now describe Gallauer’s computation of the Balmer

spectrum of Tate motives. Let us first state the spectrum for finite coefficients:

Proposition 5.3.1. [Gal19, Proposition 8.2] Let βp : Z/p(0) → Z/p(1) denote

the Bott map. Then Spc(DTM(Q,Z/p)c) consists of two connected points:

Spc(DTM(Q,Z/p)c) = (0)

〈cone(βp)〉

The last result needed before the main computation by Gallauer is the following

computation of the spectrum with rational coefficients in [Pet13, Theorem 4.15]:

Theorem 5.3.2 (Peter). The Balmer spectrum of rational motives is

Spc(DTM(Q,Q)c) ' Spec(Q) ' (0)

We can now bring these results together for integral coefficients [Gal19, Theo-
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rem 8.6]:

Theorem 5.3.3 (Gallauer). The Balmer spectrum of DTM(Q,Z)c is the follow-

ing noetherian topological space

m2 m3 · · · mp · · ·

Spc(DTM(Q,Z)c) = e2 e3 · · · ep · · ·

m0

where the p’s are prime numbers and the specialization relations are depicted by

the lines going upwards. The primes are given as follows:

(height 2) : mp is the kernel of the tt-functor

γ∗
p : DTM(Q,Z)c → DTM(Q,Z/p)c

induced from the ring map Z → Z/p. Moreover, this prime coincides

with the motives whose mod-p motivic cohomology vanishes.

(height 1) : ep is the kernel of the following composite

DTM(Q,Z)c
γ∗
p−→ DTM(Q,Z/p)c

αét−→ DTM ét(Q,Z/p)c.

This corresponds to the motives whose mod-p étale cohomology van-

ishes.

(height 0) : The generic point m0 is the kernel of the finite localization

γ∗
Q : DTM(Q,Z)c → DTM(Q,Q)c

induced from the ring localization Z → Q. This prime corresponds to

those motives whose rational motivic cohomology vanishes.
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Moreover, the étalification tt-functor αét : DTM(Q,Z) → DTM ét(Q,Z) induces

an inclusion on spectra

Spec(Z) ' Spc(DTM ét(Q,Z)c) ↪
Spc(αét)−−−−→ Spc(DTM(Q,Z)c)

which is a homeomorphism onto the subspace {m0, ep : p prime}.

Remark 5.3.4. Since Spc(DTM(Q,Z)c) is noetherian, DTM(Q,Z) automati-

cally satisfies the local-to-global principle (recall Remark 4.2.9). The rest of this

thesis will therefore be focused on proving minimality holds at each prime.

Remark 5.3.5. Looking at the computation of Spc(DTM(Q,Z)c) above, we see

that there are 3 ‘types’ of primes. Indeed, each vertical slice in the spectrum is

obtained from a finite localization DTM(Q,Z)→ DTM(Q,Z(p)) ([Gal19, Exam-

ple 6.12, Proposition 10.2]) induced from the ring map Z→ Z(p). These are local

categories, with mp being the (0) ideal now. Pictorially, for example, we have

mp = (0)

Spc(DTM(Q,Z(p))
c) = ep

m0

Moreover, by [BHS23b, Proposition 1.32] in order to prove minimality holds at

the primes mp and ep it suffices to prove it in the local category DTM(Q,Z(p)).
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Chapter 6

Minimality at the Height Zero Prime

In this chapter, we will prove minimality holds at the the height zero prime m0.

Remark 6.0.1. Recall that the height zero prime m0 is obtained from the alge-

braic localization going from integral to rational coefficients. That is

DTM(Q,Z)/Locid(m0) ' DTM(Q,Q)

By Theorem 4.3.3, to prove that minimality holds at the prime m0 it suffices to

prove minimality holds at the unique prime in DTM(Q,Q). Let us now recall the

computation of Spc(DTM(Q,Q)c) by Peter [Pet13].

6.1 t-structures

Definition 6.1.1. A t-structure on T is a pair of subcategories t = (U ,V) such

that:

1. U ,V are both closed under summands;

2. ΣU ⊆ U and Σ−1V ⊆ V ;

3. HomT (U ,V) = 0; and
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4. Every object X ∈ T fits into a triangle

U → X → V [−1]→ U [1]

with U ∈ U , V ∈ V . This is equivalent to saying the inclusion U ↪→ T

(respectively V ↪→ T ) admits a right adjoint τ≤0 : T → U (respectively a

left adjoint τ≥1 : T → V ) called the ‘truncation functors.’

Given a t-structure on T we say that:

1. U is the aisle of the t-structure, and V is the coaisle of the t-structure.

2. The category T � := U ∩ V is called the heart of the t-structure. A ma-

jor reason t-structures are of interest is that the heart of any t-structure

T � is an abelian category (see [BBD82]). Moreover, we get an ‘internal’

cohomological functor H0 : T → T � given by

H0 = τ≥0 ◦ τ≤0 ' τ≤0 ◦ τ≥0

and we define the higher cohomologies to be Hn(X) := H0(ΣnX) for all

n ∈ Z.

The prototypical example of a t-structure is the following:

Example 6.1.2. Let R be a commutative ring and consider the unbounded derived

category D(R). Then the following is a t-structure on D(R), called the ‘canonical’

or ‘standard’ t-structure:

U = {X ∈ D(R) : H i(X) = 0 for all i > 0}

V = {X ∈ D(R) : H i(X) = 0 for all i < 0}

The heart of this t-structure will be canonically isomorphic to Mod(R).
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Remark 6.1.3. To orient the reader for why we are interested in the follow-

ing definitions: our goal will be to eventually produce a triangulated equivalence

between DTM(Q,Q) and the derived category of the heart of a t-structure on

DTM(Q,Q). Such an equivalence can be obtained, provided the t-structure sat-

isfies extra properties, which we now explain.

Definition 6.1.4. Let t = (U ,V) denote a t-structure on a rigidly-compactly

generated tt-category T and let us denote the heart by T �. The t-structure t is

said to be:

(a) Non Degenerate if ⋂
k∈Z

ΣkU = 0 =
⋂
k∈Z

ΣkV .

(b) Smashing if the coaisle V is closed under coproducts.

(c) Compatible if T �⊗T � ⊆ T � and 1 ∈ T �. In this case T � is itself a tensor-

abelian category, whose tensor structure is exact in both variables. Moreover

the unit of T � is just the same unit as in T (see [Pet13, Remark 3.7]).

(d) Strongly hereditary if HomT (X,ΣiY ) = 0 for X,Y ∈ T � and i ≥ 2. Note

that if t is strongly hereditary then T � is a hereditary abelian category, that

is Exti(M,N) = 0 for all i ≥ 2 and M,N ∈ T �, see [Lev93, Proposition 1.6].

Example 6.1.5.

(a) The standard t-structure on D(R) for a commutative ring R is both non-

degenerate and smashing. If the tensor structure is exact on Mod(R) then

it is compatible.

(b) If A is a hereditary algebra then the standard t-structure on D(A) is strongly

hereditary.
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Remark 6.1.6. A t-structure t is smashing if and only if the cohomology functor

H0 : T → T � preserves coproducts, see for example [AHMV17, Lemma 3.3].

Lemma 6.1.7. If a t-structure t is strongly hereditary, then, for all M,N ∈ T �

and for all i ∈ Z we have Exti(M,N) ' HomT (M,ΣiN).

Proof. Indeed, for i = 0 we have Ext0(M,N) = HomT (M,N) = HomT �(M,N)

since T � is a full subcategory. For i = 1 we have Ext1(M,N) = HomT (M,ΣN)

for any heart T � (see [BBD82]). For i ≥ 2 we have Exti(M,N) = 0 = HomT (M,ΣiN)

by assumption and since T � is a hereditary category. Finally for i < 0 we always

have Exti(M,N) = 0 and HomT (M,N [i]) = 0 since every t-structure t has this

vanishing condition.

Remark 6.1.8. One has the following two inclusion maps

T � T

D(T �).

i
D(T �)

iT

A very natural question to ask is whether we can extend the inclusion of T � into

T into a triangulated functor on D(T �) (called the realization functor)

T � T

D(T �)

i
D(T �)

iT

∃real

in such a way that real(iD(T �)) ' iT ? For the bounded derived category, an

affirmative answer is reached provided there is a so-called ‘f-category’ living above

the category T (see [Bei06, Appendix]). Such a condition is not too strict in

practice, as Modoi proved in [Mod19] that every triangulated category which

is the underlying category of a stable derivator admits such an f-category. In
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particular, as every stable model category gives rise to a stable derivator (see

for example [Vir19, Example 1.11]), any triangulated category that arises as the

homotopy category of a stable model category admits an f-category.

Remark 6.1.9. In [Vir19], Virili is able to construct an unbounded realization

functor for a t-structure with some assumptions about some higher structures

living above T . Let us briefly set the stage for the following theorem. Suppose

that T arises as the base of a strong, stable derivator D, that is T = D(e), and let

t be a t-structure on T . Then Virili is able to construct a morphism of derivators

realt : ChT � → D

where ChT � is the derivator defined by ChT �(I) = Ch((T �)I) for any diagram

category I. Moreover, this morphism of derivators takes quasi-isomorphisms to

isomorphisms ([Vir19, Theorem 6.7]), so, assuming the derived category D(T �)

exists, the morphism factors through the derivator underlying the derived category

to give a morphism of derivators

realt : DT � → D

Moreover, assuming the t-structure satisfies certain properties we can say more

about this morphism. We summarize all this below, rephrased in the language of

triangulated categories.

Theorem 6.1.10. [Vir19, §6.3] Suppose T arises as the base of a strong and

stable derivator D (for example, T can be the homotopy category of a stable model

category), and let t be a t-structure on T . Denote by

realb : Db(T �)→ T
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the bounded realization functor (which exists by [Mod19]). Then we can lift the

bounded realization functor to an unbounded one

real : D(T �)→ T .

Moreover, suppose that

(a) t is non-degenerate,

(b) realb is fully faithful, and

(c) t is smashing.

Then the unbounded realization functor remains fully faithful and is coproduct

preserving.

6.2 t-structure for Rational Motives

We will now introduce the t-structure that exists for DTM(Q,Q). This was first

studied by Levine in [Lev93], and then expanded upon by Wildeshaus in [Wil16].

They state their results at the level of compact objects, however, as we will see

their constructions generalize to the unbounded categories. For ease of notation

let us write T := DTM(Q,Q) for what follows.

Definition 6.2.1. Define T[a,b] := Loc(Q(n) : a ≤ −2n ≤ b). We allow for both

a, b ∈ {−∞,∞}, in which case we just have T = T(−∞,∞). We write Ta := T[a,a].

Remark 6.2.2. It follows that Ta ' D(Q) (see [Lev93, §1]).

We can define a t-structure on T[a,b] as follows:

Lemma 6.2.3. Let a ≤ b ≤ c. Then t := (T[a,b−1], T[b,c]) is a t-structure on T[a,c].
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Proof. This is [Lev93, Lemma 1.2].

Remark 6.2.4. Let a ∈ Z. The cohomology functor associated to the t-structure

(T[∞,a−1], T[a,∞]) is denoted gra := H0
a . Note that this t-structure is smashing by

construction, so gra is coproduct preserving by Remark 6.1.6.

Definition 6.2.5. [Lev93, Definition 1.4] Let a be even. Define T ≥0
a to be the

full, additive category generated by Q(a
2
)[n] for n ≤ 0. Similarly define T ≤0

a to

be the full, additive category generated by Q(a
2
)[n] for n ≥ 0. Let T ≥0 be the

full subcategory of T of objects X ∈ T such that grc(X) ∈ T ≥0
c for all c ∈ Z.

Similarly, define T ≤0 be the full subcategory of T of objects X ∈ T such that

grc(X) ∈ T ≤0
c for all c ∈ Z.

Remark 6.2.6. Under the equivalence D(Q) ' Ta from Remark 6.2.2, we have

that the pair (T ≤0
a , T ≥0

a ) on Ta corresponds to the standard t-structure on D(Q).

Remark 6.2.7. [Lev93, §4] To spell it out a little more, we have that:

X ∈ T ≤0 ⇐⇒ gra(X) '
∐
n≥0

ΣnQ(
a

2
)mn for all a ∈ Z.

X ∈ T ≥0 ⇐⇒ gra(X) '
∐
n≤0

ΣnQ(
a

2
)mn for all a ∈ Z.

Here we come to the t-structure we are interested in.

Theorem 6.2.8. The pair (T ≤0, T ≥0) is a t-structure on T . Moreover,

(a) The t-structure is non-degenerate, compatible and strongly hereditary.

(b) The heart AT is generated as a full abelian category closed under extensions

and coproducts by Q(n), n ∈ Z.

(c) Every object X ∈ AT admits a functorial filtration by sub-objects

0 ⊂ · · · ⊂ Zn(X) ⊂ Zn+1(X) ⊂ · · · ⊂ X

59



whose sub-quotients Zn(X)/Zn−1(X) are coproducts of shifts of Q(n).

(d) The t-structure is smashing.

Proof. Parts (a)-(c) are [Lev93, Theorem 4.2] and [Pet13, Lemma 3.3]. The only

change is in Peter’s lemma, where our t-structure will no longer be bounded, but

that is unimportant for us. Moreover, part (d) follows from our definition of Ta,

the description of the aisle and co-aisle in the preceding remark, and that gra

commutes with coproducts (recall Remark 6.2.4).

Corollary 6.2.9. There is an equivalence of triangulated categories

real : D(AT ) ' DTM(Q,Q).

Proof. We can apply Theorem 6.1.10 to get an exact and coproduct preserving

functor real : D(AT ) → DTM(Q,Q). To prove that realb is fully faithful, since

AT generates Db(AT ) as a triangulated category, it suffices to prove that

Exti(M,N)
realb−−−→homDTM(Q,Q)(real

b(M), realb(N)[i])

=homDTM(Q,Q)(M,N [i])

is a bijection for objects M,N ∈ AT . Since the t-structure is strongly hereditary,

this follows from Lemma 6.1.7. Hence realb is fully faithful, which implies real

is fully faithful by Theorem 6.1.10. Thus the essential image is a localizing sub-

category of DTM(Q,Q). This category contains all the Tate twists by Theorem

6.2.8(b). Since the Tate twists generate DTM(Q,Q) we get that the essential

image is everything.

This equivalence immediately gives us the following:
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Corollary 6.2.10. Every object t ∈ DTM(Q,Q) is isomorphic to a coproduct of

shifts of its cohomologies, t '
∐

i Σ
−iH i(t).

Proof. This isomorphism holds in D(AT ) because AT is hereditary, see for ex-

ample [Kra07]. The result thus follows for DTM(Q,Q) since real is a coproduct

preserving equivalence, and is just the identity on the heart.

We now turn to classifying the localizing ideals of DTM(Q,Q). We will closely

follow Peter’s approach of computing the thick tensor ideals of DTM(Q,Q)c.

Remark 6.2.11. Let us fix some notation for the rest of this section. We have

the additive functor

φ :DTM(Q,Q)→ AT

X −→
∐
i

H i(X)

and the inclusion functor

ι : AT ↪→ DTM(Q,Q).

Note that the functor φ is also a tensor-functor, because the t-structure is com-

patible; see [Big07]. Following the terminology of Peter we say M ⊆ AT is a

coherent tensor ideal of AT if it is closed under extensions, kernels, cokernels,

and tensoring by arbitrary elements of AT . Let us denote by Coh
∐
(AT ) to be

the set of coherent tensor ideals of AT closed under coproducts.

Proposition 6.2.12. The maps

{Localizing ideals of DTM(Q,Q)} Coh
∐
(AT )

ι∗

φ∗
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defined by

ι∗(L) = L ∩ AT = ι−1(L)

φ∗(M) = φ−1(M)

are bijective functions inverse to each other.

Proof. This is the unbounded analogue of [Pet13, Theorems 4.4, 4.11]. We include

a sketch of the argument here for the reader’s convenience. The first step is to

prove φ∗ is well defined, so let M⊆ AT be a coherent tensor ideal, closed under

coproducts. The same proof as in [Pet13, Theorem 4.4] shows that φ∗(M) is

closed under extensions and tensors. It is closed under coproducts because the

cohomology functors preserve coproducts since the t-structure is smashing, and

becauseM is closed under coproducts by assumption. Now we observe that since

φ ◦ ι ' idAT we have ι∗(φ∗(M)) = (φ ◦ ι)−1(M) = M , so we get that ι∗ is well

defined on the image of φ∗, and is left inverse to it. Thus, it remains to show φ∗

is surjective. To do so, we can apply [Pet13, Theorem 4.11] after noting that we

still have an isomorphism

t '
∐
i∈Z

Σ−iH i(t)

for any t ∈ DTM(Q,Q).

Remark 6.2.13. We can now complete our last reduction step: we continue to

denote T = DTM(Q,Q). For each a ∈ Z recall we have the coproduct preserving

functor

gra : T → Ta ' D(Q) ' GrZ(V ectQ)

Moreover, Biglari showed ([Big09, Proposition 3.8]) the following:
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Proposition 6.2.14. The functor

gr :=
∐
a∈Z

Σ−agra : T → D(Q)

X 7→
∐
a∈Z

Σ−agra(X)

is a tensor-triangulated functor.

If we restrict the domain of this functor to just the heart, we obtain the following

[Lev93, Corollary 4.3]:

Proposition 6.2.15. The functor gr|AT : AT → D(Q) gives an equivalence of

AT with a tensor subcategory of GrZ(V ectQ).

With these two propositions in hand, we can run the exact argument as in

[Pet13, Theorem 4.15] to conclude:

Corollary 6.2.16. The only coherent tensor ideals closed under coproducts of AT

are the (0) ideal and AT .

Theorem 6.2.17. The category DTM(Q,Q) is stratified.

Proof. Since Spc(DTM(Q,Q)c) = {∗} is just a point, we have that g(∗) =

1 6= 0, and the local-to-global principle holds. Moreover, by combining Proposi-

tion 6.2.12 and Proposition 6.2.16, we get that there are only two localizing ideals

of DTM(Q,Q). Hence the localizing ideal g(∗) generates has to be minimal.

Again keeping in mind Remark 6.0.1, this gives us:

Corollary 6.2.18. Minimality holds at the height zero prime m0.
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Chapter 7

Minimality at the Height One Prime

In this chapter we establish minimality for the height one prime ep. Using this

and results from the previous chapter, we prove that DTM ét is stratified.

Remark 7.0.1. From Proposition 4.3.3 establishing minimality at the prime ep

is equivalent to establishing minimality at the closed point in

DTM(Q,Z(p))/Locid(ep).

Combining Theorems 5.2.5, 5.3.1 and 5.3.3, we get that

DTM(Q,Z(p))/Locid(ep) ' DTM ét(Q,Z(p))

and so we are reduced to establishing minimality at the closed point in the category

DTM ét(Q,Z(p)). To do so, we will consider the geometric functor

γ∗ : DTM ét(Q,Z(p))→ DTM ét(Q,Z/p) (7.1)

induced by the ring map Z(p) → Z/p. Note that Z(p) is a regular ring and so

we have Z/p ∈ D(Z(p))
c. Hence γ∗(1DTMét(Q,Z/p)) ∈ DTM ét(Q,Z(p))

c by Re-

mark 5.1.4.

This category DTM ét(Q,Z/p) is quite simple in fact.
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Theorem 7.0.2 (Rigidity Theorem). There is a tt-equivalence

DM ét(Q,Z/p) ' D(Z/p)

Proof. This is [CD16, Theorem 4.5.2].

Corollary 7.0.3. The category DTM ét(Q,Z(p)) is stratified.

Proof. As the derived category of a field is, of course, stratified, we obtain the

same for DM ét(Q,Z/p). We can then apply [BKS19, Proposition 5.22] to conclude

that DTM ét(Q,Z/p) is itself a tt-field, and thus is also stratified (see [BCHS23,

Theorem 18.4]).

Remark 7.0.4. On spectra the geometric functor (7.1) gives

Spc(DTM ét(Q,Z/p)c) Spc(DTM ét(Q,Z(p))
c)

(0) ep

m0

Spc(γ∗)

Spc(γ∗)

We can therefore apply Theorem 4.3.9 and we immediately get:

Corollary 7.0.5. Minimality holds at the height 1 primes ep.

Proof. By Remark 7.0.1 we need to prove the category DTM ét(Q,Z(p)) satisfies

minimality at the unique closed point. Moreover we can apply Proposition 4.3.9,

since we have that γ∗(1DTMét(Q,Z/p)) ∈ DTM ét(Q,Z(p))
c, to focus on establish-

ing minimality at the unique prime in DTM ét(Q,Z/p). This then follows from

Corollary 7.0.3.

Theorem 7.0.6. The derived category of étale motives, DTM ét(Q,Z) is stratified.
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Proof. As Spc(DTM ét(Q,Z)c) is noetherian it automatically satisfies the local-to-

global principle. Hence we just need to show minimality holds at each prime. By

Theorem 5.3.3, these primes are m0 and ep for p prime, and we showed minimality

holds at these primes in Corollaries 7.0.5 and 6.2.18.
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Chapter 8

Brown–Adams Representability and

Stratification

In this chapter, we return to Question 1.0.4 from the introduction in order to prove

minimality holds at the height two prime mp in Chapter 9. To remind the reader,

we suppose we are given two rigidly-compactly generated tt-categories T1 and T2,

where T1 is stratified and that we have a tt-equivalence between their compact

parts T c
1 ' T c

2 . Our question is whether this then implies that T2 is stratified

as well. While we are not able to answer this question in full generality, we

are able to achieve positive results assuming our category satisfies Brown–Adams

Representability, which we now explain.

Let T be a rigidly-compactly generated tt-category. The category of modules

on T is the Grothendieck abelian category

A := Mod(T c) := Add((T c)op, Ab)

of contravarient additive functors from T c to abelian groups. The subcategory

of finitely presented modules Afp := mod(T c) coincides with the usual Freyd-

envelope of T c [Nee01, Chapter 5]. For relevant information about this category
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of modules, we will be primarily following the recent series of papers by Balmer,

Krause and Stevenson [Bal20a, BKS20, Bal20b, BKS19].

Remark 8.0.1. We have the restricted Yoneda functor

h : T −→ A

t −→ t̂ := Hom(−, t)|T c

which fits into the commutative square

T c Afp

T A.

h

h

Note that restricted Yoneda is no longer an embedding in general, due to the

potential existence of so-called phantom maps. Nevertheless, h : T → A is

conservative, that is t̂ = 0 =⇒ t = 0, because T is compactly generated.

Definition 8.0.2. For S ⊆ A we write

1. LocA(S) to be the smallest Serre subcategory containing S closed under

coproducts and suspension.

2. LocidA(S) the smallest Serre subcategory containing S closed under coprod-

ucts and tensor products (and hence is automatically closed under suspen-

sion, see [BKS19, Remark 2.2]).

We summarize the facts we will need aboutA below. This can be found in [BKS19,

§§2-3].

(1) A inherits a suspension ΣA such that h ◦ ΣT = ΣA ◦ h.
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(2) A is closed symmetric monoidal under Day convolution. Under this tensor

product h : T → A is symmetric monoidal, and moreover t̂⊗− is exact and

colimit preserving for any t ∈ T .

8.1 Brown–Adams Representability

Definition 8.1.1. Sitting inside of A is the full subcategory of Homological Func-

tors, which we will denote Hol(T c), consisting of those contravariant functors that

send exact triangles to long exact sequences. Clearly, t̂ ∈ Hol(T c) for any t ∈ T .

Moreover, in certain important historic examples there has been a much stronger

relationship between the essential image of restricted Yoneda and the subcategory

of homological functors:

Theorem 8.1.2. [Ada71] Let T = SH denote the stable homotopy category, and

T c the category of finite spectra. Then any homological functor

H : (T c)op → Ab

is isomorphic to h(t) for some t ∈ T . Moreover, any natural transformation

h(t)→ h(s)

is induced by some (non-unique) map

t→ s.

Remark 8.1.3. Neeman, Keller and Christensen have investigated the extent to

which this result generalizes to other rigidly-compactly generated tt-categories in

[Nee97, CKN01]. Following their terminology, we say that T satisfies:

(BRO) If every H ∈ Hol(T c) is isomorphic to h(t) for some t ∈ T .
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(BRM) If every natural transformation h(t) → h(s) is induced by some (poten-

tially non-unique) morphism t→ s.

Remark 8.1.4. It follows from results of Beligiannis (see [Bel00, Theorem 11.8])

that (BRM) implies (BRO).

Definition 8.1.5. We say that T satisfies Brown–Adams representability if con-

dition (BRM) holds.

Remark 8.1.6. Neeman shows [Nee97, Proposition 4.11, Theorem. 5.1] that not

every triangulated category satisfies Brown–Adams representability. However, he

established a sufficient condition, namely that T satisfies Brown–Adams repre-

sentability if T c is equivalent to a countable category (that is, a category with

only countably many objects and morphisms between them).

Remark 8.1.7. Suppose T satisfies Brown–Adams representability. Then it fol-

lows (see [Nee97, Remark 3.2]) that any isomorphism ŝ
∼−→ t̂ in A is induced by

an isomorphism s
∼−→ t in T .

8.2 Brown–Adams Representability and

Stratification

Let us now connect this back to the theory of stratification:

Definition 8.2.1. [Bal20b, Remark 3.4] The homological spectrum of T c, denoted

Spch(T c), is the set of all maximal Serre tensor ideals in Afp. We will refer to

β ∈ Spch(T c) as a homological prime.
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Remark 8.2.2. [Bal20a, Proposition 2.4] Let β ∈ Spch(T c) be a homological

prime, and consider the quotient

h : T → A → A/LocidA(β).

There is a unique pure-injective object Eβ ∈ T such that

LocidA(β) = Ker(Êβ ⊗−).

Remark 8.2.3. These pure-injective objects Eβ, while abstractly defined, are

often nice, recognizable objects. For example, in the derived category of a ring,

we have that Spch(D(R)c) ' Spc((D(R)c), and recalling that Spc(D(R)c) '

Spec(R), the Eβ object corresponding to p ∈ Spec(R) is isomorphic to the residue

field κ(p). Similarly in SH, we have Spch(SHc) ' Spc(SHc) and under this corre-

spondence the Eβ objects are isomorphic to the Morava K-theories K(p, n) (see

[BC21, Corollaries 3.3, 3.6]).

Definition 8.2.4. We say an object F ∈ T is a field object if, for any t ∈ T , we

have that t⊗ F is a coproduct of suspensions of F .

Remark 8.2.5. In both examples in Remark 8.2.3, the Eβ objects are field ob-

jects.

Remark 8.2.6. Let us assume that T is stratified. Then it follows that T =

Locid(Eβ : β ∈ Spch(T c)). Indeed, the local-to-global principle for T tells us we

have T = Locid(g(P) : P ∈ Spc(T c)). Moreover, since T is stratified, the canon-

ical comparison map φ : Spch(T c) → Spc(T c) is a homeomorphism [BHS23a,

Thrm. 4.7], so let us denote βP to be the unique homological prime corresponding

to P ∈ Spc(T c). It follows [BHS23a, Lemma. 3.7] that EβP ∈ Locid(g(P)), and

since T is stratified, we get an equality Locid(EβP ) = Locid(g(P)).
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Remark 8.2.7. Let us now show how this can help us pass stratification from one

category to another. Let T1 and T2 be rigidly-compactly generated tt-categories

and let F : T c
1

∼−→ T c
2 be a tt-equivalence. Then this equivalence induces:

(1) an exact, tensor equivalence F̂ : A1
∼−→ A2; and

(2) a homeomorphism Spch(F ) : Spch(T c
2 )

∼−→ Spch(T c
1 ).

Let β1 ∈ Spch(T c
1 ) and let β2 be the unique homological prime in Spch(T c

2 ) map-

ping to β1. Consider the following diagram:

A1 A2

A1 := A1/LocidA(β1) A2/LocidA(β2) := A2.

F̂

L̂1 R̂1 L̂2 R̂2

F

Proposition 8.2.8. Keeping the notation and set up as in the above remark 8.2.7,

we have

(a) F ◦ L̂1 ' L̂2 ◦ F̂ .

(b) F : A1 → A2 is an equivalence.

(c) F̂ ◦ R̂1 ' R̂2 ◦ F .

Proof. Parts (a) and (b) follow by definition of the β′
is and the fact that giving a

Serre subcategory of Afp is equivalent to giving the localizing category it generates

(see for example, [BKS20, Appendix A. Remark 8]). Let us now prove (c). First

note that (a) and (b) imply that we also have F
−1 ◦ L̂2 ' L̂1 ◦ F̂−1. Then for an
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arbitrary object c ∈ A1 we compute

A2(−, R̂2Fc) ' A2(L̂2(−), F (c))

' A1(F
−1
L̂2(−), c)

' A1(L̂1F̂
−1(−), c)

' A1(F̂
−1(−), R̂1(c))

' A2(−, F̂ R̂1(c))

and then we summon Yoneda.

Remark 8.2.9. The objects Eβi
are uniquely determined by the injective hull of

the unit in Ai. That is, letting 1→ Eβi
be this injective hull, we have that Eβ is

the unique object in T such that Êβi
= R̂i(Eβi

) ∈ Ai (see, for example [Bal20a,

2.11]).

Proposition 8.2.10. Let Ti,Ai, βi be as in Remark 8.2.7. Then F̂ (Êβ1) = Êβ2.

Proof. We have that F will send the injective hull of the unit in A1 to the injective

hull of the unit in A2. Hence we know that F (Eβ1) ' Eβ2 . Then we compute

that

Êβ2 = R̂2(Eβ2)

= R̂2(F (Eβ1))

= F̂ (R̂1(Eβ1))

= F̂ (Êβ1)

which is precisely what we wanted.

Hypothesis 8.2.11. Let T1 and T2 be rigidly-compactly generated tt-categories.

Suppose
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(1) T1 is stratified;

(2) T c
1 is equivalent to a countable category;

(3) F : T c
1 → T c

2 is a tt-equivalence; and

(4) For every nonzero homological functor t̂ ∈ A1 there exists a nonzero map

Êβ ⊗ x̂→ t̂ for some β ∈ Spch(T c
1 ) and compact x ∈ T c

1 .

We shall also fix β1 ∈ Spch(T c
1 ) and let β2 denote the unique homological prime

in Spch(T c
2 ) mapping to β1 as in Remark 8.2.7.

Remark 8.2.12. Let T1 and T2 be rigidly-compactly generated tt-categories and

suppose they satisfy conditions (1) − (3) of Hypothesis 8.2.11. Then it follows

from Proposition 8.2.10 that A1 satisfies condition (4) if and only if A2 satisfies

it.

Proposition 8.2.13. Keeping everything as in Hypothesis 8.2.11, we have

T2 = Locid(Eβ : β ∈ Spch(T c
2 ))

Proof. First note that T2 also satisfies Brown–Adams representability since T c
2 is

also countable due to the equivalence F : T c
1 → T c

2 . Hence restricted Yoneda is

full so we have that for any nonzero t ∈ T2 there is a nonzero map Eβ ⊗ x → t

for some compact x ∈ T c
2 , and β ∈ Spch(T c

2 ). Denoting [−,−] to be the internal

hom in T2, we have

HomT2(Eβ ⊗ x, t) ' HomT2(x, [Eβ, t])

which implies that [Eβ, t] must be nonzero. Hence we have the following string of
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implications (compare the following proof to [BCHS23, Theorem 6.4]):

t = 0 ⇐⇒ [Eβ, t] = 0 for all β ∈ Spch(T c
2 )

⇐⇒ t ∈ {Eβ : β ∈ Spch(T c
2 )}⊥

⇐⇒ t ∈ (Locid(Eβ : β ∈ Spch(T c
2 )))

⊥.

In other words, letting L := Locid(Eβ : β ∈ Spch(T c
2 )), we have that L⊥ = 0.

Now, because L is set-generated, it is a strictly localizing tensor ideal, see for

example [BHS23b, Proposition 3.5]. As a consequence we have that L = ⊥(L⊥);

see [BCHS23, Remark 2.11]. Thus we have L = ⊥(L⊥) = ⊥0 = T2.

Proposition 8.2.14. Keep the assumptions as in Hypothesis 8.2.11 and suppose

further that the Eβ objects in T1 are field objects, as in Definition 8.2.4. Then the

same is true for the Eβ objects in T2.

Proof. Note that, because of Brown–Adams representability, it suffices to prove

that

Êβ2 ⊗ t̂ '
∐
j∈I

Σmj Êβ2

in A2 (recall Remark 8.1.7). Moreover, since F̂ is an equivalence, we can check

this after applying F̂−1. Take 0 6= t ∈ T2. Then we have that

F̂−1(t̂⊗ Êβ2) ' F̂−1(t̂)⊗ F̂−1(Êβ2)

' F̂−1(t̂)⊗ Êβ1

'
∐
j∈I

Σmj Êβ1

'
∐
j∈I

Σmj F̂−1(Êβ2)

' F̂−1
(∐

j∈I

Σmj(Êβ2)
)
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Hence we have that t̂ ⊗ Êβ2 '
∐

j Σ
mj Êβ2 . Since Brown–Adams representability

holds for T2 this isomorphism in A2 is witnessed by an isomorphism in T2.

Remark 8.2.15. The above assumption that the Eβ objects are field objects is

not as strong as it may sound. Indeed, recall from Remark 8.2.3 that they are

field objects in many examples of interest.

Theorem 8.2.16. Let T1 and T2 be as in Hypothesis 8.2.11. If the Eβ objects are

field objects (in either T1 or T2), then T2 is stratified.

Proof. To prove that T2 is stratified, we need to prove that the local-to-global

principle holds and that Locid(g(P)) is a minimal localizing ideal for all primes

P ∈ Spc(T c
2 ). Now, since T1 is stratified, we have a bijection Spch(T c

1 ) ' Spc(T c
1 )

(see [BHS23a, Theorem 4.7]). Moreover, under the equivalence F : T c
1 → T c

2 we

also obtain Spch(T c
2 ) ' Spc(T c

2 ). Fix a P ∈ Spc(T c
2 ) and let βP ∈ Spch(T c

2 ) be

the corresponding homological prime. It follows from [BHS23a, Lemma 3.7] that

g(P)⊗ EβP 6= 0, and g(P)⊗ Eβ = 0 for all other β. Then we have

Locid(g(P)) = Locid(g(P))⊗ T2

= Locid(g(P))⊗ Locid(Eβ : β ∈ Spch(T c
2 )) (by Proposition 8.2.13)

= Locid(g(P)⊗ Eβ : β ∈ Spch(T c
2 ))

= Locid(g(P)⊗ EβP )

⊆ Locid(EβP ).

Since EβP is a field object it generates minimal localizing ideals. Indeed we have

0 6=
∐
j∈I

ΣmjEβP ' g(P)⊗ EβP ∈ Locid(g(P))

Since localizing ideals are thick, Locid(g(P)) contains Eβ which gives the reverse
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containment, Locid(EβP ) ⊆ Locid(g(P)). Note that this also proves that the

localizing ideals Locid(g(P)) are minimal. Finally we note that, by Proposition

8.2.13

1 ∈Locid(Eβ : β ∈ Spch(T c)) = Locid(g(P) : P ∈ Spc(T c)),

which shows the local-to-global principle also holds. Hence T2 is stratified.
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Chapter 9

Minimality at the Height Two Prime

In this chapter we prove minimality at the last remaining prime mp. This allows

us to conclude that DTM(Q,Z) is stratified.

Remark 9.0.1. We again consider the geometric functor

γ∗
p : DTM(Q,Z(p))→ DTM(Q,Z/p)

induced by the ring map Z(p) → Z/p. On spectra, we get the following picture

Spc(DTM(Q,Z/p)c) Spc(DTM(Q,Z(p))
c)

M :=(0) mp

P :=〈cone(βp)〉 ep

m0

We again have that γ∗(1DTM(Q,Z/p)) ∈ DTM(Q,Z(p))
c, so by Proposition 4.3.9

to prove minimality holds at the height 2 prime mp, we are reduced to proving

minimality holds at the unique closed point M ∈ Spc(DTM(Q,Z/p)c).

Remark 9.0.2. The category of Tate motives with finite coefficients has another
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useful characterization as the derived category of filtered vector spaces, which we

now describe. Let us denote ZopMod(Z/p) to be the category of presheaves on

the poset category Z with coefficients in the category Mod(Z/p) of Z/p-modules.

A presheaf M ∈ ZopMod(Z/p) is called a filtered-module if Mn,n+1 is a monomor-

phism for all n. This is a quasi-abelian category, in the sense of [Sch99], and so

it can be derived, which we will denote by Dfil(Z/p). Details of its construction

can be found in [Gal18, §3]. Importantly for us, it is rigidly-compactly generated;

see [Gal18, Corollary 3.4]. Moreover, we have the following two equivalences:

Theorem 9.0.3. [SS16, 3.16] There is an equivalence of tt-categories between

Dfil(Z/p) and D(ZopMod(Z/p)).

Proposition 9.0.4. [Gal19, Propositions 7.7, 7.9] There is an equivalence of

triangulated categories

pos : Dfil(Z/p)
c ∼−→ DTM(Q,Z/p)c

that induces a bijection of thick tensor ideals.

Remark 9.0.5. The proof of this last proposition uses the existence of a strongly

hereditary t-structure on Dfil(Z/p)
c [Gal18, Lemma 7.6]. Moreover, to obtain the

bijection of thick tensor ideals between the two categories, Gallauer only needed to

show the functor is tensor on a certain subcategory of Dfil(Z/p)
c. In particular,

the functor is tensor on the heart of the t-structure. Since the t-structure is

strongly hereditary, and generates Dfil(Z/p)
c, every object is a finite sum of shifts

of objects in the heart, see for example [Hub16]. Using this, one can show that

the functor is really tensor everywhere.

Corollary 9.0.6. The functor pos : Dfil(Z/p)
c → DTM(Q,Z/p)c is a tensor

triangulated equivalence.
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Remark 9.0.7. Let M ∈ ZopMod(Z/p). Associated to M is the graded Z/p[β]-

module
⊕

n∈Z Mn where β has degree −1 and acts by β : M →M(1). Conversely,

given a graded Z/p[β]-module
⊕

n∈Z Mn we get a presheaf sending n to Mn with

transition maps given by β : Mn → Mn−1. This provides a tensor-equivalence

between the Grothendieck categories ZopMod(Z/p) and Modgr(Z/p[β]), see for

example [DS13, Lemma. 2.2] and the references therein.

Remark 9.0.8. Hence, by combining Theorem 9.0.3 and Remark 9.0.7, we obtain

a tt-equivalence between Dfil(Z/p) and D(Modgr(Z/p[β])). The tt-geometry of

graded Z/p[β]-modules has been studied by Stevenson and Dell’Ambrogio, and

more recently by Barthel, Heard and Sanders. Let us summarize what is needed

for us below:

Theorem 9.0.9. [DS13, BHS23a] The category T := D(Modgr(Z/p[β])) is strat-

ified. As a consequence, Dfil(Z/p) is stratified as well. Moreover, we have that:

(1) T c is countable, and hence satisfies Brown–Adams representability.

(2) The natural map ϕ : Spch(T c)
∼−→ Spc(T c) is a homeomorphism. Moreover,

the ‘naive’ homological support

Supphnaive(t) := {β ∈ Spch(T c) : Eβ ⊗ t 6= 0}

corresponds with the actual homological support.

(3) Letting p denote the unique prime corresponding to β ∈ Spch(T c), the ho-

mological primes Eβ ' k(p) are field objects in T .

(4) For all nonzero t ∈ T there exists a non-zero map from Eβ⊗x→ t for some

β ∈ Spch(T c) and x ∈ T c.
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Proof. That T is stratified is [DS13, Theorem 5.7]. Part (2) is a general conse-

quence of stratification, see [BHS23a, Theorem 4.7] and the remark after it. Part

(3) is [BHS23a, Example 5.3] and [DS13, Lemma 4.2]. Finally, part (4) is [DS13,

Proposition 4.7].

Proposition 9.0.10. Continue to let T := D(Modgr(Z/p[β])) and denote by

A = Add((T c)op,Ab) the category of modules on T as in Chapter 8. Then for all

non-zero homological functors 0 6= t̂ ∈ A there exists a non-zero map Êβ ⊗ x̂→ t̂

for some β ∈ Spch(T c) and x ∈ T c.

Proof. As the corresponding statement holds for T by Theorem 9.0.9, we really

have to just show there are no phantom maps out of Eβ⊗x for any β ∈ Spch(T c)

and x ∈ T c. To do so, first note that the graded ring R := Z/p[β] is a graded-

local, regular, noetherian ring (see [BH93, §1.5] for example). Letting m denote

the unique maximal ideal in R, we have EβM
' k(m) ∈ T c because R is graded-

regular. Now let 0 6= t ∈ T be arbitrary. If there is a nonzero map f : EβM
⊗x→ t

for some x ∈ T c, then the map f̂ : ÊβM
⊗ x̂→ t̂ remains nonzero since there can

be no phantom maps out of compact objects. In this case the proof is complete.

Otherwise, assume there are no-nonzero maps EβM
⊗ x → t for any compact

object x ∈ T c. This implies that [EβM
, t] = 0, which, since EβM

∈ T c, tells us that

[EβM
,1]⊗t = 0. Since EβM

is a direct summand of EβM
⊗[EβM

,1]⊗EβM
this forces

EβM
⊗ t = 0 and so EβM

/∈ Supph(t). Again using that T is stratified, we conclude

that M /∈ Supp(t). Now recall from Remark 4.2.3 that g(M) = eM and g(P) = fM,

and so we get eM⊗t = 0, and t ' t⊗fM. Let f ∗ : T → TP be the finite localization

associated to P . Recall that f∗ is fully faithful, and that f∗(1) = fM. Then using

the projection formula we get f∗f
∗(t) = t ⊗ fM ' t. Moreover, Gallauer showed

that TP ' D(Z/p) as tensor-triangulated categories (see [Gal18, Lemma 3.7,
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Lemma 5.3]). Indeed, when thinking of T as the category of filtered Z/p-vector

spaces, the functor f ∗ : T → TP corresponds to forgetting the filtration. Now,

by assumption we know that there is a nonzero map α : EβP ⊗ x → t for some

compact x. Our goal is to show that α̂ remains nonzero in A. To do so, consider

the following commutative diagram:

T A

TP AP

h

f∗ f̂∗

h

Since TP is the derived category of a field, it is phantomless, and so to show that

α̂ is nonzero in A, by the commutativity of the above diagram, it suffices to show

that f ∗(α) 6= 0. To do so, let η denote the counit of the adjunction f ∗ a f∗. Recall

that since f∗ is fully faithful η is an isomorphism. Finally, consider the following

commutative diagram:

EβP ⊗ x t

f∗f
∗(EβP ⊗ x) f∗f

∗(t)

α

η ' η'

f∗f∗(α)

This implies that f∗f
∗(α) 6= 0 and so f ∗(α) 6= 0 as desired.

This allows us to use the results from Chapter 8 to immediately conclude:

Theorem 9.0.11. The category DTM(Q,Z/p) is stratified.

Proof. We have a tt-equivalence Dfil(Z/p)
c ' DTM(Q,Z/p)c where Dfil(Z/p) is

stratified, the subcategory of compact objects is countable, and whose homological

primes Eβ are field objects by Theorem 9.0.9. The last proposition gives us the

final assumption needed to apply Theorem 8.2.16 to conclude that DTM(Q,Z/p)

is stratified as well.

82



As a result, keeping in mind Remark 9.0.1, we conclude that:

Corollary 9.0.12. Minimality holds at the height 2 prime mp.
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Chapter 10

Stratification of Tate Motives

Let us bring the results from Chapters 9, 7, and 6 together into our main theorem.

Theorem 10.0.1. The category DTM(Q,Z) is stratified.

Proof. Since DTM(Q,Z) satisfies the local-to-global principle automatically be-

cause Spc(DTM(Q,Z)c) is noetherian, we just have to show minimality holds

at each prime. This is precisely what we showed in Corollaries 9.0.12, 7.0.5,

and 6.2.18.

As remarked in the introduction, an important consequence of a category being

stratified is an affirmative answer to the abstract telescope conjecture [BHS23b,

Theorem 9.11]. Hence as a corollary to the above theorem we immediately get:

Theorem 10.0.2. Every smashing ideal of DTM(Q,Z) is compactly generated.

That is, every smashing localization is a finite localization.
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