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ABSTRACT OF THE DISSERTATION

Three Essays on Big Data in International Finance

by

Ziqi Zang

Doctor of Philosophy in Economics

University of California, Los Angeles, 2019

Professor Aaron Tornell, Chair

This dissertation presents an introduction to big data that can potentially be used in nowcast-

ing key macroeconomic variables for advanced economies. It also explores the forecastability

of big data in short-term exchange rate forecasting. Finally, it draws on evidence from a

sentiment analysis of Article IV Consultations over the period of 2012 to 2018 and examines

the development of member countries’ perceptions of IMF policy advice.

Chapter 1 uses big data from Google search data to form better nowcasts of macroe-

conomic variables. My empirical strategy contributes to the macroeconomic nowcasting

literature on three fronts. First, I take a number of steps to identify the most comprehen-

sive set of relevant search queries that capture people’s search behavior in relation to each

monetary policy variable, such as the unemployment rate and inflation. Second, I consider

regularization and dimension reduction methods to handle the underlying high-dimensional

regressor space with highly correlated covariates. Third, I evaluate both average point fore-

casts and conditional point forecasts against benchmark models with DMW test and CSPA

test, respectively. According to the test statistics, I find that Google search data offer

significant improvements in nowcasting macroeconomic variables both unconditionally and

conditionally.

Chapter 2 examines the short-term forecastability of exchange rates using machine learn-

ing models in a rich data environment. I investigate the performance of different machine

learning models, such as variable selection models, dynamic factor model, and decision regres-

ii



sion trees in obtaining accurate forecasts of three currency pairs (U.S./U.K., Japan/U.S. and

U.S./Australia). I consider three types of forecasts: point forecasts, unconditional weighted

directional forecasts and conditional weighted directional forecasts. According to the DMW

test, out-of-sample forecasts of every currency rejects the null hypothesis of equal forecasting

errors with the random walk with at least one machine learning model. Furthermore, the

conditional weighted directional forecasts allow us to know when exactly our models are more

profitable than the random walk with zero profit. And it turns out that our weighted direc-

tional forecasts are significantly positive especially on the tails of the conditioning variable

distribution.

Chapter 3 constructs multi-aspect policy sentiment measurements to interpret authori-

ties’ tones in response to specific policy advice in IMF Article IV Consultations. Specifically,

we use a topic-based sentiment analysis approach that entails the application of a latent

Dirichlet allocation (LDA) model as well as sentiment prediction machine learning models.

Therefore, we are able to provide the stylized facts that provide useful input for assessing

the impact of Fund advice on macroeconomic development of member countries.
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CHAPTER 1

Macroeconomic Nowcasting with Big Data

1.1 Introduction

Real-time monitoring of macroeconomic conditions has become important for policy making

at central banks. Moreover, releases of macroeconomic data that turn out to be surprises will

move markets, and investors adjust their expectations about the current state of the economy

while relying on these releases. However, most macroeconomic data are released with a time

lag and subsequently revised. A growing body of studies on macroeconomic nowcasting uses

pervasive available big data to provide timely estimates or proxies of macroeconomic variables

weeks or months before official releases. And Google search data has been increasingly

incorporated in nowcasting or short-term forecasting of macroeconomic variables (Choi and

Varian, 2009; Askitas and Zimmerman, 2009; Ginsberg et al., 2009; Baker and Fradk, 2017).

Available since January 2004, Google Trends search queries can help forecast future data

releases if people conduct an online search for information prior to making decisions. For

example, when someone becomes unemployed or is laid off, it is expected that she or he will

look for information such as “unemployment office,” “unemployment benefits,” “part time

jobs,” “resume,” and other words related to finding a job. In this paper, I show that using

Google search data can bolster our understanding of real-time macroeconomic developments.

How can we use big data from the search engine to form better nowcasts of macroeconomic

variables? My empirical strategy makes contributions to the macroeconomic nowcasting lit-

erature on three fronts. First, I conduct a number of steps to identify the most comprehensive

set of relevant seed queries that well capture people’s search behavior in relation to each mon-

etary policy variable, such as unemployment rate and inflation. Moreover, the seed queries
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are tailored for different countries because of the dramatic differences in cultures and social

systems. For example, people might look for “redundancy pay” or “job seeker allowance”,

or register with a “JobCenter” when they are made redundant in the U.K., whereas people

in the U.S. care about “unemployment claims” and “COBRA.” After collecting the seed

queries, I expand the seed query set empirically further, using semantic vectors. Then I feed

these queries into Google Correlate to generate a 100 of the most correlated search queries

with each of the seed queries. Unlike recent studies using Google search queries such as Bok

et al. (2018), Bulut (2018), and Chojnowski and Dybka (2017), I take more transparent

steps to select the set of predictors to be included in the following nowcasting task.

Second, I construct “nowcasts” for macroeconomic fundamental variables by selecting em-

pirically relevant predictors from a set of high-dimensional Google search queries. I consider

regularization and dimension reduction methods to handle the underlying high-dimensional

regressor space with the covariates that are highly correlated. Specifically, I use the adaptive

elastic-net model (Zou and Zhang, 2009) and form one-step-ahead out-of-sample forecasts

relying on cross-validated estimators.

Third, I evaluate the forecasting ability of the model with Google Trends data against

the benchmarks and consider two types of forecasting methods. Point forecast performance

is based on the mean squared error (MSE). My results show that most of the point forecasts

have significantly smaller MSE than those implied by the driftless random walk according to

the Diebold Mariano and West (DMW) test. However, only two out of eight macroeconomic

forecasts (unemployment rate of Australia and U.K. inflation) outperform an autoregressive

model. However, the unconditional predictive test fails to answer when the model outper-

forms the benchmarks. Therefore, I consider the conditional superior ability test proposed

by Li, Liao, and Quaedvlieg (2019) to assess the relative predictive performance of my model

against the benchmarks conditional on a cyclical indicator variable (e.g., average inflation

over the past months). And all of the point forecasts outperform both of the benchmarks, at

least during some periods between 2009M4 and 2019M1, and especially during low inflation

episodes.

Fourth, if the Fed and other central banks follow the Taylor rule to set their short-

2



term nominal interest rates and my macroeconomic nowcasts can proxy the current states

of the labor markets and prices, these search queries may demonstrate the forecastability

of interest rate differentials. I show that these “collective wisdoms” have more than a 60%

average success ratio of three pairs of one-month-ahead interest rate differential forecasts.

Furthermore, I construct a simple exchange rate forecasting strategy based on the “surprises”

from my directional interest rate differential forecasts. I forecast appreciation (depreciation)

in U.S. dollars between t and t+ h (h = 1, 3, 6, 9, and 12m) if there is a forecasting surprise

of increase (decrease) in the interest rate differential. In the other cases, I prefer random

walk which predicts zero exchange rate change.

The remainder of this chapter is organized as follows. In Section 1.2 and Section 1.3, I

provide a short literature review of macroeconomic nowcasting and Google search data. Sec-

tion 1.4 describes the procedure I use o construct the potential predictors for macroeconomic

variables from Google search data. Also, I describe a recursive-window nowcasting model

with high-dimensional predictors. Section 1.5 presents and evaluates two types of forecasting

measurement—unconditional and conditional point forecasts. In Section 1.6, I demonstrate

an exchange rate forecasting strategy based on the “surprises” from interest rate differential

forecasts. Section 1.7 concludes.

1.2 Related Literature

Macroeconomic data such as the unemployment rate and inflation, are typically published

with a time lag. An emerging literature on nowcasting (Giannone, Reichlin and Small,

2008; Aruoba, Diebold, and Scotti 2009; Choi and Varian, 2009, 2011; Scott and Varian,

2013; Banbura, Giannone, and Modugno, 2013; Scotti, 2013; Koop and Onorante, 2013;

Carriero, Clark and Marcellino, 2015; Tatjana, Guenette and Vasishtha, 2017) focuses on

using big data for macroeconomic nowcasting. This research thus provides timely estimates

of macroeconomic variables such as GDP, prices, inflation, and unemployment, and proposes

big-data based leading indicators of economic activities.

This chapter contributes to the nowcasting literature by examining whether real-time

3



internet search data improve nowcasting power beyond a conventional set of regressors.

Several sources of data on real-time economic activity are now available, such as professional

forecasts, surveys, newspapers, micro blogs, Internet searches, and many others. Choi and

Varian (2009, 2011) claim that Google search data may help in “predicting the present.”

There is also am emerging body of research indicating that Google search data are potentially

useful in nowcasting economic variables such as in Bok et al. (2017), and Koop and Onorante

(2013). I provide a list of recent studies in Appendix 1.6. The choice of keywords is a crucial

ingredient when using search data for prediction. However, the out-of-sample nowcastability

in previous mentioned studies highly depends on a set of delibrately selected search queries.

And they are silent about constructing their predictors or arbitrarily select queries according

to in-sample estimates. In contrast, I provide a comprehensive procedure to collect the most

relevant search queries that answer question, “what are people searching online when they

face unemployment or worry about prices?”

Macroeconomic time series are typically short, yet there is an enormous number of rele-

vant Google search queries. Traditional econometric models are not suitable when the set of

predictors is much larger than the number of observations. Also, I expect a high degree of

sparsity in the regressor space, in the sense that the coefficients for a vast majority of pre-

dictors will be zero. To deal with this high-dimensionality, many studies on macroeconomic

forecasting use sparse modeling such as LASSO with l1 penalty (Bai and Ng, 2008; De Mol

et al., 2008; Marsilli, 2014; Nicholson et al., 2015; Uematsu and Tanaka, 2017). Although

a l1-penalty is expected to achieve good prediction accuracy, it fails to provide consistency

in model selection. Moreover, when the regressor space is highly correlated, the model with

only l1 penalty will prevent group selection. To handle the collinearity problem properly

in a rich data environment, Zou and Zhang (2009) introduce an adaptive elastic-net model

that combines l2 and l1 penalization terms and considers the adaptive LASSO shrinkage to

remedy the drawbacks of LASSO model.

Regarding the forecast evaluation method, the most commonly used method in empirical

macroeconomics is the DMW test, which considers the unconditional equal predictive per-

formance of two competing models. Under the null hypothesis, the forecasting models have
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the same expected forecasting errors. In addition to a conventional point forecast test, I as-

sume further that the nowcasts may perform heterogeneously during expansion periods from

recessions. Therefore, it is important to assess our forecasts conditional on certain economic

states. Li, Liao, and Quaedvlieg (2019) propose a test of conditional superior predictive

ability (CSPA) that tests inequalities for the conditional expectation functions of forecast

errors. The null hypothesis of the CSPA test states that the conditional expected forecast-

ing error of the benchmark is less than those of competing forecasts uniformly across all

conditioning states. While under the alternative hypothsis, the alternative forecast method

outperforms the benchmark in certain states. This paper applies the CSPA test to the point

forecasts. And it turns out that my nowcasts perform better than the benckmarks especially

in relatively low inflation periods.

1.3 Google Search Data

In this section, I demonstrate a series of steps to construct predictors from raw data by

using Google tools. Section 1.3.1 shows how to obtain a wide pool of search terms from

scratch to understand people’s search behavior in relation to unemployment and inflation.

In Section 1.3.2, I use Google Autocomplete to capture the nuances of how people search

different topics. Google Correlate also helps to expand these to a high-dimensional set of

predictors.

1.3.1 Search Term Selection Process

Google Search provides an excellent platform for observing people’s information seeking ac-

tivities. It offers immediate reflection of the demands and interests on the Internet. For

instance, people who search for employment-related information, will type in “jobs” or “un-

employment benefits.” However, as we may expect, identifying all the possible ways the

general public might search for a topic can be very difficult.

Luckily, I can make use of some Google tools to partially solve this problem, which allows

us to identify the most comprehensive set of relevant search terms around a single topic. In
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this section, I develop a procedure that can help identify search terms and ensure solid

representation of the possible ways people may search topics related to unemployment and

inflation in different countries.

1.3.1.1 Seeding Search Queries

To start, I survey researchers from different countries of origin1 to identify a pool of search

terms that can generally characterize people’s search behavior in different regions. During

the sessions, I ask our researchers the following questions relevant to the labor market:

(i) What do you think people will look up online when they lose their jobs/are unem-

ployed?

(ii) What are the unemployment protections/benefits/insurances in your country?

(iii) If applicable, how and where do people claim these?

For example, in the U.K., people who are made redundant have to register as unemployed

with Jobcentre and are eligible for unemployment benefits such as Jobseekers Allowances

(JSA) and Universal Credit. In Japan, people tend to go to Hello Work (ハローワーク), the

Japanese government’s employment service center, which manages unemployment insurance

benefits (失業保険) for unemployed workers and also provides job-matching programs for

the unemployed.

In terms of search terms relevant to inflation, Google uses its vast database of web

shopping data to construct the “Google Price Index”, which measures the U.S. inflation.

Although I don’t have the complete price history of items that measure the consumer price

index, I hypothesize that search popularity of prices for relevant items conveys useful infor-

mation to signal changes in inflation: The measure of price indices is based on a basket of

consumer goods and services2, and the set of search terms is based on people’s interest in

1For help in developing some of this “inside baseball” knowledge, I thank Akina Ikudo (Japan), David
Lindsay (Ireland), Carmen Rollins (Canada), and Lina Zhang (Australia).

2I exclude food and energy prices here, which are volatile for measuring inflation.
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the prices of these items. To complete the list of search queries, I also consider and collect

sentiment words such as “expensive” and “cheap” that people might use in response to rising

or plummeting prices.

This results in the identification of around 30 possible search terms for each macroeco-

nomic variable. I then narrow the list by testing each of these terms on Google Trends to

estimate whether the popularity of each term makes sense (too volatile or too noisy). Also,

I consider the casual and ingenious nature of people’s use of search engine. For example,

people may not have used the word “air transportation price” but rather “flight tickets.”

1.3.1.2 Semantic Vectors

After selecting the seeding queries from researchers, I can further expand the keyword set

empirically using semantic vectors. Unlike a word count method that relies on the distance

between pairs of word vectors, Pennington et al. (2014) propose an unsupervised learning

algorithm for obtaining word vector representations, called Global Vectors (GloVe). GloVe

belongs to the famility of word embedding models. It leverages the advantages of both global

matrix factorization methods and local context window methods to map words onto a latent

vector representative space. In a comprehensive summary study by Gentzkow et al. (2017),

this latent vector representative space, V , contains the positions (word embeddings) for every

vocabulary word in IRN , where N is the dimension of the latent vector space. In a weighted

least squares regression model, the word embeddings are determined in the loss function and

can be interpreted as the likelihood of word cooccurences.

The GloVe word embedding model has been developed as an open-source project at

Stanford. There are also pre-trained word vectors on various corpora, such as Wikipedia

and Twitter data. I choose pre-trained word vectors that have been trained on 2 billion

Twitter posts, with 1.2 million unique words. This choice of corpus allows us to understand

the most frequent words people tweet, along with seeding queries such as “unemployed” and

“unemployment benefits.”

Table 1.1 lists the 50 most semantically related words people use in their tweets to the
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query “unemployed.” From the results, lots of the words, such as “jobless,” “poverty,” and

“wages,” directly describe labor market condition. Similarly, Table 1.2 provides a set of

semantic words to “inflation.” By leveraging the pre-trained word vectors, I can generate

more queries people commonly use on social media that are analogous to the seeding queries.

However, one weakness of using GloVe to expand the set of search queries is that it cannot

output phrase-level semantic vectors.

1.3.2 Google Tools Utilization

Although I limit to search terms relevant to unemployment and inflation, these are broad

terms that do not allow us to gain a more nuanced perspective on different motivations

and interests of people’s search behavior, such as whether people are seeking information

about “jobcentre login” or “jobcentre near me.” Considering this discrepancy, I use Google

Autocomplete to generalize additional revelant terms that are often searched alongside the

terms already entered. Figure 1.1 presents an example of using Google Autocomplete to

expand relevant search terms with “jobcentre.”

Another way to expand the existing pool of search queries is by using Google Correlate.

I feed each search query either from the list I brainstorm or Google Autocomplete, into

Google Correlate. This will retrieve the set of individual search queries that are most highly

correlated3 with the input. Specifically, Google Correlate will provide 100 correlates for each

input. Figure 1.2 is a screen shot of the tool, and shows the top 10 correlated queries to the

search query of “jobcentre” and restricts the result in the U.K.

Through these steps, I identify over 900 relevant search queries for each macroeconomic

variable after removing duplicates and spurious terms 4. Then I remove seasonality and use

first-differenced search data. See on online Appendix5 for the full list of queries.

3Google Correlate surfaces queries in the database whose spatial or temporal pattern is most highly
correlated (R2) with a target pattern. Google Correlate uses an approximate nearest neighbor (ANN)
algorithm over millions of candidate queries to produce results.

4I keep the ones that have plausible economic meaning. For example, some queries from Google Correlate
are egregious anomalies that do not contain justifications.

5https://github.com/zikiki/Dissertation-ONLINE_APPENDIX
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Table 1.1: Semantically Related Words to “Unemployed” (Top 50)

Ranking Word
Semantic

Similarity
Ranking Word

Semantic

Similarity

0 jobless 0.848683 25 increasing 0.626572

1 rates 0.756153 26 costs 0.625147

2 inflation 0.726879 27 average 0.625088

3 employment 0.723951 28 gdp 0.623232

4 incomes 0.717781 29 decrease 0.622389

5 wages 0.710747 30 adjusted 0.621555

6 joblessness 0.694542 31 benefits 0.615683

7 income 0.689244 32 employers 0.614083

8 rise 0.686522 33 drop 0.612629

9 jobs 0.685400 34 steady 0.611067

10 wage 0.679390 35 recession 0.610931

11 increase 0.677870 36 estimated 0.609868

12 percentage 0.673880 37 borrowing 0.604569

13 increases 0.672206 38 demand 0.601194

14 rising 0.666984 39 numbers 0.600426

15 decline 0.662284 40 housing 0.599370

16 lowest 0.661281 41 payments 0.598942

17 percent 0.658998 42 deficit 0.596879

18 growth 0.658234 43 workforce 0.593455

19 spending 0.642712 44 interest 0.590735

20 higher 0.639059 45 labor 0.590393

21 low 0.638412 46 risen 0.588437

22 poverty 0.636035 47 proportion 0.588003

23 economy 0.632944 48 premiums 0.587301

24 increased 0.630377 49 months 0.587176

Note: This table ranks the relatedness of the words to the seeding query “unemployed” according to their semantic

similarity. In the pre-trained word vectors from Twitter, each word is represented by a word embedding vector w with a

dimension 1×100. Semantic similarity is calculated by the product of the two word vectors, namely, wunemployedw
T
j .
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Table 1.2: Semantically Related Words to “Inflation Rate” (Top 50)

Ranking Word
Semantic

Similarity
Ranking Word

Semantic

Similarity

0 rates 0.900690 25 steady 0.672901

1 unemployment 0.782038 26 consumption 0.669353

2 rise 0.779551 27 inflationary 0.668337

3 growth 0.778871 28 deficit 0.667306

4 increases 0.756130 29 economy 0.665877

5 rising 0.741188 30 spending 0.662100

6 interest 0.740285 31 lending 0.661963

7 borrowing 0.735184 32 hike 0.660520

8 prices 0.731652 33 deflation 0.659799

9 higher 0.721807 34 percentage 0.659228

10 drop 0.715758 35 pressures 0.657168

11 decline 0.714473 36 hikes 0.653732

12 low 0.710563 37 decrease 0.653614

13 price 0.706645 38 consumer 0.649915

14 increase 0.703758 39 increasing 0.646997

15 gdp 0.699554 40 lower 0.646282

16 fed 0.689308 41 recession 0.642134

17 slowing 0.686638 42 percent 0.640819

18 yields 0.683581 43 slowdown 0.638271

19 expectations 0.683528 44 easing 0.632930

20 increased 0.682322 45 risen 0.632644

21 trend 0.677615 46 currency 0.628563

22 demand 0.676973 47 raise 0.628412

23 lowest 0.674087 48 costs 0.628325

24 levels 0.673124 49 benchmark 0.627972

Note: This table ranks the relatedness of the words to the seeding query “inflation” according to their semantic similarity. In

the pre-trained word vectors from Twitter, each word is represented by a word embedding vector w with a dimension 1×100.

Semantic similarity is calculated by the product of the two word vectors, namely, (winflation + wrate)wT
j .
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Figure 1.1: Google Autocomplete with Search Keyword: Jobcentre

1.4 Nowcasting Model for Real-time Google Search Data Selec-

tion

In this section, I present a class of penalized models for the nowcasting framework. This

framework is useful in an environment in which the underlying structure of data is high

dimensional with covariates that are highly correlated. In Section 1.4.2, I walk through the

details of the adaptive elastic-net model and of constructing the out-of-sample forecasts.

Section 1.4.3 discusses the empirical strategies.

1.4.1 Variable Selection Models

The objective is to accurately predict the change between the current value of the macroeco-

nomic variable and last month official release, ∆yt, from the set of contemporaneous predic-

tors, Xt. Variable selection models, in particular, are well suited for the nowcasting frame-

work when the number of potential predictors is large, yet the number of macroeconomic
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Figure 1.2: Google Correlate with Search Keyword: Jobcentre

12



observations is small. I am particularly interested in ensuring good prediction accuracy as

well as discovering relevant predictive variables from Google search queries. Although I con-

struct a high-dimensional set of search queries related to the macroeconomic variables, a

considerable amount of these may not express predictive power. Then I assume that the

true underlying nowcasting model is a sparse representation. And variable selection (Fan

and Li, 2006) is particularly important addressing the sparsity problem.

When the dimension is high, an ideal variable reduction method should enjoy the oracle

property (Fan and Li, 2001). That is, it selects the right subset of the model and, at the

same time, its coefficient estimator achieves the optimal estimation rate. Simply put, the

asymptotic distribution of the estimators should be the same as the asymptotic distribution

of the maximum likelihood estimators (MLE) on only the true support of the underlying

model.

To guarantee an optimal sample performance, Zou (2006) proposes an adaptive LASSO

model whose adaptive weights penalize coefficient estimates with an l1 norm. However,

with only an l1 penalization term, the model will have poor performance when there are

highly correlated covariates. Obviously, Google Trends time series present this collinearity

problem. To handle the multi-collinearity problem properly, Zou and Zhang (2009) introduce

the adaptive elastic-net model that combines an l2 and l1 penalization terms and considers

the adaptive LASSO shrinkage to remedy the drawbacks of the adaptive LASSO model.

In this chapter, I adopt the adaptive elastic-net model for the task of macroeconomic

nowcasting with the high-dimensional Google search data. First, let us consider a naive

elastic-net model (Zou and Hastie, 2005). The l1 norm regularization term, with penalty

parameter λ1 ∈ R+, is introduced to encourage the sparsity of the model. The l2 norm

regularization term, with penalty parameter λ2 ∈ R+, stabilizes the solution path of the

minimization problem and improves prediction performance when the regressor space ex-

hibits high correlation. With any fixed non-negative λ1 and λ2, the elastic-net regression

coefficients are obtained by solving the following minimization problem:
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min
β

T∑
t=1

(∆yt −XT
t β)2 + λ2|β|2 + λ1|β|1 (1.1)

where

|β|1 =

p∑
j=1

|βj| and |β|2 =

p∑
j=1

β2
j .

Then the elastic-net coefficient estimator β̂ can be solved equivalently through

β̂ = arg min
T∑
t=1

(∆yt −XT
t β)2 (1.2)

s.t (1− φ)|β|1 + φ|β|2 ≤ c for some constant c (1.3)

where φ = λ2
λ1+λ2

and the inequality in (1.3) is called the elastic-net penalty6. When the

regressors X are orthogonal designed, φ will be 0 and the minimization problem in (1.1)

will be reduced to a LASSO regression. In the high-dimensional and high-correlated Google

Trends data, the elastic-net penalty (0 < φ < 1) can both improve LASSO prediction by

encouraging group effects and stabilizing the solution path. Therefore, the combination of

adaptive weights of the adaptive LASSO model proposed by Zou (2006) and the elastic-net

penalty in the naive elastic-net model can improve prediction accuracy ywofold. First, the

adaptive l1 penalty helps achieve the oracle property. Second, considering an elastic-net

penalty to handle collinearity in the high-dimensional setting can remedy the limitation of

LASSO, which fails to do group selection.

I construct the adaptive elastic-net model in two steps. First, I need to construct the

adaptive weights by solving the coefficient estimator β̂elanet from the naive elastic-net model.

I set the adaptive weights as

ω̂j = (|β̂j,elanet)|)−γ, j = 1, ..., p (1.4)

where γ is some positive constant. Next, the adaptive elastic-net model coefficient estimators

are obtained via

6The elastic-net penalty is the convex combination of the l1 and l2 penalties.
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β̂Aelanet = arg min
T∑
t=1

(∆yt −XT
t β)2 + λ2|β|2 + λ′1

p∑
j=1

ω̂j|βj|. (1.5)

Let A = {j : β̂j,Aelanet 6= 0}, and p is the size of A. The adaptive elastic-net model enjoys

the oracle properties. Argued in Fan and Li (2001), a desirable variable selection framework

should follow an oracle procedure: (1) identifies the right subset model: {j : β̂j 6= 0} = B;

and (2) has asymptotic normality,
√
n(β̂(λ)B − β∗B)→d N(0,Σ∗), where Σ∗ is the covariance

matrix knowing the true subset model.

Some papers have been concerned with the choice of penalty parameters λ. Appropriate

λ will lead to a consistent LASSO estimator with the (slogp/n)1/2 7 rate of convergence.

Bickel et al. (2009) propose that the penalty estimator be chosen following the Bickel-Ritov-

Tsybakov rule8. However, in practice, it is commonly and recommended that cross-validation

be used to choose the optimal λ. Chetverikov, Liao, and Chernozhukov (2017) show that

the cross-validated LASSO estimator achieves the fastest possible rate of convergence when

the penalty parameter λ for the estimator is chosen using K-fold cross-validation. For the

adaptive elastic-net model, I will employ the K-fold cross-validation procedure to select

proper penalty parameters λ′1 and λ2. K-fold cross-validation divides the data set randomly

into K different subsets, and typically I pick K = 5 or 10 in practice. Then the model is

trained and estimated over (K-1) sets for a range of values of the parameter λ, leaving one

of the subsets as the validation set. The process is repeated by using each of the K subsets

as a validation set, and it yields K estimates of the mean squared error for each parameter

value. Finally, the K-fold estimate is the average of the set of K estimates. Mathematically,

let Ωn be a set of candidate values of λ. For k = 1, ..., K, λ ∈ Ωn, and Ik is the validation

set. Let

β̂−k(φ
′) = argmin

β∈Rp

(
1

n− nk

∑
t6∈Ik

(∆yi −XT
t β)2 + φ′|β|2 + (1− φ′)′

p∑
j=1

ω̂j|βj|) (1.6)

7s =
∑p

i=1 1βi 6= 0.

8λ = 2cσn−
1
2 Φ−1(1− α/(2p)), where c > 1 and α ∈ (0, 1) are constants, σ is the standard deviation of ε,

and σ is typically estimated from the data.
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be the adaptive elastic-net estmator corresponding to all observations excluding the ones in

the validation set k and φ′ = λ2
λ′1+λ2

. Then the cross-validation choice of φ′ is

φ̂′ = argmin
λ∈Ωn

CV (λ) =
1

n

K∑
k=1

∑
t6∈Ik

(∆yt −XT
t β̂−k(φ

′))2. (1.7)

The best penalty parameter value of φ′ is the one with the lowest K-fold estimate. It is

also typical to report the minimum parameter value such that its K-fold estimate does not

exceed the minimum K-fold estimate by more than one standard error using a lower number

of covariates to achieve a parsimonious model. Simply put, I can take the “most penalized”

model whose error is within one standard error of the minimal error. Recall that I can

compute standard errors for the cross-validation error curve at each penalty parameter φ′.

For each cross-validation,

CVk(φ
′) =

1

nk

∑
t∈Ik

(∆yt −XT
t β̂−k(φ

′)2
(1.8)

where nk is the number of points in the kth fold. Therefore, the sample standard error of

CV1(φ′), ..., CVk(φ
′) is

SE(φ′) =

√
var(CV1(φ′), ..., CVK(φ′))√

K
. (1.9)

In practice, the one-standard-error rule is an alternative way of choosing φ′ from the cross-

validation curve. Start with the usual estimate

φ̂′ = argmin
φ′∈Ωn

CV (φ′) =
1

n

K∑
k=1

∑
i 6∈Ik

(∆yi −XT
t β̂−k(φ

′))2 (1.10)

and move φ′ in the direction of increasing penalty until it reaches

CV (φ′) ≤ CV (φ̂′) + SE(φ̂′). (1.11)

Recall that a desirable variable selection model should identify or recover the true model.

Choosing the optimal φ̂′ with the K-fold cross-validation method that achieves the smallest

cross-validation error often corresponds to a large model (not too much penalization). Then

applying the one-standard-error rule, which increases the penalty parameter, will be helpful

in recovering the true model.
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In an ultra-high-dimensional setting in which the number of predictors is larger than the

number of observations, Zou and Zhang (2009), and Fan and Lv (2008) suggest using the

Sure Independence Screening method first to reduce the high dimensionality to a smaller

scale (d < n), then applying the adaptive elastic-net model to the selected predictors. Since

I will have more than 300 predictors that are relevant search queries from Google Trends, I

consider using Sure Independence Screening and then conduct the nowcasting task with the

adaptive elastic-net model.

1.4.2 Variable Selection Model Application in Macroeconomic Nowcasting

In this section, I use the adaptive elastic-net models to construct nowcasts for unemployment

rate or inflation movements for different countries. For each dependent variable, I have more

than 300 potential predictors and expect a parsimonious model that contains true underlying

predictors. Therefore, the task is to discover these important search queries and obtaining

an accurate prediction.

Computation of the adaptive elastic-net solutions is a quadratic programming problem

that can be tackled using standard numerical analysis algorithms. Efron et al. (2004)

propose the least angle regression (LARS), procedure which exploits the special structure of

the minimization problem, and provides an efficient way to compute solutions simultaneously

for all values of λ. First, I need to standardize the predictors to have mean zero and unit

norm. The algorithm starts with all coefficients β1 = β2 = ... = βp equal to zero. Second,

it finds the predictor xi most correlated with the residual r, y − ȳ. Then it increases the

coefficient βi in the direction of the sign of the correlation of the residual and xi until some

other regressor xj has as much as correlation with the residual r as xi, and calculate the

new residual of y and fitted ŷ. Fourth, move the two coefficients βi and βj in the least

squares direction for xi and xj until some other regressor xm has as much as correlation

with the current new residual. Finally, it continues the procedure until all predictors are

included in the model. It stops when correlation of the current residual and the rest of the

regressors is zero. The adaptive elastic-net regression can be efficiently computed with the
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LARS algorithm9.

1.4.3 Empirical Strategy

I obtain real-time monthly macroeconomic data from 2004:M1 to 2019:M1 for the United

States, the United Kingdon, Japan, and Australia. All of the macroeconomic data come

from the OECD Original Release and Revision Database. In particular, I use the personal

consumption expenditure index to measure inflation (PCE) for the U.S., the harmonized

consumer price index (HICP) for the U.K., and core consumer prices (CPI) for Japan and

Australia. Unemployment rates are from the OECD Original Release and Revision Database.

As for the nowcasting model, I consider the framework in Section 1.4:

∆yct = γ∆yct−1 +Xc
t

′
β1 + εt (1.12)

where ∆yct is the change in the unemployment rate or inflation rate of country c and Xc
t is

high-dimensional Google search data corresponding to the dependent macroeconomic vari-

able yct . The model also includes lags of the dependent variable up to 2 and an intercept.

Since Google Trends search data present strong monthly seasonality, I use the additive Holt-

Winters exponential smoothing method to extract out seasonal patterns. Also, each regressor

has been standardized with mean zero and unit norm before fitting in the adaptive elastic-net

model. For the sake of notation simplicity, I do not explicitly indicate these lagged terms

in (1.12). Also, I consider an AR model and a “no change” random walk model as the

benchmarks.

Then I carry out recursive regressions to obtain out-of-sample forecasts from 2009:M410

to 2019:M1. I assume the following timing convention. At the end of month (t+ 1) or early

in month (t+ 2), The macroeconomic variables such as unemployment rate and information

have not been observed or officially released. When the Google search data for the last week

of month (t+ 1) becomes available, the out-of-sample nowcasts of the depend variable ∆yt+1

9Both predictors and regression coefficients are adjusted by the adaptive weights in the algorithm.

10The first forecast is at 2009:M4, because I consider the first-differenced series due to stationary issues
and also include the first two lags of the dependent variable.
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can be obtained as follows:

∆ŷt+1 = Xt+1
Tβ(λ). (1.13)

I establish a three-step procedure for variable selection with the adaptive elastic-net model.

The third step is conducting an OLS post-adaptive elastic-net estimation that only includes

covariates with non zero coefficients of the adaptive elastic-net λ-1se 11 specification. This

procedure ensures at most the same number of non zero coefficients as the adaptive elastic-

net model. Weights are used to penalize different coefficients to include the oracle properties,

which are related to identifying the right subset model and having the optimal estimation

rate. In the case with Google search data, only a small number of covariates are the true

factors correlated with the outcome, despite introducing a large number of covariates at the

initial stage. Since there exist groups of variables among which pairwise correlations are very

high in some regressors, the model encourages group selection as well.

When the number of regressors is much larger than the number of observations, this will

create challenges to scalable statistical inference and computational efficiency. In that case,

I apply the Sure Independence Screening method to help reduce the dimensionality of the

regressor space from a very large scale to a moderate size. Applying marginal regressions,

the SIS procedure ranks all regressor candidates based on their marginal correlation with

the dependent variable and keeps the top dm regressors. Namely, the set of regressors, Ŝ,

retained by the SIS is defined as

Ŝ = {|corr(xi, y)| is the top dm largest correlation},

where 1 ≤ dm ≤ p and p is the number of regressor candidates. In the case of my model, I

choose dm = n− 112, and n is the size of the recursive window for each forecasting iteration.

Then the simple elastic-net regression is performed to obtain an initial estimator of the

coefficients and serves as the weighting parameters of the adaptive elastic-net in the second

11λ one standard deviation rule which is discussed in the previous section.

12Fan and Lv (2008) they consider dm = n− 1 or d = n
log(n) .
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stage. The optimal regularization parameter λ is selected according to the five fold cross-

validation. For the third stage, I fit an OLS regression with selected independent variables

from the adaptive elastic-net model to obtain consistent predictors.

I use the first 60 months to estimate the historical relationship between the dependent

variable and relevant Google search data. The first recursive one-month-ahead forecast

starts from 2009M4. Intuitively, these out-of-sample forecasts are illustrated in Figure 1.5-

Figure 1.16, which graph actual and out-of-sample nowcasted changes using three different

models with or without inclusion of Google search data. Forecasts from the adaptive elastic-

net model track actual changes in inflation in the U.K., Japan, and Australia very well. For

example, as shown in Figure 1.5, the largest monthly change in inflation in the U.K. during

2009M4 to 2019M1 took place in 2009M12, when the inflation rate increased by 0.60 %. The

out-of-sample forecast of the adaptive elastic-net model signals an increase by 0.72 percent,

while the AR model only predicts a less than 0.30 percent increase one month behind. The

reason is that extrapolated past information from inflation alone adds minimal predictive

power to the current change. Similarly, in Figure 1.20 I observe that the adaptive elastic-net

forecasts follow the course of unemployment changes very well, especially during the periods

from 2009 to 2014 in the case of the U.S.

1.5 Empirical Results

1.5.1 Evaluating Unconditional Point Forecasts

To conduct a rigorous evalualation of the nowcasting performance of the adaptive elastic-net

model vis-a-vis benchmarks such as the autoregressive and random walk models, I consider

comparing mean squared errors (MSE) and use the DMW test. In particular, the DMW

test is used to assess whether forecasts from the model that includes Google Trends data

is significantly different from forecasts from the benchmark models. I also consider the

Newey-West long-run variance estimator to control for auto correlation in the DMW test.

Panel A of Table 1.3 presents the ratio of out-of-sample nowcasts of the adaptive elastic-
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net model with inclusion of Google search data to those of the autoregressive model for both

unemployment rate and inflation changes in four countries. The ratios of MSEs are smaller

than one for all macroeconomic variables except for inflation in Japan and the U.S.. This

implies that the inclusion of Google data improves nowcasting performance compared to the

benchmark models. However, a simple autoregressive model outperforms the nowcasting

model in the case of U.S. inflation. As Atkeson and Ohanian (2001) state, “none of the fore-

casts is more accurate than the naive forecast.” And as described by Janet Yellen (2017),

the former Chair of the Board of Governors for the U.S. Federal Reserve, “our framework

for understanding inflation dynamics could be mis-specified in some fundamental way.” In

the case of Japan, although the mean squared prediction error of the autoregressive model

is smaller than the adaptive elastic-net specification, the magnitude of each point forecast

is centered around zero. Moreover, most of the point forecasts signal the opposite direction

to the true realized inflation change. Based on the DMW statistic and p-value, the perfor-

mance of the nowcasts does not differ much from the autoregressive model for most of the

macroeconomic variables.

Panel B of Table 1.3 presents the ratio of out-of-sample nowcasts of the adaptive elastic-

net model with inclusion of Google search data to those of the random walk model for both

unemployment rate and inflation changes in four countries. The ratios of MSEs are all

smaller than one for all macroeconomic variables. Table 1.3 also contains the DMW test

statistics and their p-values. Almost all of my nowcasts reject the null hypothesis at the 1%

significance level based on the DMW test statistic. Still, I fail to conclude that the nowcasts

of U.S. inflation outperform the naive benchmark.

In terms of dimensionality reduction, the adaptive elastic-net with the λ-1se specification

is able to select on average around 37 predictors for the U.S. inflation rate from 108 estima-

tion windows, 32 for the U.S. employment rate, 27 for the U.K. inflation, 31 for the U.K.

unemployment rate. For the robustness check, I also consider the Clark and West (CW)

test, as well as different forecasting horizons. The results are included in Appendix 1.7.

I conclude that my point forecasts with inclusion of Google search data demonstrate the

greatest predictive power for nowcasting these macroeconomic variables.
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Table 1.3: Point Nowcast Test Result

Panel A: DMW Test against AR Model

∆ Unemployment ∆ Inflation

MSE Ratio DMW Test MSE Ratio DMW Test

U.S. 0.908 0.807 1.207 −1.016

U.K. 0.985 0.111 0.781 2.593 ∗ ∗∗
Japan 1.011 −0.087 1.139 -0.841

Australia 0.698 2.794 ∗ ∗∗ 0.966 0.373

Panel B: DMW Test against Random Walk Model

U.S. 0.527 3.573 ∗ ∗∗ 0.902 0.544

U.K. 0.219 4.157 ∗ ∗∗ 0.516 3.525 ∗ ∗∗
Japan 0.440 4.732 ∗ ∗∗ 0.605 2.091 ∗ ∗

Australia 0.309 5.653 ∗ ∗∗ 0.559 3.706 ∗ ∗∗

Note: The success ratio is computed as the number of correct nowcasts divided by the total number of out-of-sample

nowcasts. Here, I have 108 out-of-sample nowcasts for each variable. The table also reports the t-statistics from the weighted

directional test for each variable. The test uses the Newey-West LRV estimator, which controls for auto correlation. ***, **,

and * represent the 1%, 5%, and 10% significance level, respectively.

1.5.2 Point Forecasts of Macroeconomic Variables: Conditional Superior Pre-

dictive Ability

In the previous section, I conducted an unconditional superior predictive ability test on my

weighted directional forecasts. Although the DMW test is informative about average model

performance against the benchmark, I notice that the inclusion of Google search data is

helpful for signaling big movements in the data. I need a statistical test to evaluate the

relative performance of different models over a business cycle. Specifically, I are interested

in testing when the out-of-sample forecasts are better than the benchmarks such as AR and

random walk models. Here I consider the CSPA test proposed by Li, Liao, and Quaedvlieg

(2019) to assess relative predictive performance based on a cyclical indicator variable (e.g.,

average inflation over the past months), which tracks a country’s business cycle.

I consider the following squared error loss function difference (Zt)1≤t≤T to evaluate the
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performance of the benchmark model relative to my forecast method:

Zt = (Yt − Y ∗t )2 − (Yt − Y ∗0,t)2, (1.14)

where (Y ∗t )1≤t≤T are the out-of-sample forecasts from the adaptive elastic-net model and

(Y ∗0,t)1≤t≤T are the forecasts from the benchmarks such as AR and random walk model.

If Zt ≤ 0, then the competing forecasts (Y ∗t )1≤t≤T outperform the benchmart at time t.

Extending the influential paper by Giacomini and White (2006) about conditional equal

predictive ability, Li, Liao, and Quaedvlieg (2019) propose a conditional superior predictive

ability (CSPA) hypothesis. The null hypothesis states that the benchmark model weakly

outperforms the competing model conditional on the information set St, which describes

the business cycle of an economy. Rejecting this null hypothesis means that the competing

forecast method is weakly dominant over the benchmark model. The null hypothesis of the

CSPA can be written as

H0 : E(Zt|St = st) ≥ 0 almost surely, t = 1, 2, .... (1.15)

Testing the conditional moment inequality requires that I estimate conditional expected

loss differences using functional inference. Using the intersection-bound method (Cher-

nozhukov, Lee, and Rosen, 2013), the null hypothesis can be written as

H0 : η ≡ inf
s∈F

E(Zt|St = st) ≥ 0. (1.16)

The (1− α) upper confidence bound can be constructed as follows:

lim
n→∞

inf P(η ≤ η̂1−α) ≥ 1− α. (1.17)

The alternative test rejects the null when η̂1−α < 0, with type I error bounded by α in a

sufficiently large sample.

Constructing the CSPA test involves estimating the conditional expected loss differential

function non-parametrically with least squares regressions. Details of the construction can

be found in Li, Liao, and Quaedvlieg (2019). In this empirical exercise, I consider the moving
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average of inflation as the conditional variable. Then I estimate the expected mean squared

error differential function non-parametrically with the polynomial series as approximating

basis functions. The number of polynomials is chosen with minimum Akaike Information

Criteria (AIC) by using five fold cross-validation. Appendix 1.8.3 lays out the details of the

implementation of the CSPA test.

Table 1.4 reports the results of the CSPA test. It gives the value of (1 − α) upper con-

fidence bound for the null hypothesis of the CSPA test. Following Li, Liao, and Quaedvlieg

(2019), the functional inference relies on intersection bounds that are defined by the infimum

of a nonparametric function. The second and fourth columns report the values of the 99%

upper confidence bound for the null hypothesis of the CSPA test. They clearly show that

η̂1−α for all of the fundamental variables I am interested in are below zero. Table 1.4 shows

strikingly different results from Table 1.3. These results indicate that all forecasts of the

adaptive elastic-net model are rejected with respect to the benchmark AR model in terms of

the conditional forecasts. In the unconditional setting, according to the DMW test results,

only the forecasts for the unemployment rate in Australia and inflation in U.K. dominate

the AR model. Therefore, the result of the CSPA test give us another narrative for evalu-

ating the forecasts during heterogeneous economic conditions. Clearly, all of the forecasts

perform better than the benchmarks for at least some periods during the time from 2009M4

to 2019M1.

In the case of Japan, while the unconditional average mean squared error of the adaptive

elastic-net model is slightly higher than that of the benchmark AR model, Figure 1.33(a)

shows that the forecasts based on Google search data obtain improved forecast performance

during the period of high inflation, yet with a wide confidence bound. Also, the figure

suggests the relatedness of the confidence bound to the distribution of inflation in Japan.

During protracted periods of deflation after the crisis, the Bank of Japan kept eliminating

cyclical slack and injecting a combination of asset purchases and yield management to lift

Japan out of the deflation trap. However, the collective wisdom of people’s search behavior

provides only insight for nowcasting changes in inflation during the protracted periods.

In contrast, in the case of the U.S., point forecasts from the AR model outperform the
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Table 1.4: Conditional Superior Prediction Ability (CSPA) Test Results

Panel A: CSPA Test Rejection Result

against the Benchmark AR Model

∆ Unemployment ∆ Inflation

η̂1−α Rejection η̂1−α Rejection

U.S. -0.296 Yes -0.231 Yes

U.K. -0.015 Yes -0.028 Yes

Japan -0.030 Yes -0.124 Yes

Australia -0.025 Yes -0.062 Yes

Panel B: CSPA Test Rejection Results

against the Benchmark Random Walk Model

U.S. -0.561 Yes -0.336 Yes

U.K. -0.002 Yes -0.044 Yes

Japan -0.087 Yes -0.404 Yes

Australia -0.084 Yes -0.075 Yes

Note: This table shows the value of the 99% upper confidence bound for the null hypothesis of the CSPA test. If η̂99% < 0,

then reject the CSPA hypothesis that the benchmark model weakly outperforms the alternative competing model uniformly

across all periods specified by the conditioning variable st.
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adaptive elastic-net on average. Figure 1.29(a) clearly shows that the nowcasts perform

exceptionally well during negative inflation periods. This implies that the adaptive elastic-

net model is preferred during the crises. In addition, the conditional performance of the

model shows prediction power for the unemployment rate most of the time with a very tight

confidence bound. Compared to the DMW test, the CSPA test provides richer insights or

information for predicting changes in macroeconomic variables of the United States.

Figure 1.31 shows that the point forecasts outperform two benchmarks at the majority

of states of the conditioning variable, especially at the first quantile of inflation distribution

(low inflation) in the U.K. The result also coincides with the DMW test in Table 1.3.

Our conditional point forecasts also reject the null hypothesis of the CSPA in the case of

Australia. In Figure 1.35 and Figure 1.36, I observe that although the expected conditional

forecast function is never significantly smaller than zero, it is typically negative for a large

part of the range of conditioning variables.

1.6 Forecasting Interest Rate Differentials and a Simple Strategy

foExchange Rate Forecasting

In this section, I demonstrate the directional forecastability of interest rate differentials

using Google search data. I also construct a simple exchange rate forecasting strategy using

“surprises” from interest rate differential forecasts.

When the Fed and other central banks set their short-term nominal interest rate according

to the Taylor rule, following Taylor (1993), the monetary policy rule is formulated as

it = π + πt + φ(π − π̄) + γyt + r, (1.18)

where πt is the inflation rate, and yt is the output gap (the percent deviation of actual real

GDP from an estimate of its potential level), and r is the real federal funds rate (usually 2%).

Sometimes I can replace the GDP gap with the unemployment gap in specification (1.18).

In the previous section, I successfully showed the nowcastability of the unemployment rate

and inflation using Google search data. This implies that these nowcasts can be employed
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as proxies for the current state of labor markets and prices. Therefore, once I obtain the

nowcasts before the release of official government data, I hypothesize that I can further

forecast the short-term nominal interest rate using the same set of relevant Google search

covariates. Specifically, I consider the following interest rate differential forecasting equation:

∆it+1 −∆i∗t+1 = α + β1∆unemploymentGooglet + β2∆inflationGooglet (1.19)

+ β3∆unemploymentt−1 + β4∆inflationt−1

+ γ1∆unemploymentGoogle∗t + γ2∆inflationGoogle∗t

+ γ3∆unemployment∗t−1 + γ4∆inflation∗t−1 + εt,

where (·)Google is the covariate space from Google search data of the U.S. and (·)Google∗ for the

foreign counterpart. Every month, I fit an adaptive elastic-net model with relevant Google

search queries. Particularly, I consider the rolling window forecasting scheme with a fixed

window size of 60 month and obtain one-month-ahead forecasts of changes in the interest

rate differential, ÎDt. The relationship between short-term interest rates and exchange rate is

important for policy makers and investors. This section aims to exploit the predictability of

surprises in short-term interest rates to improve the forecasts of exchange rate movements. I

follow a simple forecasting strategy for the exchange rate movements based on the surprises

in my interest rate differential forecasts. A surprise takes place when the sign of the interest

rate differential point forecast switches after two consecutive periods. Namely, I forecast

appreciation (depreciation) in the U.S. dollars between t and t + h (h = 1, 3, 6, 9, and 12)

if a surprise of increase (decrease) in the interest rate differential takes place. Explicitly, I

form the rule below to make forecasts for exchange rate movements:

Dt+h =


1, if ˆIDt > 0, ˆIDt−1 < 0, ˆIDt−2 < 0

−1, if ˆIDt < 0, ˆIDt−1 > 0, ˆIDt−2 > 0

0, otherwise.

I illustrate this forecasting strategy in Figure 1.3 and Figure 1.4. Figure 1.3 displays

the surprises from the interest rate differential. I plot these surprises in the interest rate

differential and mark their performance with different colors and sizes. I place the big

orange circle on time (t + 1)’s interest rate differential if the surprise of increase for (t + 1)
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is made successfully at time t, small dark brown circle if it is incorrectly. Similarly, if the

surprise of decrease forecast is made successfully at time t, I mark a big green circle on the

time (t+ 1), and a small dark green circle otherwise.

Figure 1.4 shows surprise-based directional forecasts for the U.S./U.K. exchange rate.

Explicitly, based on the surprises from the interest rate differential forecasts, I make 6-

month-ahead directional forecasts for U.S./U.K. movements. I plot the U.S./U.K. exchange

rate as well as the forecasting performance with different colors and sizes. Again, a big

orange circle is placed at time (t + 1) when the appreciation forecast for (t + 1) is made

successfully at time t, and a small dark orange circle if it is incorrect. Similarly, if the

depreciation forecast for (t + 1) is made successfully at time t, I mark a big green circle on

the time (t+ 1)’s exchange rate. and a small dark green circle otherwise.

Intuitively in Figure 1.4, 18 out of 30 markers are either big green circles or big orange

circles in Figure 1.4. This generates the 60% success ratio of U.S./U.K. exchange rate

movements. Notice that although I do not make forecasts every month, the forecasts tend to

capture big moves in currency during the periods I consider. I report the success ratios for

three currency pairs, as well as different forecasting horizons, in Table 1.5. The success ratio

is defined as the number of successful appreciation or depreciation forecasts divided by the

total number of depreciation and appreciation forecasts. For the British Pound, the forecast

accuracy achieves 60% at a 6-month horizon. In contrast, one-month-ahead forecasts for the

Australian dollar achieve the highest success ratio over other forecasting horizons. For the

Japanese yen, the success ratio is greater at longer forecasting horizons.
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Figure 1.3: Performance of One-month-ahead Directional Forecasts for the Interest Rate

Differential (U.K.-U.S.)

Figure 1.4: Performance of One-month-ahead Directional Forecasts for the U.S./U.K.
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Table 1.5: Directional Forecast Success Ratios

Currency 1 month 3 month 6 month 9 month 12 month

U.S./U.K. 0.45 0.50 0.60 0.45 0.50

Japan/U.S. 0.61 0.44 0.46 0.52 0.62

U.S./Australia 0.55 0.48 0.45 0.45 0.40

Note: This table shows directional forecast success ratios. Success ratios are calculated as the number of correct forecasts

divided by the total number of out-of-sample forecasts. Out-of-sample forecasts start from 2009M4 to 2019M1.

1.7 Conclusion

In Chapter 1, I have found that variable selection models such as the adaptive elastic-

net model which includes relevant Google Trends search data, tends to outperform naive

models such as autoregressive and random walk in nowcasting or forecasting short-term

macroeconomic variables.

The following main conclusions emerge: First, this paper contributes to the nowcasting

literature by examining real-time Google search data, and yields improvements in nowcasting

macroeconomic aggregates for four countries. Rather than remaining silent about construct-

ing the predictors, I provide a transparent but comprehensive procedure to include Google

variables in the nowcasting model. Also, the steps I take come very close to anwsering the

question “what are people searching online when they face unemployment or worry about

prices?”

Second, I adopt the adaptive elastic-net model in a recursive forecasting scheme to select

the most important predictors in a rich data environment. Based on the DMW test, seven

out of eight macroeconomic nowcasts reject the null hypothesise when the benchmark is

random walk. The U.S. inflation nowcasts fail to reject the null hypothesis nevertheless.

Only inflation in the U.K. and the unemployment rate in Australia significantly outperform

the autoregressive model.

Third, I further find that Google search variables perform heterogeneously during expan-
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sion periods from recessions. According the CSPA test, I actually see improved performance

of my nowcasts, especially in low inflation periods.

Figures

Figure 1.5: Actual and Predicted (Adaptive Elastic-net Model) Changes in Inflation (U.K.)

Figure 1.6: Actual and Predicted (Autoregressive Model) Changes in Inflation (U.K.)
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Figure 1.7: Actual and Predicted (Random Walk Model) Changes in Inflation (U.K.)

Figure 1.8: Actual and Predicted (Adaptive Elastic-net Model) Changes in Inflation (U.S.)
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Figure 1.9: Actual and Predicted (Autoregressive Model) Changes in Inflation (U.S.)

Figure 1.10: Actual and Predicted (Random Walk Model) Changes in Inflation (U.S.)
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Figure 1.11: Actual and Predicted (Adaptive Elastic-net Model) Changes in Inflation (Japan)

Figure 1.12: Actual and Predicted (Autoregressive Model) Changes in Inflation (Japan)
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Figure 1.13: Actual and Predicted (Random Walk Model) Changes in Inflation (Japan)

Figure 1.14: Actual and Predicted (Adaptive Elastic-net Model) Changes in Inflation (Aus-

tralia)
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Figure 1.15: Actual and Predicted (Autoregressive Model) Changes in Inflation (Australia)

Figure 1.16: Actual and Predicted (Random Walk Model) Changes in Inflation (Australia)
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Figure 1.17: Actual and Predicted (Adaptive Elastic-net Model) Changes in the Unemploy-

ment Rate (U.S.)

Figure 1.18: Actual and Predicted (Autoregressive Model) Changes in the Unemployment

Rate (U.S.)
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Figure 1.19: Actual and Predicted (Random Walk Model) Changes in the Unemployment

Rate (U.S.)

Figure 1.20: Actual and Predicted (Adaptive Elastic-net Model) Changes in the Unemploy-

ment Rate (U.K.)
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Figure 1.21: Actual and Predicted (Autoregressive Model) Changes in the Unemployment

Rate (U.K.)

Figure 1.22: Actual and Predicted (Random Walk Model) Changes in the Unemployment

Rate (U.K.)
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Figure 1.23: Actual and Predicted (Adaptive Elastic-net Model) Changes in the Unemploy-

ment Rate (Japan)

Figure 1.24: Actual and Predicted (Autoregressive Model) Changes in the Unemployment

Rate (Japan)
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Figure 1.25: Actual and Predicted (Random Walk Model) Changes in the Unemployment

Rate (Japan)

Figure 1.26: Actual and Predicted (Adaptive Elastic-net Model) Changes in the Unemploy-

ment Rate (Australia)
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Figure 1.27: Actual and Predicted (Autoregressive Model) Changes in the Unemployment

Rate (Australia)

Figure 1.28: Actual and Predicted (Random Walk Model) Changes in the Unemployment

Rate (Australia)
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Figure 1.29: Forecasting Inflation (U.S.): CSPA

(a) Benchmark: AR (b) Benchmark: Random Walk

Note: This figure plots the expected mean squared error (MSE) differential between the model with inclusion of Google

Trends data and the benchmark models for changes in U.S. inflation against the conditioning variable, x = InflationUS . Each

panel plots the expected MSE differential against different benchmark models, as well as its 99% upper confidence bound.

Figure 1.30: Forecasting the Unemployment Rate (U.S.): CSPA

(a) Benchmark: AR (b) Benchmark: Random Walk

Note: This figure plots the expected mean squared error (MSE) differential between the model with inclusion of Google

Trends data and the benchmark models for changes in the U.S. unemployment rate against the conditioning variable,

x = InflationUS . Each panel plots the expected MSE differential against different benchmark models, as well as its 99% upper

confidence bound.
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Figure 1.31: Forecasting Inflation (U.K.): CSPA

(a) Benchmark: AR (b) Benchmark: Random Walk

Note: This figure plots the expected mean squared error (MSE) differential between the model with inclusion of Google

Trends data and the benchmark models for changes in U.K. inflation against the conditioning variable, x = InflationUK . Each

panel plots the expected MSE differential against different benchmark models, as well as its 99% upper confidence bound.

Figure 1.32: Forecasting the Unemployment Rate (UK): CSPA

(a) Benchmark: AR (b) Benchmark: Random Walk

Note: This figure plots the expected mean squared error (MSE) differential between the model with inclusion of Google

Trends data and the benchmark models for changes in the U.K. unemployment rate against the conditioning variable,

x = InflationUK . Each panel plots the expected MSE differential against different benchmark models, as well as its 99% upper

confidence bound.
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Figure 1.33: Forecasting Inflation (Japan): CSPA

(a) Benchmark: AR (b) Benchmark: Random Walk

Note: This figure plots the expected mean squared error (MSE) differential between the model with inclusion of Google

Trends data and the benchmark models for changes in Japan inflation against the conditioning variable, x = InflationJapan.

Each panel plots the expected MSE differential against different benchmark models, as well as its 99% upper confidence bound.

Figure 1.34: Forecasting the Unemployment Rate (Japan): CSPA

(a) Benchmark: AR (b) Benchmark: Random Walk

Note: This figure plots the expected mean squared error (MSE) differential between the model with inclusion of Google

Trends data and the benchmark models for changes in the Japan unemployment rate against the conditioning variable,

x = InflationJapan. Each panel plots the expected MSE differential against different benchmark models, as well as its 99%

upper confidence bound.
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Figure 1.35: Forecasting Inflation (Australia): CSPA

(a) Benchmark: AR (b) Benchmark: Random Walk

Note: This figure plots the expected mean squared error (MSE) differential between the model with inclusion of Google

Trends data and the benchmark models for changes in Australia inflation against the conditioning variable,

x = InflationAustralia. Each panel plots the expected MSE differential against different benchmark models, as well as its 99%

upper confidence bound.

Figure 1.36: Forecasting the Unemployment Rate (Australia): CSPA

(a) Benchmark: AR (b) Benchmark: Random Walk

Note: This figure plots the expected mean squared error (MSE) differential between the model with inclusion of Google

Trends data and the benchmark models for changes in the Australia unemployment rate against the conditioning variable,

x = InflationAustralia. Each panel plots the expected MSE differential against different benchmark models, as well as its 99%

upper confidence bound.
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1.8 Appendix

1.8.1 Literature on Using Google Search Data in Forecasting/Nowcasting Macroe-

conomic and Financial Variables

Table 1.6: Use of Google Search Data in Forecasting/Nowcasting Macroeconomic and Fi-

nancial Variables

Author Macroeconomic Variable Country

Giannone, Reichlin, and Small (2008) GDP United States

Tatjana, Guenette, and Vasishtha (2017) GDP Emerging Markets

Gotz and Knetsch (2019) GDP Germany

Askitas and Zimmermann (2009) Unemployment Rate Germany

Ross (2013) Unemployment Rate United Kingdom

Choi and Varian (2009, 2011) Unemployment Rate United States

Scott and Varian (2013) Unemployment Rate United States

Reis, Ferreiram, and Perduca (2014) Unemployment Rate France

Smith (2016) Unemployment Rate United Kingdom

D’Amuri and Marcucci (2017) Unemployment Rate United States

Li et al. (2015) CPI China

Koop and Onorante (2013) Macroeconomic Variables United States

Bok et al. (2018) Macroeconomic Variables United States

Da, Engelberg, and Gao (2011) Stock Prices/Returns United States

Preis, Moat, and Stanley (2013) Stock Prices/Returns United States

Vozlyublennaia (2014) Stock Prices/Returns United States

Vlastakis and Markellos (2012) Stock Market Volatility United States

hamid and Heiden (2015) Stock Market Volatility United States

Goddard, Kita, and Wang (2015) Exchange Rates Advanced Economies

Bulut (2015) Exchange Rates Advanced Economies

Hasselgren et al. (2018) Exchange Rates Emerging Markets
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1.8.2 Robustness Check: CW Test with Different Forcasting Horizons

Table 1.7: Point Nowcast Test Results (CW Test)

Panel A: CW Test against AR Model

∆ Unemployment ∆ Inflation

Country h = 1 h = 3 h = 6 h = 1 h = 3 h = 6

U.S. 2.047e-3 1.410e-2 5.779e-1 1.609e-1 6.401e-1 4.051e-1

U.K. 1.197e-1 7.240e-1 5.442e-1 3.801e-5 4.220e-2 1.713e-2

Japan 5.686e-2 1.809e-1 8.080e-1 9.660e-3 1.440e-1 9.404e-2

Australia 3.654e-3 1.853e-1 2.844e-2 1.523e-5 8.443e-1 5.437e-2

Panel B: CW Test against Random Walk Model

U.S. 1.036e-5 2.602e-2 3.606e-2 2.488e-2 7.860e-1 8.210e-1

U.K. 0.617e-1 1.603e-2 2.030e-1 5.042e-4 3.708e-2 3.332e-1

Japan 1.354e-6 8.605e-2 4.930e-2 2.242e-4 7.664e-1 9.477e-1

Australia 1.602e-5 1.004e-3 1.127e-3 8.565e-6 5.502e-2 7.823e-1

Note: The table reports the p-value of the CW test statistic for each macroeconomic variable. The test uses the Newey-West

LRV estimator, which controls for auto-correlation. ***, ** and * represent the 1%, 5% and 10% significance level,

respectively.

1.8.3 Construction of the CSPA Test

Let P (x) = (p1(x), ..., pmn)T be a vector of approximating basis functions13. In the specific

empirical test, I choose polynomial series. Coefficients are obtained in the least squares

regression:

β̂ ≡ Q̂−1(
1

n

T∑
t=1

P(Xt)Zt), (1.20)

and Q̂ ≡ 1
n

∑T
t=1 P(Xt)P(Xt)

T . Then the functional estimator for E(Z|X) is h(·) = p(·)Tβ.

Hence µt = Zt − h(Xt) is the regression error. Define the long-run variance covariance

13P (x) contains the constant function (p1(x) = 1)
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matrix (m×m) for
√

1
n

∑T
t=1 µt ⊗P(Xt):

A ≡ V ar(

√
1

n

T∑
t=1

µt ⊗P(Xt)).

Because the out-of-sample forecasts contain auto-correlation and heteroskedasticity of un-

known form and for inference in such models, it is necessary to consider a heteroskedasticity

and auto-correlation consistent (HAC) estimator that can consistently estimate the covari-

ance of the model parameters. With the HAC estimator Â, the variance covariance matrix

of the coefficients can be estimated with

Ω̂ ≡ Q̂−1ÂQ̂−1.

Therefore, the standard deviation of
√

1
n
(ĥ(x)− h(x)) can be inferred as

σ̂(x) ≡
√

P(x)T Ω̂P(x).

I can use the following implementation procedure to conduct the test:

1. First, I simulate a random vector ξ ∼ N (0, Ω̂) and let t̂(x) = P(x)T ξ
σ̂(x)

.

2. Then simulate a large sample of ξ in the step 1. Set K̄n to be the k̄− quantile of

supx∈F t̂(x) in the sample, where k̄ ≡ 1− 0.1
log T

. I also set

Θ̂ ≡ {x : ĥ(x) ≤ inf
x∈F

[ĥ(x) +

√
1

n
K̄nσ̂(x)] + 2

√
1

n
K̄nσ̂(x)}.

3. Third, let k̄1−α− be the (1−α) quantile of supx∈Θ̂ t̂(x), and the (1−α) upper confidence

bound η̂1−α is

η̂1−α = inf
x∈F

[ĥ(x) +

√
1

n
k̂1−ασ̂(x)].

I reject the null hypothesis with (1− α) significance upper bound if η̂1−α < 0.
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CHAPTER 2

Exchange Rate Forecasting with Taylor Rule

Fundamentals and Big Data

2.1 Introduction

Rossi (2013) surveys a vast literature on exchange rate forecasting and suggests that Taylor

rule fundamentals have predictive power to forecast nominal exchange rates for the U.S dollar

against other advanced economies. Also, real-time data offer better forecasting ability than

revised data. However, official data are released to the market participants following a time

lag. Therefore, it is worth noting that whether we use real-time or revised data, the market

has access to these monthly macroeconomic data in the middle of the following month or

later, and the lag in availability will be a problem in the forecasting task.

In this chapter, I use Google Trends search query data that have shown significant now-

casting power for Taylor rule fundamentals in Chapter 1 to forecast monthly nominal ex-

change rate movements. By using Google Trends data, I am able to obtain a timely descrip-

tion of the state of the economy before official data are released to the public. However,

one challenge of using big data such as Google Trends is handling large data sets when the

number of potential predictors is larger than the number of observations. In this paper, I

investigate the performance of different machine learning models, such as variable selections

models, factor models and decision regression trees, in obtaining accurate forecasts of three

currency pairs (U.S./U.K., Japan/U.S., and U.S./Australia). In specific, for each exchange

rate, I have more than 1,500 potential predictors.

I consider three types of forecasts—point forecasts, unconditional weighted directional
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forecasts and conditional weighted directional forecasts—evaluate the forecasting perfor-

mance of the machine learning models over the 2004M1–2019M1 period. By using a 60-month

rolling window scheme, I evaluate three types of out-of-sample one-month-ahead forecasts

against the random walk without drift. Distinct from exchange rate forecasting with adhoc

macroeconomic fundamental data, this chapter aims to forecast exchange rates based on

Google search variables that serve as timely proxies for Taylor rule fundamentals.

To evaluate the point forecasts, I implement the Diebold Mariano and West (DMW) test

of equal MSEs of the point forecasts and those of the random walk without drift, as well

as the Clark West (CW) test of equal predictive ability of our model and the random walk.

Due to the presence of auto-correlation in the out-of-sample forecasts, I consider the Newey

West long-run variance (LRV) estimator. Across three currency pairs, in most cases the

one-month-ahead out-of-sample forecasts of machine learning models beat the random walk

model with MSEs that are significantly smaller than those of the benchmark, according to

the CW test. And across all the machine learning models, the random forest has the smallest

MSE of other models and performs significantly better than the random walk.

The weighted directional forecasts that are relevant to the profitability of my forecasts

are better than typical binomial tests that ignore the magnitude of changes in subsequent

exchange rates. According to the weighted directional test proposed by Kim, Liao, and

Tornell (2014), the test statistic shows significantly better performance for all currencies

at the 10% significance level than the benchmark. However, the performance varies across

different empirical models. The adaptive elastic net model is proven to outperform the

random forest with the highest success ratio of its directional forecasts. Also, the random

forest shows the highest t-statistic of weighted directional forecasts for the U.S./Australia

pair. Based on the varying performance of the models, I ask further when we can rely on

Google search data for exchange rates.

Therefore, I consider the performance of these weighted directional forecasts conditional

on some relative cyclical macroeconomic variable that can describe the relative state of the

economies. Unlike the previous unconditional weighted directional forecasts, in terems of

their unconditional moment performance against the random walk, the conditional evalua-
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tion enables us to know when exactly my out-of-sample forecasts are better than betting on

the random walk with zero profit. Twisting the conditional superior predictive ability test

by Li, Liao, and Quaedvlieg (2019), the null hypothesis says that the conditional expected

weighted directional forecasts are lower than zero across all conditioning states of a cyclical

variable. Therefore, under the alternative, there exist certain states in which my out-of-

sample weighted directional forecasts are profitable. I choose the inflation differential of two

countries as the conditioning variable. In the Appendix, I also consider the GDP growth

differential for the robustness check. All of the currency one-month-ahead weighted direc-

tional forecasts reject the null hypothesis of zero profit. Specifically, I see that the weighted

directional forecasts are significantly positive on the tails of the conditioning variable distri-

bution.

The rest of the paper is organized as follows. Section 2.2 reviews the related literature

review on exchange rate forecasting. In Section 2.3, I replicate the findings of Molodtsova and

Papell (2009). Section 2.4, I construct the out-of-sample forecasts for three major currencies

using a variety of machine learning models. Section 2.5 presents the point forecasts. Section

2.6 gives the results of both unconditional and conditional weighted directional forecasts,

and Section 2.7 concludes.

2.2 Literature Review

First, I use Google Trends data for exchange rate forecasting that ties exchange rate move-

ments to Taylor rule fundamental variables. In specific, I aim to capture people’s collective

perceptions of macroeconomic variables, such as inflation and the unemployment rate, by

analyzing search engine query volume data from Google Trends. Since the seminal work

of Meese and Rogoff (1983), it has been argued that the random walk generates better ex-

change rate out-of-sample forecasts than any other economic model. For the U.S. and other

advanced economies, central banks are advised to set a short-term nominal interest rate as a

function of the inflation rate, the output gap, and other constant variables. These variables

have been described as “Taylor rule fundamentals.” Recent literature has indicated that
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Taylor-rule fundamentals have predictive power to forecast nominal exchange rates for the

U.S. dollar against other advanced economies. Molodtsova and Papell (2009) and a recent

survey by Rossi (2013) find evidence that these variables can be used to produce forecasts

of the exchange rate that outperform the random walk forecast (i.e., of no change in the log

of the exchange rate) at short horizons of one month by using the Clark and West (2006)

test to compare model predictions against the random walk.

Although several studies including those by Engel et al. (2008), Molodtsova et al. (2008),

Molodtsova et al. (2011), Wang and Wu (2012), and Binici and Cheung (2012) advocate us-

ing Taylor-rule fundamentals to predict exchange rates, their results rely on the availability

of timely macroeconomic variables such as inflation and GDP. However, official government

data release with a time lag. However, in the era of the Internet, big data have emerged as

an important addition to traditional data sources. As shown in Chapter 1, Internet search

data are able to provide more accurate nowcasts for economic indicators than other con-

ventional methods. Bulut (2015) shows that Google Trends-based forecasts are better for

predicting directional changes in monthly nominal exchange rates after the 2008 financial

crisis. Markiewicz1 et al. (2018) measure investor attention to different sources of eco-

nomic information using search intensity as measured by Google Trends, and apply machine

learning models to show predictability in forecasting exchange rates movements. Also, Cho-

jnowski and Dybka (2017) extend the present value model based on observable fundamentals

by including three unobserved fundamentals sentiments extracted from Google Trends for

different markets.

Second, in this chapter, I consider a variety of machine learning models to either select or

form important predictors in the environment of rich data. Specifically, I consider a number

of variable selection models in choosing relevant search queries from thousands of candidate

predictors. Dunis and Williams (2002), Brandl et al. (2009), and Plakandaras (2015) see

an improved out-of-sample forecasting ability of dimension-reduction models compared with

alternative forecasting models. Then I implement a dynamic factor model to form dynamic

parsimonious and suitable representation of Google Trends. Rather than constructing static

common factors using such methods as principle component analysis (Engel, Mark and West,
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2014), I recognize the serial correlation among the Google Trends. Bok et al. (2017) and

Chernis (2017) find that the dynamic factor model outperforms univariate benchmarks in

forecasting short-term macroeconomic variables. Moreover, I consider using some “black

box” models such as decision tree regression and random forest model to conduct the out-

of-sample forecasting. For out-of-sample performance, machine learning algorithms such

as random forest can do significantly better than ordinary least squares, even at moderate

sample sizes and with a limited number of covariates. Pradeepkuma and Ravi (2016) use a

quantile regression random forest model and find a smaller mean absolute percentage error

for the out-of-sample major exchange rate forecasts than other machine learning models.

Third, regarding out-of-sample forecast accuracy ability, there have been mixed findings

in the literature. Since Meese and Rogoff (1983), it has been difficult for fundamentals-

augmented point forecasts to beat the random walk, with few exceptions. The null hypothesis

of the CW test has been rejected by several authors such as Gourinchas and Rey (2007),

using net foreign assets, and Molodtsova and Papell (2009), using Taylor rule fundamentals.

However, few papers focuse on directional forecasts. I conduct a directional forecast test

proposed by Kim et al. (2019) that weights each directional forecast by the subsequent

exchange rate change, and so gives more weight to directional forecasts associated with

bigger exchange rate moves. Moverover, this paper conciders not only unconditional superior

predictive accuracy, but explores when weighted directional forecasts outperform the random

walk. Complementing the theoretical framework of the conditional superior predictive of Li,

Liao, and Quaedvlieg (2019), the test enables us to know when to use forecasts from which

machine learning model conditional on a relative economic indicator.
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2.3 Exchange Rate Forecasting with Taylor Rule Fundamentals

Suppose the Fed and other central banks follow the Taylor rule to set the short-term nominal

interest rate

it = µ+ λπt + γyt (2.1)

i∗t = µ∗ + λ∗π∗t + γ∗y∗t (2.2)

where πt is the inflation rate, yt is the output gap, and (µ, λ, γ) are constants. Sometimes

we can replace yt with the unemployment gap. If uncovered interest rate parity holds, the

optimal forecast for the change in the exchange rate between t and t + 1 is equal to the

short-term interest rate between two countries. Then, under uncovered interest rate parity

between the U.S. and the foreign country,

Et(st+1 − st) = it − i∗t (2.3)

where st is the log of the dollar price of the foreign currency. If UIP holds, by substituting

equation (2.1) for equation (2.3), I would obtain

Et(st+1 − st) = µ+ λπt + γyt − (µ∗ + λ∗π∗t + γ∗y∗t ). (2.4)

Intuitively, an increase in the inflation rate or the unemployment gap of the U.S. will

increase the U.S. interest rate and predict an immediate appreciation in the dollar. How-

ever, official macroeconomic variable data releases follow a lag: Most macroeconomic data

are released in the middle or latter half of the next month. Although Molodtsova and Papell

(2009) and others find promising out-of-sample predictive power with Taylor rule fundamen-

tals, their results rely on exante official macroeconomic data that are not available at the

time of making predictions in exchange rate movements.

In Section 2.3, I replicate the findings of Molodtsova and Papell (2009) with three major

exchange rates: the USD vis-à-vis the pound sterling , the Japanese yen, and the Australian
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dollar with the sample period from 2004M1 to 2019M1. Price level data are the consumer

price index from the IMF’s International Financial Statistics (IFS). Unemployment rates are

from the OECD Original Release and Revisions Database. To construct one-month-ahead

forecasts of changes in the exchange rate between time t and t+ 1, I estimate the following

regression equation1 with rolling regressions with a 60-month window:

∆st+1 = b0 + b1πt + b2π
∗
t + b3yt + b4y

∗
t + b5it−1 + b6i

∗
t−1 + εt (2.5)

Then the one-month-ahead out-of-sample forecast is produced using the above estimated

equation. The first forecast starts from 2009M3 and the last ends in 2019M1. Based on

all out-of-sample forecasts2, I am able to compute the out-of-sample MSE of the Taylor

rule model and compare to the random walk. I report the MSE ratios of the Taylor rule

model and the random walk model in Table 2.1. In the three currency pairs, all MSE

ratios are lower than one, which means that the Taylor rule model produces better forecasts

than the random walk benchmark. To evaluate the statistical significance, I report the CW

test statistic and the associated p-values in Table 2.1. It shows that the Taylor rule model

significantly outperform the random walk model at a 1% significance level for the three

exchange rates. Note that the CW test corrects for the fact that the Taylor rule model is

nested with the random walk model, which does not require parameter estimation. In the

Appendix, I also report the DMW test statistic and the corresponding p-values in Table 2.7.

I can see that it becomes harder to reject the null hypothesis with the DMW test, which has

a smaller test statistic. However, Taylor rule models are still significantly better than the

random walk model at 1% or 5% significance levels.

1I augment Taylor rule fundamental variables with lagged interest rates that are shown to be the most
successful by Molodtsova and Papell (2009) and Engel et al. (2018).

2There are 118 out-of-sample forecasts for each currency pair.

56



Table 2.1: Taylor Rule Model: Replication of Molodtsova and Papell (2009)

Currency
MSE

(Taylor rule model)

MSE

(random walk)
MSE ratio

CW test statistic

(p-value)

U.S./U.K. 1.43e−3 7.8e−4 0.547
3.444 ∗ ∗∗

(2.86e−4 )

Japan/U.S. 1.39e−3 9.17e−4 0.656
3.408 ∗ ∗∗

(2.86e−4 )

U.S./Australia 1.53e−3 8.00e−4 0.522
3.513 ∗ ∗∗

(2.22e−4 )

Note: This table shows MSE for both Taylor rule forecasts and random walk model forecasts for three currency pairs. It also

reports CW test statistic and its respective p−value. ∗, ∗∗, ∗ ∗ ∗ indicate that the alternative model significantly outperforms

the random walk at 10%, 5%, and 1% significance level, respectively, based on standard normal critical values for the

one-sided test. Forecast results are based on out-of-sample forecasts starting from 2009M3 to 2019M1 for all currency pairs.

2.4 Machine Learning Methods with High-dimensional Covariates

Note that the macroeconomic data at time t are not announced until the middle or the

latter half of the month (t+ 1). Therefore, these significant results are based on the exante

macroeconomic data. I introduce Taylor rule fundamentals-related search query data from

Google Trends to forecast exchange rate movements. In Section 2.4, I consider a variety of

machine learning methods to handle the high-dimensional covariates space. Specifically, I

consider variable selection models, the dynamic factor model, and random forest and Bagging

methods.

In Chapter 1, I see the potential value of using Google Trends search to proxy the current

values of Taylor rule fundamentals variables in four countries. I can also exploit them in

exchange rate forecasting. In this chapter, instead of inserting a substitute for the current

state of official government data in the specification (2.1), I aim to directly explore these

Taylor rule fundamentals-related search data in exchange rate forecasting.

In this section, I consider a variety of machine learning models to forecast exchange rate
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movements. If we define G as the matrix of the Taylor rule related Google Trends data for

the U.S. and G∗ for the foreign country, I consider the following forecasting model:

st+1 − st = F(Gt,G∗t ) (2.6)

where st is the end-of-month nomical exchange rate3 and F(·) is the functional form for the

machine learning models I consider below.

2.4.1 Variable Selection Model

In Chapter 1, I introduced the class of variable selection or shrinkage models to nowcast

macroeconomic fundamental variables. In particular, the function form in Equation 2.6 is a

linear model with a regularization (penalty) function. Chapter 1 presents a detailed explana-

tion of the models. Here, I consider a ridge regression (with a quadratic l2 penalty), adaptive

LASSO (with a weighted l1 penalty), and adaptive elastic-net model (with a weighted com-

bination of l1 and l2 penalty). Also, I consider the LARS algorithm (Efron et al., 2004) to

obtain the entire solution, and parameters in front of the penalty terms are chosen with five

fold cross-validation.

2.4.2 Dynamic Factor Model

The dynamic factor model has received considerable attention for its prediction ability for

a data set when the number of time-series covariates exceeds the number of observations.

Introduced by Geweke (1977), a growing body of empirical research (Giannone et al., 2004;

Watson, 2004; and Bai and Ng, 2008) shows that a few factors can explain the majority

of variance in macroeconomic variables that include GDP, employment, and prices. In the

exchange rate forecasting literature, Engel et al. (2012) construct factors from exchange

rates and use deviations from the factors to forecast the exchange rates themselves.

In this subsection, I consider constructing factors from the high-dimensional Google

Trends search query data set and use these factors to determine exchange rate movements.

3I obtain the data from the Federal Reserve Bank of St. Louis (FRED) database.
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Following Stock and Watson (2010), I assume m latent factors in Google Trends search data

following a time-series process, and the dynamic factor model is

Gt = λ(L)Mt + εt (2.7)

Mt = φ(L)Mt−1 + νt

where there are M Google Trends, so Gt and εt are M×1. Assume that there are m dynamic

factors so that ft and νt are m× 1,and L is the lag operator. Then the forecasting function

F in 2.6 follows the specifications in system 2.7. Inference of the dynamic factor models can

be conducted using Kalman filter techniques to handle the nonlinearity of the data. Since I

expand the Google Trends query data based on seeding words, I expect high collinearity in

the covariates space. Then, in practice, I first cluster the Google Trends data with a simple

k-means algorithm before feeding it into the dynamic factor model. This step is reasonable

and provides efficiency in the inference.

2.4.3 Decision Trees and Random Forests

A decision tree, also called a regression tree, is a prediction model based on recursively

partitioning the covariate space. The decision tree is built using a randomly selected data

sample or randomly selected covariates from the original data to split each node which leads

to good out-of-sample predictions.

To demonstrate the use of regression trees, I graph a tree that predicts U.S./U.K. ex-

change rate movement using more than 1,000 Taylor rule fundamentals-related Google Trends

search query data. The tree is shown in Figure 2.1 and the rules are indicated above the

nodes. This example provides a simple demonstration of important predictors for some of

the exchange rate movement values. In this example, the root regressor starts with query

time series4 “high food prices.” If “guarantee pay” < 0.625, “number of people unemployed”

≥ 0.03, and “rail fare” < −0.1, then the model predicts that the log nominal exchange rate

4The covariates space is preprocessed by extracting out seasonality, first-differenced, and normalized with
mean 0 and standard deviation 1.
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of the U.S/U.K. goes down by -0.0133. I can also interpret that among other Google Trends

queries, “high food prices,” “guarantee pay,” “number of people unemployed,” and “rail fare”

are important predictors of that particular value of exchange rate movement. One problem

Figure 2.1: A Simple Decision Tree for U.S/U.K. Exchange Rate Movements with Google

Trends Covariates

with a single regression tree is that they tend to “overfit” the data and lead to high variances

in out-of-sample forecasts. However, one can create more robust predictions by bootstrap-

ping multiple subsamples, fitting a regression tree to each subsample, and then averaging

the predictions across the bootstrapped samples. A random forest is then a collection of

regression trees and each of which is in a bootstrapped sub-sample of the data set.

2.5 Point Forecasts Performance

Our data cover 2004M1–2019M1. I use the same set of Google Trends search queries as

used in Chapter 1 for macroeconomic nowcasting. The covariates consist of about 1,500

Google Trends search queries that are relevant to the macroeconomic variables, such as

unemployment rate and inflation for home and foreign countries for each exchange rate.

60



All covariates are seasonally adjusted, first-differenced and normalized with mean zero and

standard deviation one. I use the first 60 observations for in-sample estimation and obtain

out-of-sample forecasts from 2009M3 to 2019M1 in a rolling-window scheme. In this section,

I describe the main results of my analysis. I report point forecast performance of five machine

learning models based on the out-of-sample MSE compared with that of the random walk

model. Also, Tables 2.2-2.4 report CW and DMW test statistics with their associated p-

values to show whether the Google Trends forecasts outperform the random walk. Also, each

table ranks machine learning models by their MSE ratio5.

The results indicate that the majority of the machine learning models produce forecasts

that have lower MSEs than that of the random walk benchmark. In Table 2.2, all of the

models, except for the ridge model, have MSE ratios of less than one. According to the

CW test, their out-of-sample forecasts are significantly better than that of the benchmark.

It is also worth noting that the dynamic factor model and random forest even reject the

null hypothesis with the DMW test at the 5% and 10% significant level, respectively. For

the Japan/U.S. exchange rate (Table 2.3), all of the Google Trends forecasts have smaller

MSEs than the random walk, and the random forest has the smallest MSE ratio, 0.609.

Similarly, the random forest dominates the other models in forecasting the U.S./Australia

pair in Table 2.4, and the null hypothesis is rejected with the DMW test. The results

also imply that random forest—which is a solution to reduce the variance of decision trees

by bootstrapping aggregation of randomly constructed regression trees—shows consistently

dominant performance over other models, such as variable selection and dynamic factor

models.

5MSE ratio is the ratio of the MSE of the machine learning model over the random walk.
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Table 2.2: Point Forecasting Performance for the U.S./U.K.

Model MSE MSE ratio
CW test statistic

(p-value)

DMW test statistic

(p-value)

Dynamic Factor Model 0.844e−3 0.631
3.084 ∗ ∗∗

(1.01e−3)

2.275 ∗ ∗

(1.327e−2)

Random Forest 1.007e−3 0.705
2.637 ∗ ∗∗

(4.181e−3)

1.611∗

(5.620e−2)

Adaptive Elastic Net 1.182e−3 0.828
2.030 ∗ ∗

(2.117e−2)

0.821

(2.074e−1)

Adaptive LASSO 1.164e−3 0.839
2.003 ∗ ∗

(2.260e−2)

0.713

(2.393e−1)

Ridge 1.703e−3 1.039
1.061

(1.44e−1)

−0.123

(5.489e−1)

Note: This table shows MSE for five machine learning forecasts and random walk model forecasts for the U.S./U.K.

exchange rate. It also report the CW test statistic (its respective p-value) and the DMW test statistic (its respective

p−value). ∗, ∗∗, ∗ indicate that the alternative model significantly outperforms the random walk at 10%, 5%, and 1%

significance level, respectively, based on standard normal critical values for the one-sided test. Forcast results are based on

out-of-sample forecasts from 2009M3 to 2019M1, and the table is ranked by MSE value.
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Table 2.3: Point Forecasting Performance for the Japan/U.S.

Model MSE MSE ratio
CW test statistic

(p-value)

DMW test statistic

(p-value)

Random Forest 8.630e−4 0.609
3.800 ∗ ∗∗

(7.230e−5)

2.250 ∗ ∗

(1.408e−2)

Adaptive Elastic Net 1.017e−3 0.727
2.721 ∗ ∗∗

(3.258e−3)

1.333

(9.386e−2)

Adaptive LASSO 1.090e−3 0.779
3.589 ∗ ∗∗

(1.65e−4)

1.234

(1.110e−1)

Ridge 1.096e−3 0.783
2.899 ∗ ∗∗

(1.869e−3)

1.071

(1.443e−1)

Dynamic Factor Model 1.418e−3 0.986
1.577∗

(5.74e−2)

0.054

(4.784e−1)

Note: Note: This table shows MSE for five machine learning forecasts and random walk model forecasts for the

Japan/U.S. exchange rate. It also report the CW test statistic (its respective p-value) and the DMW test statistic (its

respective p−value). ∗, ∗∗, ∗ indicate that the alternative model significantly outperforms the random walk at 10%, 5%, and

1% significance level, respectively, based on standard normal critical values for the one-sided test. Forcast results are based on

out-of-sample forecasts from 2009M3 to 2019M1, and the table is ranked by MSE value.
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Table 2.4: Point Forecasting Performance for the U.S./Australia

Model MSE MSE ratio
CW test statistic

(p-value)

DMW test statistic

(p-value)

Random Forest 7.980e−4 0.571
3.493 ∗ ∗∗

(2.390e−4)

2.106 ∗ ∗

(1.972e−2)

Adaptive Elastic Net 1.057e−3 0.756
2.721 ∗ ∗∗

(3.258e−3)

1.333

(9.386e−2)

Adaptive LASSO 1.090e−3 0.779
2.746 ∗ ∗∗

(3.012e−3)

1.073

(1.438e−1)

Ridge 1.098e−3 0.785
2.746 ∗ ∗∗

(3.019e−3)

0.897

(0.187e−1)

Dynamic Factor Model 1.812e−3 1.296
0.581

(2.806e−1)

−0.884

(8.099e−1)

Note: This table shows MSE for five machine learning forecasts and random walk model forecasts for the U.S./Australia

exchange rate. It also report the CW test statistic (its respective p-value) and the DMW test statistic (its respective

p−value). ∗, ∗∗, ∗ indicate that the alternative model significantly outperforms the random walk at 10%, 5%, and 1%

significance level, respectively, based on standard normal critical values for the one-sided test. Forcast results are based on

out-of-sample forecasts from 2009M3 to 2019M1, and the table is ranked by MSE value.

2.6 Weighted Directional Forecasts by Subsequent Exchange Rate

Changes

In this subsection, I am interested in testing whether the weighted directional forecasts which

are defined as the multiplication of directional forecasts and the magnitude of changes in

subsequent exchange rates—outperform random walk forecasts. I employ the weighted direc-

tional test proposed by Kim, Liao, and Tornell (2014). With directional forecasts {Dji
t }n

ji

t=nji
0

of each exchange rate i from the machine learning model j, I consider the following relative

profitability measure:

64



Dji
t (sit+1 − sit). (2.8)

Therefore, Dji
t (sit+1 − sit)

nji

t=nji
0

are series of weighted directional forecasts for currency i from

model j. Note that under the benchmark random walk model, the optimal forecast is a zero

exchange rate change, namely, D0i
t (sit+1 − sit)

n0i

t=n0i
0

= 0 ∀i, t.

2.6.1 Unconditional Weighted Directional Forecasts Test

First, I report the forecast success ratios of all five machine learning models for three currency

pairs in Table 2.5. In the table, all of the exchange rates have success ratios over 50% for

one-month-ahead forecasts. Of the machine learning models, the adaptive elastic-net model

shows the highest success ratio.

Table 2.5: Directional Forecast Success Ratios

Model U.S./U.K. Japan/U.S. U.S./Australia

Adaptive Elastic Net 0.602 0.639 0.529

Random Forest 0.576 0.588 0.580

Adaptive LASSO 0.542 0.521 0.597

Ridge 0.585 0.521 0.580

Dynamic Factor Model 0.534 0.546 0.563

Note: This table shows directional forecast success ratios. Success ratios are calculated as the number of correct forecasts

divided by the total number of out-of-sample forecasts. Out-of-sample forecasts are from 2009M3 to 2019M1.

Then I formally test the performance of directional forecasts against the random walk

model. Specifically, I am interested in the weighted directional forecasts in Equation 2.8.

The details of the test can be found in are laid out in Kim, Liao and Tornell (2014). In

Table 2.6, the performance varies with models and currencies, even though all out-of-sample

directional forecasts have more than 50% success ratios indicated in Table 2.5. The adaptive

elastic net forecasts show consistently significantly better performance for all currencies. And

65



random forest forecasts perform signigicantly better for the U.S./U.K. and U.S./Australia.

Note that each model of the five machine learning models significantly outperforms the

benchmark at least for one currency. And sometimes one model is better than another

according to the t−statistics. Then it is natural to ask when a particular model is more

preferrable than another. Especially, when we face a list of candidate forecast models, a

rigorous evaluatation method of their relative performance is much desirable.

Table 2.6: Unconditional Weighted Directional Forecasts

Model U.S./U.K. Japan/U.S. U.S./Australia

Adaptive Elastic Net
1.570∗

(0.058)

1.230∗

(0.100)

1.520∗

(0.065)

Random Forest
1.480∗

(0.069)

0.607

(0.272)

2.050 ∗ ∗

(0.020)

Adaptive LASSO
1.530∗

(0.063)

0.844

(0.199)

0.838

(0.201)

Ridge
2.070 ∗ ∗

(0.019)

0.045

(0.482)

0.801

(0.211)

Dynamic Factor Model
1.010

(0.156)

1.250∗

(0.099)

0.829

(0.204)

Note: This table shows the t−statistics for the weighted directional forecasts for each currency and each machine learning

model. ∗∗,∗∗ and ∗ represent the 1%, 5% and 10% significance level, repectively. And the out-of-sample forecasts start from

2009M3 to 2019M1.

2.6.2 Conditional Weighted Directional Forecasting Superior Test

In this subsection, I consider the conditional superior ability test proposed by Li, Liao, and

Quaedvlieg (2018) to assess predictive performance based on a cyclical indicator variable.

Since the exchange rate is a relative price, I am curious regarding how the weighted directional

forecasts perform conditional on two countries’ relative conditions. If

D0i
t (sit+1 − sit)

n0i

t=n0i
0
> 0 ∀t,
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then the random walk model with zero profit is beaten by the weighted directional forecasts.

Therefore, I consider the null hypothesis to be

H0 : E(Dji
t (sit+1 − sit)|Xt = xt) ≤ 0 almost surely, t = 1, 2, ..., (2.9)

where Xt is the conditional variable that captures the state of one country or the relative

levels of both countries. The null hypothsis says that random walk weighted directional

forecasts outperform the forecasts of a competing machine learning model uniformly across

all states in the information set F . To test the conditional moment inequality, I must

estimate conditional expected profit using functional inference. With the intersection-bound

method, the null hypothesis can be written as

H0 : η ≡ sup
x∈F

E(Dji
t (sit+1 − sit)|Xt = xt) ≤ 0 (2.10)

where F is the information set. The (1− α) lower confidence bound can be constructed as

follows:

lim
n→∞

sup P(η ≥ η̂1−α) ≥ 1− α. (2.11)

The alternative test rejects the null when η̂1−α > 0, with the type I error bounded by α in

a sufficient large sample.

Constructing the CSPA test involves estimating the conditional expected profit func-

tion nonparametrically with least squares regressions. In this empirical exercise, I consider

a conditional variable such as the moving average inflation rate differential between both

countries. Then I estimate the expected MSE differential function nonparametrically with

polynomial series as the approximating basis functions. The number of polynomials is chosen

using minimum Akaike Information Criteria (AIC) using five fold cross-validation. I lay out

the details of implementation of the CSPA test in the following. Because of the right tail

of the distribution of the conditional variable, the lower confidence bounce becomes wildly.

By trimming the right tail of the distribution by 5%, I focus on the truncated range of the

conditional variable.
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Let P (x) = (p1(x), ..., pmn)T be a vector of approximating basis functions6, and denote

Zji
t ≡ Dji

t (sit+1 − sit). In the specific empirical test, I choose polynomial series. For each

currency i and machine learning model j, I regress Zji
t onto the polynomial basis series.

Coefficients are obtained using least squares regression:

β̂ ≡ Q̂−1(
1

n

T∑
t=1

P(Xt)Zt), (2.12)

and Q̂ ≡ 1
n

∑T
t=1 P(Xt)P(Xt)

T . Then the functional estimator for E(Z|X) is h(·) = p(·)Tβ.

Hence µt = Zt−h(Xt) is the regression error. Define the long-run variance covariance matrix

(m×m) for
√

1
n

∑T
t=1 µtP(Xt):

A ≡ V ar(

√
1

n

T∑
t=1

µtP(Xt)).

Out-of-sample forecasts contain auto-correlation and heteroskedasticity of unknown form,

and for inference in such model it is therefore necessary to consider the heteroskedasticity

and auto-correlation consistent (HAC) estimator, which can consistently estimate the co-

variance of model parameters. With HAC estimator Â, the variance covariance matrix of

the coefficients can be estimated with

Ω̂ ≡ Q̂−1ÂQ̂−1.

Therefore, the standard deviation of
√

1
n
(ĥ(x)− h(x)) can be inferred as

σ̂(x) ≡
√

P(x)T Ω̂P(x).

I can use the following implementation procedure to conduct the test:

1. First, simulate a random vector ξ ∼ N (0, Ω̂) and let t̂(x) = P(x)T ξ
σ̂(x)

.

2. Then simulate a large sample of ξ from step 1. Set K̄n to be the k̄-quantile of

supx∈F t̂(x) in the sample, where k̄ ≡ 1− 0.1
log T

. Set

Θ̂ ≡ {x : ĥ(x) ≥ sup
x∈F

[ĥ(x)−
√

1

n
K̄nσ̂(x)]− 2

√
1

n
K̄nσ̂(x)}.

6P (x) contains the constant function (p1(x) = 1).

68



3. Third, let k̄1−α be the (1−α) quantile of supx∈Θ̂ t̂(x), and the (1−α) lower confidence

bound η̂1−α is

η̂1−α = sup
x∈F

[ĥ(x)−
√

1

n
k̂1−ασ̂(x)].

Reject the null hypothesis with (1− α) significance lower bound if η̂1−α > 0.

Figure 2.5–Figure 2.7 illustrate CSPA tests of the weighted directional forecasts of a va-

riety of machine learning models with respect to zero-profit random walk. Solid curves are

fitted values of conditional weighted directional forecasts, and dashed curves are their corre-

sponding lower confidence bounds. Note that the width of the confidnece bounds is affected

by the probability mass of the conditional variable, with relatively tighter bounds around the

median inflation rate differential, and wider bounds around the tails that imply historically

rare scenarios. Solid curves in the figures show that all of the models showm more positive

conditional expected profit than the random walk benchmark in some conditioning states, as

ĥ is above zero. I reject the CSPA hypothesis for the random walk: No model significantly

outperforms the random walk at any value of the conditional variable. However, no model

is absolutely more dorminant than the rest as the estimated conditional moment functions

interect. Take the result for the Japan/U.S., for example: The ridge model performs better

than the random walk during deflation and low growth episodes in Japan. However, we see

from the unconditional weighted directional test result in Table 2.6 that the ridge forecasts

fail to reject the null hypothesis.

Figure 2.2–Figure 2.4 show the joint CSPA test with five machine learning models as

alternatives. Each lightly colored curve corresponds to the conditional moment function, and

the black solid curve and dashed confidence bound concern the CSPA joint hypothesis. In

particlar, Figure 2.2 shows that the null hypothesis is rejected for any value of the conditional

states, as the confidence bound is always positive. In Figure 2.3 and Figure 2.4, although

the maximum of the conditional moment function is positive for the majority of states of the

inflation differential, the lower confidence bound is not always significantly positive. Also,

note that the conditional expected function of the joint test achieves the highest on the

tails of the conditional variable distribution. This implies that the machine learning models
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demonstrate higher profitibiilty during less likely episodes of the inflation differential. For

the robustness check, I also consider the GDP growth rate differential as the conditioning

variable and arrive a similar result.

Figure 2.2: Weighted Directional Forecasts: CSPA (U.S./U.K.)
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Figure 2.3: Weighted Directional Forecasts: CSPA (Japan/U.S.)

Figure 2.4: Weighted Directional Forecasts: CSPA (U.S./Australia)
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2.6.3 Robustness Check

In this subsection, I analyze the robustness of the unconditional and conditional weighted

directional performance results in four dimensions. First, I try different rolling-window

sizes and Table 2.9 and Table 2.8 report MSE ratios for point forecasts and success ratios for

directional forecasts. Second, I consider partitioning the sample periods into two subperiods:

2009M3–2014M2 and 2014M3–2019M1 for the directional forecasts. I report the success

ratios and average weighted directional tests in Tables 2.10–2.11. Third, I consider the

directional forecasts with different forecasting horizon h = 3, 6, and 12. Lastly, I consider a

different conditioning variable, the GDP growth rate differential, to evaluate the conditional

weighted directional tests.

1. Diffferent Sizes of Rolling-Window Forecasting Scheme. Table 2.8 shows the

MSE ratios of point forecasts of the machine learning models for different rolling-

window sizes. Table 2.9 shows the success ratios that correspond to different rolling-

window sizes. It shows that the majority of MSE ratios are smaller than zero in the

range of four- to six-year estimation windows. The 60-month rolling window achieves

the largest average success ratio among different machine learning models compared

with other estimation sizes.

2. One-month-ahead Directional Forecasts in Two Subperiods. Table 2.10 shows

the success ratios of directional forecasts if we partition the sample into two subperiods,

and Table 2.11 shows the result of the weighted directional test. As we can see, the

forecast success ratios for the first half-period are higher than the second half for three

currencies. Also, the weighted directional tests are less significant in the second half-

period.

3. Directional Forecasts with Forecasting Horizon h = 3, 6, and 12. Table 2.12–Ta-

ble 2.14 report the results of success ratios with forcasting horizons h = 3, 6, and 12

for three currencies. It is shown that the longer the forecasting horizon, the lower

the success ratio of the directional forecast. This suggests that the Taylor rule-related

Google Trends data are useful for forecasting short-term exchange rate movements.
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4. Conditional Weighted Directional Test (Conditioning Variable: GDP Growth

differential). Figure 2.8 to Figure 2.13 plot weighted directional forecasts conditional

on the GDP growth differential of two countries. It shows similar results as in the

case of the inflation rate differential. These figures reinforce the finding that the ma-

chine learning models are more profitable during less likely episodes of the conditioning

variable.

2.7 Conclusion

This chapter studies the forecastability of exchange rate movements with Taylor rule-related

Google Trends data. I evaluate the performance of three types of forecasts. The DMW

test of the point forecasts of at least one machine learing model rejects the null hypoth-

esis of equal forecasting errors equal to those of the random walk without drift for three

currencies. According to the weighted directional test, the test statistics show significantly

better performance of my models than the benchmark at the 10% significance level for all

currencies. Furthermore, the conditional weighted directional forecasts allow us to know

exactly when my models are more profitbale than the random walk with zero profit. I find

that my weighted directional forecasts are significantly positive, especially on the tails of the

conditioning variable. Also, the robustness results show that Google Trends data can help

forecast exchange rate movement on a short horizon.
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Table 2.7: Taylor Rule Model: Replication of Molodtsova and Papell (2009)

Currency
MSE

(Taylor rule model)

MSE

(random walk)
MSE ratio

DMW test statistic

(p−value)

U.S./U.K. 1.43e−3 7.80e−4 0.547
2.188 ∗ ∗

(1.006e−2)

Japan/U.S. 1.39e−3 9.17e−4 0.656
2.103 ∗ ∗

(1.986e−2)

U.S./Australia 1.53e−3 8.00e−4 0.522
2.895 ∗ ∗∗

(2.651e−3)

Note: This table shows MSEs for both Taylor rule forecasts and random walk model forecasts for three currency pairs. It

also reports the DMW test statistic and its respective p-value. ∗, ∗∗, ∗ ∗ ∗ indicate that the alternative model significantly

outperforms the random walk at 10%, 5%, and 1% significance levels, respectively, based on standard normal critical values

for the one-sided test. Forecasts results based on out-of-sample forecasts are from 2009M3 to 2019M1 for all currency pairs.

2.8 Appendix

Table 2.12: Directional Forecasts Success Ratios for U.S./U.K. (h = 3, 6, and 12)

Model h=3 h=6 h=12

Adaptive Elastic Net 0.611 0.682 0.695

Random Forest 0.504 0.364 0.421

Adaptive LASSO 0.531 0.477 0.442

Ridge 0.549 0.551 0.505

Dynamic Factor Model 0.611 0.682 0.693

Note: This table shows directional forecast success ratios. Success ratios are calculated as the number of correct forecasts

divided by the total number of out-of-sample forecasts for two subperiods.
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Table 2.8: Point Forecasts MSE Ratios For Different Rolling Window Sizes

Rolling Window Size: w = 48

Model U.S./U.K. Japan/U.S. U.S./Australia

Adaptive Elastic Net 0.859 0.816 0.854

Random Forest 0.905 0.720 0.818

Adaptive LASSO 0.870 0.870 0.880

Ridge 0.958 0.893 0.985

Dynamic Factor Model 0.896 1.062 0.940

Rolling Window Size: w = 60

Adaptive Elastic Net 0.828 0.727 0.756

Random Forest 0.705 0.609 0.571

Adaptive LASSO 0.839 0.779 0.780

Ridge 1.039 0.783 0.785

Dynamic Factor Model 0.631 0.986 1.296

Rolling Window Size: w = 72

Adaptive Elastic Net 0.889 0.710 0.751

Random Forest 0.923 0.722 0.675

Adaptive LASSO 0.930 0.871 0.698

Ridge 1.009 0.892 0.875

Dynamic Factor Model 0.723 0.900 1.080

Note: This table shows MSE ratios of five machine learning forecasts over random walk model forecasts for three currencies

with different rolling-window sizes.
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Table 2.9: Directional Forecast Success Ratios for Different Rolling-Window Sizes

Rolling-Window Size: w = 48

Model U.S./U.K. Japan/U.S. U.S./Australia

Adaptive Elastic Net 0.569 0.562 0.577

Random Forest 0.454 0.523 0.554

Adaptive LASSO 0.431 0.515 0.561

Ridge 0.432 0.538 0.577

Dynamic Factor Model 0.462 0.515 0.508

Rolling-Window Size: w = 60

Adaptive Elastic Net 0.602 0.639 0.529

Random Forest 0.576 0.588 0.580

Adaptive LASSO 0.542 0.521 0.597

Ridge 0.585 0.521 0.580

Dynamic Factor Model 0.534 0.546 0.563

Rolling-Window Size: w = 72

Adaptive Elastic Net 0.632 0.585 0.623

Random Forest 0.575 0.519 0.547

Adaptive LASSO 0.509 0.519 0.566

Ridge 0.491 0.509 0.462

Dynamic Factor Model 0.491 0.594 0.566

Note: This table shows directional forecast success ratios. Success ratios are calculated as the number of correct forecasts

divided by the total number of out-of-sample forecasts. Out-of-sample forecasts are from 2009M3 to 2019M1.
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Table 2.10: Directional Forecasts Success Ratios for Two Subperiods

First half-period: 2009M3-2014M2

Model U.S./U.K. Japan/U.S. U.S./Australia

Adaptive Elastic Net 0.644 0.610 0.593

Random Forest 0.644 0.576 0.576

Adaptive LASSO 0.576 0.559 0.542

Ridge 0.610 0.559 0.576

Dynamic Factor Model 0.576 0.525 0.525

Second half-period: 2014M3–2019M1

Adaptive Elastic Net 0.559 0.661 0.593

Random Forest 0.508 0.600 0.583

Adaptive LASSO 0.508 0.483 0.617

Ridge 0.559 0.483 0.583

Dynamic Factor Model 0.492 0.567 0.600

Note: This table shows directional forecast success ratios. Success ratios are calculated as the number of correct forecasts

divided by the total number of out-of-sample forecasts for two subperiods.
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Table 2.11: Unconditional Weighted Directional Forecast Test Statistic for Two Subperiods

First half-period: 2009M3-2014M2

Model U.S./U.K. Japan/U.S. U.S./Australia

Adaptive Elastic Net
1.950 ∗ ∗

(0.025)

0.893

(0.186)

1.600∗

(0.055)

Random Forest
1.990 ∗ ∗

(0.023)

−0.454

(0.675)

2.070 ∗ ∗

(0.0192)

Adaptive LASSO
1.480∗

(0.068)

0.261

(0.397)

0.225

(0.411)

Ridge
1.710 ∗ ∗

(0.043)

−0.233

(0.592)

0.367

(0.357)

Dynamic Factor Model
1.160

(0.123)

1.400∗

(0.081)

0.351

(0.363)

Second half-period: 2014M3–2019M1

Adaptive Elastic Net
0.272

(0.393)

0.814

(0.208)

0.233

(0.408)

Random Forest
0.061

(0.476)

1.390∗

(0.082)

0.834

(0.202)

Adaptive LASSO
0.660

(0.255)

0.991

(0.161)

0.955

(0.170)

Ridge
1.21

(0.113)

0.338

(0.368)

1.000

(0.158)

Dynamic Factor Model
0.238

(0.406)

0.419

(0.338)

1.200

(0.115)

Note: This table shows t-statistics for weighted directional forecasts for each currency and each machine learning model. ∗∗,

∗∗ and ∗ represent the 1%, 5%, and 10% significance levels, respectively. Out-of-sample forecasts are from 2009M3 to 2019M1.
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Table 2.13: Directional Forecasts Success Ratios for Japan/U.S. (h = 3, 6, and 12)

Model h=3 h=6 h=12

Adaptive Elastic Net 0.693 0.694 0.604

Random Forest 0.711 0.556 0.469

Adaptive LASSO 0.518 0.463 0.521

Ridge 0.553 0.519 0.500

Dynamic Factor Model 0.711 0.630 0.573

Note: This table shows directional forecast success ratios. Success ratios are calculated as the number of correct forecasts

divided by the total number of out-of-sample forecasts for two subperiods.

Table 2.14: Directional Forecasts Success Ratios for U.S./Australia (h = 3, 6, and 12)

Model h=3 h=6 h=12

Adaptive Elastic Net 0.623 0.694 0.646

Random Forest 0.544 0.583 0.500

Adaptive LASSO 0.605 0.500 0.448

Ridge 0.505 0.469 0.448

Dynamic Factor Model 0.588 0.593 0.573

Note: This table shows directional forecast success ratios. Success ratios are calculated as the number of correct forecasts

divided by the total number of out-of-sample forecasts for two subperiods.
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Figure 2.5: Weighted Directional Forecasts: CSPA (all, U.S./U.K.)

Figure 2.6: Weighted Directional Forecasts: CSPA (all, Japan/U.S.)
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Figure 2.7: Weighted Directional Forecasts: CSPA (all, U.S./Australia)

Figure 2.8: Weighted Directional Forecasts (IP): CSPA (all, U.S./U.K.)
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Figure 2.9: Weighted Directional Forecasts (IP): CSPA (U.S./U.K.)

Figure 2.10: Weighted Directional Forecasts (IP): CSPA (all, U.S./Australia)
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Figure 2.11: Weighted Directional Forecasts (IP): CSPA (U.S./Australia)

Figure 2.12: Weighted Directional Forecasts (IP): CSPA (all, Japan/U.S.)
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Figure 2.13: Weighted Directional Forecasts (IP): CSPA (Japan/U.S.)
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CHAPTER 3

Interpreting Authorities’ Reception of Fund Policy

Advice: A Topic-Based Sentiment Analysis

3.1 Introduction

Traction is an important attribute of IMF policy advice, and gaps in traction are a risk for

the Fund. Traction has several aspects, such as whether authorities “follow” Fund advice,

whether authorities seek out Fund advice, and whether Fund advice is received positively or

negatively by authorities. This paper focuses on the latter aspect. We use natural language

processing tools and machine learning models to examine Article IV consultations for the

period 2012-18 and establish some stylized facts for the tone and sentiment with which

authorities receive Fund advice. The analysis focuses on monetary and fiscal policy but can

be extended to other aspects of Fund advice. The methodology may also be useful for other

Fund purposes.

Specifically, the approach entails the application of a latent Dirichlet allocation (LDA)

model to Article IV staff reports. The model is able to recognize distinct policy topics and

the words most commonly associated with each. After being “taught” how to read the

reports’ writing style, the model is able to predict the positive, negative, or neutral tones

of authorities’ responses to Fund advice. The results can be grouped according to sutopics

within policy areas, thereby providing a granular picture of how Fund advice is received, as

well as according to country groups. The stylized facts can provide useful input for assessing

the impact of Fund advice, particularly if the approach is extended to other policy areas.

We adopt a topic-based approach to determine the sentiment tone of the authorities’
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views that are recorded in Article IV staff reports. Since each policy discussion consists of

a range of subtopics, we apply the LDA model to objectively classify each paragraph in the

Policy Discussion and each sentence in the Authorities’ Views section into distinct policy

themes. Specifically, the algorithm classifies monetary policy into five topics (monetary

policy stance, exchange rate policy, macro-prudential policy, monetary policy framework, and

financial sector supervision) and fiscal policy into six topics (tax policy, fiscal policy stance,

expenditure policy, financing needs, medium-term fiscal policy framework, and impact of

fiscal policy on real economy).

Simultaneously, we construct the topic-specific sentiment score, which is a product of the

sentiment of the sentence-level authorities’ views and the estimated probability of a specific

topic of the sentence from the LDA model. The sentiment is defined as whether Fund advice

is received positively or negatively by countries’ authorities. The sentiment is predicted by

the machine learning models as negative (-1), neutral (0), or positive (+1). We consider

a variety of supervised machine learning models, including multinomial logistic regression,

decision trees, random forest, Adaboost, etc. to predict the sentence in the Authorities’

Views in Article IV reports after being provideed with a “gold standard” training set that

has been labeled and validated by experienced economists. As a result, the model achieves

around an 85% prediction accuracy rate in the testing set.

This allows us to measure multi-aspect policy sentiment by constructing the metrics to

interpret authorities’ tones in response to specific policy advice. For example, among all of

the member countries, our results show that monetary policy stance sentiment is the lowest

among all member countries and among other policy discussions over the period from 2012

to 2018. Yet tax policy, especially tax administration policy, achieves the highest sentiment

score over those years. Moreover, across country groups, sentiment tones in both monetary

and fiscal policy are relatively higher among low-income countries and emerging markets.

Our goal is to improve understanding of IMF policy advice as it is perceived by its

member countries. This study is the first to use a topic-based sentiment analysis approach

to Article IV consultations. Recently, there has been an explosion of studies in finance and

economics using text as an alternative data source. In finance, textual data from news, social

86



media, and company SEC filings are used to predict asset price movements (Tetlock, 2007;

Engelberg and Parsons, 2011). In macroeconomics, textual data from FOMCs and news

is proven to be predictive for macroeconomics data, and useful for estimating the effects

of policy uncertainty (Scott and Varian, 2014; Baker, Bloom and Davis, 2013; Jegadeesh

and Wu, 2015). In political economy, congressional text is used to study the dynamics of

political debate (Gentzkow and Shapiro, 2010). In this paper, we apply textual analysis to

IMF Article IV consultations and extract country authorities’ sentiment in response to the

policy advice proposed by the Fund.

The rest of the paper is organized as follows. Section 3.2 describes our sample and data

sources. Section 3.3 introduces the topic-based sentiment analysis methodology. Section 4

reports the multi-aspect policy sentiment metrics, and Section 5 concludes.

3.2 Data

The IMF is an organization of 189 countries, and its mandate is to offer its member countries

advice on economic policies that affect members’ domestic and external stability in the form

of Article IV staff reports. This paper focuses on historical Article IV consultations1 from

2012 to 2018 received by all of its member countries.

Each Article IV consultation follows a structured writing style. They consist of several

major sections, such as Recent Developments, Economic Outlook and Risks and Policy

Discussions. Specifically, during an Article IV consultation, an IMF team of economists visits

a member country to assess and discuss its economic and financial conditions and policies,

such as monetary policy, fiscal policy, financial sector policy, etc. The assessments and

policy recommendations are recorded in the Policy Discussion section. Moreover, following

the Policy Discussion, the counties’ authorities express their commitment to or disagreement

with the proposed policy recommendations in the Authorities’ Views section. For the purpose

of this paper, we focus our attention on monetary and fiscal policy only.

1The reports are publicly available online at https://www.imf.org/external/index.htm.
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We obtain balanced coverage of Article IV staff reports by country groups from 2012 to

2018. Our sample consists of around 657 Article IV consultations. For each report, we lo-

cate and scrape the content in the Policy Discussion section using a web crawler and regular

expression tools. Then we conduct the following parsing procedure: (1) we separate fiscal

policy and monetary policy content from the Policy Discussion by using regular expressions;

(2) for each policy area, we separate Authorities’ Views content from the policy recom-

mendations and; (3) we break the policy recommendation into paragraphs and Authorities’

Views into sentences2. Throughout this procedure, we successfully produce around 2,000

paragraphs for monetary policy and fiscal policy discussions. Meanwhile, we obtain around

1,200 and 1,400 sentences for the Authorities’ Views in its corresponding policy area.

3.3 Methodology

In this section, we lay out the construction of our multi-aspect topic-based sentiment mea-

surements. There are several challenges in analyzing these multifaceted documents, because

each policy discussion (either monetary or fiscal) is a mixture of a range of subtopics. For

example, monetary policy can contain policy assessments of and recommendations for mon-

etary policy stance, exchange rate policy, macro-prudential policy, monetary policy frame-

work, and financial sector supervision. In Section 3.3.1, we introduce a topic modeling

technique—latent Dirichlet allocation (LDA) model—to automatically summarize and iso-

late the content of each subtopic prior to sentiment analysis. Another complication arises

from the sentiment analysis. There are two broad approaches to conducting the sentiment

analysis: (1) apply a bag-of-words model first to filter the corpus down to only words that are

thought to carry sentiment and use a predefined dictionary of positive and negative words to

calculate the average sentiment score and; (2) generate uni-/bi-/skip-gram models from the

tokenized text and apply classification models to train the machine to truly “understand” the

language it uses in the text. Because the language style in our sample is distinct from other

2We do so because each paragraph in the policy recommendation tends to focus on one topic, and
authorities’ views usually only have one paragraph, in which each sentence represents one piece of opinion
about a particular policy theme.
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data sources, such as news and social media, we use a more robust and objective predictive

method to conduct the sentiment analysis. Section 3.3.2 introduces the models.

3.3.1 Topic Modeling

First, the goal is to classify all sentences in the Authorities’ Views by their underlying policy

theme. We classify each sentence from the Authorities’ Views into distinct policy topics with

the LDA algorithm which is, a probabilistic topic model developed by Blei et al. (2003).

The LDA model allows sets of observed sample units, which are called documents (D), to be

explained by latent structures. It is an unsupervised learning clustering algorithm, and we

don’t need to label the documents before the sample is classified. The model assumes that

each document (a paragraph or sentence) can be summarized as a distribution over a set of

distinct topics, and each topic is a distribution of the words that appear in all documents.

When observing the sample documents, we can estimate the underlying topic structure that

the documents are generated from. Both of the unobserved latent distributions are assumed

to belong to the Dirichlet family. The task is to estimate the posterior document and topic

distributions using a Bayesian approach. We illustrate the LDA model with a relevant simple

example. Suppose we are given three sentences:

1. The stance of monetary policy was maintained accommodative.

2. Fiscal consolidation is key to maintain confidence in debt sustainability.

3. Monetary policy should stand ready to offset the contractionary effects of fiscal consol-

idation.

After using some natural language processing tools, such as phrases groupings, tokeniza-

tion, lemmatization, and stop words elimination, we construct the sample as the input for

the LDA model:

1. stance, monetary policy, maintain, accommodative

2. fiscal consolidation, key, maintain, confidence, debt, sustainability
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3. monetary policy, stand, ready, offset, contractionary, effect, fiscal consolidation

We can intuitively tell that the first sentence is about monetary policy, the second is

about fiscal policy, and the third one is a mixture of both. If the LDA model performs well,

it should output the posterior distribution of the topic in the documents by simply reading

the ranked words/phrases:

β̂1 ≡ {P̂topic1(fiscal consolidation), P̂topic1(maintain), P̂topic1(confidence),

P̂topic1(sustainability), ...}

= {0.124, 0.082, .0.081.0.077}

β̂1 ≡ {P̂topic2(monetary policy), P̂topic2(maintain), P̂topic2(accomodative), P̂topic2(stance), ...}

= {0.122, 0.119, .0.113.0.111}

Then we can name the first topic as monetary policy and the second as fiscal policy. The

posterior topic mixture in each sentence corresponds to our intuition:

θ̂1 ≡ {P̂sentence1(topic1), P̂sentence1(topic2)} = {0.169, 0.831}

θ̂2 ≡ {P̂sentence2(topic1), P̂sentence2(topic2)} = {0.903, 0.097}

θ̂3 ≡ {P̂sentence3(topic1), P̂sentence3(topic2)} = {0.301, 0.699}.

This says that the first sentence has a 16.9% probability of monetary policy and 83.1% of

fiscal policy. We can similarly interpret for the second and third sentences.

From the above simple example, one can use the LDA model to successfully classify the

input into distinct themes without manually labeling a large set of documents.

Before proceeding with the LDA classification of our sample, we need to specify the

number of topics, N , that we want to identify for each policy area. To start, we set the

range of the number of topics from 3 to 20. To get robust results, we use a model coherence

measure based on point-wise mutual information (PMI) to compare different choices of topics.

According to Blei et al. (2003), the LDA model assumes the following generative process for

each document d in the sample space:
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1. We denote the proportion of topic n ∈ N in document d ∈ D as θd,n, and assume the

vector of topic proportions in document d, θd from a Dirichlet distribution with order

N , parameter α:

θd ∼ Dir(α).

2. We assign each word w in document d with topic Td,w ∈ [1, ...., N ], and it follows

a multinomial distribution conditional on document d′s topic proportion vector θd.

Namely, Td,w ∼ Multinomial(θd).

3. As in the previous simple example, the topic distribution matrix is denoted as β ∈

{β1, ..., βN}. Each topic distribution βn follows a Dirichlet distribution that contains

W words. Namely, βn ∼ Dir(µ).

4. Therefore, a word is drawn from a multinomial distribution conditional on topic Td

distribution, P (w|Td, β).

However, since this latent procedure is not observed by the human reader, we need to estimate

the posterior distribution of this topic structure given the collection of words w in the

documents using the Bayesian method. First, we write the joint distribution of a topic

mixture θ, topics T , and words W given the parameters α and β:

P (β, θ,T,W) =
N∏
n=1

P (βn)
D∏
d=1

P (θ)

Id∏
w

(P (Td,w|θd)P (Wd,w|β, Td,w).

By integrating over θ and T, the marginal distribution of document d is:

P (W|α, β) =

∫
p(θ|α)(

N∏
n=1

∑
Tn

P (Tn|θ)P (Wn|Tn, β))dθ.

Therefore, we will obtain the posterior distribution of the document-topic latent structure

given the observed words in Article IV reports:

P (β, θ,T|W) =
P (β, θ,T,W)

P (W)
.
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Blei et al. (2003) use a variational EM algorithm to estimate the parameters.

In order to obtain the optimal number of topics for each policy area, a coherence measure-

ment, based on the PMI, can help to quantify the hanging and fitting together of information

pieces. The PMI between any two words, i and j, is defined as

PMI(wi, wj) = ln(
P (wi, wj)

P (wi)P (wj)
).

For example, assume there are 100 words in the sample documents. The word “monetary”

appears 10 times, “policy” 20 times, and the frequency of the co-occurrences of both words

is 8. Then the PMI is calculated as

PMI(’monetary’, ’policy’) = ln(
8

100
10
100
× 20

100

) = 1.38.

Therefore, the coherence measure of the whole sample is

Cohenrence =
2

N(N − 1)

N∑
i=2

i−1∑
j=1

ln(
P (wi, wj)

P (wj)
).

A higher coherence measure indicates better topic classification results. Figure 3.1 plots the

coherence scores for different numbers of topics3 for both monetary policy and fiscal policy.

It turns out that, there are 7 topics “hidden” in the monetary policy discussion and 6 in

fiscal policy.

3Because monetary policy/fiscal policy in each Article IV consultation contains at least three subtopics,
so we start from N ≥ 3. However, when the number of topics increases, some topics become redundant and
can lead to semantically less meaningful topics.
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Figure 3.1: Coherence Measure for Different Number of Topics

Given the optimal number of topics, N , we can compute the posterior expectations of

word distribution for each topics, {β̂1, ..., β̂N}, and posterior topic mixture, θ̂d, for each

document d in our sample. Table 3.2 and Table 3.3 report the top 30 words for each topic

in monetary policy and fiscal policy, respectively. From the tables, we can clearly identify

the topics according to these key words. For example, the first topic in Table 3.2 is about

monetary policy stance, which consists of words such as inflation, monetary policy, target,

and so on. The LDA model identifies themes in fiscal policy with almost no ambiguity. For

example, Topic 3 in Table 3.3 contains keywords such as spend, social, public, expenditure,

etc., suggesting expenditure policy. To sum up, the model identifies seven topics for monetary

policy: monetary policy stance, monetary easing post-GFC, exchange rate/reserve policy,

monetary policy framework, macro-prudential policy, financial sector supervision, and other

topics4. The six themes in fiscal policy are tax policy5, fiscal policy stance, expenditure

policy, financing needs, medium-term fiscal policy framework, and impact of fiscal policy on

real economy.

Besides the posterior word distribution for distinct topics, the model also outputs the

posterior topic distribution, θ̂d = [θ̂d,1, ..., θ̂d,N ], for each document, d ∈ D. In other words,

θ̂d,n represents the proportion of topic n in document d.

4We are not able to clearly identify this group with the word distribution, so we categorize it as the other
topics.

5Tax policy includes tax revenue policy as well as tax administration policy.
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For more robust results, we select 100 documents for each policy area and ask our

economists to read and manually check whether the topic distributions make sense in the

documents. And ninety out of 100 documents are approved.

Figure 3.2: Top 30 Words for Different Topics in Monetary Policy
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Figure 3.3: Top 30 Words for Different Topics in Fiscal Policy

3.3.2 Sentiment Analysis

In order to construct the multi-aspect sentiment measure for the documents, in addition to

topic distribution estimation we have obtained in Section 3.3.1, we need to know the overall

sentiment tone of each sentence. In this section, we introduce a variety of machine learning

models to predict the sentiment tone as positive, negative, or neutral.

First, we follow a bag-of-words approach to extract features from the textual data and

build the regressor space. The approach simply calculates the frequency of each word in

each document. With the previous example, we have:

1. stance, monetary policy, maintain, accommodative;

2. fiscal consolidation, key, maintain, confidence, debt, sustainability ;

3. monetary policy, stand, ready, offset, contractionary, effect, fiscal consolidation.
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Then for each document, we count the frequency of tokens from the dictionary {“stance”.

“monetary policy”, “maintain”, “accommodative”, “fiscal consolidation”, “key”, “confidence”,

“debt”, “sustainability”, “stand”, “ready”, “offeset, “contractionary”, “effect”}. For exam-

ple, we can convert the first sentence in the example into a vector only containing “0” and

“1”: [1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]. Similarly, we proceed and transform all sentences into

vectors with only frequency counts.

Having prepared our regressor space, we then consider a variety of machine learning

models for sentiment prediction.

Multinomial Logistic Regression. Multinomial logistic regression is used to predict

categorical responses based on multiple independent variables. Independent variables are

the word frequency vectors precessed by the bag-of-words method. Multinomial logistic

regression is a simple extension of binary logistic regression that allows for more than two

categories of dependent variables; in our case, there are three classes: positive, negative,

and neutral. Also, multinomial logistic regression uses maximum likelihood estimation to

evaluate the probability of categorical responses.

Decision Tree. A decision tree is a commonly used machine learning method for classi-

fication tasks based on high-dimensional regressor space. This method classifies a sentence

into branch-like segments that construct tree with a root node, internal nodes, and termi-

nal nodes. The model is nonparametric and is able to deal with high-dimensional datasets

without imposing a parametric structure. Typically, A training dataset is used to build a

decision tree and the optimal final model is determined using a validation dataset.

Random Forest. Random forest uses the concept of bagging and bootstrapping and is

an ensemble learning method for classification tasks by combining multiple decision trees.

Because dealing with a single decision tree will lead to the problem of overfitting, which may

affect the overall classification result on the test set, random forest is much more robust and

prone to noises. (1) Random forest uses the concept of bootstrapping, in which each decision

tree is trained on the subset of the total training data and; (2) the results of all decision

trees will be averaged and the result will be consistent (bagging).
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Ridge Classifer. Ridge regression is a shrinkage technique for analyzing a high-dimensional

regressor space that suffers from multicollinearity. Although least squares estimates are un-

biased, their variances are large. By adding a regularization term to the coefficient estimates,

ridge regression reduces prediction errors.

Adaboost. Adaboost is a boosting technique that combines multiple “weak classifiers”

into a “strong classifier.” This technique can be applied to any classification algorithm and

has several advantages. First, it helps choose the training set for a new classifier to be trained

based on the results of previous models. Also, it determines the weights of the classifiers

when combining the results. Based on these benefits, we apply Adaboost to our multinomial

logistic regression, random forest, and ridge regression.

Training, Test set, and Evaluation. As sentiment prediction is a difficult task,

and since domain knowledge of Article IV writing style is necessary for annotating the

overall sentiment tone, it is critical that our machine learning models are well trained before

undertaking this task of predicting.

Our sample consists of around 2,800 sentences in the Authorities’ Views in 657 Article

IV consultations. We ask our economists to label the sentiments of 350 sentences as our

gold labels; some of the annotated sentences are included in the appendix. Also, we split

these labeled sentences into training (70%), validation (15%) and test (15%) sets. Specifi-

cally, the training set provides the “gold standard” that the machine learning models learn

from. Models and features are evaluated and selected by examining out-of-sample prediction

accuracy in the validation set, and the test set serves as the final performance of a selected

model and important predictors.

The metric we use to evaluate the performance of the machine learning models on the

test set is the prediction accuracy rate. Consider the contingency table shown in Figure 3.4.

Each cell labels a set of possible outcomes. In our sentiment prediction case, for example,

true positives are the documents that are labeled correctly (indicated by the gold labels)6.

6Either positive, negative, or neutral
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Therefore, the prediction accuracy rate is defined as

Prediction Accuracy Rate =
True positive + True negative + True neutral

350
.

Figure 3.4: Prediction Contingency Table

For an alternative robust performance measure, we consider F -1 score7. The reason is

that in our sample, the classes are unbalanced; there are more positive labeled sentences

than negative ones. If we put emphasis on finding weak policy recommendations, the F -1

measure which considers both precision and recall, rewards us for detecting sentences with

different classes, even in an unbalanced sample.

In order to tune the parameters of the models, five fold cross-validation is used for

each of the machine learning classification models, with the results averaged over the five

folds. Figure 3.4 displays prediction performance results on the validation set of the labeled

sample, showing that the decision tree model achieves the highest prediction accuracy rate

of 85%, with 900 features (bi-grams). Then, with the best selected model, we calculate

7Details are included in Appendix 3.6.2.
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the prediction accuracy rate for the test set, and it achieves 84.6%8. Figure 3.5 shows the

prediction contingency table of the test set with the decision tree.

Figure 3.5: Machine Learning Prediction Performance

Figure 3.6: Prediction Contingency Table on the Test Set (52 Sentences)

8However, none of the neutral tones is predicted correctly.
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3.3.3 Multi-aspect Topic-based Sentiment Metrics

After we obtain the topic distribution for each document in our sample as illustrated in

Section 3.3.1 and overall predicted sentiment as illustrated in Section 3.3.2, we can define

the multi-aspect sentiment score, Tone. Since there are six9 policy themes in monetary policy

and six for fiscal policy, the topic contents consist of N -level sentiment scores. Explicitly, for

sentence d in country a, year t Article IV consultation, with the estimated topic proportion

θ̂n and the sentiment tone Ŝ, we define the topic-based sentiment Tone as

Tonea,td,n = θ̂a,td,nŜ
a,t
d .

A higher (lower) Tone means a more positive (negative) sentiment. Figure 3.7 demonstrates

an example of the construction of a multi-aspect sentiment score for document, d.

Figure 3.7: An Example of Multi-aspect Sentiment Score

Next, we are interested in aggregating topics-based Tonea,td,n to each Article IV level for

each country-year pair:

Tonea,tn =

Da,t∑
d=1

Tonea,td,n,

where Da,t is the total number of sentences in the authorities’ views section in year t for

country a. Moreover, if we aggregate further arrive at the weighted topic-specific policy sen-

timent measure for different country groups. For example, for low-income countries (LICs),

the topic n policy sentiment score is

Tonea,LICsn =
∑

a∈LICs

Tonea,tn ∗
1∑

a∈LICs
∑

d I
a,t
d

∗ 100,

9We neglect the ambiguous “other topics.”
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where Ia,td is a dummy that indicates whether document d belongs to a particular country

group.

3.4 Results

In the context of monetary policy, we established some stylized facts of the aggregate senti-

ment measure for six subtopics among all member countries from 2012–2018. In Figure 3.8,

the green bar represents scores that only count the positive sentiment, the red bar represents

negative sentiments, and diamonds represent net sentiment scores. The dashed blue line is

the average net sentiment across all policy themes.

For example, as a core mandate of the Fund, exchange rate policy receives higher net

sentiment. For the monetary policy framework, authorities in general welcome Fund policy

advice on how to improve their monetary framework in the short term and over the medium

term, with some of them requesting the Fund’s technical assistance (TA).

If we zoom in on each topic, in Figure 3.10 we can see how sentiment varies across

different country groups. G7 and G20 express more dispersed sentiments. However, among

emerging markets, low income countries, and fragile states, fund policy advice receives more

agreement and commitment. Under the monetary policy stance topic, one reason for the

more negative sentiment among G7 countries may because they have stronger analytical

capacity and market participation, yet emerging markets and fragile states tend to more rely

on the Fund’s analysis.

Moreover, in the scope of fiscal policy, tax policy (including tax administration) has the

highest sentiment among all member countries. Yet for other fiscal policy themes, sentiments

tend to be balanced and authorities’ receptions of them is mixed. Expenditure policy overall

tends toward mixed. One reason may that advice on cutting social spending to increase

fiscal suitability is sometimes pushed back on by country authorities.

Sentiment scores also vary among different country groups. G7 and advanced economies

express a more negative tone toward the tax policy. In contrast, EM, LICs, and fragile states
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welcome or voice commitment to the tax policy. The fiscal policy framework tends to be

positively received by all country groups.

3.5 Conclusion

Our paper presents a topic-based approach to determine the sentiment tone of the authorities’

views on monetary and fiscal policy recorded in Article IV staff reports. Moreover, our

analysis can be extended to study other aspects and policy areas of Fund advice, such

as in financial sector and structural reforms. Also, in order to achieve a more accurate

sentiment prediction, a larger training set is needed for classification models to learn from.

This requires continuing efforts to extend “gold labeled” sentences. Furthermore, based

on established stylized facts of topic-based sentiment, we can study the drivers behind the

reception of different Fund policy advice by different country groups.

Figure 3.8: Multi-aspect Monetary Policy Tractions for All Members 2012-2018
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Figure 3.9: Multi-aspect Fiscal Policy Tractions for All Members 2012-2018

Figure 3.10: Multi-aspect Monetary Policy Tractions for Country Groups 2012-2018
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Figure 3.11: Multi-aspect Fiscal Policy Tractions for Country Groups 2012-2018

3.6 Appendix

3.6.1 Example: labeled Sentences

1. Negative tones:

The authorities broadly agreed with the staff’s recommendations, but noted that com-

prehensive reform takes time. (-1)

The authorities agreed with the need to use exhaustible resources efficiently, but men-

tioned that the resource horizon is likely to increase as recent exploration activities

point to new discoveries (e.g., in the natural gas sector). (-1)

The authorities favored a looser monetary policy stance to promote growth. (-1)

2. Positive tones:

The authorities also welcomed the ta they have been receiving for the transition of the

national accounts to SNA93. (+1)

The authorities welcomed continued Fund technical assistance. (+1)

The authorities expressed their commitment to supporting the peg and building re-

serves over the medium term. (+1)
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3.6.2 Prediction Performance Measure: F-1 Score

Refer to the contingency table in Table 3.4. Precision is the percentage of sentences that are

predicted to be positive that are in fact positive. It is defined as

Precision =
True positive

True positive + False positve
.

In contrast, recall measures the percentage of sentences that are correctly predicted by the

model. It is defined as

Recall =
True positive

True positive + False negative
.

Therefore, the F -1 score is a weighted harmonic average of precision and recall. It is defined

as

F − 1 =
2 Precision× Recall

Precision + Recall
.
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