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Abstra
t

The San
tuary mobile 
ode system in
ludes se
urity me
hanisms for prote
ting mobile agents from

mali
ious servers as well as me
hanisms for prote
ting mobile agent servers from mali
ious mobile 
ode.

To prote
t remotely exe
uted mobile 
ode, we integrate several key approa
hes: (1) se
urity attributes


erti�
ation to enable mobile 
ode to avoid nodes in the agent-server network that are untrustworthy,

as determined by user-
entri
 se
urity poli
ies; (2) forward se
ure 
ryptography to improve dete
tion

of mali
ious tampering by servers; and (3) de�ning separate roles for agent author and agent owner,

whi
h justi�es restri
ted delegation and external referen
e monitors with owner-provided agents to limit

potential damage 
aused by buggy or 
ompromised agent 
ode. Simply put, we enable mobile 
ode to

avoid trouble when possible, and to dete
t trouble when it is unavoidable. We examine se
urity-aware

itinerary planning as a means to supplement these approa
hes, and des
ribe our analysis of this problem.

Our server uses well known approa
hes to defend itself from mali
ious 
ode, and 
ustom extensions that

address the se
urity needs of the mobile 
ode itself. This paper des
ribes our me
hanisms and how they

are integrated into the San
tuary mobile 
ode system.

1 Introdu
tion

The San
tuary proje
t is investigating the se
urity limitations of mobile agent systems. We are motivated by

the ability of mobile 
ode to autonomously 
ontrol its exe
ution lo
ation. Expli
it lo
ation 
ontrol enables

properly written software to eliminate mu
h of the 
ommuni
ation laten
y between the 
omputation and its
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needed external resour
es [14℄, and allows mobile 
ode systems to outperform traditional RPC-based systems

in high-laten
y environments. In this paper, we give an overview of the San
tuary system ar
hite
ture and

dis
uss in greater depth our se
urity me
hanisms: (1) attribute 
erti�
ates 
ontaining se
urity evaluation

results to enable the use of user-supplied risk management de
ision fun
tions; (2) forward se
ure logging

of partial results to dete
t single failures (des
ribed elsewhere [40℄); and (3) servi
e request interposition

to allow sta
kable restri
tions for restri
ted delegation of user authority, resour
e usage 
ontrol, and rights

ampli�
ation.

We believe that stru
turing distributed appli
ations using mobile 
ode is an important way to adapt to

trends in hardware te
hnology. In the next se
tion, we brie
y motivate the need for mobile 
ode and the


riti
ality of se
urity for mobile 
ode. We dis
uss our viewpoint on agent se
urity goals and brie
y des
ribe

me
hanisms used to provide agent se
urity in Se
tion 3. We des
ribe our system system ar
hite
ture and

se
urity-spe
i�
 design and implementation details in Se
tion 4.

2 Motivation

In the San
tuary proje
t, we fo
us on the se
urity of remote 
ode exe
ution. We view that performan
e

needs, espe
ially in the fa
e of inevitable te
hnology trends, will make the ability to se
urely exe
ute 
ode

remotely 
riti
al for distributed systems performan
e.

Code mobility solves a 
riti
al problem: it eliminates most of the 
ommuni
ation laten
y, 
ollapsing

multiple rounds of 
ommuni
ations to one by 
o-lo
ating the 
ode with remote resour
es. Suppose an

appli
ation needs to a

ess a remote resour
e repeatedly, 
onventionally using RPCs. The 
ommuni
ation

laten
y 
an easily dominate the 
omputation time. By restru
turing the appli
ation to use mobile 
ode, we

may end up using more system resour
es, but we need only pay for one network round-trip, greatly improving

the time-to-
ompletion. For appli
ations where time-to-
ompletion is a more important metri
 than overall

resour
e utilization eÆ
ien
y, mobile 
ode is very attra
tive.

Furthermore, available 
omputation power and 
ommuni
ations bandwidth among distributed nodes have

been in
reasing at exponential rates, albeit the doubling times di�er. While these te
hnology trends allow us

to solve ever larger problems, they also lead to an ines
apable 
on
lusion: distributed systems performan
e is

moving inexorably towards a laten
y dominated regime. Absent new physi
s, 
ommuni
ations laten
y 
annot

de
rease beyond the simple physi
al limits imposed by physi
al separation and the signal propagation speed.

Some distributed appli
ations are already 
learly laten
y dominated. Let us look at an extreme 
ase as a
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point of 
omparison. Planetary roboti
s must make de
isions lo
ally whenever possible: the 1997 Path�nder

mission [33℄ performed image analysis and path planning using a lo
al 20 MIPS pro
essor rather than su�ering

a message roundtrip of 20{40 minutes in an RPC to mu
h faster Earth-bound server pro
essors. Here, waiting

for the reply would have an opportunity 
ost of 24�10

9

lo
al instru
tions, a 
learly una

eptable alternative.

Consider now an Earth-bound transo
eani
 RPC. A ba
k-of-the-envelope 
al
ulation shows that a similar

instru
tion-
ount laten
y penalty will o

ur for RPCs using desktop-
lass hardware expe
ted to be available

in less than 9 years! Indeed, some 
onventional distributed appli
ations are already laten
y dominated. NFS,

for example, has little hope of performing well a
ross high laten
y networks, espe
ially in the fa
e of write

sharing [34, 35℄. Soon, all 
ommuni
ations links will be high laten
y when 
ompared with lo
al pro
essing.

To realize the gains from hardware performan
e improvements, distributed appli
ations must be restru
-

tured as more appli
ations move into the laten
y dominated regime. Design te
hniques su
h as 
lient-server

intera
tions with RPCs tend to result in systems that require many message roundtrips, and appli
ation per-

forman
e 
on
omitantly su�ers. And while resour
e utilization and throughput 
an be enhan
ed by simply


ontext swit
hing to exploit inter-job parallelism and avoid idling resour
es, su
h an approa
h does nothing

to redu
e the time-to-
ompletion for individual jobs and 
an only exa
erbate the situation.

The anti
ipated ubiquity of remotely exe
uting 
ode, however, raises a plethora of se
urity 
on
erns.

Servers must defend themselves against mali
ious mobile 
ode. Similarly, users of mobile-
ode enabled

appli
ations will not ne
essarily trust ea
h other nor the administrators of the remote ma
hines upon whi
h

their 
ode may run, and their mobile agents must be prote
ted from mali
ious servers and other mali
ious

agents. This paper des
ribes me
hanisms in the San
tuary mobile 
ode system that address these agent

se
urity issues.

3 Agent Se
urity Con
epts

The San
tuary System addresses some new goals for agent se
urity, as well as re�ning standard se
urity

goals and examining the intera
tions of se
urity me
hanisms to provide an integrated approa
h to agent

system se
urity. These new se
urity goals require us to provide me
hanisms that address atta
ks that aren't

meaningful in other systems.

Our system in
ludes me
hanisms to address the standard agent se
urity goals, des
ribed elsewhere [15℄.

A wide array of previous work has 
reated se
urity models for and des
ribed atta
ks on agent systems in

general [14℄ and for parti
ular agent systems su
h as Aglets [17℄, JavaSeal [8℄ and SeMoA [31℄. This se
tion
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des
ribes some of the 
on
epts we use while designing me
hanisms for our system.

3.1 Overview of Goals and Me
hanisms

Ea
h re�nement on mobile agent se
urity models is an attempt to make a model that better re
e
ts the

se
urity needs of mobile agent programmers, users and agent system administrators. To remain pra
ti
al,

the new model must remain a
hievable through realisti
 se
urity me
hanisms.

Mobile agent systemss need not be deployed with defenses against all possible atta
ks to be a generally

useful tool. We need only identify and defend against those atta
ks ultimately damaging to individual

appli
ations and servers. Along with our 
ontributions, re
ent work in this �eld provides suÆ
ient se
urity

me
hanisms that reasonable appli
ations 
an be developed and deployed in a se
ure manner.

Our system uses standard me
hanisms for isolating mobile agents, prote
ting mobile agents from agent

servers and vi
e-versa. In addition to these standard me
hanisms, we provide me
hanisms to a
hieve new

goals for agent fun
tionality and se
urity. Our methods partially prote
t the integrity of mobile agents'


omputation and data, and we provide additional me
hanisms for prote
ting priva
y.

One re�nement that we have made to the general agent programming model is to 
onsider the 
ase where

mobile 
ode that is part of an agent may not be trusted by the agent's owner. The agent owner for an

agent is the entity that 
on�gures then starts the agent. The agent owner a

epts responsibility for the

agent's a
tions by delegating some of the owner's rights to it. A running mobile agent may be 
omposed

of o�-the-shelf 
ode from multiple sour
es, none of whi
h are 
ompletely trusted by the agent owner. In

this 
ase it is important that the agent owner be able to 
ontrol the agent as it exe
utes and ensure that

it doesn't behave in a manner 
ontrary to the agent owner's stated poli
y. This re�nement on the model is

re
e
ted in our goal to provide a me
hanism for restri
ting rights delegations.

We now highlight the unique goals in our design that provide the motivations for our se
urity me
hanisms:

� Delegation of rights to agents: A

ount-based authorization systems 
learly do not s
ale to global

systems. Therefore, agents in a global agent system must be able to a
quire rights without requiring a

prior a

ount relationship between the agent owner and ea
h agent server. Additionally, agents 
annot

se
urely hide keys from the servers that they exe
ute on. Therefore, we must provide a means for

delegating rights to individual agents without �rst binding them to a 
ryptographi
 key. We delegate

rights through delegation 
erti�
ates that bind those rights to an agent's \natural name", whi
h is

a strong form of agent identity. Agent identity is des
ribed in detail in Se
tion 4.2. In addition to
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allowing us to bind rights to agents, the globally unique nature of the natural name enables us to

dynami
ally allo
ate resour
es to an agent and make them available for the agent even if it migrates

out of the allo
ating server and then later returns to it. We use an agent's natural name to provide it

with se
ure a

ess to its short-term 
ryptographi
 keys a
ross migrations.

� Restri
tion on rights delegations: Rights delegated to an agent need not be delegated without


onditions. As des
ribed above, an agent owner need not 
ompletely trust the mobile 
ode that they

use in their agent. When an agent is 
reated from untrusted 
omponents it is important that the agent

owner be able to spe
ify whi
h limitations to impose on rights delegated to the agent.

We implement restri
tions on delegated rights with programmable interposition agents, des
ribed in

Se
tion 4.9. These interposition agents inter
ept all 
ommuni
ations between the untrusted mobile


ode and the servi
e examining the delegated rights. This stru
ture allows the interposition agent

to modify or deny requests before the servi
e provider sees them, and 
an also be used for extended

features su
h as logging or manipulating the responses to those requests.

� Se
ure logging of partial results: The results of an agent's 
omputation must be prote
ted from

dishonest servers on its itinerary in order to provide a partial guarantee about the integrity of its 
om-

putation. This is a
hieved in our system by se
urely maintaining logs of the partial results 
omputed

on ea
h server. Forward se
ure 
ryptographi
 support (see Se
tion 3.2) is used by the SDR logging

module for maintaining su
h a log, as des
ribed in Se
tion 4.7.

� A

ess to se
urity-relevant information: We believe that dynami
 se
urity information about

the parties involved should be available to programs so that a

ess 
ontrol de
isions and migration

itineraries need not rely 
ompletely on the information available prior to exe
ution. Furthermore, both

agents and servers should be able to make use of this dynami
 se
urity information.

To provide dynami
 se
urity information in our system, we extend the general 
on
ept of attribute


erti�
ates to in
lude se
urity attributes (Se
tions 3.4 and 4.5).

� Se
ure itineraries: To ensure that their results are 
omputed from the 
orre
t inputs and their

a
tions are performed 
orre
tly, mobile agents must minimally have a means for ensuring that the

sequen
e of servers they visit mat
hes the itinerary they planned to visit.

Without external support beyond the standard use of server-provided authenti
ated links, it is only

possible to ensure that the portion of the itinerary before visiting a mali
ious server and after the last

5



mali
ious server on the itinerary. With the introdu
tion of monotoni
 server variables [38℄, we 
an

additionally ensure that the sequen
e of honest servers between any pair of 
olluding mali
ious servers

on the itinerary will only be traversed on
e.

More robust me
hanisms whi
h require agent servers to sign statements about the agent's exe
ution

path 
an be added at the agent level, and will allow a veri�er to determine whether or not all of the

intended hosts were on the path taken by the agent, and in the 
orre
t order. We will not dis
uss the

me
hanisms for providing authenti
ated links and signature-based path veri�
ation here.

In our model, single migrations have further se
urity requirements as des
ribed in Se
tion 3.3. We

dis
uss the planning of se
ure itineraries in Se
tion 4.8.

Our approa
hes to and solutions for some standard goals in the design of se
ure agent systems have dire
t

e�e
ts on the design of several of the me
hanisms that address the above goals. We brie
y des
ribe these

goals here:

� Safe exe
ution of agents: Though only limited 
laims 
an be made about the prote
tions given to

an agent against mali
ious servers, honest servers 
an provide signi�
ant prote
tion between agents.

By keeping an agent free from tampering by other agents, we simplify both the programming task for

agent programmers and the model for analyzing their se
urity.

We use standard me
hanisms for isolating agents from ea
h other when running in a Java-based mobile

agent server. We 
hose to use stri
t separation of agent obje
t graphs, restri
ting agent intera
tion

to a single read-write interfa
e (the port 
ommuni
ation interfa
e, see Se
tion 4). This separation

provides the opportunity for a 
lean implementation of the interposition me
hanism on both inter-

agent intera
tions and agent-server intera
tions.

� Simpli
ity of programming model: We provide only basi
 se
urity and fun
tionality in the server

itself, guided in its design by a mi
ro-kernel model. In order to provide a simple programming model

to agent authors, we provide hooks in the infrastru
ture for migration-aware libraries. These libraries

operate at the agent level and provide high-level interfa
es to agent programmers.

The full design for in
luding migration-aware libraries in our system and the high-level 
ode mobility

interfa
e provided by the Mojo sour
e-to-sour
e pre
ompiler are presented in other work [10, 15℄.
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3.2 Forward Se
urity for Agents

We would like to ensure two se
urity properties for an agent's 
omputation: forward integrity and forward


on�dentiality [2, 20, 39℄. Our approa
h utilizes existing te
hniques in forward se
ure 
ryptography to

a
hieve these goals. Typi
ally, forward se
ure 
ryptography is used to ensure that se
urity properties arising

from 
ryptographi
 operations performed in earlier time periods 
annot be violated even if 
ryptographi


se
rets for the 
urrent time period are 
ompromised. This is done by updating the 
ryptographi
 se
rets in

a one-way manner at the end of ea
h time period. Our use of the 
on
ept di�ers slightly in that the earlier

time periods for a mobile agent 
orrespond to its exe
ution on earlier servers on its itinerary.

The San
tuary system in
ludes a se
ure partial result logging library for agents that employs two existing

forward se
ure 
ryptography s
hemes. The �rst s
heme uses a forward se
ure pseudo-random number gen-

erator, a Message Authenti
ation Code (MAC) and a symmetri
 en
ryption s
heme to a
hieve both forward

se
urity properties [5℄. The se
ond s
heme provides forward integrity using a forward se
ure, publi
 key

based, digital signature s
heme [4℄. The implementation of the SDR library is dis
ussed in Se
tion 4.7.

3.3 Nested Transa
tions through Parallel Proto
ols

We introdu
e the 
on
ept of using a 
oordinated set of parallel proto
ols to implement a restri
ted form of

nested transa
tions [19, 21℄. The restri
tion we require does not allow for fully general nested transa
tions:

only a single layer of nesting is allowed. The set of proto
ols is viewed as a single transa
tion, with ea
h

proto
ol implementing its own transa
tion nested in the set. Consistent with the nested transa
tion model,

if any of the individual proto
ols (or transa
tions) aborts, the entire transa
tion must abort, and similarly

for 
ommitting.

By implementing the agent migration proto
ol as one su
h nested transa
tion, we allow for extensions

to it while restri
ting the possible failure modes from adding new proto
ols. The me
hanism for extensible

agent migration proto
ols is shown in Se
tion 4.4.

3.4 Se
urity Attributes

In addition to the a

ess restri
tions and resour
e needs of a parti
ular agent or the 
urrent availability of

those resour
es on a server, agents and servers may need to make de
isions based on the se
urity attributes

of the parties with whi
h they 
ommuni
ate. The se
urity attributes of an entity in
lude all se
urity-relevant

information and statements about it. These attributes may serve as inputs to another entity's se
urity
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de
isions governing the s
ope of their intera
tions. For example, whether a server has undergone penetration

testing or other forms of se
urity audit|and the results of those tests as well as the identity of the agen
y

that 
ondu
ted them|would be useful for mobile agents and their users sin
e mobile agents 
an use this

information to avoid untrustworthy servers.

Server administrators and agent programmers will trust di�erent authorities to verify the se
urity at-

tributes of other servers and agents. To satisfy these disparate trust relationships, we must provide a

de
entralized me
hanism for allowing authorities to se
urely make statements about se
urity attributes and

provide them to the a
tive parties in the system. This is the motivation for our se
urity attribute 
erti�
ates

as des
ribed in Se
tion 4.5.

4 Se
urity Components

Sanctuary Agent Server

SDR Key
Manager

External
Resources

Service Agent

Name Service

SDR Library

AgentAgent
Agent
Agent

Service Agent

Operating System Resources

Interposition
Agent

Figure 1: Server Ar
hite
ture

Ea
h server 
ontains several subsystems, and may be

running several agents at on
e.

The San
tuary Agent SErver (SASE) is a Java appli
a-

tion that provides a low-level interfa
e for building dis-

tributed and mobile middle-ware and appli
ations. We

use a mi
ro-kernel approa
h [1℄ in the SASE, providing

only minimal agent 
reation and 
ommuni
ation me
h-

anisms in the server itself. Agent libraries and spe
ial

agents 
alled servi
e agents reside in a server to pro-

vide extended servi
es to agents and to provide a

ess

to prote
ted resour
es.

In the SASE, running mobile agents are isolated from

ea
h other, though we neither use as stri
t a hierar
hy

as the seals in JavaSeal [8℄, nor as loose a stru
ture as

the 
ontexts of Aglets [18℄ or the thread groups of Se-

MoA [31℄. We 
hose to provide a stri
t obje
t-graph

separation similar to that in JavaSeal while allowing the more dynami
 intera
tion pattern of other systems.

The SASE provides ports, whi
h are a

ess-
ontrolled single-re
eiver message queues that allow agents

to 
ommuni
ate with ea
h other and with the various servi
e agents resident on the server. The design for

the port 
ommuni
ation me
hanism is based on the Ma
h IPC design [26, 36℄. The port implementation

maintains the separation of agent obje
t graphs by serializing (and de-serializing) all obje
ts passed through
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them. We indi
ate a pair of ports in our �gures by double-headed arrows between 
ommuni
ating entities

in the system.

The Se
urity Attribute Certi�
ation Infrastru
ture (SACI) allows agents and servers to use se
urity

attribute 
erti�
ates to prevent problems before they o

ur by �rst examining their trust of the planned

a
tion. The Se
ret De
oder Ring (SDR) mobile 
ode support library helps agent users dete
t problems in

the exe
ution of their mobile 
ode.

4.1 Se
urity Me
hanisms for Agents

Mobile agents must rely on the agent server to provide some of the me
hanisms for their se
urity. Other

me
hanisms 
an be implemented at the agent level: as library 
ode invoked by the agent or through servi
es

provided by other agents running in the same system. We will brie
y show whi
h 
omponents reside in ea
h


ategory.

4.1.1 Me
hanisms Provided by the Server

Fundamentally, the agent server itself and all of its underlying software must behave properly to ensure a


orre
t exe
ution environment for mobile agents. The agent server uses standard agent isolation te
hniques

that require a unique 
lass loader for ea
h agent, and prevents obje
t referen
e sharing between agents. To

maintain these distin
t obje
t graphs, the agent server requires agents to 
ommuni
ate through the port


ommuni
ation me
hanism. The port manager is responsible for 
reating ports and se
urely identifying par-

ties engaged in 
ommuni
ation. Inter-server 
ommuni
ation, spe
i�
ally the agent 
reation (and migration)

me
hanism, is se
ured by the server's use of bi-dire
tionally authenti
ated SSL 
onne
tions managed by its


ommuni
ations module. Finally, extended se
urity features are provided by libraries loaded by the server

su
h as the forward se
ure 
ryptographi
 routines provided by the SDR library.

4.1.2 Me
hanisms Provided at the Agent Level

Agent programmers 
an extend the agent server-provided se
urity to ensure additional se
urity servi
es.

At the agent-level, some standard servi
es in
lude: interposition agents for a
tively restri
ting the use of

delegated rights, a 
ontrolled name spa
e for advertising servi
es, and the logging 
omponent of the SDR

library.

9



4.2 Agent Identity

Without a se
ure me
hanism for identifying agents, 
ryptographi
 methods to prote
t agents from mali
ious

servers break down [29℄.

We provide su
h a me
hanism for identifying agents. In a manner similar to the SPKI/SDSI 
on
ept that

\the name is the key", we use \natural names" to refer to mobile agents. The natural name for a mobile agent

is the 
omposition of the portion of the agent that doesn't 
hange during its exe
ution. The stati
 portion

of an agent's state in
ludes all of the 
on�guration data provided when the agent is intialized: the basi



ode for the agent, the read-only portion of the agent's obje
t graph, the agent's 
on�guration (in
luding its

stati
 poli
y), the agent owner's publi
 key and an instan
e number unique to that agent owner, as shown

in Figure 2. This extends the sket
h of an agent's kernel [30℄, whi
h requires that it be 
omprised of \all

its data, 
ode, and 
on�guration information that does not 
hange during the agent's lifetime" to des
ribe

whi
h 
omponents are minimally required in our system to a
hieve a se
ure, globally unique, agent identity.

Be
ause agents may use dynami
ally bound (or generated) 
ode, we do not assume that all 
ode that the

agent uses is in
luded in this kernel, but rather that the 
ode to verify that the binding (or generation) is


orre
t is there.

Agent Identity
Hash

Instance
Number

Owner's
Key

Agent
Code

Static
Data

Agent
Config

Sign Ingress Cert

Figure 2: Agent Identity

Agent identity is 
reated impli
itly from the agent's


on�guration.

This name is in
onveniently large for normal use,

however, and in pra
ti
e we use a 
ryptographi
ally se-


ure hash of the full name to a
t as a manageable short

version of the agent's natural name.

The agent owners will use this short version in 
er-

ti�
ates 
laiming ownership of the agent, thereby tightly

binding the agent (and its 
on�guration) to them. This

ownership is a form of indemni�
ation for the agent,

su
h that agent servers 
an rely on the bound identity

(or identities) for a
tions taken by the agent on the owners' behalf. Though agents are typi
ally referred to

as having a unique agent owner, in pra
ti
e multiple entities 
an a

ept responsibility for an agents a
tions,

thereby providing it with a

ess to a greater number of servers and resour
es.

10



4.3 Agent Groups

We generally refer to ea
h mobile agent as a single entity, however, our model allows an agent owner to 
reate

a mobile agent as an agent group, or set of agents running and migrating in 
on
ert. The individual agents

in an agent group are 
alled member agents. Agents stru
tured this way 
an 
arry some servi
e agents with

them, yet intera
t with them using standard port 
ommuni
ation.

Agent Server

"Index Agent"
Port

Service

Name Service "DataBase"
Port

"DB Agent"
Port DB

Agent

Store Bought
Agent

Index
Agent

"Index"
Port

DataBaseName ServiceIndex

Figure 3: Agent Groups

Agent groups are 
omposed of multiple member

agents.

We now 
onsider an example agent group 
omposed

of three member agents. This agent group 
ontains the

member agents and 
ommuni
ation pattern seen in Fig-

ure 3. The member agents are de�ned as follows: the

(
on�gurable) store-bought agent generates the set of

indexing queries that the agent owner wishes to see, the

database agent is authorized by the database resour
e

owner to provide (
ontrolled) a

ess to the database, and

the index agent uses a proprietary algorithm to a

ess

an index 
reated from information in the database.

When an agent is stru
tured as an agent group, the

agent's natural name is slightly di�erent. The stati


portion of the agent's state is now 
omposed of the stati


portion of the agent group's state. This, in turn, is 
omposed of the natural names for the member agents.

This is a 
lear extension of the agent identity des
ribed above, and will not be dis
ussed further.

4.4 Proto
ol Bundles

In an optimized agent itinerary, agent migration is the only remaining high laten
y 
ommuni
ation on the

agent's 
riti
al path of exe
ution. Agent migration must be implemented with the minimum number of


ommuni
ation round-trips to ensure minimal impa
t on time-to-
ompletion.

The SASE in
ludes support for dynami
ally extensible agent migration proto
ols through proto
ol bun-

dles. A proto
ol bundle is a set of 
oordinated parallel proto
ols that implements the semanti
s of a single

nested transa
tion. Additional proto
ols are added to a proto
ol bundle to support servi
es that rea
t to

an agent migration with their own proto
ols. Forward-se
ure key transfer, as seen below in Se
tion 4.7.3, is

one su
h proto
ol. These proto
ols run in parallel with the agent server's built-in agent transfer proto
ol,
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whose sole duty is transferring agent data for the low-level agent 
reation operation.

Though ea
h proto
ol is provided with information about the overall transa
tion, it is isolated from the

other sub-proto
ols, and 
an only intera
t with its peers through the proto
ol bundle itself. This design

allows sub-proto
ol authors to write their proto
ols independently, with only a minimum of trust that other

sub-proto
ols behave properly.

Unfortunately, the loose syn
hronization between proto
ols in our design allows for leakage of sensitive

information to the remote host. This 
an only o

ur in the event of a migration failure, however, whi
h implies

that the agent already trusted the remote server enough to attempt a migration to it. The information leaked

to the remote server is thus in the 
ontrol of a partially trusted server and is not a severe se
urity problem.

To ensure properties outside of the main-line exe
ution of the agent's 
ode a
ross agent migrations, we


all hook fun
tions on ea
h migration su

ess or failure. This design is similar to the Aglet system's [18℄

onArrival 
allba
k. An agent author may 
hoose, for example, to use state appraisal fun
tions [12℄ whenever

the agent su

essfully migrates to a remote host, or to re
laim referen
es to non-serializable obje
ts that it

would have lost during the agent migration.

4.5 Se
urity Attribute Certi�
ates

We use Se
urity Attribute Certi�
ates (SACs) to distribute se
urity attribute information in a de
entralized

manner. Whereas traditional 
erti�
ates bind identity to keys and delegate rights to key holders, we extend

attribute 
erti�
ates [22℄ in SACs to bind se
urity attributes of a key holder to that key. As des
ribed in

Se
tion 4.2, the \key" used in a SAC that refers to an agent is the agent's natural name. SACs are issued by

Se
urity Attribute Certi�
ation Authorities (SACAs), whi
h are analogous to the traditional Certi�
ation

Authorities (CAs) that issue identity 
erti�
ates.

The Se
urity Attribute Certi�
ation Infrastru
ture (SACI) de�nes the role of the SACA and in
ludes

a 
omplete des
ription of the SAC design. SACI extends and retargets the SPKI/SDSI [11, 28℄ 
erti�
ate

design into a mobile 
ode 
ontext.

SACs a
t as a form of \se
ured input data" from the SACA to the user of the 
erti�
ate. Rather than

using a 
erti�
ate revo
ation list, we use re
en
y requirements and expiration dates to 
ontrol the lifetime of

SACs [27℄. The meaningful lifetime of se
urity attribute 
erti�
ates 
an be related to the se
urity attributes

that they 
ontain: operational se
urity attributes (su
h as me
hanisms for disaster re
overy, ba
kups and

personnel se
urity) will have long lifetimes: the attributes and our understanding of them 
hange very

slowly; individual attributes for a parti
ular system or pie
e of software that relate to ongoing analysis of
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that entity will have short lifetimes: penetration testing of systems and se
urity analysis of 
ode may 
ause

rapid 
hanges in our understanding of their se
urity.

We need not require that the information in SACs immediately re
e
t 
hanges in the 
urrent state of

knowledge about a parti
ular entity. We must only ensure that una

eptable se
urity vulnerabilities do not

arise from the di�eren
e between what is known and what is represented as true in the SACs. In parti
ular,

expiry of SACs that are bound to a pie
e of software due to se
urity-relevant bugs found in the software


an happen at a human time-s
ale. Given that 
urrent e�orts for �nding se
urity-relevant bugs are largely

performed by people, both �nding and exploiting these bugs happen on a human time-ss
le. Thus, 
erti�
ate

lifetimes (and thus 
erti�
ate expiry) on the s
ale of a day or more are quite reasonable when a se
urity


ompromise requires non-trivial human e�ort. This 
on
lusion will not hold true when either the bug 
an

be exploited automati
ally (su
h as automati
ally generated exploit 
ode for previously identi�ed bu�er

over
ows), or when the se
urity exposure due to ina

ura
y in the 
erti�
ate 
orresponds to signi�
ant

potential damage.

No agent systems o�er prote
tion against physi
al atta
ks on the agent servers or atta
ks on 
on�guration

management failures for trusted 
omponents. SACs allow us to en
ode information about these types of

atta
ks so se
urity poli
ies 
an use them to take sus
eptibilty to these atta
ks into a

ount.

4.6 Poli
ies and Poli
y De
isions

Ea
h agent and agent server may have its own poli
y for appli
ation and se
urity de
isions. This poli
y,

when input to a poli
y engine along with supporting eviden
e, determines whi
h a
tions will be taken or

denied using a trust management-based poli
y me
hanism [7, 9, 6℄. A

ess 
ontrol me
hanisms refer to the

poli
y engine to determine adheren
e to the rights delegation rules and the poli
y assigned to their resour
es.

Poli
y de
isions are made based on information from multiple sour
es, in
luding both dynami
 informa-

tion, su
h as server usage, and stati
 information su
h as 
erti�
ates and poli
ies. The de
isions 
ontrolled

in this manner di�er by situation and entity.

Poli
ies that use SACs as input are required to spe
ify not just whi
h attributes to examine from SACs,

but also whi
h of the trusted authorities is allowed to assign ea
h attribute. We introdu
e this limitation on

Certi�
ation Authorities (CAs) sin
e the role a SACA plays in a poli
y depends upon the type of 
erti�
ates

it is allowed to issue. When CAs are only used for 
ertifying identity, there is no need to di�erentiate between

them beyond whether or not they are trusted to 
ertify identities.

A poli
y may be extended by properly formed poli
y updates re
eived while the user of the poli
y is
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running. Thus an agent 
reator, server administrator, or other duly delegated entity, may 
reate a new

poli
y that will have the same for
e as the original poli
y when those updates are in
orporated in it. This

update me
hanism allows poli
ies (and the programs that they are used by) to remain valid as new se
urity

information is obtained.

Se
tion 4.9 showed us how interposition agents 
ould be used to implement agent poli
ies for intera
tion

with other agents. The agent owner poli
y interpreted by a poli
y engine would provide suÆ
ient infor-

mation to agent library 
ode that the 
on
erns about interposition-based poli
y enfor
ement des
ribed in

Se
tion 4.9.2 would be addressed. The primary diÆ
ulty with the interposition me
hanism for poli
y en-

for
ement is that the la
k of 
ommuni
ation between layers implies that a simple layering approa
h is too

stri
t, as we expe
t di�erent poli
ies to intera
t, thereby requiring that the enfor
ement of the poli
ies 
o-

operate. By providing both a poli
y engine for interpreting and storing poli
ies and a separate enfor
ement

me
hanism via interposition agents, we allow a variety of di�erent approa
hes to agent and server poli
ies

that 
overs reasonable alternatives for in
orporating poli
ies into the mobile agent model.

4.7 Forward Se
ure Partial Result Logging

Agents 
an prote
t their partial results using the forward se
ure 
ryptography s
hemes provided by the SDR

library. The SDR library 
onsists mainly of two modules: a high-level result logging and veri�
ation library

whi
h invokes routines in a low-level module that implements the 
ryptography s
hemes.

4.7.1 Issues with Maintaining Forward Se
urity

The SDR library must interfa
e with Java programs|the SASE and the agents running on it. Although the

SDR result logging routines are implemented in Java, the 
ryptography routines are not. The 
ryptographi


key handling fun
tions and the a
tual 
ryptography s
hemes are implemented in native 
ode. Cryptographi


se
rets stored in Java obje
ts 
annot be reliably erased be
ause Java does not provide the ne
essary 
ontrols

over memory management. In parti
ular, 
opies of se
rets 
ontained in Java obje
ts may remain on a

server due to garbage 
olle
tion and paging. Thus, the keys and s
rat
h spa
e used in the forward se
ure


ryptography s
hemes 
annot be stored in Java obje
ts. The 
ryptography routines are implemented as a

JNI library written in C, whi
h allows expli
it 
ontrol over memory allo
ation and pinning of memory pages

to main memory.

Another issue that 
ompli
ates the implementation is transfer of the se
rets that are used in the forward

se
ure 
ryptography s
hemes to the next server. Sin
e time periods in the 
ryptography s
hemes 
hange
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when an agent migration begins, the se
rets that are used on a server must be generated on its pre
eding

server. These se
rets must be transferred to the new server in a forward se
ure manner. Simply using


ommuni
ation over the SSL proto
ol will not work be
ause SSL is not forward se
ure: SSL session keys


an be re
omputed from long-term se
rets held by the re
eiver and re
orded network traÆ
. So, if the

re
eiving server is broken into at a later time period, it may still be possible for the atta
ker to retrieve the

agent's se
rets and break its forward se
urity. In addition to being forward se
ure, the proto
ol must handle

proto
ol bundle aborts in a manner that preserves forward se
urity. Se
tion 4.7.3 whi
h des
ribes the SDR

key transfer proto
ol will address these issues. In the next se
tion, we will brie
y review the SDR forward

se
ure partial result logging s
heme to make its intera
tion with the key transfer proto
ol 
lear.

4.7.2 Result Logging S
heme

The SDR result logging s
heme is simple: ea
h log entry 
ontains some data (e.g. some partial results) and

a tag. There is also some auxiliary information asso
iated with ea
h entry: a sequen
e number denoting

its position in the log and an end-of-period 
ag. The end-of-period 
ag is set for the �nal log entry that

marks (attempted) migration out of that server. The tag in a log entry is generated by applying the sele
ted


ryptography s
heme on the data and the auxiliary information.

4.7.3 Key Transfer Proto
ol

In order to prevent loss of forward se
urity during transfer of an agent's 
ryptographi
 keys, we need to use

a key transfer proto
ol that is forward se
ure. To ensure this, the SDR key transfer proto
ol uses an initial

DiÆe-Hellman key ex
hange phase to set up an ephemeral shared se
ret key instead of using SSL session

keys to en
rypt the 
ommuni
ation. The ephemeral se
ret key is used to en
rypt the forward se
ure keys.

1

The en
rypted keys are transferred over an SSL 
hannel to provide authenti
ated 
ommuni
ation.

The SDR key transfer proto
ol runs in parallel with other agent migration proto
ols in the proto
ol

bundle and its su

ess or failure depends upon the su

essful 
ompletion of the other proto
ols. The proto
ol

pro
eeds independently until the �nal (
ommit/abort) phase, when the status of the other proto
ols in the

proto
ol bundle is 
he
ked. If the proto
ol bundle 
ompletes su

essfully, the SDR key transfer proto
ol

initiates su

essful 
ommit a
tions. This in
ludes erasing the forward se
ure keys that were sent a
ross to

the next server. In the MAC-based forward se
urity s
heme, when a single agent is distributing its keys to

multiple spawned agents, the agent gets a partial su

ess bit ve
tor that says whi
h keys were su

essfully

1

This step is also 
arried out in native 
ode.
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transmitted and whi
h transfers failed. The agent has the freedom to redistribute its keys to any other

agents it may spawn to 
omplete its task. If the proto
ol bundle fails to 
omplete su

essfully, the SDR key

transfer proto
ol must initiate steps to gra
efully abort the transa
tion even if the forward se
urity keys were

su

essfully transferred to the next server. The abort a
tions involve invalidation of the sent forward se
urity

key and generating a new log entry that signals a failed migration. Ideally, the agent should not reuse the

keys already sent a
ross in the aborted proto
ol. This is possible in the MAC-based forward se
urity s
heme

by deriving two independent keys from the old one. If the proto
ol bundle aborts, the �rst key is invalidated

and the se
ond key is used to tag the \migration failed" log entry. However, in 
ase of the signature-based

forward se
urity s
heme, there is only one way to derive new keys from old ones. The newly derived key is

used to tag the \migration failed" log entry and the agent 
an try to migrate again by deriving further from

this key. Note however, that the result log is rendered potentially inse
ure from that time period onwards.

If the server to whi
h migration failed is mali
ious, it 
an try to subvert the 
omputation by generating a

fake result history for the agent.

4.8 Se
urity-Aware Migration Itineraries

An agent may trust the di�erent hosts that it wants to visit for a

essing resour
es to di�ering degrees.

Some hosts may be highly trusted by it, while others less so. The agent's se
urity poli
y and the se
urity

attributes information it has about a host 
an aid it in determining a \trust metri
" for that host.

2

Hosts

with a suÆ
iently high trust metri
 are appropriate lo
ations for verifying the integrity of the agent's partial

results and se
urely planning future portions of its itinerary.

3

Trust metri
s of the hosts that need to be

visited 
an be one kind of input used in the itinerary planning pro
ess.

4.8.1 Using Trusted Hosts

The forward se
ure logging s
heme allows su

essful dete
tion of result tampering if there is only one ma-

li
ious host on the agent's itinerary. Trusted hosts 
an be visited for verifying partial result integrity at

di�erent points in the itinerary to attain some degree of 
on�den
e in the �nal results of the 
omputation.

An agent must plan its itinerary su
h that trusted hosts are present at appropriate points in the itinerary.

The 
ryptographi
 s
heme used for prote
ting the result logs may restri
t the pla
ement of trusted veri�-

2

How to determine the trust metri
 is an orthogonal issue, whi
h is being investigated by the se
urity metri
s resear
h


ommunity [23℄. Our approa
h is not dependent upon any spe
i�
 methodology. As long as a 
onvenient method is available

to determine the metri
 from available se
urity data, agents 
an use it as a measure for the trustworthiness of the host.

3

The itinerary is the a
tual sequen
e in whi
h the agent will visit the hosts to a

ess resour
es.
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ation hosts. For example, 
onsider a partial result log prote
ted using the MAC-based forward se
urity

s
heme. The agent wishes to visit a subset of the hosts on its itinerary and then verify the integrity of the

generated results before pro
eeding to other hosts. The agent 
an follow a loop-like migration pattern in

whi
h it visits the subset of hosts sequentially with a given trusted host at the beginning and end of its

trip. The agent must visit the trusted host at the beginning of its trip to save its forward se
ure veri�
ation

se
rets on it and after returning at the end of the trip it 
an use the saved se
rets to verify the integrity of

the generated results.

Apart from veri�
ation of the integrity of results, there are other se
urity-related reasons to plan an

itinerary with judi
ious pla
ement of trusted hosts:

� Prevention of 
ollusion atta
ks: Pla
ing trusted hosts su
h that two untrusted (or insuÆ
iently

trusted) hosts are separated on the agent's itinerary by a trusted host 
an be used to attain some

guarantee against the o

urren
e of 
ollusion atta
ks on the forward se
urity of the partial results.

� Veri�
ation for long running agents: Agents that run over long periods of time and 
annot

periodi
ally migrate or send results ba
k to their home server may use trusted hosts that are 
loser to

periodi
ally 
he
k the vera
ity of their results.

� Early tamper dete
tion: An agent 
an arrange servers in short loops and migrate to a trusted host

at the end of ea
h loop if it does not suÆ
iently trust that the servers on the loop are honest. This

fo
usses tamper dete
tion over smaller sets of servers, possibly trading o� task-
ompletion time for a

gain in se
urity.

� Corre
t exe
ution on later servers: If results generated on previous servers are required for 
orre
t


omputation on later servers, the agent should verify the 
orre
tness of its results as soon as it 
an.

This prevents wastage of e�ort in 
omputing the new results, in 
ase the previous results have been

tampered with.

� Log 
ompression: An agent 
an migrate to a trusted host after visiting a number of other hosts. If

the 
omputed results verify 
orre
tly, then the agent may 
ompress its result log in order to limit its

main memory and migration bandwidth requirements.
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4.8.2 Planning Se
ure Itineraries

An agent may use trusted intermediate hosts as bases for se
urely planning its itinerary in a pie
e-wise

manner. At ea
h trusted host, the agent de
ides what hosts it should visit next and in what order. Its

de
isions may be based on input from external modules that provide information su
h as the lo
ation of the

resour
es it desires to use, how se
ure the host providing a spe
i�
 resour
e is per
eived to be (its trust metri
)

and the anti
ipated 
ost of exe
ution at that host. Planning an itinerary or portion of an itinerary may be

modelled as an optimization problem where the agent wishes to satisfy several 
onstraints on 
hara
teristi
s

like 
on�den
e in the results generated, 
ost of exe
ution and migration laten
y. For instan
e, an agent may

want to minimize the overall migration laten
y on its itinerary to a
hieve faster time to 
ompletion, while

keeping the total 
ost of exe
ution below some threshold.

In the general s
enario, the 
onstraints in the itinerary planning problem may be of several di�erent

forms. They 
an be equalities, inequalities or partial/total ordering 
onstraints. A single 
onstraint by

itself|minimizing overall laten
y|is an instan
e of the NP-
omplete Travelling Salesman Problem (TSP).

We will 
onsider planning of se
ure itineraries as a sub-problem of the overall optimization problem whi
h

involves minimizing overall migration laten
y of the itinerary and keeping the 
on�den
e in the generated

results above some reasonable, agent poli
y-spe
i�ed threshold.

Agents may use se
urity data about hosts providing the needed resour
es in di�erent ways depending on

its se
urity poli
y. An agent that does not require a high level of se
urity may simply ignore the se
urity

data. Another way in whi
h the data may be used is to �lter it through simple thresholds. For example,

itinerary planning for agents in military appli
ations may �lter out all hosts that are below a 
ertain trust

metri
 (like the \top se
ret" 
learan
e level) and all other hosts may be treated equally. In both of the

above 
ases, we still have to minimize overall laten
y. If the agent's poli
y spe
i�es a 
uto� threshold for

the overall laten
y below whi
h it is a

eptable, the problem is simpli�ed. In su
h a 
ase, it is possible to

�nd a solution by making use of heuristi
 sear
h te
hniques.

4

4.9 Interposition Agents in San
tuary

To ensure the separation of agents in our Java-based server, the servers load ea
h agent into its own private


lass loader. Agents are prevented from obtaining referen
es to obje
ts owned by other agents, and thus 
an

only 
ommuni
ate with ea
h other through the server-provided 
ommuni
ation ports.

4

This is work in progress.
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Interposition agents, as 
on�gured by the agent owner, are instantiated by the server before initiating

a mobile agent. The interposition agent is transparently inserted on the ports between the mobile agent

and the agent server. This allows the interposition agent to inter
ept all 
ommuni
ations into and out of

the agent, and to make modi�
ations to these 
ommuni
ations as needed. Interposition agents are written

to the RPC interfa
e, and examine or modify data on the 
ommuni
ations link between the 
lient and

server. This allows interposition agents to implement the breadth of poli
y implementations possible in the


apability-based prote
tion model. The interposition agents in our design are similar in fun
tion to �lters

applied to 
apabilities [13℄, yet we do not require the introdu
tion of a separate interfa
e de�nition language.

Interposition agents may also be imposed by the server for servi
e agents, to provide stri
t a

ess 
ontrols

in a modular fashion.

Rights assigned to an agent are a
tually provided to the interposition agent, as it appears that the

interposition agent is the one performing the a

esses to the servi
es on the agent server. In this way,

interposition agents are used for rights elevation for an agent, allowing an essentially unprivileged agent to

perform privileged a
tions. This 
ontrasts our design with that of Jones [16℄, where interposition 
an only

be used for restri
tion or semanti
s extensions, not rights elevation.

When the interposition agents are used for a

ess restri
tions, it 
an dynami
ally determine the severity

of the restri
tion by monitoring the requests of the interposed agent. This would work in mu
h the same way

that the privileged monitoring pro
ess in Provos' privilege separation [25℄ dynami
ally de
ides whi
h privi-

leged requests should be a

epted by modeling the unprivileged pro
ess with a �nite state ma
hine. Simpler

stati
 restri
tions are more general, however, in that no analysis of the internal states of the interposed

agents is needed.

Interposition agents 
an be used for restri
ting a

ess to delegated rights using programmable (and

stateful) a

ess 
he
ks, interposing between a 
olle
tion of mutually distrustful agents, applying an external

poli
y language interpreter to a
tions taken by an agent and implementing a mandatory log of all a
tions

taken by an agent. We will dis
uss the �rst two of these in the rest of this se
tion.

4.9.1 Interposition Hierar
hies

By separating the interposition 
on
ept from the agent stru
ture itself and implementing it with the 
om-

muni
ations interfa
e, it be
omes possible to provide 
omplex interposition hierar
hies. When providing

interposition on 
alls in the JavaSeal system, ea
h interposition 
an only be performed on agents running

below it in the seal hierar
hy, as shown in Figure 4.
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RootSeal

Interposition
Agent

Store Bought
Agent

Index
Agent

Database
Agent

Figure 4: Multiple Interposition in JavaSeal

Interposition is possible for 
hild seals.

Unfortunately, the example appli
ation shown in Fig-

ure 5 requires 
on�gurable interposition in a more 
om-

plex manner. The store-bought, database and index

agents are not fully trusted by the agent owner, though

all are required to a
hieve an eÆ
ient solution to the in-

dexing query that the agent owner wishes to have solved.

The agent owner uses the interposition agent to 
ontrol

the 
ommuni
ations behavior of the other three group

members. In order to allow the database agent to exer-


ise its privileges with the database resour
e, however,

it must be allowed to 
ommuni
ate dire
tly with the

database. The interposition agent is 
on�gured to allow

this, and provides the port to the database resour
e dire
tly to the database agent, without interposing on

it.

DB
Agent

Index
Agent

Store Bought
Agent

Agent Server

Interposition
Agent

"Index Agent"

Service

Name Service"DataBase"

"DB Agent"

Name Service IndexDataBase

Figure 5: Multiple Interposition in San
tuary

A single Interposition Agent 
an interpose between

multiple other agents.

The three untrusted member agents in this example

appear to be running in a normal, unrestri
ted, agent

environment. Ea
h agent 
ommuni
ates with the others

as it would if it were not part of an interposed agent

group, but rather were installed dire
tly on the server.

The same me
hanism 
an be used for interposition on

a servi
e agent, as well. Servi
e agent owners may sim-

ilarly be untrusting of the servi
e agents that they run,

and use interposition agents to ensure that the 
ommuni-


ation patterns and servi
es provided mat
h the servi
e

agent's 
on�guration.

4.9.2 Restri
ted A
tive Delegation via Interpo-

sition

In addition to simple poli
y 
he
ks to determine whether or not a parti
ular a

ess (or port 
ommuni
ation)

should be allowed, an interposition agent 
an be used for Restri
ted A
tive Delegation (RAD) of rights. Be-


ause 
ode is transported to ea
h server as part of the agent migration, adding additional 
ode for performing
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restri
tions on the agent will not add signi�
antly to the 
omplexity or 
ommuni
ations requirements of the

system.

Enfor
ing a

ess 
ontrol via RAD is stri
tly more powerful than stati
 
he
ks using delegation through


erti�
ates. Both delegation 
erti�
ates and interposition 
ode 
an be removed by mali
ious agent servers.

The two are in this way equivalent.

Unfortunately, interposition is not a 
ure-all for enfor
ing poli
y de
isions. In parti
ular, operations

whose typi
al behavior is su

ess and whi
h have a high retry overhead will be ineÆ
ient to 
ontrol via

interposition. Agent migration requires a large amount of preparation on the behalf of the agent, and thus

would be a poor mat
h with interposition as a poli
y enfor
ement me
hanism. Rather than using a trial-and-

error approa
h to �nd the next a

eptable migration target (as is required when using interposition agents

that simply deny the migration request), it would be better to use a poli
y that 
an be queried to determine

whi
h hosts will be a

eptable migration targets.

5 Con
lusion

We have des
ribed our se
urity goals for a general-purpose mobile 
ode system and dis
ussed our approa
h

to a
hieving these goals. In some 
ases, we have opted for the ability to dete
t 
ompromises when preventing

atta
ks is impra
ti
al or impossible. And when dete
tion is diÆ
ult, we rely on trusted external information|

in SACs|to provide a last line of defense.

The development of San
tuary is on-going, and mu
h more resear
h remains to be done. For example,

Mojo, our pre
ompiler, is being extended to o�er greater fun
tionality. To fully explore the limits of mobile

agent systems and their se
urity properties, we need to develop and integrate additional se
urity te
hniques

and to test the system via deployment.

The usefulness of SACI is 
urrently limited. There are a few publi
, independent se
urity evaluation

standards available [37, 24℄, but they are neither universally appli
able nor widely used. Obje
tive and

pra
ti
al se
urity metri
s are sorely needed; the nas
ent 
omputer se
urity insuran
e industry may help to

improve their development [32℄.

Whether providing stronger se
urity guarantees is pra
ti
al remains an open question. New, more eÆ
ient

forward se
ure signature s
hemes is an a
tive area of investigation. Though it has been shown that program

obfus
ation is impossible in general [3℄, perhaps the 
lass of programs that remain obfus
atable is still large

enough to be of interest, permitting an eÆ
ient way to provide 
on�dentiality of 
omputation.
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