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Abstrat

The Santuary mobile ode system inludes seurity mehanisms for proteting mobile agents from

maliious servers as well as mehanisms for proteting mobile agent servers from maliious mobile ode.

To protet remotely exeuted mobile ode, we integrate several key approahes: (1) seurity attributes

erti�ation to enable mobile ode to avoid nodes in the agent-server network that are untrustworthy,

as determined by user-entri seurity poliies; (2) forward seure ryptography to improve detetion

of maliious tampering by servers; and (3) de�ning separate roles for agent author and agent owner,

whih justi�es restrited delegation and external referene monitors with owner-provided agents to limit

potential damage aused by buggy or ompromised agent ode. Simply put, we enable mobile ode to

avoid trouble when possible, and to detet trouble when it is unavoidable. We examine seurity-aware

itinerary planning as a means to supplement these approahes, and desribe our analysis of this problem.

Our server uses well known approahes to defend itself from maliious ode, and ustom extensions that

address the seurity needs of the mobile ode itself. This paper desribes our mehanisms and how they

are integrated into the Santuary mobile ode system.

1 Introdution

The Santuary projet is investigating the seurity limitations of mobile agent systems. We are motivated by

the ability of mobile ode to autonomously ontrol its exeution loation. Expliit loation ontrol enables

properly written software to eliminate muh of the ommuniation lateny between the omputation and its

�
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needed external resoures [14℄, and allows mobile ode systems to outperform traditional RPC-based systems

in high-lateny environments. In this paper, we give an overview of the Santuary system arhiteture and

disuss in greater depth our seurity mehanisms: (1) attribute erti�ates ontaining seurity evaluation

results to enable the use of user-supplied risk management deision funtions; (2) forward seure logging

of partial results to detet single failures (desribed elsewhere [40℄); and (3) servie request interposition

to allow stakable restritions for restrited delegation of user authority, resoure usage ontrol, and rights

ampli�ation.

We believe that struturing distributed appliations using mobile ode is an important way to adapt to

trends in hardware tehnology. In the next setion, we briey motivate the need for mobile ode and the

ritiality of seurity for mobile ode. We disuss our viewpoint on agent seurity goals and briey desribe

mehanisms used to provide agent seurity in Setion 3. We desribe our system system arhiteture and

seurity-spei� design and implementation details in Setion 4.

2 Motivation

In the Santuary projet, we fous on the seurity of remote ode exeution. We view that performane

needs, espeially in the fae of inevitable tehnology trends, will make the ability to seurely exeute ode

remotely ritial for distributed systems performane.

Code mobility solves a ritial problem: it eliminates most of the ommuniation lateny, ollapsing

multiple rounds of ommuniations to one by o-loating the ode with remote resoures. Suppose an

appliation needs to aess a remote resoure repeatedly, onventionally using RPCs. The ommuniation

lateny an easily dominate the omputation time. By restruturing the appliation to use mobile ode, we

may end up using more system resoures, but we need only pay for one network round-trip, greatly improving

the time-to-ompletion. For appliations where time-to-ompletion is a more important metri than overall

resoure utilization eÆieny, mobile ode is very attrative.

Furthermore, available omputation power and ommuniations bandwidth among distributed nodes have

been inreasing at exponential rates, albeit the doubling times di�er. While these tehnology trends allow us

to solve ever larger problems, they also lead to an inesapable onlusion: distributed systems performane is

moving inexorably towards a lateny dominated regime. Absent new physis, ommuniations lateny annot

derease beyond the simple physial limits imposed by physial separation and the signal propagation speed.

Some distributed appliations are already learly lateny dominated. Let us look at an extreme ase as a
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point of omparison. Planetary robotis must make deisions loally whenever possible: the 1997 Path�nder

mission [33℄ performed image analysis and path planning using a loal 20 MIPS proessor rather than su�ering

a message roundtrip of 20{40 minutes in an RPC to muh faster Earth-bound server proessors. Here, waiting

for the reply would have an opportunity ost of 24�10

9

loal instrutions, a learly unaeptable alternative.

Consider now an Earth-bound transoeani RPC. A bak-of-the-envelope alulation shows that a similar

instrution-ount lateny penalty will our for RPCs using desktop-lass hardware expeted to be available

in less than 9 years! Indeed, some onventional distributed appliations are already lateny dominated. NFS,

for example, has little hope of performing well aross high lateny networks, espeially in the fae of write

sharing [34, 35℄. Soon, all ommuniations links will be high lateny when ompared with loal proessing.

To realize the gains from hardware performane improvements, distributed appliations must be restru-

tured as more appliations move into the lateny dominated regime. Design tehniques suh as lient-server

interations with RPCs tend to result in systems that require many message roundtrips, and appliation per-

formane onomitantly su�ers. And while resoure utilization and throughput an be enhaned by simply

ontext swithing to exploit inter-job parallelism and avoid idling resoures, suh an approah does nothing

to redue the time-to-ompletion for individual jobs and an only exaerbate the situation.

The antiipated ubiquity of remotely exeuting ode, however, raises a plethora of seurity onerns.

Servers must defend themselves against maliious mobile ode. Similarly, users of mobile-ode enabled

appliations will not neessarily trust eah other nor the administrators of the remote mahines upon whih

their ode may run, and their mobile agents must be proteted from maliious servers and other maliious

agents. This paper desribes mehanisms in the Santuary mobile ode system that address these agent

seurity issues.

3 Agent Seurity Conepts

The Santuary System addresses some new goals for agent seurity, as well as re�ning standard seurity

goals and examining the interations of seurity mehanisms to provide an integrated approah to agent

system seurity. These new seurity goals require us to provide mehanisms that address attaks that aren't

meaningful in other systems.

Our system inludes mehanisms to address the standard agent seurity goals, desribed elsewhere [15℄.

A wide array of previous work has reated seurity models for and desribed attaks on agent systems in

general [14℄ and for partiular agent systems suh as Aglets [17℄, JavaSeal [8℄ and SeMoA [31℄. This setion
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desribes some of the onepts we use while designing mehanisms for our system.

3.1 Overview of Goals and Mehanisms

Eah re�nement on mobile agent seurity models is an attempt to make a model that better reets the

seurity needs of mobile agent programmers, users and agent system administrators. To remain pratial,

the new model must remain ahievable through realisti seurity mehanisms.

Mobile agent systemss need not be deployed with defenses against all possible attaks to be a generally

useful tool. We need only identify and defend against those attaks ultimately damaging to individual

appliations and servers. Along with our ontributions, reent work in this �eld provides suÆient seurity

mehanisms that reasonable appliations an be developed and deployed in a seure manner.

Our system uses standard mehanisms for isolating mobile agents, proteting mobile agents from agent

servers and vie-versa. In addition to these standard mehanisms, we provide mehanisms to ahieve new

goals for agent funtionality and seurity. Our methods partially protet the integrity of mobile agents'

omputation and data, and we provide additional mehanisms for proteting privay.

One re�nement that we have made to the general agent programming model is to onsider the ase where

mobile ode that is part of an agent may not be trusted by the agent's owner. The agent owner for an

agent is the entity that on�gures then starts the agent. The agent owner aepts responsibility for the

agent's ations by delegating some of the owner's rights to it. A running mobile agent may be omposed

of o�-the-shelf ode from multiple soures, none of whih are ompletely trusted by the agent owner. In

this ase it is important that the agent owner be able to ontrol the agent as it exeutes and ensure that

it doesn't behave in a manner ontrary to the agent owner's stated poliy. This re�nement on the model is

reeted in our goal to provide a mehanism for restriting rights delegations.

We now highlight the unique goals in our design that provide the motivations for our seurity mehanisms:

� Delegation of rights to agents: Aount-based authorization systems learly do not sale to global

systems. Therefore, agents in a global agent system must be able to aquire rights without requiring a

prior aount relationship between the agent owner and eah agent server. Additionally, agents annot

seurely hide keys from the servers that they exeute on. Therefore, we must provide a means for

delegating rights to individual agents without �rst binding them to a ryptographi key. We delegate

rights through delegation erti�ates that bind those rights to an agent's \natural name", whih is

a strong form of agent identity. Agent identity is desribed in detail in Setion 4.2. In addition to
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allowing us to bind rights to agents, the globally unique nature of the natural name enables us to

dynamially alloate resoures to an agent and make them available for the agent even if it migrates

out of the alloating server and then later returns to it. We use an agent's natural name to provide it

with seure aess to its short-term ryptographi keys aross migrations.

� Restrition on rights delegations: Rights delegated to an agent need not be delegated without

onditions. As desribed above, an agent owner need not ompletely trust the mobile ode that they

use in their agent. When an agent is reated from untrusted omponents it is important that the agent

owner be able to speify whih limitations to impose on rights delegated to the agent.

We implement restritions on delegated rights with programmable interposition agents, desribed in

Setion 4.9. These interposition agents interept all ommuniations between the untrusted mobile

ode and the servie examining the delegated rights. This struture allows the interposition agent

to modify or deny requests before the servie provider sees them, and an also be used for extended

features suh as logging or manipulating the responses to those requests.

� Seure logging of partial results: The results of an agent's omputation must be proteted from

dishonest servers on its itinerary in order to provide a partial guarantee about the integrity of its om-

putation. This is ahieved in our system by seurely maintaining logs of the partial results omputed

on eah server. Forward seure ryptographi support (see Setion 3.2) is used by the SDR logging

module for maintaining suh a log, as desribed in Setion 4.7.

� Aess to seurity-relevant information: We believe that dynami seurity information about

the parties involved should be available to programs so that aess ontrol deisions and migration

itineraries need not rely ompletely on the information available prior to exeution. Furthermore, both

agents and servers should be able to make use of this dynami seurity information.

To provide dynami seurity information in our system, we extend the general onept of attribute

erti�ates to inlude seurity attributes (Setions 3.4 and 4.5).

� Seure itineraries: To ensure that their results are omputed from the orret inputs and their

ations are performed orretly, mobile agents must minimally have a means for ensuring that the

sequene of servers they visit mathes the itinerary they planned to visit.

Without external support beyond the standard use of server-provided authentiated links, it is only

possible to ensure that the portion of the itinerary before visiting a maliious server and after the last
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maliious server on the itinerary. With the introdution of monotoni server variables [38℄, we an

additionally ensure that the sequene of honest servers between any pair of olluding maliious servers

on the itinerary will only be traversed one.

More robust mehanisms whih require agent servers to sign statements about the agent's exeution

path an be added at the agent level, and will allow a veri�er to determine whether or not all of the

intended hosts were on the path taken by the agent, and in the orret order. We will not disuss the

mehanisms for providing authentiated links and signature-based path veri�ation here.

In our model, single migrations have further seurity requirements as desribed in Setion 3.3. We

disuss the planning of seure itineraries in Setion 4.8.

Our approahes to and solutions for some standard goals in the design of seure agent systems have diret

e�ets on the design of several of the mehanisms that address the above goals. We briey desribe these

goals here:

� Safe exeution of agents: Though only limited laims an be made about the protetions given to

an agent against maliious servers, honest servers an provide signi�ant protetion between agents.

By keeping an agent free from tampering by other agents, we simplify both the programming task for

agent programmers and the model for analyzing their seurity.

We use standard mehanisms for isolating agents from eah other when running in a Java-based mobile

agent server. We hose to use strit separation of agent objet graphs, restriting agent interation

to a single read-write interfae (the port ommuniation interfae, see Setion 4). This separation

provides the opportunity for a lean implementation of the interposition mehanism on both inter-

agent interations and agent-server interations.

� Simpliity of programming model: We provide only basi seurity and funtionality in the server

itself, guided in its design by a miro-kernel model. In order to provide a simple programming model

to agent authors, we provide hooks in the infrastruture for migration-aware libraries. These libraries

operate at the agent level and provide high-level interfaes to agent programmers.

The full design for inluding migration-aware libraries in our system and the high-level ode mobility

interfae provided by the Mojo soure-to-soure preompiler are presented in other work [10, 15℄.
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3.2 Forward Seurity for Agents

We would like to ensure two seurity properties for an agent's omputation: forward integrity and forward

on�dentiality [2, 20, 39℄. Our approah utilizes existing tehniques in forward seure ryptography to

ahieve these goals. Typially, forward seure ryptography is used to ensure that seurity properties arising

from ryptographi operations performed in earlier time periods annot be violated even if ryptographi

serets for the urrent time period are ompromised. This is done by updating the ryptographi serets in

a one-way manner at the end of eah time period. Our use of the onept di�ers slightly in that the earlier

time periods for a mobile agent orrespond to its exeution on earlier servers on its itinerary.

The Santuary system inludes a seure partial result logging library for agents that employs two existing

forward seure ryptography shemes. The �rst sheme uses a forward seure pseudo-random number gen-

erator, a Message Authentiation Code (MAC) and a symmetri enryption sheme to ahieve both forward

seurity properties [5℄. The seond sheme provides forward integrity using a forward seure, publi key

based, digital signature sheme [4℄. The implementation of the SDR library is disussed in Setion 4.7.

3.3 Nested Transations through Parallel Protools

We introdue the onept of using a oordinated set of parallel protools to implement a restrited form of

nested transations [19, 21℄. The restrition we require does not allow for fully general nested transations:

only a single layer of nesting is allowed. The set of protools is viewed as a single transation, with eah

protool implementing its own transation nested in the set. Consistent with the nested transation model,

if any of the individual protools (or transations) aborts, the entire transation must abort, and similarly

for ommitting.

By implementing the agent migration protool as one suh nested transation, we allow for extensions

to it while restriting the possible failure modes from adding new protools. The mehanism for extensible

agent migration protools is shown in Setion 4.4.

3.4 Seurity Attributes

In addition to the aess restritions and resoure needs of a partiular agent or the urrent availability of

those resoures on a server, agents and servers may need to make deisions based on the seurity attributes

of the parties with whih they ommuniate. The seurity attributes of an entity inlude all seurity-relevant

information and statements about it. These attributes may serve as inputs to another entity's seurity
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deisions governing the sope of their interations. For example, whether a server has undergone penetration

testing or other forms of seurity audit|and the results of those tests as well as the identity of the ageny

that onduted them|would be useful for mobile agents and their users sine mobile agents an use this

information to avoid untrustworthy servers.

Server administrators and agent programmers will trust di�erent authorities to verify the seurity at-

tributes of other servers and agents. To satisfy these disparate trust relationships, we must provide a

deentralized mehanism for allowing authorities to seurely make statements about seurity attributes and

provide them to the ative parties in the system. This is the motivation for our seurity attribute erti�ates

as desribed in Setion 4.5.

4 Seurity Components

Sanctuary Agent Server

SDR Key
Manager

External
Resources

Service Agent

Name Service

SDR Library

AgentAgent
Agent
Agent

Service Agent

Operating System Resources

Interposition
Agent

Figure 1: Server Arhiteture

Eah server ontains several subsystems, and may be

running several agents at one.

The Santuary Agent SErver (SASE) is a Java applia-

tion that provides a low-level interfae for building dis-

tributed and mobile middle-ware and appliations. We

use a miro-kernel approah [1℄ in the SASE, providing

only minimal agent reation and ommuniation meh-

anisms in the server itself. Agent libraries and speial

agents alled servie agents reside in a server to pro-

vide extended servies to agents and to provide aess

to proteted resoures.

In the SASE, running mobile agents are isolated from

eah other, though we neither use as strit a hierarhy

as the seals in JavaSeal [8℄, nor as loose a struture as

the ontexts of Aglets [18℄ or the thread groups of Se-

MoA [31℄. We hose to provide a strit objet-graph

separation similar to that in JavaSeal while allowing the more dynami interation pattern of other systems.

The SASE provides ports, whih are aess-ontrolled single-reeiver message queues that allow agents

to ommuniate with eah other and with the various servie agents resident on the server. The design for

the port ommuniation mehanism is based on the Mah IPC design [26, 36℄. The port implementation

maintains the separation of agent objet graphs by serializing (and de-serializing) all objets passed through
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them. We indiate a pair of ports in our �gures by double-headed arrows between ommuniating entities

in the system.

The Seurity Attribute Certi�ation Infrastruture (SACI) allows agents and servers to use seurity

attribute erti�ates to prevent problems before they our by �rst examining their trust of the planned

ation. The Seret Deoder Ring (SDR) mobile ode support library helps agent users detet problems in

the exeution of their mobile ode.

4.1 Seurity Mehanisms for Agents

Mobile agents must rely on the agent server to provide some of the mehanisms for their seurity. Other

mehanisms an be implemented at the agent level: as library ode invoked by the agent or through servies

provided by other agents running in the same system. We will briey show whih omponents reside in eah

ategory.

4.1.1 Mehanisms Provided by the Server

Fundamentally, the agent server itself and all of its underlying software must behave properly to ensure a

orret exeution environment for mobile agents. The agent server uses standard agent isolation tehniques

that require a unique lass loader for eah agent, and prevents objet referene sharing between agents. To

maintain these distint objet graphs, the agent server requires agents to ommuniate through the port

ommuniation mehanism. The port manager is responsible for reating ports and seurely identifying par-

ties engaged in ommuniation. Inter-server ommuniation, spei�ally the agent reation (and migration)

mehanism, is seured by the server's use of bi-diretionally authentiated SSL onnetions managed by its

ommuniations module. Finally, extended seurity features are provided by libraries loaded by the server

suh as the forward seure ryptographi routines provided by the SDR library.

4.1.2 Mehanisms Provided at the Agent Level

Agent programmers an extend the agent server-provided seurity to ensure additional seurity servies.

At the agent-level, some standard servies inlude: interposition agents for atively restriting the use of

delegated rights, a ontrolled name spae for advertising servies, and the logging omponent of the SDR

library.
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4.2 Agent Identity

Without a seure mehanism for identifying agents, ryptographi methods to protet agents from maliious

servers break down [29℄.

We provide suh a mehanism for identifying agents. In a manner similar to the SPKI/SDSI onept that

\the name is the key", we use \natural names" to refer to mobile agents. The natural name for a mobile agent

is the omposition of the portion of the agent that doesn't hange during its exeution. The stati portion

of an agent's state inludes all of the on�guration data provided when the agent is intialized: the basi

ode for the agent, the read-only portion of the agent's objet graph, the agent's on�guration (inluding its

stati poliy), the agent owner's publi key and an instane number unique to that agent owner, as shown

in Figure 2. This extends the sketh of an agent's kernel [30℄, whih requires that it be omprised of \all

its data, ode, and on�guration information that does not hange during the agent's lifetime" to desribe

whih omponents are minimally required in our system to ahieve a seure, globally unique, agent identity.

Beause agents may use dynamially bound (or generated) ode, we do not assume that all ode that the

agent uses is inluded in this kernel, but rather that the ode to verify that the binding (or generation) is

orret is there.

Agent Identity
Hash

Instance
Number

Owner's
Key

Agent
Code

Static
Data

Agent
Config

Sign Ingress Cert

Figure 2: Agent Identity

Agent identity is reated impliitly from the agent's

on�guration.

This name is inonveniently large for normal use,

however, and in pratie we use a ryptographially se-

ure hash of the full name to at as a manageable short

version of the agent's natural name.

The agent owners will use this short version in er-

ti�ates laiming ownership of the agent, thereby tightly

binding the agent (and its on�guration) to them. This

ownership is a form of indemni�ation for the agent,

suh that agent servers an rely on the bound identity

(or identities) for ations taken by the agent on the owners' behalf. Though agents are typially referred to

as having a unique agent owner, in pratie multiple entities an aept responsibility for an agents ations,

thereby providing it with aess to a greater number of servers and resoures.
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4.3 Agent Groups

We generally refer to eah mobile agent as a single entity, however, our model allows an agent owner to reate

a mobile agent as an agent group, or set of agents running and migrating in onert. The individual agents

in an agent group are alled member agents. Agents strutured this way an arry some servie agents with

them, yet interat with them using standard port ommuniation.

Agent Server

"Index Agent"
Port

Service

Name Service "DataBase"
Port

"DB Agent"
Port DB

Agent

Store Bought
Agent

Index
Agent

"Index"
Port

DataBaseName ServiceIndex

Figure 3: Agent Groups

Agent groups are omposed of multiple member

agents.

We now onsider an example agent group omposed

of three member agents. This agent group ontains the

member agents and ommuniation pattern seen in Fig-

ure 3. The member agents are de�ned as follows: the

(on�gurable) store-bought agent generates the set of

indexing queries that the agent owner wishes to see, the

database agent is authorized by the database resoure

owner to provide (ontrolled) aess to the database, and

the index agent uses a proprietary algorithm to aess

an index reated from information in the database.

When an agent is strutured as an agent group, the

agent's natural name is slightly di�erent. The stati

portion of the agent's state is now omposed of the stati

portion of the agent group's state. This, in turn, is omposed of the natural names for the member agents.

This is a lear extension of the agent identity desribed above, and will not be disussed further.

4.4 Protool Bundles

In an optimized agent itinerary, agent migration is the only remaining high lateny ommuniation on the

agent's ritial path of exeution. Agent migration must be implemented with the minimum number of

ommuniation round-trips to ensure minimal impat on time-to-ompletion.

The SASE inludes support for dynamially extensible agent migration protools through protool bun-

dles. A protool bundle is a set of oordinated parallel protools that implements the semantis of a single

nested transation. Additional protools are added to a protool bundle to support servies that reat to

an agent migration with their own protools. Forward-seure key transfer, as seen below in Setion 4.7.3, is

one suh protool. These protools run in parallel with the agent server's built-in agent transfer protool,
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whose sole duty is transferring agent data for the low-level agent reation operation.

Though eah protool is provided with information about the overall transation, it is isolated from the

other sub-protools, and an only interat with its peers through the protool bundle itself. This design

allows sub-protool authors to write their protools independently, with only a minimum of trust that other

sub-protools behave properly.

Unfortunately, the loose synhronization between protools in our design allows for leakage of sensitive

information to the remote host. This an only our in the event of a migration failure, however, whih implies

that the agent already trusted the remote server enough to attempt a migration to it. The information leaked

to the remote server is thus in the ontrol of a partially trusted server and is not a severe seurity problem.

To ensure properties outside of the main-line exeution of the agent's ode aross agent migrations, we

all hook funtions on eah migration suess or failure. This design is similar to the Aglet system's [18℄

onArrival allbak. An agent author may hoose, for example, to use state appraisal funtions [12℄ whenever

the agent suessfully migrates to a remote host, or to relaim referenes to non-serializable objets that it

would have lost during the agent migration.

4.5 Seurity Attribute Certi�ates

We use Seurity Attribute Certi�ates (SACs) to distribute seurity attribute information in a deentralized

manner. Whereas traditional erti�ates bind identity to keys and delegate rights to key holders, we extend

attribute erti�ates [22℄ in SACs to bind seurity attributes of a key holder to that key. As desribed in

Setion 4.2, the \key" used in a SAC that refers to an agent is the agent's natural name. SACs are issued by

Seurity Attribute Certi�ation Authorities (SACAs), whih are analogous to the traditional Certi�ation

Authorities (CAs) that issue identity erti�ates.

The Seurity Attribute Certi�ation Infrastruture (SACI) de�nes the role of the SACA and inludes

a omplete desription of the SAC design. SACI extends and retargets the SPKI/SDSI [11, 28℄ erti�ate

design into a mobile ode ontext.

SACs at as a form of \seured input data" from the SACA to the user of the erti�ate. Rather than

using a erti�ate revoation list, we use reeny requirements and expiration dates to ontrol the lifetime of

SACs [27℄. The meaningful lifetime of seurity attribute erti�ates an be related to the seurity attributes

that they ontain: operational seurity attributes (suh as mehanisms for disaster reovery, bakups and

personnel seurity) will have long lifetimes: the attributes and our understanding of them hange very

slowly; individual attributes for a partiular system or piee of software that relate to ongoing analysis of
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that entity will have short lifetimes: penetration testing of systems and seurity analysis of ode may ause

rapid hanges in our understanding of their seurity.

We need not require that the information in SACs immediately reet hanges in the urrent state of

knowledge about a partiular entity. We must only ensure that unaeptable seurity vulnerabilities do not

arise from the di�erene between what is known and what is represented as true in the SACs. In partiular,

expiry of SACs that are bound to a piee of software due to seurity-relevant bugs found in the software

an happen at a human time-sale. Given that urrent e�orts for �nding seurity-relevant bugs are largely

performed by people, both �nding and exploiting these bugs happen on a human time-ssle. Thus, erti�ate

lifetimes (and thus erti�ate expiry) on the sale of a day or more are quite reasonable when a seurity

ompromise requires non-trivial human e�ort. This onlusion will not hold true when either the bug an

be exploited automatially (suh as automatially generated exploit ode for previously identi�ed bu�er

overows), or when the seurity exposure due to inauray in the erti�ate orresponds to signi�ant

potential damage.

No agent systems o�er protetion against physial attaks on the agent servers or attaks on on�guration

management failures for trusted omponents. SACs allow us to enode information about these types of

attaks so seurity poliies an use them to take suseptibilty to these attaks into aount.

4.6 Poliies and Poliy Deisions

Eah agent and agent server may have its own poliy for appliation and seurity deisions. This poliy,

when input to a poliy engine along with supporting evidene, determines whih ations will be taken or

denied using a trust management-based poliy mehanism [7, 9, 6℄. Aess ontrol mehanisms refer to the

poliy engine to determine adherene to the rights delegation rules and the poliy assigned to their resoures.

Poliy deisions are made based on information from multiple soures, inluding both dynami informa-

tion, suh as server usage, and stati information suh as erti�ates and poliies. The deisions ontrolled

in this manner di�er by situation and entity.

Poliies that use SACs as input are required to speify not just whih attributes to examine from SACs,

but also whih of the trusted authorities is allowed to assign eah attribute. We introdue this limitation on

Certi�ation Authorities (CAs) sine the role a SACA plays in a poliy depends upon the type of erti�ates

it is allowed to issue. When CAs are only used for ertifying identity, there is no need to di�erentiate between

them beyond whether or not they are trusted to ertify identities.

A poliy may be extended by properly formed poliy updates reeived while the user of the poliy is
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running. Thus an agent reator, server administrator, or other duly delegated entity, may reate a new

poliy that will have the same fore as the original poliy when those updates are inorporated in it. This

update mehanism allows poliies (and the programs that they are used by) to remain valid as new seurity

information is obtained.

Setion 4.9 showed us how interposition agents ould be used to implement agent poliies for interation

with other agents. The agent owner poliy interpreted by a poliy engine would provide suÆient infor-

mation to agent library ode that the onerns about interposition-based poliy enforement desribed in

Setion 4.9.2 would be addressed. The primary diÆulty with the interposition mehanism for poliy en-

forement is that the lak of ommuniation between layers implies that a simple layering approah is too

strit, as we expet di�erent poliies to interat, thereby requiring that the enforement of the poliies o-

operate. By providing both a poliy engine for interpreting and storing poliies and a separate enforement

mehanism via interposition agents, we allow a variety of di�erent approahes to agent and server poliies

that overs reasonable alternatives for inorporating poliies into the mobile agent model.

4.7 Forward Seure Partial Result Logging

Agents an protet their partial results using the forward seure ryptography shemes provided by the SDR

library. The SDR library onsists mainly of two modules: a high-level result logging and veri�ation library

whih invokes routines in a low-level module that implements the ryptography shemes.

4.7.1 Issues with Maintaining Forward Seurity

The SDR library must interfae with Java programs|the SASE and the agents running on it. Although the

SDR result logging routines are implemented in Java, the ryptography routines are not. The ryptographi

key handling funtions and the atual ryptography shemes are implemented in native ode. Cryptographi

serets stored in Java objets annot be reliably erased beause Java does not provide the neessary ontrols

over memory management. In partiular, opies of serets ontained in Java objets may remain on a

server due to garbage olletion and paging. Thus, the keys and srath spae used in the forward seure

ryptography shemes annot be stored in Java objets. The ryptography routines are implemented as a

JNI library written in C, whih allows expliit ontrol over memory alloation and pinning of memory pages

to main memory.

Another issue that ompliates the implementation is transfer of the serets that are used in the forward

seure ryptography shemes to the next server. Sine time periods in the ryptography shemes hange
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when an agent migration begins, the serets that are used on a server must be generated on its preeding

server. These serets must be transferred to the new server in a forward seure manner. Simply using

ommuniation over the SSL protool will not work beause SSL is not forward seure: SSL session keys

an be reomputed from long-term serets held by the reeiver and reorded network traÆ. So, if the

reeiving server is broken into at a later time period, it may still be possible for the attaker to retrieve the

agent's serets and break its forward seurity. In addition to being forward seure, the protool must handle

protool bundle aborts in a manner that preserves forward seurity. Setion 4.7.3 whih desribes the SDR

key transfer protool will address these issues. In the next setion, we will briey review the SDR forward

seure partial result logging sheme to make its interation with the key transfer protool lear.

4.7.2 Result Logging Sheme

The SDR result logging sheme is simple: eah log entry ontains some data (e.g. some partial results) and

a tag. There is also some auxiliary information assoiated with eah entry: a sequene number denoting

its position in the log and an end-of-period ag. The end-of-period ag is set for the �nal log entry that

marks (attempted) migration out of that server. The tag in a log entry is generated by applying the seleted

ryptography sheme on the data and the auxiliary information.

4.7.3 Key Transfer Protool

In order to prevent loss of forward seurity during transfer of an agent's ryptographi keys, we need to use

a key transfer protool that is forward seure. To ensure this, the SDR key transfer protool uses an initial

DiÆe-Hellman key exhange phase to set up an ephemeral shared seret key instead of using SSL session

keys to enrypt the ommuniation. The ephemeral seret key is used to enrypt the forward seure keys.

1

The enrypted keys are transferred over an SSL hannel to provide authentiated ommuniation.

The SDR key transfer protool runs in parallel with other agent migration protools in the protool

bundle and its suess or failure depends upon the suessful ompletion of the other protools. The protool

proeeds independently until the �nal (ommit/abort) phase, when the status of the other protools in the

protool bundle is heked. If the protool bundle ompletes suessfully, the SDR key transfer protool

initiates suessful ommit ations. This inludes erasing the forward seure keys that were sent aross to

the next server. In the MAC-based forward seurity sheme, when a single agent is distributing its keys to

multiple spawned agents, the agent gets a partial suess bit vetor that says whih keys were suessfully

1

This step is also arried out in native ode.
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transmitted and whih transfers failed. The agent has the freedom to redistribute its keys to any other

agents it may spawn to omplete its task. If the protool bundle fails to omplete suessfully, the SDR key

transfer protool must initiate steps to graefully abort the transation even if the forward seurity keys were

suessfully transferred to the next server. The abort ations involve invalidation of the sent forward seurity

key and generating a new log entry that signals a failed migration. Ideally, the agent should not reuse the

keys already sent aross in the aborted protool. This is possible in the MAC-based forward seurity sheme

by deriving two independent keys from the old one. If the protool bundle aborts, the �rst key is invalidated

and the seond key is used to tag the \migration failed" log entry. However, in ase of the signature-based

forward seurity sheme, there is only one way to derive new keys from old ones. The newly derived key is

used to tag the \migration failed" log entry and the agent an try to migrate again by deriving further from

this key. Note however, that the result log is rendered potentially inseure from that time period onwards.

If the server to whih migration failed is maliious, it an try to subvert the omputation by generating a

fake result history for the agent.

4.8 Seurity-Aware Migration Itineraries

An agent may trust the di�erent hosts that it wants to visit for aessing resoures to di�ering degrees.

Some hosts may be highly trusted by it, while others less so. The agent's seurity poliy and the seurity

attributes information it has about a host an aid it in determining a \trust metri" for that host.

2

Hosts

with a suÆiently high trust metri are appropriate loations for verifying the integrity of the agent's partial

results and seurely planning future portions of its itinerary.

3

Trust metris of the hosts that need to be

visited an be one kind of input used in the itinerary planning proess.

4.8.1 Using Trusted Hosts

The forward seure logging sheme allows suessful detetion of result tampering if there is only one ma-

liious host on the agent's itinerary. Trusted hosts an be visited for verifying partial result integrity at

di�erent points in the itinerary to attain some degree of on�dene in the �nal results of the omputation.

An agent must plan its itinerary suh that trusted hosts are present at appropriate points in the itinerary.

The ryptographi sheme used for proteting the result logs may restrit the plaement of trusted veri�-

2

How to determine the trust metri is an orthogonal issue, whih is being investigated by the seurity metris researh

ommunity [23℄. Our approah is not dependent upon any spei� methodology. As long as a onvenient method is available

to determine the metri from available seurity data, agents an use it as a measure for the trustworthiness of the host.

3

The itinerary is the atual sequene in whih the agent will visit the hosts to aess resoures.
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ation hosts. For example, onsider a partial result log proteted using the MAC-based forward seurity

sheme. The agent wishes to visit a subset of the hosts on its itinerary and then verify the integrity of the

generated results before proeeding to other hosts. The agent an follow a loop-like migration pattern in

whih it visits the subset of hosts sequentially with a given trusted host at the beginning and end of its

trip. The agent must visit the trusted host at the beginning of its trip to save its forward seure veri�ation

serets on it and after returning at the end of the trip it an use the saved serets to verify the integrity of

the generated results.

Apart from veri�ation of the integrity of results, there are other seurity-related reasons to plan an

itinerary with judiious plaement of trusted hosts:

� Prevention of ollusion attaks: Plaing trusted hosts suh that two untrusted (or insuÆiently

trusted) hosts are separated on the agent's itinerary by a trusted host an be used to attain some

guarantee against the ourrene of ollusion attaks on the forward seurity of the partial results.

� Veri�ation for long running agents: Agents that run over long periods of time and annot

periodially migrate or send results bak to their home server may use trusted hosts that are loser to

periodially hek the veraity of their results.

� Early tamper detetion: An agent an arrange servers in short loops and migrate to a trusted host

at the end of eah loop if it does not suÆiently trust that the servers on the loop are honest. This

fousses tamper detetion over smaller sets of servers, possibly trading o� task-ompletion time for a

gain in seurity.

� Corret exeution on later servers: If results generated on previous servers are required for orret

omputation on later servers, the agent should verify the orretness of its results as soon as it an.

This prevents wastage of e�ort in omputing the new results, in ase the previous results have been

tampered with.

� Log ompression: An agent an migrate to a trusted host after visiting a number of other hosts. If

the omputed results verify orretly, then the agent may ompress its result log in order to limit its

main memory and migration bandwidth requirements.
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4.8.2 Planning Seure Itineraries

An agent may use trusted intermediate hosts as bases for seurely planning its itinerary in a piee-wise

manner. At eah trusted host, the agent deides what hosts it should visit next and in what order. Its

deisions may be based on input from external modules that provide information suh as the loation of the

resoures it desires to use, how seure the host providing a spei� resoure is pereived to be (its trust metri)

and the antiipated ost of exeution at that host. Planning an itinerary or portion of an itinerary may be

modelled as an optimization problem where the agent wishes to satisfy several onstraints on harateristis

like on�dene in the results generated, ost of exeution and migration lateny. For instane, an agent may

want to minimize the overall migration lateny on its itinerary to ahieve faster time to ompletion, while

keeping the total ost of exeution below some threshold.

In the general senario, the onstraints in the itinerary planning problem may be of several di�erent

forms. They an be equalities, inequalities or partial/total ordering onstraints. A single onstraint by

itself|minimizing overall lateny|is an instane of the NP-omplete Travelling Salesman Problem (TSP).

We will onsider planning of seure itineraries as a sub-problem of the overall optimization problem whih

involves minimizing overall migration lateny of the itinerary and keeping the on�dene in the generated

results above some reasonable, agent poliy-spei�ed threshold.

Agents may use seurity data about hosts providing the needed resoures in di�erent ways depending on

its seurity poliy. An agent that does not require a high level of seurity may simply ignore the seurity

data. Another way in whih the data may be used is to �lter it through simple thresholds. For example,

itinerary planning for agents in military appliations may �lter out all hosts that are below a ertain trust

metri (like the \top seret" learane level) and all other hosts may be treated equally. In both of the

above ases, we still have to minimize overall lateny. If the agent's poliy spei�es a uto� threshold for

the overall lateny below whih it is aeptable, the problem is simpli�ed. In suh a ase, it is possible to

�nd a solution by making use of heuristi searh tehniques.

4

4.9 Interposition Agents in Santuary

To ensure the separation of agents in our Java-based server, the servers load eah agent into its own private

lass loader. Agents are prevented from obtaining referenes to objets owned by other agents, and thus an

only ommuniate with eah other through the server-provided ommuniation ports.

4

This is work in progress.
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Interposition agents, as on�gured by the agent owner, are instantiated by the server before initiating

a mobile agent. The interposition agent is transparently inserted on the ports between the mobile agent

and the agent server. This allows the interposition agent to interept all ommuniations into and out of

the agent, and to make modi�ations to these ommuniations as needed. Interposition agents are written

to the RPC interfae, and examine or modify data on the ommuniations link between the lient and

server. This allows interposition agents to implement the breadth of poliy implementations possible in the

apability-based protetion model. The interposition agents in our design are similar in funtion to �lters

applied to apabilities [13℄, yet we do not require the introdution of a separate interfae de�nition language.

Interposition agents may also be imposed by the server for servie agents, to provide strit aess ontrols

in a modular fashion.

Rights assigned to an agent are atually provided to the interposition agent, as it appears that the

interposition agent is the one performing the aesses to the servies on the agent server. In this way,

interposition agents are used for rights elevation for an agent, allowing an essentially unprivileged agent to

perform privileged ations. This ontrasts our design with that of Jones [16℄, where interposition an only

be used for restrition or semantis extensions, not rights elevation.

When the interposition agents are used for aess restritions, it an dynamially determine the severity

of the restrition by monitoring the requests of the interposed agent. This would work in muh the same way

that the privileged monitoring proess in Provos' privilege separation [25℄ dynamially deides whih privi-

leged requests should be aepted by modeling the unprivileged proess with a �nite state mahine. Simpler

stati restritions are more general, however, in that no analysis of the internal states of the interposed

agents is needed.

Interposition agents an be used for restriting aess to delegated rights using programmable (and

stateful) aess heks, interposing between a olletion of mutually distrustful agents, applying an external

poliy language interpreter to ations taken by an agent and implementing a mandatory log of all ations

taken by an agent. We will disuss the �rst two of these in the rest of this setion.

4.9.1 Interposition Hierarhies

By separating the interposition onept from the agent struture itself and implementing it with the om-

muniations interfae, it beomes possible to provide omplex interposition hierarhies. When providing

interposition on alls in the JavaSeal system, eah interposition an only be performed on agents running

below it in the seal hierarhy, as shown in Figure 4.
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Figure 4: Multiple Interposition in JavaSeal

Interposition is possible for hild seals.

Unfortunately, the example appliation shown in Fig-

ure 5 requires on�gurable interposition in a more om-

plex manner. The store-bought, database and index

agents are not fully trusted by the agent owner, though

all are required to ahieve an eÆient solution to the in-

dexing query that the agent owner wishes to have solved.

The agent owner uses the interposition agent to ontrol

the ommuniations behavior of the other three group

members. In order to allow the database agent to exer-

ise its privileges with the database resoure, however,

it must be allowed to ommuniate diretly with the

database. The interposition agent is on�gured to allow

this, and provides the port to the database resoure diretly to the database agent, without interposing on

it.

DB
Agent

Index
Agent

Store Bought
Agent

Agent Server

Interposition
Agent

"Index Agent"

Service

Name Service"DataBase"

"DB Agent"

Name Service IndexDataBase

Figure 5: Multiple Interposition in Santuary

A single Interposition Agent an interpose between

multiple other agents.

The three untrusted member agents in this example

appear to be running in a normal, unrestrited, agent

environment. Eah agent ommuniates with the others

as it would if it were not part of an interposed agent

group, but rather were installed diretly on the server.

The same mehanism an be used for interposition on

a servie agent, as well. Servie agent owners may sim-

ilarly be untrusting of the servie agents that they run,

and use interposition agents to ensure that the ommuni-

ation patterns and servies provided math the servie

agent's on�guration.

4.9.2 Restrited Ative Delegation via Interpo-

sition

In addition to simple poliy heks to determine whether or not a partiular aess (or port ommuniation)

should be allowed, an interposition agent an be used for Restrited Ative Delegation (RAD) of rights. Be-

ause ode is transported to eah server as part of the agent migration, adding additional ode for performing
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restritions on the agent will not add signi�antly to the omplexity or ommuniations requirements of the

system.

Enforing aess ontrol via RAD is stritly more powerful than stati heks using delegation through

erti�ates. Both delegation erti�ates and interposition ode an be removed by maliious agent servers.

The two are in this way equivalent.

Unfortunately, interposition is not a ure-all for enforing poliy deisions. In partiular, operations

whose typial behavior is suess and whih have a high retry overhead will be ineÆient to ontrol via

interposition. Agent migration requires a large amount of preparation on the behalf of the agent, and thus

would be a poor math with interposition as a poliy enforement mehanism. Rather than using a trial-and-

error approah to �nd the next aeptable migration target (as is required when using interposition agents

that simply deny the migration request), it would be better to use a poliy that an be queried to determine

whih hosts will be aeptable migration targets.

5 Conlusion

We have desribed our seurity goals for a general-purpose mobile ode system and disussed our approah

to ahieving these goals. In some ases, we have opted for the ability to detet ompromises when preventing

attaks is impratial or impossible. And when detetion is diÆult, we rely on trusted external information|

in SACs|to provide a last line of defense.

The development of Santuary is on-going, and muh more researh remains to be done. For example,

Mojo, our preompiler, is being extended to o�er greater funtionality. To fully explore the limits of mobile

agent systems and their seurity properties, we need to develop and integrate additional seurity tehniques

and to test the system via deployment.

The usefulness of SACI is urrently limited. There are a few publi, independent seurity evaluation

standards available [37, 24℄, but they are neither universally appliable nor widely used. Objetive and

pratial seurity metris are sorely needed; the nasent omputer seurity insurane industry may help to

improve their development [32℄.

Whether providing stronger seurity guarantees is pratial remains an open question. New, more eÆient

forward seure signature shemes is an ative area of investigation. Though it has been shown that program

obfusation is impossible in general [3℄, perhaps the lass of programs that remain obfusatable is still large

enough to be of interest, permitting an eÆient way to provide on�dentiality of omputation.
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