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ABSTRACT OF THE DISSERTATION 
 

Mapping and Targeting Genetic and Physical Interactions at Scale 
  

 

 
by 

 

Kyle Ford 

 

Doctor of Philosophy in Bioengineering 

University of California San Diego, 2022 

Professor Prashant Mali, Chair 
 

 

Biological phenotypes are mediated by a network of functional interactions between 

genes, proteins, and other biomolecules present in the cell. While high-throughput screening 

efforts have largely mapped the role of individual genes in controlling phenotypes such as 

cellular proliferation, interactions between genes/proteins remain largely unmapped and 

untargeted. In this dissertation, we develop and apply novel screening methodologies to map 

and exploit interactions between genes/proteins. We use pairwise CRISPR-Cas9 mediated gene 

knockouts to map the full set of genetic interactions among cyclin-dependent kinases (CDKs) 



 xvii 

and interacting proteins, identifying several synthetic-lethal and synergistic relationships. We 

perform single-cell RNA sequencing on the CDK knockout populations, quantifying the cell-

cycle effects and cell states mediated by individual CDK proteins. While CDKs are readily 

druggable via small molecules, many cancer drivers have structures which are not amenable to 

traditional pharmacological inhibition approaches. To address this challenge, we developed a 

peptide tiling (PepTile) approach to engineer protein inhibitors of cancer drivers and protein-

protein interactions in general. By overexpressing pooled libraries of peptides within cancer 

cells, we map bioactive protein domains and identify peptides derived from key protein-protein 

interaction (PPI) interfaces which have strong anti-proliferative effects. We show that these 

peptides can be modified for extracellular delivery, functioning as anticancer drugs with 

micromolar IC50s. Finally, we demonstrated the versatility of the PepTile approach to 

alternative contexts, mining physical interactions to improve delivery of therapeutic payloads 

in vivo. We show our screening datasets can be used to train predictive models, with 

applications for future engineering efforts towards targeting and delivery of therapeutic 

biomolecules.
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CHAPTER 1: Functional Genomics via CRISPR-Cas 

1.1 Abstract  

RNA-guided CRISPR (clustered regularly interspaced short palindromic repeat)-

associated Cas proteins have recently emerged as versatile tools to investigate and engineer the 

genome. The programmability of CRISPR-Cas has proven especially useful for probing genomic 

function in high-throughput (Figure 1.1). Facile single guide RNA (sgRNA) library synthesis 

allows CRISPR-Cas screening to rapidly investigate the functional consequences of genomic, 

transcriptomic, and epigenomic perturbations. Furthermore, by combining CRISPR-Cas 

perturbations with downstream single cell analyses (flow cytometry, expression profiling, etc.), 

forward screens can generate robust data sets linking genotypes to complex cellular phenotypes. 

In the following review, we highlight recent advances in CRISPR-Cas genomic screening while 

outlining protocols and pitfalls associated with screen implementation. Finally, we describe current 

challenges limiting the utility of CRISPR-Cas screening as well as future research needed to 

resolve these impediments. As CRISPR-Cas technologies develop, so too will their clinical 

applications. Looking ahead, patient centric functional screening in primary cells will likely play 

a greater role in disease management as well as therapeutic development.  
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Figure 1.1: Overview of CRISPR-Cas screening methodologies 
 
 

1.2 Introduction 

An ongoing challenge in biology is comprehensively mapping genotype-phenotype 

relationships. With this objective in mind, functional genomics makes use of data from all levels 

of biology (genome, transcriptome, epigenome, proteome, metabolome, etc.) to better define 

genetic and protein functions and interactions. In this way, researching functional genomics is 

essential for better understanding the human genome and its intricate interactions in healthy, as 

well as pathophysiologic states. Characterizing the functional consequences of genomic variation 

is crucial for many aspects of biomedical research including cancer screening methodologies, 

drug-drug interactions, drug sensitivity and resistance, gene therapy, regenerative medicine 

applications, infectious disease, and general understanding of human physiology.  

It has become increasingly clear that the volume and complexity of genomic information 

necessitates rapid screening methodologies. Utilizing large scale and high-throughput assays, 

researchers can more quickly map the function of a multitude of genes and/or proteins in parallel. 
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To this end, Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CRISPR-

associated (Cas) proteins have been utilized to help interrogate and realize functional outputs based 

on targeted editing strategies. CRISPR-Cas systems are powerful tools for targeted genome 

editing, that have dramatically impacted genomic research and screens since their first mammalian 

applications in 2013[1,2]This technology has revolutionized the field with its ease, speed, and 

targeting versatility, allowing for facile genetic perturbations and resulting functional output 

analysis in a multiplexed fashion. It has allowed for a large number of high-throughput functional 

genomic screens to be performed which have, in turn, identified key genes involved in a broad 

range of human health and disease including cancers, infections, immune regulators and responses, 

and metabolic diseases[3]. 

1.3 CRISPR-Cas Toolsets 

CRISPR-Cas systems are divided into different classes, types, and subtypes. Class 1 

utilizes multi-protein effector complexes and class 2 utilizes single protein effectors. Class 1 

includes types I, III, and IV. Class 2 includes types II, V, and VI. There are a further 19 subtypes 

and this will likely continue to expand as new CRISPR-Cas systems are identified[4,5]. 

The most common Cas protein used in functional screening is a type II single protein 

effector derived from Streptococcus pyogenes (SpCas9). The SpCas9 uses a guide RNA to assist 

in effectively cleaving the target gene. Once Cas9 successfully finds a target sequence with proper 

pairing of the complement guide RNA and an appropriate protospacer adjacent motif (PAM), the 

endonuclease will cleave the phosphodiester bonds upstream of the PAM forming a double-strand 

break[6]. When the double strand break occurs, Non-Homologous End Joining (NHEJ) or 

Homology-Directed Repair (HDR) will attempt to repair the damage. NHEJ often results in a small 
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insertion-deletion mutation (indel). If targeted to a gene, this may result in a knockout due to 

generation of a frameshift resulting in a premature stop codon and nonsense-mediated decay of the 

transcript. NHEJ is often the repair process of choice for mutagenesis. HDR, however, is a 

templated repair process most commonly recognized for its natural use in the body during gamete 

formation allowing for genetic recombination. Its use in the cell is restricted to the S and G2 

phase[7]. Due to its high fidelity, HDR can be utilized to insert a new custom region into the 

genome creating knock-ins or specific gene mutations (or corrections) if desired[8]. Increasing the 

efficiency and utility of HDR is still necessary to fully apply its uses for CRISPR-Cas systems. 

Over the last several years the versatility of CRISPR-Cas systems has increased 

dramatically. There currently exist Cas9 effector fusions with the ability to modify specific 

histones, edit particular DNA base pairs, activate or inhibit the transcription of certain genes 

(CRISPRa/CRISPRi), or effect DNA methylation/demethylation at user determined loci[9]. This 

wide array of effector functions enables a variety of genomic elements to be probed systematically 

in a high-throughput fashion. 

The dominant method of generating Cas9 variants with novel functions consists of fusing 

a catalytically inactive Cas9 (dCas9) protein to an effector moiety[10]. In this way, the dCas9 

serves only as a DNA targeting platform, which guides the effector moiety to the location of 

interest in the human genome. The benefit of this design strategy is that it enables rapid 

development of new dCas9 functionalities due to its modularity. However, optimizing the efficacy 

and off-target effects of novel Cas9 fusions is a laborious undertaking which increases rapidly as 

the protein engineering search space is expanded. Furthermore, because the effector moiety is 

fused permanently to dCas9, orthogonal parallel perturbations require the co-delivery of multiple 

fusion constructs to the cells of interest. This, coupled with the large size of dCas9 fusions, imposes 
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significant delivery challenges limiting their use in functional screens. Nevertheless, dCas9 fusions 

represent a robust set of tools with which to probe genome function. 

The choice of appropriate Cas9 variant will depend heavily on what functionality is being 

investigated. The broad array of available Cas9 based perturbation systems are summarized in 

Table 1.1. While Table 1.1 includes the most common Cas9 based perturbation choices, it is far 

from exhaustive. 
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Table 1.1 CRISPR perturbation options for functional screens 

Perturbation	
Choice	 Effect	on	the	Genome	 Mechanism	 References	

wtCas9	 Loss	of	function	and	deletions	
Double	stranded	DNA	cleavage	at	the	
target	locus	 [11],[12]	

CRISPRa	 Transcriptional	activation	

Fusion	of	dCas9	to	various	activating	
domains	(ex.	VP64	or	the	p65	subunit	
of	nuclear	factor	kappa	B	(NF-κB))	

[10],[17]	

[18],[21]	

CRISPRi	 Transcriptional	repression	

Fusion	of	dCas9	to	domains	which	
inhibit	transcription	(ex.	Krüppel-
associated	box	(KRAB))	

[10],[18]	
[22]	

Base	editors	
Catalyze	a	nucleotide	base	pair	
substitution	without	DNA	cleavage	

Fusion	of	dCas9	to	enzymes	which	
catalyze	nucleobase	conversion	(ex.	
activation-induced	cytidine	
deaminase	(AID)	for	C->T	edits)	 [30]-[35]	

DNA	methylation	
and	

demethylation	

Cas9	guided	DNA	methylation	and	
demethylation	modifies	
chromosome	structure	and	
subsequent	gene	transcription	

Fusion	of	dCas9	to	DNA	(cytosine-5)-
methyltransferase	3A	(DNMT3A)	and	
ten-eleven	translocation	(TET)	
proteins	respectively	 [25],[26]	

Histone	
modification	

Cas9	guided	control	of	histone	
acetylation	and	methylation	

Fusion	of	dCas9	to	histone	modifying	
enzymes	(Ex.	Histone	deacetylase	3	
(HDAC3),	p300	acetyltransferase,	or	
lysine-specific	histone	demethylase	
1A	(KDM1A/LSD1)	

[23],[24],	
[27]	

[28]	

 

The wild type Cas9 protein functions as a targeted endonuclease, catalyzing DNA double 

stranded breaks[6]. These double stranded breaks often lead to indels via the error prone NHEJ. 

Frameshifts resulting from these mutations can knockout the function of protein coding genes, 
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making wtCas9 ideal for loss of function studies[11,12]. Knockout studies are often used to 

determine the essentiality of genes in high-throughput, and simplifies downstream validation and 

data analysis due to the binary nature of the perturbation. However, this simplification in some 

ways limits the translational relevance of knockout screening. Although knockouts can inform our 

understanding of what genes are essential for specific biological processes in vitro, there is no 

guarantee that small molecule or protein-mediated inhibition in vivo will have the same effect. 

Furthermore, knockout studies fail to recapitulate gain-of-function mutations and transcriptional 

dysregulation which play a key role in many pathologies[13–15]. In this way, Cas9 knockout 

experiments should not be considered a surrogate for drug studies, but rather a parallel set of tools 

with which to interrogate the user’s model. For these reasons, knockout screening requires 

extensive downstream target validation before any significant conclusions can be drawn. 

As an alternative to knockout experiments, CRISPRa/i systems use enhancer/repressor 

proteins fused to dCas9 as a way of modulating gene transcription at particular loci[10,16,17]. 

Because CRISPRa/i functions at the transcriptional level, it enables investigation of genome 

function without permanently modifying genomic structure. Unlike wtCas9, activation of target 

genes by CRISPRa can facilitate complex gain-of-function screening from endogenous genomic 

loci. In addition, CRISPRi can perform loss of function screening without the confounding effects 

of off target nuclease activity[16]. For even more robust genetic studies, the combination of 

CRISPR effector functions can generate complementary data sets with which researchers can 

generate conclusions with greater confidence[18]. As a recent example, by co-delivering both 

CRISPRa and wtCas9, researchers were able to interrogate the directionality of genetic interactions 

in high-throughput[19]. However, CRISPRa/i experiments suffer from their own set of limitations. 

First and foremost is the limited correlation between mRNA levels and protein expression[20]. 
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While CRISPRa/i can reduce or increase the levels of a particular mRNA transcript, protein 

expression is subject to post-transcriptional regulation which has the potential to obfuscate the 

perturbations’ actual effect[20]. As well, the CRISPRa/i systems require sgRNAs targeting the 

promoter region or transcriptional start site of the gene of interest [21,22]. Promoter regions and 

transcriptional start sites can be rendered inaccessible to sgRNA due to chromatin structure or may 

not have an appropriate PAM sequence nearby, limiting the pool of genes for which CRISPRa/i is 

effective. In addition, some genes are controlled by multiple functional promoters, further 

confounding screens using CRISPRa/i. Ideally, these limitations ought to inform the experimental 

design of CRISPRa/i genomic screens to ensure output data is reproducible and conclusions 

justifiable. 

Functional studies using DNA and Histone modifying Cas9 fusion constructs operate in a 

similar fashion to CRISPRa/i[23]. By modifying the structure of DNA/Histones (via acetylation 

or methylation), these Cas9 fusions vary gene accessibility to transcriptional machinery and 

consequently gene expression[24–26]. A key difference is the mechanism underlying these 

structural perturbations. Whereas CRISPRa/i can modulate gene expression without leaving a scar 

on the target site, DNA/Histone modifications affect gene expression via lasting structural 

changes. The choice of perturbation is largely dependent on the nature of the biological question 

being asked. For probing the function of protein coding genes, CRISPRa/i and CRISPR knockout 

are well validated systems with a spectrum of reagents available commercially, enabling a 

powerful toolset for genome wide screening. However, if the goal of the experiment is mapping 

chromosomal structure-function relationships the DNA/Histone epigenetic modifiers may be a 

more fitting choice. Several groups have used these DNA/Histone modifying Cas9 variants to 

probe how chromosomal chemical structure and 3D architecture controls gene regulation through 
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diverse mechanisms of action[27,28]. Nevertheless, DNA/Histone modifying Cas9 variants are 

not the only way to perturb chromosomal structure. Deletions and chromosomal rearrangements 

induced by wtCas9 have also been used to explore how structural variation in the human genome 

impacts nearby gene function[29]. 

In contrast with wtCas9, CRISPRa/i, and Cas9 based structural modifiers, CRISPR base 

editing constructs have recently been developed as novel tools for functional genomic screens. 

CRISPR base editors work by modifying individual nucleic acid base pairs within the target genes 

in a precise, or pseudo random manner[30]. These systems function by fusing a cytidine 

deaminase or an adenosine deaminase to dCas9 to effect C→T mutations or A→G mutations 

respectively[31,32]. These novel systems represent a versatile avenue with which to model gain 

or loss-of-function mutations in an endogenous context[33–35]. 

Engineered sgRNAs have also been explored as an alternative way to impart novel function 

to the Cas9 system[36]. By incorporating protein binding RNA aptamers (PP7, MS2, etc.) into the 

sgRNA structure, Cas9 can recruit orthogonal proteins with a variety of functionalities. Because 

the perturbation choice is encoded in the sgRNA itself, multiple perturbation types can be explored 

in the same pooled screen using unmodified dCas9. This system has been used to effect 

multiplexed gene activation and interference in parallel (via sgRNA modified to recruit vp64 and 

KRAB respectively) as well as perform multiplexed fluorescent labeling of specific genomic 

loci[37,38]. 

1.4 Genomic Screens 

The use of the CRISPR-Cas systems has many implications for functional genomics and 

has been the topic of much excitement. Functional screens, in turn, are typically performed in an 
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arrayed or pooled format, and rely equally on three integral ingredients: a perturbation, a model 

and an assay. In an arrayed screen, the reagents are added into a multi-well plate so that one reagent 

or a small pool is added to each well allowing for a single perturbation per well. Because each well 

will contain a population of cells with identical genomic perturbations, a wider array of phenotypic 

data can be assayed simultaneously (proteomics data, functional assays, tissue level phenotypes, 

etc.) without limitation to growth phenotypes. Furthermore, arrayed screening precludes any 

paracrine mediated cell-cell interactions which may obscure the effects of individual perturbations. 

Unfortunately, this arrayed format is significantly more expensive to perform and lower 

throughput[11]. Arrayed library screening often requires specialized automation for cell culture 

due to the need to culture large quantities of cells in isolation from one another[39]. These 

challenges have typically limited the widespread adoption of high-throughput arrayed screening 

to the biopharmaceutical industry. Because of this, pooled screening has rapidly become a key 

method of probing genome elements using Cas9. Pooled screens involve testing thousands of 

genetic perturbations in a single assay and have become increasingly popular over the past decade. 

Pooled screens allow for massive libraries of gene targets to be investigated in a single cell culture 

dish, accelerating the process of functional screening. However, pooled screens are somewhat 

limited in the output data they can reliably produce. Because each cell in the dish will have a 

unique sgRNA delivered to it, only measurements with single cell resolution (Next Generation 

Sequencing [NGS], fluorescence-activated cell sorting [FACS], etc.) can be used to quantitate the 

effect of the perturbations. Harnessing CRISPR-Cas systems effectively allows for a library of 

perturbations (sgRNA targeting a particular locus) to be performed in a cell population either in 

the arrayed or pooled format via typically lentiviral transduction. Cells successfully transduced 

with the perturbation must then be selected for by some means (e.g. drug resistance, FACS). 
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Follow-up assays are then performed to help delineate which perturbations caused which 

functional phenotypic changes. This can be done through multiple means either by high-content 

imaging (HCI) or through NGS[40–43]. HCI is beneficial for arrayed screens, allowing for 

quantification of spatially or temporally resolved images. This allows for a large output of 

phenotypic measurements while visualizing the biology. NGS is the high-throughput sequencing 

of DNA and RNA that performs quicker and cheaper than Sanger sequencing with the ability to 

quantitate reads. Massively parallel sequencing has helped revolutionize the study of functional 

genomics and molecular biology. In earlier years, identifying the causal mutations that led to 

functional changes would have been costly and labor intensive. With the advent of NGS platforms, 

mapping such mutations can be achieved quickly and with less costly streamlined protocols. 

Because of this, NGS has helped fuel pooled screens at a rapid pace (Figure 1.2.a-b). 
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Figure 1.2: Functional Genomics and CRISPR-Cas 
a, The goal of functional genomics is to better understand how the genome informs diverse 
biological phenotypes. To this end, functional genomics makes use of mass data sets spanning the 
genome, the transcriptome, and the proteome. The declining cost of massively parallel sequencing 
platforms has made genome wide functional screens broadly achievable and economically viable 
for academic labs of all sizes. b, CRISPR-Cas9 has made multiplexed functional screening with 
single cell resolution more robust than ever before. The ease of sgRNA design has led to 
accelerated functional mapping of the genome with extensive consequences for medicine and 
biotechnology. Because sgRNA targeting almost any region of the genome can be designed in 
silico, CRISPR-Cas screens can be rapidly designed and executed. Functional screens using Cas9 
have been used for a wide variety of applications, such as identifying novel cancer therapeutics 
and vulnerabilities, quantifying genetic interactions, and exploring the function of the non-coding 
genome. 
 

 NGS enables single molecule DNA quantitation and readout of library population dynamics. 

Thus, a quantification can be made on the proportion of uniquely integrated library constructs in 

the population of cells while assessing cell viability to determine which genes after being perturbed 

are enriched and/or depleted. To ensure the screen results are reproducible, it is critical to validate 

the top hits identified from the pooled screen using an arrayed screen, preferably selecting 

additional sgRNAs targeting similar genes. Further biological assays should also be performed to 

confirm top candidates[44,45] 
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Although there are many diverse CRISPR tools, their use in genome scale functional 

screening is relatively conserved. Rather than isolating a trait and investigating what in the genome 

causes that phenotype, Cas9 screens function by perturbing the genome and measuring the 

subsequent change in a phenotype of interest. A common example of the former would be The 

Cancer Genome Atlas (https://cancergenome.nih.gov/). This massive research effort attempts to 

determine the genomic etiology of cancer through mass sequencing of patient cancer samples 

(phenotype→genotype). Cas9 genetic screening inverts this protocol. By purposefully introducing 

a genomic perturbation with Cas9, the resulting trait can be recorded and genotype-phenotype 

relationships mapped. 

The primary benefit of screening with Cas9 (or other CRISPR-Cas effectors) is the 

throughput. Rapid screening with Cas9 is made possible by the ability to perturb multiple parallel 

targets in the genome via a library of sgRNA. The declining cost of DNA synthesis (<1 

cent/nucleotide) has enabled academic labs to construct these genome scale sgRNA libraries at 

low costs and with relatively low error rates, spurring Cas9’s widespread adoption[46–48]. 

Cas9 genetic screening has most frequently been applied to screening various cancer cell 

lines (https://portals.broadinstitute.org/achilles)[12,49]. Cancer cell lines have several features 

which make them ideal for Cas9 screening. Unlike many primary cells, cancer cell lines grow well 

in vitro and can be expanded to large numbers. This is necessary to effectively screen large genome 

scale libraries with proper coverage[9]. Furthermore, immortalized cancer cell lines can be 

genetically modified to constitutively express Cas9 from a stable location in their genome, 

obviating the challenge of delivering the Cas9 protein in the screen. Because Cas9 is expressed in 

every cell being screened, only the much smaller sgRNA constructs need to be delivered. 

Consequently, constitutive Cas9 expression enables simplified delivery of the sgRNA library 
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resulting in typically higher perturbation efficiencies (albeit with greater off-target rates)[50]. 

However, this workaround is not feasible when studying primary cells, which require the co-

delivery of Cas9 and sgRNA. In addition to providing many procedural benefits, screening in 

cancer cell lines is often performed to identify cancer specific genetic vulnerabilities. Mapping 

how genomic perturbations affect cell fitness can be used to circumvent drug resistances, as well 

as understand underlying genetic polymorphisms driving cancer growth[12,49,51]. 

However, CRISPR-Cas screening is not limited to just cancer research. The diversity of 

Cas9 based tools and the ease of sgRNA cloning has enabled the interrogation of genomic function 

across many disparate areas of biology. In principle, the genetic basis of any biological phenotype 

can be investigated using CRISPR-Cas perturbation screening, provided the phenotype of interest 

can quantitated. For instance, screening with Cas9 has shown great utility in the study of infectious 

diseases[52,53]. By perturbing the target cells with libraries of sgRNA before infection with the 

pathogen of interest, researchers can identify genes regulating susceptibility and resistance to an 

infectious disease. Alternatively, the genome of the pathogen itself can be the target of CRISPR-

Cas perturbations to identify essential genes controlling pathogenesis. In this way, functional 

screening with CRISPR-Cas can provide key information regarding the critical role host and 

pathogen genetics play in disease progression. This data can then be used to help determine new 

molecular targets for drug development, and better understand the genetic basis of divergent 

responses to existing therapeutics[52]. For example, several groups have recently applied Cas9 

functional screening to the study of HIV, Malaria, and Tuberculosis, identifying critical genetic 

host factors as well as essential genes regulating infection within the genomes of pathogenic 

viruses and bacteria[54–56]. These are only a small set of potential screening applications, and 
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future work will assuredly involve expanding the use of CRISPR-Cas to a greater number of novel 

biological problems. 

 

1.5 Library Design and Synthesis 

The first step in developing a genomic screen using Cas9, is identifying what genomic loci 

to perturb. Genome wide Cas9 screens are increasingly popular due to their relatively unbiased 

interrogation of genome function. That being said, the choice of which genomic targets to perturb 

is primarily determined by the researcher’s own personal interest. Regardless of what genes are 

perturbed there are several key library design considerations that are universally relevant. 

Nearly every gene (and non-coding region) can be considered a potential target, although 

the endonuclease activity of Cas9 is limited to sequences with an adjacent PAM motif (NGG for 

SpCas9). However, recent efforts to engineer Cas9 variants which tolerate expanded PAM 

sequences indicate this barrier will not be a long term impediment[57]. Many in silico tools are 

available to facilitate rapid guide RNA design, enabling large libraries of guide RNA to be 

designed efficiently[58]. 

Targeting a large library of sequences enables higher throughput interrogation of genomic 

elements, while a small library of genomic perturbations will lend results greater accuracy due to 

better library coverage[9,59]. The theoretical max library size is limited by several factors. DNA 

synthesis is an inherently error prone process itself, increasing the likelihood of inaccurate 

synthesis at high library size[46]. Furthermore, researchers are limited by the amount of DNA they 

can effectively introduce to both bacterial and mammalian cells. While libraries of greater than 

107 sgRNAs can be easily transformed and maintained in bacteria for DNA production, the sheer 

number of mammalian of cells required to screen such a large library serves as a practical limit to 
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the library search space[9,59]. Because of this, libraries greater than ~100,000 sgRNAs often 

require cells to be grown in large-scale cell culture setups or bio-reactors. 

After choosing what genomic elements to study and how to perturb them, the library of 

sgRNA needs to be synthesized. There currently are a wide variety of premade sgRNA libraries 

available for purchase, ranging from genome wide libraries with ~105 sgRNAs, to more targeted 

libraries focused on single pathways on gene families[12,49,60]. This is often the simplest option 

for many labs, but limits researchers to preselected gene targets which may be irrelevant to their 

study. Alternatively, custom sgRNA libraries can also be generated via commercial chip based 

DNA synthesis[48]. This allows researchers to preselect a curated library of genomic elements for 

perturbation, facilitating the development of more precise experiments. 

1.6 Delivery 

Choice of delivery of the CRISPR-Cas reagents is key for high editing efficiencies, proper 

cell uptake, reduced off-target effects, and large cargo capacities. The advantages and challenges 

of these different methods are outlined in Table 1.2. 
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Table 1.2 Advantages and disadvantages of different CRISPR-Cas delivery systems 

Delivery	Method	 Advantages	 Disadvantages	 References	

Lentivirus	

-Stable	gene	expression	
-High	transfection	
efficiency	
-Good	for	difficult-to-	
transfect	cells	(primary	
cells)	
-Large	cargo	capacity	

-Not	ideal	for	in	vivo	delivery	

[61]-[65]	

AAV	

-High	transduction	
efficiency	
-Low	cytotoxicity	
-Relevant	for	in	vivo	
screens	

-Limited	cargo	capacity	(4.7kb)	
-Expensive	

[66],	[67]	

Electroporation	

-High	transfection	
efficiency	
-Good	for	difficult-to	
transfect	cells	(primary	
cells)	
-Beneficial	for	RNP	delivery	

-High	cytotoxicity	
-Limited	to	arrayed	
screens	

[65],	[69]-[71]	

Lipid	
nanoparticles	

-Low	cost	
-Easy	handling	
-Beneficial	for	RNP	delivery	

-Low	transfection	efficiency	
-Highly	dependent	on	cell	type	
-Limited	to	arrayed	screens	

[65],	[69]	
piggyBac	
transposon	 -Stable	gene	expression	 -Potential	for	off-target	effects	

-Limited	scalability	in	pooled	formats	 [72],	[73]	

Gold	
nanoparticles	

-High	transfection	
efficiency	
-Large	cargo	capacity	
-Less	off-target	effects	
-Beneficial	for	RNP	delivery	

-Limited	to	arrayed	screens	

[69],	[74],	[75]	
 

 

The choice of delivery method is important and should be catered to the unique needs of the 

experimental screen being run dependent on if it is an arrayed or pooled screen, cells being used, 

and cargo size. Standard delivery for most screening applications is viral, specifically 

lentivirus[61–64]. There are many advantages to utilizing lentivirus. It is a retrovirus with the 

ability to integrate into dividing and non-dividing cells thus, creating stable transductions that can 

later be read via NGS. This ability also makes lentiviral transduction ideal for delivery to primary 
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cells that are notorious for being difficult to transfect. Lentivirus is also beneficial for large gene 

or multiple gene cassette deliveries with its large cargo capacity[65]. One study utilized a lentiviral 

vector library in human cells to identify the key genes that contribute to the intoxication of cells 

by anthrax and diphtheria toxins[64]. The benefits of being able to stably transduce a variety of 

cell types easily and quickly have ensured the continued use of lentivirus in screens. 

A few studies have more recently looked at utilizing viruses for screens that do not integrate 

into the host genome such as the Adeno-associated virus (AAV). The idea to use AAVs for 

functional screens is novel and somewhat limited, but could allow functional screening of tissue 

level phenotypes in vivo. This is of great value because much of the data sets obtained from in 

vitro screens need to be taken with some amount of skepticism. There is not true physiologic 

representation in a dish, meaning the results of in vitro screens require rigorous validation. In vivo 

screening could help circumvent some of these issues, obtaining phenotypic outputs from a screen 

that was performed in live animals. One such study utilized the AAV to develop a unique in vivo 

CRISPR screen in conditional-Cas9 mice[66]. This study screened 49 genes known to be tumor 

suppressing with 5 sgRNAs for each gene. These guides were engineered into AAVs to allow for 

direct in vivo delivery into the lateral ventricle of immunocompetent living mice. Mice grew 

glioblastomas over time and whole-brains were then homogenized to perform downstream 

analyses at the DNA, RNA, and protein level. The largest obstacle to overcome with this study 

was sequencing which tumors received which gene knockouts as the AAVs do not integrate into 

the host genome. This study designed probes to target-capture the predicted sequences of interest 

where expected gene knockouts would occur. This complex capture sequencing technique 

successfully could determine which tumors received which gene knockouts and follow up with 

multiple phenotypic metrics. More studies like this need to be emphasized in future research to 
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truly recapitulate physiologic conditions during a screen. AAVs however cannot be utilized in in 

vitro screens because as cells divide the AAV will be diluted out and NGS studies that rely on 

genome integration could not be performed. Using clever tactics like targeted-capture sequencing 

as mentioned prior or reading the viral episome are possible strategies to help circumvent some of 

these issues for in vivo screening methodologies specifically. Another barrier with AAV usage is 

their limited cargo capacity. The cargo must be less than 4.7 kb and SpCas9 alone is encoded by a 

4.2 kb sequence[67]. Utilizing conditional-Cas9 animals would be key for in vivo screening 

applications with AAVs. Other studies have performed in vivo screens utilizing lentiviral 

transduction of cancer cells in vitro, followed by transplantation into a mouse[68]. This simplifies 

downstream NGS analysis due to the integrated guides in the genomes of cell transplants. 

There are also many non-viral delivery methods in place that are not frequently used, but 

could be useful for arrayed screens performed in multi-well plates. For non-viral delivery, because 

the sgRNA is not stably integrated into the target cells, an arrayed format is necessary to track 

which cells received which sgRNA. These methods often deliver the reagents either as mRNA or 

as ribonucleoprotein (RNP) complexes via electroporation or lipid nanoparticles[65,69]. RNPs 

specifically have become a powerful perturbation modality and an important tool for arrayed 

screening especially in primary cells. One group engineered CD4(+) T-cells via electroporation 

using Cas9 RNPs[70]. 40% of their cells were successfully engineered to lack the high expressing 

cell surface receptor CXCR4 which is a known co-receptor involved in HIV entry into CD(+) T-

cells. They further combined this technology with HDR to perform successful knock-ins at an 

efficiency of 20%. This group also more recently used Cas9 RNPs to disrupt the programmed cell 

death protein 1 (PD-1) in chimeric antigen receptor (CAR) T-cells enhancing anti-tumor 

efficacy[71]. Another effective way to introduce Cas9 and/or sgRNA into cells, and of particular 
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benefit to functional pooled screens, is utilizing a piggyBac transposon system[72]. The piggyBac 

transposon system is a “cut and paste” mechanism and during transposition, the PB transposase 

will recognize inverted terminal repeat sequences (ITRs) flanking the end of a transposon vector 

and then move those contents and integrate them into TTAA sites on the host’s DNA. This allows 

for creating stable cell lines. One study effectively used the piggyBac system to perform an in vivo 

CRISPR library screen utilizing PB sgRNAs in mice looking at tumorigenesis[73]. Creating an 

inducible Cas9 cell line with this system would be beneficial for screens and then subsequently 

add the pooled sgRNA library of choice. Cas9 can then be selectively turned on via doxycycline 

to limit off-target effects. There have also been further developments in novel ways to introduce 

CRISPR-Cas reagents into cell types to improve efficiency, reduce off-target effects, and increase 

cargo capacities such as the use of gold nanoparticles[69,74,75]. However, additional 

benchmarking of these non-viral delivery methods is needed to determine what screening 

application they are most suited for. 

1.7 Library Transduction and Maintenance 

Due to the size of the Cas9 protein as well as the need to co-deliver sgRNAs, a large amount 

of payload must be delivered to cells to effectively perturb them. In response to these delivery 

challenges, lentiviral gene delivery has emerged as the primary method for delivering the sgRNA 

library to cells, facilitated by the virus’s high genetic capacity and broad tropism[9,11,76].  

After identifying target genes and synthesizing the library of sgRNAs, the next step is 

ligating them into an appropriate lentiviral vector.This ligation is the first of many potential 

bottlenecks where it is important to maintain coverage of the library (typically 500-1000x or more 

Figure 1.3.a-d)[9,11]. To effectively screen a large library of gene targets with confidence, 
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adequate representation of the library elements is key. After packaging the library of sgRNAs into 

lentivirus, the target cells are then transduced at a low multiplicity of infection (MOI), typically 

20-60%[9,11]. The transduction is carried out at a low MOI to ensure each cell in the screen 

receives a single sgRNA. The cells are then routinely passaged, ensuring at least 500-1000x library 

representation each passage. This high coverage is used to limit false positives and negatives due 

to erroneous library skewing[9] As they grow, the cells are then assayed to physically isolate cells 

displaying the phenotype of interest. 
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Figure 1.3: Mechanics of CRISPR-Cas screens 
a-b shows the key steps in performing a CRISPR screen in mammalian cells. Initially the sgRNA 
library is ordered as a pooled tube of DNA oligonucleotides, typically synthesized commercially 
via chip based DNA synthesis. The library is then amplified via PCR and cloned into an 
appropriate lentiviral vector, insuring library coverage is maintained throughout. If the library is 
obtained in plasmid form (ex. pooled sgRNA libraries available from Addgene), the library simply 
needs to be transformed into bacteria, expanded, and sequenced to confirm sgRNA representation. 
Once the library is in a suitable lentiviral vector, the next step is packaging the DNA into lentivirus. 
Standard lentiviral packaging protocols will suffice, so long as coverage is maintained throughout 
the packaging. After packaging the lentivirus, a test transduction should be performed to quantify 
the functional titer (i.e. the actual number of cells transduced per lentiviral particle delivered). This 
can then be used to determine the amount of lentivirus needed to achieve an MOI of 20-60%. The 
transduced cells are then passaged with at least 500-1000 fold coverage of the library at each step 
to ensure accurate sgRNA quantitation. As the cells are passaged, it also is beneficial to store freeze 
and store aliquots of the library for subsequent massively parallel sequencing. At the end of the 
functional assay, the library is sequenced a final time to determine the relative enrichment and 
depletion of specific sgRNA, corresponding to target gene fitness. c-d Maintaining library 
coverage throughout the protocol is essential for insuring statistical confidence and preventing 
arbitrary library skewing. However, maintaining high coverage of the library imposes significant 
practical challenges for researchers attempting to implement a CRISPR-Cas screen. The figures 
above highlight the technical challenges of large library screening, and can serve as a reference for 
future screen design (bar plots calculated assuming 500 fold coverage of the library). As the 
number of sgRNA in the library increases, the scale of the experiment may outpace available 
resources and become untenable. Correspondingly, when planning a CRISPR-Cas genetic screen 
it is important to determine if the screen is executable in terms of lab equipment, reagents, and 
manpower. Once the screen has been started, the same mindfulness needs to be directed at insuring 
there are no library bottlenecking points which could artificially influence the results of the assay. 
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1.8 Data Outputs 

The simplest form of output data obtainable from a CRISPR screen comes from cell growth 

and viability assays. Because the sgRNA is genetically encoded into the cell via lentiviral 

transduction, NGS enables analysis of the library population dynamics. In this way, the sgRNA a 

cell receives both causes the genetic perturbation and functions as a unique barcode to determine 

through sequencing how the population is evolving in response to the screen conditions. This 

method of determining perturbation effects vis-à-vis sgRNA abundance is especially suited for 

investigating cancer cell fitness and gene essentiality. For example, in a CRISPR knockout fitness 

screen enriched sgRNAs indicate their target genes are nonessential or antithetical to growth. In 

the same way, sgRNAs that are depleted at the end of the screen indicate their target genes are 

essential for cell growth under the assay conditions. Using this protocol, groups have mapped 

novel synthetically lethal genetic interactions, investigated how particular genes affect cancer cell 

drug resistance, and explored how key genes impact the efficacy of immune checkpoint 

blockers[21,68,77]. 

While fitness based screening assays (to probe drug resistance or otherwise) are the 

simplest Cas9 screens to perform, there exist creative workarounds to probe diverse cell 

phenotypes independent of growth rate in a pooled format. Using an engineered fluorescent 

reporter system, one group utilized CRISPR screening to investigate the unfolded protein response. 

This pooled screen used an mCherry transcriptional reporter of IRE1α activation to facilitate 

cytometric isolation of cells with an activated unfolded protein response, thus enabling the 

enrichment of a unique phenotype separate from growth rate[78]. Utilizing similar methods 

researchers have been able to quantitate how genomic perturbations affect diverse cellular 

processes such as protein stability and the innate immune response[79,80]. However, FACS 
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analysis is limited to predetermined targets that have fluorescently labeled antibodies 

commercially available, or to genetically encoded fluorescent reporter systems. 

After isolating cells with the phenotype of interest in a pooled screen, the data output from 

CRISPR screens is not limited to simply measuring sgRNA abundance. Advancements in single 

cell RNA sequencing have made it possible to analyze the transcriptome of thousands of single 

cells utilizing a unique barcoding strategy[81]. By associating a unique barcode with each cell’s 

transcriptome, CRISPR perturbations can be tracked and associated with transcriptomic 

signatures[82–84]. This enables researchers to identify (on a cell-by-cell basis) the effect of unique 

perturbations on the gene expression profile of a cell, and determine clusters of perturbations that 

may function through similar mechanisms. Unfortunately, the throughput of single cell RNA 

sequencing is currently not amenable for large genome scale libraries. As the cost per cell of single 

cell RNA sequencing decreases, this method will likely become more ubiquitous. 

In contrast, when performing an arrayed screen the user is not limited to data outputs with 

single cell resolution. Since each unique sgRNA is physically separated from the onset of the 

screen, traditional RNA sequencing (using cDNA isolated from many cells) can be performed to 

analyze the effect of a given perturbation on gene expression. Furthermore, in an arrayed format 

HCI can be used to examine the impact of a perturbation on cell morphology, cellular processes, 

as well as tissue level phenotypes[40]. This gives arrayed screening a much wider set of 

phenotypes which can be examined, albeit at much lower throughputs. 

 

1.9 Bioinformatics Analysis of Screening Results 

 
At the conclusion of a standard pooled CRISPR screen, the user will have a set of 

sequencing data representing sgRNA abundances. This raw sequencing data corresponds to which 
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genetic perturbations are enriched or depleted for the phenotype of interest. Fortunately, there are 

many well validated bioinformatics tools with which to analyze this sequencing data and generate 

relevant conclusions. Before getting involved in design packages and computational pipelines, it 

is wise to perform some manual examination to identify possible outliers or mislabeled samples. 

This vital information could be lost if a cut and paste data dump into a statistical tool is performed 

too quickly. Additionally, the user should manually average the effect of multiple sgRNAs 

targeting one gene to compile a preliminary list of top hits. If multiple sgRNAs targeting the same 

gene rank highly, that gene can be listed as a hit. 

After these initial steps have been taken, the user can perform a more complete in-depth 

analysis using a wide array of design packages. Picking the proper statistical package for the user’s 

needs is key. Many factors must be accounted for in addition to identifying sgRNAs that are 

significant. Most screens typically have little to no replicates which can be a potential setback 

when trying to estimate the variance of reads in addition to statistical significance between 

treatments and controls. Additionally, researchers must utilize a computational tool that takes 

sgRNA variability into account in terms of specificities and efficiencies. Finally, knockout screens 

often result in only a few sgRNAs that tend to dominate the reads in positive selection. A successful 

algorithm will require robust read normalization. Some older algorithms such as baySeq, DESeq, 

edgeR, and NBPSeq have been used with some success[85–88]. They are commonly used 

algorithms for RNA-seq analysis, but limited to the sgRNA level in terms of statistical significance 

of hits. 

Some of the more common tools for pooled screens that show robust results are MAGeCK, 

caRpools, and CRISPRcloud[89–91]. In brief, MAGeCK robustly identifies positively and 

negatively selected sgRNAs and genes simultaneously in genome-scale CRISPR-Cas9 knockout 
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screens. Its four steps include read count normalization, mean-variance modeling, sgRNA ranking, 

and finally gene ranking. Interestingly, MAGeCK can assess relevant biological pathways by 

reporting positively and negatively selected pathways based on gene rankings in the pathway. This 

algorithm has been shown to outperform existing methods with its high sensitivity and low false 

discovery rate[89]. In addition there is now MAGeCK-VISPR which was developed for quality 

control and visualization of CRISPR screens[92]. CaRpools is a user-friendly R package that does 

not require prior programming knowledge. CaRpools provides the user with biological information 

for every hit with external links to databases. This package incorporates screening documentation 

into the analysis process to generate a comprehensive report. CRISPRcloud uniquely allows the 

user to deposit sequencing files confidentially and analyze them in a cloud-based online system. 

Arrayed screens analyze more advanced phenotypes than simply growth and thus, often 

utilize HCI. The vendors for many of these HCI platforms provide their own statistical packages 

for analysis. The largest challenge with these packages is they require extensive user interaction 

and can often lack statistical power as the data return from HCI is rich. Many packages are 

available and have been reviewed[93]. A few common open-source ones are CellProfiler and 

EBImage[94,95]. Commercial software is available as well such as Columbus or MetaXpress. 

After features have been measured and collected with imaging software, this data must be analyzed 

for statistical significance. Statistical packages for R are commonly used such as cytominer 

(https://github.com/CellProfiler/cytominer/) to assess morphological cell features. 

When looking at combinatorial screens, the user must assess the phenotypic effect when a 

combination of sgRNAs target the same cell. The initial combinatorial studies were performed in 

yeast in mass arrays known as synthetic genetic arrays (SGA) where a gene deletion could be 

crossed systematically with a deletion mutant array that contains all possible knockout ORFs in 
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the genome[96]. More recently groups have scaled up this technology utilizing CRISPR-Cas for 

de novo mapping of genetic interactions in mammalian cells[77,97]. This requires additional 

statistical packages such as the dual CRISPR software pipeline constructed from Python, R, and 

Jupyter Notebooks (http://ideker.ucsd.edu/papers/rsasik2017/)[98]. Other tools are also available 

such as TOPS which is another open-source package to analyze and visualize data from functional 

genomic gene-gene and gene-drug interaction screens[99]. 

Single-cell screens have benefited greatly from the Seurat pipeline 

(http://satijalab.org/seurat/)[100]. Seurat is an R package designed to analyze single cell RNA-seq 

data. This package uses canonical correlation analysis to determine shared correlation structures 

across data sets. After alignment, cells are transposed on a 2D plot (i.e. t-SNE) into clusters with 

shared transcriptomic reads. Clustering can identify cell types across conditions looking at shifts 

and cell-specific transcriptomic responses. Seurat allows users to identify and interpret sources of 

heterogeneity at the single cell transcriptomic level. 

 

1.10 Validating Results 

CRISPR-Cas genome wide screening is valuable because it provides an unbiased way to 

probe genome function, but the screen is only the first step in identifying functional genomic 

elements. After identifying potential genes of interest via a perturbation screen and subsequent 

bioinformatics analysis, significant work must be done to validate these targets. In this way, 

CRISPR-Cas genome wide screening can be thought of as hypothesis generating experiments, 

which guide future genomic characterization efforts. 

Initial validation is focused on ensuring the effects of the perturbations are consistent and 

reproducible. To this end, CRISPR screens often utilize multiple sgRNAs targeting each genomic 
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element[60,101]. Ideally, one would expect all sgRNAs targeting the same gene to have similar 

phenotypic effects. This redundancy provides researchers with a way to ensure that the hits 

identified from the screen are due to the intended sgRNA mediated genetic perturbation, rather 

than off-target effects or random noise Beyond that, potential hits can be sub-screened in a smaller 

more focused library[51]. This step provides researchers with greater confidence in their results, 

and helps narrow down target genes for further biological analysis. New sgRNAs targeting 

potential genes of interest can also be designed and used to verify reproducibility[102]. 

Furthermore, it can be informative to analyze data sets with different perturbational technologies 

(CRISPR, CRISPRi, RNAi) to ensure the data is reproducible across multiple systems[102]. 

However, each of these perturbations will have their own unique biases and limitations which may 

affect the reproducibility of data across different systems[9]. 

After several top hits have been established, a key validation step is checking the effects of 

the sgRNA of interest individually, outside of the context of the pooled screen, to remove any 

confounding paracrine effects. At the same time, if the gene of interest is protein coding, a western 

blot can be used to ensure the gene is completely knocked out by its cognate sgRNA[102]. To 

generate further confidence in top hits, Cas9 can also be used to generate a clonal population of 

cells with identical genetic perturbations. Genotyping of this clonal population should then be 

performed to ensure the gene of interest is effectively knocked out via frame shifts or the 

introduction of stop codons. After establishing the clonal cell line, robust phenotypic data can be 

collected to fully interrogate the functional role of the gene of interest. The ultimate step in 

verifying the effect a gene has on cell phenotype is to restore gene function in the knockout cell 

line via delivery of cDNA encoding the gene of interest[103]. If the gene of interest is truly the 

cause of the phenotypic change, cDNA delivery should restore the wild type phenotype to the 
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knockout cell line. If necessary, researchers can also begin testing the perturbation in multiple cell 

types. While genotype-phenotype relationships may not be consistent across multiple cell types, 

this step can provide a way to better understand the biology underlying the phenotypic effect of 

the genetic perturbation[9]. As well, small molecules or monoclonal antibodies targeting the 

gene(s) of interest can serve to verify the biological mechanism underlying the effect of the 

perturbation. 

1.11 Challenges and Limitations 

Although Cas9 based genetic screening is a rapidly maturing technology, there are still 

many technical challenges that have yet to be resolved. One large obstacle when it comes to 

performing pooled library screens in a dish are the potential effects of paracrine signaling. In a 

pooled format it is difficult to assess and eliminate cross-talk between neighboring cells in a dish 

that may all have unique genomic knockouts. Because of this, the importance of certain genes can 

be easily missed if the gene function can be rescued by nearby cells. For example, if a growth 

factor is knocked out in a specific cell its neighbor may continue to release the growth factor, 

preventing a true knockout phenotype from appearing. In this way, a pooled genome wide screen 

may still not identify all genes that are vital for a given phenotype. 

Another issue with pooled approaches is the limit to phenotypic outputs that can be read. 

The researcher is typically restricted to measuring cell proliferation or survival. Additionally, there 

can be efforts to look at phenotypes that FACS can select and sort through such as fluorescence or 

cell surface markers. More complex phenotypes will be difficult to measure in a pooled screen 

with reliability. In the future, cheaper robotics that can perform arrayed screens with unique 

perturbations in each well of multi-well plates will likely allow for more complex tissue level 

phenotypes to be assayed. In addition, this sort of high-throughput arrayed screening would 
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remove many of the paracrine effects that may confound results as mentioned previously. If a gene 

that is being studied is known to be essential for cell viability, it cannot be studied in a complete 

CRISPR knockout screen when assessing for additional phenotypes. Performing a knockdown 

study utilizing dCas9 would be more appropriate. Additionally, genes that retain their function at 

low expression levels may easily be missed in knockdown studies and be better performed with a 

complete knockout screen. 

Other issues may arise with false positives and false negatives. In particular, although 

uncommon, an in-frame repair could occur during a standard positive selection knockout screen 

resulting in a gain-of-function mutation[104,105]. This issue is rare enough to not cause vast 

concern, but something to still be mindful of. More commonly false positives can occur with genes 

that have a high copy number such as oncogenes. When performing a standard Cas9 knockout 

screen, these genes will consistently be cleaved leading to multiple double strand breaks and 

eventually too many will cause cells to apoptose thus, mistakenly assuming that gene was essential 

for cell fitness. A gene that may not truly have much of an effect on fitness can falsely appear to 

if the target site is in one of these amplified regions with a high gene copy number thus, inducing 

many more double strand breaks by Cas9 than is typical[106–108]. This can be problematic when 

performing cancer screens. Many groups have looked at this in detail looking at several cancer cell 

lines, genes, and sgRNAs for analysis of this amplification effect[106–108]. Aneuploid cell lines 

produced false positives that mapped to amplified regions of the genome. CRISPR-mediated 

lethality of cells was independent of transcriptional halting, thus showing this is due to double 

strand breaks and not gene knockout. Previous studies have shown similar discoveries such as 

targeting the oncogenic BCR-ABL gene fusion that is present in high copy number in K562 cells 

and notorious for making up the Philadelphia chromosome in chronic myelogenous leukemia. 
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Cas9 targeting resulted in decreased cell viability independent of the target genes function 

themselves[109]. Ways to prevent these false positives would be to use CRISPRi which do not cut 

the genome and only offer transcriptional repression. However even with CRISPRi, other errors 

can occur especially when dealing with bidirectional promoters causing silencing of multiple genes 

instead of just the gene of interest. Attempts can be made to remove sgRNAs with massive off-

target effects or exclude them from analysis [110]. Utilizing an inducible Cas9 can also be an 

effective solution to select specifically when to turn on Cas9 with the use of doxycycline. 

False negatives come with their own share of complications. If a sgRNA has relatively low 

activity it can inadvertently be read as a negative result in a screen. Machine learning approaches 

can help circumvent some of these issues to design and include only sgRNAs with high activity 

which has been actively utilized by groups[60,111,112]. However, in silico sgRNA design has its 

own share of challenges. When utilizing available online tools, the researcher needs to be aware 

of the underlying rules to limit off-target effects and increase effectiveness applied by the tool 

developers. There are also constant updates to gene annotations that need to be ensured for their 

accuracy and quality. In addition to using computational tools to predict guide efficacy, efforts can 

also be made to modify the sgRNA scaffold itself to improve activity[113]. 

One of the large concerns with the use of CRISPR-Cas systems for screens is the possibility 

of off-target effects. Because sgRNA libraries can contain more than 105 different guides, 

comprehensive individual sgRNA validation and testing is not possible. Multiple studies have 

shown that Cas9 can tolerate some mismatches between the sgRNA and target sequence allowing 

for targeting of the wrong gene[1,114–116]. The farther these mismatches are from the PAM 

sequence the more likely these mismatches will be tolerated[117]. It has also been shown that 

small insertions and deletions are somewhat tolerated as well leading to bulging of the sgRNA or 
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target sequence[116]. Predictive scores have been developed to help the researcher in picking 

appropriate sgRNAs[118]. Additional Cas9 options are the high fidelity Cas9 (SpCas9-HF1) or 

the enhanced specificity Cas9 (eSpCas9)[119,120]. Many benefits have been shown by delivering 

Cas9 as a protein instead of a gene in a plasmid as the protein will act immediately and then be 

quickly degraded which eliminates the constant peaks in expression from a promoter[121]. One 

strategy to ensure a positive is true and not from an off-target effect is through validation and 

ensuring that other reagents targeting that same gene have that same phenotype. However, when 

performing large pooled screens there will be multiple sgRNAs targeting the same gene or 

noncoding region. Effects of a single sgRNA will be less problematic when multiple sgRNAs are 

targeting that region allowing for some consistency and realization of an off-target effect. 

Another challenge is working with PAM sequence restrictions. SpCas9 has a PAM 

sequence that is more abundant in exons and thus coding regions of the genome which tend to be 

more GC rich. Other nucleases such as Cpf1 has a PAM sequence that is more abundant in introns 

which are more AT rich[122]. This is an important factor to keep in mind when selecting a nuclease 

for screening applications. Performing noncoding functional screens utilizing CRISPR-Cas 

systems to tile sgRNAs may benefit more from a nuclease such as Cpf1 than SpCas9. One group 

effectively engineered SpCas9 to recognize different PAM sequences[57]. This can increase 

specificity and reduce off-target effects while selecting a PAM that is appropriate and unique for 

the researcher's screening needs. 

One often untapped tool for CRISPR-Cas screening is harnessing HDR to insert exogenous 

genes of interest into the host genome. With HDR’s relatively low efficiency compared to NHEJ, 

it has proven to be difficult to benefit from this technology and perform large knock-in screens at 

endogenous loci. Knock-in screens can provide valuable information when assessing the roles of 
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knocked-in promoters or repressors on gene function or knocking in mutated genes to mimic 

disease states. As well, knock-in screens using HDR would preclude the possibility of random 

lentiviral integration causing confounding effects on cell phenotype. Because of this, more 

research should be done on pushing the cell to favor HDR over NHEJ. One such study used 

blocking mutations to increase HDR efficiency[123]. They introduced silent mutations in either 

the PAM or sgRNA target sequence of the donor strand. These mutations prevented Cas9 from re-

cutting the target sequence once the desired donor was introduced. Greatest efficiency of this is 

achieved when the mutation is closest to the cut site. This distance can also be optimized to focus 

on either a homozygous edit or heterozygous edit in the cell depending on the researcher’s specific 

needs (homozygous edits are more likely when the mutation is closest to the cut site and 

heterozygous edits are more likely when further). Utilizing this blocking method, another study 

successfully performed a large screen utilizing HDR and saturation mutagenesis to determine 

function of regulatory elements[124]. They utilized a library of all possible 6-bp combinations to 

insert into exon 18 of the breast cancer susceptibility gene BRCA1 to measure transcript 

abundance. They had a similar approach for the lariat debranching enzyme gene DBR1 to measure 

the relative effects on growth and function. Interestingly, HDR could also be harnessed to create a 

knock-in pooled library of sgRNAs in place of typical lentiviral delivery creating cells with stably 

integrated guides[125]. This could circumvent issues with off-target effects from lentivirus and 

avoid gene shuffling. Highlighting the potential of HDR based screening approaches, one group 

recently performed a large-scale multiplexed HDR CRISPR screen in yeast, utilizing a fusion 

protein to enhance HDR efficiency[126]. They increased editing efficiency more than 5-fold with 

use of the fork head protein homolog 1 transcription factor (Fkh1p) fused with the DNA binding 

protein LexA creating a LexA-Fkh1p fusion protein. This fusion protein recruits donor DNA to 
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the double-strand break site. Utilizing HDR, they incorporated unique barcodes into cells. In 

addition, they performed saturation editing of a gene encoding for the phospholipid transfer protein 

SEC14. They incorporated all possible amino acid combinations to identify amino acids critical 

for chemical inhibition of lipid signaling. Ideally, combining multiple strategies will improve HDR 

at the greatest efficiency when performing knock-in functional screens. Additionally, a researcher 

could use base-editing techniques to perform a targeted knock-in screen instead of HDR. CRISPR 

base-editing techniques can modify individual nucleic acid base pairs within the target genes. This 

is especially beneficial to edit single nucleotide polymorphisms (SNPs). Groups have used this 

technique to identify novel mutations in drug resistance[33,34]. Overall, screening from 

endogenous loci using HDR or base editors, although limited to unique screening needs, has 

significant unexplored potential for investigating genomic function. 

Another challenge lies in the large reliability researchers place on cell lines to perform 

many of these pooled functional screens. Many of these cell lines may not adequately model human 

disease and functional genomics. Additionally, unless kept at a low passage number, cells can 

begin to change over time with varying mutations, epigenetic changes, and chromosomal changes. 

Ideally primary cells, human tissues, or in vivo screens should be the gold standard. Validating 

findings in multiple model systems with different techniques is critical. However, with this is the 

caveat that obtaining different results in different cell lines is permissible if it further explains a 

critical phenotype unique to the biology of these different systems. Additionally, plating cells with 

the correct growth medium and environmental parameters can be a challenge or whether they even 

properly plate in 2D. Studies have shown that many human cell types change their physiology in 

2D or cannot be cultured at all. For instance, pancreatic cells are notorious for being difficult to 

culture in 2D and have lasted at most a mere week before huge losses in cell viability[127]. More 
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efforts need to be placed in 3D culture systems and biomimetic environments to ideally model true 

physiology. 

 

1.11 Future Directions 

As technical challenges limiting Cas9 based genomic screens are resolved, their ability to 

inform our understanding of disease progression and treatment will rapidly evolve. By utilizing 

the expanding toolbox of genetic perturbations and better integrating multiomics data for 

downstream validation, screens will be able to identify functional elements in the genome more 

rapidly and accurately. At the same time, expanding screens to patient derived cell types (iPSCs, 

tumor biopsies, etc.) will better model human pathologies while providing a potential way to 

identify patient specific disease vulnerabilities. 

Because the majority of human diseases are polygenic (rather than mendelian) there is a 

clear need for screens which investigate multigene interactions[128,129]. Towards this end, 

investigators have recently developed dual knockout Cas9 vectors which deliver two unique 

sgRNA to identify synthetically lethal genetic interactions in cancer cell lines[77,130]. In parallel, 

other researchers have developed alternative dual knockout systems, using a combination of 

orthogonal Cas9 variants from different bacteria. By utilizing both SpCas9 and SaCas9 (each with 

their own cognate sgRNAs) they effectively reduce interference between delivered sgRNAs in a 

dual knockout screen[131]. Moving forward, characterizing a greater number of gene 

combinations will generate an improved understanding of the genetic basis of non-mendelian 

diseases. In addition, expanding combination gene perturbations beyond knockouts will provide 

scientists with a better understanding of directional genetic interactions. In order to characterize 

these directional interactions, researchers have recently implemented a dual knockout and 
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activation screen in cancer cells to better understand therapeutically relevant genetic interactions 

networks[19,131]. Looking forward, integrating multiple different perturbation types in 

combination has the potential to generate unique datasets with which to probe genomic 

interactions. For example, integrating inducible Cas9/sgRNA constructs with pooled screening 

could elucidate temporal dependencies underlying dynamic genetic interactions[132]. 

Beyond probing exon function, there is an increasing understanding that the noncoding 

region of the human genome plays a significant role in disease progression across a wide variety 

of pathologies[133]. In order to better understand this relationship, there have recently been several 

parallel efforts to map the function of the noncoding portion of the genome using Cas98. While 

wtCas9 is ideal for inducing frameshift mutations in the coding regions of exons, probing the 

noncoding portion of the genome is more challenging because insertions and deletions are less 

likely to impact structure and function. To overcome this challenge, CRISPR pooled screening of 

noncoding loci has primarily focused on using multiple tiled sgRNA to create indels across entire 

noncoding regulatory sections of the genome to determine functional hotspots. These strategies 

have identified critical components of endogenous enhancers, as well as novel regulatory elements 

in unannotated regions of the genome[134–136]. Combining this approach with novel downstream 

single cell assays (single cell RNA seq, etc.) should further aid in rapidly characterizing the 

structure-function relationship of the noncoding genome. Furthermore, screens utilizing the full 

CRISPR perturbation tool box will provide researchers with even more novel data sets with which 

to assay the noncoding genome. 

While Cas9 genetic screening has enabled systematic characterization of a broad range of 

cancer cell lines (via the Broad Institute’s Project Achilles among other work), screening primary 

cells is still in its infancy. Although there is a wealth of information to be gained from screening 
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cancer cell lines, as discussed above they are not ideal models for healthy cells or diseases other 

than cancer. Screening in primary cells would better model the in vivo genetic and epigenetic 

profile of the cells of interest, while simultaneously allowing for patient-specific screening 

strategies to be developed. Because primary cells can be obtained from individuals (or mice) 

afflicted with nearly any disease, a broader range of disease-specific screening strategies can be 

developed. As well, screening in primary cells would allow scientists to unravel the genomic 

mechanisms underlying the function of various healthy cell types. Primary cell screening has so 

far been limited to immune cell types which grow sufficiently in vitro. As a proof of principal, two 

groups have recently described a protocol for lentiviral knockout CRISPR screens in mouse 

primary immune cells, identifying key regulators of the innate immune response and plasma cell 

differentiation[79,137]. To push this technology forward, the editing efficiency of Cas9 in primary 

cells needs to be further optimized to allow for large library screening in many primary cell types. 

In parallel, improving in vitro primary cell culture techniques will drastically improve the ease of 

primary cell screening protocols. Looking ahead, transitioning this technology toward screening 

iPSCs could provide a novel method to understand biological development and patient-specific 

pathological phenotypes. Although iPSC CRISPR screens are still in their infancy, one group 

recently published a method using Cas9-mediated homologous recombination to fluorescently tag 

endogenous proteins in developing iPSCs[138]. This method would allow researchers to track the 

temporal expression and localization of diverse cellular proteins over the course of iPSC 

differentiation. 

As an alternative way to more accurately model cell phenotypes, several groups have 

independently developed in vivo CRISPR screening protocols. In vivo CRISPR screening typically 

involves delivering a library of sgRNAs to a tumor cell line ex vivo, implanting the cells into a 
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mouse model, and then tracking which sgRNAs are enriched or depleted as the tumor grows. This 

method has been used to effectively identify genetic vulnerabilities to immune checkpoint 

blockers, as well as track genetic drivers of metastasis[68,139]. These in vivo screening methods 

represent a more robust contextual model with which to analyze cell function, and warrant 

additional investigation. Other efforts to screen cells in a context that better matches their native 

environment have utilized 3D culture systems and organoid models. While 3D and organoid 

models necessitate arrayed screening due to their multicellular architecture, the ability to 

investigate tissue level phenotypes has immense implications for functional screens. In 2015, one 

study described a small scale CRISPR knockout screen in an organoid model, investigating genetic 

elements controlling the differentiation of unpolarized basal progenitors into airway 

epithelium[140]. Although screens involving 3D culture models will certainly be restricted to 

small libraries of perturbations, their ability to dissect tissue level phenotypes guarantees their 

utility to the biomedical community. 

As CRISPR screens become more commonplace, it is necessary to stress the importance 

of using diverse output data to validate results. While sgRNA abundance provides valuable 

information regarding which genes are essential for a cellular phenotype, it provides little to no 

mechanistic data with which to understand gene function. To better understand the biology 

underlying CRISPR screen results, future research needs to be done on how to best integrate 

multiomics data with pooled CRISPR screens. Utilizing advances in proteomic and metabolomic 

measurements has great potential to complement next generation DNA and RNA sequencing 

technologies already common place in CRISPR screens. As mass spectrometry pushes closer 

toward single cell resolutions, this data will only become more robust, opening up new avenues 

for understanding the results of pooled screens[141,142]. 
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Although CRISPR knockout screening via the NHEJ repair pathway has seen widespread 

adoption, knock-in screening via the HDR templated repair mechanism has been less utilized due 

to its relatively low efficiency. Many parallel efforts are currently underway to improve the 

efficacy of HDR mediated gene editing, paving the way for library scale knock-in 

screening[126,143,144]. Knock-in screening using HDR to scarlessly insert a mutagenized DNA 

sequence at its endogenous locus has many unexplored applications. In the future, researchers 

could use HDR to perform site directed mutagenesis of complex mammalian proteins in their 

endogenous loci, enabling the engineering of post-translationally modified proteins which may not 

be amenable to production in yeast or bacteria. This same method could also be used to engineer 

mammalian cell lines with novel metabolic pathways for use in biopharmaceutical production. 

The past half-decade has seen rapid development of novel CRISPR-Cas based tools with 

which to investigate genomic function. At the same time, de novo DNA synthesis and in silico 

sgRNA design tools have quickly become mature technologies, resolving many of the technical 

challenges preventing the widespread adoption of CRISPR-Cas genetic screens. Consequently, 

CRISPR-Cas genetic screening has transitioned from exciting new academic research, to a 

ubiquitous technology with few barriers to use. Looking forward, it now seems plausible that the 

many functional screens ongoing in immortalized cancer cell lines will lead to a complete mapping 

of cancer specific gene function and genetic interactions. While this research has great potential to 

inform our understanding of cancer etiology and drug candidate efficacy, the immense genetic 

variation in patient cancer samples limits the translational relevance of cell line based genetic 

screening. In addition, conclusions drawn from screens performed in cancer cell lines may have 

limited relevance to other disease phenotypes. This genetic variation between patients and cancer 

cell lines necessitates the development of patient-specific CRISPR-Cas screening protocols. 
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Building off existing cancer mapping initiatives, CRISPR-Cas functional screening efforts in 

patient-derived cells should one day help oncologists predict treatment efficacy and inform drug 

choice. In parallel, future screens in patient derived iPSCs will allow researchers to expand the 

range of disease phenotypes CRISPR-Cas functional screening can investigate. In this way, 

CRISPR-Cas screening can contribute to a growing body of research underlying precision 

medicine and personalized therapeutics. 
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CHAPTER 2: Mapping and Exploiting Genetic Interactions among Cyclin-Dependent 
Kinases

2.1 Abstract 

Cell-cycle control is accomplished by cyclin-dependent kinases (CDKs), a large protein 

family with many redundant, synergistic and independent functions. Here we use combinatorial 

CRISPR/Cas9 perturbations to uncover an extensive network of functional interdependencies 

among CDKs and related factors, identifying 51 synthetic-lethal and synergistic relationships. To 

understand these dependencies we perform single-cell RNA sequencing, revealing precise cell-

cycle effects and remarkably diverse cell states orchestrated by specific CDKs. While pairwise 

disruption of CDK4/6 is synthetic lethal, CDK6 but not CDK4 is required for normal cell-cycle 

progression and transcriptional activation downstream of the retinoblastoma (Rb) repressor 

protein. Multiple CDKs (CDK1/7/9/12) are synthetic-lethal when disrupted in combination with 

the PRMT5 methyltransferase, an effect which is independent of cell cycle but can be explained 

by convergence of these factors on transcriptional elongation. CDK dependencies translate to drug-

drug synergies, with therapeutic implications in cancer and other diseases driven by cell-cycle 

defects. 

2.2 Introduction 

Regulation and transition between cell-cycle phases is accomplished primarily by cyclin-

dependent kinases (CDKs) and associated cyclin proteins[145]. The CDK family is large, with 

more than 20 distinct protein-coding genes and substantial uncertainty regarding the specific 

functions of individual family members[145,146]. Canonically, CDK proteins have been divided 

into two functional classes: factors that regulate cell cycle, such as CDK1, 2, 4 and 6, and factors 

that participate in general control of transcription, such as CDK7, 9 and 12[145] (Figure 2.1, 

Figure 2.2.a). However, many CDKs have been shown to function in both of these roles as well 
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as in diverse other pathways[147–156]. For example, both cell-cycle and transcriptional class 

proteins can activate the epigenetic regulators EZH2, AR, PRMT5, and PARP1[151,157–160] or 

interact with proliferative cell signaling via the transforming growth factor beta (TGFβ) 

pathway[161,162]. The emerging picture is that CDKs govern a complex network of overlapping 

and synergistic functions, with “cell-cycle” and “transcriptional” labels providing useful but 

incomplete guidelines. 

 
Figure 2.1: Classes of CDK genes 
Phylogenetic tree showing evolutionary relationships among CDK proteins. Tree derived from 
multi-sequence alignment of CDK protein amino-acid sequences (Methods). 
 

CDKs have also been the focus of extensive interest in the pharmaceutical industry, which 

has developed an armada of specific CDK inhibitors with potential applications in 

cancer[146,163], infection[164,165], neurological disorders[166–168], and other diseases in 

which cell-cycle dysfunction plays a central role. Dual specificity CDK4/6 inhibitors have thus far 
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shown tremendous benefit in cancer, with Phase III clinical trials for palbociclib reporting an 

improvement in progression-free survival of approximately ten months in combination with 

endocrine therapy in hormone-receptor positive (HR+) breast tumors[169] (Figure 2.2.a). As these 

drugs have consequently moved to standard-of-care[146,170–173], it has also become readily 

apparent that many tumors present innate or acquired resistance. One pathway to resistance is 

inactivation of the retinoblastoma tumor suppressor protein[174] (Rb), a central transcriptional 

repressor of cell cycle progression which is regulated by CDKs. As Rb is typically inactivated in 

triple negative breast cancers (TNBC)[175], CDK therapies have yet to be approved for this tumor 

subtype.  

It is also clear that Rb status explains only a fraction of resistance to CDK4/6 inhibitors, 

motivating a keen interest in developing biomarkers of drug response[174,176]. For example, 

androgen receptor (AR) has been proposed as a biomarker for drug sensitivity[147], and altered 

TGFβ signaling as a biomarker for drug resistance[177,178]. Another interest, particularly in 

TNBC, has been the identification of synthetic-lethal dependencies involving CDK proteins, i.e. 

protein pairs that selectively kill tumor cells when they are disrupted in pairwise 

combinations[176,179–181]. For example, inhibition of the epigenetic regulators EZH2 or 

PRMT5 is being investigated as a means to sensitize cells to anti-CDK4/6 therapy[152,182], and 

inhibition of CDK12 was discovered to sensitize tumors to anti-PARP1 therapy[156,183,184]. 

Such developments suggest that the extended family of CDK proteins and interactors may provide 

a useful source of novel biomarkers and synthetic-lethal drug targets.  

Here, we use CRISPR/Cas9 genetic disruption and single-cell mRNA 

sequencing[9,77,82,110,185,186] to systematically interrogate interdependencies and functions of 

all 21 CDKs in TNBC cells, including 5 epigenetic factors linked to CDKs (AR, EZH2, PARP1, 
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PRMT5, TGFBR1)[151,156–158,162]. These experiments reveal a complex network of synthetic-

lethal interactions among CDKs and show that the cellular programs orchestrated by each CDK 

are remarkably diverse[82,187,188]. The resulting resource of interdependencies and associated 

cell states expands our understanding of this complex protein family and suggests targets for 

individual and combination therapy.  

 

2.3 Methods  

2.3.1 Phylogenetic tree construction 

Tree diagram showing relationships between CDK proteins was constructed from a multi-

sequence alignment (MSA) using Geneious[189]. The “Geneious Aligner”, was used to generate 

the MSA, and the neighbor joining method was used to construct the tree. All default parameters 

were used except where otherwise indicated.  

 

2.3.2 Combinatorial CRISPR sgRNA library construction 

Design of gRNA spacer sequences. A list of 21 CDK and 5 non-CDK genes was compiled 

from literature sources. The HGNC symbols of these genes were converted to Entrez IDs using 

Bioconductor packages AnnotationDbi and org.Hg.eg.db. To target these genes in CRISPR-Cas9 

knockout experiments, four different gRNA spacer sequences were selected per gene from two 

lists of such sequences. One list was obtained from the Genetic Perturbation Platform sgRNA 

Designer (GPPD) web tool (https://portals.broadinstitute.org/gpp/public/analysis-tools/sgrna- 

design, accessed in March 2018), and the other from the Brunello lentiviral pooled library 

(https://www.addgene.org/pooled-library/broadgpp-human-knockout-brunello/). The latter 

consists of 76,441 validated gRNAs that target 19,114 human genes and includes 1,000 control 

gRNAs[190]. To obtain the first list of gRNA spacer sequences, the Entrez IDs of the target genes 



46 

were submitted to GPPD with the following parameters: enzyme=Sp, taxon=human, quota=50, 

include=unpicked. The output of this tool was a table listing up to 50 candidate spacers for each 

specified gene. For each spacer, the table included the genomic location (chromosome, coordinate, 

and strand) of the cut site, the 20-nt target sequence, a 30-nt context sequence encompassing the 

cut site, the PAM sequence, and the “pick order”, i.e. the gRNA ranking order based on a score 

that combines predictions of on-target and off-target Cas9 activity[60]. To detect potential errors, 

the obtained spacer sequences were subjected to the following quality control steps. The initial list 

of 6,349 sequences was searched for duplicate entries, 330 of which were found and discarded. 

For each of the remaining 6,019 spacers, a 30-nt context sequence around the cut genomic location 

predicted by GPPD was extracted from the human genome assembly hg38 using Bioconductor 

package BSgenome.Hsapiens.UCSC.hg38. The extracted sequence was compared to the 30-nt 

context sequence reported by GPPD. An exact match between the two sequences was found for all 

of the tested spacers. Next, each spacer sequence was tested for targeting the intended gene. To 

this end, the annotation file gencode.v28.annotation.gtf.gz was downloaded from release 28 of the 

GENCODE project, and a list of coding sequence (CDS) annotations for the human genome was 

extracted from that file. All gene IDs in the list of spacers were found to be represented in the 

extracted list of CDSs. Each spacer was tested to verify that the predicted genomic location of the 

cut site was within the annotated CDSs of the target gene, and not within the CDSs of any other 

gene. A suitable CDS could not be found for 11 spacers, but these had not been picked by GPPD 

and were therefore discarded at a later stage (see below). Lastly, to test for potential off-target 

activity, the spacer sequences were mapped to the human reference genome using Bioconductor 

packages Biostrings and BSgenome.Hsapiens.UCSC.hg38, allowing for up to two base 

mismatches. Out of 6,019 sequences, 3,697 were mapped to multiple genomic locations. In the 
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latter group, 43 spacers were found to have a pick order less than 5. The second list of spacer 

sequences was obtained by downloading the file 

https://www.addgene.org/static/cms/filer_public/8b/4c/8b4c89d9-eac1-44b2-bb2f-

8fea95672705/broadgpp-brunello-library-contents.txt. The table in this file contained the same 

kind of information as that provided by GPPD. This table was confirmed to contain no two spacers 

with the same predicted cut site, or with the same target sequence, or with different lengths of 

target, context, or PAM sequence. The list of spacers was then subjected to the same quality 

controls described above for the list of spacers obtained from GPPD. In this case, 784 spacers were 

found to be associated with 196 genes lacking a CDS annotation, 48 spacers did not hit a CDS of 

the intended gene, 790 spacers hit a CDS of 211 genes that were not the intended targets, 12 spacers 

hit only the CDSs of unintended targets, and 74,831 spacers hit only a CDS of the intended targets. 

Within this last set of spacers, 30,481 could be mapped to multiple genomic locations with up to 

two base mismatches. All CDS hits were determined using the downloaded and confirmed 

genomic locations of the gRNA cut sites. After the above controls, the two lists of spacers obtained 

from GPPD and the Brunello library were merged into a single list. All spacers labeled with the 

Entrez IDs of the 26 chosen genes were retained, yielding 6,024 spacers. From the latter set of 

spacers, a total of 5,236 undesirable spacers were discarded. These included 11 spacers that were 

not hitting a CDS of the intended gene, 4,745 that were not assigned a pick order by GPPD, and 

2,647 whose target CDS was not one of the following: the only CDS in the gene, the second CDS 

in the gene, or an “asymmetric” exon, i.e., a CDS that is not the first or the last in the gene and 

whose length in bases is not a multiple of 3. These criteria for choosing the target CDS were 

intended to maximize the likelihood of disrupting the translation product from the targeted gene. 

Out of the remaining spacers, 104 were selected to target the 26 chosen genes, with 4 spacers per 
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gene. To make this selection, the spacers in the Brunello library were given the highest priority, 

and the genes obtained from GPPD were ranked according to pick order. The final list of selected 

spacers included 60 from the Brunello library and 44 from GPPD. This list of 104 gene-targeting 

spacer sequences was augmented with four non-targeting sequences 

(AAAAAGCTTCCGCCTGATGG, AACTAGCCCGAGCAGCTTCG, 

AAGTGACGGTGTCATGCGGG, AATATTTGGCTCGGCTGCGC), and four sequences 

targeting the AAVS1 safe harbor locus (CCTGCAACAGATCTTTGATG, 

GGTCCAAACTTAGGGATGTG, AGTACAGTTGGGAAACAACT, 

GGCCATTCCCGGCCTCCCTG). The final list was used to generate a pool of oligonucleotide 

sequences containing all possible pairs of spacer sequences, but excluding pairs of identical 

sequences, thus yielding (104+8)×(104+8−1) = 12,432 different pairs. For each such pair, the 

corresponding oligonucleotide sequence was obtained from the following scaffold sequence: 

TCTTGTGGAAAGGACGAAACACCG<M20>GTTTTGAGACG<R15>CGTCTCGTTTG<N2

0>GTTTTAGAGCTAGAAATAGCAAGTTAAAA 

where the segments <M20> and <N20> were replaced with the given pair of spacer sequences, 

and the segment <R15> was replaced with a unique random 15-base sequence. The latter was 

intended to minimize the “uncoupling” of spacer sequences that can arise from abortive PCR 

products[191]. To obtain the random 15-base sequences, a pool of 592 barcodes of length 5 bases 

and minimum Hamming distance of 3 bases was generated using the function DNABarcodes in 

the Bioconductor package of the same name[192]. This function was used with the parameter 

heuristic="ashlock". A unique permutation of three 5-base barcode sequences was used to define 

each of the 15-base random sequences. The list of oligonucleotide sequences was submitted to 

CustomArray, Inc. (Bothell, WA) for synthesis on CMOS array technology.  
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PCR amplification of pooled oligos. The dual library constructs were ordered as single stranded 

DNA oligonucleotides from Custom Array. PCR primers OLS_gRNA-SP_F and OLS_gRNA-

SP_R (Appendix) were used to amplify 100 ng of the libraries with Kapa Hifi Hot Start Ready 

Mix (Roche 7958935001) according to the manufacturer's protocol. An annealing temperature of 

55 °C and an extension time of 15 seconds was used, with the number of cycles tested to fall within 

the exponential phase of amplification.  

  

Gibson cloning of amplified libraries into lentiviral plasmid. A lentiviral vector containing Cas9 

and a human U6 promoter for sgRNA expression  (LentiCRISPRv2: Addgene 52961) was digested 

with BsmBI (NEB  R0580) for 3 hrs at 55 ℃. The digested vector was then purified using a 

Qiaquick PCR purification column (Qiagen 28104). Gibson Assembly reactions containing 200 

ng of digested vector, 36 ng of insert (containing pooled library), and 10 μL of Gibson Assembly 

Master Mix (NEB  E2611S) were then incubated at 50 °C for 1hr, and subsequently transformed 

into 200μL of Stbl4 electrocompetent bacteria (Thermo 11635018). Transformed cells were 

resuspended in 8mL of SOC media (Invitrogen 15544034), and allowed to recover for 1 hour 

shaking before being used to inoculate 150mL of LB media supplemented with carbenicillin. After 

16 hours of further growth, plasmid DNA containing the sgRNA library was isolated via a Qiagen 

Plasmid Plus MaxiPrep kit (Qiagen 12963). 

  

Insertion of the gRNA scaffold, mouse U6 promoter, and 30mer barcode. A DNA insert containing 

the mouse U6 promoter and second gRNA scaffold was first PCR amplified from a previously 

sequence validated TOPO vector (Shen et al., 2017). This insert was modified from previous 
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designs to include a 30mer Unique molecular identifiers (UMI) barcode between each pair of 

sgRNA. To generate this modified insert, 5’ and 3’ fragments of the original insert were amplified 

using dgRNA_Insertv4_barcoded_Left_F/R and dgRNA_Insertv4_barcoded30mer_Right_F/R, 

respectively (Appendix). These two fragments were then stitched together via an overlap 

extension PCR and subsequently cloned into the sgRNA library containing vector. 10ng of 

template plasmid was used to amplify the 5’ and 3’ fragments, with an annealing temperature of 

65℃, an extension time of 30 seconds and 25 cycles. After purifying via a Qiaquick PCR 

Purification column, the two fragments were stitched together via an overlap extension PCR 

amplification using primers dgRNA_Insertv4_barcoded_Left_F and 

dgRNA_Insertv4_barcoded_Right_R (Appendix), with identical PCR cycling conditions as the 

individual fragment amplifications. 147 ng of the purified 3’ fragment and 52 ng of purified 5’ 

fragment were used as template to maintain an equimolar concentration of each fragment. 

 

Insert ligation and transformation. Both the insert and step 1 sgRNA vector were digested with 

BsmBI for 3hrs at 55℃, and subsequently purified via a Qiaquick PCR Purification column. The 

ligation reactions were then set up using 100 ng of vector, 100 ng of insert, 2 μL of buffer, 1 μL 

of T4 ligase (NEB M0202T), and ultra pure H2O up to 20 μL. Each reaction was allowed to proceed 

overnight at 16 ℃. The following morning the ligase was heat inactivated at 65℃ for 20 min. 

Following this, the reaction was dialyzed into ultrapure water (Millipore VSWP01300) to remove 

any residual salts from the ligase buffer. Once the DNA was dialyzed, the ligation reaction was 

split evenly between 300 μL of Stbl4 electrocompetent cells, which were then transformed 

according to the manufacturer's protocol. The transformed cells were resuspended in 10 mL of 

SOC media (Invitrogen 15544034), and allowed to recover for 1 hour shaking before being used 
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to inoculate 150 mL of LB media supplemented with carbenicillin. After 16 hours of further 

growth, plasmid DNA containing the sgRNA library was isolated via a Qiagen Plasmid Plus 

MaxiPrep kit (Qiagen 12963). 

  

2.3.3 Combinatorial fitness screening and NGS prep from gDNA 

Transfection of HEK293T cells for lentivirus production. HEK293T cells were used to 

produce lentivirus for the pooled CRISPR screens. One day before transfection, HEK293T cells 

were seeded into a 15-cm dish so that they would be approximately 70-80% confluent the 

following day. On the day of transfection, 36 μL of Lipofectamine 2000 was added to 1.5 mL of 

Opti-Mem reduced serum media. In a separate 1.5 mL of Opti-Mem, 12 μg pCMVR8.74 (addgene 

#22036), 3 μg pMD2.G (addgene #12259), and 9 μg of the sgRNA containing lentivector were 

mixed. After 5 minutes, the lipofectamine containing OptiMem and the diluted DNA were mixed 

gently and incubated at room temp for 25 minutes. While this is incubating, the HEK293T cells 

were replenished with 20 mL of fresh media. After 25 minutes, 3 mL of the lipofectamine/DNA 

was added to the cells dropwise. The cells were incubated for 48 hours, after which the virus 

containing supernatant was collected and replaced with 20 mL fresh media. After 24 more hours, 

a second round of virus containing supernatant was harvested and combined with the first. 

Following this, a Steriflip .45μm filter unit was used to remove contaminating HEK293T cells. 

The virus was then concentrated at 3500g and 4 °C using a 100K MWCO spin concentrator 

(Millipore UFC910096). Once the final volume was 1.5mL or less, the virus was aliquoted and 

stored at -80 °C. 
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Lentiviral transduction. All cell lines used were transduced at a low MOI (<.4) to ensure every 

cell has only a single sgRNA integrated. Before doing a scaled up transduction at 1000 fold 

coverage, cells were transduced in a 12 well plate with varying amounts of virus to identify the 

appropriate amount of virus necessary. To transduce the cells, lentivirus was mixed with the 

necessary volume of cell culture media containing 8 μg/mL polybrene. The virus-containing media 

was added to the cells at 30% confluency, and let incubate overnight. The following day, the 

virus/polybrene containing media was removed and replaced with fresh media. 48 hours after 

transduction, the cells were changed into puromycin (2 μg/mL) containing media. Cells were then 

grown as normal in media containing puromycin. 

  

Fitness screening in TNBC cell lines. Fitness screening was performed in three TNBC cell lines: 

Hs578T, MDA-MB-231, and MDA-MB-468. All cells were grown in DMEM media (Thermo 

10566016)  supplemented with 10% FBS (Thermo 10082147), and antibiotics/antimycotics 

(Thermo 15240096). Cells were passaged every 3-4 days via .25% Trypsin-EDTA (Thermo 

25200056). The TNBC cell lines were grown for a total of 28 days, freezing down (-80C) aliquots 

of cell pellets at each passage, as well as a portion of cells three days after transduction. Care was 

taken to ensure that the number of cells plated, and frozen down were both greater than 1000 fold 

the library size. After the completion of the screen, a Qiagen DNeasy blood and tissue kit was used 

to isolate genomic DNA from four evenly spaced time points over the course of the screen. After 

genomic DNA extraction, primers NGS_dualgRNA_SP_Lib_F and NGS_ dual-gRNA_SP_Lib_R 

(Appendix) were used to amplify the dual sgRNA cassette for sequencing. For each sample, 40 

μg of genomic DNA was mixed with 250 μL of Kapa Hifi HotStart ReadyMix, 25 μL of each 

primer (10 μM stock), and water up to 500 μL. The amplification was performed according to the 
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manufacturer’s protocol, with an annealing temperature of 55 °C and an extension time of 45 

seconds. The step 1 PCR product was then purified using a QiaQuick PCR Purification Kit. 

Following this an NEBNext indexing kit (NEB E7335S) was used to attach Illumina specific 

sequences and indices via a nested PCR. 1 μL of the purified step 1 PCR amplicon as template (the 

sgRNA library) was added with 2.5 μL of each indexing primer per 50 μL Kapa HiFi reaction, and 

run for 6-8 cycles with an annealing temperature of 65 °C and an extension time of 45 seconds. 

The final dual sgRNA sequencing libraries were then purified using AmpureXP magnetic beads 

(Beckman A63881) at a .8:1 bead-to-DNA ratio. The libraries were subsequently sequenced with 

at least 500 fold sequencing coverage using a HiSeq2500 operating in rapid mode. 

 

2.3.4 Genetic interaction scoring 

Counting gRNAs. The abundance of cells harboring dual CRISPR constructs, the fitness 

estimation of those constructs, and resulting interaction scores were quantified as previously 

described[77] with modification. Briefly, the DNA aligner Bowtie2[193] was used to align the 

sequencing reads harboring sgRNAs to a reference of expected guides and background amplicon 

sequence. The NGS read format of the dual CRISPR constructs is as follows:  

Read1: 5’-

TATATATCTTGTGGAAAGGACGAAACACCG<gRNA_1>GTTTCAGAGCTATGCTGGAA

ACTGCATAGCAAGTTGAAATAAGGCTAGTCC-3’ 

Read 2: 5’-

CCTTATTTTAACTTGCTATTTCTAGCTCTAAAAC<gRNA_2><GTTTTAGAGCTAGAAA

TAGCAAGTTAAAATAAGG - 3’ 



54 

gRNA_1 and gRNA_2 are the guide RNAs targeting gene 1 and gene 2, respectively.  A reference 

sequence fasta sequence was constructed by prepending the 5’ sequence and appending the 3’ 

sequence to unique each guide RNA in position 1 and 2 separately.  This resulted in a reference 

sequence with 224 ‘contigs’ or expected sequences, 112 in each gRNA position.  The bowtie2 

index files were then built with the command ‘bowtie2-build’.  The individual read 1 and read 2 

fastq files were aligned separately with ‘bowtie2-align’ using the ‘--very-sensitive’ preset.  After 

alignment, bam tags were added to each alignment specifying the index position of the first base 

of the gRNA, the expected gRNA based on which gRNA contig the read was aligned to, and the 

Levenshtein distance of the read to the expected guide sequence.  Additionally, the bam binary 

flag was modified to include mate pair information.  The individual read 1 and read 2 bams were 

then merged with ‘samtool merge’, coordinate sorted with ‘samtools’ sort, and the mate pair 

information fixed with ‘samtools fixmate’. Guide-guide pairs were then counted from the aligned 

bam files.  The individual reads are filtered to those with a Levenshtein distance of less than 3, 

allowing for a maximum of two insertions, deletions, or mismatches in the guide sequence. 

Furthermore, for a given mate pair to be valid, we require that each read is aligned to a contig 

expected in that position. The pair of guide sequences observed in read 1 and read 2 for a given 

mate pair are also required to be expected from the library construction. These requirements ensure 

we do not quantify sequencing reads or PCR errors. 

 

Quantifying fitness. The relative abundance of each dual gRNA construct, 𝑥!!!", was estimated as 

a log2 transformed ratio of the number of reads assigned to that pair, 𝑀!!!", to the total number of 

reads assigned to any construct in the experiment: 
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𝑥!!!" = 	𝑙𝑜𝑔"
𝑀!!!"

∑#$ ∑#%&$	 𝑀!#!$
 

 (1) 

where 𝑁 is the total number of individual gRNAs. The fitness induced by each gRNA pair at each 

timepoint 𝑡 was estimated as the abundance relative to the initial infection (𝑡(): 

𝑓!!!",* =	𝑥!!!",* − 𝑥!!!",( 

(2) 

 

Scoring genetic interactions. A genetic interaction, 𝜋, was scored as the deviation in observed dual 

gRNA construct fitness, 𝑓!!!", from the additive effects of the individual gRNA construct 

fitnesses: 

𝑓!!!" =	𝑓!! +	𝑓!" +	𝜋!!!" 

 (3) 

The single guide effects fg1 (or equivalently fg2, fg3 … fgN) were imputed as follows. Summing eqn. 

(3) over all gRNA pairs containing g1, we have: 

/
#

%+"

𝑓!!!# =	 (𝑁 − 1)𝑓!! +/
#

%+"

𝑓!$ +/
#

%+"

𝜋!!!$ 

 (4) 

Under the assumptions that genetic interactions are rare and centered about zero, the final term of 

this equation is dropped: 
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 (5) 

The set all summations for each gRNA is then solved as a system of linear equations, Ax=b, where 

A is an N⨉N matrix, x is the vector of single gRNA fitnesses fg to be imputed, and b is the sum of 

all construct fitnesses harboring gRNA i (eqn. 5). 

 

 (6) 

Having used this equation to impute values for each 𝑓!, we then solve eqn. (3) for all genetic 

interaction terms 𝜋!!!".   

Each pair of genes in the screening library, a and b, corresponds to 32 distinct combinations of 

gRNAs: each gene is targeted by 4 distinct gRNAs, resulting in 4 ⨉ 4 = 16 unique gRNA 

combinations per gene pair, and the gene pair appears in 2 orders (a,b or b,a).  To compute gene 

level genetic interaction scores, we averaged 𝜋g1,g2 across all 32 combinations of gRNAs for a 

given gene pair. The gene level interaction scores were then z-score normalized for each time point 

in each replicate. A final estimate of the gene-gene interaction score was computed as the median 

z-score for all 3 timepoints and 2 replicates.   

 

Validation of candidate genetic interactions. We validated candidate genetic interactions using a 

previously described technique[186] as follows. sgRNA used in the screen (Appendix) were 
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selected and cloned into the lentiviral pKLV2-U6gRNA5(BbsI)-PGKpuro vector backbone 

expressing either BFP or mCherry (Addgene #67974 or #67977). Cells were transduced in 

triplicate to create four populations, and abundance of each population was quantified by FACS 

Aria. Analysis was performed with Flowjo (v10.8.1).  

 

2.3.5 Single-cell RNA sequencing of pooled knockout cells 

The DNA coding for each sgRNA construct was generated using two overlapping 

oligonucleotides containing the guide sequence and homology arms for Gibson cloning. The full 

list of oligonucleotides used to generate sgRNA constructs is contained in the Appendix. To 

produce a double-stranded insert for Gibson Assembly cloning, 1 μL of each primer (10 μM) was 

added to 8 μL of ultrapure water and 10 μL Kapa Hifi HotStart ReadyMix. The PCR reaction was 

performed according to the manufacturer's protocol with an annealing temperature of 60 °C, an 

extension time of 15 seconds and 7 cycles. Following this, the sgRNA insert was purified using a 

QiaQuick PCR purification column.  50 ng of BsmBI digested CROP-Cas9-Puro vector was then 

incubated with 10ng of purified sgRNA insert in a 10 μL Gibson Assembly reaction for 1 hr at 50 

°C. This Gibson reaction was then directly transformed into Stbl3 chemically competent cells 

according to the manufacturer's protocol. Colonies were then miniprepped and sequenced to 

identify correctly cloned constructs. After sequence verifying all targeting sgRNA plasmids in the 

library, they were quantitated via Nanodrop and pooled at equal molarity, excluding the non-

targeting and AAVS1-targeting negative control guides which were included at 25% of the total 

library.  
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For scRNA-seq experiments, cells were transduced with lentivirus at 30% confluency in a 10cm 

dish to maintain library coverage. After transduction (see above), cells were grown for 7 days, then 

processed via 10X Genomics 3’ Single Cell mRNA Capture Kit v3 according to the manufacturers 

protocols. Unused cDNA from the library prep was used to amplify the CRISPR sgRNA sequences 

to improve cell annotation. In a 50 μL reaction, 20 μL of cDNA was mixed with 2.5 μL of the 

CROP-Seq_Guide_Amp primer (10 μM), 2.5 μL of the NEB_Universal primer (10 μM) 

(Appendix), and 25 μL of Kapa HiFi HotStart ReadyMix. The PCR cycling parameters were used 

according to the manufacturer's protocol, with an annealing temperature of 65 °C and an extension 

time of 30 seconds. Care was taken to ensure the PCR reaction was terminated in the exponential 

phase by performing a small scale test PCR reaction and running several different cycle numbers 

on an agarose gel to visualize amplification kinetics. After amplifying and purifying the sgRNA 

libraries via a Qiagen PCR purification column, the libraries were then indexed for Illumina 

sequencing via an NEBNext multiplexed indexing oligo kit. 1 μL of the purified step 1 PCR 

amplicon as template (the sgRNA library) was added with 2.5 μL of each indexing primer per 50 

μL Kapa HiFi reaction, and run for 6-8 cycles with an annealing temperature of 65 °C and an 

extension time of 45 seconds. The final sgRNA sequencing libraries were then purified using 

AmpureXP magnetic beads (Beckman A63881) at a 1.6:1 beads to DNA ratio. Resulting 

sequencing libraries were then sequenced on a NovaSeq according to 10X Genomics’ 

recommended sequencing parameters. 

 

2.3.6 Cell-cycle phase scoring for unannotated genes 

Co-expression networks were constructed using the “scanpy” and “numpy” Python 

packages[194] using the Pearson correlation to quantify gene-gene similarity in expression. For 
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each transcript of unknown cell-cycle relevance, cell-cycle phase scores were quantified by taking 

the mean Pearson correlation of the transcript of interest to a given set of known cell-cycle phase 

markers[81]. To quantify statistical significance, we identified genes which have a significantly 

higher mean coexpression with genes of a given phase versus all other phases, as quantified by a 

t-test. We then stratified transcripts by the variance in their cell-cycle phase scores, only plotting 

genes with cell-cycle phase scores with variance greater than 2 standard deviations away from the 

dataset mean.  

 

2.3.7 Cell-cycle phase annotation 

Preprocessing read counts. The sequencing counts from the scRNA-seq experiments were 

quantified with the CellRanger[195], which provides estimates of mRNA abundance per gene and 

classification of which sgRNA each cell harbors. “Scanpy” was used for downstream processing 

of the mRNA expression estimates. Single cells for which the mRNA samples have fewer than 

200 genes, or more than 10,000 genes, are removed with the scanpy function “filter_cells”.  

Likewise, genes expressed in fewer than 3 cells are filtered from the expression matrices with the 

scanpy function “filter_genes”. Next, the  fraction of read counts mapping to mitochondrial genes 

was quantified and cells with more than 10% mitochondrial reads were removed. The expression 

estimates were then read-count normalized with the function “normalize_total” and log normalized 

with the scanpy function ‘log1p’. 

 

Expression markers of cell cycle and coarse classification of cell-cycle phase. For each cell i, the 

cell-cycle phase was estimated using numpy and pandas in custom python scripts. First, we 

obtained five sets of genes (𝐽,),  𝑘	 ∈ 𝐾 = 	 {𝑀,𝑀/𝐺1, 𝐺1/𝑆, 𝑆, 𝐺2/𝑀}, that had been previously 
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identified as biomarkers of discrete cell-cycle phases[196], as well as cell-cycle biomarkers newly 

identified from our transcriptomic data (Appendix). For each 𝐽, we computed the average 

expression, 𝐸$,:  

𝐸$, =
∑%∈.% 𝐸$%

|𝐽,|
 

 (7) 

We also computed a pan-phase expression profile Ei, with all genes implicated in any cell-cycle 

phase:  

𝐸$ = ∪
∀,

𝐸$, 

 (8) 

These expression vectors were also used to label each cell with a coarse-grained classification C 

∈ 𝐾 of the cell-cycle phase: 

𝐶$ = 𝑎𝑟𝑔𝑚𝑎𝑥,𝐸$,  

 (9) 

 

Embedding of single-cell expression to quantitate cell-cycle phase angle. For each pair of cells (m, 

n), we computed the cosine similarity of the pan-phase expression profiles (eqn. 8), which was 

used to derive the pairwise cell-cell distance D: 

𝐷0,1 = 1 −𝑐𝑜𝑠 J𝛩0,1L 	= 	1	 −	
𝐸0 ⋅ 𝐸12

N|𝐸0|NN|𝐸1|N
 

 (10) 
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The matrix of all pairwise cell-cell distances, 𝐷, was then embedded into two dimensional space 

(𝐷3 and 𝐷") using Multidimensional Scaling[197] (MDS) in sklearn. The Cartesian coordinates of 

each cell in the embedding were converted to polar coordinates: 

(𝑟, 𝛩) = OP𝐷3" + 𝐷"",	𝑡𝑎𝑛43
𝐷"
𝐷3
R 

 (11) 

We then assigned consecutive angular ranges to discrete cell-cycle labels 𝑘 according to the 𝐶$that 

was most represented among the cells within that range. Defining 𝑆5 as the set of all cells residing 

in a angular range bounded by 𝛩 and 𝛩 + 1, the most represented cell-cycle phase label was: 

𝑀5	 = 	𝑎𝑟𝑔𝑚𝑎𝑥,N𝐶$,( = 𝑘		∀	𝑖 ∈ 𝑆5 , 𝑘	 ∈ 	𝐾	N 

 (12) 

We used linear regression to assess the ability of 𝛩 to capture cell-cycle information and to 

consequently be used to remove that information from the transcriptome-wide expression profile. 

We first smoothed the expression estimates for each cell in each phase, 𝐸$, , across the angular 

dimension, 𝛩, with the R package ‘mgcv’[198].  The modified cell-cycle expression scores were 

then used as features in the ‘regress_out’ function in scanpy. Kuiper’s test, a Kolomogrov-Smirnov 

test in polar coordinates available in the R package “circular”[199], was used to score which gene 

knockouts result in a significant change in distribution of cells about the cell-cycle embedding.  

 

2.3.8 Annotating phenotypic effect of CRISPR knockout 

To establish the baseline transcriptomic state, we calculated the median transcriptomic 

abundance per each transcript for all cells that received only one AAVS sgRNA. We calculated 
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the log2 fold change in abundance for each transcript of each cell. We then calculated the median 

fold change per transcript for each set of cells that had the same gene knocked out. We also 

established a confidence interval of the median through 1000 bootstrap resampling. We finally 

embedded both the median and resampled median using multi-dimensional scaling, similar to the 

cell cycle phase analysis. 

 

We also inferred the transcriptomic programs altered by the genetic perturbation. For each gene 

knockout, we compared the distribution of transcript abundances between the knockout cells and 

cells that received AAVS sgRNAs using a Mann Whitney-U test corrected for multiple hypothesis 

testing using the Bejamini-Hochberg procedure. We defined a gene to be differentially expressed 

for FDR < 0.05. This procedure yields a set of differentially expressed genes for each knockout. 

We then determined what cellular functions are perturbed by performing gene enrichment analysis 

against genesets from Reactome.  

 
Chemical Validation of CDK12-PRMT5 interaction 
 
MDA-MB-231 cells were seeded into 96-well flat bottom black wall plates in 100 μL/well of L-

15 culture medium with 10% FBS and 1X Penicillin/Streptomycin added at 1500 cells per well 

and incubated overnight at 37C in air.  PRMT5 inhibitor (PF-06939999[200] or EPZ015666[201]) 

dilutions were prepared in 100% DMSO, then further diluted in complete culture media and 11 ml 

was added to each well of the cell plate to reach the appropriate final concentration in 0.1% DMSO.  

Each dose was tested in triplicate.  Plates were incubated for 3 days at 37°C.  Media and PRMT5 

inhibitors were refreshed and SR4835[202] was added in dose response.  SR4835 compound 

dilution plates were prepared in 100% DMSO starting with a 10 mM stock concentration, using a 

3-pt serial dilution, then further diluted in complete culture media and added to each well of the 
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cell plate such that the highest compound concentration tested was 10 mM final in 0.1% DMSO.  

Cells were incubated an additional 7 days at 37°C, then plates were removed and assayed for 

viability using Cell Titer Glo reagent. Plates were read on an Envision plate reader using the 

luminescent filter.  Viability was assessed as a percentage of DMSO control using Excel.  The 

SynergyFinder 2.0[203] web tool was used to calculate synergy scores for each PRMT5 inhibitor 

+ SR4835 combination.  

 

2.3.9 5’ Transcript Coverage Bias 

 
Exon coverage. Strand aware, base level read coverage was computed for each knockout 

in the MDA-MB-231 dataset from aligned bam files using the ‘genomecov’ tool in bedtools 

(version 2.30.0) with the ‘-bg’ and ‘-strand’ flags set. GENCODE comprehensive gene annotation 

for GRCh38 version 28 was used as a gene model for exon definitions. Exons categories for a 

given gene were defined as follows: ‘First’ exons are the 5’ most exon in any transcript, 

‘Alternative First’ exons are other exons which are the 5’ most exon in any transcript but are were 

not labeled ‘First’, ‘Last’ exons are the 3’ most exon in any transcript for a given gene, ‘Alternative 

Last’ exons are other exons which are the 3’ most exon in any transcript but are were not labeled 

‘Last’, ‘Internal’ exons are all other exons.  Coverage per exon per gene was computed as the 

number of reads that span the exon with at least one base-pair using the package bx-python (version 

0.8.11). Genes with less than 10 assigned reads were filtered out. Exon coverages were 

subsequently normalized as reads per million and log2 transformed. Log2 fold-change per exon per 

gene was computed relative to cells harboring non-targeting control (NTC) guides. Significant 

perturbation to the fold enrichment of ‘First’ exons was computed as a t-test with the python 

package scipy (version 1.6.2).    
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Gene set enrichment of 5’ biased transcripts. The 5’ coverage bias was defined as the ratio of the 

fold enrichment relative to NTC of the ‘First’ exon to the ‘Last’ exon. We performed hierarchical 

clustering of the euclidean distances of the 5’ bias for select knockout samples using the ‘complete’ 

option from the ‘hierarchy’ package in scipy. The hierarchy was then cut into 12 trees and gene 

set enrichment was performed on the transcripts within each tree using the Enrichr[204] webtool. 

Significantly enriched terms from the MSigDB Hallmark 2020 gene sets had a padj < 0.05 by 

Benjamini-Hochberg corrected Fisher Exact test. 

 

2.4 Results 

2.4.1 A network of CDK genetic dependencies.  

To systematically map CDK genetic dependencies, we performed combinatorial CRISPR 

fitness screening using lentiviral vectors delivering pairs of sgRNA molecules to each cell[77]. 

We selected four distinct sgRNAs per gene, designed to perturb all single and pairwise 

combinations of the 26 CDK and CDK-related genes (Figure 2.2.a). Together with non-targeting 

sgRNA and safe-harbor controls (AAVS1, the adeno-associated virus integration site in intron 1 

of PPP1R12C), this library design resulted in a total of 12,432 dual sgRNA constructs (Figure 

2.2.b, Methods).  

To supplement our combinatorial knockout screen with information-rich transcriptomic data, 

we built a second library of single-cell RNA sequencing (scRNA-seq) compatible single-knockout 

CRISPR constructs for the same set of 26 genes (2 sgRNA per gene). We verified the cutting 

efficiency of all 52 sgRNAs, confirming that we had achieved highly efficient editing of target loci 

(Figure 2.2.c). These libraries were used to interrogate three cell lines, representing distinct TNBC 
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classifications (MDA-MB-468: Basal A; MDA-MB-231 and Hs578T: Basal B). MDA-MB-468 

cells have a loss-of-function disruption of retinoblastoma protein (Rb–), while the Basal B cells 

are Rb+ but have activating RAS mutations and CDKN2A deletions which increase mitogenic 

signaling via D-type cyclins[181,205–208].  
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Figure 2.2: Systematic mapping of CDK gene function in triple negative breast cancer cells 
 a, CDK proteins control cell-cycle progression and act as transcriptional regulators, garnering 
interest as potential drug targets (colors). b, Schematic describing the combinatorial CRISPR/Cas9 
fitness screening approach to map CDK synthetic-lethal and epistatic interactions. A library of 
dual sgRNA constructs targeting pairs of genes listed in (a) was synthesized as an oligonucleotide 
pool and cloned into a lentiviral overexpression vector (top). TNBC cell lines were transduced 
with virus coding for this library and subjected to competitive growth screening. Resulting dual 
sgRNA construct fitnesses were used to extract single gene fitness values and map genetic 
interactions. c, Schematic describing the single-cell transcriptional phenotyping approach to map 
the functional impact of CDK genetic perturbations. An sgRNA library targeting the genes in (a) 
was cloned into an scRNA-seq-compatible lentiviral overexpression vector and used to transduce 
TNBC cell lines in pooled format. One week after transduction, scRNA-seq was performed using 
the 10x Chromium platform.  
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Cell lines were screened in biological duplicates, with genomic DNA sequenced at 4 time 

points over 28 days to track the relative fitness of cells harboring each dual sgRNA construct. 

Fitness measurements were well correlated between biological replicates (Pearson’s r = 0.996) and 

across the three breast cancer cell lines (r = 0.922 to 0.937), with CDK1 ranking as the most 

deleterious knockout, consistent with its role as a master regulator of cell-cycle 

progression[172,209] (Figure 2.3.a). We then analyzed these measurements to identify pairwise 

gene knockouts in which fitness was significantly less than or greater than expected from the single 

knockouts[77] (Figure 2.3.b, Methods). This analysis identified a collection of 51 synthetic-

sick/lethal and 17 epistatic genetic interactions, respectively (Figure 2.3.c-d). These interactions 

were identified in either of two analysis modes: one treating data from each cell line separately, to 

identify specific vulnerabilities; another pooling all cell lines as replicates (“pan” cell line, Figure 

2.3.c), to identify interactions occurring consistently across contexts with high statistical power.  
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Figure 2.3: CDK combinatorial disruption reveals conserved and context-dependent 
interaction networks 
a, Mean fitness for cells receiving each CDK knockout, pooled across three TNBC cell lines. 
AAVS1, sgRNA targeting adeno-associated virus integration site 1, a safe-harbor control locus; 
NTC, non-targeting control. Error bars correspond to standard deviations across measurements 
from three cell lines: Hs578T, MDA-MB-231, and MDA-MB-468. b, Fitness trajectories for 
CDK4/6 dual knockout vs. single knockouts (pairing CDK4 or CDK6 with AAVS) in each TNBC 
cell background. Error bars correspond to standard deviation of fitness measurements across 
replicates and 32 guide pairs targeting the same gene pair. c, Heatmap of significant genetic 
interactions for each cell line and a pan-cell line analysis. d, Complete CDK synthetic lethality 
networks discovered across all experiments. Single gene knockout fitness is defined as the log2 
growth relative to non-targeting control.  e, Schematic of validation of genetic interactions. 
sgRNAs paired with two different fluorophores are transduced at high MOI and grown in 
competition. Cells are colored according to the sgRNA a cell received: blue for sgRNA1-BFP, red 
for sgRNA2-mCherry, yellow for both sgRNA1-BFP and sgRNA2-mCherry, and gray for no viral 
integration. f, CDK4/6 single and dual knockout populations 4 days and 11 days after infection. g-
i, Validation of synthetic lethal interactions for (g) CDK4-CDK6, (h) CDK2-CDK6, (i) CDK12-
PRMT5 in MDA-MB-231 cells by fold enrichment (positive values) or depletion (negative values) 
of single and dual knockouts on day 11 vs. day 4 post infection. Error bars represent standard 
deviation across two replicates. Dual knockouts showed marked reduction in growth relative to 
single knockouts.  
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Nearly all synthetic lethalities identified in this experiment had not been identified 

previously, with three partial exceptions. One interaction between CDK8 and CDK12 had been 

identified in K562, a model for chronic myeloid leukemia[186]. We saw this synthetic-lethal 

interaction in Hs578T, with weak epistasis in the other two contexts. Two interactions, CDK4-

CDK6 (Figure 2.3.b) and CDK2-CDK6 (Figure 2.4.a), had been previously inferred from patient 

data or knockout mouse experiments[210,211] but not demonstrated with a combinatorial genetic 

screen. Here we observed these interactions in our primary screen as well as an orthogonal flow 

cytometry assay (Figure 2.3.e-h, Methods). For the remaining novel synthetic lethals, 14 

corresponded to protein pairs that had been shown to physically interact (Appendix), 

corroborating the observed genetic interactions.  
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Figure 2.4: Synthetic lethality of select double knockouts 
Fitness trajectories of synthetic-lethal interactions for (a) CDK2-CDK6, (b) CDK12-PRMT5, (c) 
CDK7-PRMT5, and (d) CDK9-PRMT5, comparing dual knockout vs. single knockouts in 
HS578T, MDAMB231, and MDAMB468 cell lines (colors). Error bars correspond to fitness 
measurements across replicates and guide pairs targeting the same gene pair.  
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Notably, genetic interdependencies among the canonical cell-cycle CDKs were observed 

exclusively in the Rb+ cell types (MDA-MB-231 and Hs578T). For example, strong synthetic 

lethality was observed between CDK4 and CDK6 in both of these backgrounds but not in the Rb– 

context (MDA-MB-468), supporting the use of Rb status as a predictive biomarker for efficacy of 

anti-CDK4/6 agents[180,212,213] (Figure 2.3.b). We also observed Rb-dependent interaction of 

CDK2 with CDK6, of note due to ongoing research in trispecific CDK2/4/6 inhibitors[214], as 

well as interaction of CDK1 with CDK17 and CDK18, suggesting that the Rb-dependent 

regulatory axis may include the broader family of cell-cycle CDKs beyond CDK2/4/6.  

Other than the CDK4/6 dependency, all of the top five synthetic-lethal interactions featured 

a transcriptional CDK or epigenetic regulator (Figure 2.3.c, ranked by pooled score across cell 

lines). The overall strongest interaction linked PRMT5 and CDK12 (Figure 2.3.c,i; Figure 2.4.b), 

a novel interaction between two genes which, separately, have been implicated in regulation of 

RNA polymerase II (RNAP II)[156,215]. Related to this finding, we found synthetic lethalities 

linking PRMT5 to CDK7 and CDK9, two additional transcriptional CDKs (Figure 2.4.c,d). 

Several highly ranked synthetic-lethal interactions were identified linking a cell-cycle regulatory 

CDK to a transcriptional CDK, such as the CDK1–CDK8 interaction (Figure 2.3.d). Many 

synthetic lethalities involved CDK proteins that had yet to be investigated as anti-cancer drug 

targets, such as the transcriptional regulators CDK11B and CDK15.  

 

2.4.2 Effects of CDK knockouts on cell-cycle phase.  

Coupling genetic perturbations to rich molecular readouts, namely transcriptomic profiling 

with scRNA-seq[82], offers the ability to reveal specific functions that underlie changes in fitness 

phenotypes. Accordingly, we analyzed each of the three TNBC cell lines using scRNA-seq in the 
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presence or absence of genetic disruptions to each of the 26 CDK and CDK-related genes (Figure 

2.2.c). A pooled library of CRISPR single-guide RNAs (sgRNAs) was transduced at low 

multiplicity of infection (MOI) such that the majority of cells received at most a single sgRNA 

(Figure 2.5.a). One week after transduction, scRNA-seq was performed using the 10x Chromium 

platform (Methods).  
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Figure 2.5:  ScRNA-seq quality control metrics 
a, Histogram of sgRNA counts per cell, for each of the three cell types interrogated in this study. 
b, Read depth per cell in each cell line (10X PMBC). c, Histogram of number of cells receiving 
specific sgRNAs. AAVS1, sgRNA targeting the adeno-associated virus integration site 1, a safe-
harbor locus; NTC, non-targeting control. 
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 Within these data, we examined the expression of 603 genes that had been previously 

nominated as cell-cycle markers based on their periodic transcriptional variation in cycling 

cells[81,196,216]. Markers of the same cell-cycle phase were tightly clustered, supporting their 

previous assignments (Figure 2.6.a). Furthermore, these clusters included additional transcripts 

whose inclusion was consistent across the three cell lines, prompting us to expand the set of cell-

cycle markers by an additional 127 genes (Figure 2.6.b-c, Methods). We found highly significant 

overlap between this expanded list of cell-cycle marker transcripts and an independent dataset of 

cell cycle transcripts characterized by the Human Protein Atlas[216] (p = 1.64✕10-31 Fisher's exact 

test; Figure 2.6.d). There was less overlap between our expanded list of cell-cycle marker 

transcripts and known cycling proteins, likely due to the importance of post-translational 

mechanisms in regulating cell phenotypes at the protein level[217] (Figure 2.6.d). Of these 127 

additional cell-cycle markers, 34 were differentially expressed in one or more CDK knockout 

populations (Figure 2.6.e). 
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Figure 2.6: Coexpression analysis to identify cell-cycle associated genes 
a, Heatmap showing the Pearson correlation in expression for pairs of genes. MDA-MB-231 cells, 
highly variable transcripts only. Known cell-cycle markers marked in color on the heatmap border. 
b, Cell-cycle phase scores for predicted cell-cycle genes, defined as genes without previous phase 
assignment but that have significantly high correlation with marker genes of a particular phase 
(versus markers from all other phases, p<0.05). c, UMAP plots showing expression levels of two 
predicted G1/S phase markers (MCM3, FAM111B) alongside the known marker PCNA. M-phase 
marker CCNB1 shown for comparison. d, Comparison of newly identified cell cycle genes to 
existing datasets describing cell-cycle variable RNAs and proteins[216]. e, Expression levels for 
identified cell-cycle genes (columns) grouped by CDK knockout (rows). Genes with significant 
(FDR adjusted p<0.05) dysregulation in response to one or more CDK knockouts are shown. Color 
indicates log2 fold change for each transcript relative to the population mean.  
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The cell-cycle phase of each cell was determined by embedding the expression profiles of 

the expanded set of cell-cycle markers into polar coordinates, similar to a previous method based 

on Hi-C data[218] (Figure 2.7.a, Methods). In these coordinates, angle corresponded to the state 

of cell-cycle progression at the time of cell capture, with M, G1, S and G2 phases defined by 

successive angular ranges around the unit circle (Figure 2.7.b, Figure 2.8.a,b). The subpopulation 

of cells harboring a specific CDK knockout could then be selected, and its angular distribution 

examined for aberrations relative to wild type (Figure 2.7.c). 
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Figure 2.7: Effects of CDK disruption on cell-cycle phase 
a, Approach for embedding cells such that cell-cycle phases can be measured. In the embedding, 
the angle Θ indicates phase. b, Cell-cycle embedding of all MDA-MB-231 cells. c, Deviation of 
CDK1 knockout cells from AAVS control cells (gray circle) in density of cells about the cell-cycle 
embedding (blue). Dashed lines represent the median angle of cell-cycle phases. d, Deviation in 
single-cell density compared to AAVS for select knockouts in MDA-MB-231, Hs578T, and MDA-
MB-468 cells; * p<0.05 by Kuiper Test. 

 

Using this approach, we found that knockouts of CDK1, 2, 5, and 6 all had significant effects 

on cell cycle progression (Figure 2.7.d). Cells harboring CDK1 knockouts accumulated at the end 
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of G2 phase, whereas cells harboring CDK2 knockouts accumulated at G1[219] (Figure 2.7.d). 

CDK2 and CDK5 had context-specific impacts on cell cycle: CDK2 knockouts resulted in M/G1 

arrest in the Rb+ lines and early S phase arrest in the Rb– line, while CDK5 knockouts arrested in 

G2/M only in Hs578T cells. The effects of CDK6 knockout were also context-dependent: MDA-

MB-231 and Hs578T cells showed enrichment in early and late G1 respectively, whereas the Rb– 

line, MDA-MB-468, showed little cell-cycle effect. In addition to effects of these canonical cell-

cycle CDKs, we found that CDK13, CDK17, and CDK18 significantly perturbed cell cycle in at 

least one cell line, although they had been classified as transcriptional CDKs (Figure 2.8.c,d,e). 

We further validated the cell-cycle embedding by using the angular position of cells to robustly 

remove cell-cycle signatures from the expression profiles (Figure 2.8.f). 
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Figure 2.8: Cell-cycle embedding, perturbation, and regression 
a, MDS cell-cycle embedding of all Hs578T cells. b, MDS cell-cycle embedding of all MDA-MB-
468 cells. c-e, Deviation in single-cell density compared to AAVS for select knockouts in Hs578T 
(c), MDA-MB-468 (d), and MDA-MB-231 (e) cells; * p<0.05 by Kuiper’s Test. f, UMAP 
projection of single cells before and after regression of cell-cycle phase (theta) from expression 
estimates; color corresponds to mean expression scores in S-phase genes after preprocessing. 
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2.4.3 CDK transcriptional effects are large and distinct from one another.  

We next sought to quantify the functional effects of CDK knockouts beyond cell-cycle 

progression. First, we confirmed that many of the knockouts led to significant downregulation of 

the corresponding gene in cis, consistent with nonsense mediated decay of the CRISPR-edited 

transcripts[220]. CDKs lacking this cis regulatory effect could be largely explained by low 

endogenous transcript abundance levels in wild-type cells (Figure 2.9.a), as CRISPR sgRNA 

reagents were confirmed to efficiently generate gene knockouts  (85.7% mean editing rate, Figure 

2.2.c).  

 

Figure 2.9: Effects of CDK disruption on diverse transcriptional programs. 
a, Wild-type expression (top row) of CDK genes (columns) and the knockout effect of those genes 
on their own expression (second row), the expression of other CDK genes (third row), and specific 
pathway signatures (bottom row) in MDA-MB-231 cells. b, MDS embedding of median single 
cell profile for each gene knockout. Each contour line depicts the confidence interval across 1,000 
bootstrap resamplings. The outermost contour line represents the 95% confidence interval. c, For 
each gene knockout (colored points), the distance of the transcriptome from the AAVS control (y-
axis) is plotted versus its fitness. 



85 

 

Moving to trans-acting effects, we found that many CDKs have strong transcriptional effects 

that are very different from one another in the affected downstream genes and pathways (Figure 

2.9.a, Methods). In particular, CDK1 knockout in MDA-MB-231 cells showed significantly 

perturbed expression of a large number (1334) of genes, including the TGFβ receptor (TGFBR1) 

as well as genes involved in proteasomal degradation, oxidative phosphorylation and the electron 

transport chain (Figure 2.9.a). CDK5 knockouts showed perturbed transcription of DNA damage 

response genes, potentially due to the observed dysregulation of DNA damage signaling via ataxia-

telangiectasia mutated (ATM)[221]. While CDK6 knockouts caused dysregulation of Rb-

regulated genes and canonical cell-cycle genes, they additionally perturbed genes involved in 

metabolism of fluoropyrimidines. The classic transcriptional CDKs also impacted diverse 

pathways. While CDK7, CDK9, and CDK12 knockouts each had highly perturbed transcriptomes 

when compared to control cells (92, 347, 893 differentially expressed genes, respectively, padj < 

0.05; Figure 2.9.b,c), we detected few commonly dysregulated cell functions save for VEGFA-

VEGFR2 signaling in CDK12 and CDK13 knockouts (Figure 2.9.a). Regardless of these 

differences, the magnitude of transcriptional perturbation caused by a CDK knockout (Figure 

2.9.b, radial distance from AAVS control) was strongly and negatively correlated with its effect 

on cell fitness (Figure 2.9.c, Pearson’s r = –0.66). Thus, transcriptional effects of CDK knockouts 

scale with their effects on growth, but beyond this general association they implicate different 

underlying programs.  

 



86 

2.4.4 The CDK/RNAPII signaling axis presents a critical vulnerability in TNBC cells.  

Our genetic interaction analysis revealed that three of the classical transcriptional CDKs 

(CDK7, 9, 12) have strong synthetic-lethal interactions with the transcriptional regulator PRMT5 

in all three cell-line contexts, with the CDK12-PRMT5 interaction being the strongest in the screen 

overall (Figure 2.3.c, Figure 2.10.a). We further confirmed this interaction in two ways: first 

using an independent FACS assay (Figure 2.3.h), and second using selective small molecule 

inhibitors against CDK12 (SR4835) and PRMT5 (EPZ015666 or PF06939999) in place of 

CRISPR guides (Figure 2.10.b). 
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Figure 2.10: Relation of PRMT5/CDK synthetic-lethal interactions to aberrant splicing 
 a, Genetic interaction score of indicated gene in combination with PRMT5, pooling data from  
MDA-MB-231, Hs578T, and MDA-MB-468 cell lines as replicates. Error bars represent the 
standard deviation across all replicates and cell lines. b, Synergistic inhibition of MDA-MB-231 
cell growth with combinatorial treatment of a CDK12 inhibitor (SR-4835) and a PRMT5 inhibitor 
(EPZ015666 or PF-0693999). c, CDK proteins and PRMT5 modulate transcript elongation. d, 
Mean number of transcripts observed in cells impacted by each gene knockout. The dotted lines 
represent the standard error of the mean. e, Splicing rate observed across single cells impacted by 
each gene knockout. Dotted lines span the standard error of the mean. f, Log2-fold coverage of 
exon positions (colors) in transcripts from cells harboring specific gene knockouts (subplots). Data 
are normalized against data from cells harboring non-targeting-control guides (* p<0.05, t-test 
compared to AAVS). g, Heatmap showing the 5’ coverage bias (first exon relative to last exon) 
for each gene (row) under select gene knockouts (columns). The most enriched biological 
functions (MSigDB Hallmark gene sets) are given for select clusters of genes (* padj<0.05). Rows 
and columns are sorted by hierarchical clustering; the dendrogram of rows is not shown. Data in 
panels (d-g) are from MDA-MB-231 cells. 
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Phosphorylation of the carboxy-terminal domain (CTD) of RNA polymerase II (RNAPII) by 

CDK7, CDK9, and CDK12 is crucial for release of the negative elongation factor (NELF), 

promoting transcription[222–224]. Likewise, methylation of SPT5 by PRMT5 dissociates the 

DSIF repressor from RNAPII[215], thus promoting transcript processing. Given these convergent 

functional roles (Figure 2.10.c), we examined how CDK7/9/12 and PRMT5 functions impact 

RNA production and splicing patterns across the transcriptome. First, we found that the expression 

levels of an NELF subcomponent, NELFE, were significantly dysregulated in CDK9/12 and 

PRMT5 knockout cells (p < 0.05 t-test; Figure 2.11.a,b). 

  

Figure 2.11: Analyses of PRMT5 and RNAPII-associated CDKs 
a, Volcano plot showing the significance vs. change in mRNA abundance level for detectable 
transcripts under CDK12 (left) or PRMT5 (right) knockout. The five most significantly 
downregulated genes and NELFE are annotated. b, Log2 fold-change of mRNA abundance for just 
NELF and DSIF subcomponents, for select knockouts in MDA-MB-231; * p<0.05 Mann Whitney-
U test. 
 
 
Second, we noted that CDK9 and CDK12 knockouts produced very low transcriptional activity 

(read count per cell, Figure 2.10.d), as would be expected given the similar role of these kinases 

in NELF release by phosphorylation of the RNAPII CTD at Ser-2[225] (Figure 2.10.c). Third, we 
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found that knockouts of CDK7/9/12, as well as PRMT5, led to a reduced fraction of spliced 

transcripts (Figure 2.10.e). Fourth, in addition to a reduction in splicing overall, these knockouts 

led to transcripts with significantly increased representation of the first exon, and significantly 

decreased representation of subsequent exons, relative to wild-type cells (p < 0.05 t-test; Figure 

2.10.f).  

Following this observation, we next sought to determine the particular genes for which 

splicing was most affected. For this purpose, we quantified the “5’ coverage bias” of a gene as the 

relative abundance of the first exon relative to the last exon among the collection of all transcript 

isoforms identified for a gene (Figure 2.10.f). We observed that very similar sets of genes had 

high 5’ coverage bias in response to knockout of CDK7, 9, 12 or PRMT5 (Figure 2.10.g). 

Moreover, these genes were significantly enriched for key cellular functions, including mitotic 

spindle formation and DNA repair (padj < 0.01, Figure 2.10.g). Notably, a strong 5’ coverage bias 

was observed among targets of the central transcriptional activators MYC and E2F (padj < 0.01, 

Figure 2.10.g), suggesting that dependence of TNBCs on complete transcription of MYC and/or 

E2F targets may underlie the observed CDK/PRMT5 synthetic lethality. 

    

2.5 Discussion 

Integrating complementary pooled screening methodologies has the potential to 

substantially improve our understanding of genotype-phenotype relationships, including those in 

disease. Because CRISPR-Cas9 perturbs CDK function by specific disruption of genomic DNA, 

it bypasses confounding issues seen with chemical perturbagens such as off-target effects (given 

that CDKs have high sequence homology to one another) and the inability to inhibit phosp27-

CDK4-CycD1 complexes[226,227]. While we focused on CDK proteins, similar approaches can 
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be applied to diverse other biological pathways of interest. For example, combinatorial 

transcription factor expression is critical for cellular differentiation and development[228] and 

could be readily assayed in a similar fashion via CRISPR reagents and scRNA-seq. Additionally, 

the framework established here for visualizing the cell-cycle phenotypes of individual cells in 

scRNA-seq data could be applied to alternative phenotypes defined by sets of genes. 

The many synthetic-lethal interactions among CDK genes indicate that functional 

redundancies and interdependencies are common in this gene family. While early studies of CDK4 

and CDK6 suggested they were functionally redundant[210], our results highlight distinct roles 

based on several lines of evidence. First, each of the single CDK4 and CDK6 knockouts has a 

negative fitness impact, meaning its function is not completely buffered by the other gene (Figure 

2.3.a). Second, knockouts of CDK6, but not CDK4, significantly alter cell-cycle progression 

(Figure 2.7.d). Third, only CDK6 knockouts result in significant deregulation of Rb controlled 

genes (Figure 2.9.a). Fourth, CDK4 has many more synthetic-sick/lethal interactions than CDK6 

(7 versus 3, Figure 2.3.c-d). One explanation for these distinct effects is that CDK4 is more readily 

compensated by diverse members of the CDK family. On the other hand, in support of some 

redundancy, CDK4 and CDK6 knockouts are synthetic-sick/lethal with each other (Figure 2.3.d-

g). This redundancy likely relates to their shared regulation of the Cyclin-D/Rb signaling axis, 

given the lack of CDK4/CDK6 synthetic lethality in Rb– cell lines[229] (Figure 2.3.c). 

Contrary to the usual stratification of CDK genes into “cell-cycle” or “transcriptional” 

families, each with independent functions, here we observe many genetic dependencies across 

CDKs of these two classes (Figure 2.3.d). This crosstalk is reflected in the transcriptome as well, 

where single-cell RNA sequencing reveals extensive transcriptional regulation by CDK1, a 

canonical cell-cycle regulator (although deconvolving transcriptional changes due to impaired cell 
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fitness from regulatory activity is an ongoing challenge). Furthermore, we find that cell-cycle 

regulation is far from uniformly conserved across cellular contexts, since the same gene knockout 

(e.g. CDK2, 5, 6) can have impacts on cell-cycle behavior that are largely distinct from one another 

depending on the cell line (Figure 2.7.d). These results suggest that the exact timing, mechanisms, 

and druggability of cell-cycle checkpoints are not universal[230,231].  

Our analysis also indicates that the previously underexplored CDK7, CDK9, and CDK12 

proteins play critical roles in controlling cell proliferation and RNAPII activity in concert with 

PRMT5 (Figure 2.10). We observe a synthetic lethal phenotype when CDK7, CDK9 or CDK12 

are knocked out in combination with the RNAPII regulator PRMT5, supporting emerging research 

that sequential phosphorylation of RNAPII by multiple CDKs (CDK9 and CDK12 phosphorylate 

Ser-2 on the RNAPII CTD, while CDK7 phosphorylates Ser-5) is critical for proper RNAPII 

function[225]. Unlike CDK9 and CDK12, knockout of CDK7 does not result in a global reduction 

of detected transcripts (Figure 2.10.d), suggesting that phosphorylation at RNAPII CTD Ser-2 is 

the more critical regulatory event for RNAPII function. Regulation of transcriptional elongation 

via the combination of these proteins emerges as a critical fitness vulnerability, with promising 

avenues for drug development and therapeutic intervention. Our observation that CDK7, 9, 12 and 

PRMT5 knockouts have improper elongation of MYC-regulated transcripts is especially 

important, given that MYC is an amplified oncogene in the majority of TNBCs[232].  These results 

suggest that other regulators of transcriptional elongation and splicing outside the CDK space 

might serve as potential drug targets as well[233]. In support of this notion, PRMT5 inhibition has 

been shown to be synergistic with inhibition of DOT1L, a methyltransferase that regulates 

RNAPII[234]. CDK13 mutations have recently been shown to drive melanoma growth via 

ZC3H14-regulated improper transcriptional elongation, suggesting that the fitness impact of 
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transcriptional elongation depends specifically on which transcripts are being perturbed[235]. 

Additional studies will be needed to assess the potential effects of therapeutically targeting 

transcriptional elongation on diseased and healthy cells in vivo[236]. 

Here, we have presented a systematic, unbiased resource of CDK functions and 

interdependencies governing cellular growth, cell cycle, and transcriptional programs. 

Perturbations to essential cell functions such as transcriptional elongation cause (as expected) 

major impacts to cell state, with quantifiable effects unique to each CDK protein. Given the 

fundamental role CDK signaling plays in disease etiology and treatment, this dataset has the 

capacity to inform both basic science and translational medicine. We anticipate that our 

quantitative mapping of CDK gene functions will guide future interrogations into CDK biology, 

helping uncover how this critical class of proteins can be best leveraged therapeutically.  
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CHAPTER 3: Mapping and Exploiting Protein-Protein Interactions in Cancer via Novel 
Peptide Overexpression Screens 
 
3.1 Abstract 

Gene fragments derived from structural domains mediating physical interactions can 

modulate biological functions. Utilizing this, we developed lentiviral overexpression libraries of 

peptides comprehensively tiling high-confidence cancer driver genes. Toward inhibiting cancer 

growth, we assayed ~66,000 peptides, tiling 65 cancer drivers and 579 mutant alleles. Pooled 

fitness screens in two breast cancer cell lines revealed peptides, which selectively reduced cellular 

proliferation, implicating oncogenic protein domains important for cell fitness. Coupling of cell-

penetrating motifs to these peptides enabled drug-like function, with peptides derived from EGFR 

and RAF1 inhibiting cell growth at IC50s of 27–63 μM. We anticipate that this peptide-tiling 

(PepTile) approach will enable rapid de novo mapping of bioactive protein domains and associated 

interfering peptides. 

 
3.2 Introduction 

Over the last decade, large-scale sequencing and functional genomic screening efforts have 

identified high-confidence lists of genes essential for cancer fitness. However, direct antagonism 

of many of these genes (Ras GTPases, transcription factors, cyclins, etc.) has proven challenging 

due to their reliance on large protein-protein interaction interfaces lacking a small molecule 

binding pocket to mediate signaling. Still, previous studies have demonstrated the feasibility of 

inhibiting hard to drug intracellular protein-protein interactions via direct transduction of 

protein/peptide therapeutics[237–240]. However, identifying and engineering protein/peptide 

therapeutics has classically relied on structure guided testing of individually produced protein 

variants. This process is time consuming and limited by the costs associated with direct peptide 
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synthesis and recombinant production. Furthermore, target discovery itself is hindered in this 

context by the challenge of identifying therapeutically actionable protein-protein interaction 

interfaces. Subsequently, there is a compelling need for new technologies to identify and inhibit 

oncogenic signaling interfaces. With this in mind, here, we describe a modular oligonucleotide 

synthesis and sequencing-based screening protocol to identify bioactive peptides, which cause a 

slow growing phenotype, and corresponding protein-protein interaction domains implicated in 

driving cancer proliferation. 

High-throughput screening strategies to identify novel proteins/peptides with a growth 

inhibition phenotype have been previously explored, primarily in Saccharomyces cerevisiae. 

These studies include novel approaches to assay computationally defined C-terminal protein 

fragments[239], randomly digested genomic fragments[239,241–243], and, in a recent elegant 

approach, transposon-mediated fragmentation and overexpression of gene fragments to identify 

inhibitors of essential proteins in yeast[244]. However, these libraries typically do not 

comprehensively cover protein-protein interaction interface regions for target proteins and often 

randomly generate gene fragments of various lengths and frame, hindering control of library 

composition. Consequently, these studies have been limited in their sensitivity, modularity, or 

ability to interrogate translatable phenotypes[241–243]. As an alternative, purely computational 

methods to identify peptide self-inhibitors have been developed, but experimental screening is 

critical to progressively improving underlying structure-function predictions[245–248]. 

To address these issues, we integrated lentiviral screening[239] and protein 

fragmentation[244] with array-based custom oligonucleotide pools[48] to generate user-defined 

libraries of overexpressed peptide-coding gene fragments. We built our libraries using the target 

proteins as a scaffold from which to derive inhibitory sequences, synthesizing a comprehensive 
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library of every possible overlapping 40-mer peptide for each target protein. This strategy allows 

for modular library design, complete coverage of protein-protein interaction interfaces, and is 

supported by extensive previous research showing that fragmented or truncated proteins can 

function as inhibitors of the full-length protein[239,241–244,249–254]. Furthermore, non-

canonical translation of small ORFs overlapping protein coding genes has been shown to affect 

cell fitness, further supporting our strategy[255]. We assayed these overexpression libraries via 

lentivirus-mediated pooled screening in two disease-relevant cell lines, interrogating over 65,000 

peptides, tiling 65 cancer drivers and 579 mutant alleles. In contrast to contemporary approaches 

that employ libraries of genetically encoded functional perturbations that are agnostic to 

mechanism (CRISPR-Cas9 sgRNA, siRNA, etc.[9,11,185]), our approach enables rapid unbiased 

mapping of bioactive protein domains and associated interfering peptides. 

 
3.3 Methods 

3.3.1 Design of peptide coding gene fragment libraries 

Peptide coding gene fragments from target genes were composed of the DNA coding 

sequence for all 40mer amino acids from the genes/mutants listed in Figures 3.2 and 3.4 and the 

main text. For fitness screens the 5’ and 3’ ends of each gene fragment were modified to contain a 

start and stop codon, as well as ~20bp of DNA homologous to the expression plasmid for 

downstream Gibson cloning. 

3.3.2 Cancer driver gene fragment cloning 

Peptide coding gene fragment libraries were synthesized as pooled single stranded 

oligonucleotides by Custom Array. These oligonucleotides were then PCR amplified using KAPA-

HiFi (Kapa Biosystems) to generate double stranded gene fragments compatible with Gibson 
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cloning. 50μl PCR reactions were set up with 25ng of pooled oligonucleotide template and 2.5 μl 

of primers PEP_1 and PEP_2 (10μM). The thermal cycler was programmed to run at 95C for 3 

minutes, followed by 12 cycles of 98C for 20 seconds, 65C for 15 seconds, and 72C for 45 seconds. 

This was followed by a final 5-minute extension at 72C. PCR products were then purified using 

the QIAquick PCR purification kit. See Appendix for primer sequences. 

The peptide overexpression vector pEPIP was generated from a modified pEGIP (Addgene 

#26777). The vector was modified to remove the GFP insert, insert an EcoRI cloning site, and add 

primer binding regions with which to amplify the libraries for HTS. To clone the gene fragment 

libraries into the expression vector, pEPIP was first digested with EcoRI (NEB) for 3 hours at 37C. 

The linearized vector was then column purified using the QIAquick PCR purification kit. 

Subsequently, Gibson assembly was used to clone the gene fragment libraries into the pEPIP 

(addgene #172110) vector. For each reaction, 10μl of Gibson Reaction MasterMix (NEB) was 

combined with 100ng of the vector and 50ng of the double stranded gene fragment library, with 

H2O up to 20μl. The Gibson reactions were then incubated at 50C for 1hr and transformed via 

electroporation into 200μl of ElectroMAX Stbl4 competent cells per 10,000 library elements 

(Invitrogen) according to the manufacturer's protocol. The Stbl4 cells were then resuspended in 

4mL of SOC media and placed at 37C with shaking for 1hr to recover. After recovering, 1μl of the 

SOC/cell suspension was spread on LB-carbenicillin plates to calculate library coverage, with the 

remaining SOC/cells used to inoculate a 100ml culture of LB-carbenicillin. Greater than 200 fold 

library coverage was obtained to ensure all gene fragments were well represented. After 16 hr of 

incubation at 37C with shaking, plasmid DNA was isolated via a Qiagen Plasmid Plus Maxi Kit. 

3.3.3 Lentivirus production 
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Replication deficient lentiviral particles were produced in HEK293T cells (ATCC) via 

transient transfection. HEK293T cells were grown in DMEM media (Gibco) supplemented with 

10%FBS (Gibco). The day before transfection, HEK293T cells were seeded in a 15cm dish at 

~40% confluency. The day of transfection, the culture media was changed to fresh DMEM plus 

10% FBS. At the same time, 3ml of Optimem reduced serum media (Life Technologies) was mixed 

with 36μl of lipofectamine 2000, 3 μg of pMD2.G plasmid (Addgene #12259), 12 μg of pCMV 

deltaR8.2 plasmid (Addgene #12263), and 9 μg of the gene fragment plasmid library. After 30 

minutes of incubation, the plasmid/lipofectamine mixture was added dropwise to the HEK293FT 

cells. Supernatant containing viral particles was harvested 48 and 72 hours after transfection and 

concentrated to 1ml using Amicon Ultra-15 centrifugal filters with a cutoff 100,000 NMWL 

(Millipore). The viral particles were then aliquoted and frozen at -80C until further use. 

3.3.4 Fitness screening in mammalian cell lines 

Hs578T cells and MDA-MB-231 cells were cultured in DMEM media supplemented with 

10% FBS. Cells were transduced with the peptide coding gene fragment library at an MOI <.3 to 

ensure each cell received a single construct. Viral transduction was performed in media containing 

8μg/ml polybrene to improve transduction efficiency. For each cell line, screening was conducted 

with two biological replicates. 24 hours after transduction the cell culture media was changed back 

to DMEM without polybrene supplementation. 48 hours after transduction, the cell culture media 

was changed to DMEM containing puromycin to select for transduced cells. 2μg/ml puromycin 

was used to select the Hs578T cells, and 3.5μg/ml puromycin was used to select the MDA-MB-

231 cells. In the pilot screens, more than 6,000,000 cells (from each cell line) were transduced to 

ensure greater than 1000-fold coverage of the library. The cells were cultured for 14 days after 
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transduction, with genomic DNA isolated via a Qiagen DNeasy Blood and Tissue Kit at days 3 

and 14. For the larger screens, the number of cells transduced was scaled up accordingly. 

3.3.5 HTS library preparation and sequencing 

Peptide coding gene fragments for each time point and replicate were then amplified from 

the genomic DNA using Kapa HiFi. The fragments serve as their own barcodes for downstream 

abundance calculations. Illumina compatible libraries were prepared using 2.5μl of primers PEP_3 

and PEP_4 (10μM, Appendix) per 50μl reaction. For each sample (i.e. time point and replicate) 

from the pilot library, 10 separate 50μl PCR reactions with 4μg of gDNA each (40μg total) were 

performed to ensure adequate library coverage. Thermal cycling parameters were identical to those 

used to amplify the gene fragment oligos, with the exception that the gDNA required 26 cycles to 

amplify. Ampure XP beads were used to purify all samples for sequencing. NEBNext Multiplexed 

Oligos for Illumina (NEB) were then used to index the samples, and 150bp single end reads were 

then generated via an Illumina HiSeq2500. Greater than 500-fold sequencing depth was used to 

ensure accurate abundance quantitation. For the larger libraries, the number of PCR reactions was 

scaled to process 300μg of total gDNA per timepoint and replicate. The larger libraries were then 

sequenced with 100-bp paired end reads generated via an Illumina HiSeq4000. 

3.3.6 Processing of sequencing files 

To quantify peptide coding gene fragment relative abundance, the library definition text 

file (containing gene fragment names and sequences) was first converted into Fasta format. This 

Fasta file was then used to build a Bowtie2 index file. For the pilot library, raw FASTQ reads were 

directly mapped to the library index file via Bowtie2[193]. For the expanded libraries, paired end 
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reads were first merged into a single FASTQ file via FLASH (Fast Length Adjustment of SHort 

reads)[256]. For both libraries, reads with insertion or deletion mutations were removed to 

eliminate spurious data resulting from out of frame gene fragments, retaining 35-40% of total 

reads. Reads aligning to mutant peptides were filtered to retain only perfect matches (to prevent 

miscalling of mutant alleles). The resulting SAM files were then compressed to BAM files via 

SAMtools[257]. Following this, the count and test modules in MAGeCK were used to determine 

the median normalized peptide coding gene fragment abundances from the alignment files and 

individual peptide log fold change and depletion p-values[89]. Following this, the R packages 

“Peptides” and “Biostrings” were used to determine peptide biophysical parameters such as charge 

and hydrophobicity[258]. 

3.3.7 Calculation of amino acid level fitness scores 

After generating the peptide count files, all downstream analysis was performed in R. For 

each amino acid residue in the overall protein structure, an amino acid level log fold change was 

calculated by taking the mean log2 fold change of all overlapping peptides with greater than 30 

raw counts in both replicates of the day 3 timepoint. Then, for every residue in the protein 

scaffolds, a normalized fitness score was calculated by taking this mean log2 fold change value 

(x) and Z-normalizing to the library wide amino acid log2 fold change standard deviation (σ) and 

mean (μ). 
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To identify amino acid positions which were significantly depleted, a one tailed permutation test 

was performed. The approximate permutation distribution of amino acid fitness scores was 

generated by randomly shuffling the labels of all gene fragments in the screen. This shuffled data 

was subsequently used to recalculate the amino acid fitness scores. This resampling procedure was 

then repeated N=10,000 times, with the P values for each amino acid position calculated by the 

following: 

 

These P values were then adjusted for multiple comparison testing by the Benjamini-Hochberg 

procedure[259]. The R packages “ggplot2”, “hexbin”, “ggrepel”, “dplyr”, and “RcppRoll” were 

used to generate publication quality figures[260]. 

3.3.8 Validating highly depleted gene fragments 

All cell lines used were cultured in DMEM media supplemented with 10% FBS. The fitness 

impact of highly depleted peptides was tested in an arrayed format via a WST-8 (Dojindo) cell 

growth assay. Highly depleted peptide coding gene fragments were synthesized by Twist 

Biosciences, cloned directly into the pEPIP vector, and subsequently packaged into lentiviral 

particles. Cells were transduced at an MOI of 4, and switched to puromycin containing media after 

48 hours. Following 24 hours of puromycin selection, 1,500 cells were seeded per well as 

biological replicates in a 96 well plate. All experimental groups for Hs578T cells had n=4. For the 

first set of validations in MDA-MB-231 cells, all experimental groups had n=4, with the exception 

of the GFP control which had n=8. For the second panel of experiments (DICER1-552, etc.) all 
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experimental groups had n=6. For HEK293T and MCF-7 cells all experimental groups had n=8. 

2μg/ml puromycin was used to select Hs578T and MCF-7 cells, while 3.5μg/ml puromycin was 

used to select MDA-MB-231 and HEK293T cells. Cell growth was then quantified via absorbance 

at 450nm following 1.5hrs of incubation with WST-8 reagent. A two-tailed P value was then 

calculated via an unpaired t-test with Welch’s correction. 

3.3.9 Crystal violet viability measurements 

In Figures 3.8c-d and 3.12d, relative cell viability was determined via Crystal Violet 

staining. At the experimental endpoint cells were washed once with PBS, and subsequently 

incubated in 50μl of crystal violet stain solution (.5% w/v Crystal Violet, 20% v/v methanol in DI 

water) for 15 minutes. Following this, excess crystal violet was removed from the plates via five 

immersions in 2 liters of DI water. The plates were allowed to dry overnight, and the next morning 

the crystal violet stain was solubilized with 1% v/v SDS in DI water, and relative cell numbers 

were quantified via absorbance at 595nm. 

3.3.10 Engineering peptides for exogenous delivery 

Peptides shown in Figure 3.10b were fused to an N-terminal cell penetrating motif via a 

(GS)3 linker sequence (Appendix) and chemically synthesized by GenScript’s Custom Peptide 

Synthesis service at crude purity. For dose response experiments, cells were plated in 96 well 

plates (n=4) at 50% confluency and peptides were added at the indicated concentrations with cell 

viability quantified after 24hrs via the WST-8 assay. Cell viability was normalized to that of an 

untreated control on the same plate. 

3.3.11 Co-immunoprecipitation 
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HEK293T cells were seeded in 6 well plates to be 75% confluent on the day of transfection. 

Transfections were performed with 1μg of each indicated plasmid per well with 5μl of 

Lipofectamine 2000 according to the manufacturer's protocol. For the RAF1-73 experiments, 48 

hours after transfection, cells were washed twice with ice cold PBS and lysed for 30 minutes in ice 

cold 400μl TBS buffer containing.5% Triton x-100, 1mM EDTA, and Halt Protease Inhibitor 

Cocktail (Thermo Fisher 78429). The supernatant was then clarified by centrifugation at 14,000G 

for 15 minutes. Following this, immunoprecipitation of FLAG tagged constructs was performed 

by adding 300μl of the lysate to 20μl of packed anti FLAG agarose beads (Millipore Sigma A2220) 

prewashed with TBS. The remaining 100μl of lysate was stored at -80C for later analysis. The 

bead-lysate mixture was then mixed end over end at 4C for 2 hours. After binding to the beads, 

the bead-protein complexes were washed three times with 1ml lysis buffer and eluted with 20μl of 

2x SDS-PAGE Laemmli loading buffer (BioRad 1610737). The EGFR-697 Co-IP experiments 

were performed identically, with the exception that.75% NP-40 was used instead of Triton x-100 

for cell lysis. 

3.3.12 Western blotting 

For the RAF1-73 Co-IP experiments proteins were first separated on 4-20% 

polyacrylamide gels (BioRad 4561094) under denaturing conditions in Tris-Glycine-SDS (BioRad 

1610732) for 1 hour at 100V. Following this, proteins were transferred to.2μm nitrocellulose 

membranes (BioRad 1620112) for 30 minutes at 100V in Tris-Glycine buffer (BioRad 1610734) 

containing 30% methanol. Membranes were then blocked for 1 hour in TBS-T (Cell Signaling 

9997) containing 5% non fat dry milk (BioRad 1706404XTU). The EGFR-697 experiments and 

EGFR expression level testing were performed identically, with the exception that the transfer 

voltage was reduced to 30V and performed overnight at 4C. Primary antibodies were then added 
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(diluted 1:1000 in TBS-T+ 5% milk) and incubated overnight at 4C with gentle agitation. The 

following day the membranes were washed three times in TBS-T and incubated for 1 hour with 

HRP conjugated secondary antibodies (diluted 1:10,000 in TBS-T + 5% milk) at room temp. The 

membranes were then washed again three times with TBS-T and developed using SuperSignal 

West Pico Plus Chemiluminescent Substrate (Thermo Fisher 34577). 

3.3.12 qPCR 

Cells were plated the day before transduction at approximately 20% confluency. On the 

day of transduction, cells were transduced with the appropriate lentiviral constructs at an MOI of 

4 and allowed to grow for 72 hours. RNA was subsequently isolated with an RNEasy Kit (Qiagen) 

with on column DNAse I treatment. Following this, cDNA was generated using the ProtoScript II 

First Strand cDNA Synthesis Kit (NEB) and diluted up to 1:4 with nuclease-free water. The qPCR 

reactions were setup as: 2 μl cDNA, 400 nM of each primer (See Appendix), 2X iTaq Universal 

SYBR Green Supermix (BioRad), with ultra pure water up to 20 μl. The qPCR was performed 

using a CFX Connect Real Time PCR Detection System (Bio-Rad) with the following parameters: 

95°C for 3 min; 95°C for 3 s; 60°C for 20s, for 40 cycles. All experiments were performed in 

duplicate and results were normalized against a housekeeping gene, GAPDH. Relative mRNA 

expression levels (normalized to GAPDH) were determined by the comparative cycle threshold 

(Ct) method. 

3.3.13 Immunofluorescence 

Cells were plated the day before transduction at approximately 20% confluency. On the 

day of transduction, cells were transduced with the appropriate lentiviral constructs at an MOI of 

4 and allowed to grow for 72 hours. Following this, the cells were washed twice with PBS and 
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fixed for 30 minutes at room temperature with 4% paraformaldehyde. Cells were then washed 

three times with PBS and blocked for 1 hour at room temp with PBS plus 5% Sea Block (Thermo 

Fisher PI37527X3) and.2% Triton x-100. The blocking buffer was then aspirated and replaced 

with blocking buffer plus anti-FLAG primary antibody at a 1:500 dilution. The primary antibody 

was then allowed to bind overnight at 4C. The following day, the cells were washed three times 

with PBS, and incubated for 1 hour with a secondary anti-mouse IgG antibody conjugated to 

DyLight 488 (diluted 1:200). The cells were then washed three times with PBS and subsequently 

imaged via fluorescence microscopy. 

3.3.14 RNA-seq of highly depleted fragments 

RNA sequencing was performed on Hs578T cells 6 days after transduction with lentivirus 

expressing gene fragments of interest. Two biological replicates were sequenced for each 

experimental condition. Total RNA was isolated from cells via an RNEasy Kit (Qiagen) with on 

column DNAse I treatment. An NEBNext Poly(A) mRNA Magnetic Isolation Module (E7490S) 

was then used to deplete rRNA. Subsequently, an NEBNext Ultra RNA Library Prep Kit (E7530S) 

was used to generate Illumina compatible RNA sequencing libraries. Sequencing was performed 

on an Illumina HiSeq4000, with paired end 100bp reads. Reads were aligned to the human 

reference transcriptome via the STAR aligner, and differential gene expression was performed 

using DESeq2. Differential expression was tested in reference to a control group transduced with 

lentivirus coding for GFP. Following this, the R package “fgsea” was used to conduct GSEA pre-

ranked analysis[261–263]. Genes were ranked via the shrunken log fold change values outputted 

by DESeq2. 

3.3.15 Network visualization 
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Network of protein-protein interactions was generated using publicly available data from 

Interactome INSIDER[264]. Edges were drawn for all high confidence interaction interfaces 

calculated from PDB structures, homology models, and the “Very High” and “High” interface 

potential categories from ECLAIR. Node color was based on fitness scores for each gene available 

via DepMap CRISPR knockout screening. The CERES normalized gene effects were used to 

quantify the fitness impact of a given knockout. Visualization was then performed in 

CytoScape[265]. 

3.3.16 Computational modeling of peptide structure 

To computationally predict 40-mer peptide structures, amino acid sequences for RAF1 and 

EGFR peptides were submitted to the Robetta service, a protein structure prediction service hosted 

by the Baker Lab at University of Washington[266]. TrRosetta, a deep learning-based structure 

prediction method, was used for all submissions to the server[267]. Regions of the protein of 

interest with available crystal structures from the RCSB Protein Data Bank were fragmented and 

used to evaluate the folded structure of the computationally modeled fragments (see Appendix). 

PyMOL was then used to visualize the predicted structures as well as the available crystal 

structures from the database. To evaluate the similarity between the modeled peptides and those 

from the crystal structure, the TM score (template modeling score) was used[268]. To evaluate the 

TM-scores of the fragments as a function of the secondary structure of the native protein, we 

extracted the structural annotations of the RAF1 and EGFR proteins from the PDB structure files 

available on RCSB. We then defined a fragment as containing a secondary structure if it had a 

minimum overlap of 3 amino acids with the corresponding annotated regions. A minimum overlap 

of 3 was chosen as the shortest annotated secondary structure in the native proteins is an alpha 

helix containing 3 amino acids. The confidence scores of the predicted peptide structures were 
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given as the predicted Local Distance Difference Test (lDDT) as determined by DeepAccNet[269]. 

Validated lDDT baseline scores for proteins with the wrong fold are 0.20 with a mean absolute 

deviation of 0.04[270]. The secondary structures of both the native structure and predicted 

structures were assigned through STRIDE[270,271]. 

3.3.17 Recombinant peptide production 

Recombinant production protocol was adapted from[272]. Recombinant MBP fusions and 

TEV protease were cloned into the pET Champion vector (Thermo K630203) and expressed in T7 

express E. coli (NEB C2566I). Constructs were ordered as gBlocks from IDT and cloned directly 

into the vector via Gibson Assembly. To produce high yield MBP-peptide fusions and TEV 

protease, a 10mL starter culture of E. coli was grown for 14 hours at 37C in TB media. This starter 

culture was then used to induce a 1L culture of TB media. This culture was grown at 37C until an 

OD of.8, and then induced with.5mM IPTG. The cells were subsequently grown overnight at 25C, 

following which the cells were pelleted and stored at -20C. To isolate recombinant proteins, cells 

were first lysed via mechanical disruption with mortar and pestle in liquid nitrogen and 

resuspended in binding buffer (50mL 50mM sodium phosphate, 200mM NaCl, 10% glycerol, and 

25mM imidazole at pH 8.0). Cell lysate was then clarified via centrifugation for 30 minutes at 

20,000g. Following this, the soluble fraction of the lysate was applied via gravity flow to 5mL of 

a pre-equilibrated Ni-NTA resin (Thermo 88221). The resin was subsequently washed with 15 

column volumes of binding buffer, and eluted with 50mM sodium phosphate, 200mM NaCl, 10% 

glycerol and 250mM imidazole at pH 8.0. Purified TEV protease and the MBP-peptide fusions 

were subsequently dialyzed into cleavage buffer (50mM sodium phosphate, 200mM NaCl, pH 7.4) 

using Amicon 3kD MWCO centrifugal spin filters (Millipore UFC800324). Cleavage reactions 

were set up in cleavage buffer containing 2mg/mL MBP-peptide fusion,.2mg/mL TEV protease, 



108 

and 1mM DTT (added fresh). This reaction was allowed to proceed overnight at 25C. The 

following day, the cleavage reaction was diluted 1:8 with binding buffer and applied over a pre-

equilibrated Ni-NTA resin to remove the TEV protease and MBP proteins (1mL resin per 5mg 

fusion protein). The flow through (containing purified peptide) was subsequently dialyzed into 

PBS and concentrated to 5mg/mL. 

 
3.4 Results 

3.4.1 Peptide-tiling-based map of protein domains implicated in proliferation via MAPK 

signaling 

We first synthesized a pilot peptide library of oncogenes and associated effectors from the 

MAPK signaling pathways along with a panel of tumor suppressors and negative controls (Figures 

3.1, 3.2, 3.3). RAS and MYC are two of the most frequently mutated/amplified oncogenes across 

a wide variety of malignancies, highlighting the medical need to identify functional 

inhibitors[273–275].  
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Figure 3.1: Overview of MAPK focused peptide overexpression library 
Peptide coding sequences derived from the WT coding sequences of key genes within the MAPK 
signaling pathway were synthesized as an oligonucleotide pool and subsequently cloned into a 
lentiviral overexpression vector. Proteins within the MAPK signaling pathway drive cellular 
proliferation through a cascade of physical interactions with proteins, nucleic acids, and other 
effector molecules within cells.  
 

Compounding this, RAS and MYC have proven challenging to drug via small molecules, due to 

their lack of a binding pocket and reliance on protein-protein interactions for signal 

transduction[276]. Owing to their larger size and ability to form complex folded structures, we 
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surmised that peptide biologics are likely suited to disrupting the protein-protein interactions 

through which RAS and MYC mediate cellular proliferation [277]. 
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Figure 3.2: Peptide overexpression screening strategy and MAPK focused library  
(A) Design of overlapping peptide expression library. Gene fragments coding for all possible 
overlapping 40-mer peptides were computed from target gene cDNA sequences. Peptide-coding 
sequences were then generated via chip-based oligonucleotide synthesis and cloned into a 
lentiviral plasmid vector. This plasmid library was in turn used to generate lentiviral particles via 
transient transfection. The lentiviral particles were then used to infect target mammalian cell lines 
at a low multiplicity of infection (MOI) to ensure only one peptide was expressed per cell. The 
cells were then grown for 2 weeks, with genomic DNA extracted at days 3 and 14. Next, peptide-
coding gene fragments were PCR amplified from genomic DNA and sequenced to track peptide 
abundances and calculate log2 enrichment and depletion. Peptides were mapped back to target 
gene coding sequences, and each codon/amino acid was given a fitness score defined as the Z-
normalized mean log2 fold change of all overlapping peptides. (B) Resulting amino-acid-level 
fitness scores. Screening data from Hs578T and MDA-MB-231 cells shows conserved regions of 
peptide depletion, as well as cell line specific peptide depletion. The heatmap shows the fitness 
score for each amino acid position (sorted in ascending order from top to bottom) across all 
proteins assayed in the screen. On the right, plots showing the statistical likelihood of depletion 
are shown for RAF1, EGFR, BRAF, and FBXW7. Peptides overlapping amino acid positions with 
known functional roles are significantly depleted over the course of cell growth. (C) The fitness 
effects of peptides derived from known pathogenic and dominant-negative Ras mutants. Peptides 
derived from KRASQ61K were significantly depleted in both cell lines, while peptides derived 
from HRAS S17N is depleted only in HRAS mutant Hs578T cells (∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 
0.001, ∗∗∗∗p < 0.0001). 
  



112 

 



113 

 

For every target protein in our library, we synthesized gene fragments via oligonucleotide 

pools coding for every possible overlapping 40-mer peptide within the protein's primary structure. 

Testing every overlapping 40-mer improves statistical power and allows for sensitive 

discrimination of similar peptide motifs, minimizing the required downstream optimization of 

inhibitors. To maximize the chance of identifying a peptide inhibitor of RAS or MYC signaling, 

we included gene fragments derived from the downstream RAS effectors ARAF, BRAF, and 

RAF1, as well as the negative regulator of MYC stability FBXW7. FBXW7 was of special interest 

due to its role in regulating the degradation of several other key oncogenes[278,279]. In addition 

to gene fragments derived from the wildtype (WT) RAS and MYC proteins, we also included 

fragments derived from pathogenic Ras variants that have been shown to have unique protein-

protein interaction networks[280]. Furthermore, we included gene fragments derived from EGFR 

(due to its role in proliferation and oncogenic signal transduction to Ras proteins), from the HRAS 

S17N dominant-negative and the MYC dominant-negative Omomyc[251,281]. As negative 

controls, we included fragments derived from the green fluorescent protein (GFP) and 

hypoxanthine(-guanine) phosphoribosyltransferase (HPRT1)[282]. Finally, we included in the 

library two canonical tumor suppressor genes TP53 and CDKN2A. After removing duplicates, the 

final library consisted of 6,234 unique gene fragments, spanning 14 full-length genes. The pooled 

library of gene fragments was then synthesized as single-stranded oligonucleotides and cloned into 

a lentiviral vector, with an EF1a-promoter-driving gene fragment transcription (Figure 3.2a, 

Figure 3.3a, Methods). An internal ribosomal entry site (IRES) was placed after the gene 

fragment stop codon to allow for co-translation of a puromycin acetyltransferase gene. This 

allowed for selection of transduced cells via the addition of puromycin to the cell culture media. 
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Figure 3.3: Cloning strategy and MAPK focused screen overall analyses 
(A) Detailed overview of library construction. Library was ordered as single stranded DNA oligos 
from Custom Array, and subsequently amplified via PCR to generate gene fragment libraries 
compatible with Gibson assembly cloning. This library was then cloned into pEPIP, with library 
coverage determined via high throughput sequencing. (B-C) Initial analysis for pooled pilot screen 
in Hs578T and MDA-MB-231 cells. The majority of peptides tested did not drop out during the 
fitness screen, although the distribution of peptide log fold change values is skewed towards 
depletion rather than enrichment. (D-E) The computed fitness scores for the amino acid positions 
showed good correlation between replicates in both Hs578T and MDA-MB-231. (r=.536 and 
r=.753 respectively). The majority of amino acid positions scored have no significant depletion, 
with a small subset having a detectable impact on fitness.  
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The library was then packaged into lentiviral particles that were used to transduce the 

MYC- and RAS-dependent Hs578T and MDA-MB-231 cell lines in duplicate (Figure 3.2a, 

Methods)[283,284]. Genomic DNA was isolated 3 days after transduction, as well as 14 days after 

transduction to calculate peptide-specific log2 fold changes. These peptide-specific log2 fold 

change values were then used to calculate an amino-acid-level fitness score[244] via the mean of 

all fragments that overlap a particular codon (Figures 3.2a-b, Figures 3.3b–e, Methods). The 

amino-acid-level fitness score was first calculated by taking the mean log2 fold change of all 

overlapping peptides. For every residue in the protein scaffolds, the mean log2 fold change values 

were then Z-score-normalized to yield a relative fitness score. This fitness score served as a way 

to map the results of individual peptides back to the original protein structure. Based on this, 2.6% 

(Hs578T) and 9.5% (MDA-MB-231) of residues tested had significantly depleted overlapping 

peptides, indicating that peptides derived from these positions were collectively more deleterious 

to cell fitness than a random sampling of peptides from the library (Figure 3.3d-e). There was 

good correlation between biological replicates, with the Hs578T and MDA-MB-231 amino acid 

scores having a Pearson correlation of 0.54 and 0.75, respectively. 

In order to visualize protein motifs with a significant impact on cell fitness, the amino acid 

scores were superimposed along the primary amino acid sequence for each associated protein 

(Figure 3.2b). EGFR, BRAF, FBXW7, and RAF1 all had regions of significant depletion in one 

or both of the cell lines, corresponding to previously annotated protein function. Peptides derived 

from the P-loop and alpha C-helix of EGFR were depleted across both cell lines. The P-loop of 

EGFR is involved in ATP binding, while the conformationally sensitive autoinhibitory C-helix 

plays a regulatory role in controlling EGFR enzymatic activity[285,286]. The EGFR alpha C-helix 

regulates EGFR activation by dynamic orientation toward the ATP-binding pocket (active state), 
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or away from the ATP-binding pocket (inactive state). Supporting a functional role for this 

depleted EGFR domain in regulating cell fitness, this region of the EGFR gene (exon 19) is 

frequently deleted in cancer, comprising approximately 44% of activating EGFR mutations seen 

clinically[287]. Maintaining an active EGFR structural state critically depends on the positioning 

of the alpha C-helix structure, suggesting that overexpressed alpha-C-helix-derived peptides may 

be active participants in allosteric EGFR regulation. However, because alpha-C-helix motifs are 

ubiquitous in regulating kinase activity[288], homologous protein motifs on other structures may 

also be implicated in mediating EGFR-derived peptide bioactivity. 

The Ras-binding domain (RBD) of RAF1 was also significantly depleted across both cell 

lines, presumably due to the peptides binding endogenous Ras proteins within the cell. This result 

is supported by previous research showing that chemically synthesized and recombinant RAF1 

RBD mini proteins can bind Ras proteins with nanomolar affinity[250,289,290]. Ras-targeting 

peptides derived from RAF1 have also been shown to block oncogenic signaling, lending further 

credence to this hypothesis. While the RAF1 cysteine-rich domain (AA 139 to 184) has also been 

previously identified as a KRAS binder, this region does not correspond to significant peptide 

depletion in either breast cancer cell line. This result is potentially due to the orders of magnitude 

lower binding affinity of the cysteine-rich domain compared with the RBD (micromolar versus 

nanomolar affinity)[291]. 

FBXW7 had a broad region of depletion corresponding to WD repeats 1–6. Knockout 

screening via CRISPR-Cas9 has shown that FBXW7 is not essential in Hs578T or MDA-MB-231 

cells, meaning it is unlikely that this depletion is due to direct inhibition of FBXW7[292]. The WD 

repeats in FBXW7 mediate substrate binding and subsequent recruitment to the E3 ubiquitin-

protein ligase complex, suggesting that the highly depleted peptides are potentially interacting with 
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one of the endogenous partners of FBXW7[293]. BRAF also had several significantly depleted 

regions dispersed across the primary sequence including one corresponding to a previously 

identified phospho-degron motif centered on amino acids 394–405[294]. 

Toward the broader goal of identifying peptide inhibitors of KRAS function, we tested if 

peptides derived from pathogenic variants could function as more effective anti-proliferative 

proteins than their WT counterparts (Figure 3.2c). The 40-mer peptides derived from KRAS Q61K 

were significantly depleted across both cell lines, while WT peptides overlapping amino acid 

showed no effect on cell fitness. The full-length Q61K mutant is highly transforming because of a 

modified Ras/Raf interaction, which may play a role in the anti-proliferative activity of the Q61K 

derived fragments[295,296]. Furthermore, peptides derived from the known HRAS S17N 

dominant-negative mutant showed selective depletion only in the mutant HRAS-driven Hs578T 

cell line, emphasizing the ability of this technology to discriminate fitness dependencies with a 

degree of specificity. 

 
3.4.2 Large-scale peptide-tiling screens identify diverse peptides and domains that perturb 

cell fitness 

In order to mine anti-proliferative peptide motifs in a more systematic fashion we next 

synthesized a library of 43,441 peptides (Figures 3.4a and 3.5a) derived from 65 key oncogenic 

driver genes with a high prevalence in TCGA-sequencing data[297]. This library covers ~20% of 

all high-confidence cancer drivers identified in a recent computational approach, allowing for a 

more comprehensive characterization of potential oncogene-derived peptide inhibitors of 

proliferation[297].  
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Figure 3.4: Library composition for secondary expanded cancer driver screens 
(A) Table detailing all the peptides assayed in the expanded wildtype driver screen. Genes were 
sourced from Bailey et al. 2018[297] and Santarius et al. 2010[298], comprising diverse cancer 
associated signaling pathways and processes. (B) Table detailing all the peptides assayed in the 
mutant screen. Mutant genes cover a wide range of signaling pathways and molecular functions.  
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This expanded screen was performed in MDA-MB-231 cells and identified nearly an order of 

magnitude greater number of peptides with fitness defects (as measured by log fold change), 

compared with those identified in the smaller pilot screen (Figure 3.5a). Building on this screen 

of cancer drivers, we also built a library of peptides derived from high-confidence cancer driver 

mutations identified via the Cancer Genome Atlas sequencing data[297]. This screen interrogated 

579 mutant residues across 53 cancer driver genes, via 22,724 peptide-coding gene fragments 

(Figures 3.4b and 3.5b). Peptide names indicate the gene from which the peptide was derived, 

and the first amino acid they align to on the full-length structure. 
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Figure 3.5: Expanded library screening enables more comprehensive evaluation of cancer 
driver derived peptides 
(A) Plot of individual peptide enrichment/depletion for expanded screen. Peptides are centered 
around zero depletion, with a subpopulation being significantly deleterious to cells when 
overexpressed genetically. Peptides with log2 fold change values less than −4.5 are labeled. Cancer 
driver genes were hand curated from Bailey et al., 2018[297] and Santarius et al., 2010[298], with 
additional controls added from the pilot screen. (B) Plot of individual peptide enrichment/depletion 
for mutant screen. 579 mutant cancer drivers covering 53 driver genes were assayed for growth 
inhibition as in (A). Peptides are centered around zero depletion, with a subpopulation being 
significantly deleterious to cells when overexpressed genetically. Peptides with log2 fold change 
values less than −8 are labeled. (C) Correlation between WT and mutant amino acid fitness scores. 
There is a high correlation (Pearson r = 0.787) between WT and mutant amino acids. (D) Plots 
showing the correlation between peptide depletion versus charge and hydrophobicity. There is 
little correlation between charge/hydrophobicity and peptide log fold change, indicating that gross 
physiochemical factors do not mediate peptide effects on fitness. (E) Per position fitness scores 
for NFE2L2, MDM2, and PIK3CA. Select known PPIs are annotated on the plots, corresponding 
to regions of significant depletion. (F) Per position fitness scores for the tumor suppressor 
CDKN2A and the negative control GFP. No regions of depletion are identified over the length of 
either protein. (G) Fitness scores for mutant residues derived from KRAS. Functional regions 
sourced from UniProt are overlaid above WT fitness. Dots indicate mutant amino acid fitness 
scores. Red dots indicate mutant amino acid fitness scores that were significantly depleted during 
the pooled screen (BH-adjusted p < 0.05). 
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We observed in most cases that mutant peptides had a similar effect on cell fitness 

compared with their WT counterparts (Figure 3.5c). This can be rationalized by the high degree 

of sequence homology (>97%) between WT peptides and single mutants. We then quantified how 

peptide depletion in the screen relates to bulk biophysical properties such as charge and 

hydrophobicity (Figure 3.5d). We found that peptide effects on cell fitness were not dependent on 

charge or hydrophobicity, indicating that highly charged or highly hydrophobic peptides do not 

result in false-positive cellular toxicities. 

As in the pilot screen, we then sought to map peptides from the library back to the primary 

structure of the WT protein to visualize domains with a significant impact on cell fitness (Figures 

3.5e–3.5g, 3.6a-b). We first examined the pattern of depletion for the transcription factor NFE2L2, 

the protein containing the most deleterious domain as scored by this screen (Figures 3.5e and 

3.6c).  
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Figure 3.6: Quality control metrics and amino acid level fitness plots for expanded cancer 
driver screens 
(A) Computed per position amino acid scores had good correlation between replicates (Pearson 
correlation =.917), with reproducibility exceeding that of the pilot screen. (B) Replicate correlation 
for the mutant peptide screen. Screen shows a high degree of reproducibility (Pearson correlation 
= .859). (C) The fitness score for the most deleterious residue in each full-length protein is plotted 
for each gene. GFP and HPRT1 controls show little effect on cell fitness across protein structure. 
(D) Per position fitness scores for RASA1, RRAS2, FLT3, DICER1, RB1, and ERBB4. Select 
PPIs are annotated on the plots, corresponding to regions of significant depletion (E) Plot of wild 
type (gray bars) and mutant amino acid fitness scores (points) for PIK3CA, BRAF, and SMAD4. 
Dots indicate mutant amino acid fitness scores at the specified positions. Dots labeled in red were 
significantly (BH adjusted P value < .05) depleted in the pooled screen.  
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Peptides derived from the DNA-binding domain, as well as the KEAP1-binding domain of 

NFE2L2 were highly depleted in the screen, consistent with the critical role these regions play in 

mediating NFE2L2 function[299]. NFE2L2 has been previously shown to support cellular 

proliferation and metastasis in MDA-MB-231 cells, supporting the conclusion that peptide 

mediated disruption of NFE2L2 function could be used to inhibit cell growth[300]. Neither the 

negative control GFP protein or the tumor suppressor CDKN2A showed significant depletion of 

any domain, highlighting the ability of this technology to discriminate bioactive peptide motifs 

(Figure 3.5f). While the majority of mutant peptides had similar fitness scores compared with WT 

peptides overlapping the same residues, some mutants such as PIK3CA956F, KRAS61K, and 

BRAF594N showed markedly more deleterious effects on cell fitness (Figures 3.5g and 3.6e). 

We next investigated the fitness of peptides derived from MDM2. MDM2 is a negative 

regulator of TP53 function in the cell, and inhibition of the MDM2-TP53 PPI has been shown to 

effectively oppose cancer growth across a variety of malignancies[237,238,301]. In our screening 

data, peptides derived from the TP53-binding domain of MDM2 were significantly depleted, 

consistent with previous reports that truncated MDM2 proteins containing only the N terminus 

function as dominant negatives[302]. However, interpreting the bioactivity of MDM2 derived 

peptides is made challenging by the highly contextual MDM2 and TP53 biological functions. For 

example, MDA-MB-231 cells contain a TP53 hotspot mutation (R280K)[303] obfuscating if 

putative TP53-binding peptides are activating WT TP53 functions, or inhibiting oncogenic mutant 

TP53 functions[304]. Given the TP53-binding domain of MDM2 occupies the transactivation 

domain of TP53, both hypotheses have a structural justification, highlighting the complex role 

TP53 plays in cancer etiology[305]. 
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We then sought to investigate the fitness effect of peptides derived from PIK3CA. The 

PI3K-AKT-mTOR pathway is one of the most frequently dysregulated pathways in cancer, and 

PIK3CA plays a pivotal role in signal transduction along this pathway[306]. The most critical 

region impacting cell fitness in PIK3CA corresponds to the adaptor-binding domain of the protein. 

PIK3CA activity is modulated by the binding of various adaptor proteins encoded by genes such 

as PIK3R1, PIK3R2, and PIK3R3. Supporting the hypothesis that these peptides potentially inhibit 

proliferation via disruption of the PIK3CA/PIK3R1-3 complex, the corresponding PIK3CA-

binding domain in PIK3R1 is also depleted. Additionally, the RBD of PIK3CA was also 

significantly depleted in this screen, implying Ras-PIK3CA cross-talk may impact cell fitness in 

MDA-MB-231 cells. 

Next, we plotted the depleted domains for the miRNA-processing protein DICER1. 

Regions corresponding to binding sites for known DICER1 cofactors TARBP and PRKRA were 

heavily depleted, comprising some of the most deleterious peptides in the screen (Figure 3.6d). 

However, DICER1 activity is predicated not just on binding other proteins but also on binding 

RNA via helicase, RNase, and dsRNA-binding domains present throughout the protein structure 

[307]. The deleterious nature of DICER1-derived peptides could therefore be attributed to protein-

protein, as well as protein-RNA interactions. These data support the growing understanding of the 

oncogenic role miRNAs and other epigenetic regulators play in tumorigenesis[308]. 

ERBB4 had a pattern of depletion similar to EGFR (Figure 3.6d), with overexpression of 

peptides derived from the ERBB4 regulatory P-loop and alpha C-helix resulting in a significant 

fitness defect, highlighting the importance of this region in ERBB allosteric regulation and 

proliferative signaling[309]. This example also supports previous work suggesting that alpha C-

helix displacement is a broadly shared (and therapeutically targetable) mechanism of regulating 



129 

kinase activity[288]. Further supporting this conclusion, alpha C-helix displacement has even seen 

clinical success in breast cancer via the small molecule EGFR/HER2/ERBB4 inhibitor 

Lapatanib[288]. 

Next, we sought to validate the anti-proliferative effects of select peptides identified as 

depleted in the screen via a complementary technology other than sequencing. Specifically, after 

transduction with putative anti-proliferative peptides derived from WT proteins, Hs578T cells and 

MDA-MB-231 cells were seeded in 96-well plates with proliferation measured via the colorimetric 

WST-8 assay (Figures 3.7a, 3.8a-b; Appendix).  
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Figure 3.7: Validation of anti-proliferative peptide activity and expression 
(A) In-vitro-arrayed validation of lentivirus delivered gene fragments derived from WT proteins. 
Peptides predicted to be deleterious to cell growth (by depletion in pooled screen) significantly 
inhibited proliferation relative to GFP control. Cell proliferation was measured via the WST-8 
assay after one week of growth following lentiviral transduction. Bar plots indicate mean, with 
error bars representing standard error (∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001, ∗∗∗∗p < 0.0001). Each 
panel represents a separately conducted experiment (hence the two MDA-MB-231 panels). (B) 
Representative distributions of peptide level log2 fold change for all peptides overlapping several 
hits identified from the screen. In addition, we have included an arbitrarily selected region of the 
GFP protein to highlight a domain with no growth disadvantage. There is consistent depletion of 
the peptides surrounding hits, providing further justification for our strategy of averaging nearby 
peptides into an amino-acid-level score. (C) qPCR validation of lentivirally delivered peptide 
expression levels relative to GAPDH internal control. MDA-MB-231 cells were transduced at an 
MOI of 4 in duplicate, with RNA extracted after 72 h. Expression levels of all peptide hits shown 
in the main text have been quantified at the RNA level, along with a non-targeting 3XFlag tag 
control peptide for reference. Also included is a negative control GFP transduction, lacking 
appropriate primer-binding sites for amplification. (D) Validation of peptide expression via 
immunofluorescence. MDA-MB-231 cells were transduced (MOI of 4) with lentivirus coding for 
3× FLAG-tagged peptides 72 h before immunostaining and imaging (see Methods). Expression 
levels of six antiproliferative peptides shown in the main text have been quantified at the protein 
level, along with untransduced MDA-MB-231 cells as a control. Additionally, the protein 
expression level of the three validated enriched peptides was tested. All peptides show robust 
expression, validating the protein-level expression of these small peptide constructs. 
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All 12 peptides tested had significant growth defects when assayed in Hs578T and/or 

MDA-MB-231 cells compared with infection with the GFP control plasmid. EGFR-697 

specifically was extremely harmful to cell growth in both cell lines. We similarly tested three 

peptides derived from the KRAS-Q61K-mutant protein (KRAS61K-24, KRAS61K-28, and 

KRAS61K-34), all of which significantly reduced cell growth in both cell lines (Figures 3.8a-b). 

To test the specificity of these perturbations, we transduced MCF-7 cells with RAF1-73 and 

EGFR-697. MCF-7 cells are Ras WT and not sensitive to RAF1 knockout; correspondingly, they 

show no fitness defect upon overexpression of the RAF1-73 peptide[283,292]. Additionally, MCF-

7 cells show a reduced fitness defect upon overexpression of EGFR-697, consistent with their 

status as an EGFR-negative cell line[310]. As well, the EGFR-negative and Ras WT HEK293T 

cell line transduced with EGFR-697 and RAF1-73 showed no growth defects, further indicating 

that this screening methodology identifies context dependent inhibitors of cellular proliferation 

rather than generally toxic peptide motifs. 

For individual peptides that were significantly depleted, we saw consistent depletion of 

nearby peptides, supporting our strategy of using an amino-acid-level score to rank domains 

(Figure 3.7b). To understand the level of peptide expression achieved via our lentiviral constructs, 

we then performed qPCR on all peptides validated via the WST-8 assay (Figure 3.7c). We 

additionally generated 3xFLAG-tagged versions of several significantly depleted peptides to 

verify peptide constructs had robust protein translation when overexpressed via lentivirus (Figure 

3.7d). The peptides tested showed strong expression at the RNA and protein levels 72 h after 

transduction, indicating that the EF1α promoter can drive robust expression of small peptides. 

Assuming the peptides are translated from their mRNA at a similar rate as GAPDH is (GAPDH 
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has a cellular concentration of approximately 0.4 μM), it can be estimated from the qPCR data that 

peptide molar concentrations in MDA-MB-231 cells range from 0.15–6.5 μM depending on the 

construct[311]. 

We further tested three putatively enriched peptides derived from AKT1 (AKT1-115), 

NOTCH1 (NOTCH1-626), and CCND1 (CCND1-167) in MDA-MB-231 cells to verify that they 

conferred a growth advantage. All three peptides grew more rapidly than a control group 

transduced with GFP-coding lentivirus, confirming that if desired this methodology can be used 

to identify peptides with a pro-proliferative phenotype (Figure 3.8c).  
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Figure 3.8: Validation of hit peptide activity 
(A) Growth kinetics in Hs578T for individual peptide variants shown in Figure 3A. Cell growth 
was quantified via the WST-8 proliferation assay. Results are from the same experiment split into 
multiple plots for ease of visualization, hence identical GFP controls for each peptide group. 
Arrayed validation of lentivirally delivered gene fragments derived from KRAS mutants is also 
shown. KRAS61K mutant peptides predicted to be deleterious to cell growth significantly 
inhibited growth (P<.05, as measured at the 7 day time point). (B) Growth kinetics in MDA-MB-
231 for individual peptide variants shown in Figure 3A. Cell growth was quantified via the WST-
8 proliferation assay. Results are from the same experiment split into multiple plots for ease of 
visualization, hence identical GFP controls for each peptide group. Arrayed validation of 
lentivirally delivered gene fragments derived from KRAS mutants is also shown. KRAS61K 
mutant peptides predicted to be deleterious to cell growth significantly inhibited growth (P<.05, 
as measured at the 7 day time point). (C) Significantly enriched peptides identified from the larger 
screen in MDA-MB-231 cells were tested in an arrayed format to validate the growth advantage 
phenotype. Cells were transduced with lentivirus to overexpress each construct, selected with 
puromycin and subsequently seeded into a 96 well plate to quantitate relative growth rates. After 
seven days the relative cell numbers for each construct were then measured via crystal violet 
staining. Bar plots show mean with error bars showing standard deviation, statistical tests 
comparing cell growth relative to GFP control (*P<.05,**P<.01,***P<.001,****P<.0001). (D) 
Effect of varying peptide length on cell fitness. Peptides centered on the previously identified hits 
RAF1-73 and EGFR-697 were overexpressed via lentiviral transduction in MDA-MB-231 cells. 
After 7 days of competitive growth, relative cell numbers were quantified via crystal violet 
staining. Bar plots show mean with error bars showing standard deviation, statistical tests 
comparing cell growth relative to GFP control (*P<.05,**P<.01,***P<.001,****P<.0001).  
  



135 

 

 

 

 

  



136 

While the average length of a protein domain is predicted to be 100 aa[311,312], we hypothesized 

based on the modular conformation of long proteins and prior work focused on dominant negatives 

that 40-mer peptides would be sufficient to fold into ordered structures. To experimentally 

examine the effect of peptide length on antiproliferative phenotype we transduced MDA-MB-231 

cells 4 different-sized peptides centered on our identified hits RAF1-73 and EGFR-697. Although 

most of the peptides tested still had a growth disadvantage compared with the GFP control, the 

parent peptides consistently caused slower cell growth than the shorter versions did (Figure 3.8d). 

After validating the bioactivity and expression of peptides identified in the screens, we then 

sought to extract higher order functional information from the dataset. First, we examined how 

peptide depletion corresponded to the 3D structure of RB1. The tumor suppressor RB1 contained 

domains that were highly deleterious to cell fitness. The N-terminal RbN domains were both highly 

depleted, potentially due to previously described allosteric interactions with the cell-cycle 

regulatory transcription factor E2F[313]. Consistent with this hypothesis, it has been previously 

shown that the addition of N-terminal domains of RB1 is sufficient to halt DNA replication in 

xenopus egg extracts[314]. By overlaying the amino-acid-level fitness scores on the crystal 

structure for RB1, we found that the periodicity of the depletion profile correlates with the 

transition between the various alpha helices of the protein (Figure 3.9a; Appendix). This result 

highlights how higher-order protein-level features can inform observed peptide fitness and give 

new insights into the modular nature of the RB1 structure. 
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Figure 3.9: Anti-proliferative peptides derived from oncogenic interaction interfaces 
(A) RB1 per position fitness scores mapped onto the RB1 N-terminal crystal structure. Regions of 
relatively high and low depletion appear to correspond to transitions between specific alpha helices 
in the RB1 structure, illustrating how structural elements in the parent protein control peptide 
phenotype. (B) Network of potential interactions among cancer drivers in this gene set. Interaction 
data are sourced from Interactome INSIDER, with fitness data from DepMap CRISPR screening 
overlaid. Nodes colored in red are essential for cell fitness, while nodes colored in blue are non-
essential or have increased growth rates upon knockout. Dark gray nodes indicate genes for which 
high-confidence CRISPR-based fitness data were not available. Edges indicate a predicted 
interaction interface between the cancer drivers. Red edges indicate interactions which overlap 
regions of significant peptide depletion (fitness score < −1.5 for interface amino acids). Arrows 
highlight example depleted peptide regions corresponding to specific oncogenic PPIs. (C) 
Comparison of mutant fitness scores derived from peptide screening data, with fitness scores 
derived from DMS data in a TP53-null cell line[315]. After filtering out TP53 mutants with little 
effect on cell fitness in the DMS (absolute value of fitness scores < 0.5), inferred that TP53 
functionality is significantly correlated with mutant-peptide-derived fitness (Pearson, p = 0.045), 
supporting the hypothesis that peptide screening can be used to identify functionally important 
residues in the context of cancer cell fitness. 
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We next visualized how peptides from this screen impact cancer-driver-specific signaling 

networks (Figure 3.9b) using publicly available protein-protein interaction data from Interactome 

INSIDER[264]. Interactome INSIDER predicts protein-protein interaction interfaces via a random 

forest classifier built on experimental cocrystal structures, homology models, and co-evolution 

data. While the PepTile screening methodology is agnostic to mechanism of action (overexpressed 

peptides can interact with proteins, nucleic acids, lipids, small molecules, etc. within the cell), we 

chose to focus initially on protein-protein interactions owing to the availability of extensive 

databases of predicted and experimentally validated interactions. In the network presented in 

Figure 3.9b, edges indicate whether a protein interaction interface overlaps a region of peptides 

deleterious to cell fitness, and nodes are colored by gene fitness data sourced from DepMap 

CRISPR knockout screening[264,292]. There was not a significant association between the 

DepMap CERES fitness score (an estimate of knockout fitness adjusted for copy-number 

variations) for a gene and the minimum peptide-derived domain fitness for that gene (Pearson p = 

0.79). This result stems from the fact that (1) not every gene that is essential has modular domains 

from which a strongly bioactive peptide can be derived and (2) many genes with no fitness impact 

in CRISPR screens (such as the tumor suppressor RB1,FBXW7, or TP53) have interfaces from 

which deleterious peptides can be mined. Together, these analyses highlight the ability of peptides 

derived from protein-protein interaction interfaces to perturb cellular proliferation. 53.7% of 

Interactome INSIDER predicted physical interactions between cancer driver genes assayed 

overlap regions with bioactive peptides, supporting the broad importance of modular interacting 

motifs in controlling cell fitness. 

To further validate that our peptide overexpression platform can identify biophysical 

features relevant to the protein from which they were derived, we compared the mutant TP53 
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peptide data with existing TP53 deep mutational scan (DMS) data (Figure 3.9c)[315]. In this DMS 

dataset, TP53-null cells were transduced with a library of lentiviral particles coding for full-length 

mutant TP53 variants and subjected to competitive growth. After first filtering the DMS data for 

only TP53 mutants with a high magnitude of effect on cell fitness (absolute fitness value >0.5) we 

compared the fitness of the corresponding mutant peptides from our own screen. We surmised that 

given the highly dissimilar nature of the screening technologies, limiting the comparison to only 

high effect size mutants would allow for a clearer interpretation. Inferred TP53 functionality was 

defined as the inverse of the TP53 variant “relative fitness score,” insofar as synonymous, fully 

functional, TP53 mutants have highly negative fitness scores due to their activity as tumor 

suppressors. Even with the highly dissimilar screening modalities, we observed significant 

correlation (Pearson r = 0.279; p = 0.045) between the predicted mutant TP53 functionality from 

the DMS data to the mutant TP53 peptide fitness. This comparison to DMS data indicates that 

TP53 mutants expected to be functional (i.e., have structures consistent with appropriate ligand 

binding and cellular bioactivity) generate mutant peptides with greater bioactivity in the cell. 

Together, these results highlight a major utility of this approach i.e., the ability to interrogate user-

defined peptide sequences as opposed to those present only in WT protein structures. Future assays 

could combine this peptide screening protocol with structural modeling to design and test 

rationally mutagenized peptide libraries with novel biophysical properties or improved target 

binding. 

 
3.4.3 Engineering peptides for exogenous delivery 

After validating the activity of these peptide constructs when overexpressed genetically, 

we investigated if peptides from our screen could function when repurposed as exogenously 

delivered drug-like molecules (Figure 3.10a). To test this, we chemically synthesized EGFR-697 
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as well as RAF1-73 and measured their ability to inhibit cell growth when conjugated to the TAT 

cell-penetrating protein transduction domain[316]. EGFR-697 maintained its anti-proliferative 

effects when delivered exogenously, showing a dose-dependent impact on cell viability (Figure 

3.10b, Appendix). The IC50s of this peptide was 33.3 μM for Hs578T and 63 μM for MDA-MB-

231. Moreover, RAF1-73 was also highly deleterious to cell growth, with IC50 values of 27.0 and 

32.6 μM for Hs578T and MDA-MB-231, respectively. These IC50 values are comparable with the 

mean IC50 of all drugs tested on these cell lines in the Sanger Genomics of Drug Sensitivity 

Database (48.6 μM for Hs578T and 54.0 μM for MDA-MB-231 cells), contextualizing the relative 

activity of these peptides and the potential for this methodology[317]. We also identified two 

additional peptides (RASA1-468 and MDM2-25) from the larger screen in MDA-MB-231 cells, 

which show cytotoxic activity when delivered exogenously. RASA1-468 is derived from the 

Pleckstrin homology domain of RASA1 (mediating various PPIs and interactions with 

phospholipids[318]), while MDM2-25 is derived from the p53-binding domain of MDM2[237]. 

These peptides had IC50s of 23 and 33 μM, respectively, in MDA-MB-231 cells (Figure 3.10b). 

This result demonstrates how the high-throughput nature of the PepTile screening strategy can 

identify diverse bioactive peptides that maintain activity when conjugated to a cell-penetrating 

motif. We similarly anticipate there are many more unexplored hit peptides from the screen which 

could show anti-cancer activity when delivered exogenously. Collectively, these data further 

confirm that the peptides identified in this screen are acting at the protein level and suggest that 

further engineering of these compounds could yield translationally relevant biopharmaceuticals. 
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Figure 3.10: Cancer-driver-derived peptides have protein-level activity and potential drug-
like function 
(A) Overview of peptide functionalization for intracellular delivery. Hit peptides from the screen 
were conjugated to a TAT cell-penetrating motif and produced via solid phase peptide synthesis. 
(B) In vitro testing with chemically synthesized peptides (n = 3–4). Chemically synthesized hit 
peptides conjugated to a cell-penetrating TAT protein transduction motif were added to cells at 0–
100 μM. A 3× FLAG peptide conjugated to TAT served as the negative control. Cell viability was 
measured 24 h later by the WST-8 assay, indicating that TAT functionalized hit peptides can 
effectively inhibit the growth of Hs578T and MDA-MB-231 cells in a dose-dependent manner. 
Dotted lines indicate 95% confidence intervals for nonlinear fit. TAT-RAF1-73 and TAT-EGFR-
697 were tested on the same plate, hence identical negative control measurements. 
 

As peptide constructs will likely require additional engineering to maximize efficacy 

toward intracellular targets in vivo, we have also demonstrated a streamlined recombinant 
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production protocol as a complement to the PepTile approach and general resource to accelerate 

the engineering of peptide therapeutics. This method was validated by the production of milligram-

scale quantities of TAT conjugated 3xFLAG peptide, outperforming the costs associated with 

commercial peptide synthesis (Figure 3.11, Methods). Because this peptide production method 

(as well as the PepTile fitness screening strategy—see Appendix) requires inexpensive equipment 

and few specialized reagents, it is easily adaptable to labs of any scale, as well as automated 

medium throughput screening approaches. 

 

Figure 3.11: Recombinant production of peptides for exogenous delivery 
Peptide production protocol to facilitate translation of peptide hits. Tagless peptides conjugated to 
cell penetrating protein TAT were produced at high purity via fusion to Maltose Binding Protein 
(MBP), and subsequent cleavage by TEV protease. The protocol makes use of no specialized 
instruments, and is easily adaptable to alternative cell penetrating motifs or peptide constructs. 
Ladder has bands marking 10,15,20,25,37,50,75,100,150,and 250kD.  
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3.4.4 Characterization of peptide function 

We then sought to validate our hypothesis that the functionality of these putative inhibitory 

peptides was dependent on the role and structure of the WT protein domain they were derived 

from. Specifically, we explored whether the RAF1-73 peptide (derived from the RAF1-RBD) 

retained the ability of the full-length domain to bind activated Ras proteins. To evaluate this 

potential interaction, we co-transfected the constitutively active KRAS G12V mutant and 

3xFLAG-RAF1-73 in HEK293T cells, then performed a co-immunoprecipitation using anti-

FLAG agarose beads (Figure 3.12a). We chose to transfect with a constitutively active KRAS 

variant because the Ras-Raf interaction occurs only on activated Ras proteins. Western blot 

analysis of the immunoprecipitated protein complexes subsequently verified the protein-protein 

interaction between RAF1-73 and Ras. 
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Figure 3.12: Cancer-driver-derived peptides show context-dependent activity 
(A) Peptide mechanism explored via co-immunoprecipitation. 3X-Flag-tagged RAF1-73 derived 
from the RBD of RAF1 pulls down activated Ras when immunoprecipitated, indicating retention 
of WT domain biological functionality. Analogously, the 3X-FLAG-tagged EGFR-697 peptide 
pulls down the co-transfected full-length EGFR protein confirming a protein-level interaction 
between the two proteins. (B) Results of RNA sequencing on EGFR-697 expressing Hs578T cells. 
EGFR-697 overexpression results in significant growth arrest, and differential expression of 225 
genes, as well as significant downregulation of pathways relevant to cellular proliferation. 
Additional GSEA analysis revealed a transcriptional phenotype consistent with perturbed 
signaling along the EGFR pathway. Gene set 
“KOBAYASHI_EGFR_SIGNALING_24HRS_DN” is a gene set composed of genes 
downregulated upon treatment with an irreversible EGFR inhibitor in H1975 cells[319]. Treatment 
with EGFR-697 peptide results in significant downregulation of this gene set in Hs578T cells. The 
“KOBAYASHI_EGFR_SIGNALING_24HRS_UP” is a gene set from the same experiment 
highlighting genes that are upregulated upon EGFR inhibition. This gene set is significantly 
upregulated upon EGFR-697 overexpression. The vertical lines on the plot each represent a gene 
in the gene set, with their location representing their position in the ranked list of genes from the 
RNA sequencing data (ranked by DESeq2’s shrunken log fold change[262]). NES is the 
normalized enrichment score, quantifying the extent genes within the given gene set are up or 
downregulated in the RNA sequencing data. FDR is the false discovery rate for that enrichment 
score. (C) EGFR expression levels of breast cancer cell lines quantified via western blot. MCF-7 
cells show no detectable expression of EGFR. (D) Breast cancer cell line panel treated with 
genetically overexpressed EGFR-697, synthesized TAT-EGFR-697 and erlotinib. Cell viabilities 
were determined via crystal violet staining of live cells after 7 days for the genetically 
overexpressed constructs, or 24 h for the exogenously delivered molecules. For the genetically 
overexpressed EGFR-697, after 7 days of growth there was a significant association between 
EGFR expression levels and cell lines viability relative to a GFP transduced control (Pearson p < 
0.0001, r = −0.803). EGFR expression levels were quantified based on the pixel intensity of the 
western blot data shown in (C), relative to the GAPDH internal control. At 50 μM, the cell lines 
with detectable EGFR expression show a reduction in viability after 24 h of exposure to TAT-
EGFR-697. In contrast, EGFR-negative MCF7 cells show no reduction in viability. Cell viabilities 
are normalized to a PBS-vehicle-treated control on the same plate. Cells expressing EGFR at 
detectable levels have greater sensitivity to erlotinib (24-h treatment) than non-EGFR-expressing 
MCF7 cells. Cell viabilities for erlotinib-treated cells are normalized to DMSO-treated cells on the 
same plate. Data indicate mean ± standard deviation. 
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Next, we performed a similar experiment investigating the potential interaction between 

full-length EGFR and EGFR-697, confirming detectable co-immunoprecipitation of the EGFR-

697 peptide with the full-length EGFR protein (Figure 3.12a). In order to better understand how 

the EGFR-697 peptide was perturbing the cells, we conducted RNA sequencing on Hs578T cells 

modified via lentivirus to overexpress EGFR-697. We identified 225 differentially expressed 

genes (BH-adjusted p value < 0.05) and performed gene set enrichment analysis (GSEA) to 

identify upregulation and downregulation of genetic pathways[263]. We tested 239 KEGG 

pathways corresponding to cell signaling and metabolism, with 22 pathways showing highly 

significant (false discovery rate < 0.025) upregulation/downregulation in cells expressing EGFR-

697 compared with control cells transduced with GFP (Figure 3.12b). Several metabolic pathways 

relating to oxidative phosphorylation and carbon metabolism were downregulated, consistent with 

the role of oncogenic EGFR signaling as a driver of metabolic alterations[320–322]. Furthermore, 

genes relating to DNA replication were also downregulated, consistent with the observed slow 

growing phenotype. In addition to performing GSEA on KEGG pathways, we also tested a set of 

curated genes from the Molecular Signatures Database comprised genes significantly 

downregulated/upregulated in H1975 cells upon treatment with an irreversible EGFR 

inhibitor[319]. We chose to test against these gene sets derived from EGFR inhibition experiments 

because they describe the putative transcriptomic effects of perturbing EGFR at the protein level. 

EGFR-697 transduction in Hs578T cells resulted in downregulation of genes identified as 

downregulated in response to chemical EGFR inhibition and upregulation of genes identified as 

upregulated (FDR = 0.008 and 0.058, respectively). To provide further confidence that EGFR-697 

is acting in an EGFR-dependent manner, we tested the effects of genetically overexpressed EGFR-

697 and TAT-EGFR-697 in a panel of breast cancer cell lines with varying levels of EGFR 
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expression (Figures 3.12c-d). Both the genetically overexpressed and the exogenously delivered 

versions of EGFR-697 showed greater activity in cell lines with detectable EGFR expression. 

These data were benchmarked against a high dose of erlotinib, showing a similar EGFR-

expression-dependent change in sensitivity. Collectively, these data support the hypothesis the 

EGFR-697 peptide perturbs breast cancer cells in an EGFR-dependent manner. However, the exact 

mechanism of this interaction and the extent of off-target interactions will need further study. 

As a final analysis of peptide function, we have explored computationally the predicted 

structure of peptides derived from RAF1 and EGFR (Figure 3.13). We first examined whether the 

individual hit peptides RAF1-73 and EGFR-697 had modeled structures resembling that of the WT 

domain they were derived from (Figure 3.13a).  
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Figure 3.13: Peptide structural analysis  
(A) Structural alignments of predicted peptide structures to experimentally resolved crystal 
structures of the full length protein (modeled using Tr Rosetta – Methods). Shown are two hit 
peptides (RAF1-73 and EGFR697). (B) Template modeling scores (TM-Score) for all peptides 
derived from RAF1 and EGFR. We comprehensively modeled 957 total peptides derived from 
RAF1/EGFR which had available overlapping crystal structures on RCSB. We found that all 
modeled peptides had structural similarities with the WT structure greater than random chance 
(TM-score >.17), and over 75% of the modeled peptides in both proteins had approximately the 
same fold as the WT structure (TM-score >.5). (C) Confidence scores for the predicted RAF1 
peptide models outputted by TrRosetta. Confidence scores shown are the predicted Local Distance 
Difference Test (lDDT) values for the protein as determined by DeepAccNet[269]. (D) Confidence 
scores for the predicted EGFR peptide models outputted by TrRosetta. Confidence scores shown 
are the predicted Local Distance Difference Test (lDDT) values for the protein as determined by 
DeepAccNet[269]. (E) Predicted peptide TM-Score as a function of the secondary structure of the 
full length protein. Peptides were binned into groups based on their overlap (>3 amino acids 
minimum) with structural elements on the full length protein. (F) Shown are 2 representative low 
similarity folders (TM-Scores .305, and .347 respectively) derived from RAF1. Secondary 
structure of the full length protein is largely retained, however the orientation of secondary 
structural elements is different from the full length WT.  
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Peptide structures were generated using TrRosetta, a highly accurate protein structural 

prediction software[267]. Both RAF1-73 and EGFR-697 were predicted to fold into structures 

highly similar to that of the WT protein (TM scores of 0.63 and 0.67, respectively). A TM score 

greater than 0.5 corresponds to a p value less than 5.5 × 10−7 and is a widely used criterion when 

two protein structures have the same fold[267,323]. Subsequently, we comprehensively modeled 

957 peptides derived from RAF1 and EGFR, which had available overlapping crystal structures 

on PDB. We found that the vast majority (>75%) of the peptide models derived from RAF1 and 

EGFR had predicted structures highly similar to that of the full-length protein (Figure 3.13b). All 

models predicted from trRosetta had confidence scores (predicted local distance difference Test 

outputted by DeepAccNet) greater than 0.58, indicating high stereochemical plausibility of the 

predicted models (Figure 3.13c-d). However, a small subset of derived peptides modeled had 

structures diverging from that of the full-length protein (minimum TM score observed = 0.305). 

To evaluate the variation in TM scores among the fragments, we analyzed the TM scores of each 

fragment as a function of its secondary structure. We found that secondary structure in the full-

length protein is not a strong driver of predicted peptide conformational similarity to WT folding 

(Figure 3.13e). Peptides derived from regions with alpha helices, beta sheets, or both were largely 

predicted to fold into structures resembling the full-length protein (mean TM scores of 0.74, 0.82, 

and 0.76, respectively). When examining the predicted structures least similar to the full-length 

protein (TM scores < 0.5), we found that secondary structure of the peptides was consistent with 

the full-length structure in 79% of low similarity RAF1 peptides and 71% of EGFR peptides. This 

suggests that the low TM scores were attributed to differences in the angle of certain amino acids 

rather than the misfolding of secondary structures (Figure 3.13f). Given the diversity of peptides 

tested, some peptides which deplete in this screen may fold into structures dissimilar to that of the 
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full-length protein from which they are derived (just as some sgRNA or siRNA have unexpected 

off-targets), underscoring the need for robust downstream validations of screen results. 

3.5 Discussion 

Overall, we have demonstrated a comprehensive screening platform that enables the 

identification of peptide inhibitors of cancer cell growth. This methodology is scalable due to the 

ease of oligonucleotide synthesis, simple to perform, and highly precise, allowing users to 

interrogate protein sequences with single-amino-acid resolution. Because the library of peptide-

coding gene fragments is user defined and custom synthesized, this strategy is easily adaptable to 

diverse studies where a selection strategy can be devised to enrich or deplete cells with the 

phenotype of interest. 

Studies on signal transduction in the mammalian cell often consider proteins as a series of 

nodes within a network for simplicity [324]. The results presented here also highlight that signal 

transduction is highly dependent on tight control of numerous modular functional units within 

proteins to mediate information flow and maintain cell fitness. Supporting this conclusion, peptide 

mediated perturbations to the endogenous interaction network of proteins and their diverse ligands 

(proteins, small molecules, DNA/RNA, etc.) can strongly impact cellular growth rates. Ongoing 

efforts to comprehensively map protein functional domains are thus critical to understanding 

disease-relevant cell signaling programs. Furthermore, we find that functional domains within 

proteins can serve as a promising source of bioactive peptides with which to perturb signaling and 

protein-protein interactions. 

However, PepTile as implemented has several limitations which future technology 

development can iteratively work to improve. First, tiling libraries are likely unsuited for inhibiting 
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protein interactions mediated by residues close in physical space, but far apart in the full-length 

ORF. In the future, using structural modeling to inform library design can generate synthetic 

peptides better suited for inhibiting this type of interaction. Additionally, current DNA synthesis 

technology limits array synthesized DNA libraries to less than ~350 bp (with increasing error rates 

as the size of the DNA increases). Moving forward, improvements in DNA synthesis will open 

new avenues for screening more complex peptide and protein therapeutics efficiently. As well, 

PepTile is currently agnostic to any post-translational modifications which may be essential for 

peptide function. Advances in high-throughput protein-level analysis will additionally allow for a 

more rapid and accurate characterization of peptide mechanism. 

Peptides expressed outside the context of the native protein may in some cases have 

bioactivity not consistent with the function of the parent protein. Peptides derived from highly 

hydrophobic or transmembrane domains, domains with high homology to other proteins, those 

bearing reactive moieties such cysteines, or peptides with a high net charge could result in non-

specific binding/aggregation within the cell. This possibility highlights the importance of 

downstream validation of peptide hits, and the broader challenge of identifying the mechanism 

underlying biological phenotypes[325]. Furthermore, peptides mined via the screens will likely 

have only moderate binding affinities and bioavailability, and to improve activity systematic 

mutagenesis may be required. To this end, WT peptide screening could be followed up with a 

smaller secondary screen mutagenizing hit compounds to identify semi-synthetic binders with 

higher affinity to the target protein, better bioavailability, or other improved functional 

characteristics. 

Inhibitory peptides have immense potential as both research tools and therapeutics. Direct 

inhibition of protein activity without genetic alteration opens unique screening avenues with which 
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to probe protein function. For example, protein-protein interaction networks could be more 

precisely perturbed via inhibitory peptides contacting a specific protein surface than by complete 

genetic knockdown. The ability to identify protein regions associated with cell fitness can also 

serve to complement traditional drug development efforts, such as determining critical residues 

for inhibition via small molecules or antibodies. Additionally, this screening resource identifies 

inhibitory peptides that are immediately translatable, bypassing the need for additional high-

throughput screens to identify candidate molecules. Functionally, peptides can be (1) readily made 

cell permeable via coupling of cell-penetrating motifs to enable drug-like function[326] or, 

alternatively, (2) coupled to chemical moieties such as poly-ethylene glycol (PEG) or protein 

domains with naturally long serum half-life such as Fc, transferrin, or albumin to improve 

persistence in circulation[327]. In this study, with minimal engineering we developed two drug-

like peptides that opposed triple-negative breast cancer cell growth in vitro as effectively as some 

FDA-approved small molecules targeting the same proteins[317,327]. Advances in biologics 

delivery will further improve the translational relevance of this strategy. We anticipate a future 

role for this method of peptide inhibitor screening in both basic research and drug development. 
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CHAPTER 4: Mining and Exploiting Receptor-Ligand Interactions to Re-Target AAVs via 
Novel Peptide Display Screens 
 

4.1 Abstract 

Adeno-associated viruses are common gene therapy vectors in clinical use, however, their 

effectiveness is hindered by poor target tissue transduction and potential off-target gene delivery. 

Hypothesizing that naturally occurring receptor-ligand interactions could be repurposed to enable 

tissue-specific targeting, we fragmented 6,166 protein ligands known to bind human receptors into 

20mer peptides, and synthesized the corresponding cDNA via pooled synthesis of defined 

oligonucleotides. We inserted this DNA library onto surface loops of the AAV5 and AAV9 cap 

genes at two sites, generating four capsid libraries comprising over 1 million AAV variants. We 

injected these capsid libraries intravenously into C57BL/6 mice in duplicate, and after two weeks 

we isolated infectious AAV variant cap genes from 9 mouse tissues. Tracking variant abundance 

via next generation sequencing (NGS), we identified over 250,000 variants which packaged into 

capsids and over 15,000 variants which efficiently transduce at least one mouse organ. Further 

analyses of displayed peptides revealed that the biophysical attributes of charge, flexibility, alpha 

helical content, and hydrophobicity were highly predictive of AAV variant packaging, and 

sufficient to discriminate packaging variants from non-packaging variants. We next validated 21 

individual AAV variants and confirmed screen predicted tissue-specific targeting for the brain, 

lung, heart, and muscle, with 74.3% of the organ tropism predictions accurately validating, 

highlighting the overall screen efficacy and reproducibility. Among the validated variants, 9/21 

exceed AAV9 infectivity in at least one organ, and 18/21 have less than half the liver infectivity. 

We also show that this dataset can be used to train predictive models of AAV tissue tropism, 

guiding future AAV engineering and variant library design.   
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4.2 Introduction 

Adeno-associated viruses (AAVs) have emerged as the leading vector for gene delivery in 

clinical applications [328]. While multiple AAV-mediated therapies have achieved regulatory 

approval [329], efficient directing of treatment to target tissue is challenging with systemic 

injection. To overcome this issue, high viral titers are often used in treatments with systemic 

injections, which has been associated with potential hepatotoxicity in clinical trials [330]. 

Localized injections are also problematic, often requiring invasive procedures with the potential 

for organ damage and long recovery times. Due to these delivery challenges, many gene 

therapeutics have elected to pursue ex vivo treatment designs to overcome targeting issues and as 

a consequence have: increased product variability, dependency on complex lab procedures, and 

challenging quality control [331].  

To improve in vivo therapeutic targeting, groups in the field have engineered AAV variants 

to specifically target tissues such as the brain [332] and muscle [333], predominantly using a 

strategy of iteratively screening random 7mers inserted into the AAV capsid, or randomly 

mutagenizing the capsid sequence as a whole[334,335]. However, engineering of viral tropisms is 

limited by our ability to predict future functional variants from stochastic mutational screens. 

Although mutagenizing AAV capsids via random oligomers has yielded functional capsids with 

novel properties, rational engineering of viral phenotypes remains an elusive goal.  

Towards rational engineering of viral function, deep mutational libraries and associated 

screens of function have enabled systematic mapping of capsid mutation fitness [336,337], 

providing critical information which can be used to predict future variant activity. Additionally, 

defined libraries of pooled oligonucleotides have been used to insert gene fragments derived from 

proteins with known affinity to synapses into the AAV capsid [338], with the goal of improving 
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retrograde axonal transport. While these methodologies have provided important insights for AAV 

engineering, much is still unknown regarding how AAV genotype impacts packaging and tissue 

transduction. Consequently, there is still a critical need for systematic datasets mapping AAV 

genotype to clinically relevant properties such as organ specificity. Given the clinical danger of 

hepatotoxicity [330] and other efficacy issues related to off-target transduction[339], leveraging 

screening technologies to yield highly specific AAVs has great value to the medical and scientific 

community.  

Here, we use insertional mutagenesis to systematically engineer and screen over 1 million 

AAV variants in vivo. To build this library, we insert gene fragments coding for potential receptor 

ligands and cell membrane permeable proteins into one of two surface loops on AAV5 and AAV9. 

In contrast to traditional random peptide libraries, our pre-defined oligonucleotide library synthesis 

method enables robust quantitation of tissue transduction rates for all variants screened. 

Quantifying transduction rates across nine organs, we identify extremely specific variants targeting 

the brain and lung, as well as muscle and heart targeting variants with broader organ transduction. 

The resulting resource linking AAV variant genotype to packaging efficacy and tissue specificity 

expands our understanding of the AAV fitness landscape, and provides a unique dataset from 

which further data-driven engineering efforts can be built.  

 
4.3 Methods 

4.3.1 Design of displayed peptide library  

Each AAV library consisted of 275,298 peptides, derived from 6,465 proteins. These 

protein sources were mined from a variety of protein families, including all protein ligands 

cataloged in the Guide to Pharmacology database [340], toxins, nuclear localization signals (NLS), 

viral receptor binding domains, albumin and Fc binding domains, transmembrane domains, 
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histones, granzymes, and predicted cell penetrating motifs. In addition to peptides coding for 

functional biomolecules, we also included 444 control peptides coding for FLAG-tags with 

premature stop codons. For all human proteins, the cDNA coding for each protein was fragmented 

in silico to generate DNA coding for all possible 20mer peptides. For viral proteins, cell 

penetrating motifs, and FLAG stop codon controls, the protein sequence was back-translated to 

DNA using the most abundant human codon for each amino acid.  

 

4.3.2 Oligonucleotide array synthesis and amplification 

Oligonucleotide libraries were synthesized by GenScript as three 91,766 element pools. In 

addition to the 60bp coding region, additional 5’ (GTAGACATCcacctgcacagcggt) and 3’ 

sequences (gttcaacgcaggtgGGTGCAATA) were appended to add PaqCI recognition sequences to 

facilitate downstream ligations. Each oligonucleotide library was amplified using KAPA Hifi 

Hotstart Readymix, primers AAV_Pool_F/R (Appendix), and the manufacturer recommended 

cycling conditions with a melting temperature of 60 °C and an extension time of 30 seconds. The 

number of PCR cycles was optimized to avoid over-amplification of the peptide libraries. After 

amplifying each oligonucleotide pool and confirming amplicon size on an agarose gel, the 

amplified sub-libraries  were pooled to yield the total 275,298 element peptide library. 

4.3.3 AAV display library cloning 

AAV5 and AAV9 WT sequences were modified to add two PaqCI recognition sequences 

at the appropriate loop sites (Figure 4.1b) to enable seamless insertion of peptide coding sequences 

via ligation. The WT sequences for AAV5 and AAV9  (with cloning sites at loop 1 or loop2) were 

then cloned downstream of the AAV2 rep gene using a multi-fragment Gibson Assembly reaction 

to yield pAAV5L1_Screen, pAAV5L2_Screen, pAAV9L1_Screen, and pAAV9L2_Screen. In 
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these plasmids, the AAV rep and cap were flanked by AAV inverted terminal repeat (ITR) 

sequences to facilitate packaging of cap genes into a recombinant AAV particle.  For each AAV 

sublibrary (AAV5/9 and loop1/2), the corresponding cloning vector was digested with PaqCI 

overnight along with the peptide library. The digested vector was treated for 15 minutes with calf 

intestinal phosphatase (NEB quick-CIP) to reduce vector only background. The digested vector 

was then mixed with the digested peptide coding insert in a modified ligation reaction containing 

a final concentration of 7.5% PEG8000 (NEB T4 ligase M0202M). Per 20 μL ligation reaction, 

100 ng of digested vector was mixed with 10-fold molar excess of the peptide library, and the 

reaction was incubated for 15 minutes at room temperature. To transform the ligated library into 

bacteria for propagation, Stbl3 cells were first streaked on LB plates without antibiotics. A 10 mL 

starter culture of Stbl3 cells (picked from a single colony off freshly streaked plates) in LB was 

grown at 37 °C for 16 hrs and used to inoculate 1 L of LB. The 1 L bacterial culture was then 

grown at 37 °C until an OD of .4-.6, and after reaching the appropriate density placed on ice for 1 

hour. The Stbl3 cells were then washed 4 times with ice cold DI water, ensuring all plastic ware 

used was free of residual detergents by thorough pre-washing. After the final spin, the Stbl3 cells 

were resuspended in 3 mL of ice cold DI water. 1.5 mL of the competent cells were then mixed 

with 100 μL of ligation reaction, and aliquoted into 15 electroporation cuvettes (.2cm gap length, 

Genesee Scientific Cat # 40-101). The cells were then electroporated in an eppendorf E-porator 

with the voltage set to 2.5 kV.  

4.3.4 Recombinant AAV production 

Utilizing the library plasmid pools described above (AAV5-Loop1, AAV5-Loop2, AAV9-

Loop1, and AAV9-Loop2), each AAV capsid library was produced by transfecting HEK293T cells 

in 40 15 cm dishes with the plasmid library pool (diluted 1:100 with pUC19 filler DNA to prevent 
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capsid cross-packaging) and an adenoviral helper plasmid (pHelper). Each plate was transfected 

with 10 μg of pHelper, 10 μg of the cap library plasmid and pUC19 mix. Transfections were 

performed using 150 μL of linear PEI per plate (1 mg/mL in water), mixed with the DNA pre-

diluted in 350 μL of Optimem media. The mixture was incubated for 10 min at room temperature 

and then applied dropwise onto the media. For the AAV-variant validation vectors, 10 15cm dishes 

of HEK239T cells were each transfected with 10 μg of pHelper, 10 μg of pRC2-AAV-variant, and 

10 μg of the ITR-containing pZac-mCherry transgene plasmid. Cells and culture media supernatant 

were harvested 84 hours post-transfection and AAVs were purified via iodixanol gradient 

ultracentrifugation as previously described [341]. Titers were determined via qPCR using the iTaq 

Universal SYBR green supermix and primers binding to the AAV ITR region (Appendix). To 

prepare the capsid particles as templates for qPCR, 2 μL of virus was added to 50 μL of alkaline 

digestion buffer (25mM NaOH, 0.2 mM EDTA) and boiled for 8 minutes. Following this, 50 μL 

of neutralization buffer (40mM Tris-HCl, .05% Tween-20, pH 5) was added to each sample.  

4.3.5 In vivo evaluation of AAV display libraries 

Each AAV capsid library was retro-orbitally administered to mice in duplicate at a dose of 

2E12 vg/mouse for the AAV9-based libraries or 1E12 vg/mouse for the AAV5-based libraries. 

Two weeks after injection, the heart, lung, liver, intestine, spleen, pancreas, kidneys, brain, and 

gastrocnemius muscle were harvested and placed in RNAlater storage solution. Total DNA was 

extracted from all mouse tissues using TRIzol reagent and the TNES-6U back extraction method 

[342].  After phase separating the TRIzol via addition of chloroform and removing the RNA 

containing aqueous phase, 300 μL of TNES-6U buffer (10mM Tris-HCl, pH 7.5; 125mM NaCl; 

10mM EDTA pH 8.0; 1% SDS; 6M Urea) was added to the remaining organic phase and 

interphase material. The sample was vortexed, and then spun down at 18,000G for 15 minutes. 
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The new DNA containing aqueous phase was then isolated and mixed 1:1 with isopropyl alcohol 

and incubated at -80 °C for 2 hours. The resulting precipitated DNA was centrifuged for 15 minutes 

at 18,000G, and the supernatant discarded. The DNA pellet was then washed three times with 70% 

ethanol, and finally resuspended in 300 μL of EB after allowing the pellet to air dry.  

 

4.3.6 Preparation of plasmid and capsid DNA for next generation sequencing 

To sequence the plasmid libraries (AAV5/9 and loop1/2 peptide insertions), 50 ng of 

plasmid was used as template for a 50 μL KAPA Hifi Hotstart Readymix PCR reaction with 

primers detailed in the Appendix, a melting temperature of 60 °C and an extension time of 30 

seconds. The primers were designed to amplify the peptide coding region from each sub-library. 

The number of cycles (12) was optimized to avoid overamplification. The PCR reactions were 

purified using a QIAquick PCR Purification Kit according to the manufacturer’s protocol. 

Following this, 50 ng of the PCR amplicon was used as template for a secondary 50 μL KAPA 

Hifi Hotstart Readymix PCR reaction to add illumina compatible adapters and indices (NEBNext 

Cat# E7600S). The PCR reaction was performed with a melting temperature of 60 °C, an extension 

time of 30 seconds, and 7 cycles. To sequence the capsid libraries, a similar protocol was 

performed, with a modified template amount in the step-1 PCR. To prepare the capsid particles as 

templates for PCR, 2 μL of virus was added to 50 μL of alkaline digestion buffer (25mM NaOH, 

0.2 mM EDTA) and boiled for 8 minutes. Following this, 50 μL of neutralization buffer (40mM 

Tris-HCl, .05% Tween-20, pH 5) was added to each sample. 1 μL of this digested capsid mix was 

then used as a template for a 50 μL PCR reaction. For each sample, the number of cycles was 

optimized to avoid overamplification, and a secondary PCR was subsequently performed to add 

illumina compatible adapters and indices. After generating illumina compatible libraries, the 
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plasmid and capsid samples were sequenced on a NovaSeq 6000 with an S4 flowcell generating 

100bp paired end reads.  

4.3.7 Preparation of tissue DNA for next generation sequencing 

To sequence the AAV cap genes from each tissue for the pooled screen, as with the 

plasmid/capsid libraries, a two step PCR based library prep method was used. For each organ and 

replicate, a 300 μL PCR reaction was performed with 120 uL of genomic DNA used as a template. 

For each tissue, the number of cycles was optimized via an initial qPCR to avoid overamplification 

of the library. All other parameters such as primers, and melting temperatures were identical to the 

PCRs for the plasmid libraries. Following this initial PCR, a secondary PCR was performed as 

above to add illumina compatible adapters and indices. The libraries were then sequenced on a 

NovaSeq 600 with an S4 flowcell generating 100bp paired end reads.  

4.3.8 AAV-Variant validation cloning  

For the AAV variant validation experiments, The AAV5 and AAV9 capsid sequences with 

PaqCI restriction sites at either the Loop1 or Loop2 locations were inserted downstream of a 

Cytomegalovirus (CMV) promoter and the AAV2 rep gene via Gibson assembly to yield the 

validation plasmids AAV9L1_Val, AAV9L2_Val, AAV5L1_Val, and AAV5L2_Val. These 

validation vectors did not contain ITRs to allow for packaging of an mCherry transgene during 

recombinant viral production. The appropriate validation cloning plasmid was then digested with 

PaqCI overnight at 37 °C according to the manufacturer’s instructions. Overlapping primers for 

the selected variants were annealed to one another and then ligated directly into validation plasmid 

via T4 ligase. The primers were designed to yield 5’ and 3’ overhangs compatible with the 

validation cloning vectors on each side of the peptide coding sequence (Appendix) after annealing. 
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4.3.9 In vivo validation of AAV variants 

Either saline or the AAV-variant-mCherry, AAV9-mCherry, or AAV5-mCherry capsids 

were systematically administered to mice in duplicate at a dose of 5E11 vg/mouse. Three weeks 

after injection, the lungs were inflated with a PBS/OCT solution and the lungs, heart, liver, 

intestine, spleen, pancreas, kidneys, brain, and gastrocnemius muscle were harvested. Each organ 

was split with one portion placed in RNAlater and the other embedded in OCT blocks and flash 

frozen in a dry-ice/ethanol slurry. Total RNA was then isolated from all mouse tissues using 

TRIzol reagent and RNA Isolation kits with on-column DNase treatment (Zymo Cat# R2072). 

cDNA synthesis was performed with random primers from the Protoscript cDNA synthesis kit 

(NEB Cat#E6560S). Transgene expression was then quantified via qPCR using the iTaq Universal 

SYBR green supermix and primers binding to the mCherry transcript (Appendix). mCherry 

transgene expression was normalized to that of an internal GAPDH control, using GAPDH specific 

primers (Appendix) For histological examination, OCT frozen blocks were cryosectioned at 

approximately 10 μm thickness and tissue slides were then imaged on an Olympus SlideScanner 

S200. Exposure times between 5-1000 ms were used, with identical exposure times used for all 

samples of a given tissue type.  

4.3.10 Quantifying AAV variant abundance from NGS data 

Starting with FASTQ sequencing files, the MAGeCK [89] ‘count’ function was used to 

generate count matrices describing AAV abundance in each sample (plasmids/capsids/tissues). 

Following this, the count matrices were normalized (via multiplication with a constant size-factor) 

for each sample to account for non-identical read depth. The sequencing counts were then 

transformed by taking the log base 2 of the raw counts, after addition of a pseudocount. Variants 
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with no counts across all of the experimental samples were excluded from analysis. 

 

4.3.11 Biophysical analysis of AAV capsids 

The biophysical characteristics of the inserted peptides was calculated using the 

“ProteinAnalysis” module within the Biopython Python package [343]. A variant was considered 

a successful packager if it had higher abundance in the capsid particles compared to the plasmid 

pool. Support vector machine training and visualization was accomplished via the “svm” module 

within the sklearn Python package[344]. UMAP projection of peptide biophysical characteristics 

was accomplished via the “plot” functionality within the UMAP Python package [345]. All default 

parameters were used for the visualization. Boxplots and hexbin plots were generated using the 

matplotlib and seaborn Python packages [346]. 

 

4.3.12 Identifying significantly enriched variants in each tissue 

To identify variants which successfully transduce each tissue, for each variant a one sample 

T-test was applied, comparing the abundance in the capsid particles to the abundance in the tissue. 

Resulting p-values were adjusted for multiple hypothesis testing via the Benjamini-Hochberg 

procedure [259]. A variant was considered a significant transducer of an organ if it had an FDR 

adjusted p-value < .05, and a Log2FC > 1 in both replicates. When choosing variants for validation 

experiments, we prioritized variants which had inserted peptides which were identified as hits in 

multiple capsid/loop contexts, and variants for which we identified similar inserted peptides 

infecting the same organ. Variant similarity was quantified via the peptide Levenshtein distance. 

We considered a pair of peptides sufficiently similar if they had a Levenshtein distance less than 

10, corresponding to a minimum of 50% sequence similarity for a 20mer peptide. 
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4.3.13 Visualizing tissue transduction from pooled screen 

Heatmaps for visualizing AAV transduction were generated using the ‘clustermap’ 

function within the seaborn Python package [346].  Rows and columns were ordered via the scipy 

‘optimal_leaf_ordering’ function to minimize the euclidean distance between adjacent leaves of 

the dendrogram. UMAP projections visualizing AAV tissue specificity were generated by 

embedding the tissue level log2 fold change into two dimensions via the “plot” functionality within 

the UMAP Python package [345]. All default parameters were used for generating the embedding. 

The variants were colored by the organ in which they had the max  log2 fold change.  

4.3.14 Assessing accuracy of predicted AAV variant tropism  

For each variant which was individually validated, we assessed the accuracy of both 

positive and negative predictions of tissue infectivity. For variants predicted to target a specific 

organ, we considered a prediction accurate if the individual validations showed greater than 50% 

of wild-type AAV9 infectivity in that organ. For variants predicted not to target a specific organ, 

we considered a prediction accurate if the individual validations showed less than 50% of wild-

type AAV9 activity.  

4.3.15 Peptide Distance Projections 

To calculate the Levenshtein distance between inserted peptides, the “levenshtein” function 

from the Python package “rapidfuzz” was used with default parameters[347]. After building the 

pairwise distance matrix between all significantly enriched peptides, the matrix was projected into 

two dimensions via UMAP with metric="precomputed" , n_neighbors=1500, and min_dist=.1. 

Clusters of peptides with similar functions were then hand annotated onto the resulting plot.  
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4.3.16 Convolutional Neural Networks 

To train convolutional neural networks (CNNs) to predict the tissue specificity of AAVs, 

we first converted the AA sequences of the inserted peptides to a one-hot encoding via the 

“get_dummies” function from the pandas Python package [348]. Among the significantly enriched 

variants, a variant was considered a transducer of a given organ if the log2FC relative to the capsid 

in both replicates was greater than 0. The data was then randomly split into  training (⅔) and 

validation (⅓) datasets. For training the model, the “RandomOverSampler” function from the 

Python library iblearn was used to balance the training data via oversampling from the minority 

class. For each variant, the one-hot encoding was reshaped to a 20x20 matrix with rows indicating 

residue positions, and columns indicating the presence or absence of a particular amino acid. The 

model architecture was instantiated via a Keras sequential model[349]. In brief, a convolutional 

layer (Conv1D) with 32 filters, a kernel size of 3 and “relu” activation was fed into a max pooling 

layer (MaxPool1D)  with pool size of 2. These layers were followed with another set of 

convolutional and max pooling layers, this time with 64 filters in the convolutional layer. These 

layers were followed with a dense layer with units=20. Finally a dropout layer was added with the 

dropout rate=.5. A flattening layer and final dense layer (with sigmoid activation) was then used 

to output resulting class probabilities. A separate independent model was trained for each organ. 

Model performance was evaluated via accuracy, area under the receiver operator characteristic 

curve (AUROC), F1-score, and Matthews Correlation Coefficient (MCC). Metrics were calculated 

via builtin Keras functions, and plotted via matplotlib.  

 



168 

4.4 Results 

4.4.1 A systematic library of AAV variants displaying fragmented proteins 

To generate a pool of diverse AAV variants, we inserted a DNA oligonucleotide 

synthesized library of 275,298 gene fragments into one of two surface loops on the cap genes of 

AAV5 and AAV9 (Figure 4.1a-b, Methods). Each gene fragment codes for a 20mer peptide 

derived from the coding sequence of a ligand for a known extracellular receptor, or a gene 

predicted to have cell-penetrating or internalizing properties (Figure 4.1a-b, Methods).  
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Figure 4.1: Rationally engineered adeno-associated virus (AAVs) libraries with loop-
inserted peptides derived from naturally occurring protein ligands 
a, Overview of experimental strategy for generating re-targeted AAV variants. AAV5 and AAV9 
capsid sequences were mutated by inserting the DNA coding for 20-mer peptides derived from 
known ligand proteins. b, Summary of ligand genes from which 20-mer peptide coding sequences 
were extracted. Peptide sequences were generated via pooled oligonucleotide synthesis, and 
inserted into one of two loops on AAV5 and AAV9. 
 
 

After synthesizing the pool of single-stranded oligonucleotides coding for these gene 

fragments, they were amplified to double-stranded DNA via PCR, digested, and ligated into the 

appropriate loop locations on the AAV5 and AAV9 cap genes (Methods, Figure 4.2a). We 

utilized type IIS restriction enzymes (which cut outside their recognition site[350]) to generate 
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sticky ends for ligations, enabling our peptide library to be seamlessly inserted into any 

appropriately engineered plasmid. Collectively, this resulted in four sub-libraries of variants 

(AAV5 and AAV9, with two loop insertion sites each). In addition to protein coding gene 

fragments, we also included 444 stop codon containing gene fragments as negative controls. This 

defined library synthesis methodology was designed to enable quantitative inference of variant 

packaging and transduction efficiencies. The starting plasmid libraries were sequenced to establish 

initial variant relative abundances, and packaging efficiencies were quantified via comparison to 

this initial baseline (Methods, Figure 4.2b-e). 
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Figure 4.2: Type IIS restriction enzyme double digestion cloning strategy yields 
comprehensive coverage of ligand-modified AAV variant library 
a, Schematic depicting modified AAV backbone (AAV5-Loop1 shown as an example) and peptide 
insert designs. Both the peptide library and the destination plasmid were digested with PaqCI 
(recognition site in blue). Following this, T4 ligase was used to facilitate seamless insertion of the 
peptide sequences into the capsid loop regions. An additional glycine-serine linker was included 
on each side of the peptide to improve flexibility. b-e, Coverage plots for the plasmid and AAV 
capsid library for: b, AAV5-Loop1, c, AAV5-Loop2, d, AAV9-Loop1, e, AAV9-Loop2. Coverage 
depicts the fraction of inserted peptide sequences detected at each round of quantification.  
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4.4.2 Biophysical drivers of AAV capsid formation 

To quantify how well different AAV cap variants package into functional capsids, we 

generated recombinant AAV particles via transient transient transfection of HEK293T cells with 

our engineered AAV5 and AAV9 cap plasmid libraries (Figure 4.3a, Methods). These viral 

particles were treated with benzonase to degrade residual plasmid DNA, and then subjected to next 

generation sequencing (NGS) to quantify variant relative abundance. We identified over 250,000 

AAV variants which packaged at any detectable efficiency (Figure 4.2b-e). Packaging efficiency 

was quantified by ranking AAV variants by the log2 fold change (log2FC) of their capsid relative 

abundance compared to the plasmid abundance (Figure 4.3b, Methods). Variants were considered 

to be efficient packagers if they had a positive log2FC (indicating they were enriched) in the capsid 

pool relative to the plasmid pool.  
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Figure 4.3: AAV libraries with loop-inserted peptides enable predictive modeling of capsid 
fitness via biophysical features 
a, Recombinant production of pooled AAV libraries in HEK293T cells. b, Hexbin plot showing 
normalized abundance for each variant in the plasmid libraries versus DNA isolated from 
recombinantly produced AAV capsid libraries. Color of hexagonal tiles indicates the frequency of 
observed variants at the corresponding values, with darker blue indicating a greater number of 
variants. Dotted-red line of equality shows where the plasmid abundance is equal to the capsid 
abundance. Variants above the line were considered highly efficient packagers. c, Normalized 
abundance for stop codon containing negative control peptides, in both the plasmid libraries and 
recombinantly produced capsid libraries d, Peptide biophysical parameters relevant to packaging. 
Peptide charge, alpha-helical content, flexibility, and hydrophobicity are shown for peptides which 
package into capsids versus those which do not. Statistical significance between groups was 
calculated via a T-test (*p<0.05, **p<0.01, ***p<0.001, ****p<0.0001). e, Peptide charge, alpha-
helical content, flexibility, and hydrophobicity were used as features to train a support vector 
machine classifier predicting which AAV variants successfully package into capsids. The receiver 
operating characteristic curve is shown for the resulting model, with an area under the curve 
(indicated by AUC) of .89. f,  UMAP embedding for each AAV variant, colored by packaging 
status. Inserted peptide charge, alpha-helical content, flexibility, and hydrophobicity were used as 
input features for the embedding. 
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There was a depletion of non-functional stop codon control AAV variants in the capsid 

pool, consistent with their disruption of the AAV capsid structure (Figure 4.3c) and lending 

confidence to our quantification of packaging efficiency. To better understand what features drive 

successful capsid formation, we examined the biophysical characteristics of the inserted peptides 

which yield AAV variants with correctly assembled viral particles. We found that peptide charge, 

flexibility, alpha helix content, and hydrophobicity were all significantly different in packaging 

AAV variants versus AAV variants unable to package (Figure 4.3d). The set of successfully 

packaged variants had a narrower charge distribution than the variants unable to package, 

suggesting peptides with extreme charge densities have a negative impact on packaging fitness. 

Successfully packaging AAV variants also had inserted peptides with higher flexibility, lower 

alpha-helical content, and lower hydrophobicity than the variants unable to package. The observed 

depletion of hydrophobic peptide displaying variants is consistent with the solvent exposed nature 

of the AAV surface loops.  

To build an integrated model predicting if AAV variants will package based on the 

biophysical features of the inserted peptides, we trained a support vector machine classifier [351] 

using the charge, flexibility, alpha helix content, and hydrophobicity of the peptides in our dataset 

(Fig. 2e, Methods). While all of these biophysical features were significantly different when 

comparing packaging versus non-packaging AAV variants, the magnitude of this difference was 

relatively modest for each individual feature. However, collectively these features were sufficient 

to train a model which could differentiate between packaging and non-packaging AAV variants 

(area under the receiver operating characteristic curve = .89, Methods). For each AAV variant, 

embedding the inserted peptide’s charge, flexibility, alpha helix content, and hydrophobicity into 

two dimensions using UMAP[352] enabled visualization of this class separability (Figure 4.3f). 
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The resulting embedding layed out AAV variants into distinct clusters, indicating that while each 

underlying biophysical feature is continuous, there are separable groups of AAV variants with 

similar biophysical features. AAV variants which package tend to cluster with other packaging 

variants in this unsupervised embedding, further supporting the predictive power of these four 

biophysical features.  

 

4.4.3 High-throughput mapping of engineered AAV tissue tropism 

Having produced libraries of recombinant AAV particles packaging their own cap genes, 

we next injected these viral pools into C57BL/6 in duplicate (Figure 4.4a). After two weeks, mice 

were sacked and AAV cap genes isolated from the mouse livers, kidneys, spleens, brains, lungs, 

hearts, skeletal muscles, intestines, and pancreases.  
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Figure 4.4: In vivo screening identifies AAV variants with diverse organ tropism 
a, In vivo experimental design. Four capsid libraries were injected into C57BL/6 mice in duplicate, 
with organ tropism quantified via next generation sequencing (NGS). b, Overview of screen 
results, showing the number of significantly enriched variants detected per organ. AAV infectivity 
was quantified via the organ log2 fold change (log2FC) relative to the capsid abundance. 
Significance of enrichment was determined via a one-sample T-test comparing capsid abundance 
to organ abundance, adjusted for multiple hypothesis testing via the Benjamini-Hochberg 
procedure (Methods). c, Comparison of inserted peptide hits for each loop insertion site, for both 
AAV5 and AAV9. Bars indicate the number of significant hits in each group, visualizing the extent 
of overlap between inserted peptide hits in each library. d, heatmap showing log2FC values for 
each variant which was significantly enriched in at least one organ. Rows are individual variants, 
and columns are organs (n=2 per organ). e, UMAP embedding of significantly enriched variants 
(Methods). Each dot represents a variant, colored by the organ with max log2FC. 
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We quantified the relative abundance of each variant via NGS, identifying over 15,000 

variants which efficiently infect at least one mouse tissue (Figure 4.4b, Methods). Infectivity was 

stratified by examining the log2FC of the variant abundance in the organ of interest versus the 

capsid. The spleen, liver, and kidneys were the most frequent tissue targets of the infectious 

variants, consistent with the established WT tropism of AAV5 and AAV9 towards the liver [353], 

as well as more recent research showing AAV5 and AAV9 readily transduce the spleen and 

kidneys [354]. The log2FC values were well correlated between replicates, with the liver and 

spleen data having the highest replicate correlation (Figure 4.5a). The high replicate correlation 

for the spleen and liver samples is consistent with the large number of infectious variants identified 

(Figure 4.4b), because more infectious variants will yield a larger mass of cap DNA in the organ 

of interest, thus improving detection signal. 

 

 
Figure 4.5: Quality control metrics for large-scale screen of ligand-modified AAV variants 
in vivo.  
a, Pearson correlation coefficients for log2FC values between replicates across all serotypes and 
organs.  
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We observe the fewest AAV variants targeting the skeletal muscle and brain, in line with 

the high therapeutic AAV doses needed to achieve clinical efficacy for muscle targeting gene 

therapies [355], and the challenge of crossing the blood-brain barrier with AAVs [356]. The 

inserted peptides which yielded highly infectious AAV variants were often serotype and loop 

specific (Figure 4.4c), with the majority of peptides being significantly enriched in only one sub-

library.  

 Like the WT scaffolds from which they were derived, transduction of multiple organs is a 

near ubiquitous phenotype among the infectious AAV variants identified (Figure 4.4d). 

Significant transduction of the liver and spleen was observed for the majority of infectious variants 

regardless of which other organs are co-transduced. This is true even for variants with insertions 

in surface loops known to be involved in WT capsid receptor binding [357,358]. While liver and 

spleen targeting was near ubiquitous, we were able to identify variants which specifically target 

the liver/spleen plus one other organ, as well as variants which transduce all tissues at high levels 

(Figure 4.4d). When variants were hierarchically clustered based on their tissue detection levels, 

we observed that variants derived from the same sub-library tended to cluster together, suggesting 

that the tissue specificity of the wild-type scaffold was at least partially a determinant of engineered 

variant tropism. Hierarchical clustering of the organ samples resulted in replicates clustering 

together, giving confidence to the reliability of the screen results. To visualize the overall screen 

results, we embedded the tissue detection levels for each variant into two dimensions using UMAP, 

coloring the variants by the organ they most readily transduce (Figure 4.4e, Methods). In this 

reduced dimensional space, organ specific clusters can be readily identified, with the liver and 

spleen targeting variants especially prominent.  
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4.4.4 Engineered AAV variants with clinically relevant tissue tropism 

To confirm the tissue tropism of the novel AAV variants identified via the pooled screen, 

we individually produced and validated 21 variants by quantifying their ability to package and 

deliver an mCherry transgene (Figure 4.6a). All 21 variants were significantly enriched in at least 

one organ, and we prioritized choosing variants for validation which were internally consistent 

within the screening data. Consistent AAVs were defined as hits where we identified other variants 

with similar inserted peptides enriching in the same organ (Methods). Variants were structurally 

characterized via electron microscopy to confirm the proper assembly of an icosahedral capsid 

particle, as well as in vivo quantification of tissue tropism at both the mRNA (via qPCR 

quantification of an mCherry transgene) and protein levels (via microscopy) (Figure  4.6a).  
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Figure 4.6: Individually produced AAVs form functional capsids with re-targeted tropism 
a, AAVs were chosen for validation from the pool of significant hits on the basis of their tissue 
specificity, broad tropism, and/or internal consistency. Internal consistency was quantified by 
counting the number of similar (>50% homology) inserted peptides also detected as hits for a given 
organ (Methods). AAV variants were characterized structurally via transmission electron 
microscopy, and functionally via delivery of the mCherry transgene in vivo. b, Comparison of 
screening data (n=2), versus qPCR measurements in validation experiments (n=2). Heatmaps 
depict all variants chosen for validation, with the right heatmap showing the Z-normalized log2FC 
values from the pooled screen, and the right heatmap showing the Z-normalized mCherry 
expression relative to AAV9 (Methods). c, Full characterization experiments for two selected 
AAV variants. Bar plot shows the qPCR quantification (n=2) of mCherry transgene expression, 
normalized to that of AAV9. Also shown are electron micrographs for variant capsids, as well as 
fluorescent microscopy of mCherry protein expression levels. 
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All variants tested assembled into functional capsid particles, with all variants showing 

detectable infectivity in vivo. The tissue tropism of the variants largely recapitulated the screen 

predictions (Figure 4.6b), with 74.3% of our tissue tropism predictions matching expectation 

(Methods). We identify AAV variants which specifically target hard to infect organs such as the 

muscle, lung, and brain, while simultaneously de-targeting away from the liver (Figure 4.6c, 

Figure 4.7a-b).  

 

 
Figure 4.7: Performance of additional individually validated AAV variants 
a, Tissue tropism characterization experiments for two additional muscle targeting AAV variants. 
Bar plot shows the qPCR quantification of mCherry transgene expression, normalized to that of 
AAV9 (n=2). Also shown are electron micrographs for variant capsids. b, Tissue tropism 
characterization experiments for two additional brain targeting AAV variants. Bar plot shows the 
qPCR quantification of mCherry transgene expression, normalized to that of AAV9 (n=2). Also 
shown are electron micrographs for variant capsids.  
 

Our muscle targeting AAV variants had broader tissue-tropism than the brain and lung 

targeting variants, insofar as they also readily infected the heart, lung, intestine, and spleen at levels 

comparable to, or exceeding, AAV9. Across all variants individually tested, we found 9/21 variants 

exceeded AAV9 infectivity in at least one organ. We identified variants which exceed AAV9 
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infectivity in all organs except the liver and pancreas, which had max relative transduction of 

98.8% of WT AAV9 and 82.2% of WT AAV9 respectively. Additionally, we found that 18/21 

variants had less than half the liver transduction of WT AAV9, with three variants below 5% 

AAV9 liver transduction levels.  

 

4.4.5 Inserted peptides drive AAV re-targeting in a sequence dependent manner 

After confirming that our newly identified AAV variants could deliver transgenes with 

high organ specificity, we examined the extent to which the inserted peptides were mediating re-

targeting. First, we constructed a distance matrix quantifying the similarities between all peptide 

hits identified as significantly enriched in at least one organ (Figure 4.8a, Methods). By projecting 

this distance matrix into two dimensions, we were able to visualize distinct clusters of similar 

inserted peptides. We found that, in many cases, families of similar inserted peptides yielded 

similar transduction rates for a given organ (Figure 4.8a). 
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Figure 4.8: AAV variant re-targeting is driven by inserted peptide sequences 
a, Significantly enriched variants from all capsids were projected into 2 dimensions via UMAP. 
The distances between points was calculated explicitly via the Levenshtein distance of the amino 
acid sequences of the inserted peptides, and subsequently embedded via UMAP (Methods). AAV 
variants are colored by their log2 fold change in the brain. Select variants which are highly enriched 
in the brain are highlighted. AAV variants were also colored by capsid insertion site in the adjacent 
embedding. b, Lung counts and capsid counts for all AAV variants with inserted DKK1 derived 
peptides. Shown in blue are the lung counts, and shown in orange are the capsid counts. c, Brain 
counts and capsid counts for all AAV variants with inserted APOA1 derived peptides. Shown in 
blue are the brain counts, and shown in orange are the capsid counts. d, Overview of classification 
model predicting AAV tissue tropism from peptide sequence alone. Inserted peptide sequences 
were converted to a binary one-hot encoding (for each peptide, 20 rows corresponding to position, 
and 20 columns corresponding to presence of a particular amino acid). This one-hot encoding 
scheme was then used as input to a convolutional neural network (CNN) to predict organ targeting. 
e, Model performance metrics. Model performance was separately evaluated on each organ, via 
accuracy, area under the receiver operator characteristic curve (AUROC), F1 score, and Matthews 
Correlation Coefficient (MCC). Models were trained on ⅔ of the data, and the remaining ⅓ was 
held out as a validation dataset to evaluate performance. 
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 This effect was not limited to a particular capsid or insertion site, insofar as inserted 

peptides were often functional across all tested capsids and insertion sites (Figure 4.8a). The 

observation that inserted peptides yielded consistent phenotypes across multiple capsids suggests 

that re-targeting is directly due to a peptide mediated mechanism. This result also highlights the 

power of peptide tiling library designs, insofar as having multiple overlapping peptides with 

similar sequences can function as internal controls.  

 For two of our specific hits, AAV.Variant.Lung1 and AAV.Variant.Brain1, we quantified 

how well other peptides derived from the same genes (DKK1 and APOA1 respectively) could 

function as AAV re-targeting moieties (Figure 4.8b-c). For DKK1, peptides from the cysteine rich 

domains spanning amino acids 85-138 and 189-263 were largely unpackaged, implying that an 

over-abundance of cysteine residues disrupt proper capsid assembly (likely due to the formation 

of spurious disulfide bonds). We also identified a consistent region of lung targeting peptides at 

the N-termini of DKK1 (Figure 4.8b). This region was centered on a known, evolutionarily 

conserved, linear peptide motif mediating binding to the low density lipoprotein receptor-related 

proteins 5 and 6 (LRP5/6)[359]. Brain targeting APOA1-derived peptides were primarily from a 

tandem repeat region at the C-terminus of the protein (Figure 4.8c). The 22 amino acid long 

tandem repeats of APOA1 are known to function as lipid binding domains[360], suggesting a 

potential protein-lipid interaction for these engineered AAVs. Full length APOA1 is produced in 

the liver, but is known to cross the blood-brain barrier and accumulate in the brain[361], providing 

a potential hypothesis for the re-targeting of AAVs containing APOA1 peptides to the brain. 

 To further confirm that the inserted peptides were responsible for the re-targeting of the 

engineered AAVs, we examined the feasibility of training predictive models linking inserted 

peptide sequence to tissue tropism. Inspired by contemporary work using convolutional neural 



189 

networks (CNN) to predict antibody specificity[362], we trained a CNN multi-label classifier to 

predict AAV tissue tropism using one-hot encoded inserted peptide sequences as input features 

(Figure 4.8d, Methods). To evaluate model performance, the model was trained using a random 

selection of ⅔ of the significantly enriched AAV variants, and evaluated on the ⅓ hold out dataset. 

This CNN model architecture had good performance across all organs, with a minimum 

classification accuracy of 72% in the kidney (Figure 4.8e). We observed the highest F1 scores and 

Matthews Correlation Coefficient (MCC) for the liver and spleen, likely due to the high number 

of liver and spleen targeting variants we identified in the pooled screen (Figure 4.4b). Collectively, 

the ability to predict AAV tropism (without knowledge of parental capsid or insertion site) 

supports the conclusion that the inserted peptides are mediating retargeting of tissue-tropism. 

Furthermore, this proof of concept predictive modeling suggests that it is possible to map 

engineered AAV tropism in silico given sufficient training data. 

 
4.5 Discussion 

Rational screening strategies have immense potential to expand the molecular tools 

available for clinical gene therapy applications. While AAV engineering efforts have been 

conducted for over a decade [335,363], advances in DNA synthesis have enabled us to create a 

data-driven library of AAV variants leveraging existing functional biomolecules from nature 

(Figure 4.1). Using natural biomolecules as a defined source of inserted peptides has multiple 

benefits over random heptamers (and similar methods). First, natural biomolecules have been pre-

filtered for biological functionality by millenia of evolutionary selection pressure. Second, a 

defined library allows for robust quantification of the fitness of each AAV variant, enabling facile 

stratification of AAV variants by infectivity across organs of interest. While we primarily applied 

this methodology to engineering AAVs, mining nature for functional biomolecules has 
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applications in a wide range of protein engineering challenges, such as engineering orthogonal 

viral vectors (including lentiviruses) or identifying biologic inhibitors of critical protein/protein 

interactions[364].  

 In recent years, developing predictive models of AAV infectivity has garnered significant 

interest from multiple research groups. The application of machine learning to AAV engineering 

parallels major advances in machine learning across multiple areas of protein science such as 

structure prediction[365,366], enzyme activity forecasting [367,368], and antibody binding 

optimization[362]. While deep learning and similar blackbox methodologies have rapidly become 

mature technologies, applying these methodologies to AAV engineering is still severely limited 

by the lack of available training data. Our AAV screening data is an ideal training dataset for 

several reasons: 1), Our experimental design features a large, defined library of variants (Figure 

4.1), meaning that every variant has a reliable quantification of infectivity. 2), We screened each 

variant across a panel of 9 major organs to map the infectivity across diverse tissue types. 3) We 

have rigorously, individually validated a large cohort of variants to demonstrate our screening data 

is trustworthy (Figure 4.6).  To illustrate the utility of our dataset as training data, we demonstrate 

the packaging efficiency of AAV variants could be accurately predicted from the biophysical 

characteristics of the inserted peptides (Figure 4.4), and peptide amino acid sequence is directly 

predictive of tissue-tropism across multiple capsids and insertion sites (Figure 4.8). As such, our 

screening data will have great utility for the machine-learning and computational biology 

community.  

While the variants we identified via our pooled-screen have tissue transduction exceeding 

AAV9 in many organs, further engineering could be performed to enhance potency and specificity. 

In our validation experiments, we used a standard promoter (CMV) to drive expression of the 
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mCherry transgene. Alternatively, tissue-specific promoters could be used to increase the 

specificity and magnitude of transgene expression in the organ of interest. Furthermore, the hit 

capsids identified here could be further engineered for increased activity. Existing hits could serve 

as a scaffold for further rounds of targeted mutagenesis and screening, or peptides could be inserted 

on both loop1 and loop2 of the AAV capsid to increase the valency of the displayed ligands[369]. 

Additionally, scRNAseq could be used to engineer hit variants towards more specific cell-types 

within the organ of interest[370].  

Here, we have presented a massive functional screen of engineered AAV variants, 

spanning over one million total variants derived from two capsids and multiple sites of insertional 

mutagenesis. Using this screening data, we individually validated 21 AAV variants, identifying 

AAVs with increased organ transduction across multiple organs (Heart, Muscle, Lung, Spleen, 

Kidney, and Intestine for AAV.Variant.Muscle1, Figure 4.6c), as well as incredibly specific 

AAVs (AAV.Variant.Lung1, AAV.Variant.Brain1, Figure 4.6c, Figure 4.7b) with markedly 

reduced liver transduction. Improved broad targeting AAV variants have massive potential for 

genetic diseases such as hemophilia A, where total factor VIII expression levels are most 

critical[371]. At the same time, highly specific AAVs such as AAV.Variant.Brain1 (which has 

less than 1% the liver infectivity of WT AAV9) would have great utility for neurodegenerative 

disorders, where maximizing transgene expression in the brain is essential[372]. In addition to the 

novel variants identified herein, the bulk screening data itself is high value. Given the scale, 

reliability, and translational relevance of our screening dataset, we anticipate it will serve as a 

foundation for future computational engineering of designer AAV capsids.  
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CHAPTER 5: Conclusions and Future Directions 

5.1 Summary 

 Mapping and understanding biological phenotypes based on the activity of genes and 

proteins is a longstanding goal in biology, dating back to initial transformative work by Gregor 

Mendel[373]. Although Mendel was unaware of the mechanism of inheritance, modern 

biologists are unified in the importance of genes and proteins in mediating biological 

phenotypes. Early research in yeast genetics established the possibility of perturbation based 

genetic screening[374,375], and modern high-throughput screening approaches (including the 

ones presented in this dissertation) are largely built on top of these pioneering efforts. While our 

collective understanding of human genetics has expanded dramatically in recent years due to the 

rapid development of human genome engineering technologies[1], there is still a pressing need 

for novel ways to interrogate biological phenotypes in high-throughput. Specifically, of the 

estimated 650,000 protein interactions[376] in humans (which are critical for controlling 

biological processes), the majority are either unmapped, or mapped in a limited functional 

context (such as a single cell line or yeast two hybrid screen)[377,378]. 

 In this dissertation, we present several advances towards high-throughput screening of 

biological phenotypes. In Chapter 2, we apply an integrative screening methodology combining 

combinatorial CRISPR knockouts and single-cell RNA sequencing to better understand how 

cyclin-dependent kinases govern cell-cycle behavior and other cell states in triple negative breast 

cancer. In Chapter 3, we present a novel peptide screening approach (PepTile), showing that 

overexpressing peptides in cancer cells can be used to map bioactive protein domains, and 

engineer drug-like inhibitors of cancer growth. In Chapter 4, we apply this peptide tiling strategy 
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to AAV engineering, quantitatively mapping how displayed protein sequences can mediate 

drastic retargeting of AAV tropism. Collectively, these screening approaches attempt to address 

how biological interactions can be leveraged for translational medicine. We apply the biological 

insights from these screens to combinatorial small-molecule inhibition, protein biologic 

discovery, and gene therapy vector engineering, illustrating the wide potential of novel screening 

technologies and applications.  

5.2 Future screening technologies 

 Future screening approaches can improve upon our understanding of biological 

interactions in a number of ways (Figure 5.1). A critical advancement in the screening field is 

simply increasing throughput. Current oligonucleotide synthesis technologies are typically 

limited  to ~105 elements in a single production run, although alternatives to array based 

synthesis are being explored [379]. Automated assembly of oligonucleotides into full length gene 

products has also been recently explored, opening new avenues for potential pooled screening 

approaches[380]. The production of defined genetic constructs is one bottleneck, but there are 

also limitations on cell-culture demands necessary for covering large library sizes in functional 

screening approaches[185]. Large scale bioreactors, robotic liquid handlers, and other industrial 

scale technologies will likely be critical in implementing future genome scale interaction screens.  
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Figure 5.1: Technological advancements for high-throughput interaction mapping 
 
 
 Beyond generating a library and scaling up screening, advancements in perturbation 

strategies will open new opportunities for high-throughput screening. Advances in genome editing 

technologies such as prime editing [381] could allow for facile direct manipulation of endogenous 

genomic elements, enabling more complex mutagenesis screening instead of the typical knockout 

approach. Additionally, screens utilizing overexpressed full length ORFs (including mutant 

versions) have the potential to assay novel gain-of-function phenotypes not accessible via gene-

disruption screens[382]. As well, perturbations to post-translational modifications (which are 

critical for protein activity[383]) via targeted mutagenesis or the development of site directed 
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protein modification toolkits could open new doors to understanding protein functional 

interactions. 

 Finally, after delivering a genetic perturbation or payload, an essential screen component 

is the downstream readout. Contemporary genetic screens have largely been based on cell 

fitness[185], but richer phenotypic readouts have the potential to dramatically advance our 

mechanistic understanding of protein functions and interactions. Technologies with single-cell 

resolution will be critical for expanding the richness of phenotypic outputs, and have already been 

used to map the functional consequences of mutations in full length ORFs and interrogate AAV-

cell interactions[370,384]. Advances in protein-level readouts such as single molecule protein 

sequencing[385], and functional reporters[386] will also have great utility in interaction mapping 

endeavors.  

 

5.3 Computational developments  

 While experimental improvements are essential for expanding our understanding of genes, 

proteins, and their interactions, computational advances also have a major role to play. Deep 

learning based methods have rapidly improved our understanding and predictions of protein 

structure[365]. Deep learning prediction algorithms have already been applied to predicting binary 

protein interactions[387], and will likely continue to be extremely important in future interaction 

prediction endeavors. Other contemporary approaches have been used to map potentially 

important functional sites in proteins[388], predict protein variant fitness[389], and map critical 

residues in protein interfaces[390]. 

Computational developments are not isolated from experimental efforts. In fact, improved 

in silico predictions of protein function and potential interactions can inform experimental design. 
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For example, while a genome-wide pairwise knockout experiment in human cells is technically 

infeasible due to the exponential growth of the library as the number of knockout pairs increases, 

computational approaches could be used to pre-filter interactions from the screen which have a 

low predicted probability of existing. Alternatively, predictions of functionally important residues 

from computational models could inform protein mutagenesis experiments.  

5.4 Clinical applications  

 Understanding and leveraging the interplay between proteins has massive potential for 

translational medicine. As demonstrated from Chapter 2 of this dissertation, genetic interaction 

mapping can be used to inform potential combinations of small-molecule drugs which are 

especially lethal to triple-negative breast cancer cells. While we focused on cyclin-dependent 

kinases, this approach could be applied to any potential drug targets or disease of interest. For 

example, genetic screening has been applied to map the host factors essential for SARS-CoV-2 

infection[391].  

 Although mapping interactions is essential, it is also critical that we develop efficient ways 

to target interactions. This is especially relevant in cancer, where many driver proteins are not 

targetable via small-molecules[392]. In Chapter 3 of this dissertation, we demonstrate a proof of 

concept development of anti-cancer peptides targeting the Ras binding domain of RAF1, showing 

how mapping PPIs can be directly translated into targeting them via therapeutic peptides. Self-

inhibitory peptides have immense potential to target otherwise undruggable proteins. For example, 

a self-inhibitory peptide targeting Myc has been previously engineered, and is currently 

undergoing clinical trials[393]. 
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While protein biologics (as well as genetic payloads) can have exquisite specificity, 

delivery is a major challenge[394]. To address this delivery challenge, Chapter 4 of this 

dissertation, we mine natural biological sequences from ligands of human receptors to engineer 

improved AAV delivery vectors.  We identify multiple AAV variants with greater than 10-fold 

muscle transduction (when compared to AAV9) with no associated increase in liver transduction, 

as well as brain and lung targeting variants with dramatic (in one case <1% of AAV9) de-targeting 

from the liver. Given the known clinical concerns regarding AAV hepatotoxicity[330], these 

engineered AAVs should have great utility for delivering therapeutic genetic payloads. 
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APPENDIX 

 
DNA/Protein sequences and supporting tables from Chapter 2 

Key oligonucleotides for screening experiments 
Name Sequence Use 

OLS_ gRNA-SP_F 

TATATATCTTGTGGA
AAGGACGAAACACC
G 

Initial oligonucleotide pool 
amplification 

OLS_gRNA-SP_R 
CTTATTTTAACTTGC
TATTTCTAGCTCT 

Initial oligonucleotide pool 
amplification 

dgRNA_Insertv4_barcoded_Left_F 
TATGAGGACGAATC
TCCCGCTTATA 

5’ Mouse U6 insert fragment 
amplification 

dgRNA_Insertv4_barcoded_Left_R 

CAATATCATCGCGTG
TTAAGGTGGCCTCAG
TACAAAAAAGCACC
GA 

5’ Mouse U6 insert fragment 
amplification 

dgRNA_Insertv4_barcoded30mer_Ri
ght_F 

GCCACCTTAACACGC
GATGATATTGWSWS
WSWSWSWSWSWSW
SWSWSWSWSWSWS
GCTATTACGAGCGCT
TGGATCCCGTtCGCC
CaGTCTCAGATAGA 

3’ Mouse U6 insert fragment 
amplification 

dgRNA_Insertv4_barcoded_Right_R 
GGTCTTGACAAACGT
GTGCTTGTAC 

3’ Mouse U6 insert fragment 
amplification 

LKO.1 5' 
GACTATCATATGCTT
ACCGT Sanger sequencing 

NGS_dualgRNA_SP_Lib_F 

ACACTCTTTCCCTAC
ACGACGCTCTTCC 
GATCT 
TATATATCTTGTGGA
AAGGACGAAACACC
G Illumina sequencing library preparation 

NGS_ dual-gRNA_SP_Lib_R 

GACTGGAGTTCAGA
CGTGTGCTCTT 
CCGATCT 
CCTTATTTTAACTTG
CTATTTCTAGCTCTA Illumina sequencing library preparation 

CROP-Seq_Guide_Amp GACTGGAGTTCAGA Amplification of sgRNA from 10X 



200 

CGTGTGCTCTTCCGA
TCTCTTGTGGAAAGG
ACGAAACAC 

cDNA 

NEB_Universal 

AATGATACGGCGAC
CACCGAGATCTACA
CTCTTTCCCTACACG
ACGCTCTTCCGATCT 

Amplification of sgRNA from 10x 
cDNA 

 
 
Insert sequences for plasmid generation 
Name Sequence Use 

Insert_V4 

TATGAGGACGAATCTCCCGCTTATACGTC
TCTGTTTCAGAGCTATGCTGGAAACTGCA
TAGCAAGTTGAAATAAGGCTAGTCCGTT
ATCAACTTGAAAAAGTGGCACCGAGTCG
GTGCTTTTTTGTACTGAGTCGCCCAGTCT
CAGATAGATCCGACGCCGCCATCTCTAG
GCCCGCGCCGGCCCCCTCGCACAGACTT
GTGGGAGAAGCTCGGCTACTCCCCTGCC
CCGGTTAATTTGCATATAATATTTCCTAG
TAACTATAGAGGCTTAATGTGCGATAAA
AGACAGATAATCTGTTCTTTTTAATACTA
GCTACATTTTACATGATAGGCTTGGATTT
CTATAAGAGATACAAATACTAAATTATTA
TTTTAAAAAACAGCACAAAAGGAAACTC
ACCCTAACTGTAAAGTAATTGTGTGTTTT
GAGACTATAAATATCCCTTGGAGAAAAG
CCTTGTTTGAGAGACGGTACAAGCACAC
GTTTGTCAAGACC 

Template for mouse U6 
promoter and second 
sgRNA scaffold 

5' Insert Fragment 

TATGAGGACGAATCTCCCGCTTATACGTC
TCTGTTTCAGAGCTATGCTGGAAACTGCA
TAGCAAGTTGAAATAAGGCTAGTCCGTT
ATCAACTTGAAAAAGTGGCACCGAGTCG
GTGCTTTTTTGTACTGAGGCCACCTTAAC
ACGCGATGATATTG 

5' Fragment of mouse U6 
promoter and second 
sgRNA scaffold 

3' Insert Fragment 

GCCACCTTAACACGCGATGATATTGWSW
SWSWSWSWSWSWSWSWSWSWSWSWSW
SGCTATTACGAGCGCTTGGATCCCGTtCG
CCCaGTCTCAGATAGATCCGACGCCGCCA
TCTCTAGGCCCGCGCCGGCCCCCTCGCAC
AGACTTGTGGGAGAAGCTCGGCTACTCC
CCTGCCCCGGTTAATTTGCATATAATATT

3' Fragment of mouse U6 
promoter and second 
sgRNA scaffold 
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TCCTAGTAACTATAGAGGCTTAATGTGCG
ATAAAAGACAGATAATCTGTTCTTTTTAA
TACTAGCTACATTTTACATGATAGGCTTG
GATTTCTATAAGAGATACAAATACTAAAT
TATTATTTTAAAAAACAGCACAAAAGGA
AACTCACCCTAACTGTAAAGTAATTGTGT
GTTTTGAGACTATAAATATCCCTTGGAGA
AAAGCCTTGTTTGAGAGACGGTACAAGC
ACACGTTTGTCAAGACC 

Final Overlap Extension 
Product 

TATGAGGACGAATCTCCCGCTTATACGTC
TCTGTTTCAGAGCTATGCTGGAAACTGCA
TAGCAAGTTGAAATAAGGCTAGTCCGTT
ATCAACTTGAAAAAGTGGCACCGAGTCG
GTGCTTTTTTGTACTGAGGCCACCTTAAC
ACGCGATGATATTGWSWSWSWSWSWSW
SWSWSWSWSWSWSWSWSGCTATTACGA
GCGCTTGGATCCCGTtCGCCCaGTCTCAGA
TAGATCCGACGCCGCCATCTCTAGGCCCG
CGCCGGCCCCCTCGCACAGACTTGTGGG
AGAAGCTCGGCTACTCCCCTGCCCCGGTT
AATTTGCATATAATATTTCCTAGTAACTA
TAGAGGCTTAATGTGCGATAAAAGACAG
ATAATCTGTTCTTTTTAATACTAGCTACA
TTTTACATGATAGGCTTGGATTTCTATAA
GAGATACAAATACTAAATTATTATTTTAA
AAAACAGCACAAAAGGAAACTCACCCTA
ACTGTAAAGTAATTGTGTGTTTTGAGACT
ATAAATATCCCTTGGAGAAAAGCCTTGTT
TGAGAGACGGTACAAGCACACGTTTGTC
AAGACC 

Insert containing mouse 
U6 promoter, second 
sgRNA scaffold, and 
UMI region 

 
 
Oligonucleotides for validation experiments 
Oligo_name Sequence Use 

AAVS-F 
CACCG 
GTCCCCTCCACCCCACAGTG AAVS targeting sgRNA generation 

AAVS-R 
AAAC 
CACTGTGGGGTGGAGGGGAC C AAVS targeting sgRNA generation 

CDK4-F 
CACCG 
CCCTTTAGGTTGTTACACTC CDK4 targeting sgRNA generation 

CDK4-R 
AAAC 
GAGTGTAACAACCTAAAGGG C CDK4 targeting sgRNA generation 
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CDK6-F 
CACCG 
GCGTCCAGGCGGCATGGAGA CDK6 targeting sgRNA generation 

CDK6-R 
AAAC 
TCTCCATGCCGCCTGGACGC C CDK6 targeting sgRNA generation 

CDK12-F 
CACCG 
CTAGCAGTCCCATTAAGTCA CDK12 targeting sgRNA generation 

CDK12-R 
AAAC 
TGACTTAATGGGACTGCTAG C CDK12 targeting sgRNA generation 

PRMT5-F 
CACCG 
ATGAACTCCCTCTTGAAACG PRMT5 targeting sgRNA generation 

PRMT5-R 
AAAC 
CGTTTCAAGAGGGAGTTCAT C PRMT5 targeting sgRNA generation 

CDK2-F 
CACCG 
TGAGAAGCATTACCTTGATG CDK2 targeting sgRNA generation 

CDK2-R 
AAAC 
CATCAAGGTAATGCTTCTCA C CDK2 targeting sgRNA generation 

 
Oligonucleotides for scRNA-seq 
Oligo_name Sequence 

AR-1-R 
ATT TTA ACT TGC TAT TTC TAG CTC TAA AAC TCA GCG GCT CTT 
TTG AAG AA 

AR-2 R 
ATT TTA ACT TGC TAT TTC TAG CTC TAA AAC GTT TGG AGA CTG 
CCA GGG AC 

CDK10-1 R 
ATT TTA ACT TGC TAT TTC TAG CTC TAA AAC CGA TGT TCG GAT 
GAC GCA GG 

CDK10-2 R 
ATT TTA ACT TGC TAT TTC TAG CTC TAA AAC CCG AGA AGG GTG 
TTG GCA TA 

CDK11A-1 R 
ATT TTA ACT TGC TAT TTC TAG CTC TAA AAC CGT AGT TCA TCA 
CGA TGT AG 

CDK11A-2 R 
ATT TTA ACT TGC TAT TTC TAG CTC TAA AAC TGT TGC CCA TCG 
AGC TCA AG 

CDK11B-1 R 
ATT TTA ACT TGC TAT TTC TAG CTC TAA AAC CAT GGA GAT CAC 
AAT AAG GA 

CDK11B-2 R 
ATT TTA ACT TGC TAT TTC TAG CTC TAA AAC ACG TTT CTC TTT 
TCT CTT TT 

CDK12-3 R 
ATT TTA ACT TGC TAT TTC TAG CTC TAA AAC CCA GTC GCT TTC 
TGT TTG TC 

CDK12-5 R ATT TTA ACT TGC TAT TTC TAG CTC TAA AAC TGA CTT AAT GGG 
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ACT GCT AG 

CDK13-A1 R 
ATT TTA ACT TGC TAT TTC TAG CTC TAA AAC CTG GGT GCC GGA 
GGA GGA GG 

CDK13-A4 R 
ATT TTA ACT TGC TAT TTC TAG CTC TAA AAC CCT GGT AGC TCA 
GGG GGC AG 

CDK14-1 R 
ATT TTA ACT TGC TAT TTC TAG CTC TAA AAC CAA GGT AAC CAC 
TTC GTT GG 

CDK14-2 R 
ATT TTA ACT TGC TAT TTC TAG CTC TAA AAC CGT GTC ACT GAT 
CAG AAG GT 

CDK15-3 R 
ATT TTA ACT TGC TAT TTC TAG CTC TAA AAC TCT CGG ATA GCT 
GTA AAT GG 

CDK15-4 R 
ATT TTA ACT TGC TAT TTC TAG CTC TAA AAC TCT GGT ACC GGC 
CCC CTG AT 

CDK16-2 R 
ATT TTA ACT TGC TAT TTC TAG CTC TAA AAC CAG TGG AGA TCT 
TGC GTG GG 

CDK16-3 R 
ATT TTA ACT TGC TAT TTC TAG CTC TAA AAC CTC TTC ATG TTC 
CAG TCT GA 

CDK17-1 R 
ATT TTA ACT TGC TAT TTC TAG CTC TAA AAC CCA TTG AGA TCC 
GTC TAT GT 

CDK17-5 R 
ATT TTA ACT TGC TAT TTC TAG CTC TAA AAC TCT CTT ATA GCT 
GTG CAG GG 

CDK18-1 R 
ATT TTA ACT TGC TAT TTC TAG CTC TAA AAC CAC AGA TCG GTC 
CCT CAC CC 

CDK18-2 R 
ATT TTA ACT TGC TAT TTC TAG CTC TAA AAC TTG TGC GTG CAT 
CCT GCC AC 

CDK19-2 R 
ATT TTA ACT TGC TAT TTC TAG CTC TAA AAC TGT CGG CTT GTA 
GAG AGA TT 

CDK19-3 R 
ATT TTA ACT TGC TAT TTC TAG CTC TAA AAC CTT GGT AGG TGC 
TTC TCT CC 

CDK1-A3 R 
ATT TTA ACT TGC TAT TTC TAG CTC TAA AAC TCC TGG TCA GTA 
CAT GGA TT 

CDK20-1 R 
ATT TTA ACT TGC TAT TTC TAG CTC TAA AAC TGG TCA TAC TGG 
CGG GCA CC 

CDK20-2 R 
ATT TTA ACT TGC TAT TTC TAG CTC TAA AAC GGC TCG AGT CTT 
TTC CCC AG 

CDK2-A1 R 
ATT TTA ACT TGC TAT TTC TAG CTC TAA AAC TTT GGA AGT TCT 
CCA TGA AG 
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CDK2-A4 R 
ATT TTA ACT TGC TAT TTC TAG CTC TAA AAC TCC GAG AGA TCT 
CTC TGC TT 

CDK3-4 R 
ATT TTA ACT TGC TAT TTC TAG CTC TAA AAC CTC GTT GTG CAC 
CAC GTC CA 

CDK3-6 R 
ATT TTA ACT TGC TAT TTC TAG CTC TAA AAC TCA GGG AGA TCT 
CGC TGC TC 

CDK4-A1 R 
ATT TTA ACT TGC TAT TTC TAG CTC TAA AAC TGG TGT TTG AGC 
ATG TAG AC 

CDK4-A2 R 
ATT TTA ACT TGC TAT TTC TAG CTC TAA AAC TTG GGG ACT CTC 
ACA CTC TT 

CDK5-2 R 
ATT TTA ACT TGC TAT TTC TAG CTC TAA AAC CCC ACC GGA TGT 
CCT CTT TG 

CDK5-5 R 
ATT TTA ACT TGC TAT TTC TAG CTC TAA AAC CGA TCT CAT GAG 
TCT CCC GG 

CDK6-2 R 
ATT TTA ACT TGC TAT TTC TAG CTC TAA AAC CCG TGG ATC TCT 
GGA GTG TT 

CDK6-A2 R 
ATT TTA ACT TGC TAT TTC TAG CTC TAA AAC CGC GGA TGG TGG 
AGA GCG GC 

CDK7-1 R 
ATT TTA ACT TGC TAT TTC TAG CTC TAA AAC CCG AGT TAC TAT 
TTG GAG CT 

CDK7-6 R 
ATT TTA ACT TGC TAT TTC TAG CTC TAA AAC GGC CAA ATC TTT 
TGG GAG CC 

CDK8-A3 R 
ATT TTA ACT TGC TAT TTC TAG CTC TAA AAC CTG GGT AAG GTG 
AAT TGC TG 

CDK8-A4 R 
ATT TTA ACT TGC TAT TTC TAG CTC TAA AAC CGG GGA ATG GTG 
AAG TCA CT 

CDK9-A2 R 
ATT TTA ACT TGC TAT TTC TAG CTC TAA AAC CAA GGC TGT AAT 
GGG GAA CT 

CDK9-A4 R 
ATT TTA ACT TGC TAT TTC TAG CTC TAA AAC TCT TGA TCT CAG 
ACA GCG TG 

EZH2-A2 R 
ATT TTA ACT TGC TAT TTC TAG CTC TAA AAC CGG AAA TTT CCT 
TCT GAT AA 

EZH2-A3 R 
ATT TTA ACT TGC TAT TTC TAG CTC TAA AAC CGT GTA CTT TCC 
CAT CAT AA 

PARP1-1 R 
ATT TTA ACT TGC TAT TTC TAG CTC TAA AAC TGT GGG TAC GGT 
GAT CGG TA 

PARP1-4 R 
ATT TTA ACT TGC TAT TTC TAG CTC TAA AAC GCG GTC AAT CAT 
GCC TAG CT 
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PRMT5-A1 R 
ATT TTA ACT TGC TAT TTC TAG CTC TAA AAC TGG TGA CGT GAG 
TAG CAA CC 

PRMT5-A3 R 
ATT TTA ACT TGC TAT TTC TAG CTC TAA AAC CGT TTC AAG AGG 
GAG TTC AT 

TGFBR1-3 R 
ATT TTA ACT TGC TAT TTC TAG CTC TAA AAC CAG ACA AAG TTA 
TAC ACA AC 

TGFBR1-4 R 
ATT TTA ACT TGC TAT TTC TAG CTC TAA AAC TTC ATT AGA TCG 
CCC TTT TA 

AR-1-F 
TAT ATA TCT TGT GGA AAG GAC GAA ACA CCG TTC TTC AAA AGA 
GCC GCT GA 

AR-2 F 
TAT ATA TCT TGT GGA AAG GAC GAA ACA CCG GTC CCT GGC AGT 
CTC CAA AC 

CDK10-1 F 
TAT ATA TCT TGT GGA AAG GAC GAA ACA CCG CCT GCG TCA TCC 
GAA CAT CG 

CDK10-2 F 
TAT ATA TCT TGT GGA AAG GAC GAA ACA CCG TAT GCC AAC ACC 
CTT CTC GG 

CDK11A-1 F 
TAT ATA TCT TGT GGA AAG GAC GAA ACA CCG CTA CAT CGT GAT 
GAA CTA CG 

CDK11A-2 F 
TAT ATA TCT TGT GGA AAG GAC GAA ACA CCG CTT GAG CTC GAT 
GGG CAA CA 

CDK11B-1 F 
TAT ATA TCT TGT GGA AAG GAC GAA ACA CCG TCC TTA TTG TGA 
TCT CCA TG 

CDK11B-2 F 
TAT ATA TCT TGT GGA AAG GAC GAA ACA CCG AAA AGA GAA AAG 
AGA AAC GT 

CDK12-3 F 
TAT ATA TCT TGT GGA AAG GAC GAA ACA CCG GAC AAA CAG AAA 
GCG ACT GG 

CDK12-5 F 
TAT ATA TCT TGT GGA AAG GAC GAA ACA CCG CTA GCA GTC CCA 
TTA AGT CA 

CDK13-A1 F 
TAT ATA TCT TGT GGA AAG GAC GAA ACA CCG CCT CCT CCT CCG 
GCA CCC AG 

CDK13-A4 F 
TAT ATA TCT TGT GGA AAG GAC GAA ACA CCG CTG CCC CCT GAG 
CTA CCA GG 

CDK14-1 F 
TAT ATA TCT TGT GGA AAG GAC GAA ACA CCG CCA ACG AAG TGG 
TTA CCT TG 

CDK14-2 F 
TAT ATA TCT TGT GGA AAG GAC GAA ACA CCG ACC TTC TGA TCA 
GTG ACA CG 

CDK15-3 F 
TAT ATA TCT TGT GGA AAG GAC GAA ACA CCG CCA TTT ACA GCT 
ATC CGA GA 
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CDK15-4 F 
TAT ATA TCT TGT GGA AAG GAC GAA ACA CCG ATC AGG GGG CCG 
GTA CCA GA 

CDK16-2 F 
TAT ATA TCT TGT GGA AAG GAC GAA ACA CCG CCC ACG CAA GAT 
CTC CAC TG 

CDK16-3 F 
TAT ATA TCT TGT GGA AAG GAC GAA ACA CCG TCA GAC TGG AAC 
ATG AAG AG 

CDK17-1 F 
TAT ATA TCT TGT GGA AAG GAC GAA ACA CCG ACA TAG ACG GAT 
CTC AAT GG 

CDK17-5 F 
TAT ATA TCT TGT GGA AAG GAC GAA ACA CCG CCC TGC ACA GCT 
ATA AGA GA 

CDK18-1 F 
TAT ATA TCT TGT GGA AAG GAC GAA ACA CCG GGG TGA GGG ACC 
GAT CTG TG 

CDK18-2 F 
TAT ATA TCT TGT GGA AAG GAC GAA ACA CCG GTG GCA GGA TGC 
ACG CAC AA 

CDK19-2 F 
TAT ATA TCT TGT GGA AAG GAC GAA ACA CCG AAT CTC TCT ACA 
AGC CGA CA 

CDK19-3 F 
TAT ATA TCT TGT GGA AAG GAC GAA ACA CCG GGA GAG AAG CAC 
CTA CCA AG 

CDK1-A3 F 
TAT ATA TCT TGT GGA AAG GAC GAA ACA CCG AAT CCA TGT ACT 
GAC CAG GA 

CDK20-1 F 
TAT ATA TCT TGT GGA AAG GAC GAA ACA CCG GGT GCC CGC CAG 
TAT GAC CA 

CDK20-2 F 
TAT ATA TCT TGT GGA AAG GAC GAA ACA CCG CTG GGG AAA AGA 
CTC GAG CC 

CDK2-A1 F 
TAT ATA TCT TGT GGA AAG GAC GAA ACA CCG CTT CAT GGA GAA 
CTT CCA AA 

CDK2-A4 F 
TAT ATA TCT TGT GGA AAG GAC GAA ACA CCG AAG CAG AGA GAT 
CTC TCG GA 

CDK3-4 F 
TAT ATA TCT TGT GGA AAG GAC GAA ACA CCG TGG ACG TGG TGC 
ACA ACG AG 

CDK3-6 F 
TAT ATA TCT TGT GGA AAG GAC GAA ACA CCG GAG CAG CGA GAT 
CTC CCT GA 

CDK4-A1 F 
TAT ATA TCT TGT GGA AAG GAC GAA ACA CCG GTC TAC ATG CTC 
AAA CAC CA 

CDK4-A2 F 
TAT ATA TCT TGT GGA AAG GAC GAA ACA CCG AAG AGT GTG AGA 
GTC CCC AA 

CDK5-2 F 
TAT ATA TCT TGT GGA AAG GAC GAA ACA CCG CAA AGA GGA CAT 
CCG GTG GG 
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CDK5-5 F 
TAT ATA TCT TGT GGA AAG GAC GAA ACA CCG CCG GGA GAC TCA 
TGA GAT CG 

CDK6-2 F 
TAT ATA TCT TGT GGA AAG GAC GAA ACA CCG AAC ACT CCA GAG 
ATC CAC GG 

CDK6-A2 F 
TAT ATA TCT TGT GGA AAG GAC GAA ACA CCG GCC GCT CTC CAC 
CAT CCG CG 

CDK7-1 F 
TAT ATA TCT TGT GGA AAG GAC GAA ACA CCG AGC TCC AAA TAG 
TAA CTC GG 

CDK7-6 F 
TAT ATA TCT TGT GGA AAG GAC GAA ACA CCG GGC TCC CAA AAG 
ATT TGG CC 

CDK8-A3 F 
TAT ATA TCT TGT GGA AAG GAC GAA ACA CCG CAG CAA TTC ACC 
TTA CCC AG 

CDK8-A4 F 
TAT ATA TCT TGT GGA AAG GAC GAA ACA CCG AGT GAC TTC ACC 
ATT CCC CG 

CDK9-A2 F 
TAT ATA TCT TGT GGA AAG GAC GAA ACA CCG AGT TCC CCA TTA 
CAG CCT TG 

CDK9-A4 F 
TAT ATA TCT TGT GGA AAG GAC GAA ACA CCG CAC GCT GTC TGA 
GAT CAA GA 

EZH2-A2 F 
TAT ATA TCT TGT GGA AAG GAC GAA ACA CCG TTA TCA GAA GGA 
AAT TTC CG 

EZH2-A3 F 
TAT ATA TCT TGT GGA AAG GAC GAA ACA CCG TTA TGA TGG GAA 
AGT ACA CG 

PARP1-1 F 
TAT ATA TCT TGT GGA AAG GAC GAA ACA CCG TAC CGA TCA CCG 
TAC CCA CA 

PARP1-4 F 
TAT ATA TCT TGT GGA AAG GAC GAA ACA CCG AGC TAG GCA TGA 
TTG ACC GC 

PRMT5-A1 F 
TAT ATA TCT TGT GGA AAG GAC GAA ACA CCG GGT TGC TAC TCA 
CGT CAC CA 

PRMT5-A3 F 
TAT ATA TCT TGT GGA AAG GAC GAA ACA CCG ATG AAC TCC CTC 
TTG AAA CG 

TGFBR1-3 F 
TAT ATA TCT TGT GGA AAG GAC GAA ACA CCG GTT GTG TAT AAC 
TTT GTC TG 

TGFBR1-4 F 
TAT ATA TCT TGT GGA AAG GAC GAA ACA CCG TAA AAG GGC GAT 
CTA ATG AA 

 
 
Newly identified cell cycle phase markers 
Gene Phase Cell line 
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HES4 G1/S Hs578t 

STMN1 M Hs578t 

JUN S Hs578t 

CYR61 G1/S Hs578t 

C1orf56 G2/M Hs578t 

ASPM M Hs578t 

CYTOR S Hs578t 

RND3 G1/S Hs578t 

SPC25 M Hs578t 

SGO2 M Hs578t 

NCAPG M Hs578t 

SNHG18 G1/S Hs578t 

FST G1/S Hs578t 

ADAMTS6 G1/S Hs578t 

CCNB1 M Hs578t 

KIF20A M Hs578t 

DUSP1 G1/S Hs578t 

EDN1 S Hs578t 

HIST1H1E S Hs578t 

HIST1H1D S Hs578t 

HSP90AB1 M Hs578t 

CTGF G1/S Hs578t 

CITED2 M/G1 Hs578t 

INHBA G1/S Hs578t 

SNHG15 M/G1 Hs578t 

PHKG1 G2/M Hs578t 

COL1A2 G1/S Hs578t 

KIF4A M Hs578t 

REEP4 M Hs578t 

TNFRSF11B G1/S Hs578t 

SAPCD2 M Hs578t 
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KIF18A M Hs578t 

FAM111B G1/S Hs578t 

FAM111A S Hs578t 

CTSC S Hs578t 

DKK 1.00 G1/S Hs578t 

ARID5B G1/S Hs578t 

KCNMA1 G1/S Hs578t 

TUBA1C G2/M Hs578t 

HSP90AA1 M Hs578t 

ARHGAP11A M Hs578t 

THBS1 G1/S Hs578t 

BUB1B M Hs578t 

KNSTRN M Hs578t 

SNHG19 G1/S Hs578t 

CDT1 S Hs578t 

PIMREG M Hs578t 

PSMC3IP S Hs578t 

COL1A1 G1/S Hs578t 

VMP1 G1/S Hs578t 

UBALD2 M Hs578t 

LINC01444 G1/S Hs578t 

PMAIP1 S Hs578t 

DSEL G1/S Hs578t 

ZFAS1 M/G1 Hs578t 

AC092069.1 G2/M Hs578t 

UBE2S M Hs578t 

SDF2L1 G1/S Hs578t 

SMTN M Hs578t 

AL118516.1 M/G1 Hs578t 

CYR61 G1/S mdamb231 

F3 G1/S mdamb231 
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HIST2H2AC S mdamb231 

FLG G1/S mdamb231 

ASPM M mdamb231 

G0S2 G1/S mdamb231 

FAM161A G1/S mdamb231 

KLHL23 G1/S mdamb231 

SGO2 M mdamb231 

PTX3 G1/S mdamb231 

NCAPG M mdamb231 

LIMCH1 S mdamb231 

AREG G1/S mdamb231 

CCNB1 M mdamb231 

KIF20A M mdamb231 

SPDL1 M mdamb231 

CREBRF M/G1 mdamb231 

SQSTM1 M/G1 mdamb231 

HIST1H1C S mdamb231 

HIST1H1E G2/M mdamb231 

TCF19 S mdamb231 

VEGFA M mdamb231 

MCM3 G1/S mdamb231 

CTGF S mdamb231 

FBXO5 G2/M mdamb231 

ZFAND2A M/G1 mdamb231 

DBF4 M mdamb231 

XRCC2 G1/S mdamb231 

KIF4A M mdamb231 

SDCBP M/G1 mdamb231 

HSPA5 M/G1 mdamb231 

NAV2 M mdamb231 

KIF18A M mdamb231 
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FAM111B G1/S mdamb231 

FAM111A G2/M mdamb231 

CCDC85B G1/S mdamb231 

CTSC G1/S mdamb231 

LAYN G1/S mdamb231 

MCM10 G1/S mdamb231 

DKK 1.00 G1/S mdamb231 

ANKRD1 G1/S mdamb231 

GPRC5A G1/S mdamb231 

TUBA1C M mdamb231 

RACGAP1 M mdamb231 

PAWR G1/S mdamb231 

BTG1 M/G1 mdamb231 

HSPH1 M mdamb231 

ARHGAP11A M mdamb231 

KNL1 M mdamb231 

B2M M/G1 mdamb231 

NR2F2 G1/S mdamb231 

HERPUD1 M/G1 mdamb231 

PIMREG M mdamb231 

UBALD2 M mdamb231 

CDKN2D M mdamb231 

UBE2S M mdamb231 

E2F2 G1/S mdamb468 

SRSF10 G1/S mdamb468 

STMN1 M mdamb468 

GPSM2 M mdamb468 

FAM72D M mdamb468 

HIST2H2AC S mdamb468 

C1orf56 M mdamb468 

ASPM M mdamb468 
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MSH6 G1/S mdamb468 

CYTOR G1/S mdamb468 

SPC25 M mdamb468 

HSPD1 M/G1 mdamb468 

SGO2 M mdamb468 

RASSF1 M mdamb468 

RFC4 G1/S mdamb468 

FGFBP1 G1/S mdamb468 

NCAPG M mdamb468 

CCNB1 M mdamb468 

KIF20A M mdamb468 

SPDL1 M mdamb468 

NEURL1B G2/M mdamb468 

HIST1H1A S mdamb468 

HIST1H1C S mdamb468 

HIST1H1E S mdamb468 

HIST1H1D S mdamb468 

HIST1H1B S mdamb468 

ZNF165 M mdamb468 

TCF19 G1/S mdamb468 

HSPA1A M mdamb468 

MCM3 G1/S mdamb468 

FBXO5 G1/S mdamb468 

CCT6A M/G1 mdamb468 

DBF4 M mdamb468 

KIF4A M mdamb468 

REEP4 M mdamb468 

ARHGEF39 M mdamb468 

HSPA5 M/G1 mdamb468 

KIF18A M mdamb468 

FAM111B G1/S mdamb468 
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FAM111A G2/M mdamb468 

INCENP M mdamb468 

POLA2 G1/S mdamb468 

HYLS1 G2/M mdamb468 

MCM10 G1/S mdamb468 

DDX11 G1/S mdamb468 

TUBA1C M mdamb468 

RACGAP1 M mdamb468 

HSPH1 M mdamb468 

RFC3 S mdamb468 

BUB1B M mdamb468 

KNSTRN M mdamb468 

KNL1 M mdamb468 

OIP5 M mdamb468 

CDT1 G1/S mdamb468 

LRRC75A M mdamb468 

KRT16 G1/S mdamb468 

PSMC3IP S mdamb468 

SKA1 M mdamb468 

SOGA1 M mdamb468 

CDKN2D G2/M mdamb468 

SPC24 M mdamb468 

UBE2S M mdamb468 

BTG3 G1/S mdamb468 

C21orf58 S mdamb468 

MT-ND4L G1/S mdamb468 
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Previously identified genetic interactions 

cell_line geneA geneB 

Genetic 
interaction 
score 

Experimental 
System 

Experimental 
System Type Author 

MDA-MD-231 AR CDK1 -3.184672461 
Affinity 
Capture-MS physical 

Vatapalli R 
(2020) 

Hs578T,MDA-
MD-231 CDK4 CDK6 -3.127358631 

Affinity 
Capture-MS physical 

Varjosalo M 
(2013) 

Hs578T,MDA-
MD-231 CDK4 CDK6 -3.127358631 FRET physical Li Z (2017) 

Hs578T,MDA-
MD-231 CDK4 CDK6 -3.127358631 

Affinity 
Capture-MS physical 

Huttlin EL 
(2021) 

Hs578T CDK1 CDK17 -3.030075378 
Affinity 
Capture-MS physical 

Huttlin EL 
(2015) 

Hs578T CDK1 CDK17 -3.030075378 
Affinity 
Capture-MS physical 

Huttlin EL 
(2017) 

Hs578T CDK1 CDK17 -3.030075378 
Affinity 
Capture-MS physical 

Huttlin EL 
(2021) 

Hs578T,MDA-
MD-468 CDK4 PRMT5 -3.00415653 

Affinity 
Capture-
Western physical 

Aggarwal P 
(2010) 

MDA-MD-468 CDK2 CDK7 -2.820261449 
Biochemical 
Activity physical 

Drapkin R 
(1996) 

MDA-MD-468 CDK2 CDK7 -2.820261449 
Biochemical 
Activity physical Cheng A (2005) 

MDA-MD-468 CDK2 CDK7 -2.820261449 
Biochemical 
Activity physical Xu X (1999) 

MDA-MD-468 CDK2 CDK7 -2.820261449 
Biochemical 
Activity physical Higashi H (1996) 

MDA-MD-468 CDK2 CDK7 -2.820261449 
Biochemical 
Activity physical 

Aprelikova O 
(1995) 

MDA-MD-468 CDK2 CDK7 -2.820261449 
Biochemical 
Activity physical Moisan A (2004) 

MDA-MD-468 CDK2 CDK7 -2.820261449 
Biochemical 
Activity physical 

Larochelle S 
(2012) 

MDA-MD-468 CDK2 CDK7 -2.820261449 
Biochemical 
Activity physical 

Larochelle S 
(2006) 

MDA-MD-468 CDK2 CDK7 -2.820261449 Affinity physical Larochelle S 
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Capture-
Western 

(2006) 

MDA-MD-468 CDK2 CDK7 -2.820261449 
Biochemical 
Activity physical Garrett S (2001) 

MDA-MD-468 CDK2 CDK7 -2.820261449 
Biochemical 
Activity physical Garrett S (2001) 

MDA-MD-468 CDK2 CDK7 -2.820261449 
Biochemical 
Activity physical Lolli G (2004) 

MDA-MD-468 CDK2 CDK7 -2.820261449 
Affinity 
Capture-MS physical 

Varjosalo M 
(2013) 

MDA-MD-468 CDK2 CDK7 -2.820261449 
Affinity 
Capture-MS physical So J (2015) 

MDA-MD-
231,MDA-
MD-468 CDK7 CDK9 -2.732104302 

Biochemical 
Activity physical Kim JB (2001) 

MDA-MD-
231,MDA-
MD-468 CDK7 CDK9 -2.732104302 

Co-
fractionation physical 

Garcia-Martinez 
LF (1997) 

MDA-MD-
231,MDA-
MD-468 CDK7 CDK9 -2.732104302 

Biochemical 
Activity physical 

Larochelle S 
(2012) 

MDA-MD-468 CDK15 CDK9 -2.647357606 
Affinity 
Capture-MS physical 

Varjosalo M 
(2013) 

MDA-MD-231 CDK11B CDK7 -2.535113502 
Proximity 
Label-MS physical Liu X (2018) 

Hs578T CDK12 CDK8 -2.491071985 
Negative 
Genetic genetic Han K (2017) 

Hs578T CDK2 CDK6 -2.479866751 Co-purification physical Cheng A (2000) 

Hs578T CDK2 CDK6 -2.479866751 Co-localization physical Chen TC (2014) 

Hs578T CDK8 PRMT5 -2.423932133 

Affinity 
Capture-
Western physical Tsutsui T (2013) 

Hs578T CDK8 PRMT5 -2.423932133 

Affinity 
Capture-
Western physical Tsutsui T (2013) 

Hs578T CDK8 PRMT5 -2.423932133 
Reconstituted 
Complex physical Tsutsui T (2013) 

MDA-MD-231 AR CDK7 -2.247228881 Affinity physical Lee DK (2000) 
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Capture-
Western 

MDA-MD-231 AR CDK7 -2.247228881 
Reconstituted 
Complex physical Lee DK (2000) 

MDA-MD-231 AR CDK7 -2.247228881 
Reconstituted 
Complex physical 

Chymkowitch P 
(2011) 

MDA-MD-231 AR CDK7 -2.247228881 
Biochemical 
Activity physical 

Chymkowitch P 
(2011) 

MDA-MD-468 CDK11B CDK8 -2.218261757 
Proximity 
Label-MS physical Liu X (2018) 

MDA-MD-468 CDK19 CDK8 2.185012195 
Affinity 
Capture-MS physical 

Huttlin EL 
(2015) 

MDA-MD-468 CDK19 CDK8 2.185012195 
Affinity 
Capture-MS physical 

Huttlin EL 
(2017) 

MDA-MD-468 CDK19 CDK8 2.185012195 

Affinity 
Capture-
Western physical 

Koehler K 
(2019) 

MDA-MD-468 CDK19 CDK8 2.185012195 
Affinity 
Capture-MS physical Marcon E (2014) 

MDA-MD-468 CDK19 CDK8 2.185012195 
Affinity 
Capture-MS physical 

Huttlin EL 
(2021) 
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DNA/Protein sequences and supporting tables from Chapter 3 

Key oligonucleotides 
Name Description Sequence 

PEP_01 

Used to amplify initial oligo pool and individually synthesized 
cancer driver gene fragments for cloning. Additionally used 
for qPCR of overexpressed peptides. 

GGCTAGGTAAGCT
TGATATCGGCCAC
CATG 

PEP_02 

Used to amplify initial oligo pool and individually synthesized 
cancer driver gene fragments for cloning. Additionally used 
for qPCR of overexpressed peptides. 

GGCGGCACTGTTT
AACAAGCCCGTCA
GTAG 

PEP_03 
Used to amplify cancer driver gene fragments for high 
throughput sequencing. 

ACACTCTTTCCCT
ACACGACGCTCTT
CCGATCTGCTTGA
TATCGGCCACCAT
G 

PEP_04 
Used to amplify cancer driver gene fragments for high 
throughput sequencing. 

GACTGGAGTTCAG
ACGTGTGCTCTTC
CGATCTCACTGTT
TAACAAGCCCGTC
AGTAG 

GAPDH_F Used for qPCR of overexpressed peptides. 
ACAGTCAGCCGCA
TCTTCTT 

GAPDH_R Used for qPCR of overexpressed peptides. 
ACGACCAAATCCG
TTGACTC 

EF1a_seq 
Used for Sanger sequencing of constructs cloned into peptide 
expression vectors. 

TTCTCAAGCCTCA
GACAGTGG 

 
 
 
Engineered peptides for exogenous delivery 
Name Amino Acid Sequence 

TAT-EGFR-
697 

GRKKRRQRRRPPQGSGSGSMEAPNQALLRILKETEFKKIKVLGSGAFGTV
YKGLWIPEGE 
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TAT-RAF1-73 
GRKKRRQRRRPPQGSGSGSMRNGMSLHDCLMKALKVRGLQPECCAVFR
LLHEHKGKKARL 

TAT-FLAG GRKKRRQRRRPPQGSGSGSDYKDHDGDYKDHDIDYKDDDDK 

TAT-RASA1-
468 

GRKKRRQRRRPPQGSGSGSMKDAFYKNIVKKGYLLKKGKGKRWKNLYF
ILEGSDAQLIYF 

TAT-MDM2-
25 

GRKKRRQRRRPPQGSGSGSMETLVRPKPLLLKLLKSVGAQKDTYTMKEV
LFYLGQYIMTK 

 
 
Crystal structures 

Protein PDB Crystal Structure ID DOI 

EGFR 5JEB,1M14, 1XKK, 3QWQ 

10.1038/nchembio.2171, 
10.1074/jbc.M207135200, 
10.1158/0008-5472.CAN-04-
1168, 10.1016/j.str.2011.11.016 

RB1 2QDJ 10.1016/j.molcel.2007.08.023 

RAF1 1GUA,7JHP,70MV 

10.1038/nsb0896-723, 
10.2210/pdb7JHP/pdb, 
10.1038/nature08833 

 
Validated peptide sequences 
Gene Name Amino Acid Sequence 

BRAF-379 MIDDLIRDQGFRGDGGSTTGLSATPPASLPGSLTNVKALQK 

BRAF-380 MDDLIRDQGFRGDGGSTTGLSATPPASLPGSLTNVKALQKS 

EGFR-697 MEAPNQALLRILKETEFKKIKVLGSGAFGTVYKGLWIPEGE 

EGFR-704 MLRILKETEFKKIKVLGSGAFGTVYKGLWIPEGEKVKIPVA 

FBXW7-461 MTSTVRCMHLHEKRVVSGSRDATLRVWDIETGQCLHVLMGH 

FBXW7-512 MRRVVSGAYDFMVKVWDPETETCLHTLQGHTNRVYSLQFDG 

RAF1-73 MRNGMSLHDCLMKALKVRGLQPECCAVFRLLHEHKGKKARL 

RAF1-78 MLHDCLMKALKVRGLQPECCAVFRLLHEHKGKKARLDWNTD 

KRAS61K-24 MIQNHFVDEYDPTIEDSYRKQVVIDGETCLLDILDTAGKEE 

KRAS61K-28 MFVDEYDPTIEDSYRKQVVIDGETCLLDILDTAGKEEYSAM 

KRAS61K-34 MPTIEDSYRKQVVIDGETCLLDILDTAGKEEYSAMRDQYMR 
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DICER1-552 MRARAPISNYIMLADTDKIKSFEEDLKTYKAIEKILRNKCS 

KRAS-143 METSAKTRQGVDDAFYTLVREIRKHKEKMSKDGKKKKKKSK 

MDM2-25 METLVRPKPLLLKLLKSVGAQKDTYTMKEVLFYLGQYIMTK 

RASA1-468 MKDAFYKNIVKKGYLLKKGKGKRWKNLYFILEGSDAQLIYF 

AKT1-115 MEEEMDFRSGSPSDNSGAEEMEVSLAKPKHRVTMNEFEYLK 

CCND1-167 MKMPEAEENKIIRKHAQTFVALCATDVKFISNPPSMVAAG 

NOTCH1-626 MLCFCLKGTTGPNCEINLDDCASSPCDSGTCLDKIDGYECA 
 
Cost analysis 
Item Vendor Price ($) 

Oligonucleotide Synthesis (~12,000 
constructs) Custom Array 2400 

Cell Culture Media (DMEM + FBS 
+Trypsin) 

Thermo Fisher 
(10566016,16140071,25200056) 215 

Genomic DNA Isolation Kit (8 
columns) Qiagen (69504) 28 

Polymerase for Sequencing Library 
Construction (1mL) 

Kapa HiFi HotStart Ready Mix (Roche 
KK2602) 112 

AMPure XP Beads (1mL) Beckman (A63881) 20 

PE100 Sequencing (2 time points, 2 
replicates per time point) Core Facility (NovaSeq S4, 50,000,000 reads) 140 

Total NA 2915 
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DNA/Protein sequences and supporting tables from Chapter 4 

Key oligonucleotides 
Name Sequence Purpose 

AAV_Pool_F GTAGACATCcacctgcacagc Amplifying oligopool 

AAV_Pool_R TATTGCACCcacctgcgttg Amplifying oligopool 

AAV5_L1_seqF 

ACACTCTTTCCCTACACG
ACGCTCTTCCGATCTcgtgag
cacaaataacagcggt NGS Sequencing of AAV5 Loop1 Libraries 

AAV5_L1_seqR 

GACTGGAGTTCAGACGTG
TGCTCTTCCGATCTggactcc
gccagttgaacc NGS Sequencing of AAV5 Loop1 Libraries 

AAV9_L1_seqF 

ACACTCTTTCCCTACACG
ACGCTCTTCCGATCTcggttc
tggacagagcggt NGS Sequencing of AAV9 Loop1 Libraries 

AAV9_L1_seqR 

GACTGGAGTTCAGACGTG
TGCTCTTCCGATCTtgaatttta
gcgtttgttgatttgaacc NGS Sequencing of AAV9 Loop1 Libraries 

AAV5_L2_seqF 

ACACTCTTTCCCTACACG
ACGCTCTTCCGATCTcaacca
gagctccagcggt NGS Sequencing of AAV5 Loop2 Libraries 

AAV5_L2_seqR 

GACTGGAGTTCAGACGTG
TGCTCTTCCGATCTcgggggc
agtggttgaacc NGS Sequencing of AAV5 Loop2 Libraries 

AAV9_L2_seqF 

ACACTCTTTCCCTACACG
ACGCTCTTCCGATCTccacca
gagtgccagcggt NGS Sequencing of AAV9 Loop2 Libraries 

AAV9_L2_seqR 

GACTGGAGTTCAGACGTG
TGCTCTTCCGATCTgcgcctgt
gcttgtgaacc NGS Sequencing of AAV9 Loop2 Libraries 

mCherry_qPCR_F 
CCCACAACGAGGACTACA
CC 

qPCR quantification of mCherry transcript 
abundance 

mCherry_qPCR_R 
TTGTACAGCTCGTCCATG
CC 

qPCR quantification of mCherry transcript 
abundance 

mGAPDH_qPCR_F TGGCCTTCCGTGTTCCTAC 
qPCR quantification of mCherry transcript 
abundance 

mGAPDH_qPCR_R 
GAGTTGCTGTTGAAGTCG
CA 

qPCR quantification of mCherry transcript 
abundance 
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AAV-ITR_qPCR_F CGGCCTCAGTGAGCGA Quantification of AAV titer 

AAV-ITR_qPCR_R 
GGAACCCCTAGTGATGGA
GTT Quantification of AAV titer 

 
 
 
 
AAV variant sequences 

Name 
AAV 
Scaffold 

Human 
Gene 

Uniprot 
ID 

Starting 
AA AA Sequence 

AAV.Variant.Muscle1 
AAV9-
Loop1 PDGFC Q9NRA1 13 LAGQRQGTQAESNLSSKFQF 

AAV.Variant.Brain1 
AAV5-
Loop2 APOA1 P02647 206 

KENGGARLAEYHAKATEHL
S 

AAV.Variant.Lung1 
AAV9-
Loop2 DKK1 O94907 34 NSVLNSNAIKNLPPPLGGAA 

AAV.Variant.Muscle2 
AAV9-
Loop1 IGHM P01871 77 INHSGSTNYNPSLKSRVTIS 

AAV.Variant.Brain2 
AAV9-
Loop1 APOA1 P02647 206 

KENGGARLAEYHAKATEHL
S 

AAV.Variant.Muscle3 
AAV9-
Loop1 

HIST1H
2BI P62807 47 KQVHPDTGISSKAMGIMNSF 

n/a 
AAV9-
Loop2 n/a Q00496 1130 

QRVNNSSTNDNLVRKNDQV
Y 

n/a 
AAV9-
Loop2 TLE1 Q04724 212 DKRRNGPEFSNDIKKRKVDD 

n/a 
AAV5-
Loop1 MAPT P10636 102 PGQKGQANATRIPAKTPPAP 

n/a 
AAV5-
Loop1 KCNH7 Q9NS40 352 IAPKVKDRTHNVTEKVTQVL 

n/a 
AAV5-
Loop2 n/a P29813 579 AVARVADTIGSGPSNSQAVP 

n/a 
AAV5-
Loop2 

TNFSF1
0 P50591 125 HITGTRGRSNTLSSPNSKNE 

n/a 
AAV9-
Loop1 PRF1 P14222 142 

NVHVSVAGSHSQAANFAAQ
K 

n/a 
AAV5-
Loop1 CNTN4 Q8IWV2 352 NSAGTGPSSATVNVTTRKPP 
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n/a 
AAV5-
Loop1 n/a P13128 163 

NQDNKIVVKNATKSNVNNA
V 

n/a 
AAV5-
Loop2 

LGALS3
BP Q08380 541 KAAIPSALDTNSSKSTSSFP 

n/a 
AAV5-
Loop1 CRLF1 O75462 180 QDNTCEEYHTVGPHSCHIPK 

n/a 
AAV9-
Loop2 

NCKAP
1L P55160 381 

TWLVRHTENVTKTKTPEDY
A 

n/a 
AAV5-
Loop1 NRG2 O14511 35 SSSSSSSESGSSSRSSSNNS 

n/a 
AAV5-
Loop1 ATP8A2 Q9NTI2 291 

HDTKLMQNSTKAPLKRSNV
E 

n/a 
AAV9-
Loop2 THPO P40225 194 RTSGLLETNFTASARTTGSG 
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