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ABSTRACT OF THE THESIS

Unveiling Hidden Interactions:

Local Inference of Splicing Regulatory Networks in RNA Binding Protein Knockdown

studies by the Coordinated Multi-Neighborhood Learning Algorithm

by

Raymond Alexander Benitez

Masters of Science in Statistics

University of California, Los Angeles, 2024

Professor Qing Zhou, Chair

RNA-binding proteins (RBPs) are integral to RNA metabolism and their dysregulation is

linked to cancer and neurodegenerative diseases. Understanding RBP-RNA interactions

is therefore crucial. CML, a local constraint-based structure learning algorithm, utilizes

conditional independence tests and deterministic rules to infer a graph from observed

data. Traditional structure learning algorithms face challenges in high-dimensional set-

tings, common in genomics, due to the rapid expansion of the search space as the number

of variables increases. CML mitigates this by coordinating learning across multiple neigh-

borhoods, reducing computational costs, and focusing on local graph structures around

target variables. In this work, we implement the CML algorithm on an augmented dataset

derived from RNA-seq and rMATS data obtained from RBP knockdown experiments in

HepG2 and K562 cell lines. We investigate causal interactions between transcripts and

genes within five selected RBP knockdown experiments for each alternative splicing (AS)
ii



event in each cell line. This resulted in 50 datasets that combined differential AS patterns

and gene expression changes. Our findings revealed numerous causal relationships be-

tween transcripts and genes in the context of RBP knockdown experiments, highlighting

the efficacy of CML in uncovering intricate molecular interactions in high-dimensional ge-

nomics data while dramatically improving computation time.
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Chapter 1

Introduction

1.1 Directed Acyclic Graphs

A graph G = (V,E) is formed by a set of nodes, or vertices, V = V1, · · · , Vp and a set

of edges E = {(i, j) ∈ V × V }. Vertices represent a set of random variables X =

(X1, X2, · · ·Xp). For nodes i, j ∈ V , an undirected edge is an edge such that {(i, j), (j, i) ∈

E}, denoted as i − j. A directed edge is an edge where {(i, j) ∈ E} and {(j, i) /∈ E},

denoted as i → j, where i is a parent node of j, and j is a child node of i. For any

node i, its parent and child set is denoted as paG(i), chG(i) respectively. A path in G is

a sequence of nodes < V1, V2, · · · , Vj >, for 1 ≤ n ≤ j − 1, Vi precedes Vi+1. If every

edge on the path is oriented as Vi → Vi+1, then this is a directed path from V1 to Vj. A

node Vk is said to d-separate Vi from Vj if and only if Vk blocks every path from node Vi

to Vj. Vi is an ancestor of Vj if there is a directed path from V1 to Vj. If i → j and j is

an ancestor of i, then there is a directed cycle in G. A Directed Acyclic Graph (DAG) is

a graph that consists of only directed edges and contains no directed cycles. A DAG G

is often used to model the causal relationships among the random variables in X by the
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following structural equation model.

Xi = fi(XpaG(i), ϵi), i = 1, · · · , p.

Any random variable Xi is determined by a function of its parent set XpaG(i) and an in-

dependent error term ϵi. The joint probability distribution P (X) is Markov with respect to

graph G and has the following factorization.

P (X1, X2, · · · , Xp) =
∏
i∈V

P (Xi|XpaG(i)).

The probability distribution P is faithful to a DAGG if there is a one-to-one correspondence

between the conditional independence relations in P and the d-separations in G. The

adjacency set of node i refers to the set of nodes that are directly connected to i by an

edge, denoted as adjG(i). A v-structure in a DAG is a triplet of nodes (i, j, k) where E

contains directed edges i→ k and j → k and i, j are not adjacent. The set of spouses for

node i, denoted as spG(i) is the set of non-adjacent nodes that share a child node with i.

The Markov blanket of node i, denoted as mbG(i), is the minimum set of nodes such that

Xi is conditionally independent of all other nodes in the graph. If a probability distribution

is faithful to its DAG, then the Markov blanket of a node is the union of its parents, children,

and spouses.

1.2 RNA-Binding Proteins

RNA-binding proteins (RBPs) are a diverse class of proteins involved in the process

of regulating gene expression. These proteins play crucial roles in virtually every step

of RNA metabolism including transcription, splicing, polyadenylation, RNA localization,

translation, and degradation. RBPs can be involved in one or multiple of these pro-

cesses. They can have binding specificity to one or more multiple categories of RNA,
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such as messenger RNA (mRNA), transfer RNA (tRNA), and many more. They are criti-

cal for maintaining homeostasis for gene expression and thus normal human physiology.

Disruption or dysregulation with RBPs is known to be associated with various neurode-

generative diseases, and cancer (Lukong et al. 2008). Given the vital role RBPs play in

RNA metabolism, it is important to elucidate the mechanisms underlying RBP-RNA inter-

actions. By unraveling the interactions within the RBP-RNA landscape, researchers can

gain valuable insights into disease mechanisms and identify potential therapeutic targets

for intervention.

1.3 Motivation

The study (Mukherjee et al. 2019) suggests that there are at least 1542 RBP-encoding

genes in the human genome. Given the number of genes dedicated to producing RBPs,

and the multiple modalities RBPs are involved with in the maturation of RNA, it necessi-

tates uncovering the exact mechanism by which RBPs interact with RNA. In their seminal

study, Van Nostrand et al. 2020 made significant efforts to elucidate the functions of 356

RBPs in K562 and HepG2 cells. They employed a range of assays to provide differ-

ent perspectives and lenses to view the functions and behaviors of these RBPs. These

include eCLIP, RNA Bind-N-seq, Immunofluorescence, Knockdown RNA-seq, and RBP

ChIP-seq. Secondary analysis included the implementation of DEseq, rMATS, MISO, and

CUFFDIFF. The results of these experiments provided valuable insights into the diversity

and complexity of RBP-RNA interactions, revealing binding patterns across the transcrip-

tome.

Schadt 2009 Highlights the importance of properly constructing a network so that

causal relationships for biological phenomena can be unearthed. Networks are graph-
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ical models with nodes and edges that are used to visualize causal relationships between

variables within the network. The creation of networks in which the relationship between

genes and other biological events can be understood is a key goal for life sciences and

biological research. Correlation methods that only examine gene expression data is insuf-

ficient by themselves to achieve this aim. Constructions of more complex and informative

gene networks involve integrating multiple data types. We will construct a transcript-gene

network for selected RBP knockdowns. We will use the normalized RBP knockdown RNA-

seq and rMATS data generated from Van Nostrand et al. 2020 to infer causal relationships

between differentially expressed transcripts and genes.

One method of identifying the interactions within this transcript-gene network is to use

directed acyclic graphs (DAG) to represent causal relationships between genes and tran-

scripts. Structure learning algorithms aim to learn a DAG that best represents causal

relationships inferred from the given data. Global structure learning algorithms estimate

a DAG over the entire variable space. However as the number of variables in a network

increases, we quickly observe a rapid deterioration in performance from these structure

learning algorithms (Gu and Zhou 2020). When working with data in the field of genomics,

this is frequently an issue since datasets tend to have many features and fewer observa-

tions. In addition, only a select few variables and their causal effects tend to be of interest

to researchers. The Coordinated Multi-Learning Neighborhood Learning (CML) algorithm

(Smith and Zhou 2024) is a structure learning algorithm designed to address both of these

concerns. The CML algorithm learns local DAG structures around predetermined target

variables of interest. This is achieved by implementing Markov Blanket estimation meth-

ods around the target variables, and then implementing a three-stage constraint-based

algorithm to prune and orient edges. CML is a local structure learning algorithm and

greatly improves runtime compared to global structure learning algorithms in high dimen-

sional settings. Thus, making it a well-suited structure learning algorithm to implement in
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the field of genomics, and in particular on the constructed transcript-gene network.

1.3.1 Objectives

In this thesis, we aim to address the aforementioned research gap in applying local DAG

learning to research problems in genomics. We will apply the CML algorithm to the

data from the RBP Map experiments to infer causal relationships between transcripts and

genes. Specifically, our objectives are to: construct a suitable network from the various

data modalities from the RBP Map experiments to infer causal relationships and apply the

CML algorithm to assess its utility in identifying meaningful causal interactions within the

RBP-RNA network. By achieving these objectives, we aim to deepen our understanding

of how certain RBPs can affect the expression levels of genes and transcripts.
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Chapter 2

Methods

2.1 CML Algorithm

2.1.1 Background

In contrast to other global structure algorithms that assume causal sufficiency, that is all

common causes of variables have been observed, CML does not make this assumption

and treats other variables in the network as latent. This feature necessitates the use

of a different class of graphs to accommodate latent variables while still being able to

infer causal relationships. Ancestral graphs will be used since they are well-suited for

representing causal information from observed data in the presence of latent variables

(Richardson and Spirtes 2002). Ancestral graphs belong to the class of mixed graphs and

only directed (→) and bi-directed edges (↔) are considered. In this algorithm, selection

bias is not considered and thus there will be no undirected edges in an ancestral graph.

2.1.2 Definitions

Two nodes Vi and Vj are siblings if Vi ↔ Vj. A bi-directed edge between two nodes

implies that they share a common latent cause. Similar to how a directed cycle is defined,
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an almost directed cycle exists if i↔ j and j ∈ anG(i). A mixed graph is ancestral if there

is no directed or almost directed cycle.

A node i is called a collider on a path p if any two non-adjacent nodes on path p

have edges directed into node i. In an ancestral graph, a path p between Vi and Vj is m-

connecting relative to a set S with X, Y, /∈ S if every non-collider on p is not a member of

S and every collider on p is an ancestor of some node in S. If there are no m-connecting

paths from Vi to Vj given S, then they are m-separated by S. The m-separations in an an-

cestral graph imply conditional independence among the observed variables by the global

Markov property (Richardson and Spirtes 2002).

An inducing path l is a path in which every node except for the endpoints is a collider

on the path and every collider is an ancestor of some endpoint on path l. An ances-

tral graph is maximal if there is no inducing path between any two non-adjacent nodes.

The graph is maximal (MAG) in the sense that no additional edges can be added without

changing the conditional independence relations. A MAG represents conditional indepen-

dence relations among the observed nodes with latent variables. Multiple MAGs may also

encode the same conditional independencies, and thus will belong to the same Markov

equivalence class. We denote the use of a partial ancestral graph (PAG) to represent the

set of all MAGs that belong to the same equivalence class. A PAG introduces a distinctive

edge mark (o) in addition to the conventional tail and arrowhead marks typically observed

in graphical models. Circle marks denote ambiguity in the edge direction and are variant

within the equivalence class. Conversely, each non-circle mark remains invariant across

the equivalence class of a Maximal Ancestral Graph (MAG).

The algorithm defines the set of first-order neighbors of a node i to be its Markov

blanket, denoted N1
i . We call NBi := N1

i ∪ i the neighborhood of node i. The set of
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second-order neighbors of node i is defined to be the union of the Markov blankets for

each node in the first-order neighborhood, excluding nodes in NBi, denoted as N2
i =

∪j∈N1
i
N1

j \NB1
i . For a set of nodes T , the union of their neighborhoods is denoted as

NBT = ∪t∈TNBt

2.1.3 Algorithm Details

It is assumed that there is sufficient background knowledge to identify a set of target

nodes T . It is also assumed that estimated first- and second-order neighborhoods,N1
t

and N2
t , are provided for each target node t ∈ T . This estimation is performed using

existing Markov blanket learning algorithms. Algorithm 1 (Smith and Zhou 2024) shows

the steps of the CML algorithm.

Algorithm 1 Coordinated Multi-Neighborhood Learning Algorithm
1: E ← edge set of complete, undirected graph on V ← NBT .
2: for (i, j) ∈ E do
3: Search for separating set Sij ⊂ V \ {i, j} such that Xi ⊥⊥ Xj | Sij.
4: if Sij is found then update E ← E \ {(i, j)}.
5: end for
6: Et ← {(i, j) ∈ E : i, j ∈ NBt} for all t ∈ T .
7: for t ∈ T do
8: for (i, j) ∈ Et do
9: Search for Sij ⊂ N1

i ∪N1
j such that Xi ⊥⊥ Xj | Sij.

10: if Sij is found then update E ← E \ {(i, j)}.
11: end for
12: end for
13: Apply R0 of the FCI algorithm to identify v-structures based on E and Sij.
14: Apply FCI rules R1 to R4 and R8 to R10 until none of them apply.
15: Modify edge marks within each single neighborhood with rule RN .

The algorithm first begins with learning the skeleton of a graph, which is the undirected

graph corresponding to ignoring edge orientations in the true underlying graph. Beginning

with the complete graph over NBT , the skeleton recovery corresponds to lines 1-12 and

edges are deleted from the complete graph based on conditional independence tests.

The skeleton recovery is broken into two phases to facilitate the retention of between
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neighborhood edges for future edge orientations. Lines 2-5 correspond to the first phase

and is equivalent to the FCI algorithm (Spirtes 2001) with V = NBT being the observed

nodes. As a result, only subsets of NBT can be candidate separation sets, and between

neighborhood edges will be preserved. The second phase of the skeleton recovery in-

volves pruning superfluous edges that may be present within each target neighborhood.

Lines 6-12 perform conditional independence tests within a single target neighborhood at

a time. The second-order neighbors are utilized to search for separating sets for nodes

within a single target neighborhood.

After the skeleton recovery stage, the algorithm utilizes the separation sets to identify

v-structures and then applies the appropriate FCI rules from line 14 to orient edges fur-

ther. In the estimated PAG, there may exist four types of edges (↔,→, , ). Rule RN

is then applied to simplify the edge markings from the resulting PAG.

RN : For nodes i, j in the same target neighborhood, convert i ↔ j, and i j to an

undirected edge i− j and convert i j to a directed edge i→ j

2.2 rMATS

Alternative splicing is a fundamental mechanism in eukaryotic gene expression that al-

lows a single gene to produce multiple mRNA and protein isoforms. Thereby greatly

contributing to the complexity of the transcriptome. Differential alternative splicing, where

the splicing pattern of a gene differs between conditions, plays a critical role in develop-

ment and disease. Replicate multivariate analysis of transcript splicing (rMATS) Shen et

al. 2012 is a statistical method designed to identify differential alternative splicing events

between two different sample groups with multiple replicates from RNA seq-data.
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rMATS requires aligned RNA-seq reads in BAM format and a gene annotation file in

GTF format. The RNA-seq reads are mapped to various exon isoforms and the read

counts are used to estimate isoform proportions. Specifically, the counts of reads that

map to an exon inclusion and exclusion isoform are used to calculate the exon inclusion

level, denoted as ψ. More formally, ψ is defined as the proportion of exon transcripts that

splice from the upstream exon into the alternative exon and then into the downstream

exon, relative to the total number of such transcripts plus the transcripts that skip the

alternative exon by splicing directly from the upstream exon to the downstream exon.

Figure 2.1 from (Shen et al. 2012) is an example of a skipped exon alternative splicing

event. The estimation for the exon inclusion level ψ is calculated using the count of reads

that map to the exon inclusion isoform(I) and the count of reads that map to the exon

skipping isoforms (S). Since the length of the isoform-specific segments (junction sites

and alternative exons) can vary between alternative isoforms, it is necessary to normalize

the read counts by the length of the exons. For any isoform segment with length l, and

read length r, the normalized effective length is given by the number of unique reads in

this region, l− r+1. Given the exon inclusion and skipping effective lengths lI , lS and the

number of exon inclusion and skipping isoform reads (I), (S), the exon inclusion level ψ

for any exon event can be estimated as,

ψ̂ =
I
lI

I
lS
+ S

lS

.

In each replicate, there exists estimation uncertainty for ϕ for an AS event influenced by

the sequencing depth. With greater sequencing depths leading to more reliable estimates

of ψ. Furthermore, there can be variation between estimates of ψ between replicates in a

sample group due to biological or technical reasons. rMATS accounts for the estimation

uncertainty in individual replicates by assuming the read count I follows the following
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Figure 2.1: Toy visual of exon skipping event

binomial distribution.

I|ψ ∼ Binomial
(
n = I + S, p = f(ψ) =

lIψ

lIψ + lS(1− ψ)

)
. (1)

The binomial distribution models the estimation uncertainty of ψ influenced by the total

number of reads n, the sequencing depth. Furthermore, the proportion of reads from

the exon inclusion isoform is represented by f(ψ) that normalizes ψ by the length of the

isoforms. A hierarchical estimation framework to account for the estimation uncertainty

in individual replicates and variability among replicates. The variation between replicates

within a sample group is modeled by random effects in a mixed model. Within each

sample group j = 1, 2 with k = 1, · · · ,M1 and k = 1, · · · ,M2 replicates respectively, for

each exon i, the group mean of exon inclusion levels (ψi1, ψi2) are measured as fixed

effects. Then the algorithm assumes the logit transformation of exon inclusion levels ψijk

follows a normal distribution with parameters (µ, σ2) = (logit(ψij), σ
2
ij).

logit(ψijk) ∼ Normal(µ = logit(ψij), σ
2 = σ2

ij). (2)

Equations (1) and (2) show how rMATS accounts for within-replicate and between-replicate

variability for estimating ψ. A likelihood ratio test is then used to test whether the differ-

ence of the group means between the two groups exceeds a user-defined threshold c

against the null hypothesis |∆ψi| = |ψi1 − ψi2| ≤ c.

11



2.3 Data Preparation

2.3.1 Introduce Data

Two biological replicates were conducted for each knockdown experiment targeting 237

and 235 RNA-binding proteins (RBPs) in the HepG2 and K562 cell lines, respectively. Ad-

ditionally, two biological replicates of control experiments involving 29 and 28 non-target

knockdowns were performed in the HepG2 and K562 cell lines, respectively. Reads were

aligned to GRCH37 using the GENCODE v19 annotations. The reads from HepG2 and

K562 cell line experiments were mapped to 15,046 and 14,942 genes respectively.

Differential alternative splicing events were analyzed using rMATS. It was implemented

on the knockdown and control replicate bam files with the GENCODE v19 annotation for

both cell lines. This reports five types of differential alternative splicing events: A3SS

(alternative 3’ splice site), A5SS (alternative 5’ splice site), MXE (mutually exclusive ex-

ons), RI (retained introns), and SE (skipped exons).Figures 2.2a and 2.2b represent the

number of reported alternatively spliced significant transcripts at FDR < .05 in HepG2

and K562 cells. Figures 2.2c and 2.2d show the distribution of FDR significant transcripts

across all RBP knockdown experiments.

2.3.2 Processing Steps

Two requirements had to be met to prepare the data for applying the CML algorithm. The

first is to transform the rMATS and RNA-seq data to make it compatible with the CML

algorithm. The second is to augment the two mentioned data types to create a transcript-

gene network when CML is applied to the augmented dataset. The log ratio fold change

transformation will be used on the exon inclusion isoform levels from the rMATS output,

12



HepG2 Cell

(a)

K562 Cell

(b)

(c) (d)

Figure 2.2: Summary Statistics for number of significant transcripts

and the read counts from the RNA-seq data.

For the rMATS data processing, we consider transcripts significant if their FDR value is

< 0.05. All non-significant transcripts were filtered out for each type of alternative splicing

event in both cell lines. Across all RBP knockdown experiments, these FDR significant

transcripts were grouped into different datasets by the type of AS events. Significant tran-

scripts were labeled according to which RBP knockdown experiment they were detected

in. A pseudo-count of 1 was then added to the inclusion and exclusion read counts for

both knockdown and control replicates. Subsequently, exon inclusion levels were recal-

culated and averaged across replicates. Log ratio fold changes were calculated for each

exon to quantify the change in its inclusion isoform compared to the control. Regarding

the RNA-seq data, a pseudo-count of 2 was added to all count entries. Next, read counts

across biological cell replicates were averaged, and log ratio fold changes were calculated

to assess the change in gene expression relative to the control condition.
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The log ratio fold change values from the rMATS and RNA-seq data will be used as a

metric to determine causal relationships between genes and significant transcripts within

an RBP knockdown experiment. The dataset we construct follows a structured format:

each row represents an individual RBP knockdown experiment, while each column con-

tains the log ratio fold change values pertaining to gene expression levels and exon inclu-

sion levels for selected transcripts. Transcripts were selected according to the following

criteria. We restricted exon selection belonging to the five RBP knockdown experiments

having the highest number of significant transcripts, up to the top five. Shown in Figures

2.3a and 2.3b are the 5 RBPs whose knockdown experiments yielded the highest number

of FDR significant A3SS transcripts, along with their respective quantities. Within each

RBP knockdown experiment, we identify the most significant transcripts, with a minimum

absolute value inclusion fold change of 1.5, ensuring that all selected transcripts originate

from unique genes. Figure 2.1 shows an example of ten selected A3SS transcripts from

the U2AF2 knockdown experiment in HepG2 along with log ratio fold change values for

the inclusion isoform. The gene from which the exon was spliced and the event coordi-

nates are presented. ES represents the exon start base, and EE represents the exon end

base. FDR 0 are generated when the actual value is smaller than the numerical accu-

racy cutoff. Zero FDR values can be interpreted as ≤ 2.2e−16. We generate five different

datasets according to these five RBPs, encompassing each AS event across both cell

lines, resulting in a total of 50 datasets.

Subsequently, within each dataset, we search the aforementioned ten transcripts across

all other RBP knockdown experiments. It was observed that any one of these ten tran-

scripts was not always observed in the rMATS data for other experiments. If any of these

ten transcripts are absent in at least 25% of the other experiments, we proceed to select

the next most significant exon based on the same criteria. To address missing values,

14



HepG2 Cell

(a)

K562 Cell

(b)

Figure 2.3: Distribution of significant A3SS exon events across RNA binding protein
knockdown experiments

Gene longES longEE shortES shortEE flankingES flankingEE FDR LR
CTNNAL1 111,704,850 111,705,151 111,704,850 111,705,114 111,705,240 111,705,324 0 2.27

C17orf76-AS1 16,342,894 16,343,567 16,343,498 16,343,567 16,342,640 16,342,728 0 −1.54
PDLIM7 176,916,771 176,917,032 176,916,771 176,916,833 176,917,870 176,917,907 0 2.07

HSP90AA1 102,552,553 102,552,755 102,552,553 102,552,715 102,553,322 102,553,381 0 3.28
TSTA3 144,698,275 144,698,610 144,698,275 144,698,390 144,698,736 144,698,893 0 2.03

MICAL1 109,768,559 109,768,780 109,768,559 109,768,643 109,768,883 109,768,925 0 2.52
USP34 61,522,302 61,522,461 61,522,302 61,522,425 61,523,934 61,524,060 0 3.9

SLC35C2 44,983,711 44,983,918 44,983,711 44,983,880 44,984,440 44,984,513 0 2.66
AP3D1 2,123,828 2,123,963 2,123,828 2,123,878 2,127,150 2,127,200 0 4.41
NOTUM 79,916,810 79,916,993 79,916,810 79,916,871 79,917,346 79,917,442 0 2.33

Table 2.1: Selected A3SS transcripts from U2AF2 knockdown in HepG2 cell line

we uniformly simulate them based on the 5th quantile of the distribution of log ratio fold

changes for all transcripts from rMATS within the respective RBP experiment, AS event,

and cell line. Furthermore, we exclude gene expression columns from the dataset if the

average read count between replicates for the target RBP falls below 10, or if the log ratio

fold change in gene expression is less than 1.75 in absolute value. These columns are

deemed less significant for analysis. Furthermore, the log-transformed gene expression

values will be appended to each of the 50 processed rMATS datasets. The application of

the Coordinated Multi-Neighborhood Learning (CML) algorithm to these datasets yields

50 distinct transcript-gene networks. These networks effectively capture causal relation-

ships within each RBP knockdown experiment across various AS events in both cell lines.
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Chapter 3

Results

The CML algorithm was run with the following parameters on each dataset. All tran-

scripts were selected as target nodes. The MMPC algorithm was used to estimate Markov

blankets and obtain first and second-order neighborhoods for each target Tsamardinos,

Aliferis, and Statnikov 2003. Significance levels αMb = .01 and αskel = .01 were used for

the Markov blanket estimation and skeleton recovery steps. To assess confidence in the

learned graphs from CML, we utilized bootstrapping on each dataset across experimen-

tal configurations. Running 200 bootstrap iterations, we applied CML to each resampled

dataset. For each iteration, we compared the original graph G = (V,E) with the boot-

strapped graph GB = (VB, EB). An edge (i, j) ∈ E is considered confident if it appears in

at least 50% of the bootstrap iterations.

We provide tables and graphs for specific experimental configurations, summarizing

the CML algorithm’s results. Orange-highlighted nodes denote selected target transcripts,

while white nodes represent genes. We use the notation T_GeneSymbol to denote a tran-

script that has been spliced from the given gene symbol. The exact coordinates for

a transcript can be found in the supplementary. Dashed lines indicate edges between

neighborhoods. Notably, the displayed graphs omit the application of rule RN (line 15 of
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the CML algorithm). This omission acknowledges the potential presence of confounding

variables, given the complex effects of RBPs on transcript-gene interactions. The table’s

”Transcript” column lists the transcripts selected as target nodes. The ”Children” column

lists the nodes that are directly affected by the transcript in the same row, indicating a

causal relationship where the transcript acts as a parent node. The ”Parents” column lists

the nodes that directly affect the transcript in the same row, indicating a causal relation-

ship where the transcript acts as a child node. The ”Neighbors” column lists the nodes

that are neither parents nor children but are connected to the transcript through other

types of relationships. The data summarizing our results can be accessed here.
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Table 3.1: HepG2 A5SS U2AF2 Causal Relationships

Transcript Children Parents Neighbors

(5) T ABHD3 KRT15 NA NA

(6) T ACSS2 (7) T FDPS NA NA

(2) T CASP8 SLC10A3 NA NA

(3) T NUP160 OAZ3
CREB5 NA NA

(1) T RPL10A PIDD
ADAT3 NA NA

(4) T SRSF7 NA NA MED30

(7) T FDPS NA (6) T ACSS2
CCDC17 NA

Figure 3.1: HepG2 A5SS U2AF2 Graph
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Table 3.2: HepG2 RI SF3A3 Causal Relationships

Transcript Children Parents Neighbors

(9) T ARAP1 NA NA (14) T SSB

(14) T SSB NA NA (9) T ARAP1

(12) T MARS (11) T RPS18
AC024592.12 NA NA

(15) T PILRB NA SOD3 NOTCH1
SYNPO

(10) T PTBP1 NA (13) T SYVN1 RGS17

(11) T RPS18 (8) T RPL4 (12) T MARS
ARTN RP11-345J4.3

(13) T SYVN1 (10) T PTBP1 NA NA

(8) T RPL4 NA (11) T RPS18 NA

Figure 3.2: HepG2 RI SF3A3 Graph
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Table 3.3: HepG2 SE PUF60 Causal Relationships

Transcript Children Parents Neighbors

(16) T ACSL4 (23) T HNMT NA NA

(20) T BAG6 HR NA NA

(18) T EIF4H SECTM1 NA NA

(19) T SREK1 (21) T STX16 NA NA

(21) T STX16 NA (19) T SREK1
ESRRB CES4A

(17) T TPM1 C1orf222 NA NA

(22) T WIPI2 (23) T HNMT NA NA

(23) T HNMT NA (16) T ACSL4
(22) T WIPI2 NA

Figure 3.3: HepG2 SE PUF60 Graph
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Table 3.4: K562 A3SS AQR Causal Relationships

Transcript Children Parents Neighbors

(24) T AKT2 NA (28) T BAZ2A
(30) T VRK1

ITGA9
PLCD3

(28) T BAZ2A (24) T AKT2
GOLGA6L6 NA NA

(27) T CARS (25) T DDIT3 NA NA

(26) T CCNB1 NA NA (30) T VRK1

(30) T VRK1 (24) T AKT2 NA (26) T CCNB1

(25) T DDIT3 SARM1 (27) T CARS GAGE12I

(29) T RPS10 CNIH2 NA NA

Figure 3.4: K562 A3SS AQR Graph
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Table 3.5: K562 MXE EIF4AS Causal Relationships

Transcript Children Parents Neighbors

(34) T ABCB8 NA (33) T ABHD14A-ACY1 (31) T SLC25A3
ZC3H12C

(31) T SLC25A3 NA T H2AFY (34) T ABCB8
FOSL2

(33) T ABHD14A-ACY1 (34) T ABCB8 NA NA

(35) T ATL2 TBC1D29 NA NA

(32) T H2AFY (31) T SLC25A3
AOC3 NA NA

(37) T TBRG4 QRICH2 NA NA

(36) T GTF2H3 NA NPEPL1
TICAM2 NA

Figure 3.5: K562 MXE EIF4A3 Graph
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Chapter 4

Discussion

In this thesis, we implement the CML algorithm on an augmented dataset utilizing RNA-

seq and rMATS data acquired from RBP knockdown experiments in the HepG2 and K562

cell lines. RBPs are a class of proteins with many diverse functions, including the regula-

tion of RNA metabolism. Disruption of the functions of RBPs is known to be associated

with cancer and neurodegenerative diseases. It is crucial to uncover the mechanisms

governing RBP-RNA interactions. CML is a local constraint-based structure learning al-

gorithm akin to the PC and FCI algorithms. It implements conditional independence tests

and deterministic rules to recover a graph from observed data. Traditionally, structure

learning algorithms struggle to infer the underlying graphical structure for observed data

in high-dimensional settings. This is, in part due to the fact that as the number of vari-

ables increases, the number of possible edges in a graph grows quadratically, leading to

an exponential increase in the number of possible graph structures. The search space

becomes large quickly, making it computationally infeasible to explore all possible graph

structures. This is commonly an issue in the field of genomics where datasets have many

features and fewer observations.

A novel feature of CML is that it implements coordinated learning across multiple
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neighborhoods, and dramatically lowers computation cost by forgoing the estimation of

an entire graph structure. The reduced computation cost allowed CML to be applied to

perform structure learning to recover a graph local to target variables of interest. Within

each cell line, for each of the 5 types of AS events, 5 RBPs were selected to infer causal

relationships between transcripts and genes from their knockdown experiments. A total

of 50 datasets were constructed using rMATS and RNA-seq data corresponding to each

experimental configuration. Within each configuration of the datasets, AS exons were

selected according to our filtering criteria. The datasets’ columns corresponding to exons

encompassed log ratio fold change values, which gauged alterations in exon inclusion

levels, while the columns pertaining to genes encompassed log ratio fold change values,

reflecting changes in gene expression. With our augmented dataset containing infor-

mation about differential AS patterns and gene expression, several causal relationships

between transcripts and genes were elucidated within an RBP knockdown experiment.
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Chapter 5

Supplementary

The tables below summarize the coordinates of the selected transcripts for the selected

experimental configurations shown in the results section. The ES and EE labels cor-

respond to an exon’s start and end bases respectively. The AS event coordinates are

defined as follows:

• SE (Skipped Exon):

– Coordinates: ES, EE, upStrES, upStrEE, downStrES, downStrEE

– Inclusion form includes the target exon: (ES, EE)

• MXE (Mutually Exclusive Exons):

– Coordinates: 1stESe, 1stEE, 2ndES, 2ndEE, upStrES, upStrEE, downStrES,

downStrEE

– If the strand is +, then the inclusion form includes the 1st exon: (1stES, 1stEE)

and skips the 2nd exon

– If the strand is -, then the inclusion form includes the 2nd exon: (2ndES, 2ndEE)

and skips the 1st exon

• A3SS (Alternative 3’ Splice Site):
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– Coordinates: longES, longEE, shortES, shortEE, flankingES, flankingEE

– Inclusion form includes the long exon: (longES, longEE) instead of the short

exon: (shortES, shortEE)

• A5SS (Alternative 5’ Splice Site):

– Coordinates: longES, longEE, shortES, shortEE, flankingES, flankingEE

– Inclusion form includes the long exon: (longES, longEE) instead of the short

exon: (shortES, shortEE)

• RI (Retained Intron):

– Coordinates: riES, riEE, upStrES, upStrEE, downStrES, downStrEE

– Inclusion form includes (retains) the intron: (upStrEE, downStrES)

Table 5.1: Selected A5SS Exons from HepG2 Cell

RBP Gene longES longEE shortES shortEE flankingES flankingEE FDR LR

U2AF2 RPL10A 35436723 35437062 35436723 35436804 35437157 35437306 0 1.88

U2AF2 RP1-

283E3.8

1654026 1654270 1654146 1654270 1653034 1653150 1.19E-12 -2.32

U2AF2 CASP8 202141549 202141827 202141549 202141691 202149538 202150040 5.35E-08 -2.10

U2AF2 NUP160 47834418 47834599 47834433 47834599 47833853 47833981 1.00E-07 1.81

U2AF2 SRSF7 38976039 38976488 38976381 38976488 38975720 38975795 1.03E-07 -2.10

U2AF2 ABHD3 19243638 19244191 19244078 19244191 19239130 19239304 2.28E-07 2.19

U2AF2 IVD 40699836 40700011 40699836 40699926 40700137 40700189 1.57E-06 1.98

U2AF2 EIF3K 39116667 39116902 39116667 39116742 39123069 39123136 1.10E-05 3.23

U2AF2 ACSS2 33509132 33509276 33509132 33509265 33509346 33509403 3.95E-05 2.41

U2AF2 FDPS 155282045 155282195 155282045 155282186 155287731 155287812 3.95E-05 1.54
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Table 5.2: Selected RI Exons from HepG2 Cell

RBP Gene riES riEE upStrES upStrEE downStrES downStrEE FDR LR

SF3A3 RPL4 66794949 66795502 66794949 66795088 66795395 66795502 0 1.90

SF3A3 ARAP1 72407593 72408240 72407593 72407699 72408027 72408240 0 1.70

SF3A3 PTBP1 804035 804438 804035 804208 804291 804438 0 2.42

SF3A3 RPS18 33243741 33244044 33243741 33243843 33243952 33244044 0 1.77

SF3A3 SRRM2 2808988 2809173 2808988 2809048 2809140 2809173 0 2.83

SF3A3 MARS 57910027 57910438 57910027 57910120 57910217 57910438 0 1.51

SF3A3 CYTH2 48978094 48981402 48978094 48978206 48981322 48981402 0 1.99

SF3A3 SYVN1 64898744 64899067 64898744 64898844 64898940 64899067 2.49E-12 1.68

SF3A3 SSB 170664986 170665412 170664986 170665063 170665369 170665412 3.13E-11 2.32

SF3A3 PILRB 99950186 99950746 99950186 99950537 99950619 99950746 3.70E-11 -2.14

Table 5.3: Selected SE Exons from HepG2 Cell

RBP Gene ES EE upStrES upStrEE downStrES downStrEE FDR LR

PUF60 ACSL4 108934231 108934360 108926364 108926601 108939372 108939425 0 2.47

PUF60 TPM1 63335904 63336030 63334956 63335142 63336225 63336351 0 3.53

PUF60 EIF4H 73604576 73604636 73604151 73604248 73609070 73609208 0 -2.68

PUF60 SREK1 65451892 65454760 65449290 65449424 65455046 65455162 0 -3.66

PUF60 BAG6 31612083 31612129 31611858 31611971 31612301 31612379 0 2.10

PUF60 UQCRC2 21990386 21990572 21987487 21987564 21991867 21992021 0 2.62

PUF60 SAT1 23802410 23802520 23801916 23802000 23803444 23803546 0 -1.57

PUF60 STX16 57234678 57234690 57226921 57227143 57242545 57242653 0 -1.65

PUF60 WIPI2 5232748 5232802 5229818 5230124 5239206 5239289 0 -2.56

PUF60 HNMT 138724666 138724956 138722048 138722198 138727734 138727787 0 -1.53

Table 5.4: Selected A3SS Exons from K562 Cell

RBP Gene longES longEE shortES shortEE flankingES flankingEE FDR LR

AQR AKT2 40761064 40761206 40761064 40761176 40762832 40762961 0 3.34

Continued on next page
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5.4 – continued from previous page

RBP Gene longES longEE shortES shortEE flankingES flankingEE FDR LR

AQR INSIG1 155094438 155094556 155094456 155094556 155093960 155094127 0 4.56

AQR DDIT3 57911051 57911242 57911051 57911221 57911488 57911536 0 2.04

AQR CCNB1 68467078 68467279 68467096 68467279 68463999 68464170 0 4.25

AQR CARS 3023199 3023404 3023199 3023283 3023770 3023830 0 1.52

AQR BAZ2A 56993747 56993901 56993747 56993880 56993984 56994274 0 2.12

AQR RPS10 34392445 34392632 34392445 34392617 34392848 34392998 0 3.76

AQR CRLF3 29124328 29124437 29124328 29124416 29130918 29131126 0 3.82

AQR DDX23 49230676 49230886 49230676 49230820 49231063 49231440 0 3.35

AQR VRK1 97347492 97347728 97347513 97347728 97342366 97342457 0 3.57

Table 5.5: Selected MXE Exons from K562 Cell

RBP Gene Strand 1stES 1stEE 2ndES 2ndEE upStrES upStrEE downStrES downStrEE FDR LR

EIF4A3 SLC25A3 + 98989210 98989335 98989504 98989626 98987756 98987913 98991633 98991813 0 2.90

EIF4A3 H2AFY - 134688635 134688735 134696186 134696470 134681657 134681747 134705095 134705293 1.56E-

13

1.83

EIF4A3 TTLL3 + 9862229 9862425 9867483 9867632 9854931 9855029 9868680 9868924 9.43E-

06

1.84

EIF4A3 ABHD14A-

ACY1

+ 52018062 52018174 52019222 52019287 52012274 52012390 52019376 52019481 4.46E-

05

1.87

EIF4A3 ABCB8 + 150729930 150730148 150731359 150731515 150725536 150725697 150731591 150731686 1.26E-

04

2.21

EIF4A3 ATL2 - 38570409 38570654 38581208 38581319 38546026 38546161 38604284 38604404 2.05E-

04

2.27

EIF4A3 GTF2H3 + 124143976 124144022 124144062 124144131 124140317 124140371 124144341 124144477 2.64E-

03

1.83

EIF4A3 TBRG4 - 45143697 45143855 45144136 45144345 45142931 45143042 45145039 45147063 3.60E-

03

1.57

EIF4A3 PPOX + 161137144 161137276 161138782 161138973 161136889 161137024 161139449 161139510 4.16E-

03

1.86

EIF4A3 FANCA - 89877114 89877210 89877336 89877479 89874701 89874775 89882944 89883065 4.19E-

03

2.18
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