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ABSTRACT 

 

Multiscale mechanics of bioinspired dry adhesives 

by 

Jamie A. Booth 

 

The adhesive systems of climbing animals have served as inspiration for a new class of 

temporary adhesive utilizing surface microstructure in place of intrinsically soft and 

viscoelastic materials. These have the potential to address requirements for robust, releasable, 

and reusable bonding. Efforts to characterize synthetic dry adhesives, as well as to scale 

adhesive patches to large areas while maintaining performance, necessitate consideration of 

features of the system across length scales. This work addresses two topics which require that 

the behavior of individual microfibrils be accounted for explicitly within large-scale loading 

configurations. 

 

Under ideal conditions the strength of fibril arrays is known to be controlled by an array edge 

load concentration associated with compliance of the backing layer. Laboratory experiments 

have revealed that the strength is sensitive to the alignment of the adhesive and substrate 

surfaces, however no systematic investigation of the response to these perturbations in the 

loading configuration has been performed. A contact mechanics model is developed, 

considering the role of backing layer compliance in addition to misalignment. A monotonic 

decay in the adhesive strength of the array with increasing misalignment angle is confirmed. 

More interestingly, regimes of dominance of backing layer compliance and misalignment in 



ix 

 

control of the adhesive strength are revealed. Where circumferential detachment gives way to 

peel-like detachment, compliance of the backing layer is found to be beneficial to performance. 

This is the result of shielding of the peel-front load concentration by backing layer deformation. 

Subsequent experimental characterization of a mushroom-tipped synthetic fibril array shows 

that this regime is dominant for misalignment angles of just ~ 0.2° over a patch size of 2 mm. 

These results can be utilized to anticipate the performance of fibrillar adhesive patches on flat 

surfaces without precise control of alignment, or of sub-arrays within a larger hierarchy where 

surface undulations may lead to local misalignment. 

 

While the potential importance of the variability in fibril adhesive strength in controlling the 

performance of microstructure arrays has been highlighted in past work, there has been no 

effort to systematically characterize the strength distribution or understand its effect on 

performance further. The capabilities of an experimental platform with in-situ contact 

visualization are leveraged to provide strength data on a fibril-by-fibril basis. A framework is 

developed, based upon the statistical theory of fracture, allowing for the decoupling of two 

defect populations and assessment of the impact of fabrication imperfections on performance. 

A subsequent theoretical investigation is performed with a view to understanding the combined 

effect of variability in fibril adhesive strength and load concentrations at the array scale. It is 

shown that, dependent on the severity of the load concentration, increased variability in fibril 

adhesive strength can modulate the influence of load concentrations and lead to independence 

of the adhesive strength of the array from properties such as backing layer compliance or 

substrate curvature. This is highly significant, given that the severity of load concentrations is 

a key factor in designing hierarchical structures for adhesive strength. 
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Chapter 1 

Introduction 

 

1.1 Motivation 

Temporary bonding applications often rely on pressure sensitive adhesives (PSAs) [1, 2]. 

Comprised of intrinsically soft and viscoelastic polymers, with elastic modulii below 100 kPa, 

they are capable of conformation to surface asperities leading to the generation of molecular 

contact. This permits utilization of universal intermolecular forces for adhesion, rather than 

any material-specific bonding or chemical reaction. Cavitation and fibrillation [3, 4], as well 

as the viscous response of the material [5] can increase the energy requirement for separation 

above the intrinsic levels of the intermolecular interaction. This allows the load, applied remote 

to the contact or interface, to be increased to higher levels without failure of the joint. However, 

the use of these materials has its drawbacks. Their viscoelastic nature can render PSAs prone 

to creep when subject to loading over extended periods of time. Their low stiffness means that 

the surfaces are often fouled by contaminant particles, self-adhere, or leave residues on the 

target substrate, all of which act to limit their reusability. 

 

Other strategies for temporary bonding, particularly relevant in the industrial handling of 

components, include mechanical gripping, suction or vacuum, electrostatic and 
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electromagnetic attraction [6]. Each approach possesses specific limitations. Vacuum gripping, 

for example, is not possible on permeable objects or in reduced pressure environments. Many 

of these systems require bulky power-consuming external systems, which limit their usefulness 

in miniaturized systems, in mobile applications, or in weight-critical fields such as space travel. 

 

Together, these technological drivers have led to the pursuit of ‘dry adhesives’ [7-23], using 

intrinsically stiffer materials and thus being capable of temporary bonding with enhanced 

reusability and reversibility. As is increasingly common in engineering, to solve this complex 

technical problem researchers have looked to biology, and the adhesive systems of insects [24] 

and reptiles [25], for inspiration. As the largest of the species with adhesive toe-pads, the Tokay 

(Gekko) gecko has received the greatest attention. It possesses the ability to climb on vertical 

and inverted surfaces at speeds up to 1 m/s [26], supporting a body mass of ~ 50 g on a pad 

area of ~ 220 mm2 [25]. This suggests that the gecko can transition quickly between strong 

attachment and easy detachment. It wasn’t until the late 19th and early 20th centuries that 

advances in microscopy permitted first observation of the hierarchical microstructure of the 

gecko toe-pad [27-29], ultimately allowing the mechanisms facilitating this sticking ability to 

be investigated. 
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Figure 1.1. Features of the adhesive system of the Gekko gecko and their 

approximate characteristic dimensions. Reproduced with permission from 

[30]. 

 

Figure 1.1 is a schematic representation of the features of the Tokay gecko’s adhesive system. 

Its functionality begins with the skeletal and muscular features of the body (length scale 

~ 10 − 100 mm), responsible for actuation and control of the feet and toes. Each toe-pad bears 

overlapping scales with modified geometry, known as lamellae (length scale ~ 1 mm). 

Distributed across the lamellae are arrays of setal fibers (length scale ~ 10 − 100 μm). Typical 

setae are 5 − 10 μm in diameter at their proximal end, tapering to 2 μm in diameter as they 

branch. The setae are curved such that branches approach the contacting surface normally. 
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Branches are terminated by triangular spatulae (length scale ~ 100 nm), approximately 100 −

1000 per seta. The outer surface of the lamellae, including the setal fibers, are comprised of 

β-keratin [31]. This protein has a relatively high bulk stiffness (~ 1 GPa [32]). This is thought 

to be of fundamental importance to the anti-fouling properties of the toe pad [33], permitting 

attachment over tens of thousands of repeat cycles without loss of performance [34]. The 

question therefore becomes, how can the gecko generate sufficiently high adhesive forces 

using this intrinsically stiff material? 

 

At the root of any adhesion problem is a source of bonding or interaction between the substrate 

and the adhesive surface. After a lengthy debate surrounding the potential source of attractive 

forces between gecko toe-pad structures and the substrate [29, 35-37] , it is now widely 

accepted that the universal intermolecular van der Waals interaction is the dominant 

contributor [38]. However, the mere existence of these surface-chemistry-independent forces 

is insufficient to ensure strong attachment to substrates of considerable roughness and 

curvature, over areas sufficient to bear loads of engineering significance. It is the mechanics 

associated with the hierarchical fibrillar structure which are key to addressing these challenges. 

 



5 

 

 

Figure 1.2. Summary of the proposed cooperative adhesion enhancement 

mechanisms for a hierarchical fibrillar microstructure. Adapted with 

permission from [39]. 

 

Figure 1.2 is a schematic summary of the multiple cooperative mechanisms of adhesion 

enhancement which have been proposed [39]. First consider the attachment process, where it 

is vital that intimate molecular contact be generated over a large area if short-ranged 
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intermolecular forces are to be harnessed. The slender fibrillar structures possess low bending 

stiffness, rendering the effective modulus during attachment many orders of magnitude lower 

than the intrinsic modulus of the β-keratin [30, 40-43]. The strain energy stored in the adhesive 

during preload, which can act to drive detachment, is minimal. The fibril hierarchy allows for 

conformation to surface roughness across length scales, generating contact with the spatula 

tips over the projected area of the toe-pads (Figure 1.2a). 

 

Even when intimate molecular contact is generated at terminal sub-contacts, stress 

concentrations at the interface have the potential to reduce the adhesive strength. 

Intermolecular forces are overcome locally leading to the nucleation and propagation of 

interfacial defects and the detachment of the fibril. The strength of the sub-contact is reduced 

as only a fraction of the interface supports near maximum stresses at any instant. This is 

addressed through the use of small sub-contacts, which can enhance adhesive strength by 

increasing the surface-to-volume ratio (surface energy gain vs. strain energy cost) [44] (Figure 

1.2b), as well as limiting the size of interfacial defects [45] (Figure 1.2c) and reducing 

interfacial stress concentrations at these defects and at the sub-contact edge [46-48]. If the size 

is reduced below a critical value then the interfacial stress will be approximately uniform, and 

strength will saturate at the intrinsic maximum associated with the adhesive interaction (Figure 

1.2d). 

 

As we view the larger scale features of the system, and the projected view of the contact area 

increases, load concentrations among subsets of fibrils are possible due to variations in 

displacement across the contact and at the contact edge. These become more severe as the 
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dimensions of the contact increase. If fibrils detach then an array-scale defect is formed, 

ultimately reducing the strength of the contact. However, fibrils are compliant can deform 

elastically, reducing the associated concentration of load. As they detach, the strain energy 

stored in the fibril is not available to drive the detachment of neighboring fibrils. In this way 

they provide a contribution to the toughness which is inversely proportional to their axial 

stiffness [40, 46, 49, 50] (Figure 1.2e). The utilization of hierarchy ensures that this mechanism 

prevails across length scales [51], allowing short-ranged intermolecular forces to be harnessed 

across macroscopic areas to bear loads of engineering significance. 

 

The preceding features address the requirement for strength. Equally interesting is the ability 

of the gecko to detach with minimal force [52], ultimately facillitating high speed climbing. 

This can also be attributed to the fibrillar microstructure. Based on the observation of in-plane 

displacement during attachment, and normal displacment via digital hyperextention during 

detachment [29], it was proposed that the fibrillar adhesive system exhibits load-orientation 

depedent strength. It was revealed that this is a feature of the anisotropic geometry of the seta 

[48, 50], with loading angles < 30° yielding highest strength. Consequently, the gecko may 

use in-plane loading of the adhesive system to modulate the setal loading angle, and the normal 

force which can be sustained without peeling. When climbing on walls frictional loading is a 

natural consequence of gravity, while on ceilings it is achieved by oppositely orienting the feet 

of the fore and hind limbs and loading via muscular contraction [53]. 

 

There have been considerable efforts to build upon the preceding knowledge to fabricate 

synthetic surface microstructures for dry adhesion. These can be primarily categorized as 
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passive, based upon normal contact at tips of vertical axisymmetric fibrils (e.g. [8-15]), or 

active, based upon shear-actuated side contact of geometrically anisotropic fibrils (e.g. [16-

19]). Notable exceptions to these categorizations include angled tip-contact structures [20], 

defect-induced anisotropic tip-contact structures [21], film-terminated fibrillar structures [22], 

and fabric-elastomer composite adhesives without surface microstructure [23]. 

 

Axisymmetric tip-contact fibrils are typically designed to bear load normal to the interface, 

with their primary advantage being the simplicity of the macroscopic loading configuration. 

This is in contrast to shear-actuated side contact fibrils which, to bear load in the normal 

direction, require more complex configurations with oppositely oriented patches and 

mechanisms which maintain in-plane forces during load bearing (e.g. [54, 55]). These active 

systems do, however, have a tremendous advantage with respect ease of detachment. As in the 

biological system of the gecko, in-plane forces can be relaxed leading to low-force peeling. 

Alternative approaches have been devised for easy release of normal tip-contact fibrils, most 

notably fibril buckling [56-58]. 

 

Figure 1.3 shows several synthetic fibrillar microstructures, exemplifying both tip-contact [10, 

11] and side-contact [16, 18] designs. As has proved most successful, these are all fabricated 

by replica molding. A curable polymer is cast in microfabricated master template, the features 

of which are typically defined by photolithography and etching. Using such processes, the 

minimum characteristic dimensions of individual structures have typically been limited to 1 −

10 µm. 
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Figure 1.3. Examples of surface microstructures for synthetic dry adhesives; 

(a) Flat-ended cylindrical (‘punch-like’) fibrils, fabricated in 

polydimethylsiloxane (PDMS) via replica molding from a lithographically 

defined negative mold [10], (b) Mushroom-tipped fibrils fabricated in 

polyurethane (PU) using a lithography-based positive-negative-positive 

replica molding process [11], (c) Wedge-shaped microstructures fabricated 

in PDMS via replica molding from a lithographically defined negative mold 

[16], (d) Half-cylinder microstructures fabricated in PDMS via replica 

molding from a lithographically defined negative mold [18]. Reproduced 

with permission. 

 

In accordance with the scope of this work, attention is limited to tip-contact fibrils from this 

point forward.  The first performance metric of interest is adhesive strength of individual 

fibrillar sub-contacts. In this regard, perhaps the most fundamental principle raised by study of 

the gecko adhesive system was uniformity of the stress distribution at the interface of the 

substrate and nanometer scale spatulae, and the associated insensitivity to defects and the 

contact edge. Synthetic fibrils at the micron scale do not appear to be operating in this regime. 
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This has been directly evidenced by observation of defect propagation at the interface of the 

fibril tip and substrate (e.g. [59-62]).  It is also implied by the dependence of the performance 

to changes in the tip geometry. Flange-tipped ‘mushroom’ fibrils, for example, have shown a 

20-fold increase in detachment force over otherwise-identical punch-like counterparts [10]. 

This is now known to be associated with a reduction in the severity of the stress concentration 

at the contact edge [63, 64]. A significant emphasis has therefore been placed on the design of 

tip structures for improvement of the interfacial stress distribution. In addition to mushroom 

tips, notable examples include soft-tip layer composite fibrils [12-14], and ‘funnel-shaped’ 

microstructures [15]. 

 

Of equal importance, and having received significantly less attention, is the performance of 

synthetic dry adhesives at larger length scales. This encompasses arrays of fibrils, and must 

consider their backing structure and macroscale loading configuration. Often these lead to non-

uniform load distributions among fibrils, which can become more severe as array size is 

increased. Scaling up the size of adhesive patches is necessary if problems of engineering 

significance are to be addressed. It is therefore vital that fibril design efforts be accompanied 

by approaches to improve the load distribution among fibrils. Hierarchy in the form of multi-

level fibrillar structure has been explored as means to achieve this (e.g. [65, 66]). Adhesion 

enhancement has been inconsistent, owing to the complexity of fabrication [67]. Alternative 

approaches which avoid the requirement for fibrillar subdivision and which are commensurate 

with fabrication capabilities must therefore be explored.  
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In addition to performance in application, the load distribution across the array is of 

fundamental importance to the experimental characterization of fibrils. The measure of fibril 

adhesive strength (e.g. local detachment force), or strength per unit area of fibrillar interface 

(e.g. maximum stress or work of adhesion) will invariably be dependent on the local surface 

roughness and intrinsic material properties of the contacting surface. However, it is important 

that it be independent of the global properties of the measurement system in order to allow for 

comparison across experimental investigations. The geometry of the probe [68], control of 

alignment of probe and sample [69], and the compliance of the backing layer [70] can all give 

rise to non-uniform load distributions. Regardless of their source, these render the reporting of 

adhesion strength as the detachment force normalized by the projected contact area 

meaningless outside of the context of that specific study. Consequently, data suitable for 

comparison across experimental studies has been limited, either to investigations utilizing a 

well-aligned flat probe and backing layer which is sufficiently thin, or to a geometry which, 

although yielding a non-uniform load distribution, follows a well characterized adhesion or 

fracture mechanics model from which an intrinsic property of the fibrillar interface and 

contacting surface can be extracted. 

 

Furthermore, an intrinsic measure of fibril strength is not the only physically relevant 

parameter which an ideal experiment should be able to capture. Variation in the size and 

character of the major flaw from fibril to fibril within the array will result in a corresponding 

distribution of fibril strength [45]. A measure of variability in strength, representative of this 

distribution, would provide a richer experimental characterization. The downside of traditional 

adhesion tests is that the standard deviation on the mean strength from repeated measurements 
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does not have direct physical relevance. Understanding the statistical properties of fibril 

adhesive strength may help to understand the role of roughness at the fibril tip, contaminant 

particles, and fabrication imperfections. Variability in fibril adhesive strength may also 

influence the performance in application, altering or precluding the role of other effects at large 

length scales such as backing layer compliance, substrate geometry, or large-scale roughness. 

 

1.2 Outline 

The broad goal of this work is to address the preceding challenges, furthering understanding 

of how the performance of individual, tip-contact fibrillar microstructures is coupled to larger 

length scale features of the contact. Two primary effects are studied. The first is the load 

distribution among fibrils, and its dependence on the geometry of the loading condition and 

the elastic properties of the backing layer. The second is the statistical variation in the strength 

of individual fibrils. In each case we focus on how the adhesive performance is impacted, and 

consider the relevance of this to both laboratory experimental characterization and system-

level application. 

 

Chapter 2 is a summary of the background information necessary to understand the details of 

the work described in subsequent chapters. It begins with a description of intermolecular 

forces, and their underlying strength. The theories of elasticity and linear elastic fracture 

mechanics are then described, with a view to understanding the reduction in strength associated 

with defect-controlled detachment. We finish by reviewing efforts to apply these theories to 

understand the performance of fibrillar adhesives, both at the single fibril level and at the fibril-

array-scale. 
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Chapter 3 describes a theoretical parametric exploration of the performance of fibrillar arrays 

subject to non-ideal loading in the form of misalignment between adhesive surface and 

substrate. The work of Chapter 4 seeks to verify experimentally, hypotheses formed in Chapter 

3 regarding the influence of backing layer compliance on the performance of an adhesive 

subject to misalignment. 

 

Chapter 5 introduces the study of variability in fibril adhesive strength using the statistical 

theory of fracture. An experimental methodology is developed to verify the appropriateness of 

the theory, and to explore the significance of the statistical parameters it yields. Chapter 6 seeks 

to combine the fibril adhesive strength distribution characterized in Chapter 5 with the model 

of fibril load distribution utilized in preceding chapters, examining the coupling of these 

effects. 
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Chapter 2 

Background 

 

2.1 Intermolecular and surface forces 

The general question to which we seek an answer is, for two bodies in contact, what it is the 

critical level of load required to cause absolute separation? The first step in the formulation of 

this problem is to examine the properties of the intermolecular interactions between bodies, 

determining the forces to which these give rise as a function of separation at the interface. 

 

Interactions which play a role in adhesion can be extremely diverse [71]. Their origins can be 

electrostatic, entropic, and quantum mechanical by nature. In a given system they can be rate-

dependent, non-additive, and influenced by the surrounding solvent media. In line with the 

goal of achieving temporary bonding, independent of surface chemistry, we limit our attention 

to the van der Waals interaction. This interaction is made up of electrostatic dipole-dipole 

(Keesom) and dipole-induced dipole (Debye) contributions, as well as the quantum mechanical 

dispersion (London) contribution. The latter is associated with instantaneous dipoles formed 

by electron and nucleus, which in turn induce dipoles in surrounding molecules and yield an 

attractive interaction. This charge fluctuation exists even in non-polar molecules, rendering the 

interaction universal. 
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The van der Waals pair potential for two dissimilar molecules in vacuum, assuming a single 

orbital frequency, 𝜈, [72] is given by 

 

𝑤vdW(𝑟) =  − [(𝑢1
2𝛼2 + 𝑢2

2𝛼1) +
𝑢1

2𝑢2
2

3𝑘𝑇
+

3𝛼1𝛼2ℎ𝜈1𝜈2

2(𝜈1 + 𝜈2)
]

1

(4π𝜀0)2𝑟6
= −

𝐶vdW

𝑟6
 (2.1) 

 

where 𝑤vdW is the potential energy change is associated with bringing molecules to a 

separation 𝑟, from a reference state at 𝑟 = ∞. The molecules each possess a permanent dipole 

moment, 𝑢, and an electronic polarizability, 𝛼. The Planck constant is ℎ, the Boltzmann 

constant is 𝑘, the temperature is 𝑇, and the permittivity of free space is 𝜀0.  Noting the tendency 

of atoms and molecules to adopt the configuration which minimizes their potential energy, we 

observe that the interaction is attractive. 

 

Steric repulsion, associated with the overlapping of electron clouds, can be modelled with a so 

called hard-wall potential which becomes infinite at an assumed contact separation, 𝑟0. 

Alternatively utilizing an inverse 12th-power law we obtain the ubiquitous Leonard-Jones 

potential  

 

𝑤LJ(𝑟) = −
𝐶vdW

𝑟6
+

𝐶steric

𝑟12
 (2.2) 

 

Molecular interaction potentials of the form given in (2.2) can be utilized in the derivation of 

energy and force laws for macroscopic bodies by summation over all molecules. The normal 
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force per unit area for the interface of two infinite surfaces (i.e. formed by two half-spaces) 

separated by distance 𝑧, is referred to here as the normal traction-separation law (where traction 

is in general the force per unit area acting at a material point on a surface) and was first derived 

by de Boer [73], as 

 

𝜎(𝑧) =
𝐴H

6π𝑧0
3

[(
𝑧0

𝑧
)

3

− (
𝑧0

𝑧
)

9

] (2.3) 

 

where 𝑧0 is the equilibrium separation. We identify the material-dependent Hamaker constant 

[74] as 𝐴H = π2𝐶vdW𝜌1𝜌2, where 𝜌1 and 𝜌2 are the densities of the interacting bodies.  

Hamaker constants for interactions occurring in vacuum or air do not depend significantly on 

the media of the interacting bodies and are typically on the order of 10−19 J. 

 

This result can be utilized to clarify several important energy and force definitions. The 

thermodynamic work of adhesion, 𝑊, is the energy per unit area associated with normal 

separation. It is the depth of the potential well at contact, and can be obtained from (2.3) 

according to 

 

𝑊 = ∫ 𝜎(𝑧)𝑑𝑧
∞

𝑧0

=
𝐴H

16𝜋𝑧0
2
 (2.4) 

 

We note that the surface energy is the free energy change associated with the creation of a unit 

area of free surface. This is half of the thermodynamic work of adhesion of two similar media 

in vacuum forming a perfect lattice. The maximum adhesive traction which can be supported 



17 

 

by the interface is termed the intrinsic strength, 𝜎0. Determining the maxima from (2.3), and 

combining with (2.4) we obtain 

 

𝜎0 =
16

9√3

𝑊

𝑧0
  (2.5) 

 

Assuming that the contact separation is on the order of 0.1 − 1 nm, the work of adhesion is on 

the order of 1 − 100 mJ. Adopting a value of 10 mJ, the intrinsic strength of the van der Waals 

interaction in is on the order of 10 − 100 MPa. 

 

Using a force law of the form 𝐶vdW 𝑟𝑛⁄ , Bradley [75] demonstrated by integration that the 

maximum adhesive force between rigid spheres could be stated in terms of the work of 

adhesion as 

 

𝐹max = 2π𝑅𝑊 (2.6) 

 

where the effective radius 𝑅 = 𝑅1𝑅2 (𝑅1 + 𝑅2)⁄ . Notably, this result is independent of the 

power 𝑛, and thus the functional form of the force law. The same result was later reached by 

Derjaguin [76] using a geometric approach in which the force between two bodies with curved 

geometries is obtained by superposition of infinitesimal flat surface-surface interactions. 
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2.2 Theory of elasticity 

While (2.5) and (2.6) represent important results for the interaction of rigid bodies, elastic 

deformation of bodies in contact can significantly influence the adhesive strength of a contact. 

With this noted we briefly review the central concepts of the theory of elasticity and linear 

elastic fracture mechanics, before exploring specific applications of these theories to relevant 

problems in contact and adhesion. 

 

The goal of continuum mechanics is to analyze the distribution of internal stress and the 

deformation of a solid body which result from a combination of known displacements and 

tractions on its boundary. Such an analysis relies on three core concepts. The first is the 

conservation of linear momentum or an equivalent statement such as the principle of virtual 

work. Neglecting inertial effects, the former can be stated as 

 

∇ ∙ 𝜎 + 𝑏 = 0 (2.7) 

 

where ∇ is the gradient operator, 𝜎 is the Cauchy stress tensor, and 𝑏 the body force (per unit 

volume). The stress tensor can be used to obtain the traction (force per unit area) on any plane 

with normal, 𝑛, via Cauchy’s law, as 

 

𝑇 = 𝑛 ∙ 𝜎 (2.8) 

 

The second requirement is a set of kinematic relationships which relate displacement, 𝑢,  to a 

relevant measure of deformation. The infinitesimal strain tensor is given by 
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𝜀 =
1

2
[∇ 𝑢 + (∇ 𝑢)

T
] (2.9) 

 

In three dimensions it describes deformation at a point encompassed by the stretching and 

relative rotation of three mutually orthogonal line elements. 

 

The third and final statement encompasses the constitutive behavior of the material. We restrict 

our attention to linear infinitesimal strain elasticity, for which 

 

𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙𝜀𝑘𝑙 (2.10) 

 

where 𝐶𝑖𝑗𝑘𝑙 are the components of the elasticity tensor, which in general contains 21 

independent material constants. For isotropic materials the number of independent constants 

reduces to 2, and the constitutive law can be stated in the concise form 

 

𝜎𝑖𝑗 =
𝐸

1 + 𝜈
(𝜀𝑖𝑗 +

𝜈

1 − 2𝜈
𝛿𝑖𝑗𝜀𝑘𝑘) (2.11) 

 

where 𝐸 is Young’s modulus and 𝜈 is Poisson’s ratio. The elastic strain energy stored in the 

deformed configuration of the body is given by 

 

𝛱el =
1

2
∫ 𝜀𝑖𝑗

𝑉

𝐶𝑖𝑗𝑘𝑙𝜀𝑘𝑙𝑑𝑉 (2.12) 
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where 𝑉 is the volume of the body. 

 

Eq. (2.7), (2.9), and (2.11) combine to yield 2nd order linear partial differential equations 

governing elastostatics. Typically, analytical solutions to these equations are only available for 

problems of reduced dimensionality.  Stress function methods can be utilized in the solution 

of problems in which bodies are subject to traction boundary conditions only. Solutions which 

satisfy the boundary conditions of many interesting problems are available, including in 

contact and adhesion. Where these are not available, numerical methods such as finite element 

analysis are ubiquitous. 

 

2.3 Linear elastic fracture mechanics 

Defects or cracks in components are known to cause severe concentration of elastic stresses at 

their apex or tip. As the applied load is increased, bond rupture may occur in this region, thus 

extending the crack. If this extension increases the severity of the stress concentration then the 

crack will propagate in an unstable manner, leading to ultimate failure of the component. This 

is known as flaw-sensitive or defect-controlled failure. Since only a small region supports 

elevated stresses associated with bond rupture at any instant, the external load at which failure 

occurs is significantly reduced as compared to a defect free system in which the nominal stress 

in the entire body could be raised to the level of the bond strength. 

 

The field of fracture mechanics was developed to study failure in brittle materials, but its 

concepts have proven extremely useful in the study of adhesion. Regions of the interface where 

the separation of surfaces exceeds the range of the interaction concentrate elastic stresses in a 
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similar manner to cracks in bulk materials. The general approach is to assume that failure 

occurs when a parameter encompassing defect geometry, component geometry, elastic 

properties and external applied loading, reaches a critical value which is a measure of the 

resistance of the bulk material or interface to defect propagation. 

 

 

Figure 2.1. Schematic of crack in an isotropic linear elastic body, showing 

the polar coordinate system, (𝑟, 𝜃), used in the formulation of linear elastic 

fracture mechanics. Crack opening displacements, 𝛿1 and 𝛿2, are also shown. 

 

Figure 2.1 shows a crack in an isotropic linear elastic body. Griffith theory [77] considers the 

energetics of crack growth, noting that crack advance must be accompanied by strain energy 

release as the crack surface is necessarily traction free, and that the strain energy released must 

account for the energy of the newly created crack surface. This was formalized by Irwin [78] 

who defined the energy release rate as 

 

𝐺 = −
𝜕𝛱

𝜕𝐴
 (2.13) 

 



22 

 

where 𝛱 is the total mechanical potential energy (elastic strain energy and potential of the 

applied loads) and 𝐴 is the crack area. By solution of the elasticity problem for the cracked 

component, the energy release rate can be obtained in terms of crack geometry, component 

geometry, the elastic properties, and the applied load. It is assumed that defect propagation 

occurs when the energy release rate exceeds a critical value termed the toughness, 𝐺c. Griffith’s 

assumption that the toughness 𝐺c = 2𝛾 is violated in all but highly brittle solids due to the 

contribution of dissipative effects, as is discussed below. 

 

The insight gained from the preceding theory made be somewhat surprising given that it does 

not rely on the fundamental observation that fracture proceeds as and when the stress ahead of 

a crack tip is raised significantly enough to cause bond rupture. The asymptotic elastic crack-

tip stress fields have the form [79] 

 

𝜎𝑖𝑗(𝑟, 𝜃) =
𝐾I

√2π𝑟
𝑓𝑖𝑗

I(𝜃) +
𝐾II

√2π𝑟
𝑓𝑖𝑗

II(𝜃) (2.14) 

 

where the polar coordinate system, (𝑟, 𝜃), is shown in Figure 2.1. The angular dependence is 

encompassed by the functions 𝑓𝑖𝑗
I
 and 𝑓𝑖𝑗

II
. An inverse square root singularity at the crack tip 

is observed, the strength of which is controlled by the coefficients 𝐾I and 𝐾II. These are termed 

the stress intensity factors. The crack opening displacements are given by 
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𝛿1 =
8𝐾I

𝐸′
√

𝑟

2π
 

(2.15) 

𝛿2 =
8𝐾II

𝐸′
√

𝑟

2π
 

 

where the modulus 𝐸′ = 𝐸 for plane stress 𝐸′ = 𝐸 (1 − 𝜈2)⁄   for plane strain. The 

displacement 𝛿1 is the normal separation of the crack faces, while the displacement 𝛿2 is the 

sliding of one face relative to the other. These are shown in Figure 2.1. 

 

The angular dependencies of 𝑓𝑖𝑗
I
 and 𝑓𝑖𝑗

II
 are such that 𝐾I and 𝐾II independently control normal 

stress, 𝜎𝜃𝜃, and shear stress, 𝜎𝑟𝜃, ahead of the crack tip, respectively. The mode mixity is 

characterised by the ratio of sliding and opening of the crack face, or by the ratio of shear and 

normal stresses ahead of the crack tip, via the phase angle 

 

𝜓 = tan−1 (
𝜎𝑟𝜃(𝑟, 0)

𝜎𝜃𝜃(𝑟, 0)
) (2.16) 

 

In isotropic materials the ratio 𝜎𝑟𝜃 𝜎𝜃𝜃⁄  is independent of the distance from the crack tip. 

Furthermore, the normal and shear stresses are independently controlled by the stress intensity 

factors 𝐾I and 𝐾II, respectively. This allows (2.16) to be rewritten as  

 

𝜓 = tan−1 (
𝐾II

𝐾I
) (2.17) 
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Just as for the energy release rate, the stress intensity factors are determined by solution of the 

elasticity problem, and are functions of the crack geometry, the component geometry, and the 

applied load. Failure is once again assumed to occur when the stress intensity factor reaches a 

material dependent critical value, 𝐾c, also termed the toughness. The equivalence of energy 

release rate and stress intensity factor approaches was demonstrated by Irwin [80] through 

consideration of the work done by the crack tip stresses in moving through the opening 

displacements during crack extension, leading to 

 

𝐺 =
𝐾I

2

𝐸′
+

𝐾II
2

𝐸′
 (2.18) 

 

In applying fracture mechanics concepts to the study of adhesion we are concerned with a 

crack plane at the interface of two bodies with differing mechanical properties. Interfacial 

fracture mechanics is considerably more involved as mode mixity is dependent on the elastic 

mismatch across the interface, and the toughness of the interface is typically a function of the 

mode mixity. For a concise review of these concepts, readers are referred to ref. [81]. 

Fortunately, much of the complications of interfacial fracture mechanics are avoided in this 

work as we are primarily concerned with the contact of elastomeric materials and much stiffer 

substrates. The Dundurs parameters [82], which describe fully describe the elastic mismatch 

at the interface for plane problems, are 
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𝛼D =
𝐸1

′ − 𝐸2
′

𝐸1
′ + 𝐸2

′  

𝛽D =
𝐺1(𝜅2 − 1) − 𝐺2(𝜅1 − 1)

𝐺1(𝜅2 − 1) + 𝐺2(𝜅1 − 1)
 

(2.19) 

 

where the shear modulus 𝐺 = 𝐸 [2(1 + 𝜈)]⁄ , 𝜅 =  1 + 𝜈 for plane stress and 𝜅 =  3 − 4𝜈 for 

plane strain. For a set of incompressible materials, where one material is considerably stiffer 

than the other, the Dundurs parameters are 𝛼 = ±1 and 𝛽 = 0. In this case the bimaterial 

asymptotic crack tip stress fields [83] simplify to the form presented in (2.14). We note that 

both the opening displacements of (2.15) and the Irwin relationship of (2.18) must be modified 

by a factor of ½, accounting for the fact that opening only occurs on the compliant side of the 

interface. 

 

In applying the concepts of fracture mechanics to the study of adhesion, the interfacial 

toughness is equivalent to the work of adhesion, 𝐺c = 𝑊.  The critical value of the mode I 

stress intensity factor is, via (2.18) when modified by a factor of ½, 𝐾c = √2𝐸′𝑊. Adopting 

the thermodynamic work of adhesion of Section 2.1 as the failure criterion is analogous to the 

surface energy hypothesis of Griffith. In most material systems, non-linear and dissipative 

processes at the crack tip may increase the energy requirement for separation. Given this 

observation, it is worth considering the validity of a failure criterion based on linear elasticity. 

 

The preceding framework is based upon the assumption that the region close to the crack tip 

where rupture occurs, termed the ‘fracture process zone’, is embedded within a stress field 

which is accurately represented by (2.14). For this to hold, the dimensions of the fracture 
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process zone must be much smaller than that of the component or adhesive contact. In this case 

the asymptotic elastic crack tip stress fields effectively control the details of failure inside the 

fracture process zone. All of these details, including dissipative contributions not associated 

with bond rupture, will therefore be captured when the toughness or work of adhesion is 

determined by experiment. In general the toughness or work of adhesion can include 

dissipative contributions from any microstructural features with shorter characteristic length 

scales than are included the formulation of the elasticity problem. In this way the same 

fundamental elasticity solution can, for example, be utilized to examine the adhesion of a single 

asperity achieving molecular contact with a surface and interacting via van der Waals forces, 

or to model the adhesion of a macroscale probe with a microstructured surface. In the former 

case, the work of adhesion would be the thermodynamic property identified in Section 2.1, 

while in the latter case it would be a property of the microstructure and the interface formed 

with the substrate. 

 

The validity of the assumption of a small-scale fracture process zone must be assessed by 

estimating its size. Estimating the extent of the region over which the elastic stresses at the 

crack tip exceed the intrinsic strength, a characteristic length scale emerges 

 

𝑐 =
𝐸′𝑊

𝜎0
2

 (2.20) 

 

When the geometric features of the contact are on the order of 𝑐, failure is termed flaw-

insensitive. Separation no longer occurs via nucleation and propagation of defects. The entirety 

of the interface supports the maximum stress permitted by the microscale mechanics, 
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maximizing the load bearing capability of the joint. This is typically the optimal condition 

when designing for adhesive strength. 

 

Dugdale presented an alternative framework [84] which correctly predicts the asymptotic 

limits and transition between flaw-sensitivity (as predicted by LEFM) and flaw-insensitivity. 

The approach was first applied in the context of adhesion by Maugis [85]. It is based upon a 

simplified form of the traction separation law (being uniform up to a cut-off separation), which 

has been shown to lead to negligible error in the predicted condition for failure provided that 

the work of adhesion, 𝑊, and the theoretical strength, 𝜎0, are consistent [86].  

 

2.4 Models of adhesion 

Figure 2.2 shows three geometric configurations of relevance to the work at hand. In each case 

a compliant body of Young’s modulus 𝐸, and Poisson’s ratio 𝜈, contacts a much stiffer 

substrate which is considered as rigid. The strength of the interface is characterized by the 

work of adhesion, 𝑊. 
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Figure 2.2. Schematic of three adhesive contact geometries of relevance to 

the current work: (a) A penny-shaped defect of radius 𝑙c, located at the 

interface of a compliant body and a rigid substrate, far from any geometric 

features. The region of the interface in which it is located experiences 

nominal tensile stress, 𝜎nom; (b) A compliant cylindrical body of radius 𝑎, 

contacting a rigid substrate over its flat end. The body is subjected to remote 

tensile stress, 𝜎. A circumferential defect, protruding in to the contact by 

length 𝑙e is also considered; (c) A compliant body of uniform radius of 

curvature, 𝑅, contacting a rigid substrate. The circular contact which forms 

has radius 𝑎. The body is subject to a remote tensile load, 𝐹. 
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2.4.1 General interfacial defect 

Figure 2.2a depicts a geometry in which the strength is controlled by a circular defect at the 

interface, far from any geometric features of the bodies. The radius of the defect is 𝑙c. The 

interface experiences a nominal tensile stress, 𝜎nom, which is a function of the applied load 

and the geometry of the body but is independent of the defect geometry in the limit described. 

In general it is known that the nominal stress is linearly related to the remote applied tensile 

stress, 𝜎, such that it can be written that 𝜎nom = 𝐴𝜎, where 𝐴 is a geometry-dependent 

dimensionless ‘shape factor’. It is assumed that the nominal shear stress at the interface is 

negligible. 

 

This is a special case of one of the most fundamental problems of interfacial fracture mechanics 

[87]. As discussed in Section 2.3, we limit our attention to an incompressible compliant body 

contacting a rigid substrate. In this case the crack tip stress fields are equivalent to those in a 

homogeneous body and the stress intensity factors 

 

𝐾I = 𝐵I𝜎√π𝑙c 

(2.21) 

𝐾II = 0 

 

where the shape factor 𝐵I = 2𝐴/π. The critical level of remote applied stress is therefore given 

by the criterion 𝐾I = 𝐾c = √2𝐸∗𝑊 and is 
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𝜎max =
π

2𝐴
(

2𝐸∗𝑊

π𝑙c
)

1
2
 (2.22) 

 

If mathematically tractable, solution of the elasticity problem will yield the shape factor 𝐴 (and 

therefore also 𝐵I) in terms of the relevant geometric parameters of the system. 

 

There are many cases of interest where the defect is located close to a geometric feature which 

is itself a stress raiser, in which case the shape factor is no longer independent of the crack 

geometry. In many cases the region of interest is the contact edge, which can give rise to 

singular stress fields independent of those at the tip of an interfacial defect in this region. 

 

2.4.2 Contact edge of ideally flat interface 

Figure 2.2b shows the first case of interest in which the contact edge is the critical stress raiser. 

It involves an abrupt contact edge, with a curvature much smaller than the contact dimensions, 

leading to the idealization of the geometry as a cylindrical elastic body of radius 𝑎,  contacting 

a rigid substrate over its flat end. The presence of a circumferential defect protruding in to the 

contact by length 𝑙e is considered in specific analyses. 

 

While not exactly the problem at hand, it is worth first considering the opposite case of elastic 

mismatch i.e. where a rigid cylindrical body contacts an elastic half space. This problem 

permits a relatively straightforward solution and reveals qualitative trends which hold for the 

case of primary interest. This problem was addressed by Kendall [88] under assumption of a 

frictionless interface (and later shown to be valid for incompressible bodies independent of the 
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assumed friction condition [89]). The elasticity solutions utilized are derived via the potential 

functions of Boussinesq and Cerruti, as presented in ref. [90]. The displacement of the elastic 

half space must be uniform and equal to the remote applied displacement. The normal traction 

at the interface which satisfies this condition is 

 

𝜎𝑧𝑧(𝑟) =  
1

2
𝜎 [1 − (

𝑟

𝑎
)

2

]
−1 2⁄

 (2.23) 

 

where 𝑟 is the radial coordinate defined from the center of the contact. Performing a series 

expansion with respect to the distance from the contact edge, it is determined that the tensile 

stress in this region exhibits an inverse square root singularity. This renders the contact edge 

equivalent to the tip of an external circumferential crack, with the mode I stress intensity factor 

 

𝐾I =
1

2
𝜎√𝜋𝑎 (2.24) 

 

The critical value of the applied load at which separation begins at the contact edge is given 

by the condition 𝐾I = 𝐾c = √2𝐸∗𝑊, leading to 

 

𝜎max = (
8𝐸∗𝑊

𝜋𝑎
)

1 2⁄

 (2.25) 

 

It is observed that the strength of the contact scales with the square-root of the work of 

adhesion, as well as the elastic modulus. The latter reflects the limitation of opening 

displacements, preventing absolute separation as the load is increased. It also scales with the 
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inverse-square-root of the contact radius, demonstrating that smaller contacts yield higher 

strength. The strength will saturate at the intrinsic level of the interaction as the validity of 

linear elastic fracture mechanics breaks down, when the contact radius is on the order of the 

fracture process zone size of (2.20). 

 

When the cylindrical body is elastic and the substrate is rigid, the analysis is more involved. 

Under the same assumption that the interface is frictionless, the contact edge no longer 

concentrates stress. Under the assumption of full sticking (zero tangential displacement) the 

elastic stresses are singular at the contact edge, with the inverse power ~ 0.4 determined by 

Bogy [91]. We proceed considering this case, noting that it represents a lower bound on the 

strength of the contact with respect to the friction condition at the interface. Hui et al. [46] 

showed that for detachment is controlled by defect nucleation at the contact edge, the 

maximum remote tensile stress should scale as (𝐸∗𝑊)0.4𝜎th
0.2/𝑎0.4. It is observed that 

reduction in the strength of the contact with increasing contact radius is less severe than (2.25). 

 

Khaderi et al. [89] have performed a more rigorous analysis of this contact problem for a full 

range of elastic mismatch. They first formalize the analysis of singular stresses at the contact 

edge (equivalent to that of Bogy [91]) for the study of fracture, introducing the concept of the 

‘H-field’. Two singular terms dominate at the contact edge, with the power-law dependence of 

each being dependent on the elastic mismatch through the Dundurs parameters of (2.19). 

Coefficients 𝐻1 and 𝐻2 control the singular terms in a manner analogous to 𝐾I. Indeed, in the 

corresponding limit of elastic mismatch, the result of (2.24) can be obtained. For an 
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incompressible elastic cylinder on a rigid substrate, one singular term drops out and the 

asymptotic field as 𝑟 → 𝑎 is 

 

𝜎𝑧𝑧(𝜌) = 0.386𝜎 (
𝑎

𝑎 − 𝑟
)

0.4

 (2.26) 

 

The presence of the circumferential defect at the contact edge is then considered. This defect 

introduces its own bimaterial singular stress field at its tip.  As discussed in Section 2.3, for the 

case of the incompressible elastic cylinder on a rigid substrate avoids the complex nature of 

these fields is avoided. The stress intensity factors are 

 

𝐾I = 𝐵I𝜎√𝜋𝑙e (2.27) 

𝐾II = 𝐵II𝜎√𝜋𝑙e (2.28) 

 

where the shape factors 𝐵I and 𝐵II are dependent on the ratio 𝑙e/𝑎. These are determined via 

finite element analysis using the domain integral method. The results are shown in Table 2.1 

for a range of values of the ratio 𝑙e/𝑎. Their determination permits evaluation of the mode 

mixity, which is shown to be < 20° in all cases. It is therefore reasonable to assume that 

separation is associated with the mode I work of adhesion, such that 𝐾I
2 + 𝐾II

2 = 2𝐸∗𝑊. The 

maximum remote tensile stress is therefore 

 

𝜎max =
1

𝐵
(

2𝐸∗𝑊

π𝑙e
)

1
2
 (2.29) 
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where 𝐵 = (𝐵I
2 + 𝐵II

2)1/2. The maximum remote tensile stress can alternatively be stated in 

terms of the contact radius as 

 

𝜎max =
1

𝐶
(

8𝐸∗𝑊

𝜋𝑎
)

1 2⁄

 (2.30) 

 

where the shape factor 𝐶 = 2𝐵√𝑙e/𝑎. The result is stated in a form which is directly 

comparable to the opposite case of elastic mismatch, given in (2.25). Values of the coefficients 

𝐵I, 𝐵II, 𝐵 and 𝐶 are also listed in Table 2.1. The observation of monotonic increase of 𝐶 as the 

ratio 𝑙e/𝑎 increases indicates unstable defect propagation. 
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Defect size, 𝑙e/𝑎 Coefficient, 𝐵I Coefficient, 𝐵II Mode mixity, 𝜓 Coefficient, 𝐵 Coefficient, 𝐶 

0.02 2.66 0.818 17.1° 2.78 0.786 

0.10 1.51 0.487 17.8° 1.58 1.00 

0.30 1.42 0.325 12.7° 1.45 1.58 

0.50 1.92 0.218 6.4° 1.93 2.73 

0.70 3.63 0.108 1.7° 3.63 6.07 

 

Table 2.1. Table of coefficients for the problem of an incompressible elastic 

cylinder in contact with a rigid flat substrate (α = −1 and β = 0), as reported 

in [89]. 

 

While the preceding results are instructive, the absence of an analytical solution for the 

dependence of the shape factors on the ratio 𝑙e/𝑎 obfuscates the true scaling of the strength 

with these parameters. While this is not possible in the most general case, a result is reported 

by the authors in the limit that the defect is sufficiently small that it is embedded within the 

region of dominance of the edge singularity. 

 

In this case, dimensional considerations yield the bimaterial stress intensity factors in terms of 

the H-field parameters. The coefficients are determined by the domain integral method in finite 

element analysis of the H-dominated region only. Once again for case of the incompressible 

elastic cylinder on a rigid substrate, the result is 
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𝐾I = 0.537 (
𝑎

𝑙e
)

0.4

𝜎√𝜋𝑙e (2.31) 

𝐾II = 0.165 (
𝑎

𝑙e
)

0.4

𝜎√𝜋𝑙e (2.32) 

 

The maximum remote tensile stress is therefore 

 

𝜎max =
1.42√𝐸∗𝑊

𝑙e
0.1𝑎0.4

 (2.33) 

 

where we observe the same scaling with the contact radius as predicted by Hui et al. [46]. 

 

2.4.3 Contact edge of ideally curved interface 

Figure 2.2c shows the final case of interest, which concerns the contact of an elastic body with 

a large radius of curvature, 𝑅. Contact with the rigid substrate occurs over a circular area of 

radius 𝑎. This is a special case of the more general problem of the adhesive contact of elastic 

spheres. This problem has received several theoretical treatments. We begin by considering 

the Johnson-Kendall-Roberts (JKR) theory [92]. This model is based on the assumption that 

the radii of curvature of the contacting bodies are much larger than the contact area itself, such 

that they can each be treated as an elastic half space. The Boussinesq-Cerruti family of 

elasticity solutions can once again be utilized. Unknown coefficients in the solution are 

determined on the basis of a free energy minimization (considering elastic strain energy and 

interfacial energy) which is equivalent to linear elastic fracture mechanics. It is assumed that 

the adhesive interaction occurs in the contact area only. The size of region in which high 
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normal stress causes separation of the bodies is small in comparison to the contact. This is 

exactly the assumption that the fracture process zone is small. 

 

Before beginning it should be noted that for this configuration, the contact area changes 

continuously with the applied load. Without a clearly defined area with respect to which the 

remote applied load is normalized, the analysis is performed in terms of the load, 𝐹, itself. The 

condition on displacements of the bodies is based on avoiding interpenetration, and is therefore 

a known function of the radius of curvature. The surface displacement in the contact must be 

of the form 

 

𝑢𝑧(𝑟) =  𝛥 +
𝑟2

2𝑅
 (2.34) 

 

where 𝛥 is the remote applied displacement of the body, 𝑟 is the radial coordinate defined from 

the center of the contact, and 𝑅 is the radius of curvature. The normal traction at the interface 

which satisfies this condition is 

 

𝜎𝑧𝑧(𝑟) =  −
2𝑎𝐸∗

π𝑅
[1 − (

𝑟

𝑎
)

2

]
1 2⁄

+ (
𝐹

2π𝑎2
+

2𝑎𝐸∗

3π𝑅
) [1 − (

𝑟

𝑎
)

2

]
−1 2⁄

 (2.35) 

 

where 𝑎 is the contact radius, the modulus 𝐸∗ = 𝐸 (1 − 𝜈2)⁄ , and the relationship between 

load and displacement is 
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𝐹 =
2

3
π𝑎2 (

𝑎𝐸∗

π𝑅
+

3𝐸∗𝛥

π𝑎
) (2.36) 

 

Performing a series expansion with respect to the distance from the contact edge, it is 

confirmed that an inverse square-root singularity dominates close to the contact edge. The 

strength of the singularity is uniquely controlled by the coefficient on the second term of (2.35), 

with the stress intensity being 

 

𝐾I = (
𝐹

2π𝑎2
+

2𝑎𝐸∗

3π𝑅
) √π𝑎 (2.37) 

 

This configuration differs from a traditional fracture problem in that effective crack geometry, 

which is described by the contact radius, evolves continuously as the external load changes. 

For this reason, the stress intensity must always be at the critical level 𝐾I = 𝐾c = √2𝐸∗𝑊. 

Combining this condition with (2.37) allows for the determination of the contact radius as a 

function of the applied load 

 

𝑎3 =
3𝑅

4𝐸∗
[−𝐹 + 3π𝑅𝑊 ± (−6π𝑅𝑊𝐹 + (3π𝑅𝑊)2)1 2⁄ ] (2.38) 

 

Knowing that the crack propagation is continuous, determining the critical value of the applied 

load requires analysis of the stability, 𝜕𝐾I/𝜕𝑎 = 0. In load control the point of instability 

coincides with maximum tensile load 
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𝐹max =
3

2
π𝑅𝑊 (2.39) 

 

while in displacement control the contact remains stable as the load is reduced to  
5

6
π𝑅𝑊.  

 

Derjaguin-Muller-Toporov (DMT) theory [93] considers the adhesive contact of elastic 

spheres in an alternate manner. It is assumed that the deformed geometry of the contact follows 

Hertz theory [94], with the distribution of interfacial stress being compressive. The net force 

associated with the repulsive pressure in the contact region is supplemented by the net 

attractive force from regions outside of the contact. As the contact area is reduced the repulsive 

contribution to the total force is reduced. When the contact area is zero the entire body 

contributes to the attractive interaction. At this point the configuration is exactly equivalent to 

the Derjaguin result for undeformable bodies. The maximum adhesive force is given by 

 

𝐹max = 2π𝑅𝑊 (2.40) 

 

The difference in the adhesion force predictions of JKR and DMT theories was first addressed 

by Tabor [95], who noted that the when the contact edge opening displacement or ‘neck height’ 

predicted by JKR theory is on the order of the molecular contact separation then the distinction 

between contact and non-contact is lost. This opening is on the order 

 

ℎ = (
𝑅𝑊2

𝐸2
)

1 3⁄

 (2.41) 
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Determining the validity of JKR theory therefore requires comparison of the magnitude of the 

elastic deformation to the range of the surface interaction. Tabor concluded that when ℎ 𝑧0⁄ >

5 JKR theory can be applied with validity while DMT theory provides good approximation 

when ℎ 𝑧0⁄ < 0.1. For intermediate values an alternative analysis has been proposed by 

Maugis [85], which correctly predicts the asymptotic behavior of JKR and DMT. We see that 

while the elastic properties do not explicitly influence the adhesion force in either theory, the 

validity of each result is determined by the elastic modulus and its magnitude in comparison 

to the work of adhesion. For an elastomeric body contacting a rigid substrate, in the presence 

of van der Waals forces, this predicts validity of JKR theory when the radius of curvature 

exceeds 10 nm. 

 

2.4 Adhesive performance of synthetic fibrils 

In Section 2.4.2, the study of the contact of a compliant flat-ended cylinder in contact with a 

rigid substrate revealed the damaging influence of the contact edge stress concentration. The 

severity of this stress concentration was shown to increase with the size of the contact. 

Consequently, when detachment is controlled by defect nucleation or propagation from the 

contact edge, the strength was shown to decay with the inverse-power 0.4 of the contact radius 

in (2.33). 

 

The design strategy suggested through study of the fibrillar adhesive systems in climbing 

animals, is to reduce the size and increase the density of individual contact elements [44-48]. 

However, in the creation of synthetic fibrillar systems, the size of individual fibrils is limited 

by the constraints of fabrication techniques. Typical fibrils fabricated by molding of 
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elastomeric materials are, at their smallest, on the order of 1 − 10 µm. Consequently, 

detachment occurs via the propagation of defects at the interface of the fibril tip and substrate 

(e.g. [59-62]). Associated with this is a strong dependence of the strength on the fibril tip 

geometry [10]. 

 

Given that the strength is sensitive to the tip geometry, it is unsurprising that there has been 

considerable focus on the design of the fibril tip to improve strength. This has primarily been 

associated with reducing the severity of the contact edge stress concentration. 

 

Figure 2.3 shows two of the most prevalent designs. The first is the ‘mushroom-tipped’ fibril, 

shown in Figure 2.3a, the design origins of which also can be traced to biological systems [59]. 

The inclusion of a thin flange around the tip has the effect of reducing strain energy at the 

contact edge and creating a turning action which results in a compressive contribution to the 

stresses in this region [63, 64]. Ballejipali et al. [64] provided a detailed analysis equivalent to 

that performed for a ‘punch-like’ flat-ended cylinder by Khaderi et al. [89]. It was assume that 

a circumferential defect of length 𝑙e was fully embedded within the singular field at the contact 

edge, such that the scaling of strength is equivalent to (2.33). As such, it can be written that  

 

𝜎max
m

𝜎max
p = 𝜅m (2.42) 

 

where 𝜎max
m  is the maximum remote stress for the mushroom-tipped fibril, 𝜎max

p
 is the 

maximum remote stress for the punch-like fibril, and 𝜅m is a coefficient which is dependent 

on the geometric properties of the mushroom. 
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Figure 2.3. Schematic of synthetic fibril designs showing parameterization 

of the geometries; (a) ‘Mushroom-tipped’ fibril comprised of a cylindrical 

stalk with radius 𝑎 and length ℎ, and flange of radius 𝑎m and thickness 𝑡m. 

There is a filleted corner where the flange meets the stalk, with radius 𝑟m; 

(b) ‘Soft-tip-layer’ fibril comprised of a cylindrical stalk with radius 𝑎 and 

length ℎ, and more compliant tip layer (𝐸 ≫ 𝐸st) of thickness 𝑡st. 

 

Figure 2.4 shows the interfacial stress distribution under the assumption of full contact for two 

mushroom geometries, with and without a fillet at the joint of the flange and stalk, as well as 
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for the punch-like geometry. The results are shown on a log scale on account of the singularity 

at the contact edge. 

 

 

Figure 2.4. Tensile stress at the interface of fibril tip and substrate for three 

geometries - a flat-ended cylindrical fibril (blue); a mushroom-tipped fibril 

without a fillet at the intersection of flange and stalk, 𝑟m 𝑎⁄ = 0 (orange); a 

mushroom-tipped fibril with a fillet at the intersection of flange and stalk, 

𝑟m 𝑎⁄ = 0.23 (yellow). For both mushroom fibrils the flange radius 𝑎m 𝑎⁄ =

1.41 and flange thickness 𝑡m 𝑎m⁄ = 0.016. Reproduced under CC BY NC 

ND license from [64]. 

 

Table 2.2 provides the coefficient, 𝜅m, for various values of the flange radius 𝑎m and the flange 

thickness, 𝑡m, describing the enhancement of the adhesive strength associated with the 

mushroom-tip when controlled by defect propagation from the contact edge.  It is observed 

that the strength increases as both the flange radius is increased, and as the flange thickness is 

reduced. The enhancement can be extreme when the flange is wide and thin, but this potential 

advantage must be weighed against the reduced structural stability of the tip. Additionally, 

where the contact edge stress concentration is sufficiently reduced, we observe in Figure 2.4 
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that the stresses are elevated at the contact center. In particular, stresses are highly concentrated 

under where the stalk meets the flange. The inclusion of a fillet, smoothing the transition 

between stalk and flange, reduces the severity of this stress concentration. Elevated stresses at 

the contact center may lead to the propagation of defects in this region. Typically the strength 

associated with center defect propagation of a mushroom-tipped fibril remains considerably 

higher than an edge defect propagation in a punch-like fibril, rendering the design beneficial 

to adhesive performance overall. 

 

Flange radius 

ratio, 𝑎m/𝑎 

Flange thickness 

ratio, 𝑡m/𝑎m 

Coefficient, 

𝜅m 

1.09 0.050 3.1 

 0.084 1.8 

 0.150 1.2 

1.41 0.050 46.3 

 0.084 8.4 

 0.150 2.9 

1.85 0.050 397.1 

 0.084 27.8 

 0.150 5.6 

 

Table 2.2. Table of coefficients describing the ratio of maximum remote stress 

for mushroom-tipped and punch-like fibrils,  

𝜅m = 𝜎max
m 𝜎max

p⁄ . Results are shown for a range of geometric parameters of the 

flange. Reported in [64]. 
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Another design which has proved to reduce the severity of edge stress concentration is 

associated with the inclusion of a tip layer comprised of a more compliant material that the 

stalk of the fibril. The improvement in performance is associated with the following effect. 

The confinement of the layer on both sides leads to large shear stresses which resist Poisson 

contraction. Since these shear terms are of opposite sign on each side of the layer, there is a 

large gradient through its thickness. This must be balanced by the radial gradient in the radial 

stress, which builds up in the contact center. Since the stress state in the layer is hydrostatic to 

first order [96], the interfacial stress is also concentrated in this region and thus is reduced at 

the contact edge. Once again, Ballejipali et al. [96] performed a detailed analysis directly 

comparable to the punch-like fibril results of Khaderi et al. [89], leading to 

 

𝜎max
st

𝜎max
p = 𝜅st (2.43) 

 

where 𝜎max
st  is the maximum remote tensile stress for the soft-tip-layer fibril and 𝜅st is a shape 

factor which is dependent on the geometric properties of the soft-tip-layer. 

 

Table 2.3 provides the coefficient, 𝜅st for various values tip-layer thickness 𝑡st and the ratio of 

elastic modulii, 𝐸/𝐸st, describing the enhancement of the adhesive strength associated with 

the soft-tip-layer when controlled by defect propagation from the contact edge. Both materials 

are considered to be incompressible, 𝜈 = 𝜈st ≅ 0.5.  It is observed that the strength is enhanced 

as both the layer thickness is reduced, and as the elastic modulus ratio is increased. The greater 

the reduction in the array edge stress concentration, the greater the stresses at the contact center. 
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There are, however, additional considerations when designing on the basis of these trends. 

Reducing the layer thickness to improve strength is likely to be limited by the increased 

potential for inhomogeneities in such a layer. Furthermore, finger crack instabilities have been 

observed in thin layers and have led to significantly reduced strength [96]. The elastic 

properties of the fibril are critical to performance at larger length scales, as will be discussed 

in the subsequent section. Changing the ratio 𝐸/𝐸st must also be considered this context. 

 

Tip-layer thickness 

ratio, 𝑡st/(ℎ + 𝑡st) 

Elastic modulus 

ratio, 𝐸/𝐸st 

Coefficient, 

𝜅st 

0.05 2 1.27 

 10 2.21 

 100 3.93 

 1000 4.41 

0.15 2 1.11 

 10 1.27 

 100 1.33 

 1000 1.36 

0.25 2 1.03 

 10 1.06 

 100 1.08 

 1000 1.08 

 

Table 2.3. Table of coefficients describing the ratio of maximum remote stress 

for soft-tip-layer and punch-like fibrils,  

𝜅st = 𝜎max
st 𝜎max

p⁄ . Results are shown for a range of geometric and material 

properties of the soft-tip-layer. Reported in [96]. 
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The preceding results must be contextualized based on the properties of surface roughness of 

the fibril tip and substrate. The tip geometry will only control fibril strength where this 

roughness exists on length scales much smaller than the fibril itself (e.g. when the characteristic 

length scales of roughness do not exceed tens of nanometers for micron scale fibrils, 

corresponding to a surface considered to be ‘smooth’ in a qualitative sense). In this case the 

resulting defects will be imbedded within, and will nucleate from, the region where interfacial 

stresses are highest [59-62]. If roughness exists at larger length scales then it may disrupt the 

dominance of the tip geometry and the strength enhancement associated with refined design. 

In this case there is the potential for partial loss of contact, and for defect propagation from 

any region at the tip-substrate interface. Roughness on this scale of the fibrils themselves has, 

in general, been associated with a reduction in the adhesive strength [97-99]. 

 

2.5 Adhesive performance of fibril arrays 

While the properties of the fibril tip play an important role in determining the strength of 

individual sub-contacts, there are other aspects of fibril design which influence performance 

at larger length scales. Features of the system at these scales also play a role in determining 

strength of fibril adhesives. 
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Figure 2.5. Schematic of a synthetic fibrillar adhesive consisting of an array 

of surface microstructures, length ℎ, on a backing layer, thickness 𝐻. Two 

idealized substrate geometries are shown. The flat contact is circular with 

diameter 𝐷. The curved substrate has radius 𝑅.  

 

Figure 2.5 shows a schematic of a typical adhesive patch consisting of a single level of fibrillar 

structures on a backing layer of the same component material, as is typical of soft molding 

fabrication techniques utilized. We limit our attention to systems where backing layer is itself 

supported by rigid structure, rather than forming a flexible membrane. 

 

It has been proposed that the elastic energy stored in a fibril as it is deformed to the point of 

failure cannot be transmitted to neighboring regions of the interface, and as such is lost to the 

separation process. Consequently, when a fibril array forms the interface between two larger 

bodies, this energy can be considered the dominant contributor to the work of adhesion [40, 

46, 49, 50]. This leads to 

  

𝑊 = 𝜌 (
1

2

𝑓max
2

𝑘
) (2.44) 
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where 𝜌 is the areal density of fibrils (number per unit area), 𝑓max is the force required to detach 

a fibril (obtained by multiplying the maximum remote stress by the cross-sectional area of the 

fibril), and 𝑘 = 𝐸π𝑎2/ℎ is the axial stiffness of the fibril. We immediately observe a benefit 

associated with increasing the fibril density and the fibril length. Increases in the work of 

adhesion are limited by the tendency for slender densely packed fibrils to buckle, and thus 

condense, due to attractive forces between neighbors [7, 41, 48, 50, 100, 101]. 

 

If the fibril array and contact dimensions are sufficiently large and the backing layer is 

sufficiently thick and compliant, then continuum approaches using style of model reviewed in 

Section 2.4 are possible [50, 68]. In this case, fibrils are sufficiently small as to be considered 

part of the interface, and their deformation is only implicitly considered through use of the 

effective work of adhesion of (2.44). As the backing layer compliance or the contact 

dimensions are reduced, it becomes necessary to explicitly consider the elastic deformation of 

fibrils. In this regard, modeling efforts have considered fibrils as a continuous elastic 

foundation [68, 70, 102, 103], or as discrete contact elements [22, 104]. Together, these 

approaches have been used to study effects of significance to adhesive performance at the array 

scale. These efforts will now be reviewed in detail. 

 

We first consider contact with an ideally flat rigid substrate. If the backing layer is thin, such 

that it can be considered rigid, the load distribution among fibrils will be uniform. The resulting 

adhesive strength of the array will be 
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𝜎max = 𝜌𝑓max (2.45) 

 

where once again we note that the density will be limited by fibril condensation. If the backing 

layer is compliant, it is anticipated based on the discussion of Section 2.4.2 that there will be a 

load concentration at the contact edge. If backing is sufficiently thick and the contact is 

sufficiently large then these solutions can be used directly [50, 68]. If it is assumed that the 

backing layer extends laterally, beyond the contact edge, then the solution for contact of a rigid 

flat-ended cylinder and an elastic half space, given in (2.25), can be utilized. With (2.44) we 

obtain 

 

𝜎max = (
8𝜌𝑓max

2

π(1 − 𝜈2)𝑘𝐷
)

1
2

 (2.46) 

 

where the 𝐷 is the contact diameter, which describes the dimensions of the fibril array in 

contact. 

 

Where the backing layer thickness dictates that the compliance of fibrils can no longer be 

neglected, they have been modeled as an elastic foundation on a finite thickness elastic layer. 

The conditions for flaw-insensitivity were considered by Kim et al. [102] and an approximate 

solution was provided by Long et al [70]. It was shown that the strength scales as 𝜎max ∝

𝜌𝑓max/√𝛽 where 𝛽 is a monotonically increasing function of the dimensionless ratios 𝜌𝑘𝐷/𝐸 

and 𝐻/𝐷. 
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Together these efforts have demonstrated that, for ideally flat substrate and with a backing 

layer which is compliant relative to fibril layer, the strength of large arrays strength will be 

governed by nucleation of detachment at the array edge. Furthermore, the strength will decay 

with increasing array size. This is problematic for scaling of fibril adhesive patch sizes to meet 

the requirements of engineering applications, and necessitates the utilization of structural 

hierarchy. Consider that if the array size is limited then it is possible to obtain a uniform load 

distribution and approach the upper bound on strength given in (2.45). Equating the limits of 

(2.45) and (2.46) we obtain the critical array diameter 

 

𝐷t =
8

π(1 − 𝜈2)𝜌𝑘
 (2.47) 

 

An equivalent condition was used by Yao et al. [50] to guide the design of a multi-level fibrillar 

structure, where the fibril stiffness in each layer was constrained by a fibril buckling condition 

and the condition for uniform distribution of the load was obtained by equating to the intrinsic 

strength of the preceding level. 

 

An addition to designing for improved strength, the preceding result is important for the 

interpretation of results in adhesion tests performed using a punch-like indenter. We observe 

that the backing layer compliance will render the result dependent on the dimensions of the 

contact, which may lead to issues in comparing the strength of fibrils characterized using 

different indenter sizes. 
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The effect of substrate curvature has also been considered. The limit of a rigid backing layer 

was considered by Schargott et al. [103] using a model based on approximation of the fibrils 

as an elastic foundation. It was shown that the maximum strength, as represented by the 

detachment force, is 

 

𝐹max =
𝜋𝑅𝜌𝑓max

2

𝑘
 (2.48) 

 

which is in agreement with the Derjaguin limit for rigid spheres given in (2.6), when the 

effective work of adhesion of (2.44) is invoked. It was also shown that in the presence of 

adhesion hysteresis (jump-in to contact of individual fibrils occurring at considerably shorter 

separations than upon detachment), a critical compressive preload must be achieved in order 

to observe the level of strength reported in (2.48). This, as well as the dependence of the 

detachment force on the radius, 𝑅, is of considerable importance for comparison between 

adhesion tests using spherical probes [105]. 

 

For a compliant backing layer, the result of JKR theory given in (2.39) can be employed. This 

gives 

 

𝐹max =
3

4

𝜋𝑅𝜌𝑓max
2

𝑘
 (2.49) 

 

where once again the backing layer compliance is observed to negatively impact strength. In 

this context the validity of JKR theory, as dictated by (2.41), requires that the ratio 
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𝑅𝜌𝑘𝑓max/𝐸2 > 1000. The result of (2.49) will consequently be valid when the contact is large, 

and the backing layer is compliant relative to the fibrils. A result for intermediate cases is only 

available in the plane strain limit, as reported by Long et al. [68]. 

 

The response of arrays subject to roughness on the length scale of the fibrils has also been 

considered. Persson [40] modeled fibrils as discrete elastic contacts and considered the 

energetics of the detachment process for a prescribed probability distribution of roughness 

height. It was demonstrated that the effective work of adhesion was of the form of (2.44), but 

modified by a coefficient which is a monotonically decreasing function of the ratio of 

characteristic roughness amplitude to the elongation of a fibril at detachment. Bhushan et al. 

[106] and Kim et al. [30] have also presented models based on discrete elastic elements, 

considering both single-level and multi-level hierarchy, evidencing the benefit of the later in 

regard to maintaining adhesive strength in the presence of roughness on the scale of fibrils. A 

similar model was presented by Schargott [43].  

 

Statistical distribution in fibril adhesive strength was first considered by Hui et al. [107], on 

the basis of the historical statistical theory of the strength of thread bundles [108]. Assuming 

that the load distribution among fibrils was uniform and adopting a power law distribution for 

their adhesive strength, it was demonstrated that the strength of the array will decay 

monotonically with increasing variability. This was built upon by Porwal et al. [109], who 

additionally considered substrate roughness on the length scale of fibrils and performed Monte 

Carlo simulations to determine the resulting strength. McMeeking et al. [45] later hypothesized 

that defect-dependent detachment of fibrils should follow the statistical theory of fracture 
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[110]. Under the assumption of validity of the empirical defect density function of Weibull, it 

was shown that the scaling of adhesive strength with contact perimeter was dependent on the 

distribution of defect size, potentially reconciling discrepancies across experimental studies. 
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Chapter 3 

Modeling interfacial misalignment and backing 

layer compliance 

 

3.1 Introduction 

Building upon the work highlighted in Section 2.5, there is considerable need for further 

investigation of adhesive strength at the array-scale. Previous investigations have highlighted 

that mechanical coupling of fibrils through a compliant backing layer gives rise to a 

circumferential load concentration, leading to detachment of fibrils beginning at the contact 

edge [70]. However, only ideal loading of a flat-on-flat interfacial configuration was 

considered. The adhesive strength under non-ideal loading conditions may alter or preclude 

the role of the circumferential load concentration, and associated disadvantage of backing layer 

compliance. Limiting our attention to the performance of millimeter-scale fibrillar adhesive 

patches designed for normal adhesive strength on smooth flat surfaces, we identify interfacial 

misalignment as the primary perturbation to ideal loading conditions. From laboratory 

experiments the adhesion force in flat-on-flat configurations is known to be sensitive to 

alignment [69].  Careful control using leveling systems is required. However, many synthetic 

fibrillar adhesives are designed for application in flat-on-flat configurations without precise 

control of alignment, e.g. pick-and-place grippers. We consider a flat-on-flat geometry, 
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removing the requirement for perfect alignment during separation of the adhesive and the 

contacting surface. We examine how the load distribution, detachment characteristics, and 

adhesive strength are impacted by the combined effects of backing layer mechanical coupling 

and misalignment. 

 

3.2 Theoretical model 

3.2.1 Analytical formulation 

Figure 3.1 shows a schematic of the mechanical model utilized in this investigation. It is based 

on the example of Noderer et al. [22] and Guidoni et al. [104]. The model adhesive is 

comprised of an array of fibrils atop a backing layer composed of the same linear elastic, 

isotropic material. Fibrils are cylindrical with radius, 𝑎, and undeformed length, ℎ. They are 

distributed in a square array with the distance between the centers of nearest neighbor fibrils, 

𝑑. Globally, we consider a rectangular array for which 𝑛𝑥 and 𝑛𝑦 are the number of fibrils 

along the 𝑥- and 𝑦-axes, respectively. The total number of fibrils is 𝑁 = 𝑛𝑥𝑛𝑦. The reference 

system 𝑥, 𝑦, 𝑧 is centered at the base of a reference fibril located at one of the corners of the 

array. Two limits on the backing layer thickness, and thus its compliance, are considered. In 

one limit 𝐻 = 0, such that the rigid tile below the backing layer supports the fibril array. In the 

other limit the backing layer is considered to be an elastic half-space, so that it has infinite 

thickness, 𝐻 = ∞, and extends indefinitely in the 𝑥 and 𝑦 directions. Fibrils contact a rigid 

substrate at their tip. A remote load acts to detach the adhesive from the substrate, generating 

a relative displacement of the substrate at a fixed angle of misalignment. Misalignment angles, 
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𝜃𝑥 and 𝜃𝑦, about the 𝑥- and 𝑦-axis respectively, are defined so that when they are both non-

zero and positive, the fibril at the origin (𝑥 = 𝑦 = 0) experiences the smallest displacement. 

 

 

Figure 3.1. Schematic of the mechanical model for investigation of backing 

layer compliance and interfacial misalignment. The fibrillar array and 

backing layer material has Young’s modulus, 𝐸, and Poisson ratio, 𝜈. Fibrils 

are arranged in a square array, with characteristic fibril spacing 𝑑. Globally 

we consider a rectangular array for which 𝑛𝑥 and 𝑛𝑦 are the number of fibrils 

along the 𝑥- and 𝑦-axes, respectively, with the total number of fibrils being 

𝑁 = 𝑛𝑥𝑛𝑦. Each fibril has radius 𝑎, and undeformed length ℎ. The force, 𝐹, 

generates a relative displacement of the substrate, 𝑢̅, at a fixed angle of 

misalignment about each axis, 𝜃𝑥 (not visible) and 𝜃𝑦. In contact, individual 

fibrils respond as one-dimensional linear elastic elements, with the load and 

elongation of fibril 𝑖 being 𝑓𝑖 and 𝛿𝑖, respectively. We assume unstable 

defect-controlled detachment of individual fibrils at tensile load 𝑓max. 
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Before considering the behavior of the adhesive sample in contact with the test surface further, 

we must first consider mechanical behavior an individual fibril. The intrinsic adhesive 

properties of the interface at the tip of an individual fibril are encompassed by the work of 

adhesion, 𝑊, defined as the energy per unit area required to generate absolute separation of 

the interface, and the intrinsic strength, 𝜎0, defined as the maximum force per unit area 

supported by the fibril-substrate interface during separation. Linear elastic fracture mechanics 

predicts defect-controlled detachment when the defect size exceeds 𝐸∗𝑊 𝜎0
2⁄ . For the van der 

Waals interaction occurring at the interface of an elastomer and a much stiffer substrate, this 

is on the order of nanometers. At the fibril tip we anticipate the presence of defects far 

exceeding this limit, and consequently expect defect-controlled detachment. We therefore 

consider the fibril to behave as a one-dimensional element which exhibits a linear elastic 

response up to a maximum tensile load, 𝑓max, at which point detachment of the fibril occurs in 

an unstable manner via propagation of a defect. This load represents the adhesive strength of 

an individual fibril.  It is assumed that the fibril strength is uniform across the array, i.e. it is 

deterministic in nature. The significance of this assumption is discussed in Chapters 5 and 6. 

 

Axial deformation of fibrils leads to the development of elastic force, 𝑓𝑖, equilibrated by 

intermolecular forces at the fibril tip. The sum of the forces developed in all fibrils in contact 

with the substrate must equilibrate the total force, therefore 

 

𝐹 = ∑ 𝑓𝑖

𝑁

𝑖=1

 (3.1) 
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The maximum load supported by the fibrillar array is 𝐹max. While the simulations described 

are performed in displacement control, this is termed the detachment force on account of it 

being the point of instability in a load-controlled measurement. The theoretical bound on the 

strength of the fibril array corresponds to a uniform load distribution among fibrils, leading to 

simultaneous detachment across the array as the local load at each fibril exceeds 𝑓max. In this 

case the detachment force 𝐹max = 𝑁𝑓max. When the detachment force is normalized as 

𝐹max 𝑁𝑓max⁄ , we obtain a measure of the efficiency with which the fibril adhesive strength is 

harnessed at the array scale. Given that the area occupied by the array is proportional to the 

total number of fibrils, 𝐹max 𝑁𝑓max⁄  can alternatively be interpreted as a dimensionless and 

normalized form of the maximum stress supported by the fibrillar array i.e. its adhesive 

strength. 

 

The displacement at the tip of the 𝑖–th fibril is 

 

𝑢𝑖 = 𝑢̅ + 𝑥𝑖 tan 𝜃𝑦 + 𝑦𝑖 tan 𝜃𝑥  (3.2) 

 

where 𝑥𝑖 and 𝑦𝑖 are the coordinates that identify the position of the center of the fibril and 𝑢̅ is 

the displacement, as defined in Figure 3.1. The tip displacement at the reference fibril is 𝑢̅ and, 

assuming 𝜃𝑥 ≥ 0 and 𝜃𝑦 ≥ 0, the displacement for all other fibrils in contact is greater than 

this value. All tests consist of an approach phase (d𝑢̅ < 0) and a separation phase (d𝑢̅ > 0). In 

the approach phase it is ensured that contact is generated with all fibrils in the array. Where 
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misalignment is present, this necessitates that fibrils are shortened. The response of shortened 

fibrils is discussed subsequently. 

 

The displacement, 𝑢𝑖, in (3.2) is the result of elastic deformation of the backing layer and of 

the 𝑖– th fibril, and thus by linear superposition 

 

𝑢𝑖 = 𝑢𝑖
fib(𝑓𝑖) + ∑ 𝑢𝑖

BL(𝑓𝑗)

𝑁

𝑗=1

 (3.3) 

 

The first term is the displacement accommodated by tensile strain on fibril 𝑖 under the action 

of the force it experiences, 𝑓𝑖. The second term is the displacement due to elastic deformation 

of the backing layer at the base of fibril 𝑖. It is the result of load transmitted through each fibril 

to the backing layer, both locally (𝑓𝑗 ∀𝑗 = 𝑖) and by other fibrils in the array (𝑓𝑗 ∀𝑗 ≠ 𝑖).  

 

The displacement accommodated by tensile strain on the fibril, the first term on the right hand 

side of (3.3), is 

 

𝑢𝑖
fib(𝑓𝑖) =  

ℎ𝑓𝑖

π𝑎2𝐸
 (3.4) 

 

In the limit 𝐻 = ∞, from Johnson’s solutions for normal loading of an elastic half-space [90] 

we obtain the second term on the right hand side of (3.3) as 
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𝑢𝑖
BL(𝑓𝑗) =

𝑓𝑗

π𝑟𝑖𝑗𝐸∗
          ∀ 𝑗 ≠ 𝑖 

(3.5) 

𝑢𝑖
BL(𝑓𝑗) =

16𝑓𝑗

3π2𝑎𝐸∗
          ∀ 𝑗 = 𝑖 

 

where 𝐸∗ = 𝐸 (1 − 𝜈2)⁄ , with 𝐸 and 𝜈 being the Young modulus and the Poisson ratio of the 

backing layer, respectively. The distance separating the centers of the 𝑖– th and the 𝑗– th fibrils 

is 𝑟𝑖𝑗. The result for 𝑗 ≠ 𝑖  is obtained when we approximate the pressure applied to the half-

space at the base of fibril 𝑗 with the resulting point force 𝑓𝑗 applied at the center of its cross-

section. We assume that the base displacement of fibril 𝑖 which results is given by Johnson’s 

formula, applied at the center of its cross-section. This is proven to give a maximum error that 

is within 3.5 % when compared to the solution for uniform pressure loading of the half-space, 

as reported in Appendix A. The result for 𝑗 = 𝑖 is the average displacement of the cross-section 

of fibril 𝑗 which results from a uniform pressure load applied to its section. 

 

Eq. (3.3) can be rewritten in matrix form by substitution of (3.4) and (3.5), giving 

 

𝑢𝑖 = 𝑐𝑖𝑗 𝑓𝑗 (3.6) 

 

where the compliance matrix, c, has the components 

 

𝑐𝑖𝑗
𝐻=0 =

ℎ

π𝑎2𝐸
     ∀ 𝑗 = 𝑖 (3.7) 
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𝑐𝑖𝑗
𝐻=0 = 0     ∀ 𝑗 ≠ 𝑖 

 

in the rigid backing layer limit and 

 

𝑐𝑖𝑗
𝐻=∞ =

1

π𝑟𝑖𝑗𝐸∗
          ∀𝑗 ≠ 𝑖 

(3.8) 

𝑐𝑖𝑗
𝐻=∞ =

1

π𝑎𝐸∗
[
16

3π
+

ℎ

𝑎(1 − 𝜈2)
]          ∀ 𝑗 = 𝑖 

 

in the fully compliant limit. Mechanical coupling of fibrils via the off-diagonal terms of the 

compliance matrix of (3.8) is henceforth referred to as the backing layer interaction. Defining 

the stiffness matrix, 𝒌 = 𝒄−1, we find that inversion of (3.6) gives 

 

𝑓𝑗 = 𝑘𝑗𝑖 𝑢𝑖 (3.9) 

 

When 𝑓𝑗  is negative, the 𝑗– th fibril is in compression. The critical buckling load,  𝑓b, represents 

the maximum compressive load which can be sustained, where we assume that upon further 

compression the post-buckling behavior of fibrils involves a fixed compressive load [111]. In 

the following sections all physical cases of finite and non-zero 𝑓b are considered within the 

bounds of two limits, namely ideally slender fibrils (𝑓b = 0) and ideally short fibrils (𝑓b =

−∞). In the limit 𝑓b = 0, the total load during approach is zero and the separation phase begins 

when all fibrils contact the substrate. In the limit 𝑓b = −∞, a compressive load is generated 

during approach. Separation begins when a specified preload, 𝐹0, is met. In all cases examined, 

the preload specified is sufficient to bring all fibrils in to contact.  It is assumed that upon 
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unbuckling the tip contact is reformed and the local detachment force is unaffected. The 

validity of this assumption will depend on the tip geometry; most significantly this feature has 

been demonstrated to hold for mushroom-tipped fibrils at moderate preloads [57].  

 

Substituting (3.2) into (3.9) we obtain 

 

𝑓𝑗 = 𝑢̅ (∑ 𝑘𝑗𝑖

𝑁

𝑖=1

) + 𝑘𝑗𝑖𝑥𝑖 tan 𝜃𝑦 + 𝑘𝑗𝑖𝑦𝑖 tan 𝜃𝑥  (3.10) 

 

With substitution of (3.10) into (3.1) we obtain the total load supported by the fibril array, 𝐹, 

as a function of the prescribed displacement, 𝑢̅. However, we note that when the prediction of 

(3.10) for fibril j is such that  𝑓𝑗 < 𝑓b, we then use 𝑓𝑗 = 𝑓b in the determination of the total 

force. Similarly, when 𝑓𝑗 > 𝑓max then the fibril detaches and 𝑓𝑗 = 0 in the determination of the 

total force. 

 

3.2.2 Numerical implementation 

To facilitate ease of assessment of the adhesive strength of the fibril array, the total load is 

normalized as 

 

𝐹̃ = 𝐹 𝑁𝑓max ⁄  (3.11) 

 

We define the dimensionless prescribed displacement as 
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𝑢̃ = (
𝑢̅

𝑎
)

π𝑎2𝐸∗

𝑓max
 (3.12) 

 

This leads to the following expression for the dimensionless displacement at fibril 𝑖 

 

𝑢̃𝑖 = 𝑢̃ +
π𝑎2𝐸∗

𝑓max

𝑥𝑖

𝑎
tan 𝜃𝑦 +

π𝑎2𝐸∗

𝑓max

𝑦𝑖

𝑎
tan 𝜃𝑥 (3.13) 

 

where 𝑥𝑖 𝑎⁄ , and 𝑦𝑖 𝑎⁄  are linearly related to the fibril separation, 𝑑 𝑎⁄ , specified within the 

model. 

 

When considering misalignment, compatibility limits the possible range of the misalignment 

angles 𝜃𝑥 and 𝜃𝑦. We limit the misalignment angle according to the condition that when all 

fibrils in the array contact the substrate, there should not be interference between the backing 

layer and substrate where the displacement is smallest. We also neglect interference of the 

substrate and backing layer outside of the fibrillar region, implying that the contact is finite in 

size. The resulting compatibility limit is 

 

(𝑛𝑥 − 1) tan 𝜃𝑦 + (𝑛𝑦 − 1) tan 𝜃𝑥 ≤
ℎ

𝑑
 (3.14) 

 

For simplicity in the consideration of compatibility we consider only unidirectional 

misalignment, 𝜃𝑥 = 0 and 𝜃𝑦 = 𝜃. In the sections which follow we explore variation in the 
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parameters 𝑛𝑥, 𝑛𝑦, ℎ, and 𝑑, and so compatibility must be considered on a case by case basis 

according to (3.14). Within the bounds of compatibility for a given system, the range of 

misalignment adopted is such that all physical features of interest are revealed. 

 

Furthermore, (3.13) dictates that to study misalignment we must assign a value to the term 

𝑓max π𝑎2𝐸∗⁄ . This is closely related to the strain on a fibril at detachment, differing only by a 

factor of 1 − 𝜈2. Elastomeric mushroom-tipped fibrils typically exhibit detachment stresses on 

the order of 100 kPa. With an elastic modulus on the order of 1 MPa, we obtain an estimate 

on the critical strain of 10 %. We therefore choose to adopt 𝑓max π𝑎2𝐸∗⁄ = 0.1. Provided that 

compatibility is independently ensured, the results presented will hold for systems in which 

𝑓max π𝑎2𝐸∗⁄ ≠ 0.1 provided tan 𝜃 is replaced with π𝑎2𝐸∗ tan 𝜃 𝑓max⁄  when one reads the 

results of Section 3.3. 

 

A simulation commences with the dimensionless prescribed displacement 𝑢̃ = 0. During 

approach the displacement is reduced by d𝑢̃. Contact is assessed on a fibril by fibril basis 

according to the relative position of the substrate and fibril tip. ‘Jump-into-contact’ of 

individual fibrils, which may occur in the presence of adhesive forces, is not considered. This 

is deemed a valid assumption as it typically occurs at separation distances much smaller than 

the critical stretch of a fibril. For each incremental step, rows and columns of the compliance 

matrix corresponding to fibrils not in contact are eliminated on the basis that 𝑓𝑗 = 0. The 

reduced compliance matrix is then inverted to obtain the reduced stiffness matrix, and the force 

in each fibril in contact is computed from (3.10). If it predicts that the load in fibril 𝑗 exceeds 

the detachment load such that 𝑓𝑗 > 𝑓max, this fibril detaches. The compliance matrix is further 
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reduced, and the force is recomputed until no further detachments occur. The displacement is 

incremented and the process is repeated. 

 

The choice of d𝑢̃ involves a trade-off between accuracy and computation time. For all of the 

results presented the incremental step in the prescribed dimensionless displacement is d𝑢̃ =

0.01. 

 

3.2.3 Analytical solution for rigid backing layer 

Consideration of the solution for the case of a rigid backing layer, 𝐻 = 0, is useful for isolating 

the effect of backing layer interactions from that of misalignment. For unidirectional 

misalignment the problem permits the following analytical approach. 

  

Compliance terms associated with backing layer deformation are zero, hence compliance is 

given by (3.7). Since this is diagonal, it can easily be inverted to obtain an expression for the 

load. Combining the resulting stiffness matrix with (3.1) and (3.10) gives 

 

𝐹 =
π𝑎2𝐸

ℎ
[𝑁a𝑢̅ + (∑ 𝑥𝑖

𝑁a

𝑖=1

) tan 𝜃] (3.15) 

 

The displacement at maximum load, 𝐹 = 𝐹max, is obtained by considering the condition of 

‘first detachment’, when the first row of fibrils instantaneously experiences critical elongation, 

𝛿max = 𝑓maxℎ/(π𝑎2𝐸) and is about to detach. 
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Figure 3.2. Configuration of the model system with rigid backing layer, 𝐻 =

0, at the instant of first detachment. The elongation of fibrils at the right edge 

is  𝛿max = 𝑓maxℎ/(π𝑎2𝐸). The misalignment angle, 𝜃, dictates whether first 

detachment occurs when the displacement 𝑢̅ ≥ 0, in which case all fibrils 

are in tension, or 𝑢̅ < 0, in which case a region of fibril compression exists 

at the left edge of the array. 

 

Figure 3.2 shows the configuration of the array at first detachment. For a given misalignment 

angle, 𝜃, there are two possible regimes. If first detachment occurs when 𝑢̅ ≥ 0 then all fibrils 

are in tension and the force is maximum in this configuration. This becomes clear when 

considering the detachment of the second row of fibrils. The configuration will have evolved 

in a self-similar manner but for the row furthest from the detachment front, which is no longer 

present. Since this row previously held tensile load, the total force is reduced for this and all 

subsequent detachments. 
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For the first regime, the critical value of the prescribed displacement, 𝑢̅, is obtained from the 

geometry in Figure 3.2 as 

 

𝑢̅c = 𝛿max − (𝑛𝑥 − 1)𝑑 tan 𝜃 (3.16) 

 

All fibrils are attached such that 𝑁a = 𝑁, and the sum of the 𝑥-positions of attached fibrils is 

 

∑ 𝑥𝑖

𝑁

𝑖=1

=
1

2
𝑁(𝑛𝑥 − 1)𝑑 (3.17) 

 

Combining (3.15)-(3.17), we obtain the normalized detachment force 

 

𝐹max

𝑁𝑓max
= 1 −

π𝑎2𝐸

2𝑓max

(𝑛𝑥 − 1) tan 𝜃 
𝑑

ℎ
 (3.18) 

 

In the second regime, where first detachment occurs when 𝑢̅ < 0, a portion of the array is 

shortened. If fibrils respond elastically in compression (limit 𝑓b = −∞) then, as fibril 

detachment progresses, the tensile region will evolve in a self-similar manner. Rows transition 

from compressive to tensile at the same rate as rows detach. This progressively reduces the 

compressive contribution to the total load. The maximum force will occur in the configuration 

for which no row of fibrils remains in compression. Consequently the critical prescribed 

displacement is always 𝑢̅c = 0. Alternatively, if fibrils buckle under negligible load (limit 𝑓b =

0) then the tensile region also evolves in a self-similar manner. The total load is constant 
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throughout this evolution. Any configuration, including that in which 𝑢̅c = 0, can be analyzed 

to determine the maximum load. 

 

Figure 3.3 shows this configuration in which 𝑢̅c = 0. The number of fibrils in contact is 

 

𝑁a = 𝑛𝑦 (
𝛿max

𝑑 tan 𝜃
+ 1) (3.19) 

 

The sum of the 𝑥-positions of attached fibrils is 

 

∑ 𝑥𝑖

𝑁a

𝑖=1

=
1

2
𝑛𝑦 (

𝛿max

𝑑 tan 𝜃
+ 1)

𝛿max

tan 𝜃
 (3.20) 

 

Knowing 𝑢̅c = 0, we combine (3.15), (3.19) and (3.20) to obtain the detachment force 

 

𝐹max

𝑁𝑓max
=

1

2𝑛𝑥
[1 +

𝑓max

π𝑎2𝐸

ℎ

tan 𝜃 𝑑
] (3.21) 

 

The transition misalignment angle, 𝜃t, is obtained by analyzing the configuration in Figure 3.2 

with 𝑢̅ = 0, yielding 

 

tan 𝜃t =
𝑓max

π𝑎2𝐸 

ℎ

𝑑(𝑛𝑥 − 1)
 (3.22) 
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When the misalignment angle, 𝜃, is in the range 0 ≤ 𝜃 ≤ 𝜃t then the detachment force is given 

by (3.18), while for 𝜃 > 𝜃t it is given by (3.21). 

 

 

Figure 3.3. Configuration of model system with rigid backing layer, 𝐻 = 0, 

at maximum load, 𝐹 = 𝐹max, for misalignment angle 𝜃 > 𝜃t i.e. for which 

regions of tension and compression exist at first detachment. 

 

3.3 Results 

3.3.1 Effect of backing layer compliance 

Figure 3.4 shows the force-displacement curve for an aligned system, 𝜃 = 0. We examine a 

square array for which 𝑛𝑥 = 𝑛𝑦 = 30, the total number of fibrils being 𝑁 = 900. The fibril 

length and spacing are ℎ = 5𝑎 and 𝑑 = 5𝑎, respectively. 

 

During approach, the response of fibrils in compression must be considered. As, highlighted 

in Section 3.2, two limits on the bucking load, 𝑓b = −∞ and 𝑓b = 0, are considered. For fibrils 

which respond elastically in compression (𝑓b = −∞), the preload 𝐹0 𝑁𝑓max⁄ = −0.5 is 

specified. Since all fibrils contact the substrate simultaneously, there is no difference in the 

stiffness during approach and retraction. If fibrils buckle under negligible compressive load 
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(𝑓b = 0) then compressive preload cannot be applied, but the response in tension is identical 

to the preceding case. We therefore observe no difference between the two limits. 

 

 

Figure 3.4. Force-displacement curve for the aligned state, 𝜃 = 0. The 

normalized detachment force, 𝐹max 𝑁𝑓max⁄ , is 0.62, 0.63, and 0.66 for 

Poisson ratio, 𝜈, of 0, 0.3, and 0.5, respectively. The inset shows a six-fold 

magnification close to the maximum tensile load, evidencing drops in the 

load associated with fibril detachments. The bucking limits 𝑓b = −∞ and 

𝑓b = 0 are considered, but are indistinguishable. 

 

The force-displacement curve exhibits a significant drop in 𝐹 every time a set of fibrils detach, 

with this drop only being resolved in displacement control. Non-simultaneous detachment 

dictates that the load distribution is non-uniform, and thus the adhesive strength of the array is 

reduced. The normalized detachment force, 𝐹max 𝑁𝑓max⁄ < 1. As the displacement is 

increased, the effective stiffness of the adhesive system, d𝐹 d𝑢̅⁄ , is monotonically reduced as 

fibrils continue to detach, falling to zero at complete detachment. We note that the maximum 

value of the total force, 𝐹max, is the point at which detachment would occur in an unstable 

manner in load control. 
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Figure 3.5 demonstrates the evolution of detachment in the aligned state. We examine the point 

of maximum load, 𝐹 = 𝐹max, for the case of 𝜈 = 0.5. An array edge load concentration results 

as we transition from the bulk. Diminished backing layer deformation at the base of array edge 

fibrils is the result of a reduction in nearest neighbors. A larger share of the prescribed 

displacement must be accommodated by fibril stretching, resulting in load concentration. 

Fibrils at the array corners, where the reduction in neighbors is most pronounced, exceed their 

critical load first and detach. This leads the shape of the attached portion of the array to evolve 

toward that of a circle, where the number of neighboring fibrils is uniform around the 

perimeter. 

 

Returning briefly to Figure 3.4, we initially explore three values of Poisson ratio. It is observed 

that an increase in the Poisson ratio yields an increase in the adhesive strength of the array. 

Specifically, the normalized detachment force is increased from 𝐹max 𝑁𝑓max⁄ = 0.62 for 𝜈 =

0 to 𝐹max 𝑁𝑓max⁄ = 0.66 for 𝜈 = 0.5. This is a result of lateral contraction/expansion of the 

backing layer limiting its compliance and thus inhibiting the interaction that leads to load 

concentration at the array edge. From this point on we proceed with 𝜈 = 0.5, representative of 

the incompressible elastomeric materials typically used to fabricate synthetic fibrillar 

adhesives. 
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Figure 3.5. Load distribution and normal deformation of model fibrillar 

adhesive in the aligned state, at maximum tensile load 𝐹 = 𝐹max; (a) Fibril 

force, 𝑓𝑖/𝑓max; (b) Normal deformation for a section through the center of 

the array, parallel to the 𝑥-axis. Note that the scale of 𝑥 and 𝑧 are not equal. 

 

3.3.2 Effect of misalignment 

Figure 3.6 shows the force-displacement curve for the aligned state, and for two values of the 

misalignment angle, 𝜃. The presence of misalignment leads to differences in behavior of the 

two limiting cases of the fibril bucking load, 𝑓b, described in Section 3.2. If fibrils respond 
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elastically in compression (𝑓b = −∞, solid line) then during approach the stiffness of the 

system increases as fibrils progressively contact the substrate. If fibrils buckle under negligible 

compressive load (𝑓b = 0, dashed line) then the load is zero during approach. Upon contact 

with all fibrils, the stiffness increased as fibrils are brought in to tension and contact at the tip 

is reformed. Eventually, upon reaching the state in which all fibrils are in contact and bear 

tensile load, the behavior in each case is indistinguishable. 

 

It is apparent from the normalized detachment force, 𝐹max 𝑁𝑓max⁄ , that increasing 

misalignment results in a more severe load concentration, and a greater reduction in the 

adhesive strength of the fibril array. 

 

 

Figure 3.6. Force-displacement curves for three values of the misalignment 

angle, 𝜃. The normalized detachment force, 𝐹max 𝑁𝑓max⁄ , is 0.66, 0.50, and 

0.32 for misalignment angles 𝜃 = 0, 𝜃 = 0.25°, and 𝜃 = 0.5°, respectively. 

The bucking limits 𝑓b = −∞ (solid lines) and 𝑓b = 0 (dashed lines) are 

considered. 
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Figure 3.7. Load distribution and normal deformation of model fibrillar 

adhesive in a misaligned state, 𝜃 = 0.25°, at maximum tensile load 𝐹 =

𝐹max; (a) Fibril force, 𝑓𝑖/𝑓max; (b) Normal deformation along for a cut 

through the center of the array, parallel to the 𝑥-axis. Note that the scale of 

𝑥 and 𝑧 are not equal. 

 

Figure 3.7 highlights the evolution of detachment for the system, with misalignment, 𝜃 =

0.25°. Once again, we examine the point of maximum load, 𝐹 = 𝐹max.  As the prescribed 

displacement, 𝑢̅, is increased, the bias for fibril deformation at one edge of the array persists 
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resulting in initial detachment at this edge and the propagation of the detachment front across 

the array. 

 

Although not examined quantitatively here, when bidirectional misalignment is considered and 

compatibility is ensured the detachment front propagates in the direction of maximum 

misalignment. The tangent of the angle subtended by the detachment front and the 𝑥-axis is 

approximately equal to the ratio tan 𝜃𝑥 / tan 𝜃𝑦. Reduced adhesive strength is observed in 

mutual combination for both misalignment angles being nonzero and positive. 

 

3.3.3 Effect of array size 

In Figure 3.8 we examine a square array (𝑛𝑥 = 𝑛𝑦 = 𝑛) and report the influence of the total 

number of fibrils, 𝑁 = 𝑛2, on the normalized detachment force, 𝐹max 𝑁𝑓max⁄ . Both a rigid 

backing layer, 𝐻 = 0, and a fully compliant backing layer, 𝐻 = ∞,  are examined in the aligned 

state and with misalignment, 𝜃 = 0.25°. This allows for the isolation of backing layer and 

misalignment effects, as well as examination of their influence in combination. 
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Figure 3.8. Normalized detachment force, 𝐹max 𝑁𝑓max⁄ , versus the total 

number of fibrils, 𝑁. A square array of fibrils for which 𝑛𝑥 = 𝑛𝑦 = 𝑛 and 

𝑁 = 𝑛2 is examined. Results are presented for a rigid backing layer, 𝐻 = 0, 

for which the result is given by (3.18) and (3.21),  and a compliant backing 

layer, 𝐻 = ∞. For the aligned state, the rigid backing layer achieves a 

uniform load distribution and the theoretical maximum strength independent 

of the fibril separation. Consequently 𝐹max = 𝑁𝑓max, and the result is not 

visible on the plot. We distinguish the three remaining results on the basis of 

the presence of backing layer compliance (BL) and misalignment. 

 

For model adhesive on a rigid backing layer in the aligned state it is known that the load 

distribution is uniform. The upper bound on adhesive strength of the array is achieved 

independent of the array size. Introduction of backing layer compliance (BL only) results in a 

monotonic decay in the adhesive strength of the array with increasing size, is associated with 

an increase in the severity of the array edge load concentration. This has been highlighted in 

past work [70, 102]. It should be noted that asymptotic scaling associated with the limit of an 

infinitely thick backing layer presented in previous studies, which would predict that 

𝐹max 𝑁𝑓max⁄ ∝ 1/𝑁1/4, is not observed.  Consideration of the approximate size of the fracture 

process zone reveals the reason for this.  Adopting the effective work of adhesion of (2.44), 
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and identifying that the intrinsic strength is 𝑓max/𝑑2, the normalized size of the fracture process 

zone is approximately 𝑑̃2ℎ̃. For the system examined, this is of order 102. For the maximum 

array size examined, the normalized dimensions are of the same order. Linear elastic fracture 

mechanics solutions cannot, therefore, be used with validity. 

 

With only misalignment, we also observe that there is a monotonic decay in adhesive strength 

of the array with increasing array size. Introducing backing layer compliance in combination, 

the reduction in strength is seen to be more severe for small array sizes. However, for large 

arrays the results for each limit on backing layer compliance converge. This suggests that 

interfacial misalignment is the dominant effect controlling the adhesive strength of the array 

in this regime. 

 

3.3.4 Effect of fibril spacing and length 

Figure 3.9 demonstrates the effect of fibril spacing, 𝑑, on the normalized detachment force, 

𝐹max 𝑁𝑓max⁄ . As before, both a rigid backing layer, 𝐻 = 0, and a compliant backing layer, 𝐻 =

∞,  are examined in the aligned state and with misalignment, 𝜃 = 0.25°. 
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Figure 3.9. Normalized detachment force, 𝐹max 𝑁𝑓max⁄ , versus the fibril 

spacing, 𝑑/𝑎, for the aligned state and for a misaligned state with 𝜃 = 0.25°. 

As before, results are distinguished on the basis of the presence of backing 

layer compliance (BL) and misalignment. 

 

With only misalignment the difference in displacement between two arbitrary fibrils, and the 

resulting load concentration, is linearly proportional to the fibril separation, 𝑑. This 

proportionality translates to the decay in the adhesive strength of the array, as represented by 

the normalized detachment force 𝐹max 𝑁𝑓max⁄  given in (3.18) and (3.21). 

 

For the aligned state, increased fibril spacing yields a monotonic increase in the adhesive 

strength of the array. Individually, elastic interactions associated with the backing layer 

compliance are known to decay as 1 𝑟𝑖𝑗⁄ . Consequently, the collective effect is reduced as fibril 

spacing is increased. The severity of the array edge load concentration is reduced. In the limit 

that fibrils are infinitely far apart backing layer interactions decay to zero, and the adhesive 

strength of the array would tend toward the theoretical limit, with the normalized detachment 

force 𝐹max 𝑁𝑓max⁄ → 1. 
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When considering the combined effect of backing layer compliance and misalignment, the 

benefit of increased spacing holds also for the misaligned system up to a critical spacing, 𝑑∗. 

This is referred to as the ‘backing layer compliance dominated regime’. For the specified 

misalignment, the critical spacing yields the highest adhesive strength for the compliant 

backing layer. It represents the transition to the ‘misalignment dominated regime’. Here the 

decay in adhesive strength with fibril separation, which results due to misalignment and was 

highlighted for the rigid backing layer, prevails over the benefit provided by reduced backing 

layer interactions.  We note that in the case considered, 𝑑∗ is approximately 4𝑎. 

 

It is also observed that the decay in the adhesive strength of the array with increased spacing 

is less severe for the compliant backing layer than the rigid backing layer, and that for 

sufficiently large spacing the backing layer compliance can be beneficial to the adhesive 

strength of the array. The mechanism behind this adhesion enhancement is discussed shortly. 

 

Figure 3.10 demonstrates the effect of fibril length, ℎ, on the normalized detachment force, 

𝐹max 𝑁𝑓max⁄ . Once again, both a rigid backing layer, 𝐻 = 0, and a compliant backing layer, 

𝐻 = ∞,  are examined in the aligned state and with misalignment, 𝜃 = 0.25°. Increasing fibril 

length, ℎ, yields increased fibril compliance. Where there is load concentrations, either as a 

result of backing layer deformation or misalignment, the difference in load is inversely 

proportional to the fibril compliance. Reduction in the severity of load concentration with 

increasing fibril length, ℎ, yields a monotonic increase in the adhesive strength of the array for 

all cases examined, as reflected in the normalized detachment force  𝐹max 𝑁𝑓max⁄ . Once again, 
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we observe a regime in which the adhesive strength of the array is greater for the compliant 

backing layer than the rigid, in this case occurring at sufficiently small fibril length. 

 

 

Figure 3.10. Normalized detachment force, 𝐹max 𝑁𝑓max⁄ , versus the fibril 

length, ℎ/𝑎, for the aligned state and for a misaligned state with 𝜃 = 0.25. 

As before, results are distinguished on the basis of the presence of backing 

layer compliance (BL) and misalignment. 

 

We have noted that the compliant backing layer can yield improved adhesive strength when 

misalignment is severe, fibril spacing is large, or fibril compliance is low. This leads to the 

conclusion that, in this regime, backing layer deformation is counteracting the effect of 

misalignment. Without misalignment backing layer mechanical coupling was seen to create a 

load concentration at the array edge, resulting in non-simultaneous detachment and reduced 

adhesive strength of the array. In the misalignment dominated regime, however, deformation 

of the backing layer accommodates the largest displacement at the leading edge, decaying as 

we move away from this edge. This counteracts the differential fibril stretching and load 
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concentration which results from misalignment. We now seek to characterize the transition 

between these regimes in greater detail. 

 

Figure 3.11 reports the misalignment an associated with transition between the misalignment 

dominated and backing layer compliance dominated regimes, as a function of the fibril spacing, 

𝑑/𝑎. For small arrays and large fibril spacing, the severity of the array edge load concentration 

due to backing layer compliance is reduced while the differential stretching due to 

misalignment increases. Consequently, this is associated with an expansion of the regime in 

which backing layer compliance is beneficial to performance. 

 

 

Figure 3.11. Transition misalignment angle versus fibril spacing, 𝑑/𝑎. 

Results are presented for three array sizes. Shaded regions represent the 

evolution of the backing layer compliance detrimental regime and are based 

on power law fitting of the form 𝑦 = 𝑎𝑥𝑏 . 

 

Figure 3.12 maps the same regimes as a function of the fibril length, ℎ/𝑎. As the fibril length 

is increased, the range of misalignment angles over which the backing layer compliance plays 
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a detrimental role expands. This is expected given the result of Figure 3.10, where we observe 

that increasing the fibril compliance provides a more rapid enhancement of strength in the 

presence of misalignment than the array edge load concentration. 

 

 

Figure 3.12. Transition misalignment angle versus fibril length, ℎ/𝑎. Results 

are presented for three array sizes. Shaded regions represent the evolution of 

the backing layer compliance detrimental regime and are based on power 

law fitting of the form 𝑦 = 𝑎𝑥𝑏 . 

 

3.3.5 Fibril compliance optimization 

Thus far it can be observed that adhesive strength of fibrillar arrays has been below the 

theoretical upper bound, 𝐹max < 𝑁𝑓max, for all cases examined except for the that of a single 

fibril and an aligned system with a rigid backing layer. The reduction in strength is associated 

with the nucleation of detachment of a subset of fibrils, and propagation of the detachment 

front through the array. This has been shown to depend on both backing layer compliance and 

misalignment, which together control the nature of load concentrations in the fibril array. 
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Seeking to maximize adhesive strength, we identify that there are several theoretical paths to 

obtain a uniform load distribution at the instant of detachment. An infinitely stiff or infinitely 

thin backing layer prevents the elastic interactions which give rise to a load concentration at 

the array edge. In this case, for perfect alignment only, we reach the theoretical upper bound 

on strength. An alternative to altering backing layer properties is to manipulate the compliance 

distribution at the interface to counteract the effects described. For example, fibrils which 

experience the largest stretch could be made more compliant, and therefore capable of 

sustaining additional deformation without load concentration. If tailored correctly, backing 

layer interactions can be harnessed to provide optimal load redistribution, with all fibrils 

carrying the same load at detachment. 

 

At detachment, such an interface has 𝑓𝑗 = 𝑓max ∀𝑗. In combination with (3.2) and (3.6), we 

obtain 

 

𝑢̅c + 𝑥𝑖 tan 𝜃𝑦 + 𝑦𝑖 tan 𝜃𝑥 = 𝑓max (∑ 𝑐𝑖𝑗

𝑁

𝑗=1

) (3.23) 

 

with 𝑢̅c being the critical prescribed displacement at detachment, which cannot be determined 

a priori. However, since (3.23) holds for each fibril, we may identify an individual reference 

fibril, 𝑘,  and rewrite the expression. We take the difference between (3.23) as expressed for 

both an arbitrary fibril 𝑖 and the reference fibril 𝑘 to obtain 
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(𝑥𝑖 − 𝑥𝑘) tan 𝜃𝑦 + (𝑦𝑖 − 𝑦𝑘) tan 𝜃𝑥 =  𝑓max ∑(𝑐𝑖𝑗 − 𝑐𝑘𝑗)

𝑁

𝑗=1

,            ∀𝑖 (3.24) 

 

The compliance can in theory be tailored locally at an arbitrary fibril either by modulating the 

length or the elastic modulus. As a result we introduce an effective fibril compliance term, 

ℎ̂𝑖 = ℎ𝑖 𝐸 𝐸𝑖⁄ , where ℎ𝑖 and 𝐸𝑖 are the length and elastic modulus of fibril 𝑖, and 𝐸 is the elastic 

modulus of the backing layer. This parameter can be utilized to investigate the tailoring of 

fibril length only, for which ℎ̂𝑖 = ℎ𝑖 (i.e. 𝐸𝑖 = 𝐸 ∀𝑖), and the tailoring of fibril modulus only, 

for which ℎ̂𝑖 = ℎ 𝐸 𝐸𝑖⁄  (i.e. ℎ𝑖 = ℎ ∀𝑖). It should be noted that the practical applicability of the 

tailoring of fibril length requires careful consideration, as compatibility of the adhesive and 

contacting surface becomes more complex. 

 

We replace ℎ in (3.8) with the effective fibril compliance, ℎ̂𝑖, and substitute this into (3.24) to 

obtain 

 

ℎ̂𝑖 = ℎ̂𝑘 + 𝑎(1 − 𝜈2) [𝜓𝑘 − 𝜓𝑖 +
π𝑎2𝐸∗

𝑓max

(𝑥𝑖 − 𝑥𝑘) tan 𝜃𝑦

+
π𝑎2𝐸∗

𝑓max

(𝑦̃𝑖 − 𝑦̃𝑘) tan 𝜃𝑥] ,    ∀𝑖  

(3.25) 

 

where 𝜓𝑖 = ∑ 𝑎/𝑟𝑖𝑗
𝑁
𝑗=1 , 𝑥𝑖 = 𝑥𝑖 𝑎⁄ , and 𝑦̃𝑖 = 𝑦𝑖 𝑎⁄ . This determines the distribution of the 

effective fibril compliance for an optimal interface. The compliance ℎ̂𝑘 is arbitrary and thus 

there is, in theory, an infinite number of optimal configurations. It is, however, important to 

guarantee positivity of ℎ̂𝑖, thus the choice of ℎ̂𝑘 must be consistent with this. For simplicity we 
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select as ℎ̂𝑘 the average effective fibril compliance 〈ℎ̂〉 =
1

𝑁
∑ ℎ̂𝑖

𝑁
𝑖=1 , in light of the fact that 

(3.25) is linear in all the variables 𝑥𝑖, 𝑦̃𝑖, and 𝜓𝑖, thus 

 

ℎ̂𝑖 = 〈ℎ̂〉 + 𝑎(1 − 𝜈2) [〈𝜓〉 − 𝜓𝑖 +
π𝑎2𝐸∗

𝑓max

(𝑥𝑖 − 〈𝑥〉) tan 𝜃𝑦

+
π𝑎2𝐸∗

𝑓max

(𝑦̃𝑖 − 〈𝑦̃〉) tan 𝜃𝑥],   ∀𝑖 

(3.26) 

 

with 〈𝜓〉 =
1

𝑁
∑ 𝜓𝑖

𝑁
𝑖=1 , 〈𝑥〉 =

1

𝑁
∑ 𝑥𝑖

𝑁
𝑖=1 , and 〈𝑦̃〉 =

1

𝑁
∑ 𝑦̃𝑖

𝑁
𝑖=1 .  

 

In the case of a rigid backing layer, the only purpose of fibril compliance optimization is to 

counteract misalignment. This results in a reduction of (3.26), yielding 

 

ℎ̂𝑖 = 〈ℎ̂〉 + 𝑎(1 − 𝜈2) [
π𝑎2𝐸∗

𝑓max

(𝑥𝑖 − 〈𝑥〉) tan 𝜃𝑦 +
π𝑎2𝐸∗

𝑓max

(𝑦̃𝑖 − 〈𝑦̃〉) tan 𝜃𝑥] ,   ∀𝑖 (3.27) 

 

Figure 3.13 shows the optimal fibril compliance distribution in the aligned state. The result is 

independent of the choice of π𝑎2𝐸∗ 𝑓max⁄ . We consider the average fibril compliance 〈ℎ̂〉 =

5𝑎, and refer to previous sections for all other parameters. The compliance varies from ℎ̂min =

0.50〈ℎ̂〉 at the array center, to ℎ̂max = 1.91〈ℎ̂〉 at the array corners. 
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Figure 3.13. Effective fibril compliance distribution, ℎ̂/〈ℎ̂〉, for the aligned 

system. The average effective fibril compliance 〈ℎ̂〉 = 5𝑎, with all other 

parameter values being equivalent to those in previous sections. 

 

Figure 3.14 examines the normalized detachment force, 𝐹max 𝑁𝑓max⁄ , as a function of the 

misalignment angle, 𝜃, for three distinct cases: (i) a rigid backing layer, 𝐻 = 0, and 

homogeneous fibril compliance; (ii) a compliant backing layer, 𝐻 = ∞, and homogeneous 

fibril compliance; (iii) a compliant backing layer, 𝐻 = ∞, with optimal distribution of fibril 

compliance given in Figure 3.13. We note that misalignment is typically not deterministic. 

Although re-optimization could be performed for each case of misalignment to yield the upper 

bound on adhesive strength of the array, it is of most practical significance to examine the 

robustness of case (iii) to misalignment. 
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Figure 3.14. Normalized detachment force, 𝐹max 𝑁𝑓max⁄ , versus 

misalignment angle, 𝜃. Three distinct cases are considered: (i) a rigid 

backing layer, 𝐻 = 0, and homogeneous fibril compliance; (ii) a compliant 

backing layer, 𝐻 = ∞, and homogeneous fibril compliance; (iii) a compliant 

backing layer, 𝐻 = ∞, with the distribution of fibril compliance given in 

Figure 3.13. 

 

As evidenced by the figure, case (iii) yields the greatest efficiency across the entire range of 

misalignment examined. That is, despite being optimized in the aligned state, this distribution 

of fibril compliance exhibits superior performance to the homogenous array with 

misalignment. Furthermore, the performance of the optimized array is superior to the rigid 

backing layer. Although not shown, this holds for bidirectional misalignment. Through fibril 

compliance optimization, we have employed backing layer compliance to operate in a 

beneficial capacity, facilitating load redistribution to obtain simultaneous detachment without 

misalignment. Although this redistribution is no longer truly optimal with misalignment, it still 

provides a tremendous benefit with respect to reducing load concentrations. 
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3.4 Discussion 

In summary, we have considered in the influence of perturbations in the ideal flat-on-flat 

loading configuration for a model fibrillar microstructured surface. The dominant role of the 

backing layer compliance controlled array edge load concentration is shown to be altered for 

even slight interfacial misalignment. Both the backing layer compliance and interfacial 

misalignment are shown to influence the decay in adhesive strength with increasing array size, 

motivating a detailed investigation of the associated mechanics. 

 

Increased fibril compliance reduces the severity of load concentrations at the array edge, and 

due to differential stretching across the array. The examination of fibril spacing reveals backing 

layer and misalignment dominated regimes, the transition between which is additionally 

controlled by the misalignment angle and the fibril compliance. The misalignment dominated 

regime is of particular significance, with backing layer deformation seen to counteract the load 

concentration which results from misalignment. The compliant backing layer can exhibit 

improved adhesive strength when compared to the rigid backing layer, suggesting that stiffer 

and thinner backing layers may not reduce load concentrations among fibrils when interfacial 

misalignment is present. By tailoring the compliance of individual fibrils, the model system 

can harness backing layer compliance to provide a uniform load distribution, maximizing 

adhesive strength. The array optimized for perfect alignment is robust to misalignment, 

improving adhesive strength when compared to a homogenous array of fibrils on both 

compliant and rigid backing layers. 
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We have explored the effect of changes in fibril length and spacing, however their impact on 

performance must be further contextualized. By increasing fibril length we increase fibril 

compliance. Load concentration is reduced by compliant fibrils, effectively diminshing 

backing layer interactions. The result is improved adhesive strength of the array across the 

entire range of misalignment considered. However, in synthetic adhesives, fibril length is 

constrained by fabrication techniques as well as by clumping or matting under the action of 

the attractive interaction among neighboring fibrils [7, 41, 48, 50, 100, 101], often associated 

with low bending stiffness. 

 

By increasing fibril spacing backing layer interactions are diminished. In the case of perfect 

alignment, the adhesive strength of the array is improved. On the other hand, the detrimental 

effect of misalignment is accentuated by increased fibril spacing. An optimal fibril spacing 

results from the combined effect of backing layer compliance and misalignment. The issue of 

optimization of fibril spacing is, however, a complex one. Misalignment is not typically 

deterministic, and therefore designing to the aforementioned criterion requires knowledge of 

the maximum misalignment and orientation that will be encountered in a given adhesive 

system. Furthermore, this model considers only the efficiency with which the fibril adhesive 

strength is realized at the array scale. When the area which can be patterned with adhesive in 

a given system is fixed, increasing the fibril spacing necessitates a reduction in the total number 

of fibrils. One must consider whether it is optimal to reduce the fibril density to improve the 

load distribution, or to increase the fibril density providing additional fibrils to bear adhesive 

load. As is true for fibril length, clumping or matting also limits fibril density. In any case, the 

results presented here highlight that a truly universal design criterion for fibril spacing in 
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synthetic adhesives must consider backing layer compliance and misalignment rather than 

simply maximizing fibril density to the point of avoiding fibril matting. 

 

The reduction in the adhesive strength with increasing array size highlights the significance of 

the fibril compliance optimization problem introduced in Section 3.3.5. Fibril compliance can 

be viewed as diminishing the backing layer interactions by reducing the load concentration 

which results due to differing degrees of fibril deformation. Here we demonstrate that in theory 

we can tailor fibril compliance in order to harness the compliance of the backing layer to 

facilitate optimal load redistribution and obtain maximal adhesive strength. In this model we 

assume that fibril compliance can be tailored on an ad hoc basis, and without affecting the 

mechanical properties of the backing layer. Practical implementation of such an array would 

clearly present many challenges. However, we note that if the elastic modulus were graded 

such that the perimeter of the array and and backing layer were most compliant, then the load 

distribution should be improved even when the compliance distribution is sub-optimal. 

Variation of the elastic modulus as function of depth from the interface has been demonstrated 

as a viable path to flaw-insensitivity in monolithic adhesive contacts [112]. However, the 

transverse elastic modulus grading proposed in this work differs in its underlying mechanism. 

In fact it is exactly analogous to the shape optimization effect explored for a single adhesive 

contact [113], where the transverse variation of contact profile and elastic modulus are 

equivalent. Reducing the elastic modulus at the contact edge alleviates the elastic stress 

concentration and can result in flaw-insensitivity. 
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Surface roughness of the substrate is not considered in the preceding model system. We expect 

its influence to be two-fold. At length scales smaller than the characteristic dimension of fibrils, 

roughness is expected to introduce defects in the fibril tip-substrate contact. This will result in 

statistical variation of the fibril adhesive strength, 𝑓max. Motivated by limited investigations of 

this effect [45, 107, 109], this is the subject of Chapters 5 and 6. Roughness with larger 

characteristic length scales is expected to cause statistical variation in the displacement and 

therefore the load developed in each fibril. While this has been investigated in past work [30, 

40, 43, 106], to the author’s knowledge the influence of backling layer interactions has not 

simultaniously been considered.  
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Chapter 4 

Experimental investigation of interfacial 

misalignment and backing layer compliance 

 

4.1 Introduction 

Preceding investigations of the influence of the backing layer on the strength of fibrillar 

adhesives had suggested that increased compliance is detrimental to the strength of fibril arrays 

under normal loading due to an increase in the severity of a circumferential load concentration. 

The results of Chapter 3 suggest that this conclusion may be extremely sensitive to the 

perturbations in the loading conditions, particularly the alignment of the adhesive patch and 

substrate. This work of this chapter seeks to experimentally investigate the impact of 

misalignment on the performance of fibrillar adhesive patches contacting smooth flat surfaces. 

 

4.2 Overview of experiment 

Figure 4.1 shows a schematic of the test configuration and micrographs of the adhesive sample. 

We utilize a synthetic adhesive consisting of array of vertical mushroom-tipped PDMS fibrils 

on a backing layer of the same material, with the fibril dimensions and array geometry labelled 

in the figure. The fabrication process is described in ref. [114]. The backing layer compliance 
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is controlled by preparing the same fibril array with three backing layer thicknesses, 𝐻 =

700 μm, 𝐻 = 1700 μm, and 𝐻 = 2700 μm. The lateral dimensions of the backing layer are 

much greater than that of the array. 

 

Adhesion tests are performed using a test surface which maintains a fixed angle of 

misalignment, 𝜃, with respect to the sample surface during approach and retraction. The flat-

ended glass cylinder has a radius 𝑅 = 2 mm such that the entire fibril-array may contact the 

surface. The normal load 𝐹 and the normal displacement from first contact 𝑢̅ are recorded. The 

detachment force 𝐹max is defined as the maximum tensile load attained. The misalignment 

angle is varied within the range −1° < 𝜃 < 1°. 
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Figure 4.1. (a) Schematic of the experimental set-up for investigation of 

backing layer compliance and interfacial misalignment. A synthetic adhesive 

consisting of array of vertical mushroom-tipped PDMS fibrils on a backing 

layer of the same material, contacts a flat-ended glass cylinder test surface 

by normal approach and retraction. The approach and retraction velocity 𝑣 =

10 μm/s. Approach is halted and retraction begins when compressive 

preload 𝐹0 = −100 mN is reached. The misalignment angle is varied within 

the range −1° < 𝜃 < 1°. Three backing layer thicknesses are 

examined, 𝐻 = 700 μm, 𝐻 = 1700 μm, and 𝐻 = 2700 μm; (b) Scanning 

electron micrographs of the PDMS mushroom-tipped fibril-array. Fibrils are 

cylindrical with length ℎ = 30 μm and radius 𝑎 = 7.5 μm. Locally the 

fibrils are arranged in a square packing configuration, with the center-to-

center distance 𝑑 = 30 μm. The global array geometry is also square, with 

the number of fibrils along each axis 𝑛 = 66, yielding a total number of 

fibrils 𝑁 = 4356. 
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4.3 Model 

We seek to model the attachment and detachment of the synthetic fibrillar adhesive array and 

test surface, as described in the previous section. The model described in Chapter 3 is adopted, 

with geometric parameters chosen to match the characteristics of the synthetic adhesive 

described. All length scales are normalized by the fibril radius such that we prescribe fibril 

length ℎ 𝑎⁄ = 4, and the center-to-center distance 𝑑 𝑎⁄ = 4. The number of fibrils along each 

axis 𝑛𝑥 = 𝑛𝑦 = 66, with the total number of fibrils 𝑁 = 4356. Unidirectional misalignment 

is considered, with 𝜃𝑥 = 0 and 𝜃𝑦 = 𝜃. The range of the misalignment angle −0.8° ≤ 𝜃 ≤

0.8° is within the limit of (3.14). The preload 𝐹0 𝑁𝑓max⁄ = −0.65 is sufficient to bring all 

fibrils in to contact at maximum misalignment, 𝜃 = ±0.8°. The only approximation is 

associated with the choice of the dimensionless parameter 𝑓max π𝑎2𝐸∗⁄ , related to the strain 

on a fibril at detachment. It is found that 𝑓max π𝑎2𝐸∗⁄ = 0.1 yields good qualitative agreement 

to the experimental results. When compared to the parametric study of Chapter 3, an increased 

emphasis is placed on comparison of results for the rigid backing limit, 𝐻 = 0, and the 

compliant backing limit, 𝐻 = ∞. All finite thicknesses, including those examined in 

experiment, are expected to sit between these limits. 

 

4.4 Results and discussion 

Figure 4.2 shows the load-displacement characteristics for model system in the aligned state, 

𝜃 = 0°. For both the rigid and compliant backing layers, the approach involves simultaneous 

attachment at 𝑢̅ = 0, followed by a linear response in compression. During retraction the rigid 

backing layer, 𝐻 = 0, exhibits a linear response up to a maximum force 𝐹max 𝑁𝑓max⁄ = 1, at 
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which point unstable detachment of the entire array occurs and the load drops to zero. This 

implies that the load distribution is uniform across the array, and the detachment force is the 

theoretical maximum for the array. For a fixed fibril density, this represents the optimal scaling 

of the adhesive strength of individual fibrils. For the compliant backing layer, 𝐻 = ∞, the 

response is initially linear, with the stiffness being lower than in the rigid limit. However, when 

the load exceeds 𝐹 𝑁𝑓max⁄ = 0.358, individual fibril detachment begins, as evidenced by 

instantaneous drops in the load (inset). 

 

 

Figure 4.2. Model load-displacement characteristics in the aligned state, 𝜃 =

0°. The loading conditions and geometry are described in Section 4.3. Insets 

show a six-fold magnification of the local detachment of individual fibrils, 

evidenced by instantaneous drops in the load. The detachment force for 𝐻 =

0 is 𝐹max 𝑁𝑓max⁄ = 1 and for 𝐻 = ∞ is 𝐹max 𝑁𝑓max⁄ = 0.432. 

 

Figure 4.3a shows that for the compliant backing layer, the detachment front propagates 

circumferentially from the array edge inward (referred to henceforth as circumferential 

propagation). With this, the adhesive strength of individual fibrils no longer scales to the array 
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level, and the detachment force 𝐹max 𝑁𝑓max⁄ = 0.432. Figure 4.3b shows that the normal 

displacement of the compliant backing layer at the array edge lags that at the array center. The 

strain on fibrils at the array center is only 29 % of the critical value required for local 

detachment. This is a consequence of the reduced number of neighboring fibrils locally at the 

array edge, and the corresponding reduction in the load transmitted locally to the backing layer. 

Fibrils in this region experience additional stretching, increased load, and eventually 

detachment as the circumferential defect propagates. This defect propagation is responsible for 

the 56.8 % reduction in strength in the limit 𝐻 = ∞ when compared to 𝐻 = 0. This result is 

in agreement with earlier studies [70, 102] concluding increased backing layer compliance is 

detrimental to adhesive strength on account of a more severe circumferential load 

concentration. 
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Figure 4.3. Performance of model system in the aligned state, 𝜃 = 0°; (a) 

Attached fibrils at maximum tensile load, 𝐹 = 𝐹max; (b) Normal deformation 

(fibril-array and backing layer) at maximum tensile load, 𝐹 = 𝐹max. To 

visualize the deformation, the 𝑧-position is scaled by 40:1 with respect to the 

𝑥-position. 

 

Figure 4.4 examines the load displacement characteristics for a representative 

misaligned state, 𝜃 = 0.4°. Again, we consider both the rigid backing limit, 𝐻 = 0, 

and the compliant backing limit, 𝐻 = ∞. First contact occurs at 𝑢̅ = 0 and, for both 

the rigid and compliant backing layers, the response stiffens as fibrils progressively 

come in to contact. During retraction the adhesive with a rigid backing layer, 𝐻 = 0, 
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experiences first detachment prior to the load becoming tensile, 𝐹 𝑁𝑓max⁄ = −0.013. 

As the load becomes tensile, successive detachments continue, with the detachment 

force 𝐹max 𝑁𝑓max⁄ = 0.152. For the compliant backing layer, 𝐻 = ∞, the onset of 

first detachment occurs at higher load, 𝐹 𝑁𝑓max⁄ = 0.120, and the detachment force 

is higher, 𝐹max 𝑁𝑓max⁄ = 0.192. 

 

 

Figure 4.4. Model load-displacement characteristics in a representative 

misaligned state, 𝜃 = 0.4°. The loading conditions and geometry are 

described in Section 4.3. Insets show a six-fold magnification of the local 

detachment of individual fibrils, evidenced by instantaneous drops in the 

load. The detachment force for 𝐻 = 0 is 𝐹max 𝑁𝑓max⁄ = 0.152 and for 𝐻 =

∞ is 𝐹max 𝑁𝑓max⁄ = 0.192. 

 

Figure 4.5a shows that for both the rigid and compliant backing layer, the detachment front is 

no longer circumferential. It instead propagates from one side of the array to the other (referred 

to henceforth as peel propagation). For the rigid backing layer, entire rows of fibrils detach 

simultaneously as they reach their critical load and the detachment front is straight.  As a result, 
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the instantaneous drops in the load are of uniform magnitude throughout peel propagation. For 

the compliant backing layer, however, the detachment front is curved. This is another 

manifestation of the effect of reduced numbers of neighboring fibrils locally at the array edge. 

Drops in the load are of lower magnitude, indicating a smaller number of instantaneous 

detachments as the curvature of the detachment front changes during peel propagation. 

 

 

Figure 4.5. Performance of model system in a representative misaligned 

state, 𝜃 = 0.4°; (a) Attached fibrils at maximum tensile load, 𝐹 = 𝐹max; (c) 

Normal deformation (fibril-array and backing layer) at maximum tensile 

load, 𝐹 = 𝐹max. To visualize the deformation, the 𝑧-position is scaled by 

40:1 with respect to the 𝑥-position. 
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Despite similarities in the characteristics of detachment, the strength of the array in peel 

propagation is greater for the compliant backing layer. Figure 4.5b shows the normal 

deformation of the array at detachment and reveals the reason for this enhancement in 

resistance to peel propagation. With load concentrated in fibrils ahead of the detachment front, 

the backing layer deformation is largest in this region. The effect of this deformation is to 

reduce the differential stretching of fibrils which occurs in the presence of misalignment. 

Consequently, the load concentration among fibrils ahead of the detachment front is reduced 

when compared to the rigid backing layer, leading to an increase in the detachment force. The 

significance of the backing layer providing resistance to peel propagation will be discussed 

after experimental results are presented. 

 

Figure 4.6 shows the load-displacement characteristics and attached fibrils in the experimental 

system for the aligned state, 𝜃 = 0°. The load-displacement characteristics reveal that the 

entire array comes in to contact almost instantaneously at 𝑢̅ = 0, evidenced by the 

approximately linear response in compression. Increasing the thickness of the backing layer 

reduces the stiffness of the system, approximated by a linear least-squares fit to the 

compressive portion of the curve, from 20.8 N/mm for 𝐻 = 700 μm to 8.80 N/mm for 𝐻 =

1700 μm, and 6.70 N/mm for 𝐻 = 2700 μm. During retraction the load becomes tensile, 

with a change in the gradient of the load displacement curve indicating the onset of detachment. 

The load reaches a maximum, 𝐹 = 𝐹max, and ultimately drops to zero upon complete 

detachment. 
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Figure 4.6. Performance of the experimental system in the aligned state, 𝜃 =

0°. The loading conditions and geometry of the synthetic adhesive are as 

described in Section 4.2; (a) Load-displacement characteristics. A 

representative curve is selected from five repeated measurements. The 

detachment forces are 𝐹max = 126 ± 1 mN, 𝐹max = 107 ± 1 mN, 𝐹max =

103 ± 1 mN, respectively for 𝐻 = 700 μm, 𝐻 = 1700 μm, and 𝐻 =

2700 μm; (b) Attached fibrils at maximum tensile load, 𝐹 ≅ 𝐹max, 

approximated by comparing the timestamps of the load-cell output to the 

test-procedure video. 

 

Figure 4.6b demonstrates that detachment occurs via the propagation of a circumferential 

defect. Full videos of these tests are provided in Supporting Information of ref. [115]. The 

detachment force decays monotonically with increased backing layer thickness, from 𝐹max =

126 ± 1 mN for 𝐻 = 700 μm to 𝐹max = 103 ± 1 mN for 𝐻 = 2700 μm. This is evidence of 
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an increasingly severe array edge load concentration for more compliant backing layers. 

Furthermore, the displacement from first-detachment to full-detachment, crudely 

approximated by obtaining the timestamps of these events from the test procedure video and 

multiplying the time increment by the stage velocity, increases from ~ 5 µm for 𝐻 = 700 μm 

to ~ 15 µm for 𝐻 = 2700 μm. Comparison to the theoretical model, Figure 4.3a, suggests that 

this is also indicative of a more severe array edge load concentration due to increased backing 

layer compliance. 

 

Figure 4.7 shows the load-displacement characteristics and attached fibrils in the experimental 

system for a representative misaligned state, 𝜃 = 0.4°. The load-displacement characteristics 

show that the response stiffens as fibrils progressively come in to contact. During retraction, 

as the load becomes tensile, first detachment occurs. Figure 4.7b demonstrates that this is 

associated with the onset of peel propagation. Full videos of these tests are also provided in 

Supporting Information of ref. [115]. As the detachment front propagates across the array the 

load is approximately constant and near maximum. Eventually the load drops to zero indicating 

complete detachment. In contrast to the aligned state, the detachment force now increases 

monotonically with increased backing layer thickness, from 𝐹max = 48.3 ± 0.9 mN for 𝐻 =

700 μm to 𝐹max = 68.9 ± 0.9 mN for 𝐻 = 2700 μm. This 43 % increase in the adhesive 

strength corresponds to a 210 % increase in the compliance of the adhesive sample.  In addition 

to providing resistance to peel propagation, the role of backing layer compliance in controlling 

detachment is further evidenced by the curvature of the detachment front, visible in Figure 

4.7b. This curvature becomes more pronounced as the backing layer thickness is increased. 
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Figure 4.7. Performance of the experimental system in a representative 

misaligned state, 𝜃 = 0.4°. The loading conditions and geometry of the 

synthetic adhesive are as described in Section 4.2; (a) Load-displacement 

characteristics. A representative curve is selected from five repeated 

measurements. The detachment forces are 𝐹max = 48.3 ± 0.9 mN, 𝐹max =

65.5 ± 0.6 mN, 𝐹max = 68.9 ± 0.9 mN respectively for 𝐻 = 700 μm, 𝐻 =

1700 μm, and 𝐻 = 2700 μm; (b) Attached fibrils at maximum tensile load, 

𝐹 ≅ 𝐹max, approximated by comparing the timestamps of the load-cell 

output to the test-procedure video. 

 

For both the model and experimental systems we have now identified a detrimental effect of 

backing layer compliance in the aligned state, and a beneficial effect of backing layer 

compliance in a representative misaligned state. 
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Figure 4.8 examines the detachment force as a function of misalignment angle for both (a) the 

model system, and (b) the experimental system, characterizing the transition between the 

aforementioned regimes. For the model system, Figure 4.8a, in both limits on backing layer 

compliance, 𝐻 = 0 and 𝐻 = ∞, the detachment force is maximum in the aligned state, 𝜃 =

0°, exhibiting a monotonic decay as the magnitude of the misalignment angle is increased. In 

the rigid backing layer limit, however, the decay is much more severe than in the compliant 

backing layer limit. This results in the transition from a compliance detrimental regime to a 

compliance beneficial regime at a misalignment angle 𝜃 = 0.173° (as approximated by linear 

interpolation).  
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Figure 4.8. Comparison of detachment force vs. misalignment angle for (a) 

model system, and (b) experimental system. For the model system results 

are presented in both the rigid backing layer limit, 𝐻 = 0, and the compliant 

backing layer limit, 𝐻 = ∞, while for the experiment we examine three 

backing layer thicknesses expected to sit between these limiting cases, 𝐻 =

700 μm, 𝐻 = 1700 μm, and 𝐻 = 2700 μm. For the experimental data, 

error bars (± one standard deviation from mean of five repeated 

measurements) are shown.  Data points are empty circles where the contact 

was ‘partial’ i.e. where misalignment prevented full contact with the array at 

the specified preload. In the model system, transition between backing layer 

compliance detrimental and beneficial regimes occurs at 𝜃 = 0.173° (by 

linear interpolation). 
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Despite the approximations involved in selecting model parameters associated with strength 

of individual fibrils, the qualitative similarity to the experimental results is clear, with the 

transition to a backing layer compliance beneficial regime occurring at 𝜃 ≅ 0.2° in experiment. 

This provides further confidence that the underlying mechanism behind resistance to peel 

propagation provided by backing layer compliance is indeed deformation at the detachment 

front, as suggested by the model. 

 

4.5 Discussion 

This result highlights that in millimeter-scale bio-inspired fibrillar adhesive patches contacting 

smooth flat surfaces, normal loading only results in circumferential defect propagation if the 

alignment of the adhesive and adherend is extremely precise. In the system examined a 

misalignment angle of just 𝜃 = 0.4°, despite not changing the fraction of fibrils in contact with 

the surface after approach, resulted in a 43 % increase in the detachment force of the thickest 

backing layer when compared to the thinnest. This enhanced resistance to peel-propagation is 

the result of backing layer deformation at the detachment front. Differential stretching of fibrils 

is reduced on account of this deformation, effectively lowering the angle of misalignment and 

the resulting load concentration. This has implications for the use of fibrillar adhesives applied 

in normal loading conditions, suggesting that thicker, more compliant backing layers provide 

an enhanced resistance to peel propagation in the presence of interfacial misalignment. 

 

In regard to this conclusion, it should be noted that to scale adhesive performance to large 

areas, and to handle complex macroscale curvature of contacting bodies, careful design of 
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intricate load sharing mechanisms is required [55, 116, 117]. These designs are likely to remain 

highly application specific, differing significantly depending on the properties of the 

contacting surface and the specified loading direction. This investigation of the mechanics of 

misaligned contact under normal loading is only relevant where the millimeter-scale adhesive 

patch (fibril array and backing layer) is itself held by a stiff surface (e.g. [118]), and is unlikely 

to provide insight where the backing layer forms a flexible membrane (e.g. [117]). 

 

4.6 Materials and Methods 

4.6.1 Microfabrication 

The geometry of the fibrillar microstructures was prepared in Inventor CAD software 

(Autodesk, San Rafael CA, USA). A positive mold was subsequently fabricated in negative 

photoresist IP-Dip (Nanoscribe, Eggenstein-Leopoldshafen, Germany) by a two-photon 

polymerization (TPP) system Professional GT (Nanoscribe, Eggenstein-Leopoldshafen, 

Germany). Surface treatment of fused silica substrates with (3-methacryloyloxypropyl) 

trichlorosilane was used to promote adhesion of the photoresist. The TPP-device was operated 

at a constant laser power of 16 mW. After exposure the structures were developed in propylene 

glycol monomethyl ether acetate (PGMEA) for 20 min at room temperature. The sample was 

then placed in isopropanol and the photoresist was additionally cross-linked by 365 nm UV 

exposure for 300 s at 350 mW (OmniCure S1500A, igb-tech, Friedelsheim. Germany) before 

being dried in air. The IP-Dip positive mold was then treated with (1H,1H,2H,2H- 

perfluorooctyl) trichlorosilane. Sylgard 184 PDMS (Dow Corning, Midland, MI, USA) was 

prepared at a 10:1 ratio of base elastomer to curing agent and is mixed and degassed in a 
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DAC600.2 VAC-P SpeedMixer (Hauschild Engineering, Hamm, Germany) at 2000 rpm for 

5 mins. A negative mold was created by pouring the PDMS on to the master structures, 

degassing, and curing at 95°C for 60 mins. The negative mold is also treated with 

(1H,1H,2H,2H- perfluorooctyl) trichlorosilane and the final microstructures are produced by 

casting the same PDMS mixture in to the negative mold, degassing, and curing at 95°C for 

60 mins. Additional backing layer thickness is added to the sample by casting an unstructured 

sheet of PDMS following the same curing process as outlined above, before adhering this sheet 

to the backside of the microstructured sample. 

 

4.6.2 Adhesion measurements 

Approach and retraction of the sample is achieved using a motorized stage VP-5ZA and motion 

controller XPS-C4 (Newport Corporation, Irvine CA, USA). Displacement is monitored by an 

integrated linear encoder. The glass cylinder test surface, radius 2 mm, is fixed above the 

sample with the mount allowing for microscope visualization of the contact through the back 

side of the glass. An attached CCD camera captures video of the attachment and detachment 

kinematics.   Alignment is controlled by two goniometers, GON65-U and GON65-L (Newport 

Corporation, Irvine CA, USA), located below the adhesive sample. One goniometer is 

controlled by a micrometer SM-13 (Newport Corporation, Irvine CA, USA) for control of 

misalignment angle to within ± 0.003°. The normal load is recorded by a six-axis force and 

torque sensor Nano17 SI-12-0.12 (ATI Industrial Automation, Apex NC, USA) located below 

the sample. Hardware interfacing and data acquisition is performed in Labview (National 

Instruments, Austin TX, USA). The test surface (flat end of glass cylinder) was profiled by 
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white- light interferometry, Wyko NT1100 Optical Profiling System (Veeco Instruments Inc, 

Plainview NY, USA). Over the area likely to contact the adhesive the RMS roughness was ∼

70 nm and the maximum height difference was 1.3 μm. Qualitatively, this roughness took the 

form of small amplitude waves over large areas of the surface. 

 

4.6.3 SEM 

The scanning electron micrographs of Figure 4.1 were obtained using a Quanta 250 FEG (FEI, 

Hillsboro OR, USA) equipped with an Everhart-Thornley detector in high-vacuum mode. The 

spot size and an accelerating voltage were set to 2.0 and 2 kV, respectively. The specimens 

were not coated with conductive material. Copper tape was placed on the metallic sample 

holder to minimize charging effects. 

 

4.6.4 Numerical methods 

Data recorded by the custom-built adhesion tester is processed in Matlab (Mathworks, Natick 

MA, USA). The numerical model is also implemented in Matlab. 
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Chapter 5 

Statistical characterization of fibril adhesive 

strength 

 

5.1 Introduction 

Another feature which emerges as we study adhesive performance at larger length scales is the 

variability in adhesive strength of individual fibrils. At the interface of the fibril tip and the 

substrate, we anticipate regions where the separation of the two surfaces exceeds the range of 

the intermolecular interaction between them. These regions, referred to as cracks or defects, 

may result from surface roughness, fabrication imperfections, or contaminant particles. The 

characteristics of the defects may also be dependent on the elastic properties and the preload 

applied when making contact. Defects are known to be stress raisers, with the severity of the 

stress concentration being proportional to the lateral extent of the defect. Defects exceeding a 

critical size will propagate at loads much lower than predicted in the absence of flaws, given 

the underlying strength of the interaction. For a typical elastomer system adhering by van der 

Waals forces to a much stiffer substrate, linear elastic fracture mechanics predicts sensitivity 

of the fibril adhesive strength (applied load on- or elongation of a fibril at detachment) to 

defects with characteristic dimensions exceeding tens-of-nanometers. Since the characteristic 

dimensions of typical synthetic fibrils range from several microns to hundreds of microns, it is 
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anticipated detachment will indeed occur via the propagation of defects at the interface of the 

fibril tip and substrate. This is supported by various experimental studies (e.g. [59-62]). 

 

Defect propagation is typically localized to the region of the fibril-tip interface where tensile 

stresses are highest. This is shown schematically for the mushroom tipped fibril in Figure 5.1. 

Within the high stress region, intense stress magnitudes will be further localized at the tip of 

individual defects. In combination, these effects yield a dependence on both the defect size and 

the geometric properties of the fibril. For a compliant fibril adhered to much stiffer substrate, 

the detachment force has the general form 

 

𝑓c = 𝛽 (
𝐸𝑊

π𝑙
)

1
2
 (5.1) 

 

where 𝐸 is the elastic modulus of the fibril, 𝑊 is the work of adhesion, 𝑙 is the characteristic 

size of the critical defect, and 𝛽 is a shape factor which is a function of the geometric properties 

of the fibril and has units of length squared. For an array of identical fibrils it is expected that 

one detachment mechanism will dominate, as dictated by the geometry, such that the functional 

form of 𝛽 (in addition to the properties 𝐸 and 𝑊) will be unchanged across the array. However, 

statistical variation in the critical defect size, 𝑙, from fibril to fibril in the array is expected as a 

result of surface roughness, inhomogeneities due to fabrication, or contaminant particles. This 

will yield a distribution in the adhesive strength of fibrils in the array. 

 



114 

 

 

Figure 5.1. Schematic of the effects controlling adhesive strength of an 

individual mushroom-tipped fibril. The tensile stress distribution shown is 

hypothesized to arise under the assumption of a perfect contact without 

roughness. The size of surface asperities and interfacial defects are exaggerated. 

 

For an adhesive patch consisting of an array of fibrillar microstructures, the analysis of the 

global strength of the contact bears striking similarity to the failure of fibril bundles which 

have been studied extensively in the context of composite materials. Classical work on this 

topic showed that, under conditions of equal load sharing, the strength of a bundle decays as 

the variability in strength of the component fibrils increases [108]. Significant effort in 

modeling of these systems has since been put forth (as reviewed in ref. [119]), guiding the 

experimental characterization of the statistical properties of fiber strength (e.g. [120-122]). 

 

An equivalent theoretical approach to the study of fibrillar adhesives was first adopted in by 

Hui et al. [109], with a theoretical investigation involving Monte Carlo simulations having 

been performed assuming power law distributed strength across a fibril array. It was confirmed 

that the strength of the array decayed as the variability in fibril strength increased. It was later 

hypothesized by McMeeking et al. [45], that defect-dependent detachment of fibrils should 

follow the statistical theory of fracture [110]. Under the assumption of validity of the empirical 
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defect density function of Weibull, it was shown that the scaling of adhesive strength with 

contact perimeter was dependent on the distribution of defect size, potentially reconciling 

discrepancies across experimental studies [45]. While the role of statistical variation is 

suggested by these scaling irregularities, it has not been directly verified that the statistical 

properties of fibril adhesive strength are well described by the Weibull distribution. The work 

of this chapter seeks to address this by testing the adhesive performance of a fibrillar surface 

microstructure using a platform which permits in-situ contact visualization, allowing for the 

determination of the local strength of individual fibril contacts and assessment of the defect 

character. The results are subject to analysis based on the statistical theory of fracture. 

Implications for the performance of fibrillar adhesive systems are explored. 

 

5.2 Overview of experiment 

Figure 5.2 shows a schematic of the adhesion test performed using an array of mushroom-

tipped PDMS fibrils on a backing layer of the same material. Details of the adhesive fabrication 

process and the experimental platform are given in the Section 5.5. The geometric parameters 

are given in the figure caption. The adhesive surface and the glass substrate were brought into 

contact via normal approach, which was halted when the specified compressive preload, 𝑃, 

was reached. They were then separated via normal retraction. The total load, 𝐹, and the 

displacement, 𝑢, measured from the position at which 𝐹 = 0, were recorded. In-situ contact 

visualization was performed, with high contrast between contacting and non-contacting 

regions obtained by frustrated total internal reflection (FTIR). 
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Figure 5.2. Schematic of the adhesion test of an array of mushroom-tipped 

PDMS fibrils, on a backing layer of the same material, contacting a glass 

substrate. Fibrils have radius 𝑎, and height ℎ. They are arranged in a square 

packing configuration for which the center-to-center distance is 𝑑. The backing 

layer thickness is 𝐻. For the experimental system examined, 𝑎 = 200 μm, ℎ =

1600 μm, 𝑑 = 800 μm, and 𝐻 = 5000 μm. SEM of the fibril is also shown, 

with the mushroom tip outlined to highlight a typical fabrication imperfection. 

The intended array geometry is exactly as depicted, with 𝑁 = 241, however 

fibrils lost in fabrication resulted in 𝑁 = 237 [62]. 

 

In order to correlate the time of detachment of a fibril from in-situ video with the local load on 

the fibril at that instant, thus determining the fibril adhesive strength, it is necessary to ensure 

that load per fibril is uniform across the array. This is achieved when the backing layer is thin, 

the array dimensions are small, fibrils are compliant and they exhibit high strain at detachment 

[70]. Load sharing was assessed by ensuring that there is neither a preference for detachment 

of fibrils close to the array edge, nor any correlation between the detachment of one fibril and 

subsequent detachment of a neighbor. Verification of a uniform load distribution is detailed in 

Appendix B. Furthermore, to obtain the adhesive strength of each fibril accurately, the load 
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cell should be sufficiently stiff so as not to trigger unstable detachment. This is verified by 

examination of the load-displacement data. 

 

Figure 5.3a shows a plot of the tensile load, 𝐹, vs. displacement, 𝑢. We observe that as the 

displacement is increased, separating the surfaces, the load increases. Progressive detachment 

is evidenced by the reduction in stiffness with increasing load, as well as by in-situ contact 

visualization shown in the inset. The reduction in stiffness eventually leads to a load maximum, 

𝐹max = 3.92 N. If the assumption of equal load sharing holds, progressive detachment is 

evidence of a distribution in the adhesive strength of individual fibrils. 

 

The in-situ contact visualization provides sufficient spatial resolution to determine the 

character of defect propagation for individual fibrils. We observe two distinct mechanisms of 

detachment, exemplified in Figure 5.3b. As hypothesized in Figure 5.1, we observe defects 

nucleating from within the contact, under the edge of the stalk. They propagate outward to the 

contact edge. These are henceforth referred to as ‘center defects’. They account for detachment 

in 159 of 237 fibrils (67 %). A second mechanism of detachment is also observed, with 

defects propagating from the perimeter across the contact. These are referred to as ‘edge 

defects’. They account for detachment in the remaining 78 fibrils (33 %). 
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Figure 5.3. (a) Tensile load, 𝐹, vs. displacement, 𝑢, for the experiment 

described in Section 5.2. The compressive preload phase, 𝑃 = 1 N, is not 

shown. Zero displacement is defined at the point of zero load during retraction, 

such that the fibrils are approximately undeformed. The insets show the contact 

at two points during retraction, demonstrating progressive detachment of fibrils. 

(b) Exemplary detachments due to both a center defect and an edge defect. 

 

Figure 5.4 shows a plot of the detached fibril fraction, 𝑁d/𝑁, vs. displacement, 𝑢. Each data 

point corresponds to the detachment of an individual fibril, as determined by in-situ 

observation. The displacement for each data point therefore corresponds to the elongation at 

detachment for that fibril, a convenient measure of the adhesive strength. We seek to combine 

this data with knowledge of the detachment mechanism, thus giving a more complete picture 

of the strength distribution. 
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Figure 5.4. Detached fibril fraction, 𝑁d 𝑁⁄ , vs. displacement, 𝑢. Each data point 

corresponds to the detachment of an individual fibril. Edge defect detachments 

and center defect detachments are represented by orange diamonds and blue 

circles, respectively. 

 

Figure 5.5 shows the histogram of fibril elongation at detachment. The mean 𝑢̅c = 0.225 mm, 

and the standard deviation 𝜎 = 0.080 mm. Determining the statistical properties of each defect 

population independently is a nuanced problem which is explored in Section 5.3.2. For now, 

we simply note that the edge defect propagation generally yields lower fibril adhesive strength. 

Edge defects therefore dominate early in the detachment process. 

 

To summarize, in the majority of fibrils we observe center defect propagation controlled by 

the characteristic interfacial stress concentration of the mushroom tip geometry. These fibrils 

operate as anticipated, with the flange having sufficiently reduced strain energy at the contact 

edge to prevent defect nucleation in this region. However, a significant number of fibrils detach 

via the propagation of defects from the perimeter across the contact. The adhesive strength for 

these fibrils is lower than for the fibril-design-controlled center defect detachments. Since very 
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little strain energy is present in the flange region of the mushroom-tip, the defects causing 

detachment from the perimeter must be extremely severe. It is hypothesized that they are the 

result of missing sections of flange, due to unintended damage during demolding. An example 

of this damage is highlighted in the SEM inset of Figure 5.2.  The missing section of flange 

directly exposes the region at the edge of the stalk, rendering the stress state at the tip of this 

defect similar to that at the edge of a punch-like fibril [89]. It is therefore unsurprising that the 

strength of fibrils which detach due to propagation of these defects is greatly reduced when 

compared to the fundamental mechanism. Given the associated reduction in strength, we 

anticipate that the existence of this fabrication-imperfection-controlled mechanism is 

damaging to overall performance. If possible these defects should be eliminated by improving 

the yield of undamaged flanges in fabrication. With this in mind, as we move to statistically 

analyze fibril adhesive strength we seek to characterize each distribution independently. If this 

can be achieved, the properties obtained for the fundamental design-dependent mechanism 

represent the optimal performance metrics for that specific fibril, substrate, and set of 

environmental conditions. Furthermore, the properties of the secondary mechanism will allow 

us to quantify how detrimental it is to overall adhesive performance. 
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Figure 5.5. Histogram of elongation at detachment, 𝑢c, for the fibril array. The 

frequency is in the form of the fibril fraction, ∆𝑁 𝑁⁄ . The bin size Δ𝑢c =

0.04 mm. 

 

5.3 Theory and analysis 

5.3.1 Unimodal statistical theory 

We first consider each defect population independently. For a single population (a single 

mechanism of detachment) it is assumed that all defects propagate from the same region of the 

fibril-tip substrate interface, and that this region is symmetric about the fibril center with 

circumference 𝑆. Note that this is equally valid for both defect populations observed in the 

experiment. For edge defects this region would be the fibril perimeter, while for center defects 

it would be the axisymmetric region within the contact highlighted by the dashed line in Figure 

5.1. The statistical theory of fracture assumes that defects are highly dispersed within these 

regions. In this case the number of critical defects in non-overlapping sections are independent, 

the probability of a critical defect existing within a small increment of the region of interest is 

proportional to its size, d𝑆, and the probability of multiple critical defects existing within this 
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region is negligible. Known as the Poisson postulates, these are the basis for deriving a 

governing differential equation for the detachment probability, as detailed in Appendix C. 

Upon solution of this equation we obtain 

 

𝜙(𝑓, 𝑆) = 1 − exp (− ∫ ∫ 𝑔(𝑓, 𝑆)
𝑆

d𝑆d𝑓
𝑓

) (5.2) 

 

where 𝜙 is the probability of detachment, 𝑓 is the local tensile load applied to the fibril, and 

𝑔(𝑓, 𝑆) is the number of defects per unit length of perimeter which yield fibril adhesive 

strength between 𝑓 and 𝑓 + d𝑓. The functional dependence of 𝑔 on 𝑆 accounts for the 

possibility of a non-uniform stress state along the high-stress region. In the system examined 

the contact is axisymmetric and thus the stress state does not vary along the perimeter. The 

probability of detachment becomes 

 

𝜙(𝑓, 𝑆) = 1 − exp (−𝑆 ∫ 𝑔(𝑓)d𝑓
𝑓

) (5.3) 

 

The function 𝑔(𝑓) is representative of the distribution of size of the critical defect (from fibril 

to fibril) through its dependence on the load. If the relationship between detachment load and 

defect size can be deduced from fracture mechanics, i.e. if the parameters in (5.1) are known, 

then it is possible to obtain this distribution directly from the functional form of 𝑔(𝑓). 

 

Having obtained the fundamental law of the statistical theory of fracture, the relevant task 

becomes characterizing 𝑔(𝑓) for a given material system. The most common approach has 
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been to assume an empirical form and test its suitability by fitting to experimental data. On 

account of its simplicity and versatility, a power law form of 𝑔(𝑓) was proposed by Weibull 

[110] 

 

𝑔(𝑓) =
𝑚

𝑆0𝑓0
(

𝑓

𝑓0
)

𝑚−1

 (5.4) 

 

where 𝑆0 is the reference fibril contact perimeter, 𝑓0 is the reference value for the fibril adhesive 

strength, and 𝑚 is the Weibull modulus. This yields the detachment probability 

 

𝜙 = 1 − exp [−
𝑆

 𝑆0
(

𝑓

𝑓0
)

𝑚

] (5.5) 

 

The dependence on 𝑆 yields a monotonic increase in the detachment probability with 

increasing fibril dimensions (assuming self-similar scaling). This is reflective of the increased 

likelihood of encountering a critical defect as the size of the high-stress region is increased. 

Moving forward we will consider only an array of identical fibrils, for which 𝑆 = 𝑆0 and the 

detachment probability simplifies to 

 

𝜙 = 1 − exp [− (
𝑓

𝑓0
)

𝑚

] (5.6) 

 

At this point it is convenient to note the equivalence of the local tensile load, 𝑓, and the 

displacement/elongation, 𝑢, in describing the adhesive strength of a fibril. The critical force 
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identified in (5.1) could be alternatively stated in terms of the elongation at detachment by 

recognizing that 

 

𝑢c = 𝑓c/𝑘 (5.7) 

 

where 𝑘 is the axial stiffness of a fibril. The detachment probability can therefore be written as 

 

𝜙 = 1 − exp [− (
𝑢

𝑢0
)

𝑚

] (5.8) 

 

where 𝑢0 is the reference value for the elongation at detachment. Since elongation at 

detachment is the most experimentally convenient measure of fibril adhesive strength, we 

proceed with this definition. We use the term fibril adhesive strength in referring to either the 

maximum tensile load supported by an individual fibril, or the elongation of the fibril at 

detachment. 

 

The parameters 𝑢0 and 𝑚 are reflective of the statistical properties of the fibril strength for a 

particular substrate and set of environmental conditions. The reference strength, 𝑢0, is related 

to the arithmetic mean, 𝑢̅c, via 

 

𝑢̅c = 𝑢0 Γ (
1

𝑚
+ 1) (5.9) 
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where Γ is the gamma function. Over the entire physical range of 𝑚, the value of Γ varies 

between 0.88 and 1, meaning that 𝑢0 can be viewed as primarily representative of the average 

fibril adhesive strength (and therefore dependent upon the average interfacial defect size). The 

Weibull modulus is a measure of the variability in this strength, with 𝑚 = 1 representing the 

stochastic limit, and 𝑚 = ∞ representing the deterministic limit in which the strength is 

uniquely 𝑢0. The Weibull modulus is related to the standard deviation, 𝜎, as 

 

𝜎 = 𝑢0 [Γ (
2

𝑚
+ 1) − Γ (

1

𝑚
+ 1)

2

]

1
2

 (5.10) 

 

This is a monotonically decreasing function which in the limit 𝑚 = 1 yields 𝜎 = 𝑢0, and in 

the limit 𝑚 = ∞ yields 𝜎 = 0. We observe that in an absolute sense, the standard deviation is 

also dependent on the reference strength 𝑢0. The probability density distribution for strength 

is given by 

 

𝜓 = 𝑚 (
𝑢𝑐

𝑢0
)

𝑚−1

exp [− (
𝑢𝑐

𝑢0
)

𝑚

] (5.11) 

 

The typical approach in the study of fracture is to test many samples independently, assign a 

probability to each based on ranking the strength observed. For the purpose of characterization, 

conditions of equal load sharing dictate that the experiment described in Section 5.2 effectively 

obtains the adhesive strength data for 𝑁 fibrils simultaneously. The detached fibril fraction, 

𝑁d/𝑁, is exactly the normalized rank in strength from lowest to highest, and is therefore 

equivalent to the detachment probability 
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𝜙 =
𝑁d

𝑁
 (5.12) 

 

and, for a single defect population, (5.8) can be fit to these experimental data. If the assumed 

functional form of the defect density distribution is appropriate, leading to a good fit, then the 

Weibull statistical properties 𝑢0 and 𝑚 are obtained. 

 

5.3.2 Bimodal statistical theory 

If two defect populations exist concurrently at the interface of the fibril tip and substrate then 

the situation is complicated significantly. Consider that a fibril detaching due to an edge defect, 

necessarily contains a center defect which would have resulted in higher adhesive strength. 

The information about this defect is lost, and the emerging statistical properties of the center 

defect distribution are distorted. 

 

One possible approach to this problem is to develop a statistical framework which accounts for 

the possibility of multiple defect populations. Consider that the probability of detachment must 

be the product of the probabilities of detachment due to each population individually. If the 

first population exists for all fibrils, while the secondary population exists only among a 

fraction of all fibrils, 𝛼,  (known as partial concurrency [123]) then this is given by 

 

𝜙 = 1 − (1 − 𝛼) exp [− (
𝑢

𝑢01
)

𝑚1

] − 𝛼 exp [− (
𝑢

𝑢01
)

𝑚1

− (
𝑢

𝑢02
)

𝑚2

] (5.13) 
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where 𝑢0𝑖 and 𝑚𝑖 are the statistical properties of individual populations. Note that in the limit 

𝛼 = 0 we obtain the result for a single population, while in the limit 𝛼 = 1 we have full 

concurrency of the two populations among all fibrils. The issue is that in this form, absent 

additional information, (5.13) lacks utility for fitting to experimental data. The parameter space 

is extremely large and the probability itself is not unique for all combinations of parameters. 

 

The other approach, afforded by knowledge of the detachment mechanism on a fibril-by-fibril 

basis, is to try to decouple the populations and use the unimodal framework of Section 5.3.1 to 

characterize their statistical properties individually. The simplest approach is to isolate the 

center defects and re-rank them within the interval [1, 𝑁], relaxing the constraint on integer 

ranking and evenly spacing the data points. However, this approach neglects the influence of 

coupling of the populations. An improved method is mean order ranking [124], which 

considers the position of edge defects within the sequence. The more edge defects which are 

encountered, the lower the rank assigned to the next center defect relative to the simple 

reranking approach. This reflects the increased probability that the disguised center defect 

strengths would have exceeded subsequent data in the sequence. Mathematically this is 

achieved by considering each data point in the sequence in order. When an edge defect is 

encountered in the sequence, the increment in the rank for the next center defect is recalculated 

as 

 

Δ =
𝑁 + 1 − 𝑗

1 + (𝑁 − 𝑖)
 (5.14) 
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where 𝑗 is the re-rank of the previous center defect in the sequence. Upon re-ranking, the 

associated detachment probability is calculated as 

 

𝜙 =
𝑗

𝑁
 (5.15) 

 

Figure 5.6 shows the detachment probability, 𝜙, vs. displacement, 𝑢 for both the mean order 

ranked center defect data, and the original bimodal data. The shift in center defect data 

achieved for both simple reranking (not shown) and mean order reranking, reflects the higher 

strength of center defects. However, mean order reranking accounts for the dominance of edge 

defects at low displacement by reducing the detachment probability in this region, relative to 

simple reranking.  With the mean order rank of center defect detachments, we are able to fit 

the unimodal statistical framework of (5.8). A non-linear least squares fitting method is 

preferred, as described in Appendix D. This yields a reference strength 𝑢0 = 0.285 mm and 

Weibull modulus 𝑚 = 4.08. The corresponding average elongation at detachment, obtained 

from (5.9), is 𝑢̅c = 0.259 mm. The standard deviation, obtained from (5.10), is 𝜎 =

0.091 mm. 

 

If the experimental platform is not able to determine the defect character for each fibril, the 

data has to be treated as if only one defect family controls the adhesive strength. The raw 

experimental data would then be fitted to a single Weibull model. While this does yield a 

reasonable fit, the extracted statistical parameters (given in the caption of Figure 5.6) do not 

accurately characterize either defect population. They represent an underestimation of the 

reference strength and Weibull modulus of the fundamental detachment mechanism by 12 % 
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and 25 %, respectively. Furthermore, this mischaracterization, on account of a failure to 

recognize bimodality, would lead to a loss of insight when considering the performance of 

fibrillar microstructured samples. This will be discussed in detail in Section 5.4. 

 

 

Figure 5.6. Detachment probability, 𝜙, vs. displacement, 𝑢. Raw experimental 

data, containing both edge defect detachments (orange diamonds) and center 

defect detachments (blue circles), is shown alongside mean order ranked data 

for center defects (blue crosses). Results of fitting (5.8) to each data set are 

shown as solid lines. For the mean order ranked data the associated parameters 

are 𝑢0 = 0.285 mm and 𝑚 = 4.08. The root mean square error of the fit is 𝛴 =

0.036. For the raw data the associated parameters are 𝑢0 = 0.250 mm and 𝑚 =

3.05. The root mean square error for the fit is 𝛴 = 0.020. 

 

For now, we seek to characterize the statistical properties of the edge defect population. Mean 

order ranking could be applied to this population, but this would assume that edge defects exist 

in all fibrils. Given the hypothesis that edge defects are primarily associated with damaged 

mushroom tips, this is unlikely. Accordingly, we adopt an alternative approach. As we now 

have an estimate of the statistical properties of the center defect population, the parameter 
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space of (5.13) can be greatly reduced. With 𝑢01 and 𝑚1 taken from the preceding analysis, 

we perform a non-linear least squares fit of this equation to the raw experimental data to obtain 

the three remaining unknown parameters, 𝑢02, 𝑚2, and 𝛼, all associated with the edge defect 

population. 

 

Figure 5.7 shows the fit when mean order ranked statistical properties of the center defect 

population are combined with the bimodal framework of (5.13). We prescribe 𝑢01 =

0.285 mm and 𝑚1 = 4.08, and obtain the statistical properties of the edge defect population 

as 𝑢02 = 0.201 mm and 𝑚2 = 3.35. The fraction of fibrils exhibiting the edge defect 

population is determined to be 𝛼 = 0.390 or 39 %. This is physically meaningful, given that 

33 % of detachments were due to edge defects in the experiment. It is expected that this value 

should be less than 𝛼 given that some fibrils with edge defects will still detach due to large, 

and therefore critical, center defects. In Figure 5.7 we also show the probability functions 

associated with each population individually (dashed curves), to highlight the limits between 

which the coupled behavior lies. 

 

Given the large parameter space of the bimodal framework, we seek to confirm the validity of 

the statistical parameters obtained. To this end we perform a Monte Carlo simulation which 

takes as its input the statistical parameters 𝑢01, 𝑚1, 𝑢02, 𝑚2, and 𝛼, and generates a discrete 

bimodal distribution in which the statistical origins of each data point can be identified. This 

permits the generation of a histogram of fibril adhesive strength, decomposed by defect type. 

Differences in these histograms are observed, even where combinations of parameters lead to 

very similar attachment probability distributions. This is described in detail in Appendix E. 
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Histograms generated are compared qualitatively to the experimental result of Figure 5.5. 

Excellent agreement is observed for the parameters obtained by combining the method of mean 

order ranking of the primary population with non-linear least squares fitting of the bimodal 

framework for the secondary population. This gives confidence that each defect distribution 

independently has been well characterized. 

 

 

Figure 5.7. Detachment probability, 𝜙, vs. displacement, 𝑢, showing the 

resulting fit when combining the statistical properties of center defects obtained 

by mean order ranking, 𝑢01 = 0.285 mm and 𝑚1 = 4.08,  with the bimodal 

detachment probability of (5.13). The three unspecified parameters obtained by 

fitting are 𝑢02 = 0.201 mm, 𝑚2 = 3.35, and 𝛼 = 0.390. The root mean square 

error for the fit is 𝛴 = 0.020. The associated unimodal detachment probabilities 

are shown for each defect population. 

 

5.3.3 Performance of fibril arrays exhibiting Weibull distributed strength 

Fibril adhesive strength, in the form of elongation at detachment, appears to be well described 

by Weibull’s statistical theory of fracture. We therefore seek to examine the influence of this 
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statistical variation on the adhesive performance of a fibrillar microstructured surface. For the 

fibrillar array (shown in Figure 5.2), the load developed during contact 

 

𝐹 = ∑ 𝑓𝑖

𝑁a

𝑖=1

 (5.16) 

 

where 𝑁a is the number of attached fibrils and 𝑓𝑖 is the local load experienced by fibril 𝑖. Under 

conditions of equal load sharing, the total load is 

 

𝐹 = 𝑁a𝑓 (5.17) 

 

where 𝑓 is the local load experienced by all attached fibrils. This can be stated in terms of the 

displacement as 

 

𝐹 = 𝑁a𝑘𝑢 (5.18) 

 

The probability of individual fibril detachment is equivalent to the fraction of fibrils within the 

array which have detached, yielding 

 

𝑁a = 𝑁 − 𝑁d = (1 − 𝜙)𝑁 (5.19) 

 

For an array exhibiting two partially concurrent defect populations, the load is given by 
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𝐹 = 𝑁𝑘𝑢 [(1 − 𝛼) exp (− (
𝑢

𝑢01
)

𝑚1

) + 𝛼 exp (− (
𝑢

𝑢01
)

𝑚1

− (
𝑢

𝑢02
)

𝑚2

)] (5.20) 

 

In the limit of a single population, 𝛼 = 0, an analytical expression for the maximum load can 

be obtained by determining the point of zero gradient, as 

 

𝑢|d𝐹
d𝑢=0

= 𝑢0 (
1

𝑚
)

1
𝑚

 (5.21) 

 

yielding 

 

𝐹max = 𝑁𝑘𝑢0 (
1

𝑚
)

1
𝑚

exp (−
1

𝑚
) (5.22) 

 

which is an upper bound on the adhesive strength of a fibril array exhibiting the statistical 

parameters 𝑢0, and 𝑚. As expected, increase in the average fibril adhesive strength, or 

equivalently reduction in the average defect size, results in increase of the array adhesive 

strength. Of equal significance in determining the array strength is the variability in strength 

or defect size, as reflected by the dependence on 𝑚. Terms in 𝑚 yield a reduction in the strength 

by a factor of 0.368 in the stochastic limit, 𝑚 = 1, as compared to the deterministic limit, 𝑚 =

∞. This is a consequence of weak fibrils in the distribution, which cannot be compensated for 

by fibrils with higher than average adhesive strength. Early detachments are more damaging 

as they increase the share of load on fibrils which remain in contact and lead to a load maximum 

at lower displacement. 
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The preceding results allow for the assessment of the influence of the weaker edge defect 

population on the performance of the fibril array tested. We obtain the stiffness of the fibril 

array from the experimental load-displacement data as 𝑁𝑘 = 41.6 N mm−1. In combination 

with the statistical parameters of the fundamental mechanism, 𝑢0 = 0.285 mm and 𝑚 = 4.08 

(i.e. obtained from center defect mean order ranking), (5.22) provides an estimate of the upper 

bound on load, 𝐹max = 6.58 N. The maximum load observed in experiment was just 𝐹max =

3.92 N, suggesting that the impact of the edge defect population is a reduction in the adhesive 

strength of the fibril array on the order of 40 %. This is close to the percentage of fibrils which 

possess these fabrication imperfections, and highlights the adhesive strength which may be 

gained by improving the yield of undamaged fibril tips. 

 

5.4 Discussion 

Eq. (5.22) demonstrates that the variability in local adhesive strength from fibril to fibril can 

play an important role in determining the global adhesive strength of a microstructured sample. 

This emphasizes the significance of characterizing the statistical properties of fibril adhesive 

strength in a systematic way. By in-situ observation of the contact we have demonstrated that 

it is possible to determine elongation at detachment on a fibril-by-fibril basis across the array. 

In addition to observing defect propagation from within the contact below the stalk edge, defect 

propagation was also observed at the contact edge. This extraneous detachment mechanism is 

most likely associated with mushroom tips damaged during fabrication. While the statistical 

theory of fracture suggests a framework for characterization of the statistical properties of fibril 

adhesive strength, the coupling of these two defect populations complicates this process. 
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Detachments due to one mechanism disguise statistical information about the other. The 

expectation that edge defects exist among only a fraction of all fibrils further increases the 

parameter space. These challenges are addressed by first decoupling the statistical properties 

of the fundamental center defect population, before combining the statistical properties which 

emerge from this method with a bimodal probability framework. On the basis of this analysis 

it is observed that, individually, the populations appear to be well characterized by the defect 

density function of Weibull. The capability of the model to predict an upper bound on array 

adhesive strength subsequently proved useful in determining the influence of the secondary, 

fabrication-dependent mechanism. We observe that the percentage reduction in strength is of 

the same order as the percentage of fibrils with fabrication imperfections, approximately 40 %, 

and thus large increases in strength may be possible by increasing the yield of undamaged 

mushroom tips. It is anticipated that when making improvements to the fabrication process, 

repetition of this statistical analysis would be a valuable tool in the assessment of progress. 

 

In considering how the results may change for different fibril geometries, we return to the 

discussion of Section 1 and the fibril adhesive strength given in (5.1). It is noted that each 

defect type will be associated with a different form of the shape factor 𝛽. For edge defects, as 

compared to center defects, it is expected that this will lead to lower strength for the same 

characteristic defect size. Unfortunately, to the authors knowledge, no analysis of these specific 

defect types has been performed. Analyses of mushroom tipped fibrils have typically focused 

on comparison to punch-like fibrils for defects at the contact edge (e.g. [64]), and have not 

analyzed the strength due to defects within the contact. Consequently, exact solutions for the 

shape factors as a function of geometric features (fibril length, stalk diameter, flange diameter, 
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flange thickness) are not available. Intuitively we expect that for center defects nucleating 

below where the stalk meets the flange, reduction in the thickness or reduction of the diameter 

of the flange will give lower fibril adhesive strength. Increase in the diameter of the stalk 

should also lead to lower strength for both center defects and for edge defects associated with 

missing sections of flange. These effects are expected to change the average strength, with 

limited impact on the defect size distribution and thus the statistical variation in fibril adhesive 

strength. The dependence of the adhesive strength of a fibrillar sub-contact on the fibril length 

is expected to be weak, although fibril length can play an important role on system performance 

in other ways, for example governing the contributing to the toughness at large length scales 

[40, 46, 49, 50] or controlling the tendency for fibril mating [7, 41, 48, 50, 100, 101]. 

 

Changes in the stalk diameter have further significance in that, unlike other geometric 

properties discussed, they are expected to directly influence the statistical aspects of failure for 

the center defect population. Increasing the stalk diameter increases the extent of the high stress 

region highlighted in Figure 5.1. The probability of sampling a critical defect thus increases, 

as is reflected in (5.5). One option for comparison of fibrils with different stalk diameters is to 

use (5.6), which contains no explicit size effect, for fitting purposes. In this case the changes 

in geometry will be reflected implicitly in the values of 𝑓0 and 𝑚 obtained. Alternatively, (5.5) 

can be utilized directly to verify that the scaling of strength with stalk diameter is as predicted 

by this statistical framework. 

 

The study of fibrils with reduced characteristic dimensions is an important technical challenge 

to be addressed in future work, and will require consideration of both the resolution of in-situ 
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visualization capabilities and the ability to maintain equal load sharing conditions. In regard to 

the latter, backing layer effects are expected to become more pronounced as the fibril length is 

reduced, and as the array size is increased [70]. Contact height differences due to 

inhomogeneities in the backing layer or roughness at the fibril scale [40, 106, 109], as well as 

loading imperfections [115, 125], will become more pronounced with respect to the fibril 

length. Statistical models may therefore have to account for non-equal load sharing, as has 

been required in the study of the failure of fibers in composite materials [126]. 

 

5.5 Materials and methods 

The microstructured sample was made from polydimethylsiloxane (PDMS, Sylgard 184, Dow 

Corning, Midland, MI, USA) via replica molding as described in detail in ref. [62]. Briefly, for 

replica molding, an aluminum mold with milled microscopic holes (negative of the mushroom 

structure) was used as template. The bottom of the mold was sealed using a polyethylene 

terephthalate (PET) film, Sigma (SIG GmbH, Düsseldorf, Germany). The surface roughness 

of the PET film was transferred to tips of the mushroom shaped microstructures. This has been 

characterized by atomic force microscopy and is determined to have a Hurst exponent close to 

unity, and a roll of wave number of 2.5 µm−1. Qualitatively the roughness is on the scale of 

tens of nanometers, with an RMS height difference of 37 nm and an RMS gradient of 35. 

 

Adhesion tests were performed with a tensile tester (Inspekt table BLUE, Hegewald & 

Peschke, Nossen, Germany) equipped with a 50 N load cell. We corrected the measured 

displacement by accounting for the machine compliance of 7.43 μm/N. The tensile tester was 

modified to perform adhesion tests on a smooth and nominally flat glass substrate. A 𝜃-𝜙-
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goniometer (MOGO, Owis, Staufen im Breisgau, Germany) was utilized in order to align the 

substrate with the microstructured sample.  A mirror and a camera were mounted below the 

transparent glass substrate. The contact of each pillar with the substrate was visualized in situ 

by the principle of frustrated total internal reflection, as described in detail in ref. [62]. Videos 

of contact formation and detachment were recorded and, subsequently, correlated with force 

and displacement data.  

 

In the adhesion measurements, specimen and substrate were brought together until a 

compressive preload, 𝑃 = 1 N was reached. The velocity of approach and retraction was 𝑣 =

1 mm/min. After reaching the compressive preload, the specimen was immediately 

withdrawn until it detached from the substrate. Measurements were performed using one 

adhesive specimen, repeated at three different positions on the substrate. There were no 

significant differences between the tests, hence a representative result is shown. 

 

Force-displacement data was correlated with image sequences as follows. Image sequences 

were binarized by threshold using Fiji [127] such that contact (white) and non-contact (black) 

areas of mushroom pillars were identified. The position of each contact, together with the time 

of attachment and detachment, were determined using the ‘Analyze Particle’ tool in Fiji. 

Position and time data were imported into a MATLAB routine (MathWorks, MA, USA) and 

correlated with force, time and displacement data from the adhesion test. For synchronization, 

the image showing the detachment of the last pillar was attributed to the time when the tensile 

force relaxed to zero. Crack types were determined manually for each fibril in the array. 
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Chapter 6 

Modeling the effect of non-uniform load distribution 

and statistical variation in fibril adhesive strength 

 

6.1 Introduction 

It is well known that synthetic fibrils designed for dry adhesion undergo defect-controlled 

detachment. In Chapter 5 it was demonstrated that the statistical distribution of strength among 

fibrils in an array, which results due to differences in defect size, was well characterized by 

Weibull’s statistical theory of fracture. A requirement of the experimental characterization of 

strength on a fibril-by-fibril basis was assurance of a uniform load distribution among fibrils.   

However, in many situations of relevance to both experimental characterization and real-world 

application, geometric and material features of the system at length scales on the order of the 

fibril array size give rise to load concentrations among a subset of fibrils. These result in 

distinct modes of detachment of the fibril array, and lead to changes in the adhesive strength 

observed at the array scale. Examples of this include backing layer compliance and 

misalignment between the sample and substrate (which were the subject of Chapters 3 and 4) 

as well as substrate curvature. This chapter seeks to explore the coupling of variability in the 
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strength of fibrillar sub-contacts to large scale adhesive performance, examining the influence 

on the modes of detachment at the array scale and the resulting adhesive strength. 

 

6.2 Theory 

6.2.1 Overview 

In this theoretical investigation we choose to examine two effects, backing layer compliance 

and curvature of the substrate. These are arguably the most ubiquitous sources of non-uniform 

load distribution, with relevance to both experimental characterization and practical 

application. Substrate curvature, as considered, is a purely geometric effect which gives rise to 

an array edge load concentration. Backing layer compliance, which can be controlled by both 

the geometry (i.e. the thickness) and the elastic properties of the component material, also gives 

rise to an array edge load concentration. 

 

Figure 6.1 is a schematic representation of the contact of the fibrillar adhesive array and rigid 

substrate. The surface microstructures are assumed to be cylindrical, with radius 𝑎 and height 

ℎ. While the schematic shows mushroom-tipped fibrils, the tip is assumed to have negligible 

influence on the elastic response and thus the tip shape need not be evoked in the analysis 

which follows. Fibrils are arranged in a regular hexagonal array, with local hexagonal packing. 

The fibril spacing is 𝑑, and the array dimension is described by the length of the edge, 𝐷. The 

total number of fibrils is therefore 
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𝑁 =
3𝐷

𝑑
(1 +

𝐷

𝑑
) + 1 (6.1) 

 

The fibrils sit on a backing layer, which has thickness 𝐻 and is itself backed by a rigid tile. The 

backing layer is composed of the same material as the fibrils, with Young’s modulus, 𝐸, and 

Poisson ratio, 𝜈. The substrate is assumed to possess idealized curvature, with radius 𝑅. 

 

Fibrils in contact develop axial load, 𝑓𝑖, with the total load being 

 

𝐹 = ∑ 𝑓𝑖

𝑁

𝑖=1

 (6.2) 

 

The tip displacement of a fibril in contact is dependent on the curvature of the substrate and 

the applied displacement, 𝑢̅, according to 

 

𝑢𝑖 = 𝑢̅ +
𝑥𝑖

2

2𝑅
+

𝑦𝑖
2

2𝑅
 (6.3) 

 

where a series expansion in the radial distance from the apex, 𝑟𝑖 = √𝑥𝑖
2 + 𝑦𝑖

2, is utilized. 

Higher order terms are neglected on the basis that the ratio of the maximum radial position to 

the radius of curvature, 𝐷/𝑅, is small.  

 

The relationship between tip displacement and axial load is dependent on both the fibril 

compliance and the compliance of the backing layer. In general it may be written that 
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𝑢𝑖 = 𝑐𝑖𝑗𝑓𝑗 (6.4) 

 

where the terms of the compliance matrix were given in (3.7) and (3.8) for the limits of a rigid 

backing layer and fully compliant backing layer, respectively. 

 

 

Figure 6.1. Schematic of the adhesive contact of an array of fibrillar 

microstructures with a curved rigid substrate. The fibril array is on a backing 

layer of the same material, with Young’s modulus, 𝐸, and Poisson ratio, 𝜈. Each 

fibril has radius 𝑎, and undeformed length ℎ. Fibrils are arranged in a hexagonal 

array, with characteristic fibril spacing 𝑑. The array size is described by the 

length 𝐷, with the total number of fibrils being 𝑁. The force, 𝐹, generates a 

relative displacement of the substrate, 𝑢̅, which is zero when the fibril at the 

array center is unstretched. 

 

It is assumed that a single design-controlled mode of detachment dominates. It was shown in 

Chapter 5 that severe fabrication imperfections can lead to the concurrent observation of an 

extraneous secondary detachment mechanism within a fibril array. While this complicates the 
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characterization of the statistical properties of fibril performance, it is not expected to result in 

significantly different qualitative behavior with respect to the coupling of the array scale load 

distribution and statistical variation in fibril adhesive strength, which are the subject of this 

work. 

 

For a single defect population which is well-characterized by Weibull’s statistical theory of 

fracture, the probability of detachment of fibril 𝑖 is 

 

𝜙𝑖 = 1 − exp [− (
𝑓𝑖

𝑓0
)

𝑚

]     ∀𝑖 (6.5) 

 

where 𝑓0 is the reference value for the fibril adhesive strength and 𝑚 is the Weibull modulus. 

For an array of 𝑁 fibrils it is known that the detachment probability is equivalent to the 

normalized rank in strength 

 

𝜙𝑖 =
𝑖

𝑁
     ∀𝑖 (6.6) 

 

Combining (6.5) and (6.6) we can solve for the discrete fibril adhesive strengths in the array 

as 

 

𝑓max
𝑖 = 𝑓0 [− ln (1 −

𝑖

𝑁
)]

1
𝑚

     ∀𝑖 (6.7) 
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The mean strength is given by 

 

𝑓m̅ax = 𝑓0 Γ (
1

𝑚
+ 1) (6.8) 

 

where Γ is the gamma function. The standard deviation is 

 

𝜎 = 𝑓0 [Γ (
2

𝑚
+ 1) − Γ (

1

𝑚
+ 1)

2

]

1
2

 (6.9) 

 

In the limit of a rigid backing layer, 𝐻 = 0, contacting a flat substrate, 𝑅 = ∞, the load 

distribution among fibrils is uniform. In this case, as was derived in Chapter 5, an analytical 

solution is available. Repeating the result here for completeness, the load as a function of 

displacement 

 

𝐹 = 𝑁𝑘𝑢 [exp (− (
𝑘𝑢

𝑓0
)

𝑚

)] (6.10) 

 

and the adhesive strength of the array, as reflected by the detachment force, is 

 

𝐹max = 𝑁𝑓0 (
1

𝑚
)

1
𝑚

exp (−
1

𝑚
) (6.11) 
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When the load distribution among fibrils in the array is non-uniform, an additional source of 

stochastic behavior is introduced. The performance will depend on the position of strong fibrils 

in the array relative to the regions of high load. Consequently, the most convenient path 

forward is to adopt a numerical approach akin to a Monte Carlo simulation, where the strength 

data of (6.7) is randomly assigned to fibrils within the array. The averaged behavior over a 

series of tests is then considered. 

 

6.2.2 Numerical implementation 

For a given test, the strength data is assigned to fibrils in the array using a pseudorandom 

number generator. The condition on detachment, 𝑓𝑖 > 𝑓max
𝑖 , differs for each fibril in the array. 

Several other small differences exist when compared to the numerical implementation of the 

attachment and detachment processes described in Section 3.2. In the case of the curved 

substrate, approach continues until all fibrils are in contact. In this condition, the difference in 

strain between the fibrils at the array center and the array edge is given by 

 

Δ𝜀 =
𝐷2

2ℎ𝑅
 (6.12) 

 

For ease of comparison between the load-displacement characteristics of curved substrates, we 

chose to adjust the datum and plot displacement, 𝑢, where 𝑢 = 0 is the point at which the load 

becomes tensile. 
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In all tests described in the subsequent sections, the fibril length ℎ/𝑎 = 4, the fibril separation 

𝑑/𝑎 = 4, and the array dimension 𝐷/𝑎 =  60, such that the total number of fibrils 𝑁 = 721. 

As in preceding chapters, we approximate the parameter closely related to the critical strain on 

a fibril at detachment as 𝑓0 π𝑎2𝐸∗⁄ = 0.1, where we note that the normalization process now 

involves the Weibull measure of fibril adhesive strength, 𝑓0. For the smallest radius of 

curvature examined, 𝑅/𝑎 = 1250, the difference in strain Δ𝜀 = 0.36. For each case involving 

a non-uniform load distribution (𝐻 = ∞ and/or 𝑅 ≠ ∞), the model test is repeated ten times. 

A representative result is shown for the load-displacement behavior, and the mean of all tests 

is reported for the normalized detachment force, 𝐹max 𝑁𝑓0⁄ . 

 

6.3 Results 

6.3.1 Uniform load distribution 

Figure 6.2 shows the load-displacement characteristics for an adhesive with a rigid backing 

layer, 𝐻 = 0, contacting a flat substrate, 𝑅 = ∞, for which it is anticipated that the load 

distribution among fibrils is uniform. Two values of Weibull modulus are considered, 

representing large statistical variation in strength (𝑚 = 5) and deterministic strength (𝑚 = ∞). 

While an analytical result for this case is provided in (6.11), the numerical model is still utilized 

to visualize the detachment in the array. In particular, the insets of Figure 6.2 show the attached 

fibrils at the instant 𝐹 = 𝐹max. 
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Figure 6.2. Model load-displacement characteristics for an adhesive with rigid 

backing layer, 𝐻 = 0, for two values of the Weibull modulus, 𝑚 = 5 and 𝑚 =

∞ (deterministic fibril adhesive strength). Insets show the attached fibrils at the 

instant 𝐹 = 𝐹max. 

 

In the deterministic limit it is observed that simultaneous detachment occurs as all fibrils 

exceed their critical load, 𝑓0, with the normalized detachment force being 𝐹max 𝑁𝑓0⁄ = 1. In 

the stochastic case it is observed that weak fibrils in the array detach prior to the attainment of 

maximum load. Random detachments are observed across the array at the point of maximum 

load, with the normalized detachment force being 𝐹max 𝑁𝑓0⁄ = 0.59. 

 

The mean strength is marginally impacted by the reduction in the Weibull modulus, with (6.8) 

giving 𝑓m̅ax = 0.92𝑓0 for 𝑚 = 5. However, this ~ 8 % reduction in mean strength when 

compared to 𝑚 = ∞ cannot account for the percentage drop in strength of the array, which is 

~ 41 %. It is the increase in the variability which must therefore be responsible. Consider that 

for a broad distribution in fibril adhesive strength, the mean would only be observed at the 

array scale if all fibrils could be made to bear their critical load simultaneously. Since the load 
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distribution among fibrils is dictated by features of the loading configuration (and in the current 

case is uniform), we observe that premature detachment of weak fibrils in the array cannot be 

compensated for by stronger than average fibrils. Mechanically, they reduce the overall 

stiffness and render the increase in load supported by fibrils in contact insufficient to 

compensate for further fibril detachments. 

 

6.3.2 Backing layer compliance 

Figure 6.3 shows the load-displacement characteristics for an adhesive with a fully compliant 

backing layer, 𝐻 = ∞, contacting a flat substrate, 𝑅 = ∞. Again, two values of the Weibull 

modulus are considered, 𝑚 = 5 and 𝑚 = ∞. 

 

 

Figure 6.3. Model load-displacement characteristics for an adhesive with a fully 

compliant backing layer, 𝐻 = ∞, for two values of the Weibull modulus, 𝑚 =

5 and 𝑚 = ∞ (deterministic fibril adhesive strength). Insets show the attached 

fibrils at the instant 𝐹 = 𝐹max. 
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In the deterministic limit we observe that the characteristic array edge load concentration gives 

rise to the detachment of fibrils in this region. There is an accompanying reduction in the 

adhesive strength of the array, with the normalized detachment force being 𝐹max 𝑁𝑓0⁄ = 0.63. 

In the stochastic case, there is also clear bias for detachment toward the array edge. The 

detachment of weaker fibrils in random positions throughout the array is also evident. These 

two effects act in combination to further reduce the adhesive strength of the array, with the 

normalized detachment force being 𝐹max 𝑁𝑓0⁄ = 0.52.  Significantly, however, the percentage 

reduction in adhesive strength of the array between 𝑚 = ∞ and 𝑚 = 5 is ~ 17 %. This is much 

lower than in the case of the rigid backing layer. This motivates exploration of the entire range 

of physically relevant Weibull modulii, and the comparison of the rigid and fully compliant 

backing layers. 

 

 

Figure 6.4. Normalized detachment force, 𝐹max 𝑁𝑓0⁄ , versus Weibull 

modulus, 𝑚. Results are presented for both a rigid backing layer, 𝐻 = 0, and 

a fully compliant backing layer, 𝐻 = ∞. The substrate considered is flat, 

𝑅 = ∞. For, 𝐻 = ∞, where each data point represents the mean of ten repeat 

tests, an error bar showing the maximum standard deviation across all 

Weibull modulii is included. 
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Figure 6.4 examines the normalized detachment force, 𝐹max 𝑁𝑓0⁄ , as a function of the Weibull 

modulus, 𝑚, for both the rigid backing layer, 𝐻 = 0, and fully compliant backing layer, 𝐻 =

∞. The former is obtained from the analytical result of (6.11). 

 

For the rigid backing layer, a monotonic reduction in the adhesive strength of the array is 

observed as the Weibull modulus is reduced (and the statistical variation in fibril adhesive 

strength increases). For the fully compliant backing layer, an extensive regime exists in which 

the strength of the array appears close to the limit associated with deterministic strength (𝑚 =

∞). In this regime the load concentration is dominant in its influence on the adhesive strength 

of the array. For low Weibull modulus we observe a monotonic reduction in the adhesive 

strength of the array as both the load concentration and statistical variation in fibril strength 

act in combination. 

 

Perhaps most significantly, at sufficiently low Weibull modulus the strength of the array on a 

rigid backing layer and fully compliant backing layer are approximately equal. Weak fibrils 

across the array, rather than fibrils within the region of the load concentration, are the dominant 

contributor to the early detachments which give rise to the load maxima. The statistical 

properties consequently control the adhesive strength of the array. The convergence of the two 

results indicates that the distribution of fibril adhesive strength modulates the detrimental 

influence of the backing layer compliance related load concentration. 
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6.3.3 Substrate curvature 

Figure 6.4 shows the load-displacement characteristics for an adhesive contacting a substrate 

with curvature, 𝑅/𝑎 = 12500. Attention is limited to a rigid backing layer, 𝐻 = 0. Again, two 

values of the Weibull modulus are considered, 𝑚 = 5 and 𝑚 = ∞. 

 

 

Figure 6.4. Model load-displacement characteristics for an adhesive on a curved 

substrate, 𝑅/𝑎 = 12500, for two values of the Weibull modulus, 𝑚 = 5 and 

𝑚 = ∞ (deterministic fibril adhesive strength). The backing layer is rigid, 𝐻 =

0. Insets show the attached fibrils at the instant 𝐹 = 𝐹max. 

 

Qualitatively, in these cases, the effect of substrate curvature is similar to backing layer 

compliance. For 𝑚 = ∞ we observe an array edge load concentration which leads to the 

detachment of fibrils around the perimeter and reduces the strength as compared to a flat 

substrate. The normalized detachment force is 𝐹max 𝑁𝑓0⁄ = 0.86.  Introduction of variability 

in fibril adhesive strength, with 𝑚 = 5, leads to further decay in the adhesive strength, with 

the normalized detachment force being 𝐹max 𝑁𝑓0⁄ = 0.58. 
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The benefit of studying curvature is that, unlike backing compliance where we only possess 

solutions in the limiting cases of thickness, the severity of the array edge load concentration 

can be systematically varied by changing the radius. Note that the severity of the backing layer-

controlled load concentration could also be increased by increasing the array size, but at 

additional computational cost. 

 

Figure 6.5 examines the normalized detachment force, 𝐹max 𝑁𝑓0⁄ , as a function of the Weibull 

modulus, 𝑚, for a range of substrate curvatures. For each curvature we observe a regime in 

which the adhesive strength of the array is relatively constant, having approached the limit 

associated with dominance of the array edge load concentration. As the radius of curvature is 

reduced, this load concentration becomes more severe. Consequently, the range of Weibull 

modulii over which this regime extends increases. 

 

For large radii of curvature, 𝑅/𝑎 = 6250 or 𝑅/𝑎 = 12500, the same effect as evidenced for 

backing layer compliance is observed. As the statistical variation in fibril strength is increased 

(via reduction in the Weibull modulus), there is a decay in the adhesive strength of the array. 

At sufficiently low Weibull modulii, the statistical properties of fibril strength dominate. The 

adhesive strength of the array is approximately independent of curvature. 

 

For small radii of curvature, 𝑅/𝑎 = 1250 or 𝑅/𝑎 = 2500, several interesting trends emerge. 

The first is that the adhesive strength at 𝑚 = 1 does not converge upon the same value, 

indicating that a regime of statistical dominance is not encountered over the entire physical 

range of Weibull modulii. Furthermore, the load concentration becomes so severe that it falls 
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below the strength associated with statistical control in the limit 𝑚 = 1. Consequently, as the 

influence of statistical variation is felt for low Weibull modulii, it has a positive influence on 

the adhesive strength of the array. This reveals additional complexity which was not evidenced 

in the examination of backing layer compliance. When the load is highly localized to the 

contact edge, the detrimental impact of weak fibrils detaching across the array is minimal in 

comparison the benefit of adding high strength fibrils to the highly stretched region. These 

fibrils contribute significantly to the total load, and the adhesive strength of the array is 

increased. 

 

 

Figure 6.5. Normalized detachment force, 𝐹max 𝑁𝑓0⁄ , versus Weibull modulus, 

𝑚, for a range of values of substrate curvature, 𝑅/𝑎. Results are presented for 

a rigid backing layer, 𝐻 = 0. For all 𝑅/𝑎 ≠ ∞, where each data point represents 

the mean of ten repeat tests, an error bar showing the maximum standard 

deviation across all Weibull modulii is included. 
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6.4 Discussion 

This work has revealed a nuanced dependence of the adhesive strength of a fibrillar array on 

both the statistical distribution of the adhesive strength of individual fibrils and the load 

distribution at the array scale. For limited statistical variation in the fibril adhesive strength, 

load concentrations play a dominant role. For large statistical variation, transition to a regime 

independent of the load distribution may occur. Depending on the severity of the load 

concentration, increased statistical variation can have either a detrimental or beneficial impact 

on adhesive strength. 

 

The observation that the statistical properties of the adhesive strength of sub-contacts can 

modulate the influence of the load concentrations at a fibrillar interface is of great significance 

in the study of dry adhesives. Experimental characterization approaches often require 

consideration of the geometry of the loading configuration, and the resulting load distribution, 

to extract a metric for fibril performance. Consider the model of Schargott et al. [103], which 

provides an analytical result for the problem of fibrils on a rigid backing layer indented by a 

spherical probe. The detachment force was given in (2.48), and yields agreement with the 

model presented only in the limit 𝑚 = ∞. 

 

The influence of statistical variation in fibril strength may also play a role in design of fibrillar 

dry adhesives. The decay in array strength with increasing size, which necessitates structural 

hierarchy in order to scale load bearing capability, is controlled by backing layer compliance. 

Since the influence of backing layer compliance is modulated by the variability in fibril 
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adhesive strength, both design criterion and anticipated performance may be influenced by the 

statistical properties of fibril strength. 
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Chapter 7 

Conclusions 

 

7.1 Summary 

Bioinspired dry adhesives have the potential to address the requirements for strong, reversible, 

and repeatable temporary bonding in a range of emerging applications. While there have been 

considerable advances in the understanding of the mechanics of these microstructures, there is 

a need for further investigation of the mechanics across length scales to both guide systematic 

experimental characterization of adhesives and understanding the scaling of performance to 

large areas. This work has attempted to address several requirements in this regard.  

 

We have, for the first time, studied the response to non-ideal loading of fibrillar adhesive 

patches in the form of misalignment at the interface. Chapter 3 describes a parametric 

investigation based on a discrete contact mechanics model which considered the effects of 

backing layer compliance and the substrate geometry. Numerical implementation was required 

to capture the non-linear response associated with attachment and detachment of the fibril 

array. As fibril spacing, fibril length, and misalignment angle were varied, regimes of 

dominance of either backing layer compliance or misalignment in controlling the detachment 

were revealed. The misalignment dominated regime was of particular significance, as the role 
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of backing layer compliance was seen to switch from being detrimental to the strength of the 

fibrillar array to being beneficial. This was associated with a shielding effect at the detachment 

front, with backing layer deformation reducing the differential stretching of fibrils. While 

compliance has been known to have a beneficial effect for the formation of contact, the 

existence of this enhancement of resistance to peel propagation during detachment was 

previously unknown. 

 

Subsequent experimental investigation, detailed in Chapter 4, revealed this regime was 

prevalent in an adhesive patch consisting of an array of mushroom-tipped PDMS microfibrils 

on a backing layer of the same material. It was shown that the circumferential array edge 

detachment mechanism which controls the strength in ideally flat adhesive contacts gave way 

to a peel-like detachment for misalignment of just ~ 0.2° over a patch size of 2 mm. In this 

regime backing layer compliance was found to be beneficial to the adhesive strength. 

Understanding this detachment mechanism is important for application of fibrillar adhesive 

patches in applications involving flat substrates without precise control of alignment or where 

surface undulations at the length scales larger than the size of the patch are present, for example 

in pick-and-place component handling. 

 

The same model also revealed the promise of radial compliance gradients in improving the 

load distribution among fibrils. Not only was the adhesive strength of the array improved in 

the aligned state, but enhanced resistance to peel propagation was also observed. Future 

research directions in this area will be discussed in the subsequent section. 
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Despite past work suggesting the significance of the variability in fibril adhesive strength in 

controlling the behavior of fibril arrays, the statistical characterization of performance had 

received limited attention. The work described in Chapter 5 represents the first attempt to 

characterize the statistical properties of fibril strength in a systematic way. The framework for 

this was based upon the statistical theory of fracture. Utilizing experimental set-up with high 

resolution in-situ contact visualization, we were able to characterize adhesive strength on a 

fibril-by-fibril basis. Additionally, this visualization provided information about the character 

of the critical defect at each fibril. Two distinct detachment modes were revealed. The first is 

associated with the fundamental fibril-geometry-dependent mechanism, with defect nucleation 

in the mushroom-tipped fibril occurring in the region of the interface under the intersection of 

stalk and flange. The second is extraneous to the anticipated operation, being associated with 

fabrication imperfections in the mushroom flange. The concurrent existence of these two 

populations complicates the statistical characterization of each population individually. A 

methodology was adopted to address this, first involving a specialized approach to ranking of 

fibril strength which approximately decouples the fundamental population. Upon 

characterizing the associated statistical properties, a bimodal probability framework was used 

to characterize the extraneous secondary mechanism. The allows for the assessment of the 

impact of this mechanism on overall performance, with the reduction in adhesive strength of 

~ 40 % being of the same order as the number of fibrils with fabrication imperfections. The 

ability to decouple fundamental and extraneous mechanisms, identifying an upper bound on 

strength associated with the former, is a powerful tool for the analysis of fibrillar adhesive 

performance moving forward. Understanding the distribution in defect size also has the 

potential to reveal the role of surface roughness, contaminant particles, and fabrication 
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imperfections in controlling the adhesive strength of fibrillar sub-contacts. Future research 

opportunities in this area are discussed in the subsequent section. 

 

This study also raised the question of how variability in fibril adhesive strength and non-

uniform load distribution at the array scale, together determine performance of adhesive 

patches. Utilizing the discrete contact mechanics model previously described, and including 

ideally Weibull distributed strength, these effects were investigated in Chapter 6. Statistical 

variation in fibril adhesive strength is found to modulate the influence of load concentrations 

in controlling the strength of the array. For low variability, the load distribution is found to 

dominate. For high variability, statistical properties can dominate. The latter leads to 

insensitivity of the adhesive performance to changes in backing layer compliance or substrate 

curvature. Depending on the severity of the load concentration, increase in variability can be 

associated with either an improvement or reduction in strength. This is the first time that this 

nuanced interplay between the statistical properties of fibril adhesive strength and the load 

distribution have been revealed. 

 

7.2 Future work 

Despite continued progress in understanding the performance of bioinspired dry adhesives, 

challenges preventing their widespread application remain. Advances are likely to be closely 

tied to the capabilities of novel fabrication techniques, and emerging research areas such as 

mechanical metamaterials. Designs are likely to remain highly application specific. Several 

interesting avenues for future research have been suggested by the work described here. 
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Thus far the performance of dry adhesives on rough substrates, particularly over large areas, 

has been limited. Structural hierarchy and compliance are known to be key to this effort. Multi-

level fibrillar structures have proven challenging from a fabrication perspective, and 

mechanisms to improve the strength on these surfaces should focus on commensurability with 

fabrication capabilities. Theoretical investigation of improved adhesive performance of fibril 

arrays by inclusion of radial compliance gradients at the interface, detailed in Chapter 3, have 

motivated further investigation in this area. At the fibril scale, bimaterial structures with curved 

interfaces have been shown to improve the interfacial load distribution and in turn the adhesive 

strength [13]. Incorporation of equivalent features in the backing structure, achieving a radial 

gradient in backing layer compliance, could represent a promising form of structural hierarchy 

without the need for fibrillar subdivision. Moving forward, advances in additive manufacturing 

will likely offer new opportunities to achieve radial compliance gradients by local tailoring of 

material composition [128]. 

 

Investigation of the statistical properties of fibril adhesive strength remains in its nascent 

stages. Moving forward, it is our hope that the statistical characterization of fibril strength will 

prove to be a useful tool for assessment of performance in a variety of conditions. Of particular 

interest is the examination of adhesion on substrates with more severe surface roughness [97-

99]. Where roughness exists on much smaller scales than the fibrils themselves (as in Chapter 

5) we anticipate that the tip geometry will control the interfacial stress distribution and thus 

the region from which defect propagation occurs. Roughness will control the size of nucleation 

points within this region. As the length scale of roughness increases, the dominant role of the 

tip geometry may be precluded. Defects may propagate from multiple regions across the tip-
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substrate interface. In this case it will be necessary to consider the non-uniform load 

distribution at the interface within the statistical framework if the defect size distribution is to 

be characterized, as has been done in the context of brittle fracture [129, 130]. We also note 

that the influence of surface roughness may change in the presence of fluid at the interface, 

with the formation of capillary bridges effectively extending the range of the surface 

interaction [131]. Molecular dynamics simulations (e.g. [132]) may prove to be a useful tool 

in bridging the gap between surface roughness and defect size, and any efforts in this regard 

should consider the dependence on the compressive preload applied when making contact. 

 

Other topics of interest include systematic assessment of the role of surface contaminants 

[133], where introduction of a known size distribution of particles to the substrate may provide 

insight as to how these give rise to defects and in turn control fibril strength. Intentional 

introduction of fabrication imperfections [21] could also provide fundamental insight in to the 

mechanics governing fibril adhesive strength. Furthermore, statistical characterization at 

various stages of cyclic loading can shed light on the durability of fibrils, where damage may 

accumulate over time [118]. The presence of shear at the interface [134] will also change the 

characteristics of the interfacial stress distribution and thus likely the statistical properties of 

fibril adhesive strength.  
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Appendix A. Error associated with point load approximation for loading of elastic half 

space 

 

The displacement at the base of a fibril generated by a point load applied to the backing layer 

at the center of the base of a neighboring fibril is given by the first term of (3.5). An improved 

approximation of the real system is obtained if we consider uniform pressure applied to the 

circular section at the base of the neighboring fibril. This is also provided by Johnson [90], 

with the ratio between this solution and the point load approximation given by 
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where (𝑢𝑖
BL)

𝑗

A
 is the displacement computed by the first term in (3.5), and K and E are the 

complete elliptic integrals of the first and second kind, respectively. The error associated with 

use of the point load approximation is therefore 

 

𝑒𝑖𝑗 = |
(𝑢𝑖

BL)
𝑗

(𝑢𝑖
BL)𝑗

A − 1| (A.2) 

 

which is a function of 𝑟𝑖𝑗 𝑎⁄ . We find that the error is maximum for the minimum fibril 

separation, 𝑟𝑖𝑗 = 2𝑎, and is 3.34 %. 
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Appendix B. Verification of uniform load distribution 

 
Figure B.1. is a histogram showing the number of neighbors in contact at detachment of each 

fibril in the array. The experimental data is compared to three simulated cases using the real 

areal geometry of the array. The first simulated case corresponds to random detachment, as 

would be expected if the fibrils detachments were uncoupled and the load distribution were 

uniform. One representative test is shown.  The three remaining cases are designed to mimic 

detachment modes which may result from non-uniform load distributions. The array edge 

detachment is characteristic of backing layer compliance [70]. The sequence is based upon the 

position relative to the array center, from furthest to closest. The peel-like detachments are 

characteristic of misalignment [115, 125], occurring according to position along a single axis. 

Two such detachment sequences are shown, corresponding to alignment with the axis along 

which the fibril separation is 𝑑 and the axis along which it is √2𝑑, respectively. 

 

Fibrils in the bulk of a square array have four nearest neighbors. If the detachment is random 

then there is a steady reduction in the number of neighbors in contact when a fibril detaches. 

The distribution is fairly uniform, with a slight bias toward lower numbers of neighbors in 

contact. Conversely, all simulated sources of correlation in the detachment sequence lead to a 

clear peak of two attached neighbors. The similarity of the random simulated data and the 

experimental data is clear, leading to the conclusion that the load distribution is uniform and 

the detachment sequence is controlled by the distribution in fibril adhesive strength. 
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Figure B.1. Histogram of nearest neighbors in contact at detachment for all 

fibrils in the array. The experimental data is compared to three simulated cases, 

a random detachment process, an array edge detachment, and a peel-like 

detachment from one side of the array to the other. 
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Appendix C. Derivation of failure probability using the Poisson postulates 

 

The Poisson postulates are as follows – (1) the number of critical defects in non-overlapping 

regions are independent; (2) The probability of a critical defect existing within the increment 

of perimeter, δ𝑆, is proportional to its size; (3) The probability of multiple critical defects 

within this increment is negligible. The second postulate yields 

 

𝜙(𝑓, δ𝑆) = 𝜆(𝑓, 𝑆)δ𝑆 (C.1) 

 

where 𝜆 is defect density, i.e. the number of critical defects per unit length. This is determined 

by the local stress state, leading to the dependence on both the remote load, 𝑓, and position 

within the region of interest, 𝑆. The size dependence of the failure probability is obtained by 

considering an incremental change in the size of the region of interest, such that  

 

1 − 𝜙(𝑓, 𝑆 + δ𝑆) = (1 − 𝜙(𝑓, 𝑆))(1 − 𝜙(𝑓, δ𝑆)) (C.2) 

 

where 1 − 𝜙 is the survival probability. Substituting (C.1) we obtain 

 

1 − 𝜙(𝑓, 𝑆 + δ𝑆) = (1 − 𝜙(𝑓, 𝑆))(1 − 𝜆(𝑓, 𝑆)δ𝑆) (C.3) 

 

In the limit δ𝑆 → 0 we obtain a differential equation for the failure probability 

 

𝜙′(𝑓, 𝑆) + 𝜆(𝑓, 𝑆)𝜙(𝑓, 𝑆) = 𝜆(𝑓, 𝑆) (C.4) 
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for which the solution is 

 

𝜙(𝑓, 𝑆) = 1 − exp (− ∫ 𝜆(𝑓, 𝑆)
𝑉

d𝑆) (C.5) 

 

The defect density, 𝜆, is often stated in the form 

 

𝜆 = ∫ 𝑔(𝑓, 𝑆)d𝑓
𝑓

 (C.6) 

 

where 𝑔(𝑓, 𝑆) is the number of defects per unit volume which yield a detachment force 

between 𝑓 and 𝑓 + d𝑓. This leads to 

 

𝜙(𝑓, 𝑆) = 1 − exp (− ∫ ∫ 𝑔(𝑓, 𝑆)
𝑉

d𝑆𝑑𝑓
𝜎

) (C.7) 
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Appendix D. Fitting method for detachment probability 

 

It is possible to linearize (5.8) for the purpose of least squares fitting. However, this 

transformation is found to cause significant bias when small deviations occur at low strength 

(e.g. [135-137]). In general, maximum likelihood [138] or non-linear least squares methods 

[139] are preferred. We proceed with the latter on the basis of general observation of lower 

root mean square error. A constrained minimization is performed using a sequential quadratic 

programming method in the Matlab subroutine ‘fmincon’ [140]. The constraints imposed are 

0 ≤ 𝑢0 ≤ ∞, 1 ≤ 𝑚 ≤ ∞, and, where the third parameter is involved, 0.32 ≤ ∝ ≤ 1. Error 

estimates on the statistical properties are obtained by performing Monte Carlo simulations, 

based on randomly resampling 𝑁 fibril adhesive strengths from the resulting distribution and 

refitting [138]. In each case the standard deviation is very small, <  0.01 %, and so is not 

reported on a case by case basis. 
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Appendix E. Monte Carlo simulation of bimodal distribution 

 

A Monte Carlo simulation is performed to generate a discrete bimodal probability distribution. 

Two strengths, one from each distribution, are randomly sampled. This is repeated for 𝑛 

samples, with only 𝛼𝑛 being assigned a strength from the secondary mode. For each fibril, the 

minimum of the two strengths persists in the resulting discrete bimodal distribution. The 

distribution from which the lower strength is obtained is stored along with the strength itself. 

This permits the generation of a histogram, decomposed by defect type. Such a histogram can 

be compared qualitatively to the experimental result of Figure 5.5. 

 

Figure E.1 shows histograms of fibril adhesive strength for two combinations of bimodal 

statistical parameters. The first combination, shown in Figure E.1a, are those obtained in 

Section 5.3.2 by combining fitting of (5.8) to mean order ranked data for the center defect 

population with fitting of (5.13) to raw data to obtain the remaining three parameters. The other 

combination, shown in Figure E.1b, is obtained by fitting raw data to (5.13) for all five 

parameters, with the constraints 0 ≤ 𝑢0𝑖 ≤ ∞, 1 ≤ 𝑚𝑖 ≤ ∞, and 0.32 ≤ ∝ ≤ 1. This also 

results in a high-quality fit, 𝛴 = 0.0102, and yields almost identical behavior when 

considering the cumulative strength distribution. However, when decomposed by defect type 

we observe that the behavior is very different. Only in Figure E.1a do we observe qualitative 

similarity to the experimental result of Figure 5.5. This highlights the issue fitting of (5.13) 

without fibril-by-fibril knowledge of the detachment mechanism, and gives confidence in the 

result obtained by using the mean order ranking method to reduce the parameter space before 

fitting. 
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Figure E.1. Histogram of elongation at detachment, 𝑢c, produced by Monte 

Carlo simulation for two partially concurrent defect populations exhibiting the 

statistical parameters given in the insets of (a) and (b). To avoid discretization 

error, the number of samples 𝑛 = 100000. The bin size Δ𝑢c = 0.04 mm. 
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