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ABSTRACT OF THE THESIS

Towards a Transparent and Efficient Far Memory System

by

Zijian He

Master of Science in Computer Science and Engineering

University of California San Diego, 2023

Professor Yiying Zhang, Chair

Memory-intensive applications suffer significant performance degradation when

their working sets exceed available memory capacity, which can result in swapping with

slow disks. Far memory, where memory accesses are directed to other connected nodes,

has become more popular in recent years as a solution to expand memory size and avoid

memory stranding.

Prior far memory systems have taken two approaches: 1) devising a swap system that

uses far memory as a backup device and transparently exposes these regions to unmodified

applications, and 2) introducing a new programming model/data structure that interfaces

with far memory runtime. The former requires no program changes but comes with a
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significant performance penalty, while the latter requires considerable developer efforts to

adopt and tune new APIs despite potential performance gains.

Our key insight is that by capturing both statically known and dynamically mon-

itored program behaviors, we can optimize both the program itself and the underlying

runtime, resulting in a notable performance boost. Furthermore, we propose automating

this process within the compiler to achieve a certain level of transparency. In this thesis,

we introduce Mira, a far-memory system that transforms unmodified C/C++ programs to

adopt remote memory accesses and optimizes them by tailoring runtime support to their

specific behaviors. Our evaluation demonstrates that Mira significantly enhances workload

performance, particularly in terms of execution time, surpassing previous swap-based

systems and programming models by up to 18× .

x



Introduction

Today’s data centers face significant constraints in terms of available memory (RAM) re-

sources. The increasing popularity of memory-intensive workloads, such as in-memory key-value

stores and machine learning applications, leads to a rapid growth in memory requirements. Typi-

cally, resources are allocated based on peak usage to avoid significant performance degradation.

However, this approach often results in severe under-utilization and imbalanced provisioning

across servers. According to Google’s cluster trace, nearly 30% of server memory remains

unused for minutes [1]. These observations highlight the need for addressing the memory

bottleneck by leveraging memory beyond the physical boundary.

By integrating a second-tier memory into the existing memory hierarchy, the local DRAM

can be effectively extended with reasonable overhead. This enables the same job to continue

running even with lower memory capacity. In this thesis, our major focus is on sharing cold

memory with other compute nodes connected through the network. The key idea is compatible

with other implementations of far memory.
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Existing approaches

Some existing systems utilize the swapping mechanism, which involves data exchange

between secondary storage and RAM at a fixed-size unit (pages), to incorporate far memory

as a slower-tier device [2, 3, 4, 5]. While this method can be easily integrated into the kernel

and provides a high level of transparency, it introduces significant overhead. The overhead is

primarily caused by pagefault handling and blocking during page arrival. In certain cases, a

Linux kernel might be configured for busy waiting during swap events to avoid context switching

and interrupt handling, resulting in wasted CPU cycles that could have been allocated for other

tasks.

These page-based systems also introduce another issue, amplification, which occurs

when physically fetched or written data exceeds the logically required size. It can be traced

back to the inflexible and coarse granularity of swapping operations. For instance, even if only a

small fraction of a page is modified, the entire page is marked as dirty, leading to substantial

write amplification during the swap-out process. Similarly, a whole page is fetched despite the

actual access range within that page, causing significant read amplification. Amplification issues

are prevalent in real-world applications, with amplification ratios ranging from 2× to 31× for

4KB pages [6]. These amplifications not only decrease network utilization but also exacerbate

performance degradation.

Another group of approaches proposes new programming models that directly embrace

far-memory access through runtime APIs in applications [7, 8, 9]. This solution circumvents the

need to handle page faults and provides more control over data transmission. However, rewriting

existing applications to adopt these new APIs is often error-prone, time-consuming, and requires

expert knowledge of the implications involved.
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Our approach

This thesis aims to provide a solution that combines the advantages of both worlds:

enhancing the efficiency of the far memory system while reducing the burden on developers

when adopting the proposed system. Our answer lies in a program-behavior-guided far-memory

system. Specifically, we leverage the knowledge of program behavior to guide the configuration

of the runtime system and optimize far memory accesses jointly. To achieve this, we explore

an uncultivated layer in far-memory research: the compiler. We utilize static analysis with

runtime profiling to capture program behaviors. Additionally, our compiler transforms the input

program to seamlessly embrace far memory without requiring explicit modifications from the

programmers’ side.

The introduction of program analysis techniques provides a means to unravel the inner

workings of an application that was once regarded as a black box. This enables the identification

and understanding of behaviors that are challenging to extract solely from traces. A prime

example of such behavior is observed in the context of indirect memory access, represented by

the expression B[A[i]]. Prefetching data accurately in these scenarios presents considerable

difficulties due to the intertwined nature of touched addresses from B and A, as well as the strong

data dependence exhibited by the loaded memory. These characteristics impede simple matching

to well-defined patterns such as stride or sequential access [10]. However, through the use of

static analysis techniques, the precise instructions responsible for computing the target address

can be derived by traversing the intermediate representation (IR) graph. This capability enables

the elimination of redundant memory faults resulting from misguided prefetches.

While many existing approaches rely on fixed runtime settings, we propose a novel

approach that utilizes program behavior to guide system configurations. This decision is rooted

in the observation that the efficiency of program execution can be greatly influenced by the

underlying runtime settings, and mismatched configurations may even result in a significant

performance degradation. For instance, employing a large management granularity can lead to

3



read/write amplification when the access pattern is predominantly random. On the other hand,

adopting object-level granularity can introduce excessive space overhead for bookkeeping and

suboptimal access latency when strong locality patterns are present. Based on these findings, we

offer highly customizable parameters such as cache line size, cache architecture, and capacity

for our runtime system that treats the local space as a cache buffer for far memory,

Despite the efficiency of new systems, users can not easily adopt them if they require

hints or explicit use of proposed APIs. We find the compiler a promising layer to maintain the

benefit of new abstractions while not requiring any additional efforts from the programmer. In

detail, our compiler will perform program analysis, tune the runtime settings with analyzed

results and profile information, transform the application, and optimize it for far-memory

access. By automating this process, our system can achieve superior efficiency and transparency

simultaneously.

Challenges

Using program analysis and dynamic profiling to optimize memory access is a well-

established concept in conventional server settings, considering the CPU cache and main mem-

ory [11, 12, 13, 14]. However, achieving an optimal cache configuration that caters to the entire

application is not always feasible. In many cases, a program exhibits multiple memory access

patterns involving different objects or occurring at different phases, each of which can benefit

from distinct cache settings.

Another challenge, which is commonly encountered in software-defined far memory

systems, pertains to the efficiency of runtime implementations. For instance, the AIFM system [7]

utilizes remoteable pointers to represent memory objects backed by far-memory. To access

these objects, additional instructions such as validity checks, and swapping in/out need to be

executed. While AIFM aims to offer fine-grained control over data transmission, the dereference

overhead associated with each object introduces significant runtime overhead in terms of both
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time and space. This issue becomes particularly pronounced when dealing with a large number of

disaggregated memory objects that are small in size. In one of the benchmarks we tested, which

involved a graph traversing algorithm, the memory overhead incurred from managing metadata

for each pointer even exceeded the actual memory required by the program itself. Similarly,

our runtime caches also incorporate additional instructions and metadata. To fully harness the

benefits of our proposed system, it is crucial to minimize and marginalize this overhead, as

otherwise, it can overshadow the advantages provided by the system.

To address the initial problem, we propose dividing the local cache into sections, each

tailored to a specific behavior exhibited by the program. The parameters of each section can be

individually customized to optimize them exclusively for the corresponding access pattern. For

instance, a directly mapped cache with a large cache line size and moderate capacity can be a

suitable match for sequential access patterns. On the other hand, random access patterns with

poor locality may benefit from a large set-associative cache with a higher number of ways.

In a higher-level perspective, we transform the initially complex optimization challenge

into a pattern-section matching problem, which is easier to comprehend and resolve. Specifically,

we determine the capacity, line size, structure, prefetching/eviction policy, and RDMA operations

(such as one-/two-sided communication) for each cache section based on the results of static

analysis and dynamic profiling results. Furthermore, we can further optimize far-memory

accesses that involve a dedicated cache section by leveraging the corresponding cache settings,

enabling more efficient utilization of our runtime system.

For the second challenge, our efforts are mainly from two aspects. Firstly, at the code

generation stage, we leverage access locality to convert as many far-memory-dereference to

native main memory access as possible to avoid unnecessary API calls. Secondly, in terms of

runtime implementation, we retain the concept of a cache line so that each metadata instance is

associated with a group of objects.

5



Contributions

In this thesis,

1. We propose Mira, a transparent and efficient far-memory system that co-optimizes the

program and the runtime system jointly through compiler techniques.

2. We implement an efficient and highly configurable cache system for the far-memory.

3. We implement the compiler part of Mira on top of Multi-Layer Intermediate Representation

[15], MLIR, which allows us to introduce new abstractions easily.

4. We illustrate the effectiveness of detailed design using synthetic micro-benchmarks

and evaluate the end-to-end performance on three real-world applications: MCF [16],

DataFrame [17] and language model (GPT-2 [18]) inference. We compare Mira with

systems from both worlds to demonstrate our superior performance: Fastswap [3], an effi-

cient implementation of kernel-level swap system integrated with far-memory, Leap [19],

another swap-based far-memory system equipped with a powerful prefetching mechanism

and AIFM [7], a programming model that accesses far-memory under the hood.
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Chapter 1

Background and Related Work

This chapter aims to provide background information on critical concepts and to review

the relevant literature.

1.1 Far-Memory Systems

Far memory represents an emerging data center design paradigm that maximizes cluster

resource utilization by leveraging the untapped memory resources of remote servers or memory

blades. In a typical setup, an oversubscribed machine retrieves physically disaggregated memory

through a low-latency network, utilizing technologies such as RDMA or even traditional TCP.

System-level far-memory solutions

Far-memory systems are commonly implemented using page-based swapping techniques.

InfiniSwap [2] was the pioneering remote memory swap system that utilized RDMA, while

FastSwap [3] further enhanced its performance with superior scheduling and polling mechanisms.

Leap [19] leverages a process’s predominant access pattern to prefetch memory pages, aiming

to minimize remote-memory accesses in critical execution paths. More recent works, such as

Canvas [5] and Hermit [20], have focused on improving Linux’s swap system by enhancing

isolation mechanisms in multi-application environments and asynchronously executing non-

urgent but time-consuming tasks. Additionally, LegoOS [4] presents an alternative non-Linux

system that facilitates swapping of 4 KB pages between a compute node’s “extended cache” and

7



disaggregated memory.

These page-based systems commonly encounter two issues: firstly, they exhibit fixed and

coarse swap granularity, typically based on 4 KB pages, resulting in considerable wastage of net-

work bandwidth due to amplifications and a subsequent decline in application performance [21].

Secondly, these systems lack awareness of program semantics, which is essential for enabling a

range of optimizations.

There are also attempts to address these barriers. Emerging hardware, such as CXL [22]

and research prototypes [23, 24], facilitates cache-line-sized accesses to far memory at signifi-

cantly faster speeds than current network communication. Additionally, CXL eliminates page

fault overhead from the critical path by detecting far-memory access using CPU cache misses.

Software-defined systems built upon this technique can benefit from this low latency and fine

access granularity [21, 25]. However, none of these systems consider program semantics or

configure local cache based on program behavior.

3PO [26] is a recent study that leverages the characteristic of oblivious applications,

which exhibit access traces independent of the input, to proactively plan far-memory prefetching

in a consistent execution environment. In contrast to 3PO, Mira utilizes program analysis

and profiling techniques to capture program behavior without imposing strict requirements on

application obliviousness. Moreover, we adopt a co-design approach for the runtime system

based on the observed program behavior.

New programming models

This type of far-memory system introduces new libraries that facilitate access to remote

memory under the hood. Many RDMA-based systems [9, 27, 28, 29] expose RDMA-like APIs

to enable low-level operations such as direct memory read/write at remote servers, while others

implement interfaces resembling data structures to align with legacy applications [7, 8, 30]. These

systems offer promising performance by granting greater control over far-memory accesses, but

at the same time, they place an additional burden on programmers. Manually porting existing

8



applications presents two challenges:

1. Remotealizing even a single object can be intrusive, requiring modifications to access

interfaces wherever this remoteability propagates. In our initial attempt to disaggregate

the MCF workload [16] using our runtime supports, we observed that more than 90% of

functions needed modification when placing only one data structure in far-memory. This

renders the rewriting process error-prone and time-consuming.

2. Although library developers can strive for optimal optimization of each API, additional

effort is required to understand the implications of their interaction with the original

program behavior in order to utilize these libraries effectively.

There is also a recent work that aims to leverage the efficiency of user-space block cache:

Tricache [31]. It achieves user transparency by instrumenting address translation at compile

time, prior to the actual load/store operations. However, similar to other software-defined caches,

Tricache still encounters efficiency concerns due to the overhead associated with executing

library codes for each memory dereference. While Tricache relies on a two-level cache structure

resembling a hardware TLB to optimize runtime calls, Mira takes a step further by incorporating

program analysis to capture access locality and eliminate unnecessary instructions. Additionally,

Mira possesses the capability to configure the cache structure based on the program’s behavior, a

feature not explored in Tricache.

1.2 Optimizations for Memory Accesses

While memory accesses in a traditional, non-far-memory environment have been exten-

sively optimized across various layers, to the best of our knowledge, no research has focused on

co-designing program analysis, compilers, and a configurable cache.
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CPU cache optimizations

Numerous compiler-level and system-level approaches have been suggested to enhance

application performance on CPU caches. These solutions can be broadly categorized into

three categories. The first category involves modifying programs and/or data layouts to create

more cache-friendly memory access. Techniques such as data structure padding, peeling, field

rearrangement, and separation of hot and cold code regions are employed for this purpose [11,

12, 13]. The second approach assigns distinct CPU cache spaces to different parts of applications.

An example of this technique is CPU cache coloring, which assigns different memory regions to

different regions or levels of the cache to mitigate cache conflicts [32, 33, 34]. The third type

utilizes run-time profiling results, such as profile-guided optimization (PGO), to guide memory-

access optimizations. APT-GET [35] is an example of a system that combines compiler-based

prefetching with dynamically profiled execution times to enhance prefetching timeliness.

In contrast to these approaches, Mira takes a departure by introducing a novel co-design

that integrates configurable caches, program analysis, and the compiler to optimize memory

accesses in a far-memory environment. This unique combination enables Mira to effectively

address the challenges posed by existing far-memory systems and achieve optimized memory

performance.

Configurable caches

There has been some work toward configurable CPU caches and utilization of software

mechanisms to configure such architectures [36, 37, 38]. For instance, Jenga [37] reconfigure

the cache hierarchy, both in the number of levels and size of each level, according to the cache

access latency that can be calculated from the hardware miss counter. Lee et al. [38] proposed

a customized cache structure for streaming applications specifically by analyzing the memory

access traces offline. These solutions concentrate on the architecture and systems level and do

not consider compiler optimizations. Moreover, they all require special hardware to realize the

configurable cache, which may not be feasible in current data centers. Mira, on the other hand,
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whose local cache is fully implemented at software and is jointly optimized with the program

itself through program analysis and profiling results.

Scratchpad memory is another type of hardware-manageable cache that can be controlled

by software. Several studies have concentrated on developing effective strategies for determining

which data to store in the space-limited scratchpad memory [39, 40, 41]. For example, Susu et

al. [41] utilizes static analysis and code transformation to perform space planning on scratchpad

memory for an accelerator. However, these works do not configure scratchpad memory hierarchy

based on program behavior but merely seeking for good data placement and scheduling to fit the

scratchpad.

1.3 Multi-Level Intermediate Representation (MLIR)

MLIR [15] is a compiler framework that enables multiple abstractions at various levels.

These abstractions are referred to as dialects. Presently, MLIR supports numerous dialects for

common operations, encompassing areas such as machine learning, LLVM, memory, control

flow, arithmetic, etc. We have opted to develop our compiler within the MLIR framework since

it facilitates the use of multiple frontend languages and backend architectures. Additionally, it

provides us with the flexibility to include various far-memory abstractions and code optimizations

as dialects at various layers while reusing the existing MLIR dialects and their optimizations.

The code snippets given in this thesis are all in the form of MLIR with certain simplifi-

cations. Apart from some self-explanatory operations such as for loops or memory loads, we

explain other instructions/types that also occur in this thesis below.

geteleptr

It is utilized to retrieve the address of a subelement within an aggregate data structure. Its

sole purpose is to perform address calculation and does not involve any memory access.
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affine.for

This control flow is nothing more than a normal for loop with some additional constraints.

It often appears in the machine-learning community.

memref type

It represents a reference to a memory region, providing similar functionality to a buffer

pointer but with implications to the underlying data layout. memref<1024x1024xi32> stands

for a group of 32-bit integers arranged in the format of a row-major 2-D matrix.

vec.load

This operation literally reads a vector from the memory. The resulting value will be used

in other operations that support vectorization.

affine.load/store

These operations are essentially normal memory read/write with specific constraints on

its offset indices and the target that is being accessed.
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Chapter 2

Mira Overview

Mira consists of several components, including a compiler responsible for analysis and

transformations, a runtime system designed for both local-compute and far-memory nodes,

and a profiling system. The overall flow of Mira is illustrated in Figure 2.1, which follows an

iterative approach to adapt system configurations and user programs for far-memory accesses.

The subsequent part of this section will provide an introduction to our runtime system, followed

by a detailed walkthrough of the execution-compilation process.

2.1 Mira’s Runtime System

Our runtime treats the local DRAM as the cache buffer for the far-memory node. Instead

of utilizing a single cache for the entire program, we divide the local memory into independent

sections that can be configured individually. These sections can be fine-tuned using parameters

such as cache line size, capacity, and cache architecture, which are determined by our compiler

based on the observed program behaviors.

The runtime system provides a set of APIs for accessing far-memory. These APIs

facilitate the translation of remote addresses to native addresses that can be used by the local

memory management unit (MMU). Additionally, it offers other primitive operations, including

explicit prefetching and evictions, which the compiler can leverage for better performance.
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Figure 2.1. Mira Overall Flow.

2.2 Mira in Action

For the initial run, Mira employs a generic swap cache, similar to traditional page swap-

based systems, for all heap objects. This initial execution serves as a starting point and allows for

the profiling of necessary metrics for future optimizations. The information collected during each

profiled run remains consistent and includes details such as memory allocation sizes, function

execution time, and cache overhead within each function.

Based on the collected performance of individual functions and the sizes of objects,

informed decisions are made regarding the division of cache sections. It is important to acknowl-

edge that the complexity of program analysis and code generation/optimization increases with

each additional section, which may not always be necessary. Hence, our focus lies in identifying

the functions that are most affected by the current cache configuration and compiled code. We

then isolate larger objects within these functions and allocate dedicated sections for them. These

selected objects subsequently undergo our analysis and compilation process.

For the identified cache sections, we proceed to configure their parameters based on the

observed program behaviors. To determine the cache line size, we analyze the object size and
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examine the symbolic representation of a set of load/store addresses within the filtered function.

This allows us to estimate the access granularity and strike a balance between amplification

and data movement efficiency. The analyzed access sequence also aids in determining the

appropriate cache structure, as we can minimize cache conflicts by adjusting the number of

ways accordingly. However, it is important to avoid using an overly complex cache structure

that may introduce noticeable per-access overhead. Deciding the optimal section architecture

statically can be challenging. Therefore, we profile the cache overhead and make adjustments in

subsequent execution-optimization trials. Additionally, by considering the profiled performance

characteristics of each cache section, we can determine their respective sizes by interpolating the

overall performance with a given local memory constraint.

For accesses to objects that are backed by far-memory, Mira applies code transformations

to enable interfacing with local cache sections or even remote memory nodes directly. Our com-

piler converts ordinary operations like allocation, read and write, etc. to remoteable operations in

the IR, which we refer to as disaggregating the program at the compile time. These remoteable

operations remain at a high level during the analysis and optimizations and will be lowered to

cache/rdma instructions eventually.

Apart from the conversion of memory accesses, we also offload functions as the far-

memory node can be equipped with certain computation capabilities. However, the benefit of

co-locating the function and data might be overshadowed by the longer execution time if the

remote computation is slower. Therefore, our policy also takes the current cluster settings into

consideration, and we assume an external monitor will keep our system informed about any

discernible changes that might require re-compilation. Currently, our compiler is able to cache

different function signatures that correspond to offloaded or native versions, and only change the

call site to adapt to new decisions quickly. We envision this can be extended to just-in-time (JIT)

compilers, enabling dynamic function offloading at runtime.

During the lowering pass, the inclusion of profiling code instrumentation can be initiated

when necessary. This need may arise due to iterative optimizations on similar inputs, changes
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in system environments, or adaptation to new inputs that result in different program behaviors.

During normal runs, the binary is executed without the profiling instructions. Users have the

flexibility to modify the default triggering conditions for a profiling and optimization trial using

various methods, such as specifying a threshold for recompile iterations/performance gains or

leveraging frameworks like AutoFDO [42] and Ding [43] to identify a “new” input.
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Chapter 3

Cache Section Configurations

This chapter provides a detailed account of the process involved in identifying what to put

into a cache section and determining various cache parameters, including section capacity, cache

line size, and cache structure. To illustrate the key designs of Mira, we employ a simple graph

traversal program depicted in Figure 3.1 as an example application. The program consists of two

arrays: one for Edges and another for Nodes. It sequentially follows the edges and modifies the

source and destination nodes of each traversed edge.

Figure 3.2a demonstrates the superior overall performance of Mira compared to other

systems across various local memory sizes. Furthermore, Figure 3.2b provides a breakdown of

performance gains, highlighting the effectiveness of several design components implemented

in Mira. Throughout the paper, we present relative performance metrics, which are normalized

against the execution of the native binary. A higher value indicates better performance (a value of

1.0 signifies comparable performance to the execution of the unmodified program with sufficient

memory).

1 edges , nodes = malloc ()

2 void traverse_graph(struct edge *edges) {

3 for (int i = 0; i < num_edges; i++)

4 update_node(edges[i], edges[i].from , edges[i].to);

5 // edges[i].from and edges[i].to point to nodes

6 }

Figure 3.1. (Simplified) Code Example of Graph Traversal.
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Figure 3.2. Overall performance (left) and breakdown (right) of the graph traversal program.

3.1 Cache Sections

By partitioning the local memory into sections, we have the flexibility to configure cache

parameters based on specific program behaviors. However, it is essential to exercise caution

when creating new sections, as this can introduce additional overhead in terms of program

analysis and optimizations, and may result in suboptimal utilization of the local memory. Given

these considerations, Mira adaptively determine which data and code regions to be paired with a

cache section by focusing on large objects in functions that ”suffer” most from accessing the

far-memory in each execution-optimization trial.

To measure this ”sufferance”, we have designed an algorithm with a dual purpose:

1) to identify the appropriate scope where significant improvement potential exists and the

optimization context is sufficient, and 2) to account for control flow, which is crucial for capturing

the program’s runtime behavior. With these design principles, we estimate the suffering of a
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function f w.r.t the current runtime setting S using the following formula:

Suffering f ,S =
Overhead f ,S

Execution f

Overhead f ,S = ∑
c∈S

Access Lat f ,c + ∑
f ′∈λ ( f )

Overhead f ′,S

where λ ( f ) denotes callees within f , Access Lat f ,c refers to time spent within cache c in

function f , and Execution f is the execution time of function f .

As the equation suggests, the cache overhead of f will further be recursively aggregated

to the parent functions of f when analyzing its callers, and we count each function only once

in case there exists mutual recursion (e.g., two functions calling each other). The recursive

process prevents Mira from focusing solely on last-level functions, as optimizations such as

prefetch (Section 5.1) and API call elimination (Section 4.2) can be better performed with a

border analysis scope. It also embeds the execution graph efficiently without monitoring the

call stack at runtime, leading to a more accurate description of the program’s dynamic behavior.

The overhead is also weighted against the function execution time to moderate interference from

noises (i.e., code that executes efficiently).

We rank functions based on this index and by default select the top 10% of functions

for analysis. These functions tend to have more potential for optimizing cache configurations

and far-memory code. Since the overhead of callees is attributed to callers, we also include

all functions called within the selected functions in the analysis scope. Once the functions are

selected, we further narrow down the analysis to focus on large objects that are more likely to

result in far-memory access and require significant space. By default, we choose the largest

10% of objects accessed within the selected functions. Users have the flexibility to customize

these two thresholds to strike a balance between analysis overhead and convergence rate. In

our empirical evaluations, we have found that the default settings perform well for real-world

applications tested.
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Figure 3.3. Effect of Cache Section Separation.

After analyzing the selected functions and objects and determining the suitable cache line

size/architecture for their access patterns (as described in Section 3.2), we group similar patterns

into one section while leaving the remaining objects in their own sections. This approach allows

multiple objects to share a section if their access patterns are similar. Conversely, a single object

may be allocated to different sections at different times if its access pattern changes.

It is important to note that there may still be discrepancies between our analysis/estima-

tions and the actual runtime executions. As a result, allocating a separate cache section for an

object may actually degrade the performance of its associated functions. For instance, if the

original section contains two objects with certain discrepancies in their access patterns but only a

small overlap in their lifetimes, separating the section for each object may lead to decreased avail-

able space for both objects, overshadowing the potential benefit of tuned parameters. However,

identifying such information at compile time is difficult. Currently, if we detect any performance

degradation through profiling, we revert to the configuration used in the previous iteration. In the

worst case, a generic swap section is used for all target objects, as this is the default setting for

the initial run, which aligns with other swap-based far-memory implementations.

In Figure 3.2b, we can observe that separating the cache sections (with capacity configura-

tion as explained in Section 3.4) can achieve a 5.7× and 4.9× performance boost compared with
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using our generic swap and with Fastswap. Figure 3.3 shows this effect under different memory

pressures and includes AIFM’s performance as a reference. Following the initial iteration, Mira

divides the data into two distinct sections: one for the node array and another for the edge array.

This segregation is based on the analysis result that the edge array is accessed sequentially, while

the node array is not. The isolation prevents the interference of two access patterns and grants

more local space to the memory-sensitive one (node section), resulting in a significant reduction

in cache misses for the node array. However, at 10% capacity, node objects are experiencing

severe conflict miss regardless of a dedicated cache section, thus the overall performance is not

promising as shown in Figure 3.3.

3.2 Cache Line Size

Each of our runtime caches operates with a fixed size, known as the cache line size, which

is inspired by CPU caches. When determining the cache line size, we adhere to two principles:

1. We aim to ensure that the size of a cache line does not exceed the data access granularity.

This principle helps us mitigate read/write amplifications that can occur when the cache

line size is too large.

2. It is beneficial to increase the cache line size when data items are frequently accessed

contiguously, as long as the line size remains within the maximum transmission capacity

of the network. This principle allows us to leverage network latency characteristics and

exploit runtime access locality.

By adhering to these principles, we strike a balance between minimizing amplifications and

taking advantage of access patterns and network characteristics to optimize the performance of

our runtime caches.

We begin by estimating the optimal point at which data can be efficiently transmitted

in blocks over the network. To achieve this, we profile the latency of one-sided writes against
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different message sizes. We identify the ”balanced” point as the pivot where the latency stabilizes.

Beyond this point, further increasing the line size does not improve network efficiency. Using

a profiled network latency curve, as depicted in Figure 3.4, which corresponds to the same

environment in which we run the graph traversing benchmark, our analysis determines that a line

size of 4KB satisfies the requirements for efficient data transmission.

Then for each access, we extract the instruction sequence for calculating the remote

address and examine the access offset. Accesses to the same object will be averaged within

a block (such as a function body or a for loop) and severe as the representative stride for that

block when analyzing other regions. In the code example shown in 3.1, the average gap between

accesses to edge nodes is 1 inside the loop block whereas the offset for nodes is not available.

Since there is only one loop block in the function, the same results will be used when analyzing

callers of traverse graph. If the stride is a constant known at compile time and is smaller than

4KB, the compiler will configure the corresponding cache line size to the balanced point since 1)

a larger line size can benefit access locality, and 2) data movement is relatively efficient at this

point despite potential amplification. If the gap exceeds the balanced point, the compiler will

treat it as random access and enforces a more conservative strategy since further increasing the

line size will imply more cache conflicts.

We also consider all other cases where the offset is not statically known as random

access and balance between the fine-grained control granularity and the space overhead for
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Figure 3.5. Section-specific cache overhead (left) and illustration of data amplifications (right).

metadata management. The compiler will choose the smaller one between the size of access

granularity (i.e., statically known structure size) and the lower bound of the line size, which can

be customized by setting the space overhead threshold.

Figure 3.5 illustrates the cache overhead associated with utilizing various cache line

sizes for the node and edge sections. For the node array, which is accessed randomly and requires

a minimum size of 128 bytes to accommodate the data unit, adopting a smaller line size helps

reduce conflicts and amplifications (as shown in Figure 3.5b). It is worth noting that Fastswap

transfers 3× more data compared to Mira with the same 4K size setup, which can be attributed

to the reduced miss rate achieved through section separation. On the other hand, the edge array

is accessed sequentially. Using a larger line size allows the compiler to amortize the cost of

far-memory dereferencing by offsetting subsequent accesses within the same line, which is

already at the local side. However, this effect diminishes when the line size becomes relatively

large.

3.3 Cache Structure

Mira supports three cache section structures: directly mapped, set associative, and fully

associative, which are analogous to traditional CPU cache architectures. Similar to CPU caches,
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Figure 3.6. Illustration of cache structure effect

fully associative cache sections provide the most efficient utilization of cache space with no

conflict misses. However, they come with a higher runtime overhead for cache lookup. This

tradeoff shifts as we move towards set associativity and direct-mapped cache section structures.

To determine the appropriate cache section structure, we analyze the program’s access sequences

within a code block and extrapolate the potential level of conflict that may occur. This analysis

helps us make an informed decision about which cache structure is most suitable for the given

program’s behavior.

In detail, we estimate the number of data items K that are better to be cached within

the function and choose the structure with the least complexity that can fulfill this requirement.

If this information cannot be determined statically, we configure the cache section to be fully

associative by default. In other cases, we select a direct-mapped cache if K = 1, a set-associative

cache with K ways if K ≤ 16, or a fully associative cache otherwise. This ensures that the

accessed data items can be stored without evicting each other. In the example provided, we

choose a direct-mapped cache for Edge to take advantage of the low runtime latency of this

architecture without deteriorating the miss rate. For Node, we select a 2-way set-associative

cache to accommodate two data items simultaneously.

There are other factors that can add complexity to the cache line configuration process.
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One such factor is the consideration of prefetch optimizations. We perform cache line configura-

tion after prefetch optimizations to take into account the requirements of the prefetch pipeline.

For example, if Mira decides to prefetch node objects a few steps before the loop iteration that

actually needs it, we increase the number of ways accordingly to ensure the prefetched items

remain valid between the prefetch site and the access site. Another factor to consider is the

difference in access speed between cache structures of varying complexity. Sometimes, this

difference outweighs the impact of reduced miss rates. The effect of distinct cache structures

on the Node section can be observed in Figure 3.6. With relatively sufficient local memory, full

associativity always leads to suboptimal performance due to its high overhead. However, as the

amount of local memory decreases, full associativity becomes a more favorable option. However,

it can be challenging to anticipate this effect at compile time, we rely on profiling results to

adjust the cache structure. For sections that adopt fully-associative structures, we gradually

decrease the associativity until the overall far-memory performance (including miss latency and

hit overhead) starts to increase. By default, a 2-way set-associative cache uses a direct-mapped

cache as its next candidate, while a fully associative cache uses a 16-way set-associative cache

as its next option.

3.4 Section Size

Previous far-memory systems [3, 4, 7] have found that the performance of a far-memory

system can be significantly impacted by the size of the local cache. However, in contrast to

these earlier systems that focused solely on the total cache size and its effect on application

performance, we take a more fine-grained approach by considering the impact of each cache

section’s size. This is important because different objects and their access patterns may be

affected differently by the amount of local cache.

However, it is difficult to determine the exact relationship between cache size and

performance, we employ sampling and profiling techniques to determine the optimal section
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1 edges , nodes , R = malloc ()

2 void traverse_graph(struct edge *edges) {

3 for (int i = 0; i < num_edges; i++)

4 update_node(edges[i], edges[i].from , edges[i].to);

5 // edges[i].from and edges[i].to point to nodes

6 }

7
8 void third_access(struct third *R) {

9 for (int i = 0; i < num_edges; i++) {

10 foo(R[rand1(i)], nodes[rand2(i)]);

11 }

12 }

13
14 traverse_graph(edges)

15 third_access(R)

Figure 3.7. (Augmented) Code Example of Graph Traversal.

capacity. Initially, we sample several different sizes for each cache section, and during each

sampled run, we profile the cache overhead, which includes the total miss latency and hit

overhead. For sections that correspond to sequential accesses, only a small amount of memory

is required to accommodate enough preloaded data and hide the network latency. In general,

the cache overhead decreases linearly as we increase the memory size to extend the prefetch

pipeline (i.e., local slots for requested data). The overhead stops decreasing when the capacity is

large enough to fulfill the required prefetch distance. Based on this knowledge, we only perform

coarse-grained sampling for this group of sections and infer the optimal size.

For other sections, we collect denser sampling points for each cache (e.g., from 10% to

90% of the total required memory for the section). With the profiling results and the estimated

cache lifetime obtained from program analysis, we formulate the configuration problem as an

integer linear programming (ILP) problem. The objective of the ILP is to minimize the total

cache overhead (weighted by the function execution time), while ensuring that the aggregated

section sizes do not exceed the local memory limit at any time. To better demonstrate this effect

with different access patterns, we augment the original graph traversal program with another

array R that is accessed in a random manner, as shown in Figure 3.7.

26



0 10 20 30 40 50 60 70 80 90 100
Section size (% of local memory)

0

2

4

6

8
Ca

ch
e 

Pe
rfo

rm
an

ce
 O

ve
rh

ea
d

Node samples
Uniform Random samples
Edge samples
Edge estimation

(a) Sampled cache overhead with different section
sizes. The performance of section for Node in function
traverse graph is omitted for clarity.

0.2 0.4 0.6 0.8 1.0
Section size distribution (obj1/obj2)

0.1

0.2

0.3

0.4

0.5

No
rm

al
ize

d 
Pe

rfo
rm

an
ce [node/edge]

[node/uniform]
selected

(b) Section size selection. The y-axis shows function-
specific normalized performance.

Figure 3.8. Illustration of the cache-capacity-performance relationship (left) and Mira’s decisions on the
section size (right) of the augmented graph traversal program.

The impact of section capacity on the cache performance is depicted in Figure 3.8a. As the

plot suggests, an extremely small section size will suffice to achieve the optimal performance for

sequential accesses (edge nodes). On the other hand, for the Node and R arrays, the relationship

between section capacity and cache overhead is obscure: Node overhead drops rapidly from

30% to 50% and R overhead decreases significantly from 50% to 70%. These different capacity-

performance relationships necessitate different configurations in response to varying levels of

local memory pressure.

Figure 3.8b shows the normalized performance of two functions respectively if assigning

different section sizes when the local memory ratio is 20%. Since there is no overlap between

the lifetime of Node and R, Mira can partition these two sets of caches, i.e., node/edge and

node/uniform separately, and exploit full local memory in each case. Mira’s solution generates the

optimal memory distribution solution for both functions. As anticipated, the optimal approach is

to allocate the majority of the memory to the Node array, which is accessed randomly. The optimal

ratio between the Node section and the R section also aligns with their relative performance

obtained through sampling.

In Figure 3.8b, the normalized performance of two functions is shown when different

section sizes are assigned, assuming a local memory ratio of 20%. Since the lifetimes of node
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array and R array do not overlap, Mira can partition the caches separately for each function

using the whole local memory. As the plot shows, Mira’s solution generates the optimal memory

distribution for both functions. As expected, the majority of the memory is allocated to node

objects in the first function. The optimal ratio between the Node section and the R section aligns

with their relative performance obtained through sampling, demonstrating the effectiveness of

Mira’s approach in identifying promising cache configurations.
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Chapter 4

Transparent Disaggregation

In this chapter, we introduce the integration of our runtime cache sections through a

compile-time transformation process known as ”disaggregation” of user programs. The overall

process consists of a conversion and a lowering pass. In Figure 4.1, we provide an example

that illustrates how the Mira compiler converts conventional operations involving selected objects

into remote operations and subsequently lowers these remote operations to low-level dialects.

In the example, the transformed operations, after being converted to far-memory accesses, are

represented by high-level descriptive semantics (rmem.load). This abstraction level simplifies

the analysis and optimization process, as the resulting interface closely resembles the original

one. From this point, we can progressively lower these operations to conventional dialects

(normal.load for memory read) or to more primitive remote operations that describe low-level

functionalities (rmem.deref for resolving remote address translation).

4.1 Convert to Far-Memory Accesses

While accesses to data managed by our generic swap section do not require any modi-

fication, we use the compiler to instrument additional operations for loading from other cache

sections. Given the filtered set of large objects (as described in Section 3.1), Mira converts

their allocation sites to far-memory allocations, whose resulting pointers are of type remote

memref (defined in our MLIR dialect named rmem). This remoteability shall be propagated
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Figure 4.1. Illustration of Mira’s disaggregation flow.

through def-use chains. For example, operations that only manipulate the address will pass on

the remoteability to its result if a remote memref is its operand. On the other hand, operations

that load the data will deprive this property, meaning the resulting data is available in the local

memory. Operations with no result will be the end of the current propagation chain. Mira will

transform operations that are involved with remote memref types into instructions defined in

rmem, which we refer to as remote operations. Figure 4.2 shows an example of this process, in

which line 12 is obtaining the address of the target element by inter(first index) and intra(second

index) offsetting the source structure, whereas line 13 performs remote memory read, extracting

one layer of remoteability leaving inner types intact.

4.2 Lowering Remote Operations

The conversion result only produces IR that contains high-level descriptive semantics,

our compiler will eventually lower these operations to more basic instructions that actually

perform far-memory accesses, either by interacting with our runtime system or sending RDMA

requests directly. In this section, we describe how Mira lowers a remote pointer dereference and

the optimization it performs.

Initially, the value of a rmem pointer represents its far-memory address in the remote
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1 // Original IR (simplified)

2 %dat: struct.A {payload: int , next: ptr <A>} = malloc ()

3
4 %2 nd_next = normal.geteleptr %dat[1, 1] -> ptr <ptr <A>>

5 %target = normal.load %2 nd_next -> ptr <A>

6 %paddr = normal.geteleptr %target[0, 0] -> ptr <int >

7 %payload = normal.load %paddr -> int

8
9 // After conversion and propagation (simplified)

10 %r_dat: struct.rA {int , rmref<rA >} = remotable.alloc()

11
12 %2 nd_next = rmem.geteleptr %r_dat[1, 1] -> rmref<rmref<rA>>

13 %target = rmem.load %2 nd_next -> rmref <rA>

14 %paddr = rmem.geteleptr %target[0, 0] -> rmref<int >

15 %payload = rmem.load %paddr -> int

Figure 4.2. Example of propagating remotability

memory space. For each rmem.load/store, Mira instruments API call to obtain the local

address that corresponds to the given remote pointer. The translation routine involves checking the

presence of data by mapping the far-memory address to the block index inside the corresponding

section and examining its tag and valid bits. The first 8-bit of a remote address indicates its

current section id and the runtime will use the corresponding translation function to perform

the mapping. If it is not cached, Mira retrieves the data from far memory and places it in the

designated slot. With the presence of objects in the cache, the runtime will return the virtual

address that is meaningful to the local node MMU for actual accesses.

The naive approach is to ask the compiler to inject this process before each far-memory

access and obtain the real local address first, followed by conventional memory load or store.

However, this approach would introduce significant overhead to far-memory access as the

expensive lookup-and-access step would need to be performed each time. To address this issue,

we propose a compiler approach that leverages static analysis of access locality. The idea is

that if we can determine the presence of a cache line in the local section based on previous

requests, any subsequent accesses to the same cache line can be performed directly by offsetting

the already resolved address. This allows us to completely avoid the overhead or reduce it to a
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single address calculation instruction. This technique can be applied in various scenarios, such

as a loop that sequentially accesses a large array or accesses multiple fields of a remote structure.

Note that the proposed optimization requires the rigid assumption on the presence of the

target cache line in case there are multiple preceding far-memory dereferences happening in the

same section and are not likely on the same line. Since our cache configuration satisfies most of

the cases (as described in Section 3.3), we can apply the optimization extensively. Moreover, in

cases when Mira sees excessive requests to the same cache section that might result in unsafe

evictions, the compiler can use the ”lock” mechanism exposed by the runtime to mark a cache

line as unevictable until the lifetime of an optimized dereferenced address ends.

Also note that the proposed optimization relies on the assumption that the target cache

line is present, especially when there are multiple preceding far-memory dereferences occurring

in the same section and not likely on the same line. In cases where Mira detects excessive requests

to the same cache section that could potentially lead to unsafe evictions, the compiler can utilize

the ”lock” mechanism provided by the runtime to designate a cache line as ”unevictable” until

the dereferenced address’s lifetime ends. Thanks to our co-design approach that configures the

runtime setting according to program behaviors, we can still apply the elimination of redundant

dereference extensively.

The efficiency issue is common in other works that introduce new user-space runtimes.

For instance, AIFM [7] requires pointer dereferencing for each remote data item, even when

those items are programmed to be accessed together, as each element is managed by the runtime

in isolation, resulting in the need for individual dereference operations. In contrast, Mira

attempts to determine whether two objects reside on the same cache line. If they do, resolving a

remote address can eliminate the need for the entire dereference process for subsequent accesses.

Additionally, AIFM relies on user-specified lifetime protection to ensure the validity of already

dereferenced pointers. This approach introduces overhead for entering and leaving these scopes

and places an additional burden on programmers. On the other hand, Mira designs the runtime

structure based on estimated conflicts and deduces the reusability of cache lines at compile time.
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This approach adds no overhead to ensure pointer lifetime while providing transparency to the

programmer.
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Chapter 5

Program Optimizations

Apart from transparently adopting far-memory in a user application, our compiler per-

forms code optimization for far-memory accesses as discussed below.

5.1 Adaptive Prefetching

Prefetching is a commonly used technique to mitigate data movement delays. Previous

systems [19, 44] employ heuristics based on access history to determine which data to prefetch.

In contrast, we take a different approach by leveraging the compiler to identify data that is likely

to be accessed in the near future. The compiler inserts prefetching operations at a program

location estimated to be one network round trip earlier than the actual access, effectively avoiding

blocking.

When dealing with memory operations within nested loops, an additional step is required

to determine the level at which prefetching should be performed. This decision depends on the

loop’s body interval and the data being accessed, which can vary across different levels of the

loop. In this section, we will explain the analysis process involved to estimate the accessed

memory range, using the example depicted in Figure 5.1. The code example performs matrix

multiplication on %0 and %1, and stores the result in %2. The algorithm has been pre-optimized

with loop tiling. The memref type is similar to a pointer, but it also provides information about

the memory layout of the underlying resource.
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1 func.func private @foo(f32 ,

2 vector <8xf32 >,

3 memref <1xvector <8xf32 >>)

4
5 %0 = rmem.alloc_memref: rmref<memref <256 x1x1024xf32 >>

6 %1 = rmem.alloc_memref: rmref<memref <1024 x50264xf32 >>

7 %2 = rmem.alloc_memref: rmref<memref <256 x1x50264xf32 >>

8
9 loop1: affine.for %arg0 = 0 to 256 {

10 loop2: affine.for %arg1 = 0 to 50264 step 8 {

11 loop3: affine.for %arg2 = 0 to 1024 step 8 {

12 %alloca = normal.alloca_memref () {alignment =16} :

13 memref <1xvector <8xf32 >>

14 %4 = rmem.vec.load %2[%arg0 , 0, %arg1]

15 affine.store %4 -> %alloca [0]

16 loop4: affine.for %arg3 = 0 to 8 {

17 %6 = arith.addi %arg2 , %arg3 : index

18 %7 = rmem.affine.load %0[%arg0 , 0, %6]

19 %9 = rmem.vec.load %1[%6 , %arg1]

20 call @foo(%7, %9, %alloca)

21 }

22 %5 = affine.load %alloca [0]

23 rmem.vec.store %5 -> %2[%arg0 , 0, %arg1]

24 }

25 }

26 }

Figure 5.1. Code example of accesses in nested loops. The given MLIR is simplified for readability.

For each remote access, we generate a symbolic representation of the involved memory

region at the innermost loop that encloses it. This representation consists of three components:

a remote object as the base address, an expression to calculate the offset given all induction

variables of enclosing loops, and the number of objects being accessed by this operation. We use

the access at line 18 in Figure 5.1 as an example. The starting address, %0, is the object allocated

at line 5. Its memory layout indicates a three-dimension array, and sequentially indexing through

each of its dimensions results in strided accesses with step sizes {1024,1024,1} respectively.

Thus, loading an element at %0[%arg0,0,%6] corresponds to the formula below:

memL18 = {%0,%arg0∗ (1024)+(%arg2+%arg3),1} (5.1)
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where %arg0,%arg2,%arg3 stands for induction variables of loop1, loop3 and loop4 respec-

tively.

Then, for each layer of the loop, we transform the above representation (Equation (5.1))

by peeling out induction variables belonging to loops nested within the current level one at a

time. This process is straightforward: we iterate through the range of an induction variable,

substitute it into the formula, and calculate the new offset symbolically. If the gaps between any

pair of new offsets are smaller or equal to the access size, we merge them to form a contiguous

accessed region. Using the same example, the representation for the memory region touched by

the operation at line 18 with respect to loop3 will exclude %arg3 and aggregate the resulting 8

small pieces into an integral region, leading to the final representation that matches line 11 in

Figure 5.2.

1 access_mem = {

2 // range = { base address , offset expr , access size }

3 loop1 = ...

4 loop2 = ...

5 loop3 = [

6 {%0, <(%arg0 ,$arg1 ,%arg2) -> (%arg0 * 1024 + %arg2)>, 8},

7 {%1, <(%arg0 ,$arg1 ,%arg2) -> (%arg2 * 50264 + $arg1)>, 8},

8 ...

9 {%1, <(%arg0 ,$arg1 ,%arg2)
10 -> ((% arg2 +7) * 50264 + %arg1)>, 8},

11 {%2, <(%arg0 ,$arg1 ,%arg2) -> (%arg0 * 50264 + $arg1)>, 8}

12 ]

13 loop4 = [

14 {%0, <(%arg0 ,$arg1 ,%arg2 ,%arg3)
15 -> (%arg0 * 1024 + (%arg2+%arg3))>, 1},

16 {%1, <(%arg0 ,$arg1 ,%arg2 ,%arg3)
17 -> ((% arg2+%arg3) * 50264 + %arg1)>, 8}

18 ]

19 }

Figure 5.2. Mira’s analyze results for touched memory regions in each loop layer.

After we obtain the estimated memory access at each loop layer, we proceed to decide

the appropriate location for prefetch. The principle that guides this decision is two-fold: 1) the

total access of an object at a specific layer should not exceed the network’s capacity, and 2) loops
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Figure 5.3. Effect of prefetch and eviction hint on the original graph traversing program.

whose induction variables are insignificant to the offset expression should be ignored. The first

principle can facilitate an efficient prefetch pipeline. The second principle is to avoid redundant

prefetch operations. For access operations whose memory ranges cannot be determined at

compile-time, we select the immediately enclosing loop as the default prefetch site.

5.2 Eviction hints

With static analysis, Mira can determine the last access to a far-memory object within a

code block in some cases. Leveraging this information, when all references to a cache line have

ended their lifetime, the Mira compiler will insert an asynchronous flushing operation and mark

the line as evictable. Future insertions can first check which existing lines are marked evictable

and benefit from proactive movement beforehand. Without this optimization, all eviction events

are blocking and delay the critical path since they are passively triggered by new accesses.

Figure 5.3 demonstrates the benefit of adding prefetching and eviction hints in Mira when

running the graph-traversal example ( Figure 3.1). In addition, we assess the performance on

Leap [19], which implements prefetching based on majority history. However, Leap is designed

to capture global access patterns and is not effective in prefetching for interleaved access patterns

like the one demonstrated in this example, where each loop step involves both sequential and
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indirect accesses. Furthermore, Leap employs the standard Linux global eviction policy and does

not take advantage of any program hints.

5.3 Selective Transmission

A major drawback of swap-based systems is their fixed and coarse far-memory access

granularity. While recent programming models like AIFM [7] allow programmers to specify

precise data structures for movement between local and remote memory, there is a risk of

suboptimal decisions leading to unnecessary data fetching. For example, designating a large data

structure as a remoteable object may result in fetching the entire structure from remote memory

even if only a few fields are accessed.

To address this issue, we propose a compiler-based solution. Our approach involves

utilizing program analysis to identify the specific portions of a data structure accessed within

each program scope, such as a function. Subsequently, we register handlers at the remote side and

generate code that fetches or prefetches only these identified portions, avoiding the unnecessary

transfer of unused data.

5.4 Batching Requests

For the majority of networks and interconnects, a single large communication event, such

as a message containing multiple scatter-gathered data pieces, is more efficient than multiple

smaller communication requests. Therefore, we aim to leverage this characteristic by altering

program behaviors. In particular, if our analysis identifies multiple data items that are accessed

at different locations, we modify the original code so that their network messages can be bound

together. For instance, if we discover two arrays that are sequentially accessed by two adjacent

loops without data dependency, we merge the loops and batch access the two arrays. We also

apply conventional loop fusion beforehand to disclose more batching opportunities.
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5.5 Data Communication Methods

Communication between the local node and the far-memory node, either over a network

or a local bus/interconnect, is a crucial aspect of far-memory systems. Several previous studies

have examined the advantages and potential applications of one-sided communication, where

data is directly read/written from/to far memory, versus two-sided communication, where data is

sent as messages and the far-memory node copies the messages to their final destinations [9, 45].

These works manually design the communication methods for a specific application domain.

Our selection of the appropriate communication method for each cache section is based

on its access pattern. When our program analysis reveals that a section’s access pattern involves

reading/writing the entire data structure, we employ one-sided communication to fetch/write the

entire structure in a single operation. On the other hand, if a section only accesses partial data

structure, such as one or two of its fields, we opt for two-sided communication to transfer only

the required partial structure. This approach helps avoid read/write amplification. To achieve

this, we insert code at the compile time to either prepare a message by copying the partially

accessed data structure or ask the remote memory node to assemble a reply with chosen fields.

5.6 Function Offloading

Some far memory nodes possess computational capabilities that can execute application

code [7, 28], enabling offloaded computation to access data in far memory locally without

network transfers. To take advantage of this feature, previous studies require programmers to

determine which computation should be offloaded to far memory nodes, and in some cases,

even rewrite the offloaded computation. On the contrary, Mira automatically and transparently

determine and offloads computation to far memory with the following policy.

To reduce the program-analysis complexity, we only consider program functions as

the unit of offloading. We first identify functions that do not have any shared writable data

with other (local) functions as offloading candidates. Shared writes are hard to support in
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today’s far-memory environment that does not provide coherence between local and far-memory

nodes. In the future, if hardware-provided coherence between compute and memory nodes, such

as CXL [22], becomes available, we may consider functions with shared writes as potential

candidates for offloading.

From the set of candidate functions, we decide which ones to offload to far memory based

on the amount of computation to be offloaded and the level of network communication required.

Since far-memory nodes typically have lower computation power (such as a low-power ARM

processor), we avoid offloading computation-intensive functions to far memory. Meanwhile, we

aim to minimize network communication, and if all the data accessed by a function is already in

remote memory, it is advantageous to place the function in far memory as only the transfer of

function parameters and results is required.

Once the offloading targets are finalized, we insert code at the local side to flush relevant

local caches, ensuring that the remote node has up-to-date data. We also register the function

handler on the remote side, where memory operations are converted back to native ones. The

Mira compiler then packages the function inputs, instruments RPC calls to the offloaded function

and blocks for the result.
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Chapter 6

Implementation

We implement Mira runtime with 12.1K lines of code in C++ for both the local node and

far-memory node. Additionally, we implement Mira compiler on top of Multi-Level Intermediate

Representation (MLIR) with 7.7K lines of code in C++. In the following sections, we will delve

into some of the representative parts.

6.1 Far-Memory Abstraction in MLIR

We add two new MLIR dialects for far memory:

1. remoteable. This dialect introduces a new abstraction for data objects that belong to

cache sections and for functions that can be offloaded to far memory. Figure 6.1 shows

the allocation of a remote object and the definition of a remoteable function at line 6 and

line 8&9.

2. rmem. This dialect defines the interaction with remoteable objects and functions. The

operations we implemented have two major objectives: 1) to support conventional point-

er/memref instructions when targeting remoteable types, and 2) to coordinate with our

runtime APIs and maintain metadata for optimizations.

Figure 6.1 is a comprehensive code example that covers most representative remote operations

for reference.
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1 %SEdge = rmem.cache_section

2 {#type = "direct", #line = 2M, ...}

3 %SNode = rmem.cache_section

4 {#type = "full", #line = 128B, ...}

5
6 @_redges , @_rnodes = remotable.alloc (..)

7
8 func.func @trvs_graph_opt(

9 %arg0: !rmem.rmref<struct <_r_edge >>){

10 scf.for %i <- %0 to %num_edges step %elements_per_line {

11 // prefetch %n_ahead elements ahead from far memory

12 rmem.fetch %SEdge , %arg0 + %i + %n_ahead

13 // wait for current requested data (at %i) to be in cache

14 rmem.wait %SEdge , %arg0 + %i

15 // get phyiscal address of line starting address

16 %line = rmem.paddr %SEdge , %arg0 + %i

17
18 scf.for %j = %0 to %elements_per_line {

19 // directly load element with resolved cache line

20 %addr1 = normal.geteleptr %line[%j]

21 %1 = normal.load %addr1

22
23 // also prefetch node elements

24 %addr2 = normal.geteleptr %line[%j + %n_node_ahead]

25 %2 = normal.load %addr2

26 // node elements may be in cache already , fetch if not

27 rmem.fetch_if_not_in_cache %SNode , %2 -> from

28 rmem.fetch_if_not_in_cache %SNode , %2 -> to

29
30 // wait for node elements to be in cache and access

31 rmem.wait %SNode , %1 -> from

32 %3 = rmem.paddr %SNode , %1 -> from

33 rmem.wait %SNode , %1 -> to

34 %4 = rmem.paddr %SNode , %1 -> to

35 func.call @update_node (%1, %3, %4)

36 }

37 // flush used %i element for eviciton hint

38 rmem.flush %SEdge , %i

39 }

40 }

Figure 6.1. Optimized graph traversal example. We only show prefetching and eviction flush in this case.
The given MLIR is simplified for readability.
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6.2 Convert To rmem Dialect

Once Mira identifies a data object to be remoteable (Section 3.1), we trace its allocation

site and perform forward dataflow analysis (Section 4.1) to convert involved pointers/memrefs

and operations to remote counterparts. The remoteability within types is also propagated

recursively. Afterward, we perform a backward analysis to find all the functions where a rmem

pointer is passed as a parameter. Note that the same function may be called with a native local

pointer, we then create another version of the function definition with a different signature.

Since both the backward and forward analyses require analyzing the entire program, we

endeavor to minimize their usage by caching the analysis results. These results encompass each

function’s references to remoteable objects. By doing so, later compiler optimizations can make

use of these results without the need to repeat the expensive whole-program analysis.

6.3 Allocation with Far-Memory

We have implemented remote memory allocation, which involves using a local allocator

and a remote allocator jointly, to request memory from remote address space. The remote

allocator operates similarly to a low-level system allocator, such as the mmap function in Linux,

and handles the actual memory allocation in far memory. The local allocator, on the other hand,

receives the allocated far-memory addresses from the remote allocator and buffers them, similar

to user-space allocator libraries like malloc in clib.

When an allocation is requested, the local allocator first checks if there is an available

memory region within the buffered far-memory addresses. If there is, it returns that region

to the allocation site. If not, it requests additional addresses from the remote allocator. Since

the allocated addresses correspond to virtual memory addresses at a far-memory node, our

RDMA-based network stack can utilize them for one-sided accesses.
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6.4 More on Lowering Routines

All high-level descriptive remote operations we inserted need to be converted to basic

dialects, which contain primitive functionalities such as function calls or arithmetic operations.

MLIR provides convenient translations from thesis dialects to LLVM-IR, from which we can

produce the final binary. Lowering for some operations will call runtime APIs while others will

be converted to instructions directly for performance.

• rmem.cache section create cache metadata as a global data structure. Most values

configured for the cache, e.g. line size and section size, are compile-time constant values

and will be optimized out.

• remoteable.alloc will call the generated @remote alloc function directly. The overall

allocation process is described in Section 6.3.

• rmem.deref serves as an interface for translating remote addresses into local ones, as

described in Section 4.2. We transform it to other remote operations, a process known as

partial lowering. Specifically, we replace it with rmem.fetch if not in cache followed

by a rmem.wait and rmem.paddr. However, we do not expect any of deref operations to

be a direct conversion target in the final lowering pass, as we would transform all of them

into the above three instructions and reschedule the fetch instruction in the earlier prefetch

optimization pass.

• rmem.fetch if not in cache and rmem.fetch will call generated function

@cache request cond and @cache request ncond respectively. Both lowering results

will map a remote address to a local slot within the section to receive the incoming data,

with the former one checking the tag bit before making RDMA requests.

• rmem.paddr will be lowered to instructions directly to obtain the local address of desired

remote address. Instructions in Figure 6.2 assume a direct mapped cache with a line size
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of 4096 bytes.

1 // local memory starting address

2 llvm.mlir.global external @_rbuf : !llvm.ptr <i8>

3
4 // global section metadata

5 llvm.mlir.global external @s0 {

6 #local_base = 0,

7 #remote_base = 0,

8 #linesize = 4096,

9 #section_id = 0,

10 #num_blocks = 16

11 }

12
13 // %7 = rmem.paddr @s0 , %raddr

14 %c12_i64 = arith.constant 12 : i64

15 %c4095_i64 = arith.constant 4095 : i64

16 %c15_i64 = arith.constant 15 : i64

17 // get line id

18 %0 = arith.shrsi %raddr , %c12_i64 : i64

19 %1 = arith.andi %0, %c15_i64 : i64

20 %2 = llvm.mlir.addressof @_rbuf : !llvm.ptr <ptr <i8>>

21 %3 = llvm.load %2 : !llvm.ptr <ptr <i8>>

22 // offset to line

23 %4 = arith.shli %1, %c12_i64 : i64

24 // offset within line

25 %5 = arith.addi %4, %raddr : i64

26 %6 = arith.andi %5, %c4095_i64 : i64

27 %7 = llvm.getelementptr %3[%6] -> !llvm.ptr <i8>

Figure 6.2. Example of lowering rmem.paddr for a specific cache structure.

6.5 Function Offloading

Mira generates one object file for each remoteable function and links them with the

remote server’s runtime. Mira reverts rmem operations in the function back to normal memory

accesses and remote pointers into normal pointers, as the function will run on the node that

contains the remoteable objects locally. On the local side, we implement the invocation of an

offloaded function as an RPC call. To ensure that the function can see the up-to-date remoteable

objects during its execution, we flush all sections accessed by this function to far memory.
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6.6 Cache Section Runtime

Fully-associative cache.

We maintain a remote address to physical address map for full associative caches and

also a list of idle physical cache lines. On top of physical space management, we implemented

an approximation of LRU eviction using active and inactive lists [46]. Our runtime could take

our compiler-inserted code to perform prefetching and cache line flushing for eviction hints.

Swap-based cache section.

Different from other sections that directly generate program statements for cache accesses,

the swap cache transparently executes the original code via a system-level run-time swap system.

Line size in the swap cache to be 4KB, align with OS page size. We build our user-space

swapping system on top of Linux userfaultfd [47].

6.7 Multi-Threading Support

Analyzing, generating code for, and optimizing multi-threaded programs is challenging

because it is difficult to infer the order in which threads access shared data. To prevent potential

race conditions in such programs, we lock a cache line, increasing the reference counter and

rendering it ”unevictable” if it is dereferenced by any thread until the end of its lifetime. This

ensures that no conflicting accesses from other threads can take over that slot. It is worth noting

that traditional thread synchronization mechanisms still function as expected with Mira since we

will not make synchronization primitives remoteable and keep real data accesses only occurring

at the local side so that they are protected by traditional synchronization mechanisms.

When multiple threads share a section, certain cache configurations, and code optimiza-

tions may become impractical. For instance, because we cannot determine the locality set across

multiple threads statically, we are no longer able to determine whether to use a directly mapped

or set-associative structure by estimating the potential level of conflict. By default, we use a

full-associative structure for all shared sections. Nevertheless, we can still optimize performance
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by utilizing each thread’s access pattern, such as by employing techniques like prefetching.

In order to circumvent the numerous overheads associated with multiple threads sharing a

cache section, we undertake data ownership analysis. By determining that an object is exclusively

owned by one thread or is read-only shared by multiple threads within the lifetime of a cache

section, we can isolate or duplicate the section respectively for each thread to create a lock-free

environment.

47



Chapter 7

Evaluation

We evaluated Mira on a Cloudlab cluster of 8 C6220 servers, each equipped with two

8-core Intel Xeon E5-2560 CPUs (2.80 GHz), 64GB RAM, and a 50 Gbps Mellanox FDR-CX3

NIC with 50G Infiniband network.

7.1 Settings

Applications

Three industrial-quality applications are selected to assess the scalability and the effective-

ness of proposed techniques, including DataFrame, MCF, and GPT-2 inference. DataFrame [17]

is a data analytics framework written in 24.3K LOC C++. The Dataframe system provides a set

of data analytic operations, such as filtering, grouping, etc., on a data structure called DataFrame,

a collection of named columns. When working with large data sets, DataFrame can be both

compute and memory intensive, making it a good fit for far-memory environments. We run New

York City taxi trip analysis workload [48] on top of this framework.

GPT-2 [18, 49] is a transformer-based [50] large language machine-learning model with

100M ∼ 1.5B parameters. We perform GPT-2 inference on ONNX [51], an open AI ecosystem

that is compatible with MLIR [52]. The MLIR representation of GPT-2 inference on ONNX has

more than 36K lines of code. We run this inference on sequences of 256-token length with a

batch size of 64 in a CPU-based far memory environment. Both industry and academia have

adopted the use of CPU to perform large machine learning model inference [53, 54, 55], as GPU
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is not always available (e.g., in serverless computing services). A common technique used by

these inference tasks is to use more memory (e.g., to cache certain computed values) for better

inference latency [56], making it a good fit for far memory.

MCF [16] is a benchmark from the SPEC 2006 benchmark suites [57]. It is derived

from a program used for single-depot vehicle scheduling in public transportation and performs

graph-based computation. It is written in C and contains 1.8K LOC. Even though MCF is a

smaller application than DataFrame and GPT-2 inference, it is representative of graph-processing

applications that are common in data centers and can benefit from far memory.

Baselines

We compare Mira to three systems: AIFM [7], Fastswap [3], and Leap [19]. AIFM is a

far-memory system that introduces a new programming model. We use AIFM’s DataFrame im-

plementation for DataFrame and its array library for MCF. Fastswap is a Linux-based optimized

swap system for far memory. Leap is a Linux-based swap system that performs majority-based

prefetching.

7.2 End-to-End Performance

DataFrame

Figure 7.1 provides an overview of the DataFrame performance of Mira, AIFM, Fastswap,

and Leap at different local memory sizes. Mira exhibits superior performance compared to

Fastswap and Leap due to its capacity to segregate and customize cache sections, such as

implementing precise prefetching for each section, adopting appropriate cache line sizes, and so

forth. Without cache segregation, Fastswap and Leap’s swap-based global optimizations do not

function effectively for each distinct program behavior. Although Leap performs majority-based

prefetching, its performance is inferior to that of Fastswap, mainly owing to Fastswap’s more

efficient data-path implementation in Linux. AIFM experiences a significant runtime overhead in

pointer dereferencing since it must resolve every access of a remoteable pointer. This overhead
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Figure 7.1. DataFrame Performance. In this comparison, we do not consider function offloading.

is why, even at 100% local memory, AIFM is significantly slower than other systems. On the

contrary, Mira converts remote accesses in the same cache line to native memory instructions,

thus amortizing the overhead of the first dereferences in each line.

GPT-2 Inference

Figure 7.2 depicts the overall GPT-2 inference performance of Mira, Fastswap, and

Leap. AIFM is not evaluated for this application since it presently does not support any matrix

structures or machine-learning operations. By leveraging domain knowledge and investing user

effort into crafting these interfaces, we anticipate that AIFM will demonstrate performance on

par with the native execution. Mira’s performance remains steady even when the local memory

size reduces to a mere 4.5% of the full memory. DNN model inference, such as GPT-2, has a

layer-by-layer computation pattern, where the data used in one layer (such as weight matrix or

input to the layer) is not required for the subsequent layers. Our program and profiling analyses

accurately capture this pattern by reusing section space for matrices in distinct layers, ending

their lifetime when their corresponding layers finish, performing batched access of data used in

each layer, and generating precise prefetching and eviction hints. Consequently, the majority

of remote access overhead can be concealed behind performance-critical paths, and even a

small quantity of local memory is adequate for saturating computation throughput. In contrast,
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Figure 7.2. GPT-2 Generation Performance.

Fastswap and Leap encounter a significant decrease in performance as the local memory size

decreases because, without knowledge of the program’s behavior, they are unable to retrieve the

specific data set required for computation. As a result, they end up utilizing considerable local

memory to cache data that is no longer needed or required in the distant future.

MCF

Figure 7.3 displays the overall MCF performance. Since MCF is a graph-like application,

its memory accesses rely heavily on pointer values as well as program control flows. Conse-

quently, it is the least accommodating application for program analysis tools among the three.

Nonetheless, Mira can make appropriate cache configuration and give software prefetching/evic-

tion hints through our co-design approach. Mira utilizes a generic swap section for the primary

object (whose access pattern is largely pointer indirection) when the local memory exceeds 70%

of the required size. When the local memory is limited, Mira identifies performance overheads

in the swap-based cache sections through profiling and optimizes them to use a set associative

cache. Mira prefetches data accurately by analyzing the address expression, similar to our graph

example.

In contrast, Fastswap and Leap are swap-based regardless of local memory size and

program behavior. As a result, Mira outperforms them when the local space is relatively

low. Since MCF adopts a space-efficient representation of the static graph, i.e., storing edges
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Figure 7.3. MCF Performance.

continuously in a single array, we employ AIFM’s array library to implement a similar layout.

However, we fail to execute the program even when the local memory is slightly lower than

what is required. When given sufficient memory, AIFM’s performance is significantly worse

than the other systems, and its performance only improves to 26% when the size exceeds the

full memory size by 80%. The reason for this is that AIFM requires a significant amount of

metadata for their remoteable pointers, which decreases the amount of local memory available

for actual data. Since the access pattern in this graph workload is largely random, the impact of

space overhead is most pronounced among the three applications. Mira, on the other hand, has

considerably smaller space overhead. Rather than storing various information such as lifetime

with each remote pointer, Mira employs such information during compilation. Moreover, we

attach the metadata to each cache line that can contain multiple objects. Besides space overhead,

AIFM incurs costly pointer dereferencing for every element in an array, while Mira avoids this

with the dereference optimization introduced in Section 4.2.

7.3 Runtime Overhead

To illustrate the efficiency of Mira, we assess the performance overhead and metadata

overhead at full local memory while running the following applications: MCF, DataFrame,

GPT-2, the graph-traversal example, and a trivial loop that sums over a big array. We also collect

the number for AIFM except for GPT-2 inference. Figure 7.4 shows the overhead compared to
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Figure 7.4. Runtime Overhead Comparison. The memory is set to the required size of native program.

executing the unchanged program as the baseline. For all workloads, Mira exhibits near-native

performance and minimum space overhead.

7.4 Compilation Time

Using the insights gained from profiling, we are able to narrow down the program analysis

required for MCF from 1.8K lines of code to just three functions with 300 lines of code in total.

Similarly, for ONNX GPT-2 inference, we have reduced the number of allocation sites from

1000+ to 122. This reduction in scope has enabled Mira program analysis and compilation to run

much faster even for large programs, such as GPT2 with 36K LOC, which can now be processed

in just 3.93 seconds.

7.5 Performance Deep Dive

In order to identify the factors contributing to Mira’s performance gains, we conducted

an evaluation in which we add techniques incrementally, as depicted in Figure 7.5. The benefits

of these techniques varied depending on the application and the amount of local memory

53



Ge
ne

ric
Sw

ap

Se
cS

ep
+L

in
eS

ize

Pr
ef

et
ch

Of
flo

ad

Ge
ne

ric
Sw

ap

Se
cS

ep
+L

in
eS

ize

Pr
ef

et
ch

Of
flo

ad

Dataframe [20% / 5% local]

0.00
0.25
0.50
0.75
1.00

Ge
ne

ric
Sw

ap

Se
cS

ep

Pr
ef

et
ch

+E
vi

ct

Ge
ne

ric
Sw

ap

Se
cS

ep

Pr
ef

et
ch

+E
vi

ct

GPT Inference [20% / 10% local]

0.00
0.25
0.50
0.75
1.00

Ge
ne

ric
Sw

ap

Se
cS

ep
+S

tru
ct

Se
le

ct
iv

e

Pr
ef

et
ch

+E
vi

ct

Ne
tw

or
k

Ge
ne

ric
Sw

ap

Se
cS

ep
+S

tru
ct

Pr
ef

et
ch

+E
vi

ct
MCF [20% / 10% local]

0.00
0.25
0.50
0.75
1.00

Ge
ne

ric
Sw

ap

Se
cS

ep

St
ru

ct
+L

in
eS

ize

Pr
ef

et
ch

+E
vi

ct

Se
cS

ep

St
ru

ct
+L

in
eS

ize

Graph Traverse [20% / 10% Local]

0.00
0.25
0.50
0.75
1.00

No
rm

al
ize

d 
Pe

rfo
rm

an
ce

Mira
Fastswap

AIFM w/ offload
AIFM w/o offload

Figure 7.5. Mira Performance gain breakdown for all applications. Listed techniques are applied
inclusively from left to right, with the generic swap-based section as the baseline.

available, and we have chosen several representative applications to illustrate the impact of these

techniques. We only include AIFM in the Dataframe workload comparison since the reference

implementation is provided in [7]. The same terminologies in Figure 3.2b are used in this plot.

Below, we will explain the effect of each technique and its impact on the three applications.

Cache Section Separation

Applying cache separation results in a significant performance boost for all applications,

except MCF, compared to using a generic swap-based section. This improvement is partly due to

the customized configurations for each cache, which better cater to different program behaviors.

Additionally, we leverage static lifetime analysis to optimize local memory utilization, instead

of relying solely on runtime heuristics like replacement policies. Mira’s ability to promptly

release matrices used by one layer after computation finishes is particularly advantageous for

machine-learning inference. This feature allows free spaces to be immediately reused by other

layers, increasing the likelihood of satisfying a layer’s working set. Previous DNN systems

propose a similar memory management policy, but it requires manual adoption [58], while Mira

can automatically generate the optimal scheme based on program analysis and profiling.
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However, cache separation brings limited benefits for MCF, as its memory accesses are

random and require a large space to accommodate the working set. Even a small reduction

in available memory significantly degrades performance. Allocating a separate section for

each behavior can prevent interference with others but also introduces more conflicts within

each section. Currently, our policy does not always achieve a perfect trade-off between these

two factors. For example, with a 20% local memory ratio, the performance of MCF slightly

deteriorates, while a 10% ratio yields noticeable improvement. A future direction would be to

employ performance counters, such as memory reuse distance and miss rate, to infer the effect

of this separation and optimize our decision-making

Prefetching and Eviction Hints

Mira employs program analysis to uncover memory access information, including precise

access sequences and the control flow graph. This information is then utilized to implement

techniques such as accurate prefetching and proactive data eviction, further optimizing the

memory usage of the system. As shown in Figure 7.5, while tuning cache parameters only

generates marginal improvement, our software prefetching and eviction hints still help to improve

MCF’s performance by 48.1% and 67.9% when the memory ratio is at 0.1 and 0.2 respectively.

The reason MCF benefits significantly from this optimization can be attributed to its fine-grained

and pointer-chasing memory accesses. These types of accesses are difficult to optimize for

history-based runtime systems, making software techniques more appealing. On the other hand,

prefetching and eviction have a smaller impact on cache sections with large line sizes (such as

those with multiple consecutive loads like GPT-2 inference), as the latency of blocking on a

cache miss can be amortized by considerable accesses to the fetched line.

Function OffLoading

We only apply this technique for the DataFrame application as a proof of concept. As

shown in Figure 7.5, the effect is more eminent when the local memory is low.
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Figure 7.6. Mira Iterative optimization of MCF and GPT2.

Optimizations Convergence

The iterative profile-and-optimize process employed by Mira, as demonstrated in Fig-

ure 7.6, is evaluated using MCF and GPT-2 inference. In the initial iteration, MCF uses the

generic swap cache globally. After the first execution, Mira identifies two large objects, one

of which causes significant performance overhead. Mira analyzes this object and selects a

set-associative section for the next iteration. After the next run, Mira detects read amplification

and accordingly reduces the cache line size. MCF performance converged after 4 iterations.

In the case of GPT-2 inference, we identifies 122 large objects that could be placed in

isolated sections right from the first iteration. The access patterns for these objects are highly

predictable, and their lifetime can be clearly separated and is oblivious to the input. As a result,

Mira achieves optimal performance within just two iterations.
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Chapter 8

Conclusion

In this thesis, we have delved into the utilization of program behavior to design and

optimize far-memory systems. As a result, we introduced Mira, a comprehensive framework

that integrates program analysis, compiler optimizations, profiling systems, and runtime support.

Through the combined power of static and dynamic program analysis techniques, we co-optimize

the far-memory runtime with the program itself, enabling user applications to seamlessly harness

the benefits of far-memory while minimizing the associated deployment burden and achieving

superior performance.
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This thesis, in full, is currently being prepared for submission for publication of the

material, coauthors include Zhiyuan Guo and Yiying Zhang. The thesis author was one of the

primary authors of this material.
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[27] A. Dragojević, D. Narayanan, O. Hodson, and M. Castro, “FaRM: Fast Remote Mem-
ory,” in Proceedings of the 11th USENIX Conference on Networked Systems Design and
Implementation (NSDI ’14), (Seattle, WA), April 2014.

[28] Z. Guo, Y. Shan, X. Luo, Y. Huang, and Y. Zhang, “Clio: A Hardware-Software Co-
Designed Disaggregated Memory System,” in Proceedings of the 27th ACM International
Conference on Architectural Support for Programming Languages and Operating Systems
(ASPLOS ’22), (Lausanne, Switzerland), Mar. 2022.

[29] Y. Shan, S.-Y. Tsai, and Y. Zhang, “Distributed shared persistent memory,” in Proceedings
of the 8th Annual Symposium on Cloud Computing (SOCC ’17), (Santa Clara, CA, USA),
September 2017.

[30] K. Wang, G. Xu, Z. Su, and Y. D. Liu, “GraphQ: Graph query processing with abstraction
refinement – programmable and budget-aware analytical queries over very large graphs on
a single PC,” in USENIX Annual Technical Conference (USENIX), pp. 387–401, 2015.

[31] G. Feng, H. Cao, X. Zhu, B. Yu, Y. Wang, Z. Ma, S. Chen, and W. Chen, “TriCache: A
User-Transparent Block Cache Enabling High-Performance Out-of-Core Processing with
In-Memory Programs,” in 16th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 22), (Carlsbad, CA), July 2022.

[32] X. Zhang, S. Dwarkadas, and K. Shen, “Towards practical page coloring-based multicore
cache management,” in Proceedings of the 4th ACM European Conference on Computer
Systems (EuroSys ’09), (Nuremberg, Germany), 2009.

61

https://www.computeexpresslink.org/


[33] C. Ding and K. Kennedy, “Improving effective bandwidth through compiler enhancement
of global cache reuse,” Journal of Parallel and Distributed Computing, vol. 64, no. 1,
pp. 108–134, 2004.

[34] X. Su, X. Liao, H. Jiang, C. Yang, and J. Xue, “Scp: Shared cache partitioning for high-
performance gemm,” ACM Trans. Archit. Code Optim., vol. 15, oct 2018.

[35] S. Jamilan, T. A. Khan, G. Ayers, B. Kasikci, and H. Litz, “Apt-get: Profile-guided
timely software prefetching,” in Proceedings of the Seventeenth European Conference on
Computer Systems, pp. 747–764, 2022.

[36] E. Witchel and K. Asanovic, “The span cache: Software controlled tag checks and cache
line size,” in Workshop on Complexity-Effective Design, 28th ISCA, 2001.

[37] P.-A. Tsai, N. Beckmann, and D. Sanchez, “Jenga: Software-defined cache hierarchies,”
in Proceedings of the 44th Annual International Symposium on Computer Architecture,
pp. 652–665, 2017.

[38] J. Lee, C. Park, and S. Ha, “Memory access pattern analysis and stream cache design
for multimedia applications,” in Proceedings of the 2003 Asia and South Pacific Design
Automation Conference, pp. 22–27, 2003.

[39] M. Kandemir, I. Kadayif, and U. Sezer, “Exploiting scratch-pad memory using presburger
formulas,” in Proceedings of the 14th international symposium on Systems synthesis,
pp. 7–12, 2001.

[40] S. Udayakumaran and R. Barua, “Compiler-decided dynamic memory allocation for scratch-
pad based embedded systems,” in Proceedings of the 2003 international conference on
Compilers, architecture and synthesis for embedded systems, pp. 276–286, 2003.
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