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Abstract: 
Ultrasensitive  multimodal  physicochemical  sensing  for  autonomous  robotic  decision-
making has numerous applications in agriculture, security, environmental protection, and
public health. Previously reported robotic sensing technologies have primarily focused on
monitoring physical parameters such as pressure and temperature.  Integrating chemical
sensors  for  autonomous  dry-phase  analyte  detection  on  a  robotic  platform  is  rather
extremely challenging and substantially underdeveloped. Here, we introduce an artificial
intelligence-powered  multimodal  robotic  sensing  system  (M-Bot)  with  an  all-printed
mass-producible  soft  electronic  skin-based human-machine  interface.  A scalable  inkjet
printing technology with custom-developed nanomaterial  inks was used to manufacture
flexible physicochemical sensor arrays for electrophysiology recording, tactile perception,
and  robotic  sensing  of  a  wide  range  of  hazardous  materials  including  nitroaromatic
explosives, pesticides, nerve agents, as well as infectious pathogens such as SARS-CoV-2.
The M-Bot decodes the surface electromyography signals collected from the human body
through machine learning algorithms for remote robotic control and can perform in-situ
threat compound detection in extreme or contaminated environments with user-interactive
tactile  and  threat  alarm  feedback.  The  printed  electronic-skin-based  robotic  sensing
technology can be further generalized and applied to other remote sensing platforms. Such
diversity  was  validated  on  an  intelligent  multimodal  robotic  boat  platform  that  can
efficiently track the source of trace amounts of hazardous compounds through autonomous
and intelligent decision-making algorithms. This fully-printed human-machine interactive
multimodal sensing technology could play a crucial role in designing future intelligent
robotic systems, and can be easily reconfigured toward numerous new practical wearable
and robotic applications.

One-Sentence Summary: 
Electronic skin printed with nanomaterial inks enables machine learning-driven 
autonomous robotic physicochemical sensing.

INTRODUCTION

Page 1 of 24



The development of advanced autonomous robotic systems that mimic and surpass human
sensing capabilities  is  critical  for  environmental  and agricultural  protection  as  well  as
public  health  and  security  surveillance  (1–4).  In  particular,  robotic  tactile  perception
allows for successful task implementation while avoiding harm to the device, user, and
environment (4–6). Additionally, autonomous trace-level threat detection prevents human
exposure from toxic chemicals when operating in extreme and hazardous environments (7,
8).  Such  field-deployable,  on-the-spot  detection  tools  can  be  applied  for  the  rapid
identification of minute concentrations of nitroaromatic explosives that pose a health and
security threat if they are unchecked (9–11). In fact, there are numerous toxic compounds
that  need  to  be  tightly  regulated  in  health  and  agriculture,  such  as  organophosphates
(OPs): pesticides or chemical warfare nerve agents that can cause neurological disorders,
infertility,  and  even  rapid  death  (12,  13).  Such  tools  can  be  extended  to  monitor
pathogenic biohazards such as the SARS-CoV-2 virus without direct  human exposure,
which could play a crucial role in combating infectious diseases, especially as the current
COVID-19  pandemic  remains  uncontrolled  around  the  world  (14–16).  These  strong
demands for autonomous sensitive hazard detection have motivated the development of a
controllable human-machine interactive robotic system with both physical and chemical
sensing capabilities for task performing and point-of-use analysis.

Due to its high flexibility and conformability, electronic skin (e-skin) presents itself as the
ideal interface between electronics and the human/robot bodies. In literature, e-skin has
demonstrated a wide range of physical and chemical sensing applications ranging from
consumer electronics, digital medicine, smart implants, to environmental surveillance (17–
31).  Despite  such  promise,  several  challenges  exist  for  e-skin-based  multifunctional
robotic systems. As most rapid detection approaches for hazardous compounds require
manual  solution-based  sample  preparation  steps,  integrating  chemical  sensors  for
autonomous  remote  dry-phase  analyte  detection  onto  an  e-skin-based  robotic  sensing
platform is  extremely challenging and substantially  underdeveloped,  hindering e-skin’s
capabilities for robotic interaction and cognition of the external world (7, 32). A robotic
manipulator would require tactile, chemical, and temperature feedback to handle arbitrary
objects,  collect  target  samples,  and  carry  out  accurate  chemical  analysis  in  extreme
environments  (33).  Another  problem  for  e-skin  interfaces  is  that  preparing  high-
performance  sensors  generally  requires  manual  drop-casting  modifications  of
nanomaterials, which can lead to large sensor variations (34). Currently, there is a lack of
scalable low-cost manufacturing approaches to prepare thin, ultra-flexible, multifunctional
robotic physicochemical sensor patches. Despite these concerns, there is a strong need for
an efficient human-machine interface that can reliably extract physiological features (35)
as well as accurately control and receive real-time user-interactive feedback. 

To address these challenges, we introduce here an artificial intelligence-powered human-
machine interactive multimodal sensing robotic system (M-Bot) (Fig. 1A). The M-Bot is
composed of two fully inkjet-printed stretchable e-skin patches, namely e-skin-R and e-
skin-H, that interface conformally with the robot and human skin respectively. The e-skins
with powerful physicochemical sensing capabilities are mass-producible, reconfigurable,
and  can  be  entirely  prepared  using  a  high-speed,  low-cost,  scalable  inkjet-printing
technology  with  a  series  of  custom-developed  nanomaterial  inks.  Upon  collecting
physiological data, the machine learning model can decode the surface electromyography
(sEMG)  signals  from  muscular  contractions  (recorded  by  e-skin-H)  for  robotic  hand
control. Simultaneously, e-skin-R can perform proximity sensing, tactile and temperature
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perceptual  mapping,  alongside  real-time  hydrogel-assisted  electrochemical  on-site
sampling and analysis of both solution-phase and dry-phase threat compounds including
explosives (such as 2,4,6-trinitrotoluene (TNT)), pesticides (such as OPs), and biohazards
(such as SARS-CoV-2 virus). Upon detection, real-time haptic and threat alarm feedback
communications were achieved via electrical stimulation of the human body with e-skin-
H.  The  threat  sensing  capabilities  of  the  M-Bot  could  pave  the  way  for  automated
chemical sensing, facilitating machine-mediated decisions for a wide range of practical
robotic assistance applications.

RESULTS 
Design of the human-machine interactive e-skins
E-skin-R  is  comprised  of  high-performance  printed  nanoengineered  multimodal
physicochemical sensor arrays that can be placed on the palm and fingers of the robotic
hand (Fig. 1B and C). The entire sensor patch can be rapidly manufactured in a large-scale
and low-cost method via a powerful drop-on-demand inkjet printing technology (Fig. 1D,
fig. S1, and movie S1). On top of e-skin-R are engraved kirigami structures that provide
high stretchability without conductivity changes under 100% strain, which is crucial for
any robotic hand with high degrees of freedom in movement. E-skin-H consists of four
sEMG electrode arrays (channels),  alongside a pair of electrical stimulation electrodes,
which can be fabricated similarly with inkjet printing followed by transfer printing onto a
stretchable  polydimethylsiloxane  (PDMS)  substrate  (Fig.  1E).  With  assistance  from
artificial  intelligence  (AI),  multimodal  physicochemical  sensing,  and  electrical
stimulation-based feedback control,  e-skin-R and e-skin-H form a closed-loop human-
machine interactive robotic sensing system (Fig. 1F).

Fabrication  and  characterization  of  the  fully  inkjet-printed  multimodal  sensor
arrays
The  multimodal  physicochemical  sensor  arrays  on  e-skin-R were  fabricated  via serial
printing of silver (interconnects and reference electrode), carbon (counter electrode and
temperature sensor), polyimide (PI) (encapsulation), and target-selective nanoengineered
sensing films (tactile sensor and biochemical sensing electrodes) (Fig. 2A). Customized
nanomaterial  inks  were  developed  to  meet  the  viscosity,  density,  and  surface  tension
requirement for inkjet printing, and to achieve the desired analytical performance (figs. 2,
3 and table S1). The chemical sensors were coated with a soft gelatin hydrogel that was
loaded with an electrolyte or redox probe to facilitate target analyte sampling and analysis
in  situ (Supplementary  Methods  and  fig.  S4).  The  inkjet-printed  carbon  electrodes
(IPCEs) showed reproducible electroanalytical performance and rapid response for on-site
detection of dry-phase analytes  (redox probe Fe3+/Fe2+ was used in the hydrogel as an
example) (fig. S5). The detection area or resolution can be enhanced by increasing either
hydrogel size (fig. S6) or electrode density (fig. S7). 

To enable effective object  manipulation,  and to avoid harming either the e-skin or the
object, real-time tactile feedback was enabled by incorporating a piezoresistive pressure
sensor  based  on  a  printed  Ag  nanowires  (AgNWs)/nanotextured-PDMS  (N-PDMS)
sensing film (Fig. 2B  and  C). Such tactile sensation provides the robot with the haptic
capability to grasp and handle samples. The geometry changes of the AgNWs/N-PDMS in
response to a pressure load change the sensor’s conductance (Fig. 2D and fig. S8). The
pressure sensor displayed stable performance under repetitive pressure loading (Fig. 2E
and fig. S8). 
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To demonstrate  the  feasibility  of  using  the  printed  biosensors  for  hazardous chemical
detection, a standard chemical explosive (TNT), an OP nerve agent simulant (paraoxon-
methyl), and a biohazard pathogenic protein from the SARS-CoV-2 virus were chosen.
The detection of TNT was achieved using a Pt-nanoparticle decorated graphene electrode,
which was prepared by droplet inkjet-printing of  aqueous graphene oxide (GO), Pt ions,
and propylene glycol,  which was subsequently subjected to thermal reduction. The Pt-
graphene showed superior electrocatalytic performance compared to classic carbon and
graphene electrodes (Fig. 2F–H and fig. S9). The reduction of p–NO2 to p–NH2 catalyzed
by the Pt-graphene can be detected via negative differential pulse voltammetry (nDPV) (9,
36). The reduction peak amplitude in the nDPV voltammograms obtained showed a linear
relationship with the target TNT concentrations with a sensitivity of 0.95 µA cm-2 ppm-1

and  a  detection  limit  of  10.0  ppm  (Fig.  2I).  It  should  be  noted  that  a  custom
voltammogram analysis with an automatic peak extraction strategy was used by the robot
to analyze the original nDPV curves as illustrated in  fig. S10. When integrated onto a
robotic hand, the hydrogel-coated Pt-graphene sensor could sample the dry-phase TNT
efficiently  and provide a stable  current  response within  3 minutes  (Fig.  2J);  the TNT
sensor can be regenerated  in situ through repetitive nDPV scans to deplete the sampled
analyte  molecules  toward  continuous  robotic  sensing  (fig.  S11).  For  OP analysis,  Pt-
graphene  and  carbon  have  low  electrochemical  activity  as  Zr-based  metal-organic
framework (MOF-808) was reported to have strong interaction with OPs  (37,  38). Thus
the printed MOF-808 modified gold nanoparticle electrode (MOF-808/Au) was selected to
achieve efficient non-enzymatic OP reduction at a relatively low voltage (Fig. 2K–M and
fig. S12). In this way, the catalyzed reduction of paraoxon-methyl can be monitored  via
nDPV using the  MOF-808/Au sensors  with  a  sensitivity  of  1.4  µA cm-2 ppm-1 and  a
detection limit of 4.9 ppm (Fig. 2N). In addition to high sensitivity, these printed sensors
could also perform high-concentration threat analysis (fig. S13). Similar to TNT detection,
a 3-to-4-minute sampling time was found to be sufficient for stable robotic dry-phase OP
analysis (Fig. 2O). The Pt-graphene TNT sensors and MOF-808/Au OP sensors showed
high selectivity over other nitro compounds (figs. S14 and  S15). Owing to the excellent
stability of the catalytic performance of Pt-graphene and MOF-808/Au, the printed sensors
can perform continuous TNT and OP analysis (fig. S16). 

Label-free  SARS-CoV-2 virus  detection  was demonstrated  from a printed  multiwalled
carbon  nanotube  (CNT)  electrode  that  was  functionalized  with  antibodies  specific  to
SARS-CoV-2  spike  1  protein  (S1)  (Fig.  2P,Q).  The  CNT  layer  possessed  a  high
electroactive  surface  area  for  sensitive  electrochemical  sensing  while  providing  rich
carboxylic acid functional groups for amine-containing affinity probe immobilization to
achieve versatile biohazard sensing (39–41). The successful surface modification of the S1
sensor  was  confirmed  after  each  surface  immobilization  step  (fig.  S17,  Fig.  2R,  fig.
S18). Parts-per-billion (ppb) level S1 sensing was performed based on the signal change
of the electroactive redox probe (Fe3+/Fe2+) caused by the blockage of the electrode surface
due to the S1 protein binding (Fig. 2S). The response variations of such S1 sensors can be
further reduced in the future with an automatic surface modification process. The SARS-
CoV-2 S1 sensor shows high selectivity over other viral proteins as illustrated in fig. S19.
On-the-spot robotic S1 protein detection was successfully demonstrated using a collection
and detection hydrogel containing the redox probe on the sensor that touched a surface
containing a dry blot of the S1 protein (Fig. 2T). Although the non-specific adsorption
could potentially reduce the selectivity of the hydrogel detection process (fig. S20), the
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semi-quantitative data conveniently and automatically obtained on-site by the sensor could
still provide the users rapid, real-time feedback and alert on the presence of biohazard. 

To  ensure  accurate  hazard  detection  in  extreme  operational  environments,  a  printed
carbon-based  temperature  sensor  was  designed  for  on-site  temperature  sensing  and
chemical  sensor calibration during operation (fig. S21).  All  printed sensors maintained
similar performance under and after repetitive mechanical bending tests, indicating their
high mechanical stability (fig. S22). The freshly prepared hydrogels can be stored at 4 ºC
in a moist  chamber for over one week and maintain similar sensing performance (fig.
S23).  To  minimize  the  influence  of  the  shearing  and  normal  forces  on  the  sensor
performance,  the AgNWs/N-PDMS pressure sensor was designed to form a protection
microwell  for  each  hydrogel-coated  biosensor  and  facilitate  reliable  chemical  analyte
sample collection (figs. S24 and S25); moreover, the tactile feedback from the AgNWs/N-
PDMS pressure sensor could ensure stable electrochemical sensing performance (contact
pressure was maintained between 0 and 500 Pa during operation). 

Evaluation of e-skin-H for AI-assisted human-machine interaction
E-skin-H acts as a human-machine interface for autonomous robotic control and object
manipulation  (Fig.  3A).  In  particular,  e-skin-H records  neuromuscular  activity,  which
provides  an intuitive  interface  to  perform hand gesture  recognition,  through its  inkjet-
printed PDMS-encapsulated four-channel three-electrode sEMG arrays (Fig. 3B,C and fig.
S26A–C).  Analyzing the  interfacial  contact  with  the skin,  e-skin-H demonstrates  high
stretchability  with  good  mechanical  compliance  during  physical  activities  through  its
serpentine structure to provide reliable sEMG recordings (fig. S26D–I).

Upon signal acquisition, various machine learning algorithms were evaluated for accurate
gesture recognition including linear regression, random forest, artificial neural networks
(ANN), support vector machines (SVM; kernels: radial, sigmoid, linear, and polynomial),
as  well  as  k-nearest  neighbors  (KNN).  Each  algorithm  was  shown  to  extract  motor
intention from sEMG signals, acting as a bridge between conscious thought and prosthetic
actuation.  Out  of  all  the  machine  learning  algorithms,  the  KNN  model  provided  the
highest prediction accuracy for all six hand gestures with an overall mean accuracy across
5000 randomly selected training data of 97.29±1.11% based on  real-time experimental
results collected from a human subject (Fig. 3D,E and fig. S27). The next best model was
the  random forest  classifier,  which was found to have a  similar  average classification
accuracy  except  with  a  higher  variance.  The  KNN model  was  able  to  provide  high-
accuracy recognition of gestures with different angles when applying the e-skin-H to other
body  parts  such  as  the  neck,  lower  limb,  and  upper  back  –  each  time  achieving  an
accuracy of greater than 90% (figs. S28 and S29).

For each gesture, five features were extracted from the associated peak in the root mean
squared (RMS) filtered sEMG data (fig. S30): peak height (PH), peak standard deviation
(STD), maximum slope (MS), peak average (PA), and peak energy (PE) (Supplementary
Methods). The relevance of each feature and channel in the prediction method was further
evaluated  using  Shapley additive explanation (SHAP) values (42).  Through the SHAP
values as well as the KNN accuracy, it was determined that PH was the most important
feature  for  accurate  gesture  classification  (Fig.  3F and  fig.  S31).  When  considered
alongside PH, STD and PA both increased the classification accuracy, with STD being the
most beneficial (figs. S31  and S32). In terms of channels, it was found that three EMG
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channels were sufficient to provide a high gesture accuracy of 96.31±1.25%. Adding a
fourth channel was beneficial but not statistically significant (tables S2 and S3).

With the KNN algorithm, the robot can imitate the user’s gesture in millisecond-level time
for automatic object manipulation. The data acquisition and signal processing time delay
to determine a gesture was around 200 milliseconds,  well  below the required time for
optimal real-time robotic control (43). This was achieved using a sampling rate of 534 Hz
and analyzing the data in batches of 100 points. The M-Bot’s time delay was substantially
reduced  by  training  the  KNN  model  on  only  half  of  any  sEMG  signal  for  gesture
recognition.  By reducing the required data needed to determine a gesture, the machine
learning model was able to predict the movement almost immediately after the gesture
was complete.

The AI-powered e-skin-H enabled gesture recognition provides a framework for online
multi-directional  robotic  control  with  high-accuracy  remote  object  manipulation  (as
illustrated in  Fig. 3G–I  and  movie S2).  After object contact,  recognition,  and positive
threat detection,  tactile and alarm feedback can be activated  to inform the user of any
potential danger using a pulsed current load between the two stimulation electrodes (Fig.
3J).  To  facilitate  safe  robotic  handling  and  to  protect  e-skin-R  from  uncontrolled
collisions,  a laser  proximity  sensor was integrated into the robotic  hand to reduce the
actuation speed as the hand approaches a barrier (<10 cm) (Fig. 3K and fig. S33). 

Evaluation of the M-Bot in human-interactive robotic physicochemical sensing
With delicate and precise control, the human-machine interactive M-Bot was successfully
evaluated for fingertip point-of-use robotic TNT detection (fig. S34 and movie S3). The
multimodal  sensor  data  could  be  captured  in  real-time  using  a  portable  multichannel
potentiostat, wirelessly transmitted to the mobile phone, and displayed on the cellphone
app (fig. S34  and movie S3). The M-Bot was also able to perform object grasping and
multi-spot  tactile  and  chemical  sensing  (Fig.  4A–D  and movie  S4).  Multiplexed
physicochemical data were simultaneously recorded and automatically processed without
signal  interferences  (fig.  S35).  In  an  example  demonstration,  7  AI-assisted  gesture-
controlled  steps  were  used  in  sequence  to  control  the  robotic  hand as  it  approached,
grasped, and released a spherical object (Fig. 4E, fig. S36, and movie S4); In parallel, 5
sensor  arrays  were activated,  displaying multiplexed tactile  readings  and surface  TNT
levels (Fig. 4F and G). 

The  use  of  the  M-Bot  for  multiplexed  physicochemical  robotic  sensing  was  further
evaluated on an OP-contaminated cylindrical surface (Fig. 4H). During the experiment, 14
sensor arrays on e-skin-R were activated. The tactile and OP sensor responses from each
sensor, along with the corresponding color mapping of their distributions across the three-
dimensional (3D) surface, are displayed in Fig. 4I and Fig. 4J, respectively (detailed data
demonstrated in  figs. S37 and S38). We anticipate that by further increasing the number
and density of the multimodal sensor arrays, more accurate and informative data can be
obtained from arbitrary objects and surfaces. 

Evaluation of  an  e-skin-R enabled multimodal  sensing robotic  boat  (M-Boat)  for
autonomous source tracking
The multimodal  robotic  sensing platform was further  generalized  onto an autonomous
robotic boat  capable of tracking pollutants, explosives, chemical threats, and biological
hazards for risk prevention and mitigation, which is an important topic in civil security (7,
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44). In this regard, our printed multimodal e-skin-R technology was adapted onto an M-
Boat for real-time hazard detection and to autonomously locate the source  of water-based
chemical leakages (Fig. 5A). 3D printed from simple computer-aided designs, the M-Boat
contains  an  inkjet-printed  multimodal  sensor  array  with  one  temperature  and  three
chemical sensors, two electrical motors (for boat propulsion and steering), and a printed
circuit board for data collection, signal processing, and motor control (Fig. 5B–D and fig.
S39). The propulsion of the M-Boat can be precisely controlled by adjusting the individual
duty cycle of pulsed voltages supplied to each motor (Fig. 5E,  fig. S40, and movie S5);
For  source-detection,  an  A* search  algorithm  (45) was  implemented  for  autonomous
decision-making while searching for the maximum concentration of the chemical leakage
(Fig. 5F,G,  fig. S41, and Supplementary Methods). At each decision point, the sensors
can detect small traces of the chemical leak in three equidistant locations around the boat.
With this input, the algorithm calculates the optimal direction to travel using the gradient
vector, indicating the direction of the highest concentration, and a heuristic estimate of the
diffusion based on an interpolated map from previous points. By utilizing the heuristic
map in parallel  with the gradient,  the algorithm takes  advantage  of  both the past  and
present results to precisely predict the spatial location of the source. The performance of
the M-Boat was evaluated through simulations as well as experimentally in water tanks
containing various chemical gradients induced by a low pH corrosive fluid (Fig. 5H,I, fig.
S42,  and  movie S6)  and OP leakage (Fig.  5J  and K).  In the water tank, the M-Boat
performed real-time  detection  of  the  surrounding analyte  concentrations,  automatically
adjusting its  trajectory based on the A* algorithm, to  successfully  identify the leakage
source. The M-Boat was also able to perform continuous hazard analysis and autonomous
leakage  tracking in  seawater  (fig.  S43 and  movie  S6).  The surrounding pH and ionic
strength  of  a  real-world  sample  matrix  (e.g.,  lake  water  or  seawater)  did  not  show
substantial influence on the sensor performance (fig. S44). When necessary, more real-
time  calibration  mechanisms  for  precise  hazard  analysis  can  be  introduced  by
incorporating more related biosensors (e.g., pH and conductivity sensors) into the e-skin-
R.  With more advanced robotic control and sensing designs, the M-Boat platform could
serve  as  an  important  basis  for  intelligent  path  planning  and  decision-making  of
autonomous vehicles.

DISCUSSION 
Here we have described a human-machine interactive e-skin-based robotic system (M-
Bot) with multimodal physicochemical sensing capabilities. The mass-producible flexible
sensor  arrays  allow  for  high-performance  on-site  monitoring  of  temperature,  tactile
pressure, and various hazardous chemicals (in both dry-phase and liquid-phase) such as
explosives, OPs, and pathogenic proteins. The integration of such multimodal sensors onto
a  robotic  e-skin  platform  provides  autonomous  systems  with  interactive  cognitive
capabilities  and substantially  broadens  the range of  tasks  robots  can perform,  such as
combating infectious diseases like COVID-19. 

Existing  robotic  sensing  technologies  are  largely  limited  to  monitoring  physical
parameters  such  as  temperature  and  pressure.  To  achieve  high-performance  chemical
sensing, nanomaterials are commonly used via manual drop-casting methods which could
lead to large sensor variations. Moreover, most electrochemical sensing strategies require
detection in aqueous solutions, making them impractical for dry-phase robotic analysis.
Currently, there are no scalable low-cost manufacturing approaches reported to prepare
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robotic physicochemical sensors. In this work, we proposed a scale solution to fabricate
flexible, multifunctional, multimodal sensor arrays prepared entirely by high-speed inkjet
printing. Custom-developed functional nanomaterial inks are designed and optimized to
achieve highly sensitive and selective sensors for the specific hazardous target analytes.
The  hydrogel-coated  printed  nanobiosensors  allow  for  efficient  dry-phase  chemical
sampling and rapid on-site hazard analysis on a robotic platform. 

Manufactured  using  the  same approach,  e-skin-H ensured  stable  contact  with  the  soft
human skin for reliable recording of  neuromuscular activity to facilitate remote robotic
sensing and control. To minimize the amount of data collected and analyzed for human-
robotic  interaction,  artificial  intelligence  and smart  algorithms were  applied  to  decode
incoming information and efficiently predict and control robotic movement. An in-depth
analysis into each sEMG channel’s individual contribution to the machine learning model
was presented, allowing future researchers to optimize the number of electrodes needed
for robotic control. Using the SHAP analysis, we further untangled the hidden overlapping
information between each channel’s features and categorize which features present the
most non-overlapping information for gesture prediction. For the M-Bot, machine learning
gesture prediction via e-skin-H was further coupled with user interactive tactile and threat
alarm feedback that allow seamless human-machine interaction for the remote deployment
of robotic technology in extreme or contaminated environments. To obtain such real-time
results, the robotic platform’s data acquisition, signal processing, feature extraction, and
gesture prediction of the sEMG signals were performed with millisecond-level time after
the  gesture  was  complete.  The M-Boat  similarly  employed  a  smart  A* algorithm for
autonomous  source  detection,  minimizing  the  boat’s  path,  and  subsequently  time  and
energy, in finding potentially hazardous chemical leaks. In these applications, the systems
demonstrated  real-time  autonomous  movement,  all  within  a  low-cost  mass-producible
system, lowering the barrier for real-time robotic perception. 

This  human-machine  interactive  robotic  sensing  technology  represents  an  attractive
approach to develop advanced flexible and soft e-skins that can reliably collect vital data
from  the  human  body  and  the  surrounding  environments.  Full  system  integration  to
achieve high-speed, wireless, and simultaneous multi-channel physicochemical sensing is
strongly desired for future field deployment and evaluation. Moreover, we envision that,
by integrating a high density and new types of multimodal sensors, this technology could
substantially enhance the perceptual capabilities of future intelligent robots and pave the
way to numerous new practical wearable and robotic applications.

MATERIALS AND METHODS
Materials
Graphite flake was purchased from Alfa Aesar. Sodium nitrate, potassium permanganate,
hydrogen  peroxide,  potassium  hexacyanoferrate(III),  citric  acid,  chloroplatinic  acid,
polydimethylsiloxane (PDMS), zirconium(IV) chloride, aniline, gelatin, paraoxon-methyl,
2,4,6-trinitrotoluene  solution  (TNT),  4-nitrophenol,  2-nitrophenyl  octyl  ether,  2-
nitroethanol,  2-nitropropane,  4-nitrotoluene,  2,4-dinitrotoluene,  poly(pyromellitic
dianhydride-co-4,4’-oxydianiline)  amic  acid  (PAA)  solution  (12.8  wt%),  1-methyl-2-
pyrrolidinone  (NMP),  N-Hydroxysulfosuccinimide  sodium  salt  (Sulfo-NHS),  N-(3-
dimethylaminopropyl)-N′-ethyl  carbodiimide  hydrochloride  (EDC),  2-(N-morpholino)
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ethanesulfonic acid hydrate (MES), potassium permanganate (KMnO4), and bovine serum
albumin (BSA), human immunoglobulin  G (IgG),  and lysozyme were purchased from
Sigma-Aldrich.  Sodium chloride,  sulfuric  acid,  hydrochloric  acid,  disodium phosphate,
1,3,5-benzenetricarboxylic acid (H3BTC), formic acid, N,N′-dimethylformamide (DMF),
potassium ferricyanide, propylene glycol, isopropyl alcohol (IPA), and phosphate-buffered
saline (PBS) were purchased from Fisher Scientific. His-tagged SARS-CoV-2 Spike S1
protein (PNA002), anti-Spike-RBD human mAb (IgG) (S1-IgG, AHA013), SARS-CoV
S1 (40150-V08B1),  SARS-CoV Nucleocapsid  Protein  (NP,  40143-V08B),  and SARS-
CoV-2 NP (40588-V08B) were purchased from Sanyou Bio. Silver nanowire (AgNWs)
suspension (20 mg ml-1 in IPA) was purchased from ACS material, LLC. Silver ink (25 wt
%) and carbon ink (5 wt%) were purchased from NovaCentrix. Gold ink (10 wt%) was
purchased from C-INK co.,  Ltd.  Carboxyl  functionalized multiwalled carbon nanotube
(CNT) ink (2 mg ml-1, Nink-1000) was purchased from NanoLab, Inc. PI film (12.5 µm)
was purchased from DuPont. 

Preparation and characterizations of print inks
To prepare  the  Pt-graphene  ink,  graphene  oxide  (GO)  was  first  prepared  following  a
modified Hummer’s method (46). 1 g of graphite flake was mixed with 23 ml of H2SO4 for
more than 24 hours, and then 100 mg of NaNO3 was added inside. Subsequently, 3 g of
KMnO4 was added below 5 °C in an ice bath.  After  stirring at 40 °C for another  30
minutes, 46 ml of H2O was added while the solution temperature was slowly increased to
80 °C. In the end, 140 ml of H2O and 10 ml of H2O2 were introduced into the mixture to
complete the reaction. The GO was washed with 1 M HCl and filtered. After dried under
vacuum at 60 °C, a GO (2 mg ml-1) suspension was prepared followed by the addition of 5
mM chloroplatinic acid under sonication. Last, the suspension was mixed with propylene
glycol (80:20, v:v) to form the Pt-graphene ink. 

The MOF-808 was synthesized solvothermally. Briefly, H3BTC (0.236 mM) and ZrCl4 (1
mM) were mixed with 15.6 ml of the DMF and formic acid (1:0.56, v:v) solvent and
sonicated  for  20  minutes.  Then,  the  mixture  was  transferred  to  a  25  ml  Teflon lined
autoclave and kept at 120 °C for 12 hours. After the reaction, the autoclave was naturally
cooled to room temperature. The product was washed with DMF and methanol, and then
dried under vacuum at 60 °C. Last, a MOF-808 suspension in DI water was prepared and
mixed with propylene glycol (80:20, v:v) to form the MOF-808 ink. 

The AgNWs ink was prepared by diluting the silver nanowire suspension with IPA to 2
mg ml-1 and  sonicating  it  for  10  minutes.  The CNT ink was prepared  by mixing the
commercial  CNT ink  (2  mg  ml-1)  with  propylene  glycol  (80:20,  v:v).  PAA  ink  was
prepared  by diluting  the commercial  PAA solution  with NMP to 3 wt%. Commercial
silver and carbon inks were used as received. 

The  dynamic  viscosity  (η),  density  (ρ)  and  surface  tension  (γ)  for  all  inks  were
characterized before printing. Dynamic viscosity was characterized with an Anton Paar
MCR302  rheometer.  Surface  tension  was  measured  with  a  Ramé-Hart  contact  angle
goniometer using the equation:

γ=∆ρgR0
2/β    (1)

Here, ∆ρ is the density difference between air and inks, g is the gravitational acceleration,
R0 is the radius of curvature at the drop apex, and β is the shape factor. 

Fabrication and assembly of the soft inkjet-printed e-skin-R
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The fabrication process of the inkjet-printed e-skin-R was illustrated in  fig. S1. The PI
substrate  was  cut  with  kirigami  structures  by  automatic  precision  cutting  (Silhouette
Cameo 3). 2 min O2 plasma surface treatment was performed with Plasma Etch PE-25 (10
– 20 cm3 min-1 O2, 100 W, 150 – 200 mTorr) to enhance the surface hydrophilicity of the
PI substrate. The multimodal sensor arrays on e-skin-R were fabricated via serial printing
of  silver  (interconnects  and  reference  electrode),  carbon  (counter  electrode  and
temperature  sensor),  PI  (encapsulation),  and  target-selective  nanoengineered  sensing
layers  (e.g.,  AgNWs, Pt-graphene,  Au, MOF-808)  using an inkjet  printer  (DMP-2850,
Fujifilm).  The ink composition,  characterizations,  and thermal annealing conditions are
shown in  table S1. 30 layers AgNWs were printed on a nanotextured PDMS substrate
(cured  on  a  1000-mesh  sandpaper)  to  form  the  piezoresistive  tactile  sensors.  While
printing, the plate temperature was set to 40 °C to ensure the rapid vaporization of the IPA
solvent. The AgNWs/N-PDMS were cut to semicircle shape and set on the e-skin. 

For preparing biohazard S1 protein sensor (fig. S17), a CNT film was printed on the IPCE
first.  The  carboxylic  groups  of  multiwall  CNTs  were  activated  to  NHS  esters,  by
dropcasting 10 μL of EDC (400 mM) and NHS (100 mM) in MES buffer (25 mM, pH 5)
for 35 minutes. Next step, a 5 μL of 250 μg ml-1 of anti-Spike-RBD antibody in PBS was
dropped on the modified electrode and incubated for 2 hours. Next, 10 μl of 1% BSA in
PBS  was  dropped  and  incubated  for  1 hour  to  deactivate  residual  NHS  esters.  The
modified sensors were stored in the refrigerator until use. 

To assemble the robotic e-skin, the pins of the finger printed e-skin were connected with
the bottom printed silver connections of palm part through a z-axis conductive tape (3M),
and then e-skin-R was set on a robotic hand printed with a 3D printer (Mars Pro, Elegoo
Inc.).

Characterizations of the multimodal robotic sensing performance of e-skin-R
The printed biosensors were characterized with cyclic voltammetry (scan rate, 50 mV s-1

unless  otherwise  noted),  DPV,  and  amperometric  i-t  through  an  electrochemical
workstation (CHI 660E). McIlvaine buffer solutions (pH 6.0) were used to prepare the
analyte  solutions.  A commercial  Ag/AgCl  reference  electrode  (CHI111)  was  used  for
characterizing the printed sensing electrodes in the solution while printed Ag solid-state
electrodes  were  used  for  hydrogel-based  sensor  characterization  (there  was  a  ~0.1  V
difference  between  these  two  types  of  reference  electrodes  in  McIlvaine  buffer).  To
quantify the electrochemical performance and the electrochemical surface areas, the print
electrodes were tested in 5 mM K3Fe(CN)6 and 1 M KCl with scan rates of 5 mV s−1

 from -
0.1 to 0.5 V. 

For TNT and OP sensors, the conditions of nDPV measurements include: a scan range of -
0.15 to -0.5 V, an incremental potential of 0.004V, a pulse amplitude of 0.05V, a pulse
width of 0.05 s and a pulse period of 0.5 s. The reduction peaks of nDPV curves were
extracted using a custom developed iterative baseline correction algorithm. To prepare the
electrolyte-loaded hydrogel  for  analyte sampling  and sensing,  0.250 g gelatin  powder,
0.075 g KCl, 0.071 g citric acid, and 0.179 g disodium phosphate were mixed in 10 ml DI
water and stirred at 80 °C for 15 min. The hydrogel was stored and aged overnight. The
gelatin  electrolyte-loaded  hydrogel  was  coated  on  the  printed  biosensors  for  dry  blot
detection. 

For S1 protein detection, the modified electrode was incubated with 10 μl of S1 protein in
PBS  for  10  minutes  and  the  DPV  measurements  ranged  from  -0.1  to  0.5  V.  The
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electrochemical signal of the sensor before and after antigen binding was measured in 5
mM K3Fe(CN)6. The difference between the peak current densities (Δj) was obtained as
sensor readout. A sampling hydrogel pad was prepared to demonstrate the feasibility for
SAR-CoV-2 virus  dry  blot  detection.  To perform one-step  detection,  10  μl  of  gelatin
hydrogel (7.5 wt% gelatin, 10 mM K3Fe(CN)6, 0.2 M phosphate buffer pH 7.0) was placed
onto a dry S1 protein blot (from 10 μl, 1 μg ml-1 SARS-CoV-2 S1 protein droplet). Such
amount of S1 protein could potentially be found in a COVID-19 patient’s saliva droplet
(47). For dry-phase sensing selectivity study, the dry protein blots were created with the
same amount of interference proteins (10 μl, 1 μg ml-1). The electrochemical signal of the
gel was recorded immediately and 10 minutes after joining the biosensor with the gel. 

The temperature sensor characterization was performed on a ceramic hot plate (Thermo
Fisher Scientific), an amperometric method (with an applied voltage of 2 V) was used to
detect the temperature response. The piezoresistive tactile sensor characterization was also
applied  with  a  constant  voltage  of  2  V  to  record  the  current  response  under  various
pressure loads. 

The scanning electron microscopy (SEM) images of the electrodes were obtained by a
field-emission SEM (FEI Nova 600 NanoLab). EDS mapping were obtained by an EDS
spectrometer (Bruker Quantax EDS).

Fabrication and assembly of e-skin-H
The fabrication process of e-skin-H was illustrated in  fig. S26. 2 min O2 plasma surface
treatment was performed with Plasma Etch PE-25 to enhance the surface hydrophilicity of
the  PI  substrate.  Silver  interconnects  were  printed  with  DMP-2850.  The  PI  substrate
without the printed patterns were removed with laser cut using a 50-W CO2 laser cutter
(Universal Laser System). The optimized laser cutter parameter was power 10%, speed
80%, PPI 1,000 in  vector  mode.  After  cleaned  with ethanol  and dried,  the  remaining
patterns were transferred onto a 70 µm-thick PDMS substrate and then encapsulated with
another  layer of PDMS film as well  (with sEMG and electrical  stimulation  electrodes
exposed).  Adhesive  electrode  gel  (Parker  laboratories,  INC.)  was  spread  onto  the
electrodes before placing on human subjects. 

Evaluation of the human-machine interactive multimodal sensing robot
To evaluate the performance of the M-Bot, the e-skin-R interfaced 3D print robotic hand
was assembled onto a 5-axis robotic arm (Innfos Ltd.). The e-skin-H was then set around a
human subject’s forearm after cleaning the skin with alcohol swabs. The sEMG data was
acquired with four-channel (three sEMG electrodes in each channel)  through an open-
source hardware shield (Olimex). The signals were sampled as integers between 0 and
1023 by a 10-bit analog-to-digital converter (ADC), and then processed through a serial
(cluster  communication,  COM) port.  Each channel  was then scaled back into voltages
between 0 and 5 V. While the robotic arm control was performed in real-time, the data
processing was performed asynchronously to signal acquisition.  During processing, the
data was first put through a high pass filter with a cutoff frequency of 100 Hz. The points
were subsequently downsized using a root mean squared (RMS) filter (batch size: 400
points; step size: 10 points). The peaks detected after processing were used as features for
the machine learning model. Overlapping peaks from each channel (peaks within a half
peak-width away) were categorized as a single group. If multiple peaks were detected in a
single channel’s set, then the first peak was used. The KNN training model was built using
60 samples per each of the 6 gestures. The training and testing datasets were divided 2:1
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respectively and were randomly selected using an equal representation of each gesture.
After the model was developed, it was further evaluated for accuracy using new data from
each gesture. The LPS (TOF10120) was operated through a customized interactive control
software in Python (Python 3.8). For dry blot threat detection, TNT and OP threat coatings
were  created  by  spraying  analyte  vapor  onto  the  selected  objects  in  a  fume  hood.
Multimodal  sensing  data  collected  during  robotic  sensing  operations  were  collected
through a portable electrochemical workstation (Palmsens4) with a multiplexer.

The validation and evaluation of the M-Bot were performed using human participants in
compliance  with  all  the  ethical  regulations  under  protocols  (ID  19-0895)  that  were
approved  by  the  Institutional  Review  Board  (IRB)  at  the  California  Institute  of
Technology.  Three  participates  were  recruited  from  the  California  Institute  of
Technology’s  campus  and  the  neighboring  communities  through  advertisement.  All
participants gave written informed consent before study participation.

Machine learning data analysis
For each gesture, all five features were extracted from the associated peak in the RMS
filtered EMG data: height, average area, standard deviation, average energy (intensity),
and maximum slope.  The features  extracted  were  calculated  in  reference  against  their
baselines,  which  were  determined  via  a  binary  search  of  the  previous  data  in  50  ms
intervals.

After  feature  extraction,  SHAP  values  were  used  to  evaluate  the  performance
enhancement of each feature extracted and EMG channel utilized. In addition to SHAP
values,  the average testing  accuracy  across  5000 training  sessions  was taken for  each
permutation  of  features  and EMG channels,  which  supplemented  the  SHAP values  in
providing  further  insight  into  which  channels  and  features  contained  non-overlapping
beneficial information for gesture determination. For each of the 5000 trials, the testing
points  represented  33%  of  the  dataset,  with  each  gesture  in  the  test  set  being
proportionally represented in the full dataset. For the arm EMG dataset, this amounted to
387 movements split across 6 gestures; of those points, the KNN model was fit using 257
training points and scored on the remaining 128 testing points (testing and training were
proportionally stratified across all 6 gestures).

Evaluation of the multimodal sensing robotic boat
To evaluate the performance of the M-Boat, the e-skin-R was assembled onto a 3D printed
boat with a four-layer printed circuit board (PCB), as shown in  Fig. 5B  and  C. On the
PCB,  a  Bluetooth  Low  Energy  (BLE)  module  (CYBLE-222014-01,  Cypress
Semiconductor)  was employed for controlling  the electrochemical  front  end through a
Serial Peripheral Interface (SPI). This module was also used to control the motor driver
through general purpose input/output (GPIO) pins and pulse width modulation (PWM),
and to transmit data over BLE. An electrochemical front end (AD5941, Analog Devices)
was set up via SPI to perform multiplexed electrochemical measurements with the sensor
arrays  and send the acquired  data to  the BLE module  for signal  processing and BLE
transmission. A BLE dongle (CY5677, Cypress Semiconductor) was used to establish a
BLE  connection  with  the  M-Boat  and  to  securely  receive  the  sensor  data  via  BLE
indications. An A* algorithm was utilized to analyze the sensor data and compute the next
M-Boat’s  movement  path  with  the  optimal  motor  speed.  The  calculated  motor  speed
information was sent back to the BLE module in real time for the pulse width modulated
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control of two motors (Q4SL2BQ280001) through a dual DC motor driver (TB6612FNG,
Toshiba). The entire system was powered by a 3.7 V Li-ion battery (40 mAh). 

For the OP chemical threat tracking experiment, a natural diffusion gradient was generated
by 10 droppings of 20 µl 0.1 M OP into a 0.1 M NaCl solution tank. The seawater studies
were performed in seawater samples collected from the Pacific Ocean in Los Angeles. The
M-Boat was set into the tank after 30 minutes. For the corrosive acidic threat tracking
experiment,  pH sensors were modified on e-skin-R instead.  Briefly,  a polyaniline  pH-
sensitive film was electropolymerized on the IPCE in a solution containing 0.1 M aniline
and 0.1 M HCl using a CV from −0.2 to 1 V for 25 cycles at a scan rate of 50 mV s −1.
Then 100 µl H2SO4 (2 M) as the leakage source was dropped into the middle of the water
tank.  Lastly  the  M-Boat  was  set  after  45/30  min  with/without  barriers  in  the  tank,
respectively.

Statistical analysis
All quantitative values were presented as means ± standard deviation of the mean. For all
sensor evaluation plots, the error bars were calculated based on standard deviation from 3
sensors. For the hydrogel stability study, the error bars were calculated based on standard
deviation from three hydrogels. For bending tests of the sEMG electrodes, the error bars
were calculated based on standard deviation from three independent measurements.  For
the machine learning analysis of the sEMG data, For the machine learning analysis of the
sEMG data,  the  model  was  trained  on the  same data  across  5000  trials  of  randomly
splitting the points between training and testing data. The accuracy profile of this training
was then fit to a skewed normal distribution, where the mean was extracted.
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interaction.
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Fig. S31. SHAP decision plots based on the arm sEMG dataset with respect to a KNN 
classification model.
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Fig. S39. Schematic illustration and component list of the electronic system.
Fig. S40. Characterization of the operation of the M-Boat.
Fig. S41. Simulation comparison of the searching algorithms for M-Boat autonomous 
source locating.
Fig. S42. Evaluation of the M-Boat for autonomous source tracking.
Fig. S43. Evaluation of the M-Boat in seawater.
Fig. S44. Influence of ionic strength and pH on sensor performance.
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Table S3. Accuracy breakdown based on five features with one and two channels.
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Figures legends:

Fig.  1. Artificial  intelligence (AI)-powered multimodal sensing robotic  system (M-
Bot) based on a fully-printed soft human-machine interface. (A) Schematic of the M-
Bot  that  contains  a  pair  of  fully-printed  soft  electronic  skins  (e-skins):  e-skin-H
(interfacing with the human skin) and e-skin-R (interfacing with the robotic skin) for AI-
powered robotic  control  and multimodal  physicochemical  sensing with user-interactive
feedback. LPS, laser proximity sensor; sEMG, surface electromyography; T, temperature;
KNN,  K-nearest  neighbors  algorithm.  (B  and  C)  Photographs  of  the  robotic  skin-
interfaced e-skin-R consisting of arrays of printed multimodal sensors. Scale bars, 3 cm.
(D) Schematic illustration of rapid, scalable, and cost-effective prototyping of the kirigami
soft e-skin-R using inkjet printing and automatic cutting. PI, polyimide. (E) Photograph of
the human skin-interfaced soft e-skin-H with arrays of sEMG and feedback stimulation
electrodes.  Scale bar, 1 cm. (F) Schematic signal-flow diagram of the M-Bot. In-Amp,
instrumentation  amplifier;  HPF,  high-pass  filter;  E,  applied  voltage;  ES,  electrical
stimulation; SPU, signal processing unit. WE, CE, and RE represent working, counter, and
reference electrodes of the printed chemical sensor, respectively.
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Fig. 2. Characterization of the fully inkjet-printed multimodal sensor arrays on the e-
skin-R. (A)  Photograph  of  a  multimodal  flexible  sensor  array  printed  with  custom
nanomaterial  inks  which  consists  of  a  temperature  sensor,  a  tactile  sensor,  and  an
electrochemical  sensor coated with a soft analyte-sampling hydrogel film. Scale bar, 5
mm. (B and C) Schematic (B) and scanning electron microscopy (SEM) image (C) of the
printed AgNWs/N-PDMS tactile sensor. Scale bar, 1 µm. (D and E) Response of a tactile
sensor under varied pressure loads (D)  and repetitive pressure loading (E).  (F  and G)
Schematic (F) and SEM (G) of the printed Pt-graphene electrode for TNT detection. Scale
bar,  4  µm.  (H)  Cyclic  voltammograms  (CVs)  of  an  IPCE and  a  printed  Pt-graphene
electrode in 0.5 M H2SO4 and in 5 mM K3Fe(CN)6 (inset). j, current density. (I) nDPV
voltammograms and the calibration plots (inset) of TNT detection using a Pt-graphene
electrode.  (J)  Dynamics  of  robotic  fingertip  detection  of  dry-phase  TNT using  a  Pt-
graphene  sensor.  (K  and L)  Schematic  (K)  and  SEM  image  (L)  of  the  printed
MOF-808/Au electrode for OP detection. Scale bar, 100 nm. (M) CVs of an IPCE, a Au
electrode,  and a MOF-808/Au electrode in  McIlvaine  buffer and in  5 mM K3Fe(CN)6

(inset). (N) nDPV voltammograms of the OP detection. Inset, the calibration plots. (O)
Robotic  fingertip  detection  of  dry-phase  OP using  a  MOF-808/Au sensor.  (P  and Q)
Schematic  (P)  and  SEM  image  (Q)  of  the  printed  CNT  electrode  for  SARS-CoV-2
detection. Scale bar, 250 nm. (R) DPV voltammograms of a printed CNT electrode in 5
mM  K3Fe(CN)6 after  each  surface  immobilization  step.  EDC,  1-ethyl-3-(3-
dimethylamonipropyl)carbodiimide; AbC, capture antibody; BSA, bovine serum albumin.
(S) Calibration plots of the CNT-based sensor for S1 detection. Δj, percentage DPV peak
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current changes after target incubation. (T) Response of a CNT sensor in the presence and
absence of dry-phase S1. All error bars represent the s.d. from 3 sensors. 

Fig. 3. Evaluation of the e-skin-H for AI-assisted human-machine interaction. (A)
Schematic of machine learning-enabled human gesture recognition and robotic control. (B
and C) Schematic (B) and photograph (C) of a PDMS encapsulated soft e-skin-H with
sEMG  and  electrical  stimulation  electrodes  for  closed-loop  human  interactive  robotic
control. Scale bar, 1 cm. (D)  sEMG data collected by the four-channel e-skin-H from 6
human gestures. (E) Classification confusion matrix using a KNN model based on real-
time experimental  data.  White  text  values,  percentages  of correct  predictions;  red text
values, percentages of incorrect predictions. (F) A SHAP decision plot explaining how a
KNN model arrives at each final classification for every datapoint using all 5 features.
Each decision line tracks the features contributions to every individual classification; each
final classification is represented as serialized integers (that map to a hand movement).
Dotted lines represent misclassified points. (G–I) Time-lapse images of the AI-assisted
human-interactive robotic control using the M-Bot. Scale bars, 5 cm. (J) Response of the
LPS when the robot approaches and leaves an object. (K)  Current applied on a subject’s
arm during the feedback stimulation. 
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Fig.  4.  Evaluation  of  the  M-Bot  in  human-interactive  robotic  physicochemical
sensing. (A–D)  Time-lapse images  of the human-interactive  robotic  control  for object
grasping and on-site TNT detection. Scale bars, 5 cm. (E–G) The sEMG data collected in
real-time which allow the robotic hand to approach and grasp a spherical object (E) and
the corresponding tactile (F) and TNT (G) sensor responses. Insets in  F and G, colored
mapping of pressure and TNT distributions on the object. (H–J) Photograph of the robotic
OP sensing on a cylindrical  object  (H)  and the corresponding responses of the tactile
sensors  (I)  and  OP sensors  (J)  on  an  e-skin-R.  Insets  in  I and  J represent  the  color
mappings of pressure and OP distributions on the object. Scale bar, 5 cm.
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Fig. 5. Evaluation of the-skin-R in an autonomous multimodal sensing robotic boat
(M-Boat). (A) Schematic of the intelligent M-Boat integrated with a printed multimodal
e-skin-R sensor array that can perform temperature and multiplexed chemical sensing for
autonomous source tracking. (B and C), Schematic (B) and photograph (C) illustrating the
assembly  of  the  M-Boat  components.  (D)  System  block  diagram  of  the  M-Boat  for
autonomous propulsion, sensing, and signal processing. ADC, analog-to-digital converter;
AFE, analog front-end; BLE, Bluetooth low energy; CPU, central processing unit; GPIO,
general-purpose input/output; H-SW, H-bridge software; MUA: multiplexer; PWM, pulse
width modulation; SPI, serial peripheral interface. (E) Wireless control of the M-Boat. (F)
Simulated distributions of a hazardous chemical (OP) leak and the algorithm used by the
M-Boat for autonomous source tracking. C, concentration. (G) Simulation comparison of
different  search  algorithms  used  by  the  M-Boat  for  intelligent  source  tracking.  GD,
gradient descent; IM, interpolated map; MD, max direction; RD, random direction. (H and
I)  Time  lapse  images  showing  example  demonstrations  of  the  M-Boat  enabled
autonomous  source  tracking.  Insets,  simulated  target  (proton  from  corrosive  acid)
distributions.  Scale  bars,  5  cm.  (J and  K)  Time  lapse  images  (J)  and  the  nDPV
voltammograms collected at location 1 (K) for autonomous decision-making and chemical
threat (OP) source tracking using an M-Boat. Insets, simulated OP distribution. Scale bar,
5 cm.
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