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Abstract

Mycoplasma pneumoniae is a significant cause of respiratory illness worldwide. Despite a

minimal and highly conserved genome, genetic diversity within the species may impact dis-

ease. We performed whole genome sequencing (WGS) analysis of 107 M. pneumoniae iso-

lates, including 67 newly sequenced using the Pacific BioSciences RS II and/or Illumina

MiSeq sequencing platforms. Comparative genomic analysis of 107 genomes revealed

>3,000 single nucleotide polymorphisms (SNPs) in total, including 520 type-specific SNPs.

Population structure analysis supported the existence of six distinct subgroups, three within

each type. We developed a predictive model to classify an isolate based on whole genome

SNPs called against the reference genome into the identified subtypes, obviating the need

for genome assembly. This study is the most comprehensive WGS analysis for M. pneumo-

niae to date, underscoring the power of combining complementary sequencing technologies

to overcome difficult-to-sequence regions and highlighting potential differential genomic sig-

natures in M. pneumoniae.

Introduction

The human pathogen Mycoplasma pneumoniae is a leading cause of respiratory illnesses world-

wide [1–3]. Infections can result in varied disease presentations in all age groups, ranging from

mild to life-threatening, and may lead to extra-pulmonary manifestations, auto-immune phe-

nomena, and exacerbations of asthma in children and adults [2–6].

At ~820 kb, M. pneumoniae has one of the smallest free-living bacterial genomes. While

inter-strain comparisons have revealed a high degree of similarity within this species, some

type-specific genomic variability has been described [7–11]. Traditionally, polymorphisms in
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genomic regions encoding the P1 adhesin molecule have been used to categorize M. pneumo-
niae into two distinct subgroups, type 1 and type 2 [12–14]; variants have also been described

[7, 15–17]. Over the past decade, limited and incomplete genomic sequence data have been

exploited to develop several strain typing systems, including various methods for P1 typing,

multi-locus variable number tandem repeat analysis (MLVA), multi-locus sequence typing

(MLST), and single nucleotide polymorphism (SNP) genotyping [17–24]. However, none of

these methods have led to a conclusive classification schema predicated on the comprehensive

analysis of a significant number of completed whole genome sequences.

More recently, comparative genomic studies of M. pneumoniae have provided a glimpse

into key features of this organism and rapidly expanded the collection of publicly-available

genomic, transcriptomic, and proteomic data [8, 11]. While these studies support a high

degree of similarity among M. pneumoniae isolates, close examination indicated that sufficient

genetic diversity exists to support further separation of strain types and suggested that this

diversity may directly impact pathogenesis.

In the current study, we examined 107 M. pneumoniae genomes, of which 67 were newly

sequenced using a combination of long and short read sequencing data. We identified type-

specific SNPs and genomic regions that contribute to an underlying population structure con-

sisting of six distinct subtypes and utilized a supervised machine-learning technique to rapidly

classify M. pneumoniae genomes into these types.

Materials and methods

M. pneumoniae isolates

Sixty-seven M. pneumoniae isolates were selected from the historical strain collection stored in

the Pneumonia Response and Surveillance Laboratory, Respiratory Diseases Branch, Centers for

Disease Control and Prevention (CDC), Atlanta, GA, USA (S1 Table). Isolates were selected to

represent various clinical manifestations, broad temporal and geographical distributions, and

diverse strain characteristics as determined using existing typing methods, including P1 typing by

PCR with HRM, MLVA, and macrolide susceptibility genotyping [20, 25–27]. Reference strains

M129 (type 1) and FH (type 2) obtained from American Tissue Culture Collection (ATCC) were

also resequenced in this study; two isolates of FH procured in different years were included.

M. pneumoniae isolates were grown in SP4 media (Thermo Fisher Scientific, USA) as previ-

ously described [28]. Two mL cultures were used to seed large volume (30 mL) cultures and

incubated for 10 days to obtain sufficient material for preparation of genomic gDNA libraries.

Genomic DNA was extracted from bacterial cultures using the MasterPure Complete DNA

and RNA Purification Kit (Epicentre, Madison, WI) according to manufacturer’s protocol.

Publicly-available M. pneumoniae genomes

Forty M. pneumoniae genomes were available from the National Center for Biotechnology and

Information (NCBI) data repository and downloaded on 09/06/2015 (S1 Table). The genomes

used as references in the bioinformatics analysis were: M. pneumoniae M129 (Accession:

NC_000912.1), M. pneumoniae M129-B7 (Accession: NC_020076.2), M. pneumoniae FH

(Accession: NZ_CP010546.1), and M. pneumoniae 309 (Accession: NC_016807.1) (S2 Table).

Illumina whole genome sequencing and assembly

The NEBNext Ultra DNA library prep kit for Illumina (New England Biolabs, Ipswich, MA)

was used to prepare gDNA libraries for each isolate according to the manufacturer’s protocol.

Mycoplasma pneumoniae comparative genomics and population structure analysis
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Whole genome sequencing was performed on the 67 M. pneumoniae isolates using the Illu-

mina MiSeq desktop sequencer (Illumina, San Diego, CA) with Illumina MiSeq version 2.0.

FastQC version 0.10.1 [29] was used to evaluate Illumina sequencing read quality. Sequence

read data cleansing was performed with Cutadapt v1.5 [30]. Sequencing reads were removed

from the data set if they met one of the following criteria: (i) had low quality (< 25) sequence

bases; (ii) trimmed adapter sequences; (iii) had an error rate above 0.03; or (iv) were< 75 base

pair in length. De novo assembly was performed with VelvetOptimiser v2.2.5 [31] and Velvet

v1.2.10 [32]. The iterative assembly process to identify the optimal kmer value is described in

detail in S1 Text.

Pacific Biosciences whole genome sequencing and assembly

A subset (n = 25) of the 67 isolates representing various outbreaks, macrolide resistance geno-

types, geographic origins, and patient outcomes/disease characteristics were selected for long-

read sequencing using the Pacific Biosciences (PacBio) RS II (Pacific Biosciences, Menlo Park,

CA) (S1 Table). One or two SMRT cells were used for each isolate with a movie time ranging

from 120–240 minutes. The sequences were assembled with SMRT Analysis v2.2 Hierarchical

Genome Assembly Process version 2 (HGAP 2) or 3 (HGAP 3) protocol [33]. The Illumina

sequencing data associated with each isolate was aligned for nucleotide accuracy comparison

(S1 Text). The final sequences were re-oriented to start with the DNA polymerase III subunit

beta gene (dnaN, locus tag–MPN001). The PacBio consensus sequences were used in place of

Illumina assemblies for those 25 isolates.

Data availability

All sequencing data and assembled genomic sequences generated in this study were deposited

in NCBI Genome and Short Read Archive (SRA) databases and are available under BioProject

ID PRJNA328832 (S2 Table).

Genomic structure variation

BLAST Ring Image Generator (BRIG) was used to visualize comparisons of reference genomes

and complete closed genomes [34]. Mauve v2.4.0 [35] was used to identify differences between

the genomic structures of type 1 and type 2 isolates. Seven permutations of alignments were per-

formed to observe structural arrangements to ensure that type-specific genome structures were

captured with draft genome content as described in S3 Table. Alignment using the first dataset

was performed to observe the genomic structure between closed genomes only, and alignments

using second and third datasets were used to confirm consistency of regions across isolates. The

remaining four datasets were constructed with draft genomes. Closed genomes from Xiao et.al
[11], assembled from PacBio in this study, and NCBI references M. pneumoniae M129-B7

(Accession: NC_020076.2) and M. pneumoniae FH (Accession: NZ_CP010546.1) were aligned

with Mauve v2.4.0 [36]. Backbone files derived from progressiveMauve [35] were analyzed to

identify regions that were present in all type 1 genomes and absent in all type 2 genomes and

the reciprocal. Each of these regions identified with backbone file were compared using BLAST

against a sequence database constructed with whole genome sequences in order to verify that

these sequences were type-specific. The criterion to identify these regions were as follows:

>75% identity and>75% query coverage in any inter-type genome (compared to the reference

type). We further used BLAST results to identify any hits that were identified to be only partial

query hit (less than 40% coverage) compared to the region of interest. Any genes present in

type-specific genomic regions that encoded hypothetical proteins were analyzed using Inter-

proscan for prediction of motifs and protein function [37].

Mycoplasma pneumoniae comparative genomics and population structure analysis
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Gene prediction and phylogenetic analysis

Prodigal v2.60 [38], an ab initio gene finder, was used to predict protein coding sequences. Since

M. pneumoniae has a non-traditional translation code [39], parameter “–g” was changed to 4 to

allow for translation suited for Mycoplasma species. Also, protein predictions were restricted to

closed ends by using parameter “-c”, which does not allow for partial gene predictions on the ends

of contig sequences. To identify recombinant sites in shared genome, an alignment (n = 107) was

used with Gubbins v.1.4.1 with default settings [40]. The whole genome alignment was not used

because the dataset included both broken contigs and closed genomes and could result in over-

representation of missing intergenic regions or create large misaligned regions.

PanOCT v3.23 [41], a sequence clustering tool designed for closely related species or strains,

was used to determine the orthologous relationships between the isolates. A distinctive feature

of PanOCT is the ability to differentiate paralog sequences with gene synteny [41]. Orthologous

clusters were stringently defined as all sequences in a cluster having shared sequence identity

and coverage� 75% (S1 Text). The core genome was extracted from the pan-genome dataset to

construct a phylogenetic tree. ClustalOmega v1.2 [42] was used to perform multiple sequence

alignments on each set of genes in a cluster defined by PanOCT in order to avoid potential gene

rearrangements in the sequence concatenation step. All individual aligned protein sequences

were concatenated together to construct the core sequences for phylogenetic analysis using the

method described by Hasan et al. [43]. A ML phylogenetic tree was constructed using RAxML

v7.3.0 [44] with the following parameters: JTT matrix-model with the model for rate heteroge-

neity, GAMMA model for four discrete rate categories, and 1000 bootstrapping replicates. Fig-

tree [45] and the MEGA6 application [46] were used to visualize the tree. The core genome

determination and subsequent phylogenetic analysis was performed on two datasets: (i) all

available genomes regardless of origin and method of sequencing (n = 107) and (ii) closed

genomes only (n = 34) (S1 Table).

single nucleotide polymorphism (SNP) analysis

SNPs were identified using Bowtie2 and Freebayes for the isolates that had Illumina data only.

First, Illumina sequence reads from each isolate were aligned to the appropriate P1 type refer-

ence sequence using Bowtie2 with default parameters [47]. Secondly, Freebayes was used to

identify SNPs based on allele coverage (> 95%) and nucleotide quality on the Phred score

(>25%). Positive variant calls with likelihood score of zero were classified as false positive vari-

ants and were removed from the remainder of the analysis. Finally, all corresponding SNPs

were merged based on the type reference genome position. For the 25 isolates sequenced using

PacBio RSII and the isolates included in Xiao et al. [11], NUCmer and the show-snps utility

from the MUMmer version 3.0 application were used to identify SNPs. For show-snps a–C

parameter was chosen to remove the variants with ambiguous mapping as well as–I to exclude

indel calls.

Synonymous and non-synonymous mutation rate analysis

Gene clusters were codon aligned using Multiple Alignment of Coding SEquences (MACSE)

version 1.01b [48]. After alignment, a custom Perl script was used to strip in-frame stop

codons and the alignments were analyzed with Phylogenetic Analysis by Maximum Likelihood

package version 4.5 [49]. The codeml program was run on each single gene cluster as well as

the concatenated 464 gene core genome set using the tree topology generated above and a free

ratio model (settings model = 1, NSsites = 0, icode = 3, fix_omega = 0, omega = 0.4, fix_al-

pha = 1, alpha = 0, ncatG = 3, cleandata = 1, fix_blength = 1, method = 1). The result files were

Mycoplasma pneumoniae comparative genomics and population structure analysis
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analyzed with a custom Perl script to locate branches with sufficient information to generate a

meaningful estimate of ω (defined here as S � dS� 2).

Population structure analysis

The hierarchical Bayesian Analysis of Population Structure (hierBAPS) utility [50] was used to

analyze the population structure of all genomes (n = 107), closed genomes (n = 34), type 1

genomes (n = 56), and type 2 closed genomes (n = 20). Independent core nucleotide genome

alignments were generated for type 1 and type 2 isolates based on type determined by estab-

lished laboratory methods as previously described for the core genome. The maximum cluster

number was set to 15, and maximum hierarchical runs were set to 10–20.

Genome classification with Random Forest

The whole genome SNP matrix and the classifications identified in the population structure

analysis were used as input for the Random Forest (RF) analysis to construct a composite

matrix (S4 and S5 Tables) in which population subgroups identified in the hierBAPS analysis

were in columns and allele variants for each site were in rows. The input matrix was reduced

to 659 lists each containing 1–520 variant positions within the genome that shared the same

SNP profile across 106 genomes (S5 Table). Variant calls were converted to a binary represen-

tation for presence (1)–absence (0) for each location (S4 Table).

Four-fold cross-validation method was used to build a classification model; the input

matrix was randomly divided into three-fourths for training and one-fourth for testing the

resulting model. The dataset included >3000 variant features and approximately 70 genomes

depending on randomly divided three fourths dataset in each fold. The RF training model con-

sisted of randomized feature selection with 1000 trees using RandomForest v4.6–12 [51] with

R version 3.2 [52]. Ten iterations of four-fold cross validation were performed with randomly

assigned testing and training datasets at each fold. At each iteration, decrease in Gini index

was used to identify features of highest importance.

Results

Genome assembly and characteristics

Assembly characteristics and genome characterization features for each genome included in

this study are summarized in S1 Table. As expected, Pacific Biosciences (PacBio) Single-Mole-

cule Real-Time (SMRT) sequencing resulted in longer read lengths and fewer contigs but

lower average genome depth coverage compared to Illumina sequence data. Complete closed

genomic sequences were generated for 17 of 25 (68%) isolates sequenced with the PacBio plat-

form; the remaining eight consisted of� 6 contigs. Nucleotide accuracy of PacBio sequences

was> 99.85% as determined by alignment with Illumina reads. On average, 759 genes were

predicted in the resulting genome sequences, which was comparable to the results of available

M. pneumoniae reference genomes [11, 53]. Using Gubbins, 19 regions were identified as

potential recombination sites (all<300 bp), yet the phylogenetic tree remained unchanged

after masking these regions (data not shown) and thus was not considered supportive evidence

of recombination driving the evolution of M. pneumoniae.

We initially compared available genome sequences of the prototypical reference strains of M.

pneumoniae, M129 (type 1) and FH (type 2), to those re-sequenced in the current study in terms

of both genomic content and SNPs (S1 Fig). The original FH reference genome (NC_017504.1)

lacked a 6 kb region shown to be present among newer constructs of the FH genome and all type

2 isolates [11], including those in the current study (n = 51). Thus, we used the sequence reported

Mycoplasma pneumoniae comparative genomics and population structure analysis
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by Xiao et al. [11] (NZ_CP010546.1) as the reference genome for type 2 isolates for the remaining

analysis. The type 1 strain M129 was>99.99% identical in nucleotide sequence to recent refer-

ence sequence (NC_020076.2) that was used as type 1 reference genome in the current study (S6

Table).

Type-specific genomic content

Initial genome-wide alignments of type 1 and 2 reference genomes revealed six segments ranging

in size from 13 bp to over 5400 bp in length that were unique to one type. The largest segment

was previously identified by Xiao et al. [11] as a type 1-specific insertion sequence consisting of

genes encoding hypothetical proteins and a single tRNA gene. Three small indels (13–15 bp) pre-

viously identified as unique to either type 1 or type 2 isolates [54] were confirmed in all newly

sequenced genomes (n = 67). To confirm the apparent absence of these segments was not due to

lack of Illumina sequencing reads, we performed multiple sequence alignments of only closed

genomes (n = 34) (Table 1). We identified three larger regions present in all type 1 and absent in

all type 2 genomes and one region present in all type 2 and absent from all type 1 genomes. How-

ever, BLAST analysis showed that these regions contained partial repetitive genomic content

that were not unique to that type; hence, we examined these regions more closely to identify the

sections of unique genomic content of at least 100 bp (Table 1). Portions of the single large type

2-specific region were also present in type 1 genomes, thus this segment was divided into three

smaller regions that were truly unique to type 2 isolates. These regions were examined further to

identify gene content and putative or known function of affected genes, which included lipopro-

teins, hypothetical proteins, and pseudogenes (Table 1).

Phylogenetic analysis of core genomic content

The M. pneumoniae core genome dropped from 595 proteins to 464 upon inclusion of assem-

bled contigs from Lluch-Senar et. al [8] (S2 Fig). The core used for the primary analysis of all

107 isolates included 464 proteins compared to 642 proteins for analysis of closed genomes only

(S2 Fig). The lower number for the non-closed genomes was most likely due to mis-assembly,

particularly at repetitive regions. The 464 core protein sequences were used to construct a maxi-

mum likelihood (ML) phylogenetic tree to represent the genomic relatedness of isolates

included in this study (Fig 1). The phylogenetic analysis revealed a strong separation of isolates

into clades corresponding to the known P1 type classifications based on previous laboratory

testing methods. Two branches were evident within the type 1 clade; one included the majority

of type 1 isolates (n = 49, 87.5%), which we designated as type 1U (Ubiquitous), and the other

consisted of three genome representations of type 1 reference strain M129, along with four iso-

lates, 303 (AL, USA), 549 (WA, USA), 4802 and 4807 (Tunisia), which we designated type 1Ref

(Fig 1). The two isolates from Tunisia were previously reported as a distinct subtype designated

1d [8]. Within the larger type 1 branch, four isolates from the current study (EPC83, EPC104,

EPC122, and NM1) formed a distinct subgroup designated 1N (New) (Fig 1). These four iso-

lates originated from clinical cases occurring in the United States between 2010 and 2012.

Although initially identified as MLVA type 4570 or 5570, WGS analysis revealed the presence of

three tandem repeats at mpn16, the final VNTR included in the MLVA scheme, instead of zero

(S3 Fig). Review of the original MLVA electropherograms for these isolates revealed the appro-

priate size peak corresponding to three repeats at this position, which was masked in the initial

analysis by a peak of nearly identical size corresponding to repeats at a separate locus. The three

repeats at this locus are a distinguishing feature from all other isolates in this study.

Further phylogenetic separation of type 2 genomes within the large clade was also observed.

Two main clusters were identified with one branch including all versions of the type 2 reference

Mycoplasma pneumoniae comparative genomics and population structure analysis
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strain FH along with 27 isolates, all previously identified as type 2 through laboratory testing

methods (designated here as type 2Ref), and the other containing the type 2 reference strain

309, which previously has been proposed as a new variant type, 2a [7] and 13 other isolates (Fig

1). Three isolates (3896, 5393, and 6009) from Germany and France previously designated as

type 2 variants designated 2d by Lluch-Senar et al. [8] were also present in the clade with 309

and were identified as type 2a for the purpose of this study. A number of isolates reported as a

variant of type 2 by high-resolution melt analysis of a 1900 bp amplicon within P1 were also

included in this analysis [17]. Interestingly, these did not form a distinct separate cluster in the

tree based on 464 core proteins; however, clear separation of these isolates was observed when

the phylogenetic tree was generated using a kmer based SNP method (S4 Fig). This group con-

sisted of isolates from the United States (n = 5), South Africa (n = 1), and France (n = 2), all col-

lected since 2000. The two isolates from France (4911 and 6282) were previously reported as a

separate subgroup designated 2c as determined by SNP/indel analysis [8]. Consistent with pre-

vious nomenclature used in our laboratory, this branch was designated as type 2 variant (2v).

The tree based on 464 core proteins (using closed and non-closed genomes) was found not

to separate one of the subgroups (2v) from other type 2 genomes. Hence, phylogenetic analysis

was performed using only the 34 closed genomes (S1 Table) based on the core proteins deter-

mined from this subset of genomes (n = 642, 80% of the total genes). This analysis also revealed

the two expected clades consisting of P1 types 1 and 2 (Fig 2). The clade consisting of type 2v

isolates from our laboratory was evident in the tree generated from closed genomes, similar to

the kmer based SNP analysis (S4 Fig). The distinction of this type may be attributed to the

approximately 178 additional core proteins included in the closed genome analysis (S7 Table),

which represents approximately 30% more sequence data compared to the core protein set

used for the primary phylogenetic analysis.

Further distinction of epidemiologically-related isolates was also observed. For example,

the dominant type 1 subgroup (1U) contained the vast majority of isolates obtained from sur-

veillance and outbreak investigations between 2010 and 2013, a period during which increased

M. pneumoniae activity was observed worldwide [55–57]. The four isolates noted as type 1N

(Fig 1) were an exception to this finding, having all been collected during this same period.

Notably, isolates related by close association of patients, such as household contacts with M.

Table 1. Type-specific genomic regions and gene content.

Query reference block Start

position1
End

position1
Size

(bp)

Genes in region Known or predicted function

Type 1-specific

NC_020076.2_177739–178611 177937 178611 674 1. C985_01382

2. C985_RS008302
1. DUF16 Superfamily Protein

2. DUF16 Superfamily Protein

NC_020076.2_558159–561575 559124 559535 411 C985_RS026152 pseudogene

NC_020076.2_558159–561575 561433 561575 142 C985_RS026152 pseudogene

Type 2-specific

CP010546.1_703624–709505 704334 705013 679 F539_033152 Putative Peptidase- DUF31 Superfamily

CP010546.1_703624–709505 705827 706542 715 F539_033202 Lipoprotein–DUF31 Superfamily

CP010546.1_703624–709505 707053 709505 2452 1. F539_03325

2. F539_033302
1. Hypothetical Protein (Putative Peptidase DUF31;

Peptidase S1, PA Clan–Trypsin-like Serine Proteases)

2. Putative Lipoprotein-DUF31 Superfamily

1 Refers to start and end of unique region within query reference block
2 Partial gene

https://doi.org/10.1371/journal.pone.0174701.t001
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pneumoniae infection (CO36/37 with CO58 and CO59; CO3 with CO13) [58] or cases from an

outbreak in a long-term care facility (NE4 and NE26) [59] were found to be closely related.

Inherent limitations of short-read sequencing may impact resolution of repetitive sequences,

several of which are known to exist in M. pneumoniae, including repetitive elements within P1.

Fig 1. Phylogenetic tree of all M. pneumoniae isolates in the current study (n = 107). Maximum

likelihood phylogenetic tree of 107 M. pneumoniae isolates based on core protein sequences (n = 464)

identified through orthologous clustering. Bootstrapping values over 50 are represented on the tree.

https://doi.org/10.1371/journal.pone.0174701.g001
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To explore the added value of whole genome sequencing data, we performed a phylogenetic

analysis on a portion of the P1-encoding sequence extracted from closed genomes (S5 Fig). We

observed a clear separation of the same three variant subgroups within the type 2 clade identi-

fied in the primary phylogenetic analysis using WGS data; however, no clear separation of sub-

groups was observed for type 1 isolates (S5 Fig).

Fig 2. Phylogenetic tree of closed M. pneumoniae genomes in the current study (n = 34). Maximum likelihood phylogenetic tree

of 34 M. pneumoniae isolates based on core protein sequences (n = 642) identified through orthologous clustering. Bootstrapping

values over 50 are represented on the tree.

https://doi.org/10.1371/journal.pone.0174701.g002

Fig 3. Clusters of M. pneumoniae isolates sharing unique SNPs. (A) Number of shared unique SNPs in isolate clusters ranging from 1–106 isolates

relative to reference genome FH. Only the group of isolates sharing the largest number of SNPs is shown. (B) Number of shared SNPs in each subtype

relative to type 2 reference FH identified among all genomes (black bars) or closed genomes only (grey bars). *No closed genomes were available for

Type 1N.

https://doi.org/10.1371/journal.pone.0174701.g003
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SNP variant analysis

We identified a total of 3,206 SNPs present in at least one isolate. Intra-type examination of

SNPs revealed 889 SNPs present in at least one type 1 isolate relative to the type 1 reference

and 942 SNPs in one or more type 2 isolates relative to the type 2 reference genome. However

these SNPs were not consistent amongst all isolates within the type designations. Comparing

all 107 isolates, 520 SNPs were identified as consensus alleles in all isolates within one type

group as compared to all isolates of the other type (Fig 3, S8 Table). Of these, 470 (90.4%) were

located in coding regions. These 520 SNPs led to clear separation of isolates corresponding to

known P1 type based on laboratory methods. Interestingly, the primary gene encoding P1

(mpn141) was not included in the core genome identified using all 107 isolates, although it

was present in the core based on closed genomes only. Thus, the separation observed in our

analysis must result from genomic variation outside of this gene. Other subgroups identified

in the phylogenetic analysis varied from the FH reference genome by 70 (type 2a), 59 (type

1Ref), 56 (type 1N), or 7 (type 2v) SNPs that are unique to that subtype (Fig 3B). When com-

paring closed genomes only, the number of SNPs between the large type 1 and 2 groups was

744, presumably due to the inclusion of a larger number of core proteins; subtype-specific

SNPs were similar using either core dataset (Fig 3B).

SNPs associated with macrolide resistance were identified only in strains previously

reported to harbor these mutations or have a laboratory-determined resistant phenotype. Veri-

fication of these known SNPs, including A2063G, A2064G, and C2611G mutations in the 23S

rRNA gene, increased our overall confidence in variant calls.

We confirmed the presence of a type-specific non-synonymous SNP in the CARDS toxin

gene (T1112G) resulting in the I371S substitution that was previously reported [8, 11] (S6 Fig);

this SNP was consistently found in all 67 newly sequenced isolates. In addition, one other non-

synonymous SNP (C217T) was identified in the CARDS toxin gene of four isolates from the cur-

rent study (CO36, 37, 58, and 59) (S6 Fig). This SNP results in a P73S substitution that is located

at the beginning of the S4 beta-sheet region in the D1 mART domain. These four isolates include

two recovered from upper respiratory tract specimens collected sequentially from a patient with

M. pneumoniae infection during an epidemic in Colorado in 2013 [60] (CO36 and 37) as well as

two isolates recovered from household contacts of this patient (CO58 and 59) [58]. Interestingly,

several other isolates obtained from patients during the same outbreak period did not harbor

this same mutation. In addition, ten other SNPs outside of the CARDS toxin gene were shared

by these four isolates relative to all other isolates in the study (data not shown).

Synonymous and non-synonymous mutation rate analysis

Our preliminary analysis of 1408 SNPs located in the 464 gene core genome showed a bias

towards non-synonymous substitutions (61.93%), but this was expected based on the high

degree of relatedness of M. pneumoniae genomes [61]. To identify whether these non-synony-

mous substitutions were accumulating in a manner suggestive of adaptive evolution on some

branches, we analyzed gene clusters for evidence of selection (S1 Text). We identified two

genes, DNA Ligase (ALA35866.1) and DNA Polymerase III subunit alpha (ALA35550.1), with

a higher number of non-synonymous substitutions, potentially suggesting that purifying selec-

tion may be relaxed on these genes or that positive selection may be acting upon a subset of

residues in these genes.

Population structure analysis and predictive model

Based on the high-degree of shared genomic content between the various types of M. pneumo-
niae genomes, we evaluated the genetic structure to elucidate novel features that could be used
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to refine the M. pneumoniae classification schema. Consistent with divergent lineages of type 1

and 2 isolates documented previously [8, 11], the phylogenetic analysis revealed two popula-

tion substructures that followed the primary P1 type classifications (Fig 1, Fig 2, S4 Fig). Initial

hierarchical Bayesian Analysis of Population Structure (hierBAPS) using core sequences from

all 107 isolates revealed 3 subgroups corresponding to type 1, type 2, and type 2a (S7 Fig). Con-

sidering the larger core consisting of 642 genes, two subtypes corresponding to the larger type

1 and type 2 groups were identified (S7 Fig).

In order to reveal hidden substructures masked by the dominant population structure, we

performed hierBAPS on type 1 and 2 datasets separately (Fig 4). For type 2, core nucleotide

sequences (n = 642) obtained from closed genomes (n = 34) were used whereas, for type 1, the

core genes (n = 464) identified in all isolates (n = 107) were used as none of the type 1N sub-

group genomes were completely closed by WGS and thus would not have been represented in

the dataset. Using hierBAPS we identified a total of six subpopulation structures, including

three groups within type 1 (Fig 4A) and three within type 2 (Fig 4B) corresponding to the

groups identified in the phylogenetic analysis. The groups within type 1 each contained the

same isolates as the subtypes described in the phylogenetic analysis: type 1U (containing the

majority of type 1 isolates), type 1Ref (containing genome representations of M129), and type

1N (containing newly emerging isolates with 3 repeats in the MLVA locus mpn16) (Fig 4A).

Similarly, the three groups within type 2 corresponded to the previously identified subtypes,

and thus were designated as type 2Ref (containing genome representations of FH), type 2a

(containing isolate 309 originally designated as variant type 2a), and type 2v (containing iso-

lates designated by our laboratory as variants of type 2) (Fig 4B).

In order to identify the SNPs that were used to classify isolates in the hierBAPS utility, we con-

structed a predictive classification model for whole genome SNP output using the Random Forest

supervised machine learning algorithm with the subtypes as an isolate classifier and lists contain-

ing at�1 SNP as features (S4 and S5 Tables). We performed ten iterations of four-fold cross vali-

dation to train and test the model using a different seed for each iteration. The accuracy of the

models ranged from 92.5% to 100%. In the represented model, only three misclassifications were

Fig 4. Hierarchical Bayesian Analysis of Population Structure (hierBAPS) of type 1 and type 2 groups separately. Three subpopulations were

identified in (A) Type 1 and (B) Type 2 genome groups. Green, T; blue, A; red, G; yellow, C.

https://doi.org/10.1371/journal.pone.0174701.g004
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observed (training, n = 2; testing, n = 1); each involved the subgroups containing the smallest

number of representative isolates, including type 1N and type 2v. Of the 659 lists that contributed

to the model (S5 Table), the relative importance of each feature list for classifying the data was

determined as indicated by the mean decrease in Gini index value (Fig 5A, S9 Table). The pres-

ence/absence of features with the greatest contribution to differentiating the subtype classifica-

tions in all iterations of the model were identified (Fig 5B).

Discussion

Recent WGS analyses have supported the long-standing concept of a highly conserved M.

pneumoniae genome signified by its minimal size and based on previous evaluations using lim-

ited sequence data [8, 11, 62–64]. Xiao et al. reported >99% similarity among M. pneumoniae
strains and noted the lack of evidence for horizontal gene transfer (HGT) with other species

[11]. We also observed an overall high degree of similarity among our 107 strain collection,

lack of HGT, and a clear separation of isolates into two clades corresponding to P1 types 1 and

2. Consistent with previous reports, we also identified specific genomic regions unique to

either type 1 or type 2 isolates [10, 11, 65]. Based on careful review, we confirmed truly type-

specific content, excluding portions of these regions that may be present elsewhere in the

genomes of the other type. Thus, the size of type-specific regions may differ from previous

reports [8, 10]. This close evaluation allowed us to develop a novel assay based on short unique

sequences for typing M. pneumoniae [54]. Additional type-specific genomic content identified

Fig 5. High importance features for classification of M. pneumoniae subtypes based on Random Forest model. (A) Representative plot of mean

decrease in Gini value for top 50 feature lists. Each list consisted of� 1 variant position. (B) Heatmap of presence/absence of the 25 features of highest

relative importance for separation of six subtypes resulting from all iterations of the model (n = 40). Other variant sites also contributed to the final model.

https://doi.org/10.1371/journal.pone.0174701.g005
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or confirmed in this study may also be used for development of improved molecular diagnos-

tics to further differentiate M. pneumoniae isolates.

Historically, sequence variation within P1 has proven useful for rapid detection but limited

molecular typing of M. pneumoniae. However, this study and others indicated that further dif-

ferences identified through WGS provide a higher resolution and discriminatory power for

differentiation of M. pneumoniae strains [8, 18, 20, 24]. The 520 conserved SNPs that differed

between type 1 and 2 isolates account for only ~0.05% of the genome. Analysis of synonymous

and non-synonymous mutations identified two genes, DNA ligase and DNA polymerase III

subunit alpha, as possibly being under positive selection. However, the underlying pressures

impacting changes in this essential proteins are not clear. Interestingly, one non-synonymous

SNP was previously identified within the CARDS toxin gene of type 1 and 2 isolates [8, 11],

and expression or stability of this toxin has been proposed to differ between the two types [8].

We identified another non-synonymous mutation in the toxin gene that was unique to several

isolates from household contacts with M. pneumoniae infection. The type-specific differences

in both genomic content and SNP/indel level variation that correlate with strain divergence or

emerge in a small group of isolates with potential to expand to a larger population, warrant fur-

ther examination.

Phylogenetic and population structure analyses supported a sufficient level of diversity to

further classify strains within the main subgroups of type 1 and 2, including three distinct sub-

groups. In a previous study, type-specific genomic variation was found to be enriched in spe-

cific areas of the genome, including P1 and the related gene ORF6, which together form the P1

adhesion molecule [11]. Interestingly, the core genome generated using an orthologous clus-

tering method did not include P1, potentially due to inaccurate or incomplete genome assem-

blies resulting from repetitive elements within this region. Hence, separation of strains into

types 1 and 2 in the current study was not related to the primary gene encoding this factor,

indicating that genetic variation outside of P1 is important for distinguishing isolates. Phyloge-

netic and population structure analyses of P1 gene sequences alone indicate that variation

unrelated to P1 may be particularly important for subtyping of type 1 isolates.

Interestingly, only four clinical isolates were found to be closely related to the prototypical

M. pneumoniae type 1 reference strain M129, suggesting that this genome is not representative

of the majority of type 1 M. pneumoniae clinical isolates circulating worldwide. This substanti-

ates a similar conclusion by Spuesens et al. [63] and calls into question the appropriateness of

M129 as the type 1 reference genome. In contrast, FH was closely related to a large subgroup

of type 2 isolates (n = 27). However, within type 2, the three subgroups were more equally

divided compared to type 1, in which two of the subtypes consisted of only a few isolates each.

Thus, additional reference strains, including at least representatives of each of the six subtypes,

should be utilized for genomic comparisons. The importance of appropriately selected, high

quality reference genomes cannot be overestimated.

Type 1 subpopulation 1N, which included isolates with three repeats at MLVA locus

mpn16, also consisted of less than 10% of isolates examined in this study. Isolates with this par-

ticular locus pattern have been described previously outside of the United States, albeit much

less frequently than other dominant MLVA types [56, 66, 67]. Many of the recently sequenced

type 1 isolates were classified in the largest subgroup within this type and originated during

the recent M. pneumoniae epidemic observed worldwide in 2010–2012 [55–57]. In the latter

case, clonal expansion of outbreak strains would not be surprising. Additional analysis of type-

specific sequence differences may inform the evolutionary history of M. pneumoniae, includ-

ing the divergence of the two major lineages, the emergence of newer subtypes and clonal

expansions.
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Analysis of old isolates remains valuable to establish a historic baseline of strain variation.

For example, the separation of four isolates from the southwestern United States in 2010–2012

may indicate a recently diverged subtype. But, continued monitoring is needed to assess the

stability of this subpopulation and evaluate its geographic range. Within the type 2 group the

strains identified as type 2v included not only isolates identified as this distinct subtype in our

laboratory, but also two isolates from France, indicating that this subtype is not restricted to

the United States. Similarly, isolates previously only categorized as type 2 in our laboratory

appear to be more closely related to strain 309. Thus, type 2a seems to have a global distribu-

tion, and the number of isolates in this subgroup is similar to that of the FH-like (type 2Ref)

group. The recent emergence of several subtypes and differences in geographic distribution

may indicate ongoing divergence within the species or implicate patterns in transmission. Fur-

ther investigation is needed to understand the impact of sequence changes in these isolates

and the selective pressures underlying their emergence and potential spread.

We found that isolates collected during the same time period, even from a defined commu-

nity during an epidemic period such as occurred in Colorado in 2013–2014 [60], West Virginia

in 2011 [68], or Georgia in 2012 [69], separated primarily based on P1 type. This supports the

polyclonal nature of M. pneumoniae circulating at any given time [69–75]. In contrast, isolates

obtained from very close contacts, such as household members or residents of a long-term care

facility were closely related to one another. This finding is consistent with the transmission

mechanism of M. pneumoniae requiring close contact between individuals [2]. Further investi-

gation is needed to fully understand the dynamics of M. pneumoniae during outbreaks within

confined populations and community-wide or larger epidemic periods.

Lluch-Senar et al. suggested separation of M. pneumoniae into nine subtypes, including four

within type 1 and five within type 2 based on SNPs and indels [8]. The subgroups identified in

our population structure analysis differ in both the number and composition of subtypes. This

may be due to differences in sequencing, assembly, or analysis methods, or may simply be a result

of the inclusion of a substantially higher number of isolates in our study, allowing a more refined

investigation of within-clade relatedness. Still, the clinical or epidemiological significance of M.

pneumoniae subtypes remains to be determined, and the accumulation of WGS data along with

novel analysis approaches will likely continue to reveal the population structure. As this unfolds,

it will become increasingly necessary to develop a standardized nomenclature for defining these

subpopulations in order to enable global tracking of M. pneumoniae over time. This system

should be flexible enough to accommodate additional strain divergence, which may occur or be

uncovered at a later date.

This study has several limitations. First, short read sequencing data may be insufficient to

resolve known repetitive regions within M. pneumoniae, leading to misassembly, over- or

under-prediction of coding sequences and the inability to capture regions used in traditional

typing schemas. The key to resolving repetitive elements in this M. pneumoniae study was the

use of long sequencing reads generated on the PacBio platform. The subset of available com-

plete closed sequences were assessed independently from incomplete genome sequences in

order to confirm observations when the inherent limitations of short reads may have con-

founded the analysis. We used strict parameters for genome coverage and sequence read qual-

ity, as well as an orthologous clustering method to define the core of all 107 genomes included

in this study. In comparison, the core defined using only closed genomes was approximately

30% larger, meaning a substantial number of genes were not considered in the larger analysis.

This may be due to only a single genome lacking a SNP or genomic region, even if the absence

was due to misassembly or lack of sequencing reads. Higher genome content in the analysis

may have resulted in higher resolution, potentially even revealing additional subtypes. Still, the

benefit of including the higher number of genomes as well as the confirmation of population
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structure in closed genomes only support the use of this limited core. Despite the large collec-

tion of genomes analyzed here, the number of isolates in several of the subgroups was small.

Sequencing of additional isolates may improve the classification into these subtypes or identify

novel subtypes. Further testing and development of the Random Forest model with additional

isolates is necessary to create an executable application and to evaluate the relevance of SNPs

identified as important for separating subtypes. This machine learning technique may also be

useful for identifying genetic features associated with clinical outcomes or epidemiological

trends.

The inclusion of 107 genomes, of which 67 were newly sequenced here, along with the com-

bination of long and short read sequencing technologies and the use of a predictive modeling

technique, makes this study the most comprehensive analysis of M. pneumoniae genomes to

date. Type-specific SNPs and indels were found to contribute to an underlying population

structure consisting of six distinct subtypes that was supported by phylogenetic analysis of the

core genome as well as a Bayesian inference method. Our WGS analysis has resulted in a reli-

able model to classify M. pneumoniae isolates into these six subtypes without having to rerun

genome assembly and de novo BAPS analysis using an ensemble decision tree based machine-

learning method. The Random Forest application also allowed for identification of SNPs of

highest importance for separating the various subtypes. In addition, we were able to develop a

novel molecular diagnostic assay for detection and typing of M. pneumoniae [54]. These sub-

stantial outputs demonstrate the potential of WGS to advance clinical microbiology and epide-

miology for an important, yet often underestimated, respiratory pathogen. From a public

health perspective, WGS will fundamentally improve the ability to monitor circulation of vari-

ous M. pneumoniae types as well as identify emergence of new variants or genetic features that

may impact transmission or virulence.

Supporting information

S1 Fig. Analysis of genomic content relative to reference genomes FH or M129. BRIG anal-

ysis of genomic content in various genome representations of reference strains FH (A) and

M129 (B) along with all type 1 and type 2 closed genomes generated using Pacific Biosciences
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