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Asymptotically optimal correlation structure methods with binary data can break down in
small samples. A new correlation structure methodology based on a recently developed
odds-ratio (OR) approximation to the tetrachoric correlation coefficient is proposed as
an alternative to the LPB approach proposed by Lee et al. (1995). Unweighted least
squares (ULS) estimation with robust standard errors and generalized least squares (GLS)
estimation methods were compared. Confidence intervals and tests for individual model
parameters exhibited the best performance using the OR approach with ULS estimation.
The goodness-of-fit chi-square test exhibited the best Type I error control using the LPB
approach with ULS estimation.
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INTRODUCTION
In the behavioral and social sciences, datasets often consist of
binary variables. For example, essentially all test data are binary
because multiple choice, true/false, and other question formats
are usually coded in terms of whether the answer is correct or
not. Many other types of tests require a diagnosis; e.g., classifying
someone as depressed, mentally ill, or having a learning disabil-
ity, also results in binary data. A critical question in such data is
whether they represent indicators of underlying latent categori-
cal variables, or, instead, are indicators of underlying continuous
latent variables. In medical diagnosis, such as the outcome of an
HIV test, the latent attribute is often considered binary, i.e., a per-
son is either HIV positive or HIV negative. With most educational
and psychological data, on the other hand, it is typically believed
that the latent construct of interest is continuous, and a positive
score on a binary indicator simply means that a certain threshold
on the latent trait has been exceeded.

When a distinction is made between continuous latent
attributes and their observed binary indicators, the Pearson cor-
relations among the binary variables will not accurately represent
the correlations among the latent attributes. The oldest measure
of a relationship between two dichotomous variables that repre-
sent categorized continuous variables is the tetrachoric correla-
tion coefficient (Pearson, 1900). In the population, the tetrachoric
correlation is defined simply as a product–moment correlation
between two underlying quantitative variables that have a joint
bivariate normal distribution. The sample tetrachoric correlation
is computed on two dichotomous variables and represents an
estimate of the association between the underlying continuous
constructs.

The matrix of sample tetrachoric correlations can be used to
conduct a factor analysis of binary variables and to fit more gen-
eral structural equation models (Christoffersson, 1975; Muthén,

1978, 1984, 1993; Lee et al., 1990, 1995; Jöreskog, 1994, 2002-
2005). The approach of Christoffersson (1975) obtains parameter
estimates directly by fitting the model to sample proportions
using a generalized least squares (GLS) approach based on
the asymptotic covariance matrix of sample proportions. This
approach has recently been extended and generalized (Maydeu-
Olivares and Joe, 2005; Maydeu-Olivares, 2006). Muthén (1978,
1984) proposed a less computationally intensive approach which
first estimates sample thresholds and sample tetrachoric correla-
tions, then fits the model to sample tetrachoric correlations using
a GLS approach based on the asymptotic covariance matrix of the
tetrachoric estimator. Lee et al. (1995) have proposed yet another
approach that estimates thresholds and tetrachorics simultane-
ously (for each pair of variables) rather than sequentially and
incorporates continuous variables.

Whether one fits the model to sample frequencies or to sample
tetrachorics, this methodology is mathematically and computa-
tionally complex. The definition of the tetrachoric correlation
itself involves an integral (see below), and requires complex com-
putational algorithms (Kirk, 1973; Brown, 1977; Divgi, 1979).
Many approximations to this coefficient have been proposed to
reduce the computational intensity at a time when computer time
was limited and costly. At least ten simple approximations have
been proposed over the years, starting with Pearson (1900) and
continuing on with Walker and Lev (1953), Edwards (1957), Lord
and Novick (1968, p. 346), Digby (1983), and two more by Becker
and Clogg (1988). Even though nowadays computers can handle
large tasks, some of these proposed approximations are so good
the question naturally arises whether they can be used directly to
fit factor analytic and more general correlation structure models.
These approximations may be particularly useful in smaller sam-
ple sizes, when more computationally intensive approaches may
break down. For example, simulation work implies that sample
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sizes of 100, 250, or even 1000 may be needed at a minimum
for these methods, depending on the model and the particu-
lar version of the estimation method (Flora and Curran, 2004;
Beauducel and Herzberg, 2006; Nussbeck et al., 2006). Yet many
researchers have smaller data sets and are faced with under-
standing their latent structure. Small samples are common in
applications where measurements are expensive (e.g., fMRI mea-
surements of absence or presence of activity in multiple brain
regions), when specific types of participants are difficult to obtain
(e.g., Parkinson’s patients, executives, identical twins), or when
research volunteers must be monetarily compensated for their
participation in a lengthy assessment. When the purpose of the
study is to assess the tau-equivalence of a unidimensional scale, a
large sample size may not be required to accurately estimate the
common factor loading.

Bonett and Price (2005) proposed yet another approxima-
tion based on the odds ratio (OR) which improves on Becker
and Clogg (1988) in terms of accuracy. They also provided
asymptotic standard errors for this approximation. Additionally,
Bonett and Price (2007) suggested that this methodology could be
adapted to correlation structure models if a consistent estimator
of the covariance matrix of the new tetrachoric approximation is
obtained. In this paper, we develop the technical details for this
new correlation structure methodology based on the Bonett and
Price (2005) coefficient, and we compare the performance of this
odds-ratio methodology (hereafter, OR) against the methodol-
ogy of Lee et al. (1995, hereafter, LPB). The LPB methodology
is available in EQS (Bentler, 2006).

Three simulation studies were conducted to compare the OR
and LPB approaches. In Study 1, sample tetrachoric correlations
and their standard errors were compared, without any structured
model. In Study 2, a confirmatory factor analysis (CFA) model
was fit to data using GLS with either the LPB or the OR asymp-
totic covariance matrix estimator. In Study 3, a CFA model was
fit to data using unweighted least squares (ULS) estimation with
robust standard errors and test statistics (Satorra and Bentler,
1994) using either the LPB or the OR asymptotic covariance
matrix estimator.

CORRELATION STRUCTURE MODELS WITH BINARY
VARIABLES
Without loss of generality, assume that each observed variable
takes on values 1 or 2. For each pair of binary variables, a 2 × 2
contingency table can be computed, using either sample frequen-
cies or sample probabilities. Table 1 illustrates the notation used
in such contingency tables. Here, fij is the sample frequency, pij is
the sample probability that the pair of variables takes on values (i,
j), and the “+” notation is used to indicate marginal sample fre-
quencies and probability. We add 0.5 to each cell in the frequency
table before computing sample probabilities. It can be shown that
adding 0.5 to each cell frequency of the 2 × 2 table minimizes the
bias of the log-transformed odds ratio (Agresti, 2013, p. 617). This
small sample correction disappears asymptotically.

Let z = (z1, ..., zs)′ be an s × 1 vector of observed binary vari-
ables. Let y = (y1, ..., ys)′ be an s × 1 vector of underlying con-
tinuous variables, and we assume thaty ∼ N(0, �). The variables
z were obtained by categorizing variables y as follows:

Table 1 | Notation for Cell and Marginal Sample Frequencies and

Probabilities.

z2 z2

1 2 1 2

1 f11 f12 f1+ 1 p11 p12 p1+
z1 2 f21 f22 f2+ z1 2 p21 p22 p2+

f+1 f+2 N p+1 p+2 1

za =
{

2, ya > ha

1, ya ≤ ha

where a = 1, ..., s. The threshold ha for each variable is related to
the probabilities for za as follows:

P(za = 2) =
∫ ∞

ha

1√
2π

e−y2
a/2dya = 1 −�(ha) (1)

where �(x) is the cumulative distribution function for standard
normal distribution. Thus, observed marginal probabilities p2+
can be used to obtain estimates of thresholds.

Without loss of generality, assume that diag(�) = I, since the
scale for the underlying continuous variables generally cannot
be recovered after categorization has occurred. The off-diagonal
elements of � are tetrachoric correlations. The tetrachoric corre-
lation ρab between ya and yb is related to the probabilities of za

and zb as follows:

P(za = 2, zb = 2)

=
∫ ∞

ha

∫ ∞

hb

1

2π

√
1 − ρ2

ab

e−(y2
a−2ρabyayb+y2

b)/2(1−ρ2
ab)dyadyb

(2)

Thus, observed sample probabilities p22 from each bivariate
contingency table can be used to compute an estimate of
the tetrachoric correlation, but the computations involved are
complicated.

We assume that the continuous latent variables y are generated
by a latent variable model. In this study, we hypothesize that the
underlying continuous variablesy were generated from a factor
model:

y = �ξ + ζ

where � is the s × m matrix of factor loadings with many ele-
ments fixed to 0, ξ is the m × 1 vector of factors, and ζ is the s × 1
vector of errors. This implies the following covariance structure
for�:

�(θ) = ���
′ + ψ (3)

where � = cov(ξ) with diag(�) = I for model identification,
� = cov(ζ ), and θ is a vector of all model parameters (i.e., factor
loadings and factor covariances). The diagonal of �(θ) is fixed
to be 1 and hence the parameters in � are dependent on other
parameters and do not need to be directly estimated.
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THE OR METHOD
Instead of computing the tetrachoric correlation as defined
implicitly by (2), the OR method computes another coefficient
of association between za and zb, defined in the population as

ρ∗
ab = cos

π

1 + wc
ab

(4)

where π in the numerator refers to the irrational num-
ber (3.1415. . . ),wab = π11π22

π12π21
, πij is the population counterpart

of pij in Table 1 corresponding to variables za and zb, c =
0.5(1 − |π1+ − π+1| /5 − (0.5 − πmin)2), and πmin is the small-
est marginal probability. In the sample, we estimate the odds
ratio as

ŵab = (f11 + 0.5)(f22 + 0.5)

(f12 + 0.5)(f21 + 0.5)

so that the sample odds ratio is defined even if the frequency table
has zero counts. Estimates of cell probabilities are also computed
from the 2 × 2 table of frequency counts with the 0.5 additions to
obtain ĉ and the following tetrachoric estimate

ρ̂∗
ab = cos

π

1 + ŵĉ
ab

. (5)

Bonett and Price (2005) found that this approximation to the
tetrachoric correlation was more accurate than the existing most
accurate approximation of Becker and Clogg (1988).

The quality of the approximation in (4) varies as a function
of the population tetrachoric correlation and of the population
thresholds for the two variables. We have studied the differ-
ence between the tetrachoric correlation implicitly defined by
(2) and the approximation in (4) using the plotting feature
of Mathematica5. It was found that the larger the correlation
between the variables, the greater the potential bias was, and the
more extreme the thresholds were, as long as they were opposite-
signed, the worse the approximation was. Figures 1, 2 illustrate
the approximation error of ρ∗

ab. In Figure 1, the difference (ρ∗
ab −

ρab) is plotted as a function of the tetrachoric correlation ρab

when thresholds are fixed to −0.8 and 0.3. The approximation
gets worse for higher absolute values of the correlation, peak-
ing when the correlation is about 0.9, at which point the OR
approximation underestimates the tetrachoric by 0.08. If the
threshold −0.8 is replaced with −1.5, the approximation error at
this point reaches −0.13. Of course, when thresholds are high and
opposite-signed, all existing methods will have trouble because
the cell probabilities will be close to zero. Figure 2 plots ρ∗

ab − ρab

as a function of one threshold, fixing the other threshold to 0.8
and the tetrachoric correlation to 0.5. The approximation error is
minimal for any positive value of the other threshold, and does
not exceed 0.08 if the other threshold is less extreme than −1.2.
For high negative values of this threshold, however, the approx-
imation error becomes considerable. Again, this is the situation
where the standard tetrachoric approaches tend to break down as
well. We will provide some empirical evidence on the breakdown
of these estimators below.

FIGURE 1 | ρ∗
ab

− ρab as a function of the tetrachoric correlation for

ha = −0.8 and hb = 0.3.

FIGURE 2 | ρ∗
ab

− ρab as a function of threshold hbfor ha = 0.8 and

ρab = 0.5.

A particular advantage of the OR method is that an estimate
of the asymptotic covariance matrix V̂ρ∗ of the s(s − 1)/2 vector
ρ̂∗ can be computed easily. First, the covariance matrix of the vec-
tor of log-odds ratios log (w̃) is computed, using standard results
about multinomial distributions (e.g., Agresti, 2013). Then, the
asymptotic covariance matrix of the transformation given by (5)
is computed using the delta method. In this step, ĉ is treated as
a constant, since its variance is small relative to the variance of
ρ̂∗ (Bonett and Price, 2005). The resulting expressions for ele-
ments of V̂ρ∗ are simple compared to the complicated expressions
for covariances of the tetrachoric correlations, and can be eas-
ily programmed using matrix-based languages such as R, SAS
IML, Gauss, or Matlab. Details of the derivation and the typical
elements of V̂ρ∗ are given in the Appendix (see Supplementary
Material).

In our OR approach, GLS parameter estimates are obtained by
minimizing the fitting function:

FOR = (ρ̂∗ − ρ(θ))′V̂−1
ρ∗ (ρ̂∗ − ρ(θ)) (6)

where θ is the vector of parameters from�(θ) = ���
′ + ψ . We

note that because ρ̂∗ is consistent for ρ∗ in (4) but not for ρ, the
vectorized version of � implicitly defined by (2), the estimator
in (6) is not consistent for θ when the model holds. Thus, this
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estimator should not be used in large sample sizes, but its sim-
plicity may offer advantages at smaller sample sizes. Approximate
standard errors for model parameters can be obtained from the
roots of the diagonal of (�̂∗′

V̂−1
ρ∗ �̂∗)−1, where �̂∗ is the matrix

of model derivatives evaluated at the OR parameter estimates. An
approximation to the model fit statistic can also be computed as
TOR = (N − 1)F̂OR and referred to a chi-square distribution with
s∗ − q degrees of freedom, but the quality of this approximation
is not known.

THE LPB METHOD
The LPB method (Lee et al., 1995) was developed to handle any
combination of categorical and continuous variables by estimat-
ing a correlation matrix that is a mixture of Pearson, polyserial,
and polychoric correlations and obtaining an appropriate esti-
mate of its variability. Note that a polychoric correlation between
two binary variables is a tetrachoric correlation. A unique fea-
ture of the LPB approach is that it estimates sample thresholds
and each polychoric correlation simultaneously. For binary vari-
ables, the LPB method is asymptotically equivalent to all other
existing methods, e.g., Christoffersson (1975), Jöreskog (1994),
Muthén (1984). All of these are limited information approaches,
estimating each ρab from the corresponding 2 × 2 contingency
table based on variables za and zb.

Let i, j = 1, 2 and let fij be the sample frequencies, as before.
We again employ the 0.5 addition to these frequencies to reduce
the likelihood of non-convergence. Binary variables only have one
finite threshold, but for convenience let us define, for variable za,
ha,1 = −∞, ha,3 = ∞, and ha,2 = ha. Then, estimates of thresh-
olds and tetrachoric correlations are obtained by minimizing the
negative log-likelihood:

Fab = −L(ha, hb, ρab) = −
2∑

i = 1

2∑
j = 1

nij log Pr (za = i, zb = j) (7)

where Pr (Za = i,Zb = j) = �2(ha,i, hb,j) +�2(ha,i+1, hb,j+1) −
�2(ha,i, hb,j+1) −�2(ha,i+1, hb,j), and �2(h1, h2) =∫ h1
−∞

∫ h2
−∞ (2π)−1 |�|−1/2 exp ( − y′�−1y/2)dyadyb.

Denote the maximizer of (7) by β̂ab = (ĥa, ĥb, ρ̂ab)′. Let ρ̂ =
{ρ̂ab} be the vector of estimated tetrachoric correlations. The LPB
method obtains parameter estimates by minimizing the fitting
function:

FLPB = (ρ̂ − ρ(θ))′V̂−1
ρ (ρ̂ − ρ(θ)) (8)

where θ is the vector of parameter estimates from the correla-
tion structure model� = �(θ). The matrix V̂ρ is the appropriate
submatrix of the covariance matrix of threshold and tetrachoric
estimates, computed as a triple product Ĥ−1̂Ĥ−1, where Ĥ is a
block-diagonal matrix with blocks of the form Ĥab, consistently

estimating Hab = lim
N→∞

1
N

∂2Fab

∂βab∂β
′
ab

, and ̂ is an estimate of the

asymptotic covariance matrix of 1√
N

∂F(η)
∂η′

∣∣∣
η= η̂, where η = {βab}.

Details can be found in Poon and Lee (1987) and Lee et al. (1995).
Standard errors for parameter estimates can be obtained from
the roots of the diagonal of (�̂′V̂−1

ρ �̂)−1, where �̂ is the matrix

of model derivatives evaluated at the LPB parameter estimates.
The test statistic TLPB = (N − 1)F̂LPB is asymptotically chi-square
distributed with s∗ − q degrees of freedom.

ROBUST APPROACHES BASED ON ULS ESTIMATION
The OR and LPB approaches described above involve GLS esti-
mation as the fitting functions (6) and (8) involve inverses of
asymptotic covariance matrices of sample estimates of tetrachoric
correlations. These weight matrices grow very quickly in size as
the number of variables increases and may be very unstable in
smaller sample sizes. GLS estimation, although asymptotically
efficient, may not perform properly in small samples (Hu et al.,
1992; West et al., 1995). Evidence exists that its analogs for cate-
gorical data also perform poorly in smaller sample sizes (Muthén,
1993; Flora and Curran, 2004). ULS estimation, which uses a
simpler consistent but inefficient estimator, uses corrected stan-
dard errors and test statistics (Yang-Wallentin et al., 2010; Savalei,
2014). These ULS methods exist for both continuous and cate-
gorical data (Muthén, 1993; Satorra and Bentler, 1994) and have
been found to perform well in smaller samples (Yang-Wallentin
and Jöreskog, 2001; Forero and Maydeu-Olivares, 2009; Forero
et al., 2009; Savalei and Rhemtulla, 2013). We develop and study
ULS estimates with robust standard errors and test statistics for
both the OR and the LPB approaches.

ULS estimation with robust standard errors is implemented
as follows for the OR approach. Saturated estimates of pop-
ulation tetrachoric correlations are obtained according to (5).
Estimates of model parameters are obtained by minimizing
FLSOR = (ρ̂∗ − ρ(θ))′(ρ̂∗ − ρ(θ)), and standard errors for these
parameter estimates are computed from the roots of the diagonal
of the robust covariance matrix (�̂∗′

�̂∗)−1�̂∗′
Ṽρ∗�̂∗(�̂∗′

�̂∗)−1.
The model test statistic is computed as TLSOR = k(N − 1)F̃LSOR,
where k = (s∗ − q)/tr{V̂ρ∗(I − �̂∗(�̂∗′

�̂∗)−1�̂∗′
)} and where

s∗ = s(s − 1)/2. The correction by k is intended to bring the mean
of the distribution of TLSOR closer to that of a chi-square dis-
tribution with s∗ − q degrees of freedom, but because the OR
correlations are approximate, this statistic may be a very rough
approximation, and its usefulness is to be determined. The robust
LPB method is developed similarly. Saturated estimates of pop-
ulation tetrachoric correlations are obtained from (7). Estimates
of model parameters are obtained by minimizingFLSLPB = (ρ̂ −
ρ(θ))′(ρ̂ − ρ(θ)), and the robust covariance matrix is computed
as (�̂′�̂)−1�̂′V̂ρ�̂(�̂′�̂)−1.

We now describe the results of three simulation studies
designed to investigate the performance of GLS and ULS esti-
mation with OR and LPB methods. The goal of Study 1 was
to compare the saturated estimates of tetrachoric correlations:
the OR approximation ρ̂∗ and the LPB estimate ρ̂. Study
2 investigated parameter estimates, standard errors, and test
statistics obtained from GLS estimation. Finally, Study 3 inves-
tigated the performance of ULS estimation with robust stan-
dard errors and test statistics. The focus was on small sample
performance.

METHOD
Data were generated from a model similar to one used by Lee et al.
(1995) to evaluate their method. This is a 2-factor CFA model
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with 8 variables and 2 factors, with covariance structure � (θ) =
���

′ + ψ, where

�′ =
[
λ λ λ λ 0 0 0 0
0 0 0 0 λ λ λ λ

]
,� =

[
1.0 0.5
0.5 1.0

]
,

� = I8 − diag(���′).

The factor loadings λ were set to equal either 0.6 or 0.8. With fac-
tor loadings of 0.6, the correlations among variables within the
same factor are 0.36, and the correlations among variables across
different factors are 0.18. With factor loadings of 0.8, the corre-
lations among variables within the same factor are 0.64, and the
correlations among variables across different factors are 0.32.

The generated continuous data were then categorized to create
dichotomous data using a set of eight thresholds. The thresholds
were chosen to be either mild or moderate. The mild set of thresh-
olds was set to be (0.5, −0.5, 0.5, −0.5, 0.5, −0.5, 0.5, −0.5).
This set of thresholds is relatively homogenous and cuts the con-
tinuous distribution very near its center. The moderate set of
thresholds was chosen to be (−1, 0.8, −0.6, 0.2, −0.2, 0.6, −0.8,
1). This set of thresholds is more heterogeneous and the cut-off
point is often far from center. This set of thresholds also creates
some pairings of high opposite-signed thresholds, a difficult situ-
ation for most methods to handle. Sample size was set to N = 20,
50, or 100. With continuous data, sample sizes in the 20–40 range
were studied by Nevitt and Hancock (2004). Thus, there were
a total of 12 conditions in this 2 (λ = 0.6 or 0.8) × 2 (thresh-
olds are mild vs. moderate) × 3 (N = 20, 50, 100) design. This
design remained the same across the three studies. Although some
SEM simulation studies have used 5000 or more replications per
condition, the LPB method is computationally intensive and 500
replications were generated within each condition.

The goal of Study 1 was to examine the correlations and
their standard errors produced by the OR method and the LPB
method. Saturated model was thus fit to data. The goal of Study
2 was to assess the GLS estimates in both OR and LPB methods.
The 2-factor model was fit to data, and GLS estimation was car-
ried out with the weight matrix computed using either the OR
or the LPB formulae. The goal of Study 3 was to examine the
ULS estimates with robust standard errors and test statistics. The
2-factor model was fit to data using ULS estimation and the stan-
dard errors and test statistics were corrected using the asymptotic
covariance matrix computed based on either the OR or the LPB
formulae.

To compare accuracy of estimated parameters, average esti-
mates of all parameters were computed as well as their empir-
ical standard deviations. Additionally, root mean squared error
(RMSE), which is the square root of the average squared deviation
of the parameter estimate from its true value, was also computed.
This measure may be preferred to the empirical standard devi-
ation measure because it combines bias and efficiency, and is
thus an overall measure of the quality of an estimator. The OR
method relies on an approximation to the tetrachoric correlation
and will produce biased parameter estimates. To compare accu-
racy of standard errors, estimated standard errors are reported,
to be compared to both the empirical standard errors and to the

RMSE. To evaluate the performance of the test statistics in Studies
2 and 3, empirical rejection rates are reported.

RESULTS
STUDY 1
The results for Study 1 are presented in Table 2. The four types
of generated data are labeled as follows: Condition I represents
mild (homogenous) thresholds; Condition II represents mod-
erate (heterogeneous) thresholds; Condition A represents high
factor loadings (0.8); and Condition B represents lower factor
loadings (0.6). For readability, the results are combined by the
size of correlation. In the A conditions, all population correla-
tions were either 0.64 or 0.32. In the B conditions, all population
correlations were either 0.36 or 0.18. The LPB method had trou-
ble achieving convergence in some conditions. When fewer than
500 replications converged, the actual number of replications is
noted in the last column of the table. The OR method converged
for all replications under all conditions. LPB method did not con-
verge in about 4% of the cases at the smallest sample size and
with heterogeneous thresholds (the II conditions). For the con-
verged replications, standard error estimates associated with the
LPB estimator were sometimes enormous, leading to non-sensical
average estimated standard errors. To deal with this problem, esti-
mated standard errors greater than 100 were excluded from that
column only. This occurred only at N = 20, and the number of
replications that were thus removed is noted in the table. This
problem largely went away when the sample size was N = 50 or
higher.

Examining average parameter estimates, we find that both the
OR and the LPB method underestimate the size of the correla-
tions, and this bias is worse for (a) smaller sample sizes, (b) larger
correlations, and (c) heterogeneous thresholds. The worst case is
in Condition IIA for N = 20, when the average estimate of the
correlation of 0.64 is 0.43 for the OR method and 0.45 for the
LPB method. The LPB correlations are slightly closer to the true
value but this difference is small. We have reason to believe that
this downward bias occurs because of the addition of 0.5 to the
frequency tables to remedy zero frequency cells. Without the 0.5
addition, the LPB method is extremely unstable and often cannot
proceed with the computations. We advocate this small sample
correction, therefore, despite its impact in terms of small sample
bias. By N = 100, the average value of the estimated correlations
is reasonably close to the true value.

Even though we report empirical standard errors, the compari-
son of empirical and estimated standard errors is technically only
appropriate for the LPB method, because this method produces
consistent parameter estimates. However, we find that empiri-
cally, the two methods do not differ much in terms of bias, and we
proceed with comparing estimated standard errors to both empir-
ical standard errors and to the RMSEs. For the LPB method, the
empirical and the estimated standard errors are very close in most
cases. However, the estimated standard error is always less than
the actual empirical standard error. This is expected as estimated
standard errors are based on asymptotic results. This pattern is
reversed for the OR method. The estimated standard error for
the OR method is always larger than the empirical standard error,
which is actually appropriate given the bias. The difference is most
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Table 2 | Summary Results for GLS Parameter Estimates in Saturated Model.

OR LPB

Mean Est SE Emp SE RMSE Mean Est SE Emp SE RMSE Conv N

IA

r = 0.64 N = 20 0.54 0.28 0.25 0.27 0.55 0.24 0.25 0.26 499

N = 50 0.60 0.18 0.16 0.17 0.60 0.16 0.16 0.17 500

N = 100 0.62 0.13 0.12 0.12 0.62 0.12 0.11 0.12 500

r = 0.32 N = 20 0.25 0.33 0.33 0.34 0.26 0.30 0.34 0.34 499

N = 50 0.29 0.22 0.22 0.22 0.29 0.22 0.22 0.23 500

N = 100 0.30 0.16 0.16 0.16 0.30 0.16 0.16 0.16 500

IIA

r = 0.64 N = 20 0.43 0.35 0.24 0.34 0.45 0.25 0.24 0.33 480*

N = 50 0.55 0.24 0.18 0.21 0.55 0.16 0.17 0.20 499

N = 100 0.60 0.18 0.14 0.15 0.59 0.11 0.12 0.14 500

r = 0.32 N = 20 0.22 0.37 0.30 0.32 0.23 0.32 0.31 0.33 480*

N = 50 0.28 0.25 0.23 0.23 0.28 0.22 0.23 0.23 499

N = 100 0.30 0.19 0.17 0.18 0.30 0.17 0.17 0.17 500

IB

r = 0.36 N = 20 0.31 0.33 0.30 0.31 0.32 0.30 0.31 0.31 497

N = 50 0.33 0.21 0.22 0.22 0.34 0.21 0.22 0.22 500

N = 100 0.34 0.15 0.15 0.15 0.35 0.15 0.15 0.15 500

r = 0.18 N = 20 0.15 0.34 0.32 0.32 0.16 0.32 0.33 0.33 497

N = 50 0.15 0.23 0.22 0.23 0.15 0.23 0.23 0.23 500

N = 100 0.16 0.16 0.17 0.17 0.17 0.17 0.17 0.17 500

IIB

r = 0.36 N = 20 0.25 0.37 0.30 0.32 0.26 0.29 0.30 0.33 484**

N = 50 0.31 0.25 0.23 0.23 0.31 0.21 0.22 0.23 499

N = 100 0.33 0.18 0.17 0.17 0.34 0.16 0.17 0.17 500

r = 0.18 N = 20 0.14 0.37 0.31 0.32 0.14 0.32 0.32 0.33 484**

N = 50 0.16 0.25 0.24 0.24 0.16 0.23 0.24 0.24 499

N = 100 0.17 0.18 0.18 0.18 0.17 0.18 0.18 0.18 500

Conditions I and II correspond to factor loadings of 0.8 and 0.6, respectively; Conditions A and B correspond to mild and moderate thresholds, respectively. “Mean,”

“Est SE,” “Emp SE,” and “RMSE” refer to the average estimated correlation, average estimated standard error, empirical standard error of estimates in each cell,

and the root mean squared error in each cell. “Conv N” refers to the number of converged cases using the LPB method (all cases converged using the OR method).

Conditions with * had additional 13 outliers removed when computing the average estimated SEs only, for the LPB method. Conditions with ** had additional 16

outliers removed when computing the average estimated SEs only, for the LPB method.

pronounced for the largest correlation of 0.64 when thresholds
are heterogeneous and sample size is small. The most appropri-
ate measure of the overall quality of the estimator, combining
both bias and efficiency, is the RMSE. The average RMSE differ-
ence between OR and LPB methods is −0.00004, which is slightly
in favor of the OR method but is tiny. The largest difference
is in Condition IIB at N = 20, where the difference in RMSEs
is −0.01 (0.32 vs. 0.33). The RMSE difference is in favor of OR
for smaller correlations. Based on number of converged cases, the
RMSE measure of bias and efficiency of parameter estimates, and
the quality of estimated standard errors, we conclude that the OR
method slightly outperforms the LPB method, and this difference
is most pronounced in smaller samples.

STUDY 2
The results for Study 2 are presented in Table 3. For readability,
the results are combined by type of parameter: factor correlation

or average factor loading. The population factor correlation was
0.5 in all conditions. In the A conditions, all loadings were 0.8,
and in the B condition, all loadings were 0.6, so that an average
is appropriate. The LPB method failed to converge in all replica-
tions for N = 20. Fitting even a small structural model with six
parameters to such a sample size may be difficult. Notably, the
OR method reaches convergence for the majority of the cases at
N = 20.

In addition to convergence problems, outlying cases presented
more of a problem in this study. Whereas in Study 1, outlying
cases were only observed for estimated standard errors, in this
study outlying cases were observed for parameter estimates as
well, and they occurred for both methods, making it difficult to
conduct any meaningful comparisons. Thus, outlying replications
were defined as any replication where the absolute value of any
parameter estimate exceeded 100. The columns labeled “OR N”
and “LPB N” report the number of cases used in the analysis, with
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Table 3 | Summary Results for GLS Parameter Estimates in 2-factor Model.

OR LPB

Mean Est SE Emp SE MSE RMSE Cov OR N Mean Est SE Emp SE MSE RMSE Cov LPB N

IA

Phi = 0.5 N = 20 0.72 0.16 0.38 0.19 0.44 0.37 486(2) N/A N/A N/A N/A N/A N/A 0

N = 50 0.65 0.12 0.20 0.06 0.25 0.53 498 0.72 0.09 0.22 0.10 0.31 0.34 427

N = 100 0.57 0.10 0.14 0.02 0.15 0.73 500 0.61 0.09 0.15 0.03 0.18 0.65 500

L = 0.8 N = 20 0.77 0.16 0.27 0.07 0.27 0.82 486(2) N/A N/A N/A N/A N/A N/A 0

N = 50 0.83 0.11 0.15 0.02 0.15 0.81 498 0.88 0.07 0.15 0.03 0.17 0.53 427

N = 100 0.83 0.08 0.10 0.01 0.11 0.85 500 0.85 0.07 0.10 0.01 0.11 0.72 500

IIA

Phi = 0.5 N = 20 0.69 0.19 0.38 0.18 0.43 0.47 466(6) N/A N/A N/A N/A N/A N/A 0

N = 50 0.66 0.13 0.21 0.07 0.26 0.55 494 0.73 0.08 0.26 0.12 0.34 0.24 168

N = 100 0.59 0.10 0.14 0.03 0.17 0.72 500 0.70 0.08 0.17 0.07 0.26 0.36 496

L = 0.8 N = 20 0.72 0.22 0.32 0.12 0.34 0.83 466(6) N/A N/A N/A N/A N/A N/A 0

N = 50 0.79 0.13 0.18 0.04 0.19 0.82 494 0.84 0.07 0.18 0.04 0.20 0.54 168

N = 100 0.81 0.10 0.12 0.02 0.12 0.88 500 0.83 0.06 0.11 0.02 0.12 0.67 496

IB

Phi = 0.5 N = 20 0.63 0.20 0.58 0.35 0.59 0.41 416(12) N/A N/A N/A N/A N/A N/A 0

N = 50 0.62 0.16 0.33 0.12 0.35 0.58 430(10) 0.64 0.12 0.33 0.13 0.36 0.42 439(9)

N = 100 0.56 0.14 0.22 0.05 0.23 0.73 483(1) 0.58 0.13 0.22 0.05 0.23 0.70 479(1)

L = 0.6 N = 20 0.58 0.20 0.43 0.19 0.43 0.64 416(12) N/A N/A N/A N/A N/A N/A 0

N = 50 0.65 0.17 0.31 0.10 0.31 0.69 430(10) 0.71 0.13 0.33 0.12 0.35 0.49 439(9)

N = 100 0.63 0.13 0.20 0.04 0.20 0.80 483(1) 0.65 0.12 0.20 0.04 0.21 0.75 479(1)

IIB

Phi = 0.5 N = 20 0.63 0.24 0.58 0.36 0.60 0.52 397(21) N/A N/A N/A N/A N/A N/A 0

N = 50 0.65 0.18 0.33 0.13 0.36 0.62 409(12) 0.71 0.11 0.31 0.14 0.38 0.35 362(9)

N = 100 0.58 0.15 0.24 0.06 0.25 0.73 475(4) 0.61 0.12 0.25 0.07 0.27 0.56 475(2)

L = 0.6 N = 20 0.54 0.22 0.44 0.20 0.44 0.69 397(21) N/A N/A N/A N/A N/A N/A 0

N = 50 0.61 0.19 0.32 0.11 0.33 0.73 409(12) 0.68 0.11 0.36 0.13 0.37 0.45 362(9)

N = 100 0.61 0.14 0.22 0.05 0.22 0.82 475(4) 0.65 0.12 0.22 0.05 0.22 0.71 475(2)

“Phi” refers to the factor correlation (always 0.5). “L” refers to the factor loading (0.8 or 0.6). Conditions I and II correspond to factor loadings of 0.8 and 0.6,

respectively; Conditions A and B correspond to mild and moderate thresholds, respectively. “Mean,” “Est SE,” “Emp SE,” “RMSE,” and “Cov” refer to the average

estimated correlation, average estimated standard error, empirical standard error of estimates, the root mean squared error, and coverage of 95% CIs “OR N” and

“LPB N” refer to the number of converged cases with no outliers, used in all of the computations. In parentheses is the number of outlying cases (p > 100).

the number of excluded outliers in parentheses. The difference is
due to non-convergence. For example, in Condition IA, the OR
method produced 488 converged cases, of which 2 were outliers,
resulting in a total of 486 usable cases. The LPB method generally
had more trouble with convergence than the OR method did, with
the most pronounced difference occurring when factor loadings
were high and thresholds were heterogeneous (Condition IIA).
Only 168 cases converged for LPB method in this condition at
N = 50, compared to 494 cases for the OR method. Convergence
was generally worse for both methods when thresholds were
heterogeneous.

Examining average estimates of the factor correlation, we find
that both methods overestimate its value, more so at the smaller
sample sizes, and LPB is more biased than OR in all condi-
tions. By N = 100, the estimates produced by the OR method
are reasonable (the average estimated factor correlation is around
0.56–0.59 across the four conditions), but the bias of the LPB
method is still substantial, with the average estimate ranging from

0.58 to 0.70. The bias of the LPB estimator is worse for hetero-
geneous thresholds. The averaged factor loadings are somewhat
biased downward for the OR method at N = 20, and LPB is
unable to produce any estimates at this sample size. The aver-
age factor loadings for higher sample sizes for the OR methods
are very reasonable, but for the LPB method they are somewhat
biased upward. The surprising conclusion, therefore, is that the
OR method seems to be less biased, on average, than the LPB
method, despite the theoretical prediction of the opposite pattern.
This result illustrates the difference between asymptotic results
and small sample behavior.

Because in smaller samples the bias of parameter estimates
is substantial, the RMSE and the empirical standard error often
differ significantly. It is thus unclear how to evaluate the per-
formance of the estimated standard errors. However, comparing
them to either the empirical standard errors or to the RMSE leads
to similar conclusions: the estimated standard error is severely
downward biased for both methods at smaller sample sizes. The
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empirical standard error is huge especially for factor correlations
at N = 20 (OR only), and this is not reflected in the estimated
standard error. The difference is substantial for factor loadings
as well: it is in the magnitude of 0.1 for homogenous thresh-
olds and 0.2 for heterogeneous thresholds. However, at N = 50,
and when thresholds are homogenous, the OR method pro-
duces more comparable empirical and estimated standard errors.
The LPB method still exhibits substantial bias. For heteroge-
neous thresholds, both methods require at least N = 100 before
the estimated standard errors are reasonably similar to empirical
standard errors. The difference in the RMSEs is in favor of the OR
method in 14 out of 16 comparisons, and this difference is more
pronounced for factor loadings. The OR method thus appears to
be superior both in terms of convergence rates and the overall
quality, using the bias/efficiency RMSE measure.

Table 3 also presents the estimated coverage probabilities for
the 95% confidence intervals of the two model parameters. The
estimated coverage probabilities for the OR and LPB approaches
are far below the nominal 0.95 level and neither confidence
interval approach can be recommended with GLS estimation.

Table 4 reports the rejection rates of the goodness-of-fit test
statistics using the OR and LPB approaches with GLS estima-
tion. Good performance is not expected here, as sample sizes are
too small to have reached convergence to chi-square for the LPB
statistic, and the OR statistic is not chi-square distributed because
the OR estimator is not consistent.

The LPB statistic rejects too many models across all sam-
ple sizes and conditions. It therefore cannot be used to evaluate
model fit in such small samples. The OR statistic performs
poorly at N = 20, over-accepting models. At larger sample sizes,
it performs nearly optimally for higher factor loadings (the A con-
ditions), and over-rejects models for lower factor loadings (the B
conditions), though not nearly as much as the corresponding LPB

Table 4 | Rejection Rates of Test Statistics in 2-factor Model with GLS

Estimation.

Condition A Condition B

OR LPB OR LBP

CONDITION I

N = 20 1/488 N/A 5/428 N/A

0.2% N/A 2.2% N/A

N = 50 27/498 169/426 87/440 231/448

5.4% 37.9% 19.8% 51.6%

N = 100 41/500 92/500 90/484 115/480

8.2% 18.4% 18.6% 24.0%

CONDITION II

N = 20 0/472 N/A 1/418 N/A

0.0% N/A 0.2% N/A

N = 50 29/494 99/168 56/421 251/371

5.9% 58.9% 13.3% 67.7%

N = 100 41/500 253/496 70/479 193/477

8.2% 51.0% 14.6% 40.5%

Conditions I and II correspond to factor loadings of 0.8 and 0.6, respectively;

Conditions A and B correspond to mild and moderate thresholds, respectively.

statistic. The goodness-of-fit test using GLS estimation performs
better using the OR approach than the LPB approach.

STUDY 3
The results for Study 3 are presented in Table 5. The format
of presentation is the same as for Study 2. The most notice-
able difference as compared to Study 2 is that ULS estimation
has led to drastically fewer convergence problems as compared
to GLS estimation. Convergence is still worse for heterogeneous
thresholds, but at least 85% of cases converged in all conditions
even at the smallest sample size. There is generally no differ-
ence in convergence rates between OR and LPB methods, except
at the smallest sample size of N = 20 for conditions with het-
erogeneous thresholds, when the LPB method produces quite
a few more non-convergent cases. We implemented the same
method of outlier deletion based on parameter estimates as in
Study 2. Interestingly, the number of outlying cases that had
to be excluded is somewhat more for ULS estimation than for
the GLS estimation; it may be that cases that failed to converge
under GLS are more likely to produce poor parameter estimates
under LS.

Even though ULS estimation is used in both approaches, they
still differ because a different saturated estimator of the tetra-
choric correlation was used in optimization. For small sample
sizes (100 or less) ULS estimation is better than GLS estimation:
the average ULS parameter estimates appear to be much more
accurate than the GLS estimates from Study 2. There is not much
difference across methods or across conditions in the estimates
of the factor correlation. Interestingly, the factor correlation is
almost always overestimated. The OR method does somewhat
better, producing averages closer to the true value of 0.5. The
average factor loading is again underestimated, but the bias is con-
siderably less. Here, the OR method does better with higher factor
loadings (the A conditions), while the LPB method does better
with lower factor loadings (the B conditions).

Estimated robust standard errors with ULS estimation are
much more similar to actual empirical standard errors than for
the GLS estimates in Study 3. With ULS estimation, the OR
method tends to match empirical and estimated standard errors
a bit better for the factor correlation, while the LPB method does
a bit better with factor loadings, excluding some cases where at
N = 20 this method still produces very large standard errors.
Interestingly, empirical standard errors across methods are nearly
identical for the A conditions (higher factor loadings), but the
LPB method is slightly more efficient in the B conditions (lower
factor loadings). Returning to the RMSE as a global measure of
estimator quality, we find that the differences in RMSEs are in
favor of the LPB method in 19 out of 24 conditions; however, the
largest difference in RMSEs is 0.016, and the average is 0.004, so
that the advantage is minimal.

Table 5 also presents the estimated coverage probabilities for
95% confidence intervals of the model parameters. The Type I
error rates for a test that the parameter value equals zero is (100—
Cov)/100 where Cov is the estimated coverage probability. The
OR approach has estimated coverage probabilities that are closer
to 0.95 and Type I error rates that are closer to 0.05 than the LPB
approach.
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Table 5 | Summary Results for ULS Parameter Estimates and Robust Standard Errors in 2-factor Model.

OR LPB

Mean Est SE Emp SE MSE RMSE Cov OR N Mean Est SE Emp SE MSE RMSE Cov LPB N

IA

Phi = 0.5 N = 20 0.57 0.25 0.31 0.10 0.31 0.84 492(3) 0.58 0.24 0.31 0.10 0.32 0.78 491(5)

N = 50 0.50 0.16 0.18 0.03 0.18 0.90 500 0.52 0.17 0.18 0.03 0.18 0.89 500

N = 100 0.49 0.12 0.12 0.02 0.12 0.92 500 0.50 0.12 0.12 0.02 0.12 0.92 500

L = 0.8 N = 20 0.71 0.26 0.24 0.07 0.26 0.96 492(3) 0.71 0.22 0.24 0.07 0.26 0.92 491(5)

N = 50 0.77 0.16 0.15 0.02 0.16 0.97 500 0.76 0.15 0.15 0.02 0.15 0.95 500

N = 100 0.79 0.11 0.11 0.01 0.11 0.95 500 0.78 0.10 0.11 0.01 0.11 0.94 500

IIA

Phi = 0.5 N = 20 0.57 0.28 0.33 0.11 0.34 0.86 480(11) 0.57 0.30 0.33 0.12 0.34 0.73 461(7)

N = 50 0.53 0.17 0.18 0.03 0.18 0.91 500 0.54 0.18 0.18 0.03 0.18 0.87 499

N = 100 0.51 0.12 0.13 0.02 0.13 0.93 500 0.53 0.12 0.13 0.02 0.13 0.90 500

L = 0.8 N = 20 0.65 0.33 0.29 0.12 0.34 0.94 480(11) 0.67 0.29 0.29 0.11 0.33 0.88 461(7)*

N = 50 0.74 0.19 0.17 0.03 0.18 0.96 500 0.74 0.16 0.16 0.03 0.18 0.92 499

N = 100 0.77 0.14 0.12 0.02 0.12 0.97 500 0.77 0.11 0.11 0.01 0.12 0.93 500

IB

Phi = 0.5 N = 20 0.53 0.37 0.50 0.25 0.50 0.86 448(21) 0.55 0.35 0.48 0.23 0.48 0.79 446(25)

N = 50 0.52 0.25 0.29 0.09 0.29 0.90 477(14) 0.53 0.25 0.28 0.08 0.28 0.90 477(12)

N = 100 0.52 0.17 0.19 0.04 0.19 0.91 499(1) 0.52 0.18 0.19 0.04 0.19 0.92 499(1)

L = 0.6 N = 20 0.54 0.37 0.39 0.16 0.40 0.91 448(21) 0.55 0.34 0.39 0.15 0.39 0.87 446(25)**

N = 50 0.58 0.31 0.32 0.10 0.32 0.93 477(14) 0.58 0.27 0.30 0.09 0.30 0.92 477(12)

N = 100 0.58 0.17 0.18 0.03 0.18 0.93 499(1) 0.58 0.16 0.18 0.03 0.18 0.93 499(1)

IIB

Phi = 0.5 N = 20 0.55 0.44 0.53 0.28 0.53 0.88 436(31) 0.56 0.40 0.53 0.29 0.53 0.77 411(27)

N = 50 0.57 0.27 0.29 0.09 0.30 0.89 468(16) 0.57 0.27 0.29 0.09 0.30 0.86 471(15)

N = 100 0.54 0.19 0.22 0.05 0.22 0.92 495(5) 0.54 0.18 0.22 0.05 0.22 0.89 498(2)

L = 0.6 N = 20 0.51 0.43 0.44 0.21 0.45 0.90 436(31) 0.52 0.39 0.41 0.18 0.42 0.84 411(27)***

N = 50 0.56 0.29 0.30 0.09 0.30 0.93 468(16) 0.57 0.25 0.30 0.09 0.30 0.90 471(15)

N = 100 0.58 0.19 0.20 0.04 0.20 0.94 495(5) 0.58 0.17 0.19 0.04 0.19 0.92 498(2)

“Phi” refers to the factor correlation (always 0.5). “L” refers to the factor loading (0.8 or 0.6). Conditions I and II correspond to factor loadings of 0.8 and 0.6,

respectively; Conditions A and B correspond to mild and moderate thresholds, respectively. “Mean,” “Est SE,” “Emp SE,” “RMSE,” and “Cov” refer to the average

estimated correlation, average estimated standard error, empirical standard error of estimates, the root mean squared error, and coverage of 95% CIs. “OR N”

and “LPB N” refer to the number of converged cases with no outliers, used in all of the computations. In parentheses is the number of outlying cases (p > 100).

Conditions with *, **, and *** had additional 11, 1, and 10 outliers removed, respectively, when computing the average estimated SEs only, for the LPB method.

Table 6 reports the rejection rates for the robust goodness-
of-fit test statistics for both methods. These are Satorra-Bentler
scaled chi-square statistics (Satorra and Bentler, 1994), which rely
on the estimated asymptotic covariance matrix of sample corre-
lations but do not require its inverse. Neither of these statistics
is chi-square distributed, and both are approximations. The LPB
statistic has mean that is equal that of a chi-square variate, while
the OR scaled statistic is incorrect even in the mean because the
original OR saturated estimator is biased. The ULS test statistic
based on the OR method over-accepts models in nearly all condi-
tions. The LPB robust statistic performs quite well, except in the A
conditions (lower factor loadings and heterogeneous thresholds),
where it over-rejects models.

Lastly, we briefly compare the results of Study 2 and Study
3. It is often said that GLS estimation is asymptotically efficient
while ULS estimation is inefficient. Our results show that the
word “asymptotically” is important in the definition of efficiency

of the GLS estimator. Not only does the simple ULS estimator
have the advantage of greater stability, as captured by high con-
vergence rates, but it also appears to be more efficient in smaller
sample studies studied here. The average difference in the RMSEs
between the GLS and the ULS estimators is 0.036 for the OR
method and 0.058 for the LPB method, so that the ULS estimator
actually has less empirical variability around the true parame-
ter values in the sample sizes studied. While these numbers are
small, they nonetheless demonstrate that an estimator with best
asymptotic properties is not necessarily the best estimator in
practice.

DISCUSSION
This paper developed the statistical theory for a new structural
modeling methodology based on a recently proposed OR estima-
tor of the tetrachoric correlation (Bonett and Price, 2005), includ-
ing both GLS and ULS estimation methods. We also extended the
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Table 6 | Rejection Rates of Test Statistics in 2-factor Model with ULS

Estimation.

Condition A Condition B

OR LPB OR LBP

CONDITION I

N = 20 3/495 39/496 1/428 15/471

0.6% 7.9% 0.2% 3.2%

N = 50 13/500 37/500 13/491 17/489

2.6% 7.4% 2.6% 3.5%

N = 100 14/500 24/500 20/500 25/500

2.8% 4.8% 4.0% 5.0%

CONDITION II

N = 20 0/491 62/468 0/467 23/438

0.0% 13.2% 0.0% 5.3%

N = 50 2/500 75/499 1/484 20/486

0.4% 15.9% 0.2% 4.1%

N = 100 6/494 53/500 6/500 22/500

1.2% 10.6% 1.2% 4.4%

Conditions I and II correspond to factor loadings of 0.8 and 0.6, respectively;

Conditions A and B correspond to mild and moderate thresholds, respectively.

Lee et al. (1995) method to ULS estimation with robust correc-
tions to the standard errors and test statistics. The algebra and
statistics used to develop these extensions follow directly from
Satorra and Bentler (1994).

The new OR methodology is easy to implement. It does not
require integration as does the direct tetrachoric estimator and
can be easily programmed. Its asymptotic covariance matrix also
is easy to compute. The GLS OR approach outperforms the GLS
LPB method in all conditions. Perhaps the main advantage of the
OR method is that it converges more often than the LPB method,
especially when sample size is small and/or there are moderate-
size thresholds. Moderate-size opposite-signed thresholds often
lead to breakdown of traditional methods. The ULS OR approach
is largely equivalent to the ULS LPB approach.

Obviously, larger sample sizes will give more reliable parame-
ter estimates as well as more powerful test results. The corrected
test statistic (Satorra and Bentler, 1994) for the ULS LPB method
worked well in much smaller samples than have recently been
studied or recommended in categorical variable research (e.g.,
Flora and Curran, 2004; Beauducel and Herzberg, 2006; Nussbeck
et al., 2006). Of course, at very small sample sizes the test statistic
may not be very useful as it may lack power. However, the power
issue notwithstanding, this robust statistic for the LPB approach
maintains Type I error remarkably well.

In the conditions studied, there was no detectable greater bias
in parameter estimates when the OR methodology was used.
Asymptotically, there will be a bias, particularly when the cor-
relations are very large and based on very dissimilar thresholds,
as we illustrated with Mathematica5 plots. The values of corre-
lations and thresholds we used in our simulations were chosen
to represent more typical values that should show some mini-
mal bias. Evidently, when the sample size is not too large and
considered within a structural model based on many correlations

with varying potential for bias, such bias is not necessarily visi-
bly propagated to the model’s fundamental parameters. Further
research is needed to determine the sample size at which the LPB
method performs better than the OR methods. Such a determi-
nation should, however, be made in a relative sense, since the very
conditions that likely will yield problems for the OR method—
such as extreme but opposite thresholds associated with positively
correlated variables—also will cause traditional tetrachoric-based
methods to break down. While under some circumstances no
method may perform perfectly, we predict relatively favorable
success for the OR method in moderate sample sizes.

We developed robust least squares approaches both for the
OR and LPB methods based on the Satorra and Bentler (1994)
methodology, and found that the ULS estimator and the associ-
ated robust standard errors were very good. Whether or not an
estimator that may be more efficient asymptotically, such as the
diagonally weighted least squares (DWLS) estimator, would per-
form better at such small samples as those studied here remains
to be determined in future research. The ULS and the DWLS esti-
mators have been found to perform similarly (Maydeu-Olivares,
2001), and ULS may be preferred (Rhemtulla et al., 2012).
We suspect that the stability of ULS in small samples may be
more important in practice than any theoretical and asymptotic
improvements in efficiency.

In addition to CFA applications, the OR approach is promis-
ing in other applications. The OR computations are extremely fast
and could have important applications in the exploratory factor
analysis of questionnaires with a large number of dichotomous
items. Zao (2007) developed accurate methods of constructing
confidence intervals for the difference in Pearson correlations
computed from the same sample. The Zao confidence interval
approach can now be extended to OR tetrachoric approximations
using the new results given in the Appendix.

The OR approach has now been implemented in the current
version of EQS so that researchers can compare the results of this
new method with other methods1. Programmers who want to
develop OR methods for other SEM packages will now be able
to check their results against the EQS results.
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