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Abstract

Radiologists and pathologists frequently make highly consequential perceptual decisions. For 

example, visually searching for a tumor and recognizing whether it is malignant can have a 

life-changing impact on a patient. Unfortunately, all human perceivers—even radiologists—have 

perceptual biases. Because human perceivers (medical doctors) will, for the foreseeable future, 

be the final judges of whether a tumor is malignant, understanding and mitigating human 

perceptual biases is important. While there has been research on perceptual biases in medical 

image perception tasks, the stimuli used for these studies were highly artificial and often critiqued. 

Realistic stimuli have not been used because it has not been possible to generate or control 

them for psychophysical experiments. Here, we propose to use Generative Adversarial Networks 

(GAN) to create vivid and realistic medical image stimuli that can be used in psychophysical and 

computer vision studies of medical image perception. Our model can generate tumor-like stimuli 

with specified shapes and realistic textures in a controlled manner. Various experiments showed 

the authenticity of our GAN-generated stimuli and the controllability of our model.

Introduction

Because of its significant impact on health and well-being, medical image perception has 

been the focus of a great deal of research [1, 2, 3], from studies on its limits to studies 

on how to improve it. However, researchers often encounter a relative paucity of data and 

resources needed to pursue further investigation. While there are many publicly available 

medical imaging datasets, these are often limited, inadequately annotated, or outdated, e.g., 

The Digital Database for Screening Mammography (DDSM[19]). Moreover, the public 

datasets (e.g.,[5]) are not sufficiently large to support certain research questions.

Therefore, many researchers resort to using their own data from hospitals. Although this 

approach can ensure sufficient data is collected, it is often extracted from small geographic 

areas that are not representative of the broader population. Another issue with this method 

is the tedious and time-consuming process it requires to sort, categorize, and de-identify the 

data, and make it public. Moreover, it requires experts to perform meticulous annotations 

that are costly and time intensive [4]. Finally, and most importantly for the present 

purposes, these types of medical images are specific to each individual patient, which allows 
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almost no room for researchers to manipulate them in order to meet desired experimental 

configurations.

To tackle this problem in psychophysical experiments, artificial medical stimuli have been 

employed [6, 7]. On one hand, artificial stimuli can be easily generated and manipulated, 

such as shape morphing and background replacement. On the other hand, those stimuli are 

obviously fake and completely unlike those that doctors routinely examine. Consequently, 

expert radiologists rightly worry that these psychophysical experiments do not accurately 

represent their daily diagnostic tasks.

Thus, generating authentic and easily controllable medical image stimuli is critical for 

medical image perception studies. Current research in computer vision provides us with a 

promising approach, using Generative Adversarial Networks (GAN). Generative Adversarial 

Networks have been utilized for generating authentic materials [14, 13, 8] for years, such 

as faces, cars, landscapes, and so on. Trained on real image datasets, GAN can generate 

various authentic samples that have similar semantic context to that of real images. Besides 

this, the generation is easily conditioned [8], which means manipulating generated samples 

is possible through the design and the input of the GAN.

Inspired by Generative Adversarial Networks, we utilized this computational model to 

generate medical image stimuli. We then tested our model on mammogram stimuli 

generation. Furthermore, we generated tumor-like stimuli with specified shapes and realistic 

textures using our GAN model, which effectively controls the similarity of the generated 

stimuli. Various experiments showed the authenticity of our GAN-generated stimuli and the 

controllability of our model.

Generative Adversarial Network

A Generative Adversarial Network (GAN) is a powerful deep learning model with two 

networks, i.e., a generator network and a discriminator network [9]. The two networks learn 

from each other in an adversarial way. In summary, the generator produces authentic images 

from random noise vectors and tries to fool the discriminator, while the discriminator tries 

to distinguish the fake samples (generated from generator) from the real samples. The whole 

process can be conceptually described as a minmax game shown in Equation 1, where 

G represents the generator, D represents the discriminator, pdata(x) indicates the real data 

distribution, and pz(z) indicates the noise vector distribution.

min
G

max
D

Ex ∼ pdata x logD x + Ez ∼ pz z log 1 − D G z (1)

Ideally, through the adversarial training, GAN can approximate the real data distribution 

(manifold) parameterized by the generator network. Similar samples between two specific 

samples can be picked along the path between the corresponding points on the manifold. 

This can be done by interpolating the corresponding latent vectors and forwarding them 

through the generator.
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Originally, the training of the Generative Adversarial Network (GAN) was highly unstable 

and many strategies have been proposed to tackle this problem [10, 11, 12, 13]. In this paper, 

we adopt the structure from StyleGAN [14], where the latent space ℒ is first mapped into 

the W space through a non-linear mapping network (an 8-layer MLP) and then merged into 

the synthesis network via adaptive instance normalization (AdaIN) at each convolutional 

layer [15, 16, 17]. Gaussian noise is added after each convolutional layer, before the AdaIN 

layer.

StyleGAN has the ability to generate high-resolution realistic images of faces, cats, 

bedrooms, and cars. It can control the image details from coarse to fine by changing the 

AdaIN parameters and the input noises at different network levels. Using StyleGAN, we 

can easily generate various authentic medical images by changing the input noise vectors. 

However, the generation is unconditional; this means, in order to get the desire input (e.g., 

the mammogram having a specific shape or texture.), we need to pick samples from a large 

number of generated images because we have no control over the attributes of the images 

(e.g., the shape and the texture of the mammogram). It is tedious and time-consuming. 

Moreover, we do not have the latent codes for real data if we want to generate similar 

medical images between two real ones. An intuitive idea is that we can encode the latent 

vector z from the desired medical image. Then the similar medical images can be generated 

by interpolating the corresponding encoded vectors.

Method

To train then utilize the encoder, first, the discriminator and generator of StyleGAN [14] are 

pretrained. Then the generator of styleGAN is fixed. While training the encoder network, 

traditional methods [20, 21] regularize the encoder on the latent space, encouraging the 

encoder to encode the same latent codes for the corresponding generated images regardless 

of the reconstructed images. This method can deteriorate the reconstruction quality. Instead, 

we adopt the idea from In-domain GAN inversion [18], where the regularization of the 

encoder is on the image space. In detail, the encoded vector is fed into the generator again 

and the L2 reconstruction loss regularizes the encoder on the image space. The training is 

conducted on the real data and the adversarial loss helps the reconstructed image to be more 

realistic. Moreover, perceptual loss [22] is utilized. The whole process can be summarized as 

follows

min
E

x − G E x 2 + λ1 F x − F G E x 2

− λ2Ex ∼ pdata x logD G E x (2)

min
D

Ex ∼ pdata x logD G E x − Ex ∼ pdata x logD x

+ γ
2Ex ∼ pdata x [ ∇xD x 2

2]
(3)

where pdata(x) indicates the real data distribution, x is the real image, E represents the 

encoder, F indicates the VGG feature extraction [23], and λ1, λ2 and γ are weights for the 
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perceptual loss, the adversarial loss, and the gradient penalty. An overview of the training 

process can be find in Figure 2.

Since inverse mapping will never be perfect, additional optimization is required for a 

better reconstruction for each image. Starting with the output code from the encoder, the 

optimization updates the encoded vectors based on the reconstruction loss and the perceptual 

loss but is still regularized by the encoder. The optimization process can be described as 

below.

zinv = min
z

x − G E x 2 + λ3 F x − F G z 2

+ λ4 z − E G z 2
(4)

where zinv is the optimized inverse code, λ3 and λ4 are weights for the perceptual loss, and 

the code reconstruction loss (i.e., the encoder regularization).

We test our proposed method on the mammogram generation task. Similar experiments can 

be conducted with different medical imaging modalities.

Perceptual loss

Perceptual loss has been utilized as a similarity metric in many computer vision tasks, 

such as style transfer [24, 25], and image super-resolution [22], both of which are ill-posed 

problems. For style transfer, there is no ground truth to act as a reference. For image super-

resolution, many high-resolution images can be sampled to generate the same low-resolution 

image. In order to achieve the tasks, semantic information of the input images should be 

maintained. Thus, per-pixel loss is no longer suitable since it cannot capture the semantic 

difference between the output and ground truth. For example, in style transfer, there are 

usually drastic changes in color and texture compared to the input images.

Perceptual loss is computed as the difference between high-level features from a pretrained 

loss network which is usually a feature extractor of an image classification network. 

Compared to the per-pixel loss, which depends only on low-level pixel information, 

perceptual loss is more robust in image similarity measurement during training.

Implementation details

We conduct our experiment on Digital Database for Screening Mammography (DDSM) 

[19] dataset which consists of 2,620 cases of normal, benign, and malignant cases. During 

training, we only use the mammograms which have tumors inside, i.e., the benign and 

malignant cases. The GAN part is pretrained based on StyleGAN. The encoder consists of 

one initial convolution, 8 residual blocks, and one dense layer. And the batch normalization 

is utilized for all modules in the encoder. While training the encoder, the generator is fixed. 

Only the encoder and discriminator are updated according to the loss function shown in 

Equation 2 and Equation 3 respectively. For the perceptual loss, we use conv4_3 feature 

layer in VGG [23] as illustrated in [18]. Hyper-parameters are set as λ1 = 5e−5, λ2 = 0.1, λ3 

= 5e−5, λ4 = 2, and γ = 10. And we use the Adam optimizer [27] with β1 = 0.9 and β2 = 

0.99. The learning rate is set to 0.0001
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Mammogram generation

The pretrained StyleGAN[14] approximates the real mammogram distribution (manifold) 

which is parameterized by the generator. Then, the authentic mammograms can be sampled 

from the learned manifold. To do so, we sample latent codes from a normal distribution and 

use the generator to map the latent codes onto the learned manifold.

Mammogram interpolation—Mammogram interpolation is utilized to generate similar 

stimuli between two desired mammograms. Since the GAN generator already approximates 

the real data manifold, similar mammograms can be found between any two mammograms 

on the path that links them on the manifold. Given two latent codes from either 

unconditional generation or encoded from real mammograms, we interpolate the latent 

codes and the generator can help to find one of the linking paths by mapping the interpolated 

latent codes onto the manifold.

Controllable mammogram generation—Controllable mammogram generation is 

utilized to generate similar desired mammograms (i.e. the end points for interpolation). 

With the generator and the encoder network, we can achieve the controllable mammogram 

generation, where we can combine the desired tumor texture with the given shape template.

First, we crop the tumor texture region and paste it onto the shape template. Then, we use 

the encoder to obtain a latent code for this combined raw image. Because the regularization 

of the encoder is on the image space, the latent code can already carry certain semantic 

information from both the shape template mammogram and the tumor texture mammogram. 

Finally, we apply the masked optimization, only using the tumor texture region to compute 

the reconstruction loss.

Human evaluation

To verify the authenticity of our GAN generated mammograms, we designed a judgement 

test where participants were randomly presented 100 mammograms with the same amount 

of real and generated (fake) samples. In this task, they were asked to classify each 

mammogram as real or fake as well as rate their level of confidence with their selection. 

In total, 6 participants were involved.

To make sure participants were paying attention and not guessing randomly, we asked a 

subset of participants to do the judgment test a second time. Participants were not told 

about the second judgment task prior to the first judgment, eliminating any chance that they 

purposely remember their first responses. At last, we compute the test-retest similarity in 

term of the Sokal-Michene metric[26].

Results

In this section, we will show the mammogram stimuli generation quality, the corresponding 

human evaluation result, the interpolation result, and the results when generating 

mammograms given specific shapes and textures.
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Mammogram generation

Examples of the GAN generated samples are shown in Figure 1 (c). A particular example 

from previous study [6] consists of naive morphed shapes (tumors) and healthy mammogram 

backgrounds, which are obviously fake and do not represent realistic stimuli for radiologists. 

It is clear that our mammogram generation can mimic the texture for both tumor and 

non-tumor regions and has reasonable shapes compared to real mammograms.

Mammogram interpolation—The interpolation results are shown in Figure 3. Through 

the interpolation, the mammograms change gradually from one to the other and they are 

similar to the neighboring images. Moreover, through the interpolation, we can generate a 

similar stimuli loop where the stimuli gradually changing from image A to image B, then to 

image C, and finally back to image A, as shown in Figure 3.

Controllable mammogram generation—The final results compared with the tumor 

texture mammogram, shape template mammograms, directly stitching results, traditional 

image blending results, and the results without final optimization (i.e., directly generated 

from the encoder output), are shown shown in Figure 4. For the traditional image blending 

results, though it blends the tumor texture region into the shape template mammogram, the 

surrounding region of the tumor is not realistic compared to our GAN generated results. The 

results directly generated from the encoder outputs do not have the same tumor texture as 

given. It is clear that only results obtained after optimization have the same tumor texture 

and shape as given.

Human evaluation

The performance of the judgement test participants in terms of the Receiver Operating 

Characteristic (ROC) curve is shown in Figure 5. The Receiver Operating Characteristic 

(ROC) curve is a plot which can indicate the ability of a binary classifier as its 

discrimination threshold is changing. A ROC curve that is close to the diagonal indicates 

performance at chance level. A ROC curve that is close to upper left corner indicates 

stronger discrimination power. For all the participants, their performance curves are near the 

diagonal, which is near chance discrimination performance, and the d’ is 0.02 on average, 

which indicates that the generated mammograms appeared authentic.

The test-retest similarity in term of the Sokal-Michene metric[26] is shown after each 

participant initial in Figure 5. The high similarities indicate that participants did not just 

randomly guess the mammogram label.

Discussion

While other methods [28] can only achieve unconditional mammogram generation, our 

method provides control over the shape and texture of the generated mammograms. Since 

the stimuli used in psychophysical experiments of medical image perception often need to 

be similar and controllable, we can manually combine the desired tumor texture with the 

similar shape templates to create the required stimuli. Therefore, this work largely benefits 
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psychophysical experiments by establishing the ability to manipulate and control life-like 

medical images.

Summary

We proposed to use the Generative Adversarial Network to generate medical image stimuli 

for studies of medical image perception. Similar medical image stimuli can be generated 

through the interpolation of the corresponding latent codes. Desired stimuli can be manually 

combined with desired attributes, e.g. object shape and tumor texture, in a controllable 

manner. We tested our method on the mammogram stimuli generation task. Empirically, 

we proved the authenticity of our synthesized mammograms with a psychophysical 

discrimination task.
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Figure 1. 
Comparison of (a) real mammograms, (b)stimuli used in previous studies [6], and (c)our 

GAN generated mammograms. A particular example from previous study consists of naive 

morphed shapes (tumors) and healthy mammogram backgrounds, which are obviously fake 

and do not represent realistic stimuli for radiologists. It is clear that our mammogram 

generation can mimic the texture for both tumor and non-tumor regions and they have 

reasonable shapes compared to real mammograms.
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Figure 2. 
Overview of proposed method. The generator (G) and discriminator (D) are from 

StyleGAN[14]. The training has two phases. In the first phase, the generator and 

discriminator will be trained first without the encoder (E) via adversarial loss Ladversarial. 

In the second phase, the generator (G) will be fixed. The encoder (E) and discriminator (D) 

will be trained adversarially via the reconstruction loss Lreconstruction, the perceptual loss 

Lperceptual, and the adversarial loss Ladversarial. The dashed lines indicate how to compute the 

corresponding loss metrics.
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Figure 3. 
Mammogram interpolation result. Here we evenly pick three mammograms along the 

interpolation just for illustration. We show that we can generate a similar stimuli loop where 

the mammogram can gradually change into other mammograms, and finally change back.
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Figure 4. 
Controllable mammogram generation results. We compared our final results with the 

traditional image blending method and the results without final optimization (i.e., directly 

generated from the encoder output). It is clear that only the results after final optimization 

have the same tumor texture and shapes as given.
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Figure 5. 
Human judgement test for our mammogram generation quality. All the Receiver 

Operating Characteristic (ROC) curves lie near the diagonal, indicating that our generated 

mammogram successfully fooled participants. The high test-retest similarities indicate that 

participants did not just randomly guess the result.
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