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A Bond-Order Time Series Reaction Event Classifier and a Semi-Automated Tinker

Polarizable Force Field Initialization Method

ABSTRACT

Exploratory chemistry is an important branch of computational chemistry where precur-

sor molecules are simulated in reaction-prone conditions without pre-supposed hypotheses.

These molecular dynamics simulations can yield many unexpected reaction pathways, con-

firming existing mechanisms or suggesting new ones. Decreasing cost of hardware and in-

creasing savviness of software make it enticing to explore reaction spaces in this un-guided

manner. However, reactions are still rare events buried in data where the molecules spend

most of their time not clearing reaction barriers. Therefore, advanced data processing tech-

niques that can parse the simulations for reaction events with high accuracy are valuable in

a field with ever increasing data generation.

In this work, a method is described in Chapter 2 which addresses the problem of ex-

tracting valuable reaction location data from exploratory simulations with high accuracy

and low cost. The method uses first derivatives on bond order time series obtained from Ab

Initio molecular dynamics data to predict temporal reaction locations with high accuracy

and speed. The two tunable parameters (low pass filtering cutoff and threshold placement

on the derivative) are parameterized against a “gold standard” approach that represents the

ideal data processing scenario given infinite time and computing resources. This reaction

event classifier is showcased on two single-molecule reactive test systems. The first, simpler

test case being a heptanylium alkyl carbocation, C7H15
+. The other more complicated sys-

tem is Fe3(CO)9, which is a highly unsaturated iron carbonyl cluster. The effectiveness of

the reaction event classifier is analyzed for both systems using heat maps and other custom

plots and metrics.

Deep Eutectic Solvents (DESs) are a relatively new type of mixture which exhibits similar

properties to ionic liquids, but with lower cost and environmental impact. Until recently,
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most force fields describing DESs were not polarizable and therefore lacked certain behaviors

created by their extremely partially-charged environment. This second project began with

the goal of creating a polarizable force field for DESs, but eventually morphed into creating

a program to automate the Tinker polarizable force field initialization process with Python.

The test molecule for refining the initialization process is urea. Urea is a hydrogen bond-

donor which when paired with choline chloride in the correct whole-number ratio create a

DES. A semi-automated Python method which creates polarizable Tinker force fields with

simple setup is explained.
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1 Introduction

The PhD work contained in this document is centered on two main projects that are fairly

disparate. The first project is described in Chapter 2 and deals with processing quantum

mechanics (Section 1 .1) data obtained via exploratory chemistry (Section 1 .2). The second

project is described in Chapter 3 and deals with developing molecular mechanics methods

(Section 1 .3) to study deep eutectic solvents (Section 1 .4).

1 .1 Quantum Mechanics Methods

Humanity’s journey towards quantum mechanics (QM) started a long time ago with scientists

and thinkers speculating about the smallest indivisible units of matter. Over time, atoms

were discovered and chemical study began. But it was the discovery of the electron by J.J.

Thompson with his cathode ray tube experiment that was the monumental step towards

what is known as quantum chemistry today. He discovered not only that the ray consisted

of negatively charged particles, but also that they were smaller than atoms.2 In addition

to those observations, he obtained a charge to mass ratio of those “corpuscles” the world

would come to know as electrons. Thompson then developed the “plum pudding” model

of the electrons where the electrons are dispensed throughout a diffuse positive charge like

raisins amidst the namesake British dessert. The idea of diffuse charge central to the “plum

pudding” model was then disproved by Ernest Rutherford’s famous gold foil experiment

(also known as the Geiger–Marsden experiment). The experiment conducted by Rutherford’s

group involved directing a beam of α particles at an atomically thin gold foil with a detector

behind it. The majority of the α particles passed directly through the foil, experiencing

essentially no deflection. But the scientists moved their detector and observed some particles

deflecting at large angles, even back towards the emitter. The only way those energetic α

particles could deflect in such a manner was if the positive charges of the gold atoms were

incredibly dense.3 With this new knowledge, Rutherford posed a different model of the atom,
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one where the electrons orbited around a small, dense nucleus of positive charge.

The idea of an atomic nucleus was carried forward as the concept of the atom improved

with Niels Bohr’s model (presented together with Rutherford). The Bohr model of the atom

suggested that the electrons traveled around the nucleus in certain allowed orbits. He was

able to explain the hydrogen emission spectrum with this model. Earlier, Johannes Rydberg

came up with an empirical formula that, for unknown reasons at that time, fit the emission

spectra of hydrogen:4,5

1

λ
= RH

( 1

n1

2

− 1

n2

2)
, for n2 > n1 (1)

where λ is the wavelength associated with the transition, RH is the the Rydberg constant,

and the n values are what Bohr realized are whole numbers representing allowed orbits. The

Rydberg Equation (Equation 1) for hydrogen was manifest in the Bohr model and with that

model, Bohr was able to calculate and verify the previously empirical Rydberg constant.

Another important milestone in the history of QM was Louis de Broglie’s hypothesis of

that electrons exhibit both wave and particle-like behavior. This was later extended from

just electrons to all matter. The de Broglie equation, relating wavelength and momentum,

was born in part from the ideas of Max Planck and Albert Einstein.6

Ephoton = hν (2)

When analyzing the photoelectric effect, Einstein proposed that light existed as packets of

discrete energy (later designated photons). Equation 2 expresses the energy of a photon

in terms of h, Planck’s Constant, and ν, the frequency. It was the previous discoveries of

photons from the photoelectric effect that helped guide de Broglie’s theory on the wave-

particle duality of electrons. The addition of physically motivated boundary conditions to

the matter and light waves gave rise to discrete energy levels, and discreteness is otherwise

known as quantization. Quantization is where QM diverges from classical mechanics.

The culmination of these experiments, hypotheses, and contributions over the years was
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when Erwin Schrödinger posed the Schrödinger equation:

ĤΨ = EΨ (3)

where Ψ is a wavefunction which contains all the information about a system, Ĥ is the Hamil-

tonian operator, and E is an energy eigenvalue. Schrödinger realized that the system had

to be treated as a wave and devised an operator to measure energy. The time-independent

Schrödinger Equation for a 1D system is:

(−~2
2m

d2

dx2
+ V (x)

)
ψ(x) = Eψ(x) (4)

In Equation 4, the Hamiltonian operator has a kinetic energy component containing a second

derivative and also potential energy represented by V (x). The 1D Schrödinger Equation is

a convenient starting point when studying QM. Equation 4 is typically first applied to the

(mostly) hypothetical system of a particle in a 1D box with walls of infinite potential and a

potential of zero inside the box.7 From this system, one can see the wave-like character of

the particle emerging once the sinusoidal, quantized solutions emerge. From the foundation

of the 1D system, the dimensionality can be increased and the Hamiltonian operator and

wavefunctions both increase in complexity. However, problems solving the Hamiltonian

are encountered once additional electrons are added to the system. Equation 5 is the 3D

Hamiltonian operator for a many electron atom (already assuming the Born-Oppenheimer

approximation of fixed nuclear positions):

Ĥ =
N∑
i

−~2

2m

( ∂2
∂x2i

+
∂2

∂y2i
+

∂2

∂z2i

)
+

N∑
i

−Ze2

4πε0ri
+

N∑
i

N∑
j>i

e2

4πε0rij
(5)

where N is the number of electrons, Z is the atomic number ri is the electron-nuclear

distance, and rij is the electron-electron distance. Because the variables cannot be separated

in the electron-electron repulsion term at the end of Equation 5, it causes the Schrödinger
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equation to not have an exact solution for systems with more than one electron.

1 .1.1 Hartree Fock

One way to approach the dilemma caused by the electron-electron repulsion term in Equa-

tion 5 is with the Hartree Fock (HF) method. HF begins by creating molecular orbital (MO)

wavefunctions out of a linear combination of primitive one-electron atomic orbitals:

Φ(r)i =
N∑
n=j

cjiφ(r)j (6)

where N is the number of electrons, Φ(r)i is the ith molecular orbital, cji is the jth coefficient

associated with φ(r)j the one-electron orbital. Building wavefunctions using atomic basis

functions is convenient because variance in electronic character can be expressed by increasing

or decreasing the contributions of individual atomic orbitals. The next step in HF is the

application of the variational principle to the MOs from Equation 6. A secular determinant

emerges from applying the variational principle to the trial MO wavefunction and minimizing

the energy: ∣∣∣∣∣∣∣∣∣∣∣∣∣

H11 − ES11 H12 − ES12 . . . H1N − ES1N

H21 − ES21 H22 − ES22 . . . H2N − ES2N

...
...

. . .
...

HN1 − ESN1 HN2 − ESN2 . . . HNN − ESNN

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0 (7)

where H is the Hamiltonian integral, E is the energy, and S is the overlap integral. Because

HF uses a time-independent Hamiltonian, the expectation value of the energy of any trial

wavefunction will always be an upper bound to the true ground state energy. This allows

HF to use a basis set of orbitals to define each MO and minimize the energy with respect to

the wavefunction coefficients. In HF methods, the Slater determinant is a convenient means

of expressing the many electron wavefunction because it naturally preserves anti-symmetry
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of the electrons with respect to exchange:

Ψ(x1,x2, ...xN) =
1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣∣

χ1x1 χ2x1 . . . χNx1

χ1x2 χ2x2 . . . χNx2

...
...

. . .
...

χ1xN χ2xN . . . χNxN

∣∣∣∣∣∣∣∣∣∣∣∣∣
(8)

where χi is the ith spin orbital and xi is the coordinates of electron i.

Even with the usage of a basis set and Slater determinants, there is still the issue en-

countered in Equation 5 where the electron-electron repulsion term cannot be solved exactly.

HF accounts for electron-electron repulsion by first beginning with an assumption of non-

interacting electrons in order to create a simpler Hamiltonian. Removing electron-electron

interactions allows the Hamiltonian to be written as:

Ĥelec =
N∑
n=1

ĥ(i) (9)

where Ĥelec is the electronic Hamiltonian which has become a sum of one-electron Hamil-

tonians, N is the number of electrons and ĥ(i) is a one-electron Hamiltonian defined using

atomic units here:

ĥ(i) = −1

2
∇2
i −

M∑
A=1

ZA
riA

(10)

where in Equation 10, the first term is the kinetic energy and the second term is the electron-

nuclear potential where M is the number of nuclei.

A consequence of Equation 10 is that each individual electron i would have a spin orbital

(spatial and spin components) that is an eigenfunction of ĥ(i):

ĥ(i)χ(xi) = εχ(xi) (11)

where χ(xi) is the spin orbital and ε is the orbital energy. Because each one-electron Hamil-
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tonian has an energy eigenvalue, the wavefunction that is a eigenfunction of Ĥelec from

Equation 9 can be written as:

Ψ({xi}) =
N∏
i=1

χi(xi) (12)

where Ψ({xi}) is simply a product of N electron spin orbitals referred to as a Hartree

product. However, as written in Equation 12, the Hartree product is treating the electrons

as distinguishable when they should be treated as indistinguishable. This is addressed by

expressing the wavefunction as a Slater determinant like in Equation 8.

With non-interacting wavefunctions established, the next step is to try and reclaim the

accuracy lost from Ĥelec by removing electron interaction. The Fock approximation uses

the non-interacting Hamiltonian as a foundation and includes a correction factor. The one-

electron form of the Fock operator is:

F̂ (i) = ĥ(i) + v̂HF (i) (13)

where F̂ is the Fock operator, ĥ is the one-electron ”core” Hamiltonian from Equations 10-

11, and v̂HF is the mean field operator, each operating on the ith electron. The mean field

operator is named such because for a given electron it is a potential created by averaging

the contributions of the other N − 1 electrons. Because v̂HF depends on each other electron

(and what their spin orbitals are), F̂ cannot simply be solved for one electron. It must be

solved for all electrons simultaneously. The v̂HF term in the Fock operator can be expanded

as a sum on two-electron operators:

F̂ (i) = ĥcore(i) +
N∑
j

[2Ĵj(i)− K̂j(i)] (14)

The HF method maintains the separable portion of the Hamiltonian (the first two terms of

Equation 5) as ĥcore and introduces the Ĵj Coulomb operator and the K̂j exchange operator.

Together Ĵj and K̂j create the mean field term. In HF the correlation energy is defined as
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the difference between the HF energy and the (often unattainable) exact solution.

HF employs the variational theorem in a self-consistent field (SCF) approach using a basis

set of spin orbitals and can be represented entirely in a matrix form.8,9 The wavefunction is

represented by a summation of the basis functions each multiplied by a coefficient:

ψi =
k∑

µ=1

cµiχµ (15)

where cµi is the ith coefficient and χµ is the µth basis function out of k total. The energy in

terms of the basis is found by solving:

FC = SCε (16)

With F as the Fock matrix, C as the coefficient matrix, S as the overlap matrix, and ε as

the energy. Equation 15 would be the ith column of C and ε is a diagonal matrix containing

the energy eigenvalues. The SCF approach is necessary because F is needed to determine C

and vice versa. A starting guess is obtained for the density matrix which is used to obtain

F which can be used to obtain C which is then used to obtain a new density matrix. The

iterations continue until a convergence threshold is met and the process is self-consistent.

However, because HF omits the correlation energy, it is limited in its accuracy. After the

advent of HF, methods emerged using the HF foundation but employing various techniques

to account for HF’s missing correlation energy. Determining correlation energy allows these

approaches (known as post-HF methods) to achieve much higher energy accuracy than HF.

MPn (n = 2 is common) adds correction factors up to order n onto the HF energy using

perturbation theory.10,11 Configuration Interaction (CI) is another post-HF method, but CI

is a variational method which uses a linear combination of Slater determinants to describe

the wavefunction.12 CI is more accurate than MPn methods and the limit of an complete

basis set together with full CI is the exact solution.13–15
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1 .1.2 Density Functional Theory

A drawback of HF and post-HF methods is how rapidly the complexity scales with increasing

system size. HF requires 3N spatial and N spin coordinates for an N electron system, so

large molecules are computationally costly to evaluate. Density Functional Theory (DFT)

offers an alternative solution for determining the wavefunction and energy that only ever

(in principle) requires three spatial coordinates.16 However, hybrid DFT methods (which

incorporate parts of HF) do scale the same as HF, but are still useful because of accuracy

gains by including electron correlation. Inclusion of electron correlation is another advantage

of DFT over HF. The first Hohenberg-Kohn theorem (of which DFT is born) states that

the ground state wavefunction of a multi-electron system is uniquely determined by its

electron density.17 This electron density is a function of only three spatial coordinates. The

second Hohenberg-Kohn theorem builds upon the first and states that there exists an energy

functional (i.e. a mapping from a function to a scalar) that is minimized by the ground state

electron density.18 This second theorem is shown in Equation 17:

E[ρ] = F [ρ] +

∫
ρ(r)Vext(r)dr (17)

where E[ρ] is the energy, F [ρ] is the proposed functional, Vext(r) is the external potential

(in chemistry, the nuclear potential), and ρ is the electron density. E[ρ] is equal to E0

when ρ is equal to ρ0. In other words, E[ρ] can be minimized to approach the true value of

the energy. The functional in Equation 17 acts as a sort of correction term for the absent

correlation components of the total energy. However, although Hohenberg-Kohn showed

that F [ρ] existed and knew some aspects about it, F [ρ] itself was unknown.

The F [ρ] hurdle was then overcome by Kohn and Sham when they found a way to

approximate the electron kinetic energy and turn DFT into an actual method. Starting with

a proposed system of non-interacting electrons, Kohn and Sham were able to simplify the

Hamiltonian to a sum of one-electron operators and express the density using an orbital

8



basis set.19 The Kohn-Sham (KS) potential resulting from the KS Hamiltonian shows what

the energy components look like after starting from non-interacting electrons:

E[ρ] = TKS[ρ] +

∫
drVext[r]ρ(r) + EHartree[ρ] + Exc[ρ] (18)

here TKS[ρ] is the KS non-interacting kinetic energy, the integral term is the external po-

tential, EHartree[ρ] is the Hartree (Coulomb) energy, and Exc[ρ] is the exchange-correlation

energy. However, TKS[ρ] is not purely a function of ρ and depends on the KS orbitals ψi as

seen in Equation 19:

TKS[ρ] =
N∑
n=1

∫
drψ∗i (r)

(
− ~2

2m
∇2
)
ψi(r) (19)

The Exc[ρ] in Equation 18 term also importantly contains correction factors to account for

the missing interaction portions of both kinetic energy and potential energy. Interestingly,

if orbitals were introduced to Exc[ρ] and TKS[ρ] and if Exc[ρ] was set equal to the exact

Hartree exchange, then DFT would reproduce HF. Hybrid functionals such as B3LYP mix

in a portion of HF exchange into their DFT exchange to increase their accuracy.20–23 The

electron density is expressed as:

ρ(r) =
N∑
i

|ψi(r)|2 (20)

where ψi(r) is a KS orbital. The orbital basis set allows for DFT energy to be solved similar

to HF by driving density towards self-consistency.

An important part of using DFT is the choice of functional. One straightforward type

of functional was proposed by Kohn and Sham themselves and has become the local density

approximation (LDA) class of functionals.19,24 LDA uses an Exc term that depends only on

ρ as a function of r, the “local density”. A uniform electron gas is often the foundation of

creating the Exc term for LDA. The exchange portion can be exactly obtained for a uniform

electron gas, but the correlation portion requires more work. The total energy for various

densities of electron gases was obtained by Ceperley and Alder which led to correlation
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energy being obtained by subtracting out the exchange energy from the total energy.22,25

Another functional type is generalized gradient approximation (GGA). GGA functionals

include the density and the first derivative and predicts bonds that are not overly stiff

like those predicted by LDA.26 Examples of GGA include PW91, PBE, and BLYP.21,27–29

Another class of DFT functional are the hybrids. These are not pure DFT functionals, but

have a built in contribution of exact exchange from HF. Examples of hybrids include B3LYP

and TPSSH.20,23,30 If building a hierarchy of (ascending/increasing) chemical accuracy for

DFT functionals, the LDA class is the bottom tier, then GGA, and the variations of hybrid

functionals form the top tier.31

Whether using HF or DFT to simulate molecular systems, the first step is to create

molecular coordinates. The molecular coordinates contain the nuclear positions which are

used to calculate the energy. QM methods like HF and DFT use the electrons (or elec-

tron density) to compute the energy according to the current nuclear positions. Molecular

mechanics (MM) methods (Section 1 .3) do not account for electrons and instead calculate

energy based solely on nuclear positions. MM methods are created by summing calibrated

functions of nuclear positions that approach experimental and QM accuracy through param-

eter tuning. However, both QM and MM simulate molecular dynamics (MD) in a similar

fashion, even with drastically different approaches to how energy is obtained. In order to

progress an MD simulation through time, nuclear positions and velocities are needed for each

atom at each time step. When combined with the time step, the velocities determine how

far (and in which direction) the nuclei move. The positions and velocities for each time step

are obtained from the current energy of the system after it has been converted to a force.

Force can be obtained from the energy of the system by taking the negative derivative of the

potential:

F = −∇V (r) (21)

where F is the force and ∇V is the potential. Position and velocity can be obtained from

the energy by setting the force in Equation 21 equal to the force from Newton’s second law
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of motion:

F = ma (22)

where F is the force, m is the mass, and a is the acceleration. Setting Equations 21 and 22

equal allows the potential energy to directly inform the acceleration, and therefore, the nu-

clear positions and velocities. There are various integrators that each use a unique approach

to update positions and velocites such as Verlet, Velocity Verlet, Predictor-Corrector, and

Runge-Kutta.32,33 The general pattern of integrators is to use position to find the force/po-

tential, the force/potential determines velocity, and the velocity determines a new position

to restart the cycle.

1 .2 Exploratory Chemistry

With the increasing availability and cheaper cost of computer hardware and software, compu-

tational chemists are no longer required to only run hypothesis-driven simulations. Because

computing resources have become abundant, it is possible to engage in exploratory chem-

istry. Traditionally, chemical analysis begins with a question and then trials and experiments

to answer it. Exploratory chemistry is set up by initializing a collection of molecules un-

der reactive conditions, without predisposed hypotheses, and observing the outcome. New,

unintuitive reactions can be uncovered or existing reactions can be shown to occur with

new pathways. Hypothesis-driven computational chemistry was necessary when resources

were more scarce. Simulations had to be carefully selected because the cost of potentially

“wasting” resources was high. However, hypotheses/ideas in the form of chemical intuition

is still very important in exploratory chemistry when choosing precursor molecules and ex-

perimental setup. Otherwise, computing resources could still be wasted if initial setup was

not properly thought through. Exploratory chemistry does not require generating exceed-

ingly specific reaction path hypotheses, and can instead map out vast reaction networks

including unintuitive reaction pathways. These reaction networks emerging from unguided
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experiments are a popular means of generating new chemical questions and answers.

A recent example of exploratory chemistry in action is the ab Initio Nanoreactor.34 The

Nanoreactor is a simulation environment that takes collections of molecules or atoms and

induces reaction events. The reaction events are encouraged periodically over the course of

molecuar dynamics (MD) simulations with a virtual, spherical piston. The piston serves as

a means of increasing the energy and inducing collisions.

Reactions are rare events and can be sparse (or even impossible to observe) in the time-

frames of molecular simulation. By artificially accelerating collisions and overcoming energy

barriers, the Nanoreactor causes a myriad of reactions occur in a short time frame. The MD

trajectory is then parsed for reaction events and energy pathways are created between the

reactant-product pairs that emerged from the simulation. The proposed reaction pathways

can then be vetted for viability by calculating the heights of energy barriers. This process

yields unintuitive reactant-product pairs as well as unexpected reaction pathways which can

spark new hypotheses.

Catalysis is an area with great exploratory chemistry interest and ongoing efforts. Cat-

alysts provide value to industry by lowering reaction barriers to increase reaction rates, but

do not have a universal theoretical approach for computational discovery.35 Many efforts are

being made to mine existing catalyst data and explore the vast candidate space. Ulissi et

al. created hydrocarbon surface reaction networks by using DFT to model the likely rate-

limiting step candidates and treated the less important steps in the network with surrogate

models based on known catalyst trends.36 That technique allows for rapid and unbiased reac-

tion pathway searching by diverting resources towards more chemically significant steps out

of the possible thousands. Another tool for exploring catalyst reaction networks is the Reac-

tion Mechanism Generator (RMG).37 RMG is an open source method that uses graphs and

trees to connect molecules to each other and build reaction networks. The recent 3.0 version

update of RMG now includes capability to map out heterogeneous catalyst models.38,39

Another innovation for autonomous reaction network exploration is Chemoton (currently
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version 2.0).40,41 Chemoton uses multiple low-dimensional potential energy surfaces to

quickly parse elementary reactions and graph a reaction network. Global reaction route

mapping (GRRM) is another exploratory chemistry approach which uses QM to automati-

cally explore isomers, synthetic routes, and dissociation channels.42,43 ZStruct uses a growing

string method to form a reaction path by adding nodes/structures until encountering a re-

actant and product pair separated by a transition state.44,45 In addition to those mentioned

above, there are many other exploratory chemistry techniques in use and being actively

developed.

1 .2.1 Data Processing

As exploratory chemistry methods refine over time and computational costs continue to

drop, unguided simulations are becoming more popular. However, one significant hurdle

when simulating exploratory chemistry is the processing the vast amounts of data that are

generated. The uncertain outcomes and variety of candidate starting molecular ensembles

lead to many long simulations. It is expected that reactions are occurring throughout these

simulations, and so a major issue is knowing how to process all that data. One dilemma is how

to even define a reaction event. Scientists have to find clever ways to impart their chemical

intuition into automating the data processing steps. Systematic definitions of reacted and

unreacted molecules are required.

There are many ongoing efforts in exploratory chemistry involving enhanced rare event

sampling and/or reaction-dense data processing.46 One recent example is the CARNOT

software. CARNOT simultaneously simulates combustion reactions and can separate out

interesting fragments and search for plausible pathways without bias.47 Another example is

the AutoMeKin (AMK) package. AMK exists in many variants, and among other things, it

can automatically screen for transition state candidates using MD to generate guesses.48,49

Rice et al. took on the challenge of identifying reaction events buried in MD simulation data

with a combination of bond length and vibrational metrics.50 The work in chapter 2 joins
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these efforts and attempts to address the challenge of defining and detecting reaction events

within simulations.

1 .3 Molecular Mechanics Methods

With infinite time and resources, the optimal choice for computational chemistry studies

would be to use the best QM software available. However, when actually optimizing method

choice for accuracy and cost, compromises must be made. Molecular Mechanics (MM)

force fields are a low cost alternative to QM that for many use cases does not sacrifice too

much accuracy. Not only accuracy is sacrificed, but MM methods cannot simulate chemical

reactions (specifically, changes in atom connectivity). However, certain force fields such as

ReaxFF have introduced reactivity into MM. ReaxFF uses atomic distances to calculate bond

orders and uses bond orders to introduce connection-dependant terms into their force fields

to allow implicit electronic bonding interactions.51–53 Despite these and other advances, MM

methods fundamentally lack the detail of QM, but are useful because of their significant cost

and scaling advantages. The ability of MM to deal with large, bio-molecule scale simulations

means MM play a large role in the computational chemistry landscape. Once systems grow

to the size of many atoms and many more electrons MM is often used instead of QM. There

exist some hybrid MM/QM approaches that use MM for the majority of the system and QM

for the specific small region of interest, but that is not the focus of the projects herein.54

Where QM differs from MM is how the potential energy is obtained. QM obtains energy

by solving an electronic problem with HF, post-HF methods, or DFT whereas MM directly

obtains it from nuclear coordinates. In MM force fields, molecules are approximated with

ball and stick models and energy is computed more quickly and less costly by approximating

interactions with simple expressions. By starting from simple expressions, a force field builder

can refine the approximations by adding more terms or improving the equations representing

terms. MM force fields components can be separated into two major categories: bonding

and non-bonded.
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1 .3.1 A Simple Force Field

A simple force field can be built by including a number of bonding and non-bonded compo-

nents such as the ones listed in Equation 23.

Etotal = Ebond + Eangle + Etorsion + Eelectrostatic + Evdw (23)

The bond term of a simple force field can be created by capturing two-body bond-stretching

interactions with a simple Hooke’s law expression as seen in Equation 24:

Ebond =
1

2
kb(r − r0) (24)

where kb is a spring constant unique to the element pair, r0 is the equilibrium bond length,

and r is the measured bond length. One way to approximate the three-body angle-bending

interactions is with a harmonic potential as seen in Equation 25:

Eangle =
1

2
ka(θ − θ0)2 (25)

Where ka is a force constant, θ0 is the equilibrium angle, and θ is the measured angle. Four-

body torsions (also known as dihedrals) can be approximated with a cosine series expansion

as shown in Equation 26:55

EABCD
torsion(ω) =

∑
n=1

Vn cos (nω) (26)

where for connected atoms ABCD, Vn is a force constant, n is the multiplicity, and ω is the

torsion angle.Torsions measure the strain/interaction between four atoms, three bonds apart

using an angle formed by looking down the B-C atom internuclear axis and measuring the

angle the A-B and C-D bonds make with respect to each other.

Each term in a force field has adjustable parameters which need to be selected and/or

tuned for each of the elements involved. Five-body and higher order terms are not always in-
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cluded because of diminishing returns regarding energy accuracy. Higher order terms increase

the cost typically without a profound impact on the accuracy, though some CHARMM force

fields have found value in protein structure simulations by including five-body terms.56–58

Despite not including higher order terms, force fields can be made more accurate through

comparison to trusted data. Scientists tune force field parameters to fit QM and experi-

mental data such as energy, density, vibrational frequency, and many more metrics.59 Well

tuned force fields can accurately reflect the desired behavior of molecules.

The first of the non-bonded terms of a simple force field mimics van der Waals (VDW)

interactions. VDW interactions can be described in a force field with the Lennard Jones

potential which is shown in Equation 27:

Evdw = 4ε
[(σ
r

)12
−
(σ
r

)6]
(27)

where r is the distance between atoms, ε is the well depth, and σ is a separation term which

controls the distance between E = 0 and the exponential spike. The Lennard Jones potential

very cleanly and simply mimics the non-bonded potential well of two atoms approaching each

other. Short range repulsion emerges when r approaches zero and the energy goes to zero as r

approaches infinity. The second simple non-bonded term involving electrostatic interactions

can be approximated by with Coulomb’s Law shown in Equation 28:

Eelectrostatic =
qiqj

4πε0rij
(28)

where the q terms represent charges in space and rij represents the distance separating

them. As with the bonded terms, both force field components and their accompanying

parameters can be further refined to better reproduce the desired chemical attributes of

both QM and experimental studies. However, even simple force fields can capture relevant

chemical behaviors.

Some force fields include terms to account for molecular polarizability. Depending on
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the intended application, many force fields exclude these terms. However, simulation of

certain molecular behaviors can be improved by including polarizability terms. Warshel et

al. showed this by comparing cation-valinomycin binding energies in polariazable and non-

polarizable force fields.60 They found that while polarizable force fields better replicated

experimental binding energies of monovalent cations, nonpolarizable force fields were not

too far off. However, when they analyzed binding energies of divalent cations, polarizable

force fields were extremely close to experiments and nonpolarizable were multiple kcal/mol

incorrect for each ion. Even the relative binding energies in the nonpolarizable case were

incorrect. On the other hand, Kamenik et al. compared protein folding in polarizable and

non-polarizable force fields and found that their choice of polarizable force field actually

under-performed their non-polarizable choices.61 However, they were only comparing one

polarizable force field to three non-polarizable force fields, and that polarizable force field

has since had that specific issue corrected in a later update.62 It is expected that introduc-

ing polarizability to force fields improves their non-bonding interactions and therefore their

overall accuracy, but it cannot be assumed. It is worth implementing polarizable force fields

and measuring them against experimental data and non-polarizable force fields to see if the

additional computational cost delivers measurably better results.

1 .4 Deep Eutectic Solvents

Deep Eutectic Solvents (DESs) are a relatively new field with exciting potential.63 A eutectic

mixture is created upon mixing two molecules in the correct whole-number ratio such that

the resulting mixture has a lower melting point than either individual component. In other

words, two solids can be mixed to create a liquid mixture. Eutectic mixtures are achieved by

using Lewis or Brønsted-Lowry acids and bases to create hydrogen bonding intermolecular

interactions.64 DESs are often compared to Ionic Liquids (ILs) since they are both partial

charge-rich solvents. Formation of DESs is different from ILs which are simply anion-cation

pairs attracted by Columb potential.65 However, DESs and ILs occupy a similar usage space
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even though are fundamentally different.

The prevalence of strong partial charges helps give DESs character similar to that of

ILs. ILs have low vapor pressure, an ion-rich conductive environment, and high chemical

and thermal stability.66–68 They have incredible variety due to the fact that their properties

can be tuned with ion selection or mixing with other ionic liquids. ILs are differentiated

from molten salts by the fact that they have been designed to be liquid at temperatures

less than 100◦C.69 These lower melting points are achieved by pairing large cations with

large anions which greatly reduces the Coulomb interaction. ILs play a role in solvating

industrial chemical processes such as manufacturing of batteries, superconductors, and solar

cells. However, some classes of ILs (like those that contain halogens) are not ideal solvents

because of the risk they pose to the environment.65 DESs are a promising alternative to ILs

because they are inexpensive to create and less toxic to the environment.70,71

DESs can be created by mixing a quaternary ionic compound with a metal salt of a hy-

drogen bond donor.72 Choline chloride is a popular quaternary ionic compound for building

DESs. DESs have vast variety and tunability because of the numerous candidate hydro-

gen bond donors. Simple changes to hydrogen bond donor size and chemical character can

change the viscosity, density and numerous other attributes to favor desired use cases.

DESs are important to study computationally, not only because of their intrinsic value

as industrial solvents, but because they are tunable. Greater understanding of their prop-

erties and behavior can help elucidate undiscovered DES combinations with better features.

DESs are used in organic and inorganic extraction, formation of gels, metal processing and

plating, synthesis, and more.64,65,73 There are active studies both experimentally and com-

putationally into how to utilize and create new DESs. Chapter 3 showcases a method for

semi-automated initialization of polarizable force fields with DES ingredient urea.
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2 Bond-Order Time Series Analysis for Detecting Re-

action Events in Ab Initio Molecular Dynamics Sim-

ulations1

2 .1 Abstract

Ab initio molecular dynamics is able to predict novel reaction mechanisms by directly ob-

serving the individual reaction events that occur in simulation trajectories. In this article, we

describe an approach for detecting reaction events from simulation trajectories using a phys-

ically motivated model based on time series analysis of ab initio bond orders. We found that

applying a threshold to the bond order was insufficient for accurate detection, whereas peak

finding on the first time derivative resulted in significantly improved accuracy. The model

is trained on a reference set of reaction events representing the ideal result given unlimited

computing resources. Our study includes two model systems: a heptanylium carbocation

that undergoes hydride shifts, and an unsaturated iron carbonyl cluster that features CO

ligand migration and bridging behavior. The results indicate a high level of promise for this

analysis approach to be used in mechanistic analysis of reactive AIMD simulations more

generally.

2 .2 Introduction

A central goal of theoretical chemistry is to provide sufficient insight into reactivity at the

molecular scale to inform the design of experiments including reaction routes, reaction con-

ditions, and catalysis.74–76 Computational studies of reaction mechanisms often start by hy-

pothesizing a reaction pathway from chemical intuition, followed by calculating the minimum

energy path and associated critical points (reactant, product, and transition state structures)

with local optimization methods.77,78 The reaction rate associated with a pathway may be

estimated from the activation energy using kinetic models, enabling a semi-quantitative
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comparison with experiment.79,80 The main drawback of this strategy is that only existing

hypotheses can be tested, and such hypotheses traditionally originate from chemical intu-

ition; in other words, the systematic generation of mechanistic hypotheses is an important

challenge for theoretical chemistry. Another aspect of this challenge is that many reaction

mechanisms proceed through multiple elementary steps and short-lived intermediates that

are difficult to experimentally characterize.

Recently, computational methods have been developed that automate the searching pro-

cedure by systematically applying basic rules to break and form chemical bonds in a com-

binatorial fashion.37,44,81–86 These methods, which are based on assuming general rules of

reactivity rather than specific mechanistic hypotheses, can greatly increase the automation

in mechanistic studies and have proven successful in applications.87–89 However, there are

still limitations to such approaches because they require assuming the basic rules of reac-

tivity, which are not fully understood; moreover, the relative positioning of reactants in

multi-molecular or roaming reaction pathways continues to be a challenge for rules-based

approaches.

In the past few years, ab initio molecular dynamics (AIMD) has emerged as a useful

tool for the discovery of reaction mechanisms. In fact, classical molecular mechanics (MM)

simulations have long been used to discover pathways of protein folding and conformational

change;90–94 these involve changes in the protein backbone and side chain conformations as

well as intermolecular interactions, which do not require a quantum mechanical description.

Consequently, the PES can be approximated using inexpensive force fields, allowing MM

simulations to routinely reach microsecond time scales and beyond. On the other hand,

predictive sampling of a reactive system usually requires a quantum mechanical calcula-

tion of the electronic wavefunction at every time step, which costs at least four orders of

magnitude more than evaluating a MM force field and usually scales less favorably with

system size. More recently, modern advances in electronic structure methods and acceler-

ated hardware implementations have resulted in speed-ups of 2-3 orders of magnitude for
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Hartree-Fock and density functional theory (DFT) calculations,95–106 placing AIMD simu-

lations on the threshold of discovering reaction mechanisms that occur on nanosecond or

longer timescales.34,107–111

Because reaction rates are exponentially decreasing functions of the activation barrier, it

is still highly challenging to map the chemically interesting reaction pathways in an unbiased

AIMD simulation. Recently, we and others have introduced specialized AIMD simulation

methods for accelerating the discovery of reaction pathways. The Pietrucci group introduced

topological-based permutation invariant “SPRINT” coordinates helped to address the iso-

mer degeneracy problem in metadynamics.112 The Pfaendtner group demonstrated how to

reduce computational cost and the need to manually specify reaction coordinates by using

parallel bias metadynamics using SPRINT coordinates as collective variables.113 The ab ini-

tio nanoreactor causes a large number of reactions to occur in a relatively short simulation

by periodically forcing the molecules in the simulation to undergo high-velocity collisions.34

Because the nanoreactor requires no specification of reaction coordinate, it is able to discover

new pathways for interesting reactions such as the prebiotic synthesis of glycine and sug-

ars.34,114,115 As these simulations do not involve specifying reaction coordinates or desired

products, an automatic approach is needed to identify the potentially interesting reaction

events.

The recent emergence of AIMD simulations containing large numbers of reaction events

requires new theoretical tools for deriving useful knowledge from them. One of the principal

tasks is to identify the discrete transition between chemical structures from the continuous

variables of the simulation trajectory. We recently introduced a procedure for detecting and

extracting reaction events based on analysis of interatomic distances, followed by a series of

optimization calculations to locate the minimum energy path associated with the observed

reaction.116 In a related work, Döntgen and coworkers developed an analysis approach for

reactive MD trajectories simulated using the ReaxFF force field, where the ReaxFF bond or-

der was used to detect reaction events and calculate reaction rates directly from the observed
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events.117 Both studies noted that some ambiguity remains in reaction event detection, as

a number of empirical parameters (including covalent radii, ReaxFF parameters, and lag

times) were used to determine the threshold for what constituted a genuine reaction event in

the simulation. As these exploratory-type simulations are destined to become increasingly

important in simulation studies of reaction mechanisms, a greater amount of rigor and preci-

sion is clearly needed in the identification of the reaction events. Motivated by this need, we

would like to address the following questions: How can we properly define a reaction event

in an AIMD simulation? How can we systematically improve on reaction event detection

methods?

In this paper, we address these questions by introducing a new reaction event detection

method based on time series analysis of the AIMD trajectory. To develop this method,

a suitable set of reference reaction events is created by local energy minimization of each

structure on a reactive trajectory. The sequence of optimized structures is clustered into a

discrete number of chemical states, and the transitions in the sequence of states are used as

a reference dataset for the time series analysis. Our reaction detection approach is based on

the ab initio bond order index defined by Mayer.118 Our results show that the time series

analysis based on bond order indices is able to reproduce the reference data set accurately

using few parameters. An iron carbonyl cluster (Fe3(CO)9) previously studied theoretically

by Schaefer and coworkers119 and a heptanylium cation (C7H15
+) are used as a testing

ground for this method; our results indicate the AIMD simulation method is able to discover

a significant number of new local minima connected by low energy barriers at a far lower

cost than optimizing entire trajectories. Our methods and results provide a foundation for

more chemically relevant understanding of reactive AIMD trajectories.

2 .3 Theory and Methods

Here we briefly summarize the main considerations in the development of our reaction

detection model before describing individual aspects in more detail. This paper focuses

22



on reactions that involve rearrangements of bonding within a single molecule, though we

think making generalizations to reactivity involving several molecules should be conceptu-

ally straightforward. Because our reaction events involve making and/or breaking chemical

bonds, we intuitively expect the atom pair-wise bond orders (BO) will increase or decrease

when bonds are formed, broken, or undergo changes in electronic character. Thus, our model

will use the BO time series between all atom pairs as input data and detect reaction events

from changes in the time series. We use the ab initio bond order defined by Mayer as:

Mab[i] = 2
∑
µ∈a

∑
ν∈b

[
(PαS)µν(P

αS)νµ + (PβS)µν(P
βS)νµ

]
[i] (29)

where Pα,β is the one-particle density matrices for alpha and beta spin, S is the overlap

matrix, µ, ν are indices for atomic basis functions, the sums are restricted to functions

centered on atom indices a, b, and [i] indicates values at frame i in the simulation trajectory.

Thus, the bond order is defined as a discrete series spaced in time by the simulation time

step δ.

In the context of our work, “detection” refers to estimating or predicting the approximate

location of a reaction event. This definition requires introducing a set of reference reaction

events that represents the desired result given unlimited computing resources. A reference

reaction event is defined when the ab initio molecular dynamics trajectory crosses between

two catchments (energy basins) in configuration space that contain chemically different local

minima. Energy basins are separated by manifolds of local maxima (dividing surfaces), and

we assume the minima are located in the interior of the catchment and away from dividing

surfaces, such that chemically different energy-minimized species will differ significantly in

their structures and BO matrices. Therefore, if we could carry out energy minimization of

every trajectory frame, the chemically distinct species and reaction events could be precisely

located by comparing the BO matrices of energy-minimized structures (Figure 1).
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Figure 1: Example MD trajectory (violet) with the optimization pathways for the discrete
time steps shown in red. Light blue boxes highlight where the trajectory crosses subdomains
in configuration space. These crossings are defined as reaction events.

The reference method is too computationally costly for routine applications because

energy minimization of every trajectory frame is significantly more expensive than the AIMD

simulation itself. Here, we have computed the reference reaction events to train the model

parameters for our two systems, the iron carbonyl cluster Fe3(CO)9 and heptanylium cation

C7H15
+; these systems have major differences in terms of their composition, bonding and

coordination. By applying our method to both systems and comparing the results, we

characterize the parameter sensitivity of the reaction detection model and provide some

guidelines for when it is necessary to compute the reference reaction events for a system of

interest.
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2 .3.1 Computational Details

To generate a set of reference reaction events and bond order time series for both systems

we used unbiased, temperature-accelerated ab initio molecular dynamics simulations.120,121

For both systems we used a Velocity Verlet integrator with a timestep of 1 fs and a Langevin

thermostat with an equilibrium temperature of 1000 K and a damping time of 1 ps−1. We

simulated the iron carbonyl cluster using the BP86 density functional approximation to-

gether with a double-ζ plus polarization (DZP) all-electron basis for all atoms including

iron, following Ref.119 The molecular dynamics simulation was propagated for a duration of

8,373 steps before terminating with a SCF convergence error. The heptanylium simulation

used the B3LYP density functional and a 6-31G* basis set, and the simulation was propa-

gated for 10,000 steps. To create the reference reaction sets, every AIMD frame was used

as the input coordinates for energy minimization at the same level of theory.122 All of the

simulations in this study were carried out using the TeraChem quantum chemistry software

package.95–97

2 .4 Details of the model systems

Fe

Fe Fe

OC

OC CO

CO

OC COC
O

COOC

Figure 2: Starting structures of the two systems; heptanylium cation C7H15
+ (left) and iron

carbonyl cluster Fe3(CO)9(right).

We chose two model systems to characterize the accuracy of our reaction detection model

in this study. The first system with simpler and more straightforward reactivity is the

heptanylium alkyl carbocation, C7H15
+. We expected the reaction events for the heptanylium

system to manifest as hydride and methyl shifts. This system was chosen so that generating a
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tertiary carbocation was unlikely under our simulation conditions, as this would halt further

reactions because of their relative stability.

The iron carbonyl cluster we chose to study is Fe3(CO)9 which is the smallest in a

series of four clusters with increasing carbonyl count studied by Schaefer and coworkers.119

Because Fe3(CO)9 is unsaturated, this system presents interesting possibilities for CO ligand

migration and bridging multiple Fe atoms. These two systems were chosen to be chemically

distinct in order to illustrate the performance of the model when used in diverse applications.

2 .4.1 Reference reaction events

We assume that the potential energy surface is divided into catchments or energy basins

denoted as Sk in the regions of the potential energy surface accessed by the AIMD sim-

ulation, where the index k represents all such basins that are sampled by one simulation.

These are bounded regions on the potential energy surface where each point in the re-

gion is mapped by energy minimization to a local minimum somewhere in the interior as

yk = Optimize (x ∈ Sk). Moreover, because we are interested in detecting reactivity, catch-

ments that correspond to chemically identical species and share any boundaries are grouped

together. Our task consists of finding the catchments that are visited by the AIMD tra-

jectory frames and identifying when the trajectory crosses over their dividing surfaces (i.e.

reaction events).

We expect that two local minima in different energy basins (yk,yl) with major differences

in chemical bonding should be distinguishable by comparing their BO matrices. Thus,

constructing the reference reaction events from an AIMD trajectory follows this procedure:

1. Calculate a series of optimized structures by local energy minimization of every frame

in the simulation trajectory, i.e. y[i] = Optimize(x[i]).

2. Cluster the series of optimized structures using a chosen distance metric and clustering

algorithm. This produces a set of clusters {Ck, 1 ≤ k ≤ NC} where each trajectory

frame belongs to only one cluster and NC is the number of clusters. Each cluster k
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corresponds to a distinct catchment Sk and a representative optimized structure yk.

The cardinality of the cluster is represented as |Ck|.

3. Assign each optimized structure to a cluster to produce a series of cluster numbers

{K[i], 1 ≤ i ≤ Nsteps}.

4. The time coordinates of reference reaction events are where the cluster number of the

optimized structure differs between two consecutive frames as:

Eref = {i | K[i] 6= K[i+ 1]} (30)

For two energy-minimized structures, we compute the bond-order distance metric (BODM)

as the L2 norm of the difference in bond order matrices:

d[i, j] =

√√√√Natom∑
a<b

(
M̃ab[i]− M̃ab[j]

)2
(31)

where the tilde over M̃ indicates that the BO matrix of the energy-minimized structure

is used. This idea is similar to, and indeed inspired by, the featurization of biomolecular

simulation trajectories such as contact maps, dihedral angles, and metrics such as RMSD

which are used in the construction of kinetic models.123,124 Our choice of using BO matrices

is an important distinguishing factor from earlier work, and justified because the BODM

directly measures changes in chemical bonding and should exclude other conformational

changes. (Remark: Two structures that differ only by the permutation of atomic indices

may also have significant BODMs, e.g. isotope exchange. This does not significantly affect

our main conclusions, but including permutation invariant reactions as predictions may add

additional computational cost in post-processing.)

To cluster the optimized structures into discrete chemical species, we used a hierarchical

clustering algorithm with an average-linkage criterion as implemented in the SciPy pack-
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age,125,126 where the input data is a matrix of the BODM values above. At the start of

the algorithm, each structure is assigned to a separate cluster. The pair of clusters with

the smallest distance is merged into a single cluster, and the new clusters are renumbered

in consecutive ascending order. The distance between the newly merged cluster Ck and all

other clusters Cl is defined as:

Dkl ≡
1

|Ck||Cl|
∑

i∈Ck, j∈Cl

d[i, j] (32)

The merging procedure is repeated until the smallest pairwise distance is larger than

a threshold parameter, resulting in the final set of clusters {Ck}. We chose a clustering

threshold parameter of 1.0 because it represents a difference of approximately one bond

between clusters, and because the number and contents of clusters was consistent with

our chemical intuition and visual examination of the optimized structures. A dendrogram

showing the successive merging of clusters as a function of the threshold parameter for each

system is given in Supporting Figures S1 and S2.

A sequence of cluster indices is obtained for the trajectory of optimized frames. For

each frame where the cluster number differs between the current and next frame, a reference

reaction event is defined. Each reference reaction event is a data structure containing the

current frame number, as well as the optimized structures and BO matrices of the current

and next frame. The BO matrices allow us to query which bonds were formed or broken in

the reaction event, which will become important in §2 .4.3.

2 .4.2 Reaction detection by time series analysis

Here we describe efficient and approximate models for estimating the reaction events via

direct analysis of the AIMD BO trajectory data. The purpose of these models is to reduce

the number of computationally costly energy minimizations needed to find the reaction

events in the simulation. In our current context where the entire system consists of a single
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molecule, the model predicts which time coordinates (i.e. frame numbers) are likely to be

near true reaction events, thereby restricting the energy minimizations to within small time

windows of these predicted frames. A high-quality model should be sensitive enough to

correctly detect most or all of the reaction events, while ruling out “unreactive” parts of the

simulation trajectory to reduce computational cost.

For a particular atom pair with indices a and b, the bond order time series {Mab} =

{Mab[i]; 1 ≤ i ≤ Nsteps} is a discrete sampling of the bond order as a function of time.

Because variations in the bond orders are slow compared to the time step, we assume alias-

ing effects from discrete sampling are negligible. {Mab} contains both long-lasting changes

that represent genuine reaction events and changes in chemical bonding, as well as higher-

frequency fluctuations that we are less interested in. Thus, we process {Mab} with a low-pass

filter to remove the fast fluctuations and retain the chemically important features of the time

series:

{Mab(σ)} = L
(
{Mab}, σ

)
(33)

Here, L is the function that performs the low-pass filtering (we used a sixth-order But-

terworth filter), the line over M indicates that the time series has been smoothed, and σ

represents the cutoff frequency parameter. σ can be optimized in order to produce the best

agreement between the detected reaction events and the reference set. One of our goals in

this paper is to show that the performance of this method is not highly sensitive to the choice

of σ for different applications.

2 .4.2.1 Thresholding on time series values One intuitive approach to predicting

reaction events is to detect when the smoothed time series crosses over a threshold that

separates bonded from non-bonded regimes. This approach is similar to our previous study116

where connectivity between atom pairs was defined by comparing interatomic distances to

a threshold derived from covalent radii. One advantage of using bond orders is that the
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highly sensitive element-wise radius parameters are no longer needed. Here we will show

that applying a threshold to the bond order is insufficient for detecting reactions, which

motivates the time derivative approach in § 2 .4.2.2.

Equation 34 is the set of predicted reaction events for atom pair (a, b) where Mab crosses

a threshold µ:

E0;ab(σ, µ) =
{
i
∣∣ Mab(σ)[i] > µ > Mab(σ)[i+ 1] ∨Mab(σ)[i] < µ < Mab(σ)[i+ 1]

}
(34)

The set of predicted reaction events for the entire system is found by taking the union over

all atom pairs:

E0 =
Natoms⋃
b>a=1

E0;ab (35)

However, we found that the reaction events identified in Equation 35 were incomplete, as

many reaction events could not be accurately predicted using a single threshold in the iron

carbonyl simulation.
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Figure 3: Top two panels: Raw (Mab, orange) and 40 cm−1 low-pass filtered (Mab, black)
time series of two selected bond orders. Bottom two panels: First time derivative of filtered
series (M

′
ab, green curve) with threshold µ = ±0.5σ (dashed lines). Intvl+;ab and Intvl−;ab

shown with light green shading. Detected reaction events E1;ab from the bottom two panels
are shown as blue dots across all panels. Molecule color scheme: iron: pink, carbon: gray,
and oxygen: red.

Figure 3 shows why applying a single threshold to the smoothed bond order time series

to detect reaction events can be challenging. In the upper panel showing the Fe-C bond

order there is a distinct increase from 0.0 to 0.9 near t = 1000 fs, indicating that a threshold

parameter of 0.1 − 0.8 would work well for this atom pair. However, the upper C-O panel

contains fluctuations in the bond order near t = 7000 fs that are indicative of changes in the

carbonyl ligand coordination to Fe, where the value of the bond order is consistently in the

1.9− 2.3 range. In order to detect any reaction events in the C-O time series, the threshold

would need to be much higher, around 2.0. If we were forced to use different thresholds
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for different kinds of bonds, then it would detract from the usefulness of the ab initio bond

order as a simple criterion for detecting reactivity.

Another drawback of applying a threshold directly to {Mab(σ)} is the risk of detecting

large numbers of false positives and false negatives. If the thresholds were chosen close

to the mean value of an oscillating BO time series, repeated crossings over the threshold

could cause many false positives. Although the number of oscillations may be reduced by

increasing the smoothing, it does not address the fundamental problem that the threshold

parameter is close to the mean value of the oscillation. In both upper panels of Figure 3,

there exist ranges of the threshold parameter that would contain many crossings due to

oscillations around an apparent mean. The risk of excessive false positives due to repeated

threshold crossings and false negatives due to missed crossings indicates that if we applied a

threshold to the bond order to detect reaction events, the results would be highly sensitive

to parameter choice, which negatively affects the utility of the method. In what follows, we

show that applying a similar thresholding approach to the bond order time derivative is a

simple way to address many of these issues.

2 .4.2.2 Peak finding on first time derivative Once the raw time series has been

filtered to remove high-frequency components (Equation 33), the first time derivative of the

smoothed time series is taken:

M
′
ab(σ)[i] ≡ d

dt

(
Mab(σ)[i]

)
≈ Mab(σ)[i+ 1]−Mab(σ)[i− 1]

2δ
(36)

The prime on M
′
ab indicates the first time derivative, approximated via central difference on

the discrete values of Mab. Next, a threshold (µ) is applied to M
′
ab(σ):

Intvl+;ab ≡
{

(u, v)
∣∣∣ M ′

ab(σ)[t] > µ ∀ t ∈ (u, v) ∧M ′
ab(σ)[u] ≤ µ ∧M ′

ab(σ)[v] ≤ µ
}

(37)

Intvl−;ab ≡
{

(u, v)
∣∣∣ M ′

ab(σ)[t] < −µ ∀ t ∈ (u, v) ∧M ′
ab(σ)[u] ≥ −µ ∧M ′

ab(σ)[v] ≥ −µ
}

(38)
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Here, Intvl+;ab and Intvl−;ab are sets of continuous time intervals for which {M ′
ab(σ)} is

above +µ and below −µ respectively. We then collect the time-coordinates of the positive

maxima of {M ′
ab(σ)} above +µ and the negative minima below −µ as:

E1;ab(σ, µ) ≡

{
t

∣∣∣∣∣ arg max
t∈(u,v)

M ′
ab(σ)[t] ∀ (u, v) ∈ Intvl+;ab

}
⋃{

t

∣∣∣∣∣ arg min
t∈(u,v)

M ′
ab(σ)[t] ∀ (u, v) ∈ Intvl−;ab

} (39)

As a result, we obtain E1;ab(σ, µ) as the final set of reaction events derived from the BO

time derivative for atom pair ab. The smoothing, derivative, and thresholding steps are

illustrated in Figure 3. The time-coordinate of every blue dot (identified in the bottom two

panels) represents the set of detected reaction events E1;ab(σ, µ) for the given atom pair ab.

Figure 3 shows the advantage of using BO time derivatives instead of applying a threshold

directly on the BO values, because the derivative approach can detect reaction events from

both the Fe-C and C-O time series whereas the same direct threshold cannot be used for

both atom pairs. The fundamental assumption of this approach is that there are no reaction

events that change the BO time series very slowly, as that would not be detected by the

threshold. We expect this assumption to be generally valid due to the relatively short

distance ranges over which chemical bonds are broken and formed, and the atomistic forces

along the reaction pathway would prevent bond orders from changing very slowly.

Comparisons to the reference set of reaction events can be made in two ways: either on

an “bond-wise” basis, or on an “unified” basis where we take the union over all atom pairs.

Thus, the unified set of reaction events is taken by collecting all reaction events for all atom

pairs in the system as:

E1 =
Natoms⋃
b>a=1

E1;ab (40)
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2 .4.3 Receiver operating characteristic objective function

If our model were perfectly accurate, then for every reaction event predicted, the pair of

structures preceding and following the event will minimize to chemically different structures,

enabling us to carry out further studies such as reaction pathway optimizations. Because

the predictor has imperfect accuracy, the predicted event is generally not identical to the

actual event, and the pair of frames corresponding to the current and next trajectory frame

will minimize to chemically identical structures. Thus, we should quantify the accuracy of

our predictions using some measure of distance to the actual reaction events, or equivalently,

by the amount of computational cost it requires to find the actual reaction events starting

from the predicted ones. Because we have computed Eref in § 2 .4.1, our goal is to optimize

the parameters and characterize the accuracy of E1, thus enabling its application with more

confidence in future applications where we do not have Eref .

In the ideal case, the set of detected reaction events and actual events are equal, and the

complete set of reactant and product structures could be found by two energy minimizations

for each detected reaction event, with a computational cost of 2 · |Eref | � Nsteps times the

cost of a single energy minimization. On the other hand, if the predicted reaction event is

located close in time to the actual event, then it could be found by energy minimizing more

structures in a time window of increasing size around the detected event. As the time window

around each element of E1 is increased (both forwards and backwards in time), an increasing

number of true reaction events will be found, and the computational cost is increased as

well. In the limiting case, the window size is equal to the entire trajectory length, and all

of the reaction events in Eref are found at a cost equal to computing Eref itself. Thus, the

detection method is deemed to be useful if it detects a greater fraction of reaction events in

Eref than the fraction of the trajectory that is optimized with a chosen value of the window

size. By increasing the window size over a range (0, Nsteps), we can interpolate between these

two limits and construct a receiving operator characteristic (ROC) objective function.

The ROC is a commonly used statistical approach for evaluating the diagnostic ability
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of a binary classifier, created by plotting the true positive rate (TPR) vs. the false positive

rate (FPR) as a sensitivity threshold is varied.127,128 In our definition of the ROC, we use

a time window of variable size n · δ representing the number of trajectory frames being

optimized in the neighborhood of each detected reaction event in E1. The smallest possible

set of optimized frames X (0) corresponds to a window size of zero:

X (0) = E1 (41)

where the superscript on X is the window size.

For any window size w, the set of frames being minimized X (w) may be defined as:

X (w) =
{
i+ n

∣∣ i ∈ X (0),−w ≤ n ≤ w
}
∩ T (42)

X (w) is then used to determine the true positive rate (TPR(w)) and false positive rate

(FPR(w)). TPR(w) is the amount of reference reaction events in Eref included in the opti-

mized frames X (w) divided by the total number of reference reaction events |Eref |. FPR(w)

is calculated as the fraction of trajectory frames not containing reaction events included in

X (w). These functions are defined as:

TPR(w) =

∣∣X (w)
⋂
Eref
∣∣

|Eref |
; FPR(w) =

∣∣X (w) − Eref
∣∣

|T − Eref |
(43)

The parametric curve (FPR(w),TPR(w)) is traced out as w increases, and the ROC objective

function φ(σ, µ) is calculated as the area under the parametric curve as shown in Figure 4.
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Figure 4: Left panels: Reference reaction event locations (red), BOTS reaction event loca-
tions (blue), broadening time windows (orange wedges) around BOTS reaction events. Top
panels: Magnification of a 100-frame sequence of the trajectory showing the expanding time
window. Bottom panels: Entire trajectory with sufficiently large window size for maximal
true positive rate. Right panels: Plot of TPR(w) vs. FPR(w) (Equation 43) where orange
region indicates the current value of w. The area under the whole curve is the ROC objective
function.

The ROC score has an upper bound of 1.0 corresponding to perfect accuracy, i.e. all of

the true reaction events are found using a window size of zero, whereas scores of 0.5 or lower

indicate the method has no predictive power beyond a random number generator.

2 .4.4 Bond-wise criterion for reaction detection

The procedure defined above uses a unified set of detected reaction events across all atom

pairs (Equation 40) to predict the total set of reaction events in the entire system. This
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approach was found to be problematic because it ignores the local character of reaction

events, i.e. a single reaction event involves changes in bond order for a particular subset

of atom pairs. If the predicted reaction event could be mapped to an actual event where

different bonds are broken or formed, then it would not be possible to identify the reactive

sites within the system; this would become an important deficiency of the method for systems

that contain multiple molecules. To resolve this issue, we defined a “bond-wise” criterion

that ensures the detected and actual reaction events can only be matched if the changes in

the pairwise bond orders are similar, which is adopted in the work.

reference 
reaction 

event

BOTS 
reaction

event

11
11

1 3 1 3

reference 
reaction 

event

BOTS 
reaction

event

Figure 5: Left: Raw and smoothed bond order time series. Top: Optimized positions of
atoms. Reference reaction event near 1000 fs experienced a large change in its optimized
BO matrix from atom pair (1, 11). Bottom: BOTS method predicting a reaction event by
identifying extrema in the first time derivative of the BO time series beyond a threshold.
Right: The BOTS-predicted reaction event in (1, 11) is compared to the reference reaction
event for that atom pair.

In the bond-wise ROC, illustrated in Figure 5, predicted reaction events in E1;ab can

only be matched to reference events that involve significant changes in the BO of atom pair
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ab. This procedure involves defining the pairwise BO difference between clusters of energy-

minimized structures. We first define an averaged BO matrix over the energy-minimized

structures within the cluster as:

M̂ab[i] ≡
1

|CK[i]|
∑

j∈CK[i]

M̃ab[j] (44)

where K is a cluster index, i, j are frame indices and a, b are atom indices. This enables the

definition of absolute pairwise BO difference between clusters as:

∆ab[i] ≡ abs(M̂ab[i+ 1]− M̂ab[i]) (45)

The reference reaction events involving atom pair (a, b), given by Eref,ab, is defined as:

Eref,ab = {i |∆ab[i] ≥ 0.5 max(∆[i])} ∩ Eref (46)

where ∆[i] is the BO difference matrix between clusters K[i], K[i+ 1] and the maximum is

taken over all pairs of atoms. Thus, each individual event in Eref may be included in one or

more bond-wise sets Eref,ab.

The trajectory frames being optimized within a time window w of E1;ab is denoted using

X (w)
ab and defined in a similar manner to Eqs.41-42 with E1;ab replacing E1. The true pos-

itive rate with the added bond-wise criterion is then defined by taking the union over all

successfully found reaction events in the numerator:

TPR′(w) =

∣∣∣∣Natoms⋃
b>a=1

(
X (w)
ab

⋂
Eref;ab

)∣∣∣∣
|Eref |

(47)

The corresponding false positive rate represents the ratio of all energy-minimized frames

not corresponding to reaction events in the numerator, and the same denominator as in

Equation 43. Due to the extra condition imposed by the bond-wise criterion, the numerator
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may slightly exceed the denominator when
∣∣X (w)

∣∣ approaches the trajectory length; the

FPR is set equal to 1.0 when this occurs. Additionally, the predicted reaction events from a

random number generator no longer result in a ROC of 0.5 due to the additional conditions

imposed on matching a reference reaction event to a predicted one.

FPR′(w) = min


∣∣∣∣X (w) −

Natoms⋃
b>a=1

(
X (w)
ab

⋂
Eref;ab

)∣∣∣∣
|T − Eref |

, 1

 (48)

Similar to before, the bond-wise ROC φ′(σ, µ) is calculated as the area under the parametric

curve (FPR′(w),TPR′(w)). We will drop the primes in the next section, as our results will

use the bond-wise criterion exclusively.

2 .5 Results and Discussion

In this section, we characterize the performance and parameter sensitivity of our reaction de-

tection models. The primary means of measuring performance is the ROC φ(σ, µ) discussed

above, and the parameter sensitivity is characterized by observing how the ROC varies with

respect to its two parameters: the cutoff frequency in the low pass filter σ (given in cm−1,

and the threshold on the time derivative µ given in units of multiples of σ. Because the

parameter space is two-dimensional, the global optimum and parameter sensitivity can be

obtained by plotting φ(σ, µ) as a heat map.

2 .5.1 Heptanylium cation

The reaction events observed in the AIMD trajectory for heptanylium cation (C7H15
+)

mostly involve hydride shifts where H– is transferred from a non-terminal CH2 group to

the neighboring trivalent carbon with a formal positive charge. The energy-minimized local

minima, shown in the top row of Figure 7, include carbocation species with a formally pos-

itive trivalent carbon (clusters 3-6) as well as carbonium species with a pentavalent carbon
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(clusters 1-2). The heat map for heptanylium in Figure 6 shows that the ROC objective

function φ(σ, µ) has values above 0.95 in a broad region of parameter space, indicating a

high degree of accuracy in detecting reaction events that is not highly sensitive to param-

eter choice. The objective function value indicates that most or all of the predicted events

with only small time differences from the reference events. The global optimum is given as

φ(σ = 140 cm−1, µ = 1.0) = 0.97.
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Figure 6: Heat map of bond-wise objective function scores for C7H15
+ using different com-

binations of σ and µ. Black contour indicates scores above 0.95.

Figure 7 examines the level of agreement between predicted and reference reaction events

using the optimal parameter combination of σ = 140cm−1 and µ = 1.0σ identified from

the heat map. There are 17 predicted and 13 reference reaction events respectively, and

the maximum time difference between any reference event and the nearest predicted event

that satifies the bond-wise criterion was 42 frames. The set of energy-minimized trajectory

frames using a window size of 42 (X (42)) covers 7.9% of the whole trajectory, which is another

indicator of the accuracy of the reaction detection model. Figure 7 also shows the starting

and ending cluster numbers for each reference reaction event. The colors of arrows indicate
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the time difference between the reference and predicted reaction events. From this data, we

observed that reference reaction events have a tendency to occur in multiplets due to re-

crossing of dividing surfaces. Some reference reaction events occur in closely spaced opposite

pairs, such as cluster number 6 which is visited once from cluster number 5.

cluster 1 cluster 2 cluster 3 cluster 4 cluster 5 cluster 6

Figure 7: Summary of reaction events and detection model in heptanylium cation (C7H15
+)

simulation trajectory. Top: Chemically distinct clusters found after minimizing all trajectory
frames followed by clustering. Bottom: Comparison of reaction events for reference and
BOTS predictions. Horizontal coordinates of arrows indicate the time step (x axis not to
scale), vertical coordinates indicate starting and ending cluster, and color indicates temporal
proximity to nearest BOTS prediction. Parameter combination of σ = 140cm−1 and µ = 1.0σ
was chosen from the optimal parameter range shown in Figure 6.

We also investigated basis set dependence of BO time series, and the results are shown in

Figure S11 and Table S1. Figure S11 reveals that for the segment of the time series between

8500-8800 fs the BOs do not differ significantly between basis sets. Sharp changes in BO seen
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for atom pairs C10-H13, C10-H15, C12-H13, and C12-H15, which led to successful reaction

event predictions in the original 6-31G* basis set, are also apparent in the 3-21G and TZVP

bases. This is important because our detection method uses rate of change of the BO to

predict reactions, so minor differences in overall BO magnitude between bases should not

matter as long as the sharp BO changes are consistent. Table S1 reveals small RMS errors

of about 0.05 with a few larger deviations. The largest RMS errors (bold in Table S1) occur

time series with significant high frequency components such as C3-C8 and C10-C12. Because

our method involves filtering out high frequency components, we think the time-dependent

BO variations in these atom pairs is expected to be consistent across bases. Thus, we are

confident in the transferability of parameters between different basis sets in similar systems.

2 .5.2 Iron carbonyl cluster

The AIMD trajectory for the iron carbonyl cluster begins with an optimized structure re-

ported by Schaefer and coworkers,119 denoted as “9a” in their publication. This system is

characterized by nearly constant, almost fluid migration of carbonyl ligands throughout the

duration of the simulations, whereas the Fe atoms move more slowly due to their increased

mass. The carbonyls migrate by breaking and forming coordinations with individual irons

and breaking and forming bridging relationships across multiple irons.

The reactivity in this system is more difficult to characterize compared to the heptanylium

system for several reasons. One reason is that the number of chemically distinct clusters

and reaction events was simply higher in this trajectory. Perhaps more importantly, the

chemical bonding in this system is less discrete compared to the previous case, because the

Fe-C and Fe-Fe bond orders of the energy minimized structures are more broadly distributed

between 0 and 1. This is also evident in the dendrogram of Figure S2, which shows that

the number of clusters and reference reaction events has a significant dependence on the

clustering threshold. Thus, this system approaches the limits of our basic assumptions that

the potential energy surface consists of discrete and well-separated chemical species.

42



35 70 105 140
 (cm 1)

1.5

1.0

0.5 (m
ult

ipl
e 

of
 

)

0.2

0.4

0.6

0.8

1.0

Figure 8: Heat map of ROC objective scores scores for Fe3(CO)9 as a function of σ and µ.

The heat map for the Fe3(CO)9 system is shown in Figure 8. Compared to the C7H15
+system,

the objective function scores are generally lower and there is no parameter combination that

gives a score above 0.9, but there still exists a region of parameter space that gives the

optimal result as indicated by the orange area. These ideal parameter combinations occur

lower σ values and lower µ values than in Figure 6, which we think are due to the slower

overall dynamics of the system, owing to the increased mass of Fe and perhaps the rela-

tively flat potential energy surface along reaction coordinates. The difference in optimal

parameters between the heptanylium and the iron carbonyl simulation trajectories indicates

that this method is not completely system independent. However, it does appear possible to

choose parameter sets based on the elemental composition of the system without needing to

determine parameters for each individual AIMD trajectory. We expect that parameter com-

binations should be reasonably transferable between chemically similar systems that have

similar variations in the time scales and magnitudes of BO variations. We think that for

organic reactions consisting of only C and H atoms, the parameters we identified for the hep-
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tanylium cation may be directly used without modification. This is based on our observation

that most organic reactions involve well-defined and rapid transitions between metastable

potential energy minima. However, we did not carefully assess the transferability of these

parameters in this paper, and it is possible these parameters are applicable to even wider

organic reactions containing heteroatoms, or on the other hand they may only be appropriate

for alkyl carbocation rearrangements. On the other hand, the iron carbonyl system is an

atypical and highly challenging case in the sense that the chemical structures are somewhat

less well-defined and the reactivity is more fluxional. We expect the parameters in this paper

to be transferable for other iron carbonyl complexes, but more work is needed to assess the

transferability to other transition metal-containing systems. We plan to include more careful

studies of parameter transferability in a future paper.
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cluster 1 cluster 2 cluster 7 cluster 8

Figure 9: Summary of reaction events and detection model in Fe3(CO)9 simulation tra-
jectory. Top: Selection of chemically distinct clusters found after minimizing all trajectory
frames followed by clustering. All clusters in Supporting Figure S8. Bottom: Comparison
of reaction events for reference and BOTS predictions. Horizontal coordinates of arrows
indicate the time step (x axis not to scale), vertical coordinates indicate starting and end-
ing cluster, and color indicates temporal proximity to nearest BOTS prediction. Parameter
combination of σ = 40cm−1 and µ = 0.7σ was chosen from the optimal parameter range
shown in Figure 8. Molecule color scheme: iron: pink, carbon: gray, and oxygen: red.

A representative parameter set obtained from the optimal range in Figure 8 for Fe3(CO)9

is given by σ = 40cm−1 and µ = 0.7σ. Using those parameters, Figure 9 shows the temporal

proximity of reference reaction events to the nearest BOTS predictions that satisfy the bond-

wise criterion. The data shows that reference reaction events have a strong tendency to be

grouped together as the dividing surface is crossed multiple times within a short simulation

time. There is also a large variation in the “difficulty” of detecting certain reaction events vs.

other ones, as indicated by the temporal distance between the reference reaction event and

45



the closest detected event. If a window size of 150 frames is used, 87% of reference reaction

events can be found, which would require energy-minimizing 50% of the trajectory frames.

To find the remaining 13% of reference reaction events in this trajectory, the time window

needs to be 310 frames, which covers 68% of the trajectory. Closer inspection of the most

difficult reference reaction events reveals that they occur in closely spaced opposite pairs,

where the cluster index jumps to a new value for ∼10 frames then back again. Thus, we

think that for challenging systems such as these, it may not be necessary to find 100% of the

reaction events in order to get a comprehensive picture of the reactivity of the system. In

applications where computational cost is a critical concern, the reference reaction events may

be found more quickly (if not as thoroughly) using other methods such as skipping frames

when extending the window, that may be more relevant as post-processing approaches than

objective functions. In this context, the objective function score should not be seen as a

literal measure of computational cost savings, but rather as a measure of the accuracy of

reaction event detection.

2 .6 Conclusion

This paper describes how the time series analysis of bond orders is able to produce accurate

predictions of the spatial and temporal locations of reaction events in reactive ab initio

molecular dynamics trajectories. Reaction events in simple systems like hydrocarbons can

be predicted with great accuracy; more complex and fluxional systems like iron carbonyl

clusters contain reaction events that may still be identified, though not as easily. The

accuracy of reaction event prediction can translate into more efficient computations, as it

reduces the portions of the simulation trajectory that need to be examined in greater detail

using methods such as geometry optimization. Our reaction detection method contains two

adjustable parameters that are not fully system independent, but the optimized parameters

of a system are expected to be broadly useful for simulations of chemically similar systems.

A natural extension of this research would be to identify reaction events in multi-
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molecular simulations in a more rigorous manner. The challenges to be addressed include

how to identify the subset of atoms in the overall system that are involved in a given reaction

event, which could also be informed by analysis of the bond order matrix. Because the bond

order matrix contains rich information about the chemical structure of the system, it might

also be a useful collective variable for future metadynamics or other enhanced-sampling sim-

ulations to rapidly explore the chemical space. We anticipate that the bond order matrix

will play an increasingly important role in reaction discovery as these methods continue to

be developed and applied to chemical problems.
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2 .8 Supporting Information

The Supporting Figures show dendrograms, atom pair-wise visualizations of the objective

function, distance-ranked reference set reactions, and BO verses energy-minimized BO time

series for both the heptanylium and Fe3(CO)9 systems. In addition, there is a figure com-

paring the “unified” and “bond-wise” objective functions for the Fe3(CO)9 system. There is

also a figure containing the cluster images and energies for the Fe3(CO)9 system including

those not depicted in Figure 9. Finally, there is a figure and an accompanying table that

examine basis set sensitivity.
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3 Polarizable Force Fields for Choline Chloride Urea

Deep Eutectic Solvents

3 .1 Introduction

Deep eutectic solvents (DESs) are a relatively recent discovery and have been identified to

have promising applications.63 DESs are similar to ionic liquids, but where ionic liquids

are cation-anion pairs, DESs are instead composed of hydrogen-bonding organic molecules

in special eutectic mixtures. Eutectic mixtures are whole-number ratio combinations of

molecule pairs that when mixed together, the resulting combination has a lower melting

point than either component individually. The DESs of interest in this study contain choline

chloride paired with one of a number of hydrogen bond donor molecules in the appropriate

eutectic ratio. The hydrogen bond donor candidates include: urea, glycerol, phenol, ehtylene

glycol, levulinic acid, oxalic acid, and malonic acid.129 The attributes of choline chloride-

based DESs depend on the identity of the included hydrogen bond donor (each of which

requires a certain ratio). Understanding the bulk properties of DESs is of interest because it

can aid in refining or finding new DES combinations as well as improving or expanding their

application. The goal of this project is to create a semi-automated method for initializing

AMOEBA polarizable force fields of DESs. The longer-term goal is to use that tool compare

the bulk properties of an AMOEBA choline-chloride urea DES force field to experimental

data, non-polarizable force fields, and other polarizable force fields.

At the beginning of this project, there were a handful of nonpolarizable DES force fields,

but no polarizable DES force fields. We set out to create polarizable DESs within the

AMOEBA force field and compare them with existing nonpolarizable DESs. Over time,

setbacks caused the original goal to be modified towards automation of AMOEBA polariz-

able force field initialization. During the course of this project, other research groups have

published studies of DES in other polarizable force field engines. In 2021, Jeong et al. cre-

ated a polarizable DES force field for reline (choline chloride and urea) using symmetry
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adapted perturbation theory (SAPT).72 They adjusted base SAPT parameters to be better

suited for the extensive hydrogen bonding of reline based on first principles MD calculations.

The resulting reline force field Jeong et al. created showed good agreement with QM data

and they noticed significant improvement on how their force field handed charge correla-

tion structure factor compared to non-polarizable force fields. Also in 2021, Goloviznina et

al. created polariable force fields for DESs, but built them inside their CL&Pol engine for

ILs.130,131 They used a Tang-Toennies function to smooth and dampen interactions between

dense charges and induced dipoles. Those charge interactions had a tendency to derail MD

trajectories because of their strong pull. Despite this recent emergence of polarizable DES

force fields, there is still room for discovery and development. Polarizable force fields for

DESs still have not yet been created using the AMOEBA force field. Also, none of the

new polarizable force fields for DESs have had their parameters systematically optimized to

reproduce experimental and QM data simultaneously. A tool that is capable of this style

of force field parameter optimization is ForceBalance (FB).132 FB is an optimization engine

that is capable of fitting diverse targets simultaneously using a single objective function.

FB already has a history of successful application and Section 3 .3 explains in more detail

how FB has been used to significantly improve how water models and graphene force fields

fit experimental data.133–135 This project lays groundwork towards formation of AMOEBA

force fields for DESs with heightened accuracy due to FB optimizing force field parameters.
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As of 2011, the AMOEBA force field has the following functional form:136

UAMOEBA =
∑
bond

kb(b− b0)2[1− 2.55(b− b0) + 3.793125(b− b0)2]

+
∑
angle

kθ(θ − θ0)2[1− 0.014(θ − θ0) + 5.6x10−5(θ − θ0)2 − 7.0x10−7(θ − θ0)3

+ 2.2x10−8(θ − θ0)4] +
∑
torsion

∑
n

{Vn
2

[1 + cos(nφ− λ)]
}

+
∑

PI−torsion

UPI−tor,i

+
∑

torsion−torsion

Utor−tor,i +
1

2

∑
multipole

UMPol,i +
∑

polarization

Upol,i

+
1

2

∑
V an−der−Waals

εij

( 1 + δ

ρij + δ)

)n−m( 1 + γ

ρmij + γ
− 2
)

(49)

where the energies of the bonded-interaction parameters are similar to those in Equations 24-

26, but with added correction factors. The other term with an explicit equation is the van

der Waals term which is known as the buffered 14-7 potential.137–139 Within the buffered

14-7 potential, the δ and λ terms are buffering constants, n and m control the exponents and

are frequently equal to 14 and 7 respectively, and ρij is a distance ratio.139 Note that n = 12

and m = 6 recovers the 12-6 Lennard Jones potential (Equation 27).139 When creating

buffered 14-7 potential, other combinations of n and m were explored, but n = 14 and

m = 7 yielded the best results.139 AMOEBA is somewhat unique in its usage of the buffered

14-7 potential, since most other force fields use the Lennard Jones potential (Equation 27)

or the Buckingham potential. The buffered 14-7 potential was selected as the VDW term

for AMOEBA because Thomas Halgren showed that it better represented high quality noble

gas data compared to the Lennard Jones potential.138–140

A lot of work is being done both using and refining the AMOEBA force field.141 Some of

the applications of the AMOEBA force field include: nucleic acids, proteins, and water.141–143

The goal of this project is to contribute to the ongoing usages of AMOEBA by creating

polarizable force fields for DES components.

This chapter reviews a semi-automated code for initializing polarizable AMOEBA force
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fields. Also, the utilization of the force field optimizer ForceBalance is discussed. The

force field initialization process and the force field optimization process were fraught with

challenges. These challenges are addressed as well as the various workarounds that were

discovered as a guide to others intending to build upon this work.

3 .2 Initializing AMOEBA Polarizable Force Fields

3 .2.1 Initialization Tutorial

The Ponder group have designed a number of tutorials to initialize different kinds of AMOEBA

polarizable force fields using Tinker. The main tutorial referenced in this work uses Tinker

and other software including: Gaussian, OpenBabel, and Stone’s GDMA program.136 As

outlined, the the tutorial involves multiple steps optimizing structures and feeding program

output (files and screen readouts) to other programs. While possible to navigate the various

tutorial steps by hand, the process is prone to user error and becomes tedious when used for

many candidate molecules.

3 .2.2 Semi-Automated Initialization Method

Creating input files and harvesting relevant output file data by hand leaves a lot of room for

human error. A Python code that (mostly) automates the initialization procedure is outlined

here. The semi-automated code streamlines the initialization procedure and removes most

sources of human error. The code is not fully automated, because there are certain steps in

which the programs involved are prone to error and are not easily bypassed without human

input. This is most evident between steps 8 and steps 10 of the code where Tinker has a

hard time determining chemically equivalent atoms (via symmetry). The goal of the Python

code is to start with an input molecule coordinate file in the XYZ format and produce as

output an AMOEBA force field file.

For the sake of explanation molecule.xyz is used as an example input. The code also

requires an existing AMOEBA force field file (existing.prm) because the first step of ini-
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tialization uses Tinker’s poledit method requires one for some unknown reason. The input

AMOEBA force field does not appear to be a template, and the requirement was added

sometime after the referenced tutorial was created in 2011 for the Supporting Information

of “Polarizable Atomic Multipole-Based Molecular Mechanics for Organic Molecules”.136

One shortcoming of Tinker’s native force field initialization process is that charged

molecules cannot be used as input. It is possible to generate a force field using a charged

molecule, but the force field will not exhibit physical behavior. The issue appears to lie in

how Tinker parameterizes the multipole parameters when there is a strong charge on any

of the atoms within the target molecule. In the early stages the force fields were initialized

by hand, by creating a starting geometry file with Avogadro and following the steps in the

tutorial.136 This approach was not only tedious, but also prone to human error if ever the

wrong file was selected across the numerous steps. Many files with the same extensions are

collected and must be carefully named to avoid mishaps. Other potential sources of human

error were the numerous steps involving copying parameters from one output file (or screen

output) into another file and other similar keyword additions. There was a large number

of accumulated files by the end and plenty of opportunities to accidentally miss something

important.

To streamline the process, I created a semi-automated Python code that can take an

input XYZ file and return a Tinker polarizable force field file. The code document can be

viewed in the Supporting Information section for this chapter in Listing B 3. After the user

intervention following Part 1 of the code, the user can run Part 2 to obtain the initialized

force field file. The code initializes a force field with the following steps:

1. PART 1: Required programs for force field initialization are: Tinker, Guassian,

Anthony Stone’s Gaussian Distributed Multipole Analysis (GDMA), and OpenBa-

bel.144–148

NOTE: In this work, the following versions were used: Tinker 8.7.1, Gaussian 16,

GDMA 2.3 patch 1, OpenBabel 2.3.1 , together with Python 3.7.149
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2. Create molecule.xyz, a required input file for the initialization code.

NOTE: Make sure to optimize the structure before proceeding to make the subsequent

optimization steps more straightforward. In this project, molecule.xyz was created

by building the molecule in Avogadro (version 1.1.1) and using the simple, built-

in, UFF force field with 4-step steepest descent to minimize the molecule’s energy

before exporting the coordinates.150,151

3. Run initialization code providing inputs for coordinates, charge, spin, molecule name,

part (1 or 2 of the code), starting atom type index, and starting atom class index.

4. In addition to the above, provide a Tinker force field file (or a symbolic link to one).

NOTE: This step deviates from the reference polarizable force field initialization tu-

torial and seems to have been added to later versions of Tinker.136 The purpose

of this step in unclear, as it is a required input for Tinker, but does not appear to

affect the resulting force field. One hypothesis was that this input force field was

used as a template for the new force field, but after some verification it appears

to be required for some other reason.

5. Run a Gaussian geometry optimization with the MP2/6-311G(1d,1p) level of theory,

using the molecule.xyz coordinates as the starting point.

6. Run a Gaussian formchk method using the checkpoint file from previous optimization

step to create a formatted checkpoint file.

NOTE: In this step the binary checkpoint file is converted to a formatted checkpoint

text file which is readable with many text editors and importantly, GDMA and

OpenBabel.

7. Run GDMA to generate .gdmaout output required by Tinker.
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NOTE: GDMA stands for Gaussian Distributed Multipole Analysis which is a means

of assigning atomic multipoles from Gaussian wavefunctions.146,152 The multipole

moments are often centered on atoms, but can be defined in other ways. Earlier

DMA methods partitioned the density in basis space, and while it was considered

better to partition in physical space, methods which attempted that were costly.

Methods which partitioned the density in basis space alone are flawed because the

resulting DMA was highly basis set dependant. What Stone did to combat that

was maintain the partitioning of the density in basis space for compact functions

and numerical quadrature for diffuse functions. The GDMA program allows the

user to use the older basis set approach or the hybrid basis set-spatial partitioning

technique. The creators of the initialization tutorial ellected to use the original

GDMA approach and that option is therefore selected in the GDMA input file.136

8. Run Tinker’s poledit method.

NOTE: The Tinker poledit method uses the output file of GDMA to convert the

global-frame multipole values into Tinker permantent multipole values. Tinker

offers some options for placement of the frame definitions, but this method selects

the default options. Tinker also selects polarization groups in this step.

9. End of Part 1, before running Part 2, confirm that the current force field molecule.key

has correctly assigned atom types. If not, manually edit the top lines to have the

correct atom types. Tinker attempts to identify equivalent atoms (similar by molec-

ular symmetry and chemically equivalent), but often does not correctly identify each

of them. Equivalent atoms missed by Tinker need to assigned by the user before pro-

ceeding. This is the one step that requires human intervention in the form of utilizing

chemical intuition and thus breaks this automated procedure into two parts.

10. PART 2: Run Tinker’s prmedit (parameter edit) function.
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NOTE: Tinker automatically indexes atom type and atom class starting from unity

which is fine for force fields used in isolation, but becomes problematic when

combining them. Force fields must have unique indices before being combined,

because they will not function with doubly-assigned atom types/classes. Unique-

ness of indices must be accounted for whether the user intends to combine the

resulting force field with others they create, or with files such as amoeba09.prm.

The indices are not easily edited once the force field is created. A side effect of

custom indices is that it makes creating coordinate files more difficult. Tinker

utilizes its own coordinate format (TXYZ) which unfortunately defaults to the

same extension as XYZ even though they are different file formats. Unlike XYZ,

TXYZ requires atom type information. Therefore, when creating TXYZ coordi-

nates, the atom types need to be corrected or added to match the custom values

of the force field. For clarity in this project, since both XYZ and TXYZ are used

extensively in the tutorial, TXYZ coordinates are instead given a .txyz extension.

11. Insert atom class indices.

NOTE: At some point, the Tinker methods do not include parameter classes, so a

custom function in the code takes care of inserting them at this time. Even though

atoms of different types can share atom classes, the default in this code is set to

give each atom type its own unique atom class. Doing this avoids another human

input step, but possibly increases the parameter bloat of the force field which

may negatively affect parameter optimization down the line. Not sharing atom

classes is not expected to negatively affect the accuracy of the force field after

FB parameter optimization. However, the effects of atom class sharing should be

verified with some test cases.

12. Run OpenBabel on the Gaussian log file produced in Step 5 to create molecule opt.xyz

(coordinates of the optimized structure).
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13. Using molecule opt.xyz, run another Gaussian optimization at a higher level of theory:

MP2/aug-cc-pVTZ.

14. Run Gaussian formchk on the checkpoint file from the second Gaussian optimization

and use OpenBabel to convert that formatted checkpoint file to a TXYZ file.

NOTE: Because the XYZ file format used in the Gaussian optimizations has no atom

types or classes, OpenBabel attempts to recognize and assign them in the file

format conversion (possibly based on the most current AMOEBA force field).

However, since the user is using custom atom types and classes (either indexed

from unity by default or another starting point) that are not compatible with

whatever reference OpenBabel is using for assignment, the code corrects those

before the TXYZ file is used.

15. Run Tinker potential option #1. This creates an input file in order to run Gaussian’s

cubegen function.

16. Run Gaussian cubegen method. This method calculates the potential at each grid

point and produces a .cube file.

17. Use the above .cube file from Gaussian as input to run Tinker potential option #2.

NOTE: Here Tinker creates a .pot file which contains the QM potential (from Gaus-

sian) at each grid point. A keyword is added after this current step and prior to

the next step to exclude the monopole values from optimization.

18. Run Tinker potential option #6. The atomic multipoles are fit to the QM electrostatic

potential.

19. A custom function then combines the newly fitted multipole parameters with previously

obtained parameters into most current parameter file.

20. Run Tinker valence option #1 to assign a default set of VDW parameters.
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21. Use OpenBabel to convert second Gaussian optimization coordinates from TXYZ to

XYZ (molecule opt opt.xyz).

22. Run Gaussian frequency calculation using molecule opt opt.xyz as input.

23. Tinker valence option #2.

NOTE: This step does not change the force field parameters, but rather compares the

current AMOEBA force field vibrational frequencies to those from the Gaussian

frequency calculation. A readout of this comparison is saved to the directory.

24. Tinker valence option #3.

NOTE: This part of the valence method provides adjustment of the bond and angle

values and the force constants based on the Gaussian frequency calculation.

25. Final versions of the parameters are combined via a custom function into a final ini-

tialized force field file named molecule final.key.

The Tinker tutorial also details steps for refining the torsion parameters, but those steps

were difficult to execute correctly. Therefore, the part of the tutorial involving Tinker re-

fining the torsion parameters was excluded from the code. The optimization capabilities of

ForceBalance will be relied on for refinement of torsion parameters.

Left out of the list of steps are various intermediate parameter file re-naming steps which

help differentiate the changes made to the force field over time. The initialization code also

creates and saves input and output files for each of the programs called as a paper trail of

which options were used at each step. The slowest steps in this process are the Gaussian

optimizations.

Part of the Tinker group created an automated AMOEBA force field initialization pro-

cedure called Polytype 2.153,154 Polytype 2 takes (preferrably Spatial Data File, SDF) input

coordinates and generates a force field. Coordinate files without bond order components are

57



converted to SDF and bond order estimates are used. The method outlined in this section

instead uses XYZ and TXYZ files without need of bond order. Automation of AMOEBA

force field initialization is still an interesting space because this project intends to replicate

AMOEBA force fields in OpenMM and use both Tinker and OpenMM in tandem. A custom

initialization method also allows features to be tailored to the needs of this DES project.

3 .2.2.1 Urea Polarizable Force Field One of the possible hydrogen bond donor

molecules that can be paired with choline chloride to make a DES is urea. The following

AMOEBA-Tinker polarizable force field was created for urea using the code described in

Section 3 .2.2.

1 forcefield AMOEBA -urea

2

3 bond -cubic -2.55

4 bond -quartic 3.793125

5 angle -cubic -0.014

6 angle -quartic 0.000056

7 angle -pentic -0.0000007

8 angle -sextic 0.000000022

9 opbendtype ALLINGER

10 opbend -cubic -0.014

11 opbend -quartic 0.000056

12 opbend -pentic -0.0000007

13 opbend -sextic 0.000000022

14 torsionunit 0.5

15 vdwtype BUFFERED -14-7

16 radiusrule CUBIC -MEAN

17 radiustype R-MIN

18 radiussize DIAMETER

19 epsilonrule HHG

20 dielectric 1.0

21 polarization MUTUAL

22 vdw -12-scale 0.0

23 vdw -13-scale 0.0

24 vdw -14-scale 1.0

25 vdw -15-scale 1.0

26 mpole -12- scale 0.0

27 mpole -13- scale 0.0

28 mpole -14- scale 0.4

29 mpole -15- scale 0.8

30 polar -12- scale 0.0

31 polar -13- scale 0.0

32 polar -14- scale 1.0

33 polar -15- scale 1.0

34 polar -12- intra 0.0
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35 polar -13- intra 0.0

36 polar -14- intra 0.5

37 polar -15- intra 1.0

38 direct -11- scale 0.0

39 direct -12- scale 1.0

40 direct -13- scale 1.0

41 direct -14- scale 1.0

42 mutual -11- scale 1.0

43 mutual -12- scale 1.0

44 mutual -13- scale 1.0

45 mutual -14- scale 1.0

46

47 FIX -MONOPOLE

48 atom 600 300 C "urea " 6 12.011 3

49 atom 601 301 N "urea " 7 14.007 3

50 atom 602 302 H "urea " 1 1.008 1

51 atom 603 303 O "urea " 8 15.999 1

52

53 #

54 # Multipoles from Electrostatic Potential Fitting

55 #

56

57 multipole 600 603 601 1.03617

58 0.00000 0.00000 0.10461

59 0.00735

60 0.00000 -0.06314

61 0.00000 0.00000 0.05579

62 multipole 601 600 602 -0.36361

63 -0.11826 0.00000 -0.16264

64 0.65336

65 0.00000 -0.80469

66 -0.08658 0.00000 0.15133

67 multipole 602 601 600 0.13019

68 0.01149 0.00000 -0.18495

69 0.11568

70 0.00000 -0.06971

71 0.02419 0.00000 -0.04597

72 multipole 603 600 601 -0.82971

73 0.00000 0.00000 -0.22109

74 -0.43084

75 0.00000 0.21152

76 0.00000 0.00000 0.21932

77 polarize 600 1.3340 0.3900 601 603

78 polarize 601 1.0730 0.3900 600 602

79 polarize 602 0.4960 0.3900 601

80 polarize 603 0.8370 0.3900 600

81 Estimated van der Waals Parameters :

82

83 vdw 300 1.900 0.0890

84 vdw 301 1.855 0.1050

85 vdw 302 1.350 0.0200 0.91

86 vdw 303 1.650 0.1120

87

88 #
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89 # Results of Valence Parameter Fitting

90 #

91 bond 300 301 614.17 1.3347

92 bond 300 303 947.09 1.1994

93 bond 301 302 565.71 1.0017

94 angle 301 300 301 18.50 152.31

95 angle 301 300 303 4.08 195.32

96 angle 300 301 302 38.88 116.05

97 angle 302 301 302 42.82 114.75

98

99

100

101

102 Estimated Stretch -Bend Parameters :

103

104 strbnd 301 300 301 18.70 18.70

105 strbnd 301 300 303 18.70 18.70

106 strbnd 300 301 302 7.20 4.30

107

108 Estimated Out -of-Plane Parameters :

109

110 opbend 301 300 0 0 14.40

111 opbend 303 300 0 0 14.40

112

113 Estimated Torsional Parameters :

114

115 torsion 301 300 301 302 0.000 0.0 1 0.500 180.0 2 0.250

0.0 3

116 torsion 303 300 301 302 0.000 0.0 1 0.500 180.0 2 0.250

0.0 3

Listing 1: AMOEBA-Tinker-urea force field file generated by the semi-automated code in
Supporting Information B 3.

In AMOEBA-Tinker-urea (Listing 1), atom types (non-bonded terms) are integers in-

dexed from 600 and atom classes (bonded terms) are indexed from 300. For any Tinker

force field, the multipole parameters are charge, dipole, and quadrupole moments.155 The

VDW parameters are size (in Ångstroms), homoatomic well depth, and an optional reduc-

tion factor. The bond parameters consist of a force constant and an ideal bond length. The

angle parameters consist of a force constant and up to three ideal bond angles. The lone

opbend parameter is a force constant. And finally, the torsion parameters are triplet sets of

amplitude, phase offset, and periodicity.

Urea is a straightforward test case since it is a small molecule with four readily identifiable

atom types and atom classes.
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3 .2.3 Choline Chloride

The intended quaternary ion to be paired with urea and the other hydrogen-bond donors

in this study was choline chloride (Figure 10). Choline chloride is a quaternary ammonium

salt that also has an alcohol functional group. However, multiple problems emerged when

attempting to initialize the AMOEBA force field for choline chloride.

Figure 10: Choline chloride molecule, formula: (CH3)3N(Cl)CH2CH2OH. Atoms pictured
are: carbon (dark grey), hydrogen (light grey), nitrogen (blue), oxygen (red), and chlorine
(green)

Eventually, we decided to hold off on troubleshooting the various issues with choline and

move forward with just the hydrogen bond donor molecules. The issues with choline chloride

we experienced may be related to the polarization catastrophe.156 The polarization catastro-

phe is when strong electrostatic interactions (like with ions such as Cl- are involved) cause

instability in the induced dipoles they cause.130 The problems with the choline chloride force

field were with the non-bonded terms, more specifically the multipole terms. Another expla-

nation is that Tinker’s internal process for multipole parameter assignment and refinement

is not intended for ions. Whatever the issue ends up being, once fixed it will be straightfor-

ward to use the semi-automated code to initialize force field parameters for choline chloride.

After which, those parameters can be combined with urea’s or other hydrogen bond donors
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to form a DES force field. This is where the parameter indexing of atom types and atom

classes during initialization comes into play. The various hydrogen bond donor’s parameters

should be indexed such that they are compatible with those of choline chloride and the other

donors.

3 .3 ForceBalance

ForceBalance (FB) is an optimization engine that can tune force field parameters by fitting

to both experimental and calculated targets.132 FB accomplishes this by allowing for diverse

residuals to be included in a single objective function. Before the parameter optimization

begins, priors are selected for force field parameters so they can be subject to a Gaussian prior

probability distribution which informs FB about the expected range of the parameters.157

The priors help penalize parameter deviations that stray far from expected physical behavior

during the optimization process.

FB has already been used to tune TIP3P and TIP4P water force field models. FB

improved their agreement with experimental values for density, dielectric constant, self-

diffusion coefficient, and shear viscosity across a range of temperatures.134 Another successful

application of FB was an efficiency improvement of the AMOEBA water model with the

creation of iAMOEBA.133 The “inexpensive” iAMOEBA water model was able to reduce the

cost of polarization while maintaining and sometimes improving overall accuracy. FB was

also applied in the study of nanoporous graphene desalination processes and improvement

of an AMBER protein force field.135,158

In this study, we fed 10,000 step QM MD data into FB to improve the parameterization of

our small hydrogen-bond donor molecules. An important tool in FB’s optimization process

is constrained optimization. However, Tinker does not contain native constrained optimiza-

tions. A workaround for this issue is to convert the Tinker force field parameter file (.prm)

into an OpenMM force field XML parameter file. This force field should be functionally the

same, just existing in two different engines.
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The OpenMM force field is an open source force field that executes simulations using

Python scripts.159,160 Because OpenMM uses Python, it is easy for users to customize

force field settings, applications, and parameters.161 OpenMM’s Python core also grants it

an extensibility advantage over other force fields. New features are a lot easier to add, so

much so that users can participate. In this project, OpenMM is used primarily to get around

limitations of the Tinker engine. OpenMM can be used for this purpose because it is capable

of recreating the AMOEBA force field outside of Tinker.

The two versions of that same force field are referred to as AMOEBA-OpenMM and

AMOEBA-Tinker in this project. OpenMM does have constrained optimization and FB is

capable of optimizing the parameters of AMOEBA-OpenMM and AMOEBA-Tinker as if it

were a single force field.133 Depending on the step, FB uses the force field engine best suited

for that type of calculation. The correctly updated parameters (in their correct units) are

recorded for both versions of the force field.

3 .4 Troubleshooting

FB is capable of carrying forth the optimization of force field parameters simulataneously

with AMOEBA-Tinker and AMOEBA-OpenMM. Each force field engine has advantages

and shortcomings when attempting to optimize the force field parameters. For example,

Tinker cannot run geometry-constrained optimizations, so steps where those optimizations

are required are run using OpenMM. Tinker is also better suited for certain calculations

than OpenMM which is why OpenMM cannot be used exclusively. Also, Tinker offers a

force field parameter initialization routine for new molecules.136 FB navigates both engines’

nonoverlapping features by using OpenMM for potential energies and forces and Tinker for

binding energies.133 The newly refined parameters are updated for both force fields. Because

FB relies on both force field engines, are must be taken to ensure that the AMOEBA-Tinker

and AMOEBA-OpenMM are equal to each other with high precision.

The newly-parameterized AMOEBA-Tinker force field is converted into an AMOEBA-
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OpenMM force field with a Python code. Peter Eastman, who works on the OpenMM

project, kindly shared code with us that converts Tinker force fields into OpenMM force

fields. That conversion code only needed some minor modifications until it was ready for

this use case. Tinker force fields are stored in a list structure where each row containing

a parameter first contains the keyword, then any necessary atom types, atom classes, and

parameter values. OpenMM force fields are stored in XML files which have an element

tree structure. The conversion code takes into account formatting differences, as well unit

conversions.

Before beginning any parameter optimization, FB is used to verify the sameness of the

AMOEBA-Tinker and AMOEBA-OpenMM force fields. To do this, each force field is set up

as a target and FB computes the difference between what the force field computes and a QM

reference. The reference-minus-target values are required be equivalent to decent precision

before beginning parameter optimization. Attempting to use nonequivalent force fields when

optimizing parameters with force balance would ruin the process. Each time FB switches

engines, it would be using different inputs and would make each step force field dependant.

This is why such care is taken to ensure AMOEBA-Tinker and AMEOBA-OpenMM are

truly equivalent before beginning optimization.

Unfortunately, early attempts to initialize a Tinker force field and convert it to an exact

replica in OpenMM were not successful. The force fields were not as similar as expected

when comparing their reference-minus-target values obtained by FB. When FB is using

both Tinker and OpenMM in its optimization process, it can execute a process to indirectly

compare the force field energies. FB takes an input MD trajectory and can compare multiple

targets to QM (or other) benchmarks. For this project, to verify the sameness of the two

force fields, FB computes a QM energy for each frame in a 10,000 step MD simulation of

urea. Next, FB computes the energy of Tinker, and subtracts it those frame-by-frame from

the QM energy then does that for OpenMM. Those energy differences are then averaged to

a final result.
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This comparison of QM-minus-MM using FB was applied to AMOEBA-Tinker-urea in

Listing 1 and AMOEBA-OpenMM-urea in SI Listing B 4. After much troubleshooting,

we reduced the QM-minus-MM differences between AMOEBA-Tinker-urea and AMOEBA-

OpenMM-urea down to about 0.1 kJ/mol which was a 0.2 percent difference. This difference

(of differences) seems small, but it was noticeably larger than previous studies and spurred

on other troubleshooting techniques.

An early suspicion we had was that something unusual could be happening to the geom-

etry of the urea molecule over the course of the MD simulation which was disrupting how

one engine handled the force field, but not the other. To check this, I calculated the total

energy difference between AMOEBA-Tinker-urea and AMOEBA-OpenMM-urea for each of

the 10,000 MD frames. Next, I created an average distance matrix for the top 100 “most

similar” frames and also one for the top 100 “most different” frames. However, neither ma-

trix appeared drastically different than the 0th frame distance matrix. To make the subtle

distances stand out better, I then subtracted the 0th frame’s matrix from each frame of

interest before averaging them in their respective groups. Subtracting out the 0th frame

changes the average matrices from showcasing the distances between atom pairs, to instead

revealing how much the average of each grouping differs from the starting geometry.
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Figure 11: Upper left is the distance matrix for the 0th frame in the trial MD simulation
for urea. Lower left is an average distance matrix of the 100 least energetically different MD
frames between AMOEBA-Tinker and AMOEBA-OpenMM. Before averaging, each frame
had the 0th difference matrix subtracted (to highlight deviation from the planar starting
point). Lower right is the same as lower left, except using the 100 most energetically different
MD frames. All distances in Ångstrom, redder color indicates a larger distance.

Ultimately, Figure 11 reveals that extreme geometry is not the culprit. Both the top

100 “most different” frames and the top 100 “most similar” frames experience geometric

deviations from similar atom pairs and with similar magnitudes. The urea molecule only

has so much flexibility at this level of energy and is constrained by the stiff C-N bonds which

participate in the pi-system of the C-O bond. With extreme geometry being ruled out, it

meant a different approach was necessary to diagnose the stark energy differences between

AMOEBA-Tinker-urea and AMOEBA-OpenMM-urea.

Another Python code was created to attempt to unearth the reason behind the differences.

That code computes and plots the differences between energy components (bond, angle,

VDW, etc.) of Tinker and OpenMM. It is clear from the total energy difference plot in
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Figure 12 that the significant differences arise when comparing certain frames (MD steps).

Figure 12: Troubleshooting plot with Tinker minus OpenMM total energy in kJ/mol vs
MD frame

Figure 12 reveals energy differences that are far too great for force fields that are suppos-

edly equal. The maximum differences between Tinker and OpenMM total energies eclipsed

20 kJ/mol, with a percent difference of up to 11%. The next step would be to check energy

differences between Tinker and OpenMM across each of the energy components. Energies

are used instead of forces or another metric because energy components are the output of

Tinker’s native diagnostic tools.

During the process of creating Figure 13 it became clear that the out-of-plane bonding

energy between Tinker and OpenMM was in disagreement. This was difficult to uncover,

because in early iterations of the Tinker force field the out-of-plane parameters were excluded

and the capability of converting them to OpenMM was commented out of the conversion

code. That, and the fact that the early, oft-referenced frames experienced no out-of-plane
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bending hid the issue for a time. Once this issue was identified, the capability of converting

out-of-plane was reinstated to the conversion code and the original urea Tinker force field

was re-converted to OpenMM. After this fix, the out-of-plane energies were confirmed to

match, but now the angle energies no longer did.

Figure 13 shows how the issue with the angle parameters had something to do with the

in-plane-angle energies:

Figure 13: Tinker and OpenMM angle energy components in kJ/mol vs MD frame. The
Tinker angle energy is in blue, and the OpenMM angle energy is split between angle (green)
and in-plane-angle-force (orange).

Figure 13 reveals that OpenMM is deviating from the expected behavior. Neither force

field file has any in-plane-angle parameters. The in-plane-angle energies appeared because

OpenMM has some hidden mechanism where it adjusts how the angles are handled in the

system. OpenMM was not executing the force field according to the parameter file and

adapting angle parameters into in-plane-angle parameters and changing the overall energy.
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Further verification revealed that subtracting the OpenMM in-plane-angle and angle values

point-by-point from the Tinker angle values recreates the line in Figure 12.

This issue with OpenMM’s built-in protocols for separating angle parameters into tradi-

tional angle-bending and in-plane-angle could be fixed by modifying OpenMM. The solution

we found to this was to adjust the Python script used for testing OpenMM energies to remove

the automatically generated out-of-plane-bending energies and re-insert them as traditional

angle energies. The following code in Listing 2 is an OpenMM Python script containing

the angle energy corrections. The correction section is found near the end of the file and is

highlighted with repeated # symbols.

1 from simtk.openmm.app import *

2 from simtk.openmm import *

3 from simtk.unit import *

4 import simtk.unit as u

5 from forcebalance.nifty import printcool_dictionary

6 from forcebalance.molecule import Molecule

7 from collections import OrderedDict

8 import IPython

9

10 def energy_components(Sim):

11 # Before using EnergyComponents , make sure each Force is set to a

different group.

12 EnergyTerms = OrderedDict ()

13 for i in range(Sim.system.getNumForces ()):

14 EnergyTerms[Sim.system.getForce(i).__class__.__name__] = Sim.

context.getState(getEnergy=True ,groups =2**i).getPotentialEnergy () / u.

kilojoules_per_mole

15 EnergyTerms[’Potential ’] = Sim.context.getState(getEnergy=True).

getPotentialEnergy () / u.kilojoules_per_mole

16 return EnergyTerms

17

18

19 pdb = PDBFile(’conf.pdb’)

20 forcefield = ForceField(’AMOEBA -urea_NEW.xml’) #, ’tip3p.xml ’)

21 #unmatched_residues = forcefield.getUnmatchedResidues(pdb.topology)

22 # use FB molecule object to set positions with xyz file

23 molecule = Molecule(’frame_1913.xyz’)

24 # create an openmm list of Vec3’s to update positions

25 for x in range(len(molecule)):

26 # FB molecule object

27 xyz = molecule.xyzs[x]

28 # openmm uses vec3

29 xyz_vec3 = [Vec3(i[0], i[1], i[2]) for i in xyz]* angstrom

30

31 # create system
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32 system = forcefield.createSystem(pdb.topology , nonbondedCutoff =1* nanometer

)

33

34 fs = system.getForces ()

35

36 #######################################

37 ##### AmoebaAngleForce CORRECTION #####

38

39 # determine index of AmoebaInPlaneAngleForce , which changes for each ff

40 for i in range(len(fs)):

41 print(fs[i])

42 if "AmoebaInPlaneAngleForce" in str(fs[i]):

43 ipa_index = i

44 # determine index of AmoebaAngleForce , which also changes for each ff

45 elif "AmoebaAngleForce" in str(fs[i]):

46 angle_index = i

47

48 # use the correct index to access AmoebaInPlaneAngleForce

49 print(fs[ipa_index ])

50 print("number of in -plane angles", fs[ipa_index ]. getNumAngles ())

51 numinplane = fs[ipa_index ]. getNumAngles ()

52 for i in range(numinplane):

53 print(fs[ipa_index ]. getAngleParameters(i))

54

55

56 # using the correct index for AmoebaAngleForce ,

57 # reinsert AmoebaInPlaneAngleForce as an AmoebaAngleForce

58 # example AmoebaInPlaneAngleForce: [1, 0, 2, 7, Quantity(value =152.31 ,

unit=radian), Quantity(value =0.0235786067612 , unit=kilojoule /(mole*

radian **2))]

59 # example AmoebaAngleForce: [1, 0, 2, Quantity(value =152.31 , unit=degree),

Quantity(value =0.0235786067612 , unit=kilojoule /(mole*radian **2))]

60 print(fs[angle_index ])

61 for i in range(numinplane):

62 fs[angle_index ]. addAngle(fs[ipa_index ]. getAngleParameters(i)[0], fs[

ipa_index ]. getAngleParameters(i)[1], fs[ipa_index ]. getAngleParameters(i

)[2], float(str(fs[ipa_index ]. getAngleParameters(i)[4]).split(’ ’)[0]),

float(str(fs[ipa_index ]. getAngleParameters(i)[5]).split(’ ’)[0]))

63

64 print("AmoebaInPlaneAngleForces reinserted as AmoebaAngleForce")

65 # remove in-plane angle force

66 system.removeForce(ipa_index)

67 print("AmoebaInPlaneAngleForces removed from the system")

68

69 ##### END OF CORRECTION SECTION #####

70 #####################################

71

72 # give each force group its own index

73 for ind , f in enumerate(system.getForces ()):

74 f.setForceGroup(ind)

75 integrator = LangevinIntegrator (300* kelvin , 1/picosecond , 0.002*

picoseconds)

76 simulation = Simulation(pdb.topology , system , integrator)

77 #simulation.context.setPositions(pdb.positions)
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78 simulation.context.setPositions(xyz_vec3)

79 # create force component dictionary using above function

80 Ecomps_OMM = energy_components(simulation)

81 # print out force component dictionary

82 printcool_dictionary(Ecomps_OMM , title="OpenMM energy components")

Listing 2: Sample OpenMM Python script containing a correction that removes
AmoebaInPlaneAngleForce inclusions and reinserts them as AmoebaAngleForce instances.
Subsection containing the correction noted with repeated # symbols.

This solution in Listing 2 produced sufficiently equivalent force fields across both Tinker

and OpenMM as seen with the post-fix total energy differences in Figure 14.

Figure 14: Tinker minus OpenMM total energy in kJ/mol vs MD frame after applying the
OpenMM fix in Listing 2. The magnitude of the energy differences matches the expected
behavior of the two force fields.

The total energy differences in post-fix Figure 14 are much smaller than in Figure 12.

After the fix, the maximum energy differences are around ± 0.0006 kJ/mol with a percent

difference of 0.0003%. This is an acceptable energy difference between AMOEBA-Tinker-

urea and AMOEBA-OpenMM-urea for later FB usage. Figure 15 contains a breakdown of
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each of the contributing individual energy components:

Figure 15: Troubleshooting plot (after applying the OpenMM fix in Listing 2) where the
y-axis is the value in kJ/mol of the OpenMM total energy subtracted from the Tinker total
energy for each MD frame (x-axis).

Figure 15 shows that post-fix each energy component is effectively the same across both

force fields with differences at most ± 0.0006 kJ/mol. The angle energy component differ-

ences are corrected from how they appeared as raw energy values in Figure 13.

3 .5 Conclusion and Future Work

The conclusions are fairly interwoven with the future work for this project, so those thoughts

will be combined here. The next step is to implement the angle correction into how FB

applies the OpenMM force field. One possible way to add this fix into FB is by inserting

a Python script into AMOEBA-OpenMM. OpenMM force field files support Python, so it

should just be a matter of how to call the OpenMM system that FB creates and update
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the angle parameters. Another idea is to try and activate the in-plane-angle behavior in

AMOEBA-Tinker and leave AMOEBA-OpenMM unchanged.

With a semi-automated means of initializing Tinker force fields, a code to convert them

to OpenMM, and a solution to bring AMOEBA in Tinker and OpenMM into equivalence,

FB can soon be used to tune these force field parameters.

This project for the most part was mired in constant troubleshooting. It was only near

the end that enough significant hurdles were overcome to successfully generate both the

AMOEBA-Tinker and AMOEBA-OpenMM force fields that were sufficiently equivalent for

FB to optimize their parameters in unison. Therefore, the future work is to use FB to

optimize these DES hydrogen bond-donor molecules and compare features such as radial

distribution function, density, and other factors to experimental data and alternative force

fields. To complete the DES polarizable force field a solution also needs to be found to

the ion problem found when attempting to initialize choline chloride. Once both choline

chloride and the hydrogen bond donor force field parameters are initialized and converted

into AMOEBA-OpenMM, they can be combined into a DES and FB can be used to refine

their parameters.
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A .1 Clustering
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Figure A .1: Dendrogram for the heptanylium system using BODM (Equation 3) as a clus-
tering threshold. Clustering cutoff of 1.0 was selected to create this set of reference reaction
events.
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Figure A .2: Dendrogram for the iron carbonyl cluster system using BODM (Equation 3)
as a clustering threshold. Clustering cutoff of 1.0 was selected to create the set of reference
reaction events.
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A .2 Bond-wise Objective Function
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Figure A .3: Top: Heat map for the iron carbonyl cluster system with σ and µ combinations
using the ’unified’ criterion objective function. Bottom: Heat map of the same system, but
with σ and µ combinations using the ’bond-wise’ criterion objective function.
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Figure A .4: Reference reaction events (colors from Figure 7) and BO time series predictions
(black) for the heptanylium system. Orange time windows expand around predictions with
height inversely proportional to window size.
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Figure A .5: Reference reaction events ranked by temporal distance from nearest predicted
reaction event for the heptanylium system.
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Figure A .6: Reference reaction events (colors from Figure 9) and BO time series predictions
(black) for the iron carbonyl cluster system. Orange time windows expand around predictions
with height inversely proportional to window size.
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Figure A .7: Reference reaction events ranked by temporal distance from nearest predicted
reaction event for the iron carbonyl cluster system.
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Figure A .8: The 15 clusters identified when creating the Eref for the iron carbonyl cluster
Fe3(CO)9 with relative energies in kcal/mol shown in parentheses. Molecule color scheme:
iron: pink, carbon: gray, and oxygen: red. Bonds drawn using a 2.4 Å cutoff. Some clusters
are very similar because permutation of atomic indices is not accounted for in this method.
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Figure A .9: Selected bond order (orange) and energy-minimized bond order (blue) time
series for heptanylium trajectory.
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Figure A .10: Selected bond order (orange) and energy-minimized bond order (blue) time
series for Fe3(CO)9 trajectory.
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Figure A .11: Bond order time series comparison for trajectory segment 8500-8800 fs of
heptanylium cation (C7H

+
15) using the B3LYP method and the 6-31G*, 3-21G, and TZVP

basis sets.
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RMS error between basis sets
atom pairs 6-31G* vs 3-21G 6-31G* vs TZVP 3-21G vs TZVP

C1 H2 0.029 0.028 0.056
C1 C3 0.062 0.102 0.045
C1 H4 0.030 0.029 0.058
C1 H5 0.029 0.028 0.058
C3 H6 0.034 0.046 0.078
C3 H7 0.033 0.036 0.069
C3 C8 0.066 0.116 0.055
C3 C10 0.019 0.035 0.044
C8 H9 0.035 0.045 0.078
C8 C10 0.074 0.076 0.035
C8 H11 0.033 0.059 0.091
C10 C12 0.075 0.075 0.041
C10 H13 0.020 0.019 0.038
C10 H14 0.031 0.040 0.070
C10 H15 0.021 0.030 0.046
C12 H13 0.030 0.043 0.069
C12 H15 0.030 0.033 0.060
C12 C16 0.072 0.075 0.043
C12 H18 0.000 0.020 0.020
C12 C19 0.009 0.006 0.011
C16 H18 0.036 0.038 0.073
C16 C19 0.066 0.093 0.037
C16 H20 0.032 0.046 0.076
H17 C19 0.030 0.027 0.057
C19 H21 0.030 0.025 0.055
C19 H22 0.030 0.029 0.058

Table A .1: RMS error values between the basis sets 6-31G*, 3-21G, and TZVP in the
trajectory segment 8500-8800 fs of heptanylium cation (C7H

+
15) . Corresponding time series

in Figure A .11. Largest RMS error for each pair of bases shown in bold.
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B Supporting Information for Chapter 3: AMOEBA

Polarizable Force Fields for Deep Eutectic Solvents

1 import numpy as np

2 import argparse

3 import os

4 from os import path

5 import sys

6 import subprocess

7

8 def make_gauss_input(name , coord_name , option , charge=0, spin =1):

9 ’’’ option #1 : create a Gaussian .com input file to run initial

optimization

10 option #2 : create a Gaussian .com input file to run second

optimization

11 option #3 : create a Gaussian .com input file to run frequency

calculation

12 ’’’

13 coords_block = get_coordinates(coord_name)

14 #coords_list = list_splitter(coords_block)

15 #file_name = ’%s.com’

16 if option == 1:

17 filename = ’%s.com’%name

18 elif option == 2:

19 filename = ’%s_re -opt.com’%name

20 elif option == 3:

21 filename = ’%s_freq.com’%name

22 with open(filename , ’w’) as outfile:

23 #outfile.write(’%’ + ’Chk=%s.chk\n ’%name)

24 if option == 1:

25 outfile.write(’%’ + ’Chk=%s.chk\n’%name)

26 outfile.write(’# MP2 /6-311G(1d,1p) Opt Density=MP2\n\n’)

27 elif option == 2:

28 outfile.write(’%’ + ’Chk=%s_re -opt.chk\n’%name)

29 outfile.write(’# opt mp2/aug -cc -pVTZ density=mp2\n\n’)

30 elif option == 3:

31 outfile.write(’%’ + ’Chk=% s_freq.chk\n’%name)

32 outfile.write(’# freq MP2 /6-311G(1d,1p) density=mp2\n\n’)

33

34 outfile.write(’remark line\n\n’)

35 outfile.write(’%s %s\n’%(charge , spin))

36 for i in range(2, len(coords_block)):

37 outfile.write(coords_block[i])

38 outfile.write(’\n’)

39

40 def make_gdma_input(name):

41 ’’’ creates a GDMA input file

42 ’’’

43 with open(’%s.gdmain ’%name , ’w’) as outfile:

44 outfile.write(’Title \"%s at MP2 /6-311G(1d,1p)\"\n\n’%name)
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45 outfile.write(’Verbose\n’)

46 outfile.write(’Density MP2\n’)

47 outfile.write(’File %s.fchk\n\n’%name)

48 outfile.write(’Angstrom\n’)

49 outfile.write(’AU\n\n’)

50 outfile.write(’Multipoles\n’)

51 outfile.write(’Switch 0\n’)

52 outfile.write(’Radius H 0.65\n’)

53 outfile.write(’Limit 2\n’)

54 outfile.write(’Start\n\n’)

55 outfile.write(’Finish ’)

56

57 def make_poledit_input(name):

58 ’’’ creates a TINKER poledit input file called input_poledit.txt

59 as a reference of the inputs into that program. This program often

does not

60 identify equivalent atoms , and it is recommended that the user reviews

the output

61 parameter file name_new.key (using TINKER poledit) before moving on

62 ’’’

63 with open(’input_poledit.txt’, ’w’) as outfile:

64 outfile.write(’1\n’)

65 outfile.write(’%s.gdmaout\n’%name)

66 # need this symbolic link to run everything

67 outfile.write(’amoeba09.prm\n\n’)

68 outfile.write(’A\n\n\n’)

69 outfile.write(’Y\n\n’)

70

71 def make_prmedit_input(name , starting_atom_type):

72 ’’’ creates a TINKER prmedit input file called input_prmedit.txt

73 prmedit renumbers atom type indices for us. It is also capable of

74 renumbering atom class indices , but they are missing from the .key

75 file at the point in time this is called. The function

insert_atom_class_indices ()

76 inserts the atom class indices (correctly ordered).

77 ’’’

78 with open(’input_prmedit.txt’, ’w’) as outfile:

79 outfile.write(’%s.key\n’%name)

80 # option #3 is to edit atom types

81 outfile.write(’3\n’)

82 outfile.write(’%s\n’%starting_atom_type)

83 #outfile.write(’%i ’%starting_atom_class)

84

85 def insert_atom_class_indices(name , start_index):

86 ’’’ this function does two main things: it copies the parameters

87 from parameter.prm into name_new.key AND it inserts atom class

88 indices starting from the input start_index.

89 ’’’

90 start_index = int(start_index)

91 filename = "parameter.prm"

92 with open(filename) as fileblock:

93 filelines = fileblock.readlines ()

94 # split lines by spaces

95 filepieces = list_splitter(filelines)
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96 with open(name + "_new.key", ’w’) as edited:

97 for i in range(len(filepieces)):

98 if i == 0:

99 print("first line", filepieces[i])

100 if len(filepieces[i]) != 0:

101 if filepieces[i][0] == ’atom’:

102 filepieces[i]. insert(2, str(start_index))

103 start_index += 1

104 editline = ""

105 for x in filepieces[i]:

106 editline += x + " "

107 edited.write(editline + "\n")

108 else:

109 edited.write(filelines[i])

110

111

112 def edit_indices(filename , type_index , class_index):

113 ’’’ not currently in use , but was used a starting point

114 for some other functions

115 ’’’

116 """

117 with open(filename) as fileblock:

118 filelines = fileblock.readlines ()

119 # split lines by spaces

120 filepieces = list_splitter(filelines)

121 with open("new" + filename):

122 for i in range(len(filepieces)):

123 if i == 0:

124 print ("first line", filepieces[i])

125 # if filepieces[i] == "atom":

126 """

127 with open(filename) as fileblock:

128 filelines = fileblock.readlines ()

129 # split lines by spaces

130 filepieces = list_splitter(filelines)

131 with open("new" + filename , ’w’) as edited:

132 for i in range(len(filepieces)):

133 if i == 0:

134 print("first line", filepieces[i])

135 if filepieces[i][0] == ’atom’:

136 newline = filepieces[i]

137 newline [1] = str(type_index + i)

138 newline [2] = str(class_index + i)

139 print("edited line %i"%i, newline)

140 editline = ""

141 for j in newline:

142 editline += j

143 edited.write(editline)

144 else:

145 edited.write(filelines[i])

146

147 def make_potential_input(name , option):

148 ’’’ makes input files for TINKER potential function calls (information

from TINKER program)

87



149 option #1 : creates an input file for Gaussian CUBEGEN

150 option #2 : Obtain a QM Potential from a Gaussian CUBE file

151 option #6 : Fits electrostatic potential parameters to a grid

152 ’’’

153 if option == 1:

154 with open(’input_potential_1.txt’, ’w’) as outfile:

155 outfile.write(’1\n’)

156 outfile.write(’%s_re -opt.txyz\n’%name)

157 outfile.write(’%s_new.key’%name)

158 elif option == 2:

159 with open(’input_potential_2.txt’, ’w’) as outfile:

160 outfile.write(’2\n’)

161 outfile.write(’%s_re -opt.cube’%name)

162 elif option == 6:

163 with open(’input_potential_6.txt’, ’w’) as outfile:

164 outfile.write(’6\n’)

165 outfile.write(’%s_re -opt.txyz\n’%name)

166 outfile.write(’%s_new.key\n’%name)

167 outfile.write(’%s_re -opt.pot\n’%name)

168 outfile.write(’y\n\n’)

169 outfile.write(’%s_new.key’%name)

170

171 def make_valence_input(name , option):

172 ’’’ makes input files for TINKER valence function calls (information

from TINKER program)

173 option #1 : sets intitial values for valence parameters

174 option #2 : compare QM and MM vibrational parameters (just for

evaluation)

175 option #3 : fits force parameters to the QM results

176 ’’’

177 if option == 1:

178 with open(’input_valence_1.txt’, ’w’) as outfile:

179 outfile.write(’1\n’)

180 outfile.write(’%s_re -opt.txyz\n’%name)

181 outfile.write(’%s_re -opt.log\n’%name)

182 outfile.write(’%s_new_new.key’%name)

183 elif option == 2 or option == 3:

184 with open(’input_valence_%i.txt’%option , ’w’) as outfile:

185 outfile.write(’%i\n’%option)

186 outfile.write(’%s_re -opt.txyz\n’%name)

187 outfile.write(’%s_freq.log\n’%name)

188 outfile.write(’%s_new_new_new.key’%name)

189 if option == 3:

190 outfile.write(’\n\n’)

191

192 # function for splitting raw line -lists

193 def list_splitter(raw_list):

194 ’’’ function for splitting raw line -lists into lines of separate

elements

195 ’’’

196 split_list = []

197 # split a list (by spaces) into separate elements

198 for i in range(len(raw_list)):

199 split_list.append(raw_list[i].split ())

88



200 return split_list

201

202 def get_coordinates(coord_name):

203 ’’’ open coordinates file and split into separate lines

204 ’’’

205 with open(coord_name) as coors_file:

206 coors_file_block = coors_file.readlines ()

207 return coors_file_block

208

209 def line_prepender(filename , line):

210 ’’’ function that inserts a line at the begining of a file

211 ’’’

212 with open(filename , ’r+’) as f:

213 content = f.read()

214 f.seek(0, 0)

215 f.write(line.rstrip(’\r\n’) + ’\n’ + content)

216

217 def combine_mp_parameters(old_params , opt_multipoles , name):

218 save_file = "%s_new_new.key"%name

219 # boolean to track copying of new multipole values

220 copied = False

221 with open(old_params) as fileblock1:

222 filelines1 = fileblock1.readlines ()

223 # split lines by spaces

224 filepieces1 = list_splitter(filelines1)

225 with open(opt_multipoles) as fileblock2:

226 filelines2 = fileblock2.readlines ()

227 # split lines by spaces

228 filepieces2 = list_splitter(filelines2)

229

230 with open(save_file , ’w’) as edited:

231 # iterate over each line of the original (old) parameter

(.key) file

232 for i in range(len(filepieces1)):

233 if i == 0:

234 print("first line", filepieces1[i])

235 if len(filepieces1[i]) != 0:

236 # identify "atom" OR "polarize" OR "FIX -MULTIPOLE"

lines and copy those

237 if filepieces1[i][0] == "atom" or filepieces1[i

][0] == "polarize" or filepieces1[i][0] == "FIX -MONOPOLE":

238 edited.write(filelines1[i])

239 # otherwise , skip the old multipole values and

copy the new multipole values

240 elif filepieces1[i][0] == "multipole" and copied

== False:

241 # iterate over each line of the optimized

multipoles file and write them into the edit

242 for j in range(len(filelines2)):

243 edited.write(filelines2[j])

244 copied = True

245 # if line empty , include a line return to preserve

formatting

246 else:
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247 edited.write("\n")

248 print("newest parameter file is %s"%save_file)

249

250 def combine_val_parameters(old_params , new_params , name):

251 save_file = "%s_new_new_new.key"%name

252 # boolean to track copying of new parameter values

253 keep_copying = False

254 # boolean to skip copying the Urey -Bradley parameters (which are zero

for most of these systems)

255 copy_urey = False

256 with open(old_params) as fileblock1:

257 filelines1 = fileblock1.readlines ()

258 # split lines by spaces

259 filepieces1 = list_splitter(filelines1)

260 with open(new_params) as fileblock2:

261 filelines2 = fileblock2.readlines ()

262 # split lines by spaces

263 filepieces2 = list_splitter(filelines2)

264

265 with open(save_file , ’w’) as edited:

266 # iterate over and copy each line of the original (old)

parameter (.key) file

267 for i in range(len(filelines1)):

268 edited.write(filelines1[i])

269 #edited.write ("\n")

270 # iterate over each line in the new parameter file (

output_valence_1.txt) and copy the relevant lines

271 for j in range(len(filepieces2)):

272 # skip empty lines

273 if len(filepieces2[j]) != 0:

274 # only start copying once the first "Estimated"

appears , then copy every line afterward

275 if filepieces2[j][0] == "Estimated":

276 # add line returns after Estimated to aid the

formatting

277 #edited.write ("\n")

278 keep_copying = True

279 if keep_copying == True:

280 #print(filelines2[j])

281 # skip the ureybrad parameter lines

282 if copy_urey == False and filepieces2[j][0] !=

"ureybrad":

283 edited.write(filelines2[j])

284 # else:

285 # edited.write(filelines2[j])

286 # if line empty , include a line return to preserve

formatting (only after encountering the first instance of "Estimated"

287 elif keep_copying == True:

288 edited.write("\n")

289 print("newest parameter file is %s"%save_file)

290

291

292 def combine_final_parameters(old_params , new_params , name):

293 save_file = "%s_final.key"%name
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294 # boolean to track copying of new multipole values

295 copy_new = False

296 # boolean to track copying of old multipole values

297 copy_old = True

298 with open(old_params) as fileblock1:

299 filelines1 = fileblock1.readlines ()

300 # split lines by spaces

301 filepieces1 = list_splitter(filelines1)

302 with open(new_params) as fileblock2:

303 filelines2 = fileblock2.readlines ()

304 # split lines by spaces

305 filepieces2 = list_splitter(filelines2)

306

307 with open(save_file , ’w’) as edited:

308 # iterate over each line of the original (old) parameter

(.key) file

309 for i in range(len(filepieces1)):

310 if i == 0:

311 print("first line", filepieces1[i])

312 if len(filepieces1[i]) != 0:

313 # update copy_old boolean once the old bond and

angle section is skipped

314 if filepieces1[i][0] == "Estimated" and

filepieces1[i][1] == "Stretch -Bend":

315 # resume copying the old parameter lines once

past the old bond and angle section

316 copy_old = True

317 # once "Estimate Bond" is reached , begin copying

new bond and angle parameters

318 if filepieces1[i][0] == "Estimated" and

filepieces1[i][1] == "Bond":

319 # iterate over each line of the new parameter

file and write them into the edit

320 for j in range(len(filepieces2)):

321 if len(filepieces2[j]) != 0:

322 # start copying the new parameters

once "# Results" is detected

323 if filepieces2[j][0] == "bond" and

copy_new == False:

324 edited.write("#\n")

325 edited.write("# Results of Valence

Parameter Fitting\n")

326 edited.write("#\n")

327 copy_new = True

328 # copy new bond and angle parameters

329 if copy_new == True:

330 edited.write(filelines2[j])

331 # stop copying until "Estimated Stretch -Bend"

is found in the old parameter file

332 copy_old = False

333 # by default , copy old parameter lines (except old

bond and angle parameters)

334 elif copy_old == True:

335 edited.write(filelines1[i])
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336 # include line returns to preserve formatting

337 else:

338 edited.write("\n")

339 print("final parameter file is %s"%save_file)

340

341 def insert_params(old_params , name):

342 save_file = "%s_new_new_2.key"%name

343 # boolean to track copying of new multipole values

344 copy_new = False

345 # boolean to track copying of old multipole values

346 copy_old = True

347 with open(old_params) as fileblock:

348 filelines = fileblock.readlines ()

349 # split lines by spaces

350 filepieces1 = list_splitter(filelines)

351 with open(save_file , ’w’) as edited:

352 # first line file name (needed for conversion to OpenMM later

on

353 edited.write("forcefield AMOEBA -%s\n\n"%name)

354 # insert each of the Amoeba setup parameters

355 edited.write("bond -cubic -2.55\n")

356 edited.write("bond -quartic 3.793125\n")

357 edited.write("angle -cubic -0.014\n")

358 edited.write("angle -quartic 0.000056\n")

359 edited.write("angle -pentic -0.0000007\n")

360 edited.write("angle -sextic 0.000000022\n")

361 edited.write("opbendtype ALLINGER\n")

362 edited.write("opbend -cubic -0.014\n")

363 edited.write("opbend -quartic 0.000056\n")

364 edited.write("opbend -pentic -0.0000007\n")

365 edited.write("opbend -sextic 0.000000022\n")

366 edited.write("torsionunit 0.5\n")

367 edited.write("vdwtype BUFFERED -14 -7\n")

368 edited.write("radiusrule CUBIC -MEAN\n")

369 edited.write("radiustype R-MIN\n")

370 edited.write("radiussize DIAMETER\n")

371 edited.write("epsilonrule HHG\n")

372 edited.write("dielectric 1.0\n")

373 edited.write("polarization MUTUAL\n")

374 edited.write("vdw -12- scale 0.0\n")

375 edited.write("vdw -13- scale 0.0\n")

376 edited.write("vdw -14- scale 1.0\n")

377 edited.write("vdw -15- scale 1.0\n")

378 edited.write("mpole -12- scale 0.0\n")

379 edited.write("mpole -13- scale 0.0\n")

380 edited.write("mpole -14- scale 0.4\n")

381 edited.write("mpole -15- scale 0.8\n")

382 edited.write("polar -12- scale 0.0\n")

383 edited.write("polar -13- scale 0.0\n")

384 edited.write("polar -14- scale 1.0\n")

385 edited.write("polar -15- scale 1.0\n")

386 edited.write("polar -12- intra 0.0\n")

387 edited.write("polar -13- intra 0.0\n")

388 edited.write("polar -14- intra 0.5\n")

92



389 edited.write("polar -15- intra 1.0\n")

390 edited.write("direct -11- scale 0.0\n")

391 edited.write("direct -12- scale 1.0\n")

392 edited.write("direct -13- scale 1.0\n")

393 edited.write("direct -14- scale 1.0\n")

394 edited.write("mutual -11- scale 1.0\n")

395 edited.write("mutual -12- scale 1.0\n")

396 edited.write("mutual -13- scale 1.0\n")

397 edited.write("mutual -14- scale 1.0\n\n")

398

399 # iterate over each line of the original (old) parameter (.key

) file and copy as is

400 for i in range(len(filelines)):

401 edited.write(filelines[i])

402 print("newest parameter file is %s"%save_file)

403

404 def find_atom_types(old_params , new_params , name , starting_index):

405 ’’’ uses an input file to find the atom types to reorder atom types

the name_re -opt.txyz

406 When babel is called to convert to .txyz it uses atom type assignments

that do not apply to these custom setups.

407

408 ’’’

409 save_file = "%s_re -opt.txyz"%name

410 # boolean to track copying of new multipole values

411 copy_new = False

412 # boolean to track copying of old multipole values

413 copy_old = False

414 # dict to hold atom index and associated atom types from the poledit

output file

415 atypes = {}

416 with open(old_params) as fileblock1:

417 filelines1 = fileblock1.readlines ()

418 # split lines by spaces

419 filepieces1 = list_splitter(filelines1)

420 with open(new_params) as fileblock2:

421 filelines2 = fileblock2.readlines ()

422 # split lines by spaces

423 filepieces2 = list_splitter(filelines2)

424

425 with open(save_file , ’w’) as edited:

426 # iterate over each line of the original (old) parameter

(.key) file

427 for i in range(len(filepieces1)):

428 if i == 0:

429 print("first line", filepieces1[i])

430 if len(filepieces1[i]) != 0:

431 # update copy_old boolean once the old bond and

angle section is skipped

432 if filelines1[i] == " Atom Type and Local Frame

Definition for Each Atom :\n":

433 print("MADE IT HERE")

434 # resume copying the old parameter lines once

past the old bond and angle section
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435 copy_old = True

436 elif filelines1[i] == " Final Atomic Multipole

Moments after Regularization :\n":

437 # halt copying (dictionary creation) once this

line is encountered

438 copy_old = False

439

440 # skip empty lines

441 if len(filepieces1[i]) != 0 and copy_old == True:

442 # skip "Atom" line to get to index lines

443 if filepieces1[i][0] != "Atom":

444 #print (" current line" + filelines1[i])

445 a_index = filepieces1[i][0]

446 a_type = filepieces1[i][1]

447 #print ("atom index %s with atom type %s"%(

a_index , a_type))

448 atypes.update ({int(a_index) : int(a_type)

})

449 # iterate over each line of the new parameter file and

write them into the edit

450 for j in range(len(filepieces2)):

451 # just copy the first line

452 if j == 0:

453 edited.write(filelines2[j])

454 else:

455 edited_line = ""

456 for k in range(len(filepieces2[j])):

457 # if not the 5th (starting from zero) element

of the list , include the original line fragment

458 if k != 5:

459 edited_line += " %s"%filepieces2[j][k]

460 else:

461 # the new type is based on the old type

which starts from 1 (hence the subtraction)

462 new_type = atypes[int(filepieces2[j][0])]

+ int(starting_index) -1

463 edited_line += " %i"%new_type

464 edited.write(edited_line + "\n")

465 # iterate over the segments of each line , updating

the atom types

466

467 print("newest parameter file is %s"%save_file)

468

469 def main():

470 parser = argparse.ArgumentParser ()

471 parser.add_argument("-c", "--coordinates", help="starting coordinates

for molecule of interest")

472 parser.add_argument("-d", "--charge", default=0, help="charge of

molecule")

473 parser.add_argument("-s", "--spin", default=1, help="spin multiplicity

of molecule")

474 parser.add_argument("-n", "--name", help="name of molecule")

475 parser.add_argument("-p", "--part", help="part of process to run , run

part 1 before part 2")
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476 parser.add_argument("-t", "--type_index", help="starting atom type

index")

477 parser.add_argument("-i", "--class_index", help="starting atom class

index")

478 args = parser.parse_args ()

479

480 # Programs needed: Gaussian , Tinker , GDMA , Babel

481

482 current_dir = os.getcwd () + ’/’

483

484 command_01 = ["mehutchi/opt/g16/g16", "%s.com"%args.name]

485 print("command", command_01)

486 command_02 = ""

487

488 # start of code (in the urea folder)

489 # PART ONE

490 # start out with a traditional (not -TINKER) name.xyz file and a

symbolic link to amoeba09.prm

491 if args.part == "1":

492 print("***** running part 1 *****")

493 #make_gauss_input(args.name=name , args.coordinates=coord_name ,

args.charge=charge , args.spin=spin)

494 # create the gaussian input

495 make_gauss_input(args.name , args.coordinates , 1, args.charge , args

.spin)

496

497 # run initial gaussian optimization (command_1)

498 print("running initial Guassian optimization")

499 os.system("g16 %s.com"%args.name)

500

501 # run formchk (command_2)

502 print("running Gaussian formchk")

503 os.system("formchk %s.chk %s.fchk"%(args.name , args.name))

504 # create gdma input

505 make_gdma_input(args.name)

506 # run gdma program (command_3)

507 print("running the GDMA program")

508 os.system("gdma < %s.gdmain > %s.gdmaout"%(args.name , args.name))

509 # create Tinker poledit input (command_4)

510 make_poledit_input(args.name)

511 ### add error check here if no amoeba09.prm file in folder !!!

512 # run Tinker poledit

513 print("running TINKER poledit")

514 os.system("poledit < input_poledit.txt > output_poledit.txt")

515 # edit starting atom types and atom classes indices of .key file (

command_4 .5)

516 # choline+ starts atom type indices at 500 and atom classes at

200, so the H-bond donors start from 600 and 300 respectively

517 #starting_atom_type = 500

518 #starting_atom_class = 200

519 print("Before running part 2, review %s.key to make sure that the

atom types were correctly assigned .\ nSometimes TINKER doesn’t correcly

identify all equivalent atoms .\nUse TINKER poledit to \" Condense

Symmetric Atoms to Equivalent Types \""%args.name)
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520 print("If changes are made , make sure to name the correct key file

: %s_new.key. \nRe -running TINKER poledit manually should save the

updated .key file as %s_new.key_2 (or higher), also in that file it

will append the new parameters after the old ones , make sure the old

ones are removed."%(args.name , args.name))

521 print("output_poledit.txt is a required file for part 2 of this

auto code. Capturing the entire screen output from manually running

TINKER poledit is not compatable with the function")

522

523 if args.part == "2":

524 print("***** running part 2 *****")

525 make_prmedit_input(args.name , args.type_index)

526 print("running TINKER prmedit")

527 # run prmedit (creates parameter.prm) !!! this removes atom

classes instead of editing them !!!

528 os.system("prmedit < input_prmedit.txt > output_prmedit.txt")

529

530 # make a copy of parameter.prm

531 #if path.exists (" parameter.prm") == True:

532 # os.system ("cp parameter.prm parameter_orig.prm")

533 # manually insert missing atom class indices

534 print("copying parameter.prm into %s_new.key and correcting atom

type and atom class indices"%args.name)

535 insert_atom_class_indices(args.name , args.class_index)

536

537 # OUTDATED: before running part 2, run part 1, then edit parameter

.prm to include atom class incides

538 #print ("***** running (OLD) part 2 *****")

539 # """

540 # rename parameter.prm (command_5)

541 #if path.exists (" parameter.prm") == True:

542 # os.system ("mv parameter.prm %s_new.key"%args.name)

543 # get initial optimization coordinates -> name_opt.xyz

544 print("running babel to convert .log to .xyz")

545 os.system("babel %s.log %s_opt.xyz"%(args.name , args.name))

546 # create input for next Gaussian optimization

547 make_gauss_input(args.name , "%s_opt.xyz"%args.name , 2, args.charge

, args.spin)

548 # run second gaussian optimization (command_6)

549 print("running second Gaussian optimization")

550 os.system("g16 %s_re -opt.com"%args.name)

551 # """

552

553 # run formchk on the gaussion re-optimization (command_7)

554 print("running Gaussian formchk (on second opt results)")

555 os.system("formchk %s_re -opt.chk %s_re -opt.fchk"%(args.name , args.

name))

556 # run babel to get the re-opt coordinates (command_8)

557 print("running babel to convert .fchk to .txyz")

558 os.system("babel -ifchk %s_re -opt.fchk -otxyz %s_re -

opt_WRONG_TYPES.txyz"%(args.name , args.name))

559 print("the next step before running part 3, is to edit %s_re -opt.

txyz to have to the correct atom types"%args.name)

560 # if args.part == "t":
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561 print("made it to function call")

562 # trying out the function that takes care of the atom types

563 find_atom_types("output_poledit.txt", "%s_re -opt_WRONG_TYPES.txyz"

%args.name , args.name , args.type_index)

564

565 # OUTDATED: before running part 3, run part 1 then part 2 and edit

name_re -opt.txyz to have the correct atom type

566 # if args.part == "3":

567 #print ("***** running (OLD) part 3 *****")

568 # create input file for potential option #1

569 make_potential_input(args.name , 1)

570 # run tinker potential option #1 (command_9)

571 print("running TINKER potential option #1")

572 os.system("potential < input_potential_1.txt > output_potential_1.

txt")

573 # run cubegen (command_10)

574 print("running Gaussian cubegen")

575 os.system("cubegen 0 potential=mp2 %s_re -opt.fchk %s_re -opt.cube

-5 h < %s_re -opt.grid"%(args.name , args.name , args.name))

576 # create input file for potential option #2

577 make_potential_input(args.name , 2)

578 # run tinker potential option #2 (command_11)

579 print("running TINKER potential option #2")

580 os.system("potential < input_potential_2.txt > output_potential_2.

txt")

581 # insert "FIX -MONOPOLE" into .key file produced in step 5 (

command_12)

582 #???i

583 line_prepender("%s_new.key"%args.name , "FIX -MONOPOLE")

584 # create input file for potential option #6

585 print("running TINKER potential option #6")

586 make_potential_input(args.name , 6)

587 # run tinker potential option #6 (command_13)

588 os.system("potential < input_potential_6.txt > output_potential_6.

txt")

589

590 # combine new fitted multipole results from name_re -opt.key with

atom definitions AND polarize values from name_new.key to create

name_new_new.key

591 combine_mp_parameters("%s_new.key"%args.name , "%s_re -opt.key"%args

.name , args.name)

592 # insert amoeba parameters before running valence later on ->

name_new_new_2.key

593 insert_params("%s_new_new.key"%args.name , args.name)

594

595 # OUTDATED: before running part 4, run part 1 then part 2 then part 3

and combine the multipole values from name_re -opt.key with the monopole

values from name_new.key to create name_new_new.key (command_14)

596 #print ("***** running (OLD) part 4 *****")

597 # create input file for valence option #1

598 make_valence_input(args.name , 1)

599 # run tinker valence option #1 (command_15)

600 print("running TINKER valence option #1")

601 os.system("valence < input_valence_1.txt > output_valence_1.txt")
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602 # combine new valence parameter values with existing parameter

values into new .key file

603 combine_val_parameters("%s_new_new_2.key"%args.name , "

output_valence_1.txt", args.name)

604

605 # OUTDATED: before running part 5, run parts 1-4 in sequence , then

combine the parameters in output_valence_1.txt with those in

name_new_new.key to form name_new_new_new.key (command_16)

606 #print ("***** running (OLD) part 5 *****")

607 # create .xyz coordinate file to be used to create a gaussian

input file

608 print("running babel to convert .txyz to .xyz")

609 os.system("babel %s_re -opt.txyz %s_re -opt.xyz"%(args.name , args.

name))

610 # make gaussian input file for frequency calculation

611 make_gauss_input(args.name , "%s_re -opt.xyz"%args.name , 3, args.

charge , args.spin)

612 # run gaussian frequency calculation (command_17)

613 print("running Gaussian frequency calculation")

614 os.system("g16 %s_freq.com"%args.name)

615 # create input file for valence option #2

616 make_valence_input(args.name , 2)

617 # run tinker valence option #2 which is just a comparison (

command_18)

618 print("running TINKER valence option #2")

619 os.system("valence < input_valence_2.txt > output_valence_2.txt")

620 # create input file for valence option #3

621 make_valence_input(args.name , 3)

622 # run tinker valence option #3 (functional command_19)

623 print("running TINKER valence option #3")

624 os.system("valence < input_valence_3.txt > output_valence_3.txt")

625

626 # OUTDATED: after running parts 1-5 the new bond and angle

parameters will be named after the input coordinates (name_re -opt.txyz)

, so these will be named name_re -opt.key_2 because we have name_re -opt.

key from before

627 # OUTDATED: the next step is to replace those parameters in

name_new_new_new.key to form name_final.key. Note , the multipole

parameters are included in name_re -opt.key_2 even though they didn’t

change from earlier

628 combine_final_parameters("%s_new_new_new.key"%args.name , "%s_re -

opt.key_2"%args.name , args.name)

629

630 if __name__ == ’__main__ ’:

631 main()

Listing 3: Semi-Automated Polarizable Force Field Initialization Code

1 <ForceField >

2 <Info >

3 <Source >urea_final.key </Source >

4 <DateGenerated >2022 -06 -05 </ DateGenerated >

5 <Reference ></Reference >
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6 </Info >

7 <AtomTypes >

8 <Type name="600" class="300" element="C" mass="12.011"/>

9 <Type name="601" class="301" element="N" mass="14.007"/>

10 <Type name="602" class="302" element="H" mass="1.008"/>

11 <Type name="603" class="303" element="O" mass="15.999"/>

12 </AtomTypes >

13 <Residues >

14 <Residue name="URE">

15 <Atom name="C1" type="600" />

16 <Atom name="H4" type="602" />

17 <Atom name="H5" type="602" />

18 <Atom name="H6" type="602" />

19 <Atom name="H7" type="602" />

20 <Atom name="N2" type="601" />

21 <Atom name="N3" type="601" />

22 <Atom name="O8" type="603" />

23 <Bond from="0" to="5" />

24 <Bond from="0" to="6" />

25 <Bond from="0" to="7" />

26 <Bond from="1" to="6" />

27 <Bond from="2" to="6" />

28 <Bond from="3" to="5" />

29 <Bond from="4" to="5" />

30 </Residue >

31 </Residues >

32 <AmoebaBondForce bond -cubic=" -25.5" bond -quartic="379.3125">

33 <Bond class1="300" class2="301" length="0.13347" k="256968.728"/>

34 <Bond class1="300" class2="303" length="0.11994" k="396262.456"/>

35 <Bond class1="301" class2="302" length="0.10017" k="236693.064"/>

36 </AmoebaBondForce >

37 <AmoebaAngleForce angle -cubic=" -0.014" angle -quartic="5.6e-05" angle -

pentic="-7e-07" angle -sextic="2.2e-08">

38 <Angle class1="301" class2="300" class3="301" k="0.0235786067612" angle1

="152.31" />

39 <Angle class1="301" class2="300" class3="303" k="0.00520003868032"

angle1="195.32" />

40 <Angle class1="300" class2="301" class3="302" k="0.0495533097771" angle1

="116.05" />

41 <Angle class1="302" class2="301" class3="302" k="0.0545749157576" angle1

="114.75" />

42 </AmoebaAngleForce >

43 <AmoebaOutOfPlaneBendForce type="ALLINGER" opbend -cubic=" -0.014" opbend -

quartic="5.6e-05" opbend -pentic="-7e-07" opbend -sextic="2.2e-08">

44 <Angle class1="301" class2="300" class3="0" class4="0" k="

0.0183530776952"/>

45 <Angle class1="303" class2="300" class3="0" class4="0" k="

0.0183530776952"/>

46 </AmoebaOutOfPlaneBendForce >

47 <PeriodicTorsionForce >

48 <Proper class1="301" class2="300" class3="301" class4="302" k1="0.0"

phase1="0.0" periodicity1="1" k2="1.046" phase2="3.14159265359"

periodicity2="2" k3="0.523" phase3="0.0" periodicity3="3" />

49 <Proper class1="303" class2="300" class3="301" class4="302" k1="0.0"
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phase1="0.0" periodicity1="1" k2="1.046" phase2="3.14159265359"

periodicity2="2" k3="0.523" phase3="0.0" periodicity3="3" />

50 </PeriodicTorsionForce >

51 <AmoebaStretchBendForce stretchBendUnit="1.0">

52 <StretchBend class1="301" class2="300" class3="301" k1="13.655595694" k2

="13.655595694" />

53 <StretchBend class1="301" class2="300" class3="303" k1="13.655595694" k2

="13.655595694" />

54 <StretchBend class1="300" class2="301" class3="302" k1="5.25776946506"

k2="3.14005676385" />

55 </AmoebaStretchBendForce >

56 <AmoebaVdwForce type="BUFFERED -14-7" radiusrule="CUBIC -MEAN" radiustype="

R-MIN" radiussize="DIAMETER" epsilonrule="HHG" vdw -13- scale="0.0" vdw

-14-scale="1.0" vdw -15- scale="1.0" >

57 <Vdw class="300" sigma="0.19" epsilon="0.372376" reduction="1.0" />

58 <Vdw class="301" sigma="0.1855" epsilon="0.43932" reduction="1.0" />

59 <Vdw class="302" sigma="0.135" epsilon="0.08368" reduction="0.91" />

60 <Vdw class="303" sigma="0.165" epsilon="0.468608" reduction="1.0" />

61 </AmoebaVdwForce >

62 <AmoebaMultipoleForce direct11Scale="0.0" direct12Scale="1.0"

direct13Scale="1.0" direct14Scale="1.0" mpole12Scale="0.0"

mpole13Scale="0.0" mpole14Scale="0.4" mpole15Scale="0.8"

mutual11Scale="1.0" mutual12Scale="1.0" mutual13Scale="1.0"

mutual14Scale="1.0" polar12Scale="0.0" polar13Scale="0.0"

polar14Intra="0.5" polar14Scale="1.0" polar15Scale="1.0" >

63 <Multipole type="600" kz="603" kx="601" c0="1.03617" d1="0.0" d2="0.0"

d3="0.00553572277906" q11="6.86069869323e-06" q21="0.0" q22="

-5.89366687742e-05" q31="0.0" q32="0.0" q33="5.2075970081e-05" />

64 <Multipole type="601" kz="600" kx="602" c0=" -0.36361" d1="

-0.00625804966879" d2="0.0" d3=" -0.00860653812051" q11="

0.000609864775267" q21="0.0" q22=" -0.000751120494076" q31="

-8.08162303211e-05" q32="0.0" q33="0.000141255718809" />

65 <Multipole type="602" kz="601" kx="600" c0="0.13019" d1="

0.00060802461267" d2="0.0" d3=" -0.00978713247287" q11="

0.000107978996576" q21="0.0" q22=" -6.50692933204e-05" q31="

2.25796328421e-05" q32="0.0" q33=" -4.29097032555e-05" />

66 <Multipole type="603" kz="600" kx="601" c0=" -0.82971" d1="0.0" d2="0.0"

d3=" -0.0116995789047" q11=" -0.000402158289115" q21="0.0" q22="

0.000197438773822" q31="0.0" q32="0.0" q33="0.000204719515292" />

67 <Polarize type="600" polarizability="0.001334" thole="0.3900" pgrp1="601

" pgrp2="603" />

68 <Polarize type="601" polarizability="0.001073" thole="0.3900" pgrp1="600

" pgrp2="602" />

69 <Polarize type="602" polarizability="0.000496" thole="0.3900" pgrp1="601

" />

70 <Polarize type="603" polarizability="0.000837" thole="0.3900" pgrp1="600

" />

71 </AmoebaMultipoleForce >

72 </ForceField >

Listing 4: AMOEBA-OpenMM-urea force field. Identical to AMOEBA-Tinker-urea in
Listing 1 but uses the OpenMM engine.
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Stéfan J. van der Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay May-

orov, Andrew R. J. Nelson, Eric Jones, Robert Kern, Eric Larson, CJ Carey, İlhan Polat,
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