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6 ABSTRACT: The electrochemical CO2 reduction reaction (CO2RR) using Cu-based catalysts holds great potential for producing
7 valuable multi-carbon products from renewable energy. However, the chemical and structural state of Cu catalyst surfaces during the
8 CO2RR remains a matter of debate. Here, we show the structural evolution of the near-surface region of polycrystalline Cu
9 electrodes under in situ conditions through a combination of grazing incidence X-ray absorption spectroscopy (GIXAS) and X-ray
10 diffraction (GIXRD). The in situ GIXAS reveals that the surface oxide layer is fully reduced to metallic Cu before the onset potential
11 for CO2RR, and the catalyst maintains the metallic state across the potentials relevant to the CO2RR. We also find a preferential
12 surface reconstruction of the polycrystalline Cu surface toward (100) facets in the presence of CO2. Quantitative analysis of the
13 reconstruction profiles reveals that the degree of reconstruction increases with increasingly negative applied potentials, and it persists
14 when the applied potential returns to more positive values. These findings show that the surface of Cu electrocatalysts is dynamic
15 during the CO2RR, and emphasize the importance of in situ characterization to understand the surface structure and its role in
16 electrocatalysis.

17 Copper is known as the only monometallic heterogeneous
18 electrocatalyst that can convert CO2 into more valuable
19 multi-carbon products.1 To produce C2+ products at
20 economically feasible reaction rates requires a significant
21 overpotential for CO2RR.

2 During the CO2RR, the structure
22 and chemical state of the Cu surface has shown dynamic
23 changes in response to the local environment and applied
24 potential.3 The Cu valence state at the surface is of particular
25 interest since recent computational studies have shown that the
26 presence of subsurface oxygen or an oxide phase can improve
27 CO2RR activity and steer the selectivity into C2+ products.

4−7

28 Based on such a hypothesis, several studies have tried to probe
29 the oxidation state of Cu-based catalysts by utilizing ex situ and
30 in situ/operando spectroscopy or microscopy.8−12 However,
31 these studies have not reached a consensus on whether the
32 oxide phase is present and stable at the catalyst surface under
33 realistic operating conditions where the CO2RR performance is
34 measured. The rapid reoxidation of the Cu surface upon
35 exposure to O2 makes it difficult to reach a robust conclusion
36 on this topic, and most of the in situ/operando techniques
37 employed struggle to distinguish whether the oxygen is located
38 at the surface or buried in the bulk. Therefore, measurements
39 that can specifically probe the active catalytic surface to
40 determine the oxidation states of Cu present under CO2RR
41 rates similar to those used for performance evaluation are
42 needed.
43 In addition to the Cu valence state, the surface can
44 dynamically reconstruct through its interaction with the local
45 environment.13,14 Since Cu has low cohesive energy and high
46 surface mobility, the Cu atoms at the surface can easily

47migrate. CO, which is a key intermediate in the CO2RR, has
48been shown to exacerbate this reconstruction in near-ambient
49pressure conditions.15 Surface reconstructions can affect
50product selectivity because the Cu(111) surface preferentially
51yields CH4, whereas the Cu(100) surface produces C2H4 with
52a lower onset potential.16 To probe the surface structure under
53CO2RR conditions, electrochemical scanning tunneling mi-
54croscopy (ECSTM) has been utilized to image Cu surfaces
55with atomic resolution and has successfully demonstrated that
56polycrystalline Cu (hereafter referred to as Cu(pc))
57reconstructs into Cu(100) surfaces in N2-purged electrolytes.

17

58However, one of the limitations of ECSTM is its limited field
59of view, and it is unclear whether these changes occur globally.
60Therefore, to understand the structural dynamics of Cu
61surfaces more fully, it is imperative to elucidate both the local
62atomic structure and long-range order under realistic CO2RR
63conditions. Here, we characterize the near-surface structure of
64a Cu(pc) thin film (50 nm thickness) under CO2RR
65conditions by utilizing in situ grazing incidence X-ray
66absorption spectroscopy (GIXAS) and X-ray diffraction
67(GIXRD). The Cu(pc) thin film is utilized as an electrocatalyst
68because it has been demonstrated that the roughness of the Cu
69thin film is low enough to allow sensitivity to a few nm of the
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70 surface using GIXAS and GIXRD.18 We employ an electro-
71 chemical flow cell that has been demonstrated to enable near
72 surface-sensitive in situ characterization at high current
73 densities by allowing a grazing incidence geometry and
74 improving mass transport of reactive species to the catalyst.19

75 Our results confirmed that no detectable oxide remains at the
76 near-surface at potentials relevant to the CO2RR, and,
77 simultaneously, that potential-dependent surface reconstruc-
78 tion from Cu(pc) to Cu(100) can be observed across μm−mm
79 areas of the surface in a CO2 saturated electrolyte.
80 We first characterized as-prepared Cu(pc) films by using
81 GIXRD, GIXAS, and X-ray photoelectron spectroscopy
82 (Figures S1 and S2), and the probe depths were calculated
83 based on the incidence angles (Figure S3). The CO2RR
84 performance of the Cu(pc) thin film is similar to that of Cu foil
85 reported previously (Figure S4).20 To investigate the changes
86 of oxidation states and local atomic structure during the
87 CO2RR, we performed in situ GIXAS measurements on the Cu
88 thin film in a 0.1 M KHCO3 electrolyte saturated with CO2.
89 The total current densities exceeded 20 mA/cm2 at −1.1 V vs
90 RHE (all the potentials are hereafter noted vs RHE),
91 conditions under which Cu is known to form CO2RR products
92 and which are often employed when reporting CO2RR
93 efficiencies (Figure S5). The XANES spectrum at open-circuit
94 potential (OCP) showed rising edge peaks at both 8982 and
95 8996 eV, indicating that the surface was composed of a mixture

f1 96 of metallic Cu and Cu2O (Figure 1a). These Cu(I) features
97 disappeared at −0.3 V, which is before the onset potential of
98 CO2RR on Cu(pc) (generally ∼−0.63 V).21 Over the applied

99potential range relevant to the CO2RR, we observed only
100metallic Cu at the surface. The corresponding extended X-ray
101absorption fine structure (EXAFS) spectra displayed a
102prominent Cu−Cu scattering peak at 2.2 Å, which matches
103with the metallic Cu reference (Figure 1b). Although angle-
104dependent overabsorption distorted and dampened XANES
105and EXAFS spectra,19 it did not affect the phase information
106(Figure S6). We obtained similar results in the Ar-purged
107phosphate and bicarbonate electrolytes, suggesting that the
108reduction of oxide is primarily driven by the polarization to
109negative potential (Figure S7). As the GIXAS is highly
110sensitive to the disordered and local surface structure, our
111results demonstrate that an oxide phase in the near-surface
112region was either not present or below our ability to measure.
113To elucidate the crystalline structure during CO2RR, we
114performed in situ GIXRD as a function of probe depth and
115applied potential in CO2- and Ar-purged electrolytes (Figure
116S8). The obtained diffraction measurements were corrected for
117refraction at the electrode−electrolyte interface (Figure S9a,b)
118and fit with a pseudo-Voigt function without contribution from
119electrolytes (Figure S9c). To estimate the uncertainty in
120determining the Cu(111) peak position, we calculate errors
121based on the peak asymmetry and sample variations (Figure
122S10). In the case of the as-synthesized Cu thin film, the d-
123spacing of Cu(111) showed a 0.15% expansion near the surface
124compared to that of bulk, possibly originating from the
125existence of the oxide phase (Figure S11). However, at
126potentials where the CO2RR occurs, no changes larger than the
127estimated error in the Cu(111) d-spacing values were observed
128depending on the applied potential and probe depth (Figure
129S12a). The result with Ar-purged electrolytes is quite similar,
130except for 0.14% surface expansion at −1.1 V, possibly through
131hydrogen-induced expansion (Figure S12b).22 We note that
132the metallic Cu surface rapidly oxidized into Cu2O after
133 f2releasing the applied potential (Figure 2). The Cu2O phase

134was even detected in the bulk within 5 min, demonstrating that
135the metallic Cu electrode can easily reoxidize at the OCP
136(generally ∼0.55 V in our case). This result suggests that ex
137situ or quasi in situ characterization could contain Cu(I)
138artifacts on the sample surfaces even without exposure to
139ambient conditions.
140While we observe that the valence state and d-spacing of the
141Cu surface remain unchanged, we do find evidence for surface
142 f3reconstruction as a function of applied potential. We calculate
143the area ratio of Cu(200) to Cu(111) Bragg peaks at a probe

Figure 1. In situ GIXAS of Cu(pc) thin-film electrode in CO2-
saturated 0.1 M KHCO3. XANES (a) and EXAFS (b) spectra of Cu
(pc) at a probe depth of 2.6 nm as a function of the applied potentials.
The Cu (orange) and Cu2O (green) reference spectra (dotted line)
are plotted for comparison.

Figure 2. GIXRD of Cu(pc) at a probe depth of 2.6 nm and bulk
before and after releasing the applied potential.
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144 depth of 2.6 nm according to the applied potentials under both
145 CO2 and Ar-purged electrolytes (Figure 3a). Although peak
146 area is not a rigorously quantitative measure of the amount of
147 specific facet, relative area ratios reflect changes in the
148 preferentially exposed facets on the surface.23 At 0 V, where
149 no CO2RR or hydrogen evolution reaction (HER) occurs on
150 Cu(pc), the area ratio in the surface exhibited similar values in
151 CO2- and Ar-purged electrolytes. As the applied potential
152 becomes more negative, the (200)/(111) area ratio in the
153 surface increases (20.9−31.5%) under CO2-purged electrolyte,
154 while the area ratio in the Ar-purged electrolyte showed only a
155 slight increase (2.4−2.7%) across the applied potentials. The
156 increase in area ratio was only observed at the probe depth of
157 2.6 nm, indicating the reconstruction is a surface phenomenon
158 (Figure S13). Both the intensity and integral breadth of the
159 (200)/(111) ratio also increase as a function of the applied
160 potential under CO2-purged electrolytes (Figure S14). The
161 increase in the area ratio is significantly higher than that of the
162 estimated errors (Figure S15), and the trend is reproduced in
163 another Cu sample (Figure S16). Therefore, these results
164 indicate that a surface reconstruction from Cu(pc) to
165 Cu(100)-like surface occurs during CO2RR. The differences
166 in CO2 and Ar-purged electrolytes suggest that surface
167 hydrogen and hydroxide species generated from HER have a
168 limited effect on surface reconstruction. Previous theoretical
169 calculations and spectroscopic observations indicate that the
170 dominant intermediate during CO2RR is adsorbed CO
171 (CO*).24,25 We found that the surface reconstruction is
172 enhanced at more negative electrode potentials. Computa-
173 tional results indicate that similar trends in the CO* coverage

174at these potentials.26 We also observed a similar reconstruction
175under CO reduction conditions under alkaline electrolytes in a
176previous study.23 Considering that the local pH at the Cu
177surface increases due to the OH− ions generated from CO2RR,
178we conjecture that the microenvironment under CO2-purged
179electrolytes could be similar to the situation under CO-purged
180alkaline electrolytes. This suggests that CO* is likely a key
181reaction intermediate in promoting surface reconstruction (see
182SI for a detailed discussion).
183For a more quantitative description of the surface
184reconstruction, we analyzed the relative changes of the area
185ratio depending on the applied potential. The area ratio at a
186probe depth of 2.6 nm increases by 20.9% at −0.65 V
187compared to the value at 0 V. It is reported that the CO
188adsorption starts to appear at −0.5 V in a CO2-saturated 0.1 M
189KHCO3 electrolyte, and its coverage gradually increases with
190increasingly negative applied potentials.25 This accumulated
191CO* on the surfaces could reconstruct Cu(pc) to Cu(100)
192before CO2RR occurs. At −0.9 V, where the C2+ products
193begin to emerge on Cu(pc), the area ratio shows an increase of
19427.6% and this change helps to explain why the hydrocarbon
195formation on Cu(pc) is invariant to that on Cu(100).27 The
196area ratio further increases to 31.5% at −1.1 V, where the
197selectivity toward HER has been reported to surpass the
198CO2RR products due to the concentration polarization for
199CO2 (i.e., mass transport limitation) in the H-cell config-
200uration.20 This result implies that enhanced mass transport in
201our cell allows a higher degree of surface reconstruction to
202(100) at −1.1 V, possibly through an increase of CO* coverage
203on the surface. We collected the GIXRD data after reaching a
204steady state; however, further work is needed to understand
205the kinetics of surface reconstruction which has been observed
206on various time scales previously.17,28 We expect that the high
207mass transport rates and current densities in our cell translate
208to fast reconstruction kinetics. We also found that the surface
209reconstruction is only partially reversible. When the applied
210potential returns to more positive values, at 0 V the surface
211displays more (100) faceting than the original surface at 0 V
212(Figure 3b). The irreversible change of surface morphology has
213been observed during HER on the Cu(100), leaving behind
214structural defects such as small holes and clusters.29 This
215observation likely explains the previously reported hysteresis of
216product distribution during cyclic voltammetry.27,30 In these
217reports, the enhanced generation of multi-carbon products
218during cyclic voltammetry has been observed only during the
219anodic sweep. Our results suggest this may be because the
220applied potential during the cathodic sweep leads to a
221significant surface reconstruction to a Cu(100)-like surface
222that can steer the CO2RR selectivity toward hydrocarbon
223formation. During the anodic sweep, the surface is already
224reconstructed to be more Cu(100)-like, enabling the increased
225production of C2+ products. These results can provide
226fundamental insights into the previously observed processes
227that did not take account of the surface reconstruction during
228CO2RR.
229In summary, we investigated the changes in the valence state
230and crystallographic structure in the near-surface region of
231Cu(pc) thin films under realistic CO2RR conditions. By using
232an electrochemical flow cell that allows for in situ GIXAS and
233GIXRD with improved CO2 mass transfer, we successfully
234demonstrated that the surface copper oxide is reduced to
235metallic Cu prior to the onset of CO2RR and that metallic Cu
236is the only detectable phase during CO2RR. We also showed

Figure 3. (a) Ratio of the area of Cu(200) to Cu(111) Bragg peaks at
a probe depth of 2.6 nm in CO2- and Ar-purged electrolytes as a
function of the applied potentials. Each percentage above the bars
indicates an increase of ratio compared to the value at 0 V. The
dashed line indicates the ratio in Ar-purged electrolyte at 0 V. (b)
Changes of Cu(200)/(111) area ratio at a probe depth of 2.6 nm in
cathodic and anodic steps in CO2-purged electrolyte. The dashed line
indicates the ratio at 0 V.
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237 that the surface reconstruction from Cu(pc) to Cu(100) takes
238 place only in the presence of CO2 molecules, suggesting it is a
239 CO-driven phenomenon. The surface reconstruction increases
240 as the applied potential becomes more negative, and the
241 reconstructed surface partially persists in the anodic steps. Our
242 in situ measurements of surface oxidation state and
243 reconstruction behavior provide new insights for the atomic-
244 scale understanding of Cu-based electrocatalysts.
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