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Chapter 23

Method for Accurate Determination

of the Electron Contribution: Specific Heat

of Ba0.59K0.41Fe2As2

Costel R. Rotundu, Thomas R. Forrest, Norman E. Phillips,

and Robert J. Birgeneau

Introduction

The 1986 discovery of superconductivity in La1.85Ba0.15CuO4 (LBCO) at a critical

temperature Tc of 35 K by Bednorz and Müller [1] was a milestone in the search for

superconductivity in materials with higher Tc, and an important contribution to the
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incentive for further research in this area. Soon after the discovery of LBCO,

cuprates with much higher Tc’s were found. Other classes of superconductors,

some of which are remarkable include MgB2 [2] with its highest Tc among BCS

superconductors and the iron pnictide high temperature superconductors [3]; they

were discovered in 2001 and 2008, respectively.

These high-Tc superconductors make an important contribution to the under-

standing of superconductivity, but they pose a new challenge to the determination

of the conduction-electron contribution to the specific heat, a useful source of the

values of important parameters and other information relevant to the nature of the

superconductivity. In the conventional analyses of specific-heat data the electron

contribution (Ce), (Ces) in the superconducting state and (Cen) in the normal state, is

obtained by subtracting the contribution of the lattice vibrations (Clat) from the total

measured specific heat (C), and therein lies the problem: High values of Tc ensure
high values of the upper critical field (Hc2) effectively eliminating the normal-state

specific-heat measurements that give Clat by analyzing the normal-state C as the

sum of Clat and Cen ¼ γnT. As a consequence, Clat has to be obtained by some kind

of approximation, and the requirements are stringent: Meaningful analysis and

interpretation of the resulting Ces requires that the approximation for Clat be valid

over a wide range of temperature for T � Tc. The fact that many different

approximations have been used attests the general recognition of the difficulty of

the problem. The approximations used include fitting normal-state data above Tc to
obtain Clat and extrapolating the result to low T, and using Clat for a structurally

similar non-superconducting material. The problem is compounded by the fact that

for these materials Ces is a small fraction of Clat at the temperatures of interest for

determining the order parameter in the superconducting state, and the errors in Clat

are greatly magnified in Ces. The analysis of the C data should give the conduction-

electron density of states (DOS) and the values of the energy gaps in the

superconducting state, but the conventional analyses gives a variety of results for

these parameters in similar materials that reflect the errors in the approximations for

Clat. Recently we recognized that the αmodel, which gives a good representation of

Ces, offers a way out of this dilemma: We showed that Ces for Ba0.59K0.41Fe2As2
could be extracted directly from the total C data by using α-model expressions for

Ces, bypassing the need for an independent determination of Clat [4]. That paper

included discussions of Clat, its proper mathematical representations in different

temperature regions, the approximations used in the conventional analyses, and a

comparison of our results for Ba0.59K0.41Fe2As2 with those obtained by conven-

tional analyses of specific-heat data on similar materials as well as with results

obtained by ARPES. Here we offer a reorganized and somewhat simplified descrip-

tion of the basic analytical procedures, without the supporting material.
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Contributions to the Specific Heat; The Determination

of the Lattice Contribution

The normal-state electron contribution to C is usually taken to be

Cen � γnT, ð23:1Þ

where γn is a temperature-independent constant (but see below) that is proportional

to the DOS. If there are two bands γn represents the sum of the two contributions.

(When it is convenient to distinguish the specific-heat contributions or other

properties of two bands, additional subscripts, 1 and 2, are used, e.g., γn ¼ γn1 + γn2,
Ces ¼ Ces1 + Ces2, α1 and α2, etc.)

The superconducting-state electron contribution given by the BCS theory in the

weak-coupling limit, has been tabulated by Mühlschlegel [5] in the form Ces/γnTc as
a function of the reduced temperature, t � T/Tc. Experimental results for strong-

coupling materials are inconsistent with this result, and they are also inconsistent

with general limitations on the effects of strong coupling in the BCS theory

[6]. This led to the formulation of the α model [6], a phenomenological extension

of the BCS theory to include strong-coupling effects. In the α model the tempera-

ture dependence of the energy gap is taken to be that calculated [5] for the BCS

theory in the weak-coupling limit, but the amplitude of the gap at T ¼ 0, Δ(0), is an
adjustable parameter represented by α � Δ(0)/kBTc that provides an empirical

measure of the strength of the coupling. In the weak-coupling limit of the BCS

theory α ¼ 1.764 � αBCS. Early applications were focused on superconductors that

showed other evidence of strong coupling, which gave values of α greater than

αBCS, but for some superconductors the thermodynamic properties were

represented by values of α less than αBCS, and recently this has been interpreted

in terms of weak coupling. For MgB2 at the lowest temperatures Ces shows a large

excess over that given by the BCS theory. It was recognized [7] that this could be

represented by the α model with α much less than αBCS, but this would not be

consistent with Ces near Tc (see Fig. 2 of [7]). This suggested the extension of the α
model to a two-band, two-gap superconductor in which Ce is taken to be the sum of

two independent additive contributions, even though the equality of Tc in the two

bands requires some interband coupling [7]. The α-model fits represent Ces for

MgB2 to within the experimental accuracy [7] giving α values of 2.2 and 0.6, which

are consistent with detailed theoretical calculations [8] that show both strong and

weak coupling. Currently, essentially all specific heat measurements on high-Tc Fe
pnictide superconductors are compared with a model of this kind.

The vortex-state electron contribution of a superconductor with an isotropic gap

includes two terms:

Cev Hð Þ ¼ Cevs Hð Þ þ γv Hð ÞT: ð23:2Þ

The first term, Cevs(H ), which is associated with the residual superconducting

condensate, is the in-field counterpart of Ces in zero field. It decreases in magnitude
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with increasing H but the details of its H and T dependences are not theoretically

established. The other term, γv(H )T, is associated with localized quasiparticle states
in the vortex cores [9]. Its coefficient varies from γv(0) ¼ 0 to γv(Hc2) ¼ γn, with a

variation that is, at least for a single-band superconductor, linear in H. (Non-linear
variations associated with structure in the energy gaps are considered in section

“Discussion”.) In most samples of superconducting materials there is a “residual”

DOS that produces a normal-state-like contribution to C even in zero field. This

appears as a non-zero value of γv(0), γr � γv(0) 6¼ 0, and is generally attributed to

non-superconducting regions of the same material.

It is generally accepted that in the low-T limit the lattice contribution can be

represented by

Clat ¼ B3T
3 þ B5T

5 þ B7T
7 þ , ð23:3Þ

with

B3 ¼ 12=5ð Þπ4R=θD3, ð23:4Þ

where θD is the Debye temperature. The higher-order terms represent the effects of

phonon dispersion, and they may also serve as an approximation for the low-T
contributions of low-frequency optical modes if the lattice has a basis with more

than one atom in the primitive unit cell. However, Eq. (23.3) is often used in an

interval of temperature at higher temperatures, in which case it is just a convenient

fitting expression with no physical meaning. In particular, coefficients obtained in

the high-T fits cannot be expected to give a valid expression for Clat at lower

temperatures. Combinations of Debye and Einstein functions are also used to

represent Clat at higher temperatures, where they are physically more reasonable

fitting expressions, but the fits are relatively insensitive to the values of the fitting

parameters, and the parameters derived, like those derived from high-T fits with

Eq. (23.3), should not be expected to give Clat accurately at lower temperatures.

For the high-Tc Fe pnictides two methods for obtaining an approximation for Clat

for T � Tc have been used. In one, the first step is to obtain Clat for T � Tc for a
comparison material for which the normal-state specific heat is known. The com-

parison materials that have been used include the undoped non-superconducting

parent compound, an overdoped non-superconducting sample, and a material with a

different dopant that suppresses both the superconductivity and the high-T struc-

tural/magnetic transition. In some cases adjustments to Clat of the comparison

material for the differences in stoichiometry or structure are made, but they are

necessarily rough approximations. Furthermore, the effect on Clat of the substantial

differences in the DOS are quite generally ignored. The other method is to obtain

Clat for the sample itself by fitting the normal-state data for T � Tc with

C ¼ γnT + Clat, and extrapolating the resulting Clat to T < Tc. In addition to the

fact that an expression obtained for Clat in a high-T interval cannot be expected to

be accurate at low temperatures, there are other reasons for doubting the validity of

the derived Clat (and also γn, if it is derived in the fit): Since C is measured at
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constant pressure it includes a contribution to Clat associated with the

anharmonicity of the lattice vibrations that can also be approximately

T proportional [10]. For samples of Ba1 � xKxFe2As2 this contribution has been

estimated [11] to increase rapidly from zero at T ¼ 0 to ~600 mJ K�1 mol�1 at

100 K, to increase less rapidly at higher temperatures, and to become more nearly

T proportional above 150 K, with a coefficient ~ 12 mJ K�2 mol�1. Furthermore,

the phonon enhancement that contributes to γn, and therefore γn itself, is expected to
be T dependent (see, e.g., [12, 13]). The complicated temperature dependence of

Clat, including the anharmonic contribution, prevents the identification of this effect

in specific-heat measurements, but there is compelling evidence for its reality in

cyclotron resonance experiments [14]. There is no basis for estimating its magni-

tude in the Fe pnictides, but it could be substantial. The difficulties associated with

obtaining an independent approximation for Clat, ensure substantial uncertainty in

any Ces obtained in the conventional analyses.

The determination of Clat is the major obstacle to obtaining Ce from experimen-

tal data, but in most samples there are paramagnetic centers that also make a

significant contribution to C, which is best represented by an H-dependent approx-
imation to a Schottky function, CSch(H ). With this contribution, the total specific

heat in a field H is

C Hð Þ ¼ Clat þ Ce Hð Þ þmCSch Hð Þ, ð23:5Þ

where m is the molar concentration of paramagnetic centers. For 0 � H < Hc1,

where Hc1 is the lower critical field (and omitting the possible γrT contribution)

Ce(H ) ¼ Ces; for Hc1 � H < Hc2, Ce(H ) ¼ Cevs(H ) + γv(H )T; for H � Hc2,

Ce(H ) ¼ γnT.
The requirement of entropy conservation, the equality of the conduction-

electron entropies in the normal and superconducting states at Tc, is frequently

invoked, either as a constraint in a fitting procedure used to obtain Clat or as a test of

the validity of a derived Clat. In zero field it takes the form

Z
Ces=Tð ÞdT ¼ γnTc, ð23:6Þ

where Ces¼ C� Clat,�mCSch and the integration extends from T¼ 0 to T¼ Tc. In
the special case of a Clat that is determined in a high-temperature fit to normal-state

data and then extrapolated to low temperatures, imposition of the entropy-

conservation constraint can reduce gross errors in the derived Clat (a detailed

analysis is presented in Sect. 6 of [4]). More generally however, its effect is limited

by the small fraction of the entropy at Tc that is electron entropy, e.g., ~13% in the

results reported here. At best, even if an accurate value of γn is known indepen-

dently, satisfaction of Eq. (23.6) shows only that Ces gives the correct entropy at Tc,
i.e., that it is only a T�1-weighted average of Ces that is correct. This leaves room

for T-dependent errors that are comparable in magnitude to small contributions to

Ces that have been attributed to small-gap bands in temperature intervals near or
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below Tc/2. An incorrect value of γn will tend to produce values of Ces that are, on

the average, either too high or too low. Furthermore, in many cases the validity of

the value of γn used in Eq. (23.6) is not obvious, and in some cases its origin is not

specified.

Samples and Measurements

Nearly optimally doped Ba0.59K0.41Fe2As2 single crystals were grown by a self-flux

method [15]. The potassium doping value reported is as determined by inductively

coupled plasma and its homogeneity is confirmed by electron microprobe

wavelength-dispersive X-ray spectroscopy. The superconducting transition with

an onset of 36.9 K has a width of ~1 K, as measured by magnetization. It is well

known that magnetization measurement cannot provide a reliable value of the

volume fraction of superconductivity. Instead, the residual DOS in the

superconducting state, which is measured by the value of γr, is the best measure

of the volume fraction of superconductivity. For our sample γr ¼ 0 (see section

“Specific-Heat Results and Analysis”) suggesting 100% superconductivity. This is

in agreement with the absence of a heat capacity signature near 70 K that would

indicate the presence of FeAs, a common impurity reported in the series (see, e.g.,

[2, 11]). The sharp step-like magnetization at Tc, the absence of a residual DOS in

the superconducting state, the absence of a detectable level of FeAs, the low

concentration of paramagnetic centers (see section “Specific-Heat Results and

Analysis”), and the discontinuities in Ce and its temperature derivative at Tc (see
section “Specific-Heat Results and Analysis”) attest the high quality of the sample.

The specific heat of a 10.3-mg, plate-like single crystal was measured in the PPMS

from 2 to 300 K in zero field. Below 50 K, measurements were also made in nine

fields applied perpendicular to the ab plane, to a maximum μ0H¼ 14 T. A different

set of measurements on the same sample was reported in an earlier paper [16]. To

exploit the PPMS’ sensitivity to its maximum the specific heat of the addenda and

the sample were measured at the same temperatures, and the platform thermometer

was calibrated in each of the fields in which the specific heat was measured.

Specific-Heat Results and Analysis

The specific heat results for H¼ 0 at lower temperatures in shown in Fig. 23.1 (and

shown in Fig. 1 of [4] for 2–300 K temperature range). The discontinuity in C at

36.9 K marks the transition to the superconducting state. The solid sloping lines in

inset Fig. 23.1, which represent the ideally sharp mean-field transition in zero field,

are the results of somewhat arbitrary, but typical, straight-line fits to the data just

outside the regions of curvature associated with the broadening of the transition by

sample inhomogeneity and fluctuation effects. Their extrapolations to Tc, together
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with the entropy-conserving dash-dot vertical line, determine Tc as 36.9 K. Since

Clat, is continuous at Tc, the solid lines give the discontinuity in Ce, ΔCe(Tc)/
Tc ¼ 157.5 mJ K�2 mol�1. With some mathematical manipulation, dC/dT ¼ Td
(C/T)/dT + C/T, they also give the discontinuity in dCe/dT,Δ(dCe/dT )|Tc¼ 1183 mJ

K�2 mol�1. In comparison with other measurements on similar materials the

transition is relatively sharp and the discontinuities are relatively large, e.g.,

although ΔCe(Tc)/Tc seems to be similar to that found in one of the five measure-

ments on similar materials (described in Sect. 6 of [4]) it is clearly larger than those

in the other four.

The first step in the analysis is to obtain approximate, provisional values of γn
and α from the data in the vicinity of Tc using α-model expressions for a single gap.

The αmodel gives the discontinuities in Ce and dCe/dT in terms of the parameters γn
and α. Conversely, it can be used to obtain γn and α from the experimental values of

the two discontinuities. For any value of α it gives Ces as a function of the reduced

temperature, t � T/Tc,

Ces tð Þ=γnTc � fα tð Þ: ð23:7Þ

Since Cen ¼ γnT, Cen(Tc)/Tc ¼ γn, and the discontinuity in Ce at Tc is

Fig. 23.1 The specific heat as C/T vs T2 to 6 K, in 10 fields, 0� μ0H � 14 T. The deviations from

linearity suggest the presence of a low concentration of paramagnetic centers. The inset: The same

specific heat data in the vicinity of Tc, as C/T vs T. The solid sloping lines are the results of fits to
the data just outside the transition region (see text). The dashed, vertical line is an entropy-

conserving construction that determines Tc as 36.9 K. The extrapolations of the solid lines to Tc
represent the mean-field transition in zero field
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ΔCe Tcð Þ=Tc ¼ Ces Tcð Þ=Tc � Cen Tcð Þ=Tc ¼ γn fα 1ð Þ � 1½ �: ð23:8Þ

Since (dCes/dt)/γnTc ¼ dfα(t)/dt � fα’(t) ¼ (dCes/dT)/γn, and (dCen/dT )|Tc ¼ γn, the
discontinuity in dCe/dT is

Δ dCe=dTð Þ Tc ¼ dCes=dTð Þj jTc � dCen=dTð Þ��Tc ¼ γn fα
0 1ð Þ � 1½ �: ð23:9Þ

If γn is known independently, either Eqs. (23.8) or (23.9) would give the value of
α, and each of these equations has been used in that way. However, taken together,

they can be used to obtain the values of both α and γn: e.g., the ratios of the left- and
right-hand sides of Eqs. (23.8) and (23.9) give

TcΔ dCe=dTð Þ��Tc=ΔCe Tcð Þ ¼ fα
0 1ð Þ � 1½ �= fα 1ð Þ � 1½ �, ð23:10Þ

which determines the value of α as that for which the function of α on the right-hand
side agrees with the experimental quantity on the left. With the value of α deter-

mined by Eq. (23.10), Eq. (23.8) or Eq. (23.9) can be used to obtain γn. The results
are γn ¼ 32.2 mJ K�2 mol�1, and α ¼ 3.27. These would be the correct values if

there were only a single band, but if there is also a small-gap band the discontinu-

ities would have to be corrected for its contributions and the parameters of the

large-gap band recalculated.

The test for the existence of a small-gap band and the determination of the

characteristic parameters were based on a “global” fit with Eq. (23.5) to the data for

all H and T � 12 K. It is desirable to fit the data for all H together because the

H dependence of the vortex-core contribution gives important information about

the energy gap (see section “Discussion”) and it is best determined in a fit that takes

the other contributions into account. In addition, the ratio of data points in the fit to

fitting parameters is increased, reducing the uncertainties in the derived parameters

(see below). The details of the final fitting expression were based on the results of

trials of a number of different fitting expressions and different temperature intervals

for the fits. The results of some of these preliminary fits are described, together with

other evidence of the validity of the fit, in the last two paragraphs of this section.

The final fitting expression made allowance for four contributions to C(H ): the

lattice contribution, represented by three terms of Eq. (23.3); the vortex-core

contribution, γv(H )T; the superconducting-condensate contribution, Ces for

H ¼ 0, and Cevs for H 6¼ 0; the paramagnetic-center contribution, represented by

a two-level Schottky function (see below) with an H-dependent characteristic

temperature, θSch(H ) ¼ θSch(0)(1 + βH2)1/2. Inclusion of the paramagnetic-center

contribution was suggested by the deviations from linearity in the plot of C/T vs T2

(see Fig. 23.1) which are typical indications of the presence of a low concentration

of paramagnetic centers.

For T � 12 K the component of Ces associated with a large-gap band with α ~ 3

and γn ~ 30 mJ K�2 mol�1 would be negligible, and it is only the component

associated with a small-gap band that needs to be considered. As given by

Eq. (23.7), that component would be Ces2(T) ¼ γn2Tcfα(T ). For this interval of
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temperature and the values of α that turn out to be of interest (~1) it can be

represented by the exponential of a three-term polynomial in T�1, �Xα(T ), giving

Ces2 Tð Þ ¼ γn2Tcfα Tð Þ ¼ γn2Tcexp �Xα Tð Þ½ �, ð23:11Þ

with the three coefficients in Xα(T ) determined by the value of α. (The polynomial

in T�1 was suggested by the T dependence of Ces given by the BCS theory, and it

was found that sums of a constant term, a term in T�1, and term in T�1/2 gave good

fits to the α-model expressions.) Generalizing that expression to extend its validity

to the in-field data, i.e., to represent Cevs2(H ) for H 6¼ 0, requires allowing for its

H dependence in the vortex state. There is little theoretical guidance for such a

generalization, but experimental results on other superconductors suggest two

changes: the replacement of the pre-exponential coefficient, γn2Tc, with an H-
dependent coefficient, a(H ), to allow for the reduction in the magnitude of the

residual superconducting condensate contribution that is complementary to the

increase in the vortex core contribution, and the inclusion of an H-dependent factor,
b(H ), in the exponent to allow for the effective reduction of the gap by the pair-

breaking effect of the field. With these changes, the component of Cevs(H ) and Ces

associated with the small-gap band is a(H )exp[�b(H )Xα(T )] and the fitting expres-
sion becomes

C Hð Þ ¼ Clat Tð Þ þ γv Hð ÞT þ a Hð Þexp �b Hð ÞXα Tð Þ½ � þ mCSch H; Tð Þ: ð23:12Þ

Fitting the data for H 6¼ 0 simultaneously with the H¼ 0 data more than doubles the

ratio of number of points in the fit to number of adjustable parameters, and gives

more reliable values of the parameters. (However, with more precise data, which

might be obtained in other apparatus, it might be possible to obtain comparably

reliable values of the H ¼ 0 parameters without invoking the empirical generali-

zation of Eq. (23.11) to include the H 6¼ 0 data.)

A fit has to be made for a particular value of α, which determines the values of

the three fixed parameters in Xα(T) that are needed to make the fit. The derived

values of the adjustable parameters depend on the value of α for which the fit was

made, and the correct value of α is identified by comparison of the results of fits

made with different values: The third term in Eq. (23.12), with the adjustable

parameters a(H ) and b(H ), represents the contribution of the superconducting

condensate of the small-gap band for all H, but for H ¼ 0 its T dependence is

correct for the value of α for which the fit was made only if the derived b(0) ¼ 1.

This provides the criterion for recognizing the correct value of α, i.e., that for which
the fit gives b(0) ¼ 1. For the same reason, that fit gives γn2, as γn2 ¼ a(0)/Tc. The
derived values of b(0) have a strong dependence on α—e.g., b(0) ¼ 1.109, 0.946,

and 0.822 for α ¼ 0.8, 0.9, and 1.0—ensuring a precise determination of α. The
result b(0) ¼ 1 was obtained for α ¼ 0.86, and for that fit a(0) ¼ 337 � 17 mJ K�1

mol�1. These results show the existence of a small-gap band characterized by the

parameters α2 ¼ 0.86 and γn2 ¼ (337 � 17)/36.9 ¼ 9.1 � 0.5 mJ K�2 mol�1.

Because of the small value of γn2, and particularly the small value of α2, this
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band makes only small contributions to the discontinuities at Tc: ΔCe2(Tc)/Tc ¼
3.1 mJ K�2 mol�1; Δ[(dCe2/dT)|Tc] ¼ 3.5 mJ K�2 mol�1. Correcting the measured

discontinuities for these contributions gives ΔCe1(Tc)/Tc ¼ 154.4 mJ K�2 mol�1

and Δ[(dCe1/dT )|Tc] ¼ 1180 mJ K�2 mol�1, which in turn give α1 ¼ 3.30,

γn1 ¼ 31.0 mJ K�2 mol�1, and a total γn ¼ 40.1 mJ K�2 mol�1. The characteristic

parameters of the two bands are listed in Table 23.1. In Table 23.2 they are

compared with the values obtained from measurements on five other near-optimally

hole-doped 122 Fe-pnictide superconductors (see Sect. 6 of [4]) and the comparison

suggests some consideration of the uncertainties: A quantitative measure of the

uncertainty in our value of γn2 is given directly by the fit, γn2 ¼ 9.1 � 0.5 mJ K�2

mol�1. It is a measure of the validity of the mathematical expression for Ces in

representing the data. The provisional value of γn, 32.2 mJ K�2 mol�1, was

determined from the straight-line construction in Fig. 23.1, which, in the absence

of mathematical expressions for the effects of fluctuations and sample inhomoge-

neity on the transition, represents a qualitative estimate of those effects. The real

uncertainty in γn arises from the way the lines were drawn. Only a qualitative

estimate is possible, and, on the basis of the shape of the transition in Fig. 23.1 and

comparisons with other measurements, 5% would seem to be reasonable for the

uncertainty in the provisional value of γn and, therefore, in γn1 and in the final value
of γn, 40.1 mJ K�2 mol�1. The more complicated analyses that led to the parameters

derived from the other measurements in Table 23.2 make identification of the

Table 23.2 Characteristic parameters of the electron bands for five other near-optimally hole-

doped Fe-pnictide superconductors in the 122 series, compared with the values reported here

Composition/Reference γn α γn1 γn2 α1 α2
Ba0.59K0.41Fe2As2/This work [4] 40.1 31.0 9.1 3.30 0.86

Ba0.6K0.4Fe2As2/[17, 18] 71.0 1.9

Ba0.6K0.4Fe2As2/[19, 20] 9.0 2.07 9.2 39.8 3.7 1.9

Ba0.68K0.32Fe2As2/[21] 50.0 25.0 25.0 3.3 1.1

Ba0.65Na0.35Fe2As2/[22] 57.5 29.9 27.6 2.08 1.06

Ba0.55K0.45Fe1.95 Co0.05As2/[23] 40.5 2.57 34.8 5.7 3.9 0.86

The values in the top row, this work, were derived by comparing α-model expressions for the

electron contribution directly with the total measured specific heat. The other values were derived

in conventional analyses in which the α-model expressions were compared with a

superconducting-state electron specific heat that had been obtained by subtracting an indepen-

dently determined approximation for the lattice contribution from the total specific heat. The

values of γn are the totals for two bands, however they were derived; the values of α are the results

of single-band fits, if they were made; the values in the 4th–7th columns are the results of two-band

fits. For the two-band fit in 19 α1 and α2 were fixed at values obtained from ARPES measurements.

The units of γn, γn1, and γn2 are mJ K�2 mol�1

Table 23.1 Characteristic

parameters of the two electron

bands

Electron band α Δ(0) (meV) γ (mJ K�2 mol�1)

1 3.30 10.49 31.0

2 0.86 2.73 9.1
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origins of the uncertainties and estimates of their magnitudes much more difficult,

and the uncertainties are not discussed in the publications.

The other contributions to C(H ) obtained in the fit are plausible and consistent

with the behavior shown by other superconductors, e.g., the evolution with increas-

ing H of the different contributions in Eq. (23.12) and the derived parameters

characteristic of the small-gap band, which fall within the ranges suggested by

other measurements (see Table 23.2). The H-independent parameters obtained in

the fit are: m ¼ 1.29 � 0.15 � 10�3 mol mol�1; θSch(0) ¼ 7.32 � 0.41 K;

β ¼ 3.30 � 1.17 � 10�2 T�1/2; B3 ¼ 0.602 � 0.022 mJ K�4 mol�1;

B5 ¼ 7.23 � 2.1 � 10�4 mJ K�6 mol�1; B7 ¼ � 6.1 � 7.0 � 10�7 mJ K�8 mol�1.

While the H-dependent parameters are given in a table in [4], γv(H) is displayed

graphically in Fig. 23.2. The evolution with increasing H of each of the three

H-dependent contributions to C(H) is illustrated in Fig. 23.3 for μ0H ¼ 0, 6, and

14 T, with the H-independent Clat included for comparison. The H dependences of

the coefficient of the contribution of the superconducting condensate and the energy

gap that were introduced empirically, the factors a(H ) and b(H ), give a satisfactory

representation of the experimental data. Furthermore, and as expected, the results of

the fit are consistent with the behavior seen in measurements on other supercon-

ductors: The contribution of the superconducting condensate decreases with

increasing H, as shown by the values of a(H ) and by the plots of Ces2 and Cevs2

in Fig. 23.3. The T and H dependences of Ces2 and Cevs2 are plausible, and the

exponential downturns at low temperatures occur at temperatures consistent with

Fig. 23.2 The H dependence of γv(H ) as obtained in a “global” fit to the data for 2 � T � 12 K in

10 fields, 0 � μ0H � 14 T. The solid and dashed lines represent least-squares fits to H and H1/2

dependences. The error bars correspond to the uncertainties determined in the fit
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Fig. 23.3 Lattice, paramagnetic-center, and electron contributions to C/T, for μ0H ¼ 0, 6, and

14 T in (a), (b), and (c), as obtained in a “global” fit to the data for 2 � T � 12 K in 10 fields,

0 � μ0H � 14 T. In (a) Ces2/T is the contribution of the small-gap band to Ces/T, i.e., in the

superconducting state. In (b) and (c) Cevs2/T is the corresponding contribution of the small-gap

band to Cev/T, i.e., in the vortex state. In this temperature interval and on this scale the analogous

contributions of the large-gap band are negligible. In (b) and (c) γv is the total contribution of the

vortex cores
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the values of b(H ) in showing the expected decrease in the effective gap with

increasing H.
The identification of a band with a small energy gap requires the accurate

determination of Ces at the low temperatures at which it would make a significant

contribution to C(0), typically T � 15 K for the small gaps that have been reported

in these materials. The problem, for any analysis, is to identify the small Ces2—a

maximum of only 12% of C(0), near 9 K in our results—and separate it from the

much greater Clat. In the conventional analyses an error of only a few percent in the

independently determined Clat that is subtracted from C(0) would have a substantial
effect on any evidence for a small gap that might be obtained from the derived Ces.

Our analysis, unlike the conventional analyses, does not require an independent,

quantitative determination of Clat that is subtracted from C(0) before the fit is made.

It does require making an allowance for Clat in the fitting expression, and this takes

the form of the sum of the T,3 T,5 and T7 terms in Eq. (23.3), which is generally

accepted as representing the T dependence of Clat in this low-T interval. The

coefficients of these three terms are an incidental byproduct of the fit, and they do

determine Clat in this limited T interval. However, since they were determined in the

low-T fit they do not prejudice the outcome of the determination of Ces in the way

that independently determined coefficients would. The choice of the three-term

expression for Clatwas based on a number of preliminary fits with Eq. (23.12), eight

of which, with or without the T7 term, to either 10 or 12 K, and for α either 0.8 or

0.9, gave the same value of a(0) to within �5%, and to within �2.5% for each

group of four for which α was the same. These fits suggested that the T7 term would

make only a marginal contribution, but it was included to give maximum flexibility

in the determination of the other contributions. It did make only a small contribu-

tion in the final fit, and the large uncertainty in the coefficient shows that the results

of the fit would have been essentially the same without it, except that a small

compensating change in B5 would be expected. The paramagnetic-center contribu-

tion presented the major problem with the fitting expression. The two-level

Schottky anomaly in the final fitting expression is clearly too narrow in tempera-

ture, but broader anomalies that were tried—two-level Schottky anomalies with

different degeneracies of the levels or with Gaussian or Lorentzian broadening, and

a three-level Schottky anomaly—made no significant improvement in the fit and

did not suggest an alternative. However, the Schottky contribution is relatively

small, and significant only at the lowest temperatures and in low fields (see

Fig. 23.3). Its small size accounts for the relatively large uncertainties in the

parameters m, θSch(0) and β, but it is only the sharp drop off on the high-T side,

which is not sensitive to the details of the fitting expression, that is relevant to the

separation of the four contributions to C(H ). For that reason, and because the

Schottky contribution is not of any interest in itself, the inadequacy of this term

in the fitting expression is not important.

In the final fitting expression, Eq. (23.12), there are 36 adjustable parameters, six

of which are independent of H and represent the magnitudes and T dependences of

the lattice and Schottky contributions to C(H ). Of the 30 H-dependent parameters,

10 represent the relatively simple H dependence expected for γv(H ) and 20 model
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the comparably simple H dependences of the superconducting-condensate contri-

bution, as suggested by results for other superconductors. There are 320 data points

in the fit, an adequate excess over the number of parameters, especially considering

the limited roles of the H-dependent parameters. The fit was made using a

non-linear least-squares procedure using Matlab, and carried to the smallest con-

vergence tolerance allowed. To ensure that the fitting process converged to the best

possible result (an absolute minimum of the reduced χ2) a number of fits were made

with different initial values of the parameters and different iteration step sizes. The

T dependences of the four contributions to C(H ) are all well defined and substan-

tially different, which is of considerable importance in connection with the validity

of their separation. While the fractional deviations in the final fit are up to �3% at

2 K, where the Schottky contribution to C(H ) is significant, they decrease to�1 and

�0.25% at 5 and 12 K, the temperatures that define the interval that is most

important for determining Ces2. The results of the fit are generally plausible and

consistent with the behavior of other superconductors. The validity of the fit is also

supported by the uncertainties in the parameters, which are relatively small for the

most important parameters, in particular a(0) ¼ 337. � 17. mJ K�1 mol�1 and b
(0)¼ 1.00� 0.04, which define Ces2. The result for Ces2 is also supported indirectly

by the strong dependence of b(0) on α (see above), which is clear evidence of the

existence of a term in C(0) with a T dependence corresponding to the contribution

of a small-gap band with a value of α within the range of the fits. The difficulties in

determining Ces2 notwithstanding, the evidence for a small-gap band characterized

by α2 ¼ 0.86 and γn2 ¼ 9.1 � 0.5 mJ K�2 mol�1 is persuasive.

Discussion

The major result of the analysis is the identification of two electron bands that

contribute to the DOS, and have substantially different energy gaps in the

superconducting state. [As noted in the Introduction, some of the measurements

on other near-optimally hole-doped 122 Fe-pnictide superconductors (described in

more detail in Sect. 6 of [4]) showed evidence of two gaps, and the details and

references are given in Table 23.2.] The total DOS, as measured by the coefficient

of the electron contribution to the specific heat, corresponds to γn ¼ 40.1 mJ K�2

mol�1, and it is comprised of a contribution, γn1 ¼ 31.0 mJ K�2 mol�1, from the

band with the larger gap, Δ1(0) ¼ 10.49 meV, and a contribution, γn2 ¼ 9.1 mJ K�2

mol�1, from the band with the smaller gap, Δ2(0) ¼ 2.73 meV. The results for Ces

and its two components are shown graphically in Fig. 23.4, with the result of the

BCS theory in the weak coupling limit and for the same γn, included for compar-

ison. Although circumvention of the need for an independent determination of Clat

is an important feature of our analysis, Clat, and its relation to C(0), is of some

interest for comparison with the results of other measurements. The 2–12 K fit with

Eq. (23.12) gives Clat for that temperature interval. At higher temperatures the

apparent Clat can be obtained by subtracting Ces or Cen from C(0), and for that
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purpose the actual C(0) data in the immediate vicinity of Tc were replaced by the

straight lines in Fig. 23.1 that represent the idealized sharp transition. The results for

Clat to 40 K, the limit of the straight-line construction in Fig. 23.1, are represented

by the solid lines in Fig. 23.5. The small difference between C(0) and Clat for

T � 20 K emphasizes the sensitivity to errors in Clat of a Ces2 derived from that

difference.

Several other techniques give values of the energy gaps that can be compared

with those derived from the specific-heat data. Quite generally, the results obtained

by these techniques suggest that there are two gaps with substantially different

magnitudes in the Fe–pnictide superconductors (see, e.g., [24]). Here we focus on

those obtained from angle-resolved photoemission spectroscopy (ARPES) mea-

surements on Ba1�xKxFe2As2, which are the most extensive and detailed of the

other measurements. The comparison is best made on the basis of the values of

Δ1(0) and Δ2(0), which are given directly by the ARPES results, and are indepen-

dent of Tc. In the following. Δ1(0) and Δ2(0) are used for the larger and smaller gaps,

respectively, regardless of the notation used in the other publications. As derived

from the specific-heat data, these quantities are averages in the sense that small

differences between different sheets of the Fermi surface and anisotropies on a

single sheet are not resolved. ARPES measurements give more detailed information

but the results are often summarized by two averages over narrow ranges of gap

magnitude. For a sample with Tc ¼ 32 K, Evtushinsky et al. [25] report

Δ1(0) ¼ 9.2 � 1 meV for an inner hole-like barrel at the Г point, and smaller

gaps on all other elements of the Fermi surface. However, the feature that showed

the opening of the larger gap was not observed for the smaller gaps, and they

Fig. 23.4 The total electron contribution to C/T, the solid line, and its two components, the two
dotted lines, as functions of T/Tc, in the superconducting state for T/Tc � 1, and in the normal state

for T/Tc � 1. The large-gap component is identified by the labels Ces1/T and γn1, the small-gap

component by the labels Ces2/T and γn2, and the total by the labels Ces/T and γn. The dashed line,
CBCS/T, represents the result of the BCS theory in the weak-coupling limit for the same γn
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conclude only that Δ2(0) < 4 meV. For a sample with Tc ¼ 37 K and x ¼ 0.4, Ding

et al. [26] report Δ1(0) ~ 12.5 meV for the inner Г barrel and Δ2(0) ~5.5 meV for the

outer Г barrel, but the unusual temperature dependence of the gaps leaves some

doubt about the extrapolation to 0 K. For a sample with Tc¼ 35 K and x¼ 0.4, Zhao

et al. [20] report anisotropic gaps, Δ1(0) ¼ 10–12 � 1.5 meV for the inner Г barrel,

and Δ2(0)¼ 7–8� 1.5 meV for the outer Г barrel. The two Fermi surface spots near

the M point are gapped below Tc but the gaps persist above Tc. For a sample with

x ¼ 0.45, but unspecified Tc, Liu et al. [27] report measurements on samples that

“display bulk superconductivity” but the superconducting gaps are not detected in

measurements at 12 K. Our value of Δ1(0) falls well within the range of those

obtained from ARPES results, but, while the value of Δ2(0) is consistent with that

obtained by Evtushinsky et al. [25] it is substantially lower than the other two

ARPES values. Although our value was obtained from a small feature in the

low-temperature specific heat, the sensitivity of the fits to the value of α2, which
determines Δ2(0), argues against such an error in Δ2(0). Comparably small values of

Δ2(0), as measured by α2, have been reported in electron-doped BaFe2As2 � α2 ¼
0.95 in [28] and α2 ¼ 0.957 in [29]—but, given the differences between the

Fig. 23.5 The specific heat in zero field, as C/T vs T, for 2–50 K in the main panel, and for

intervals at lower temperatures in the insets. The superconducting transition is marked by the sharp

drop in C/T in the vicinity of Tc¼ 36.9 K. The solid curves represent the apparent Clat, obtained by

different methods, as described in the text. The dashed curve in the upper inset represents

Clat + CSch in zero field, as determined in a “global” fit to the data for 2 � T � 12 K in 10 fields,

0 � μ0H � 14 T
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electron- and hole-doped compounds, the implications of this similarity in the

values of α2 are not clear.
The H dependence of γv(H ) gives information about the symmetry of the order

parameter, most directly on the existence of nodes. For “conventional” s-wave

superconductors with an isotropic gap, γv(H ) varies linearly with H. For a d-wave
superconductor Volovik predicted an H1/2 dependence associated with extended

quasiparticle states near line nodes [30]. This effect was first observed by Moler

et al. [31] in a cuprate superconductor. It has been suggested that this H1/2

dependence is modified to HlnH at low fields in a dirty superconductor [32]. Mod-

ifications of the H-proportional dependence in the case of an isotropic gap, negative
curvature in high fields, have also been suggested [33]. The H dependence of γv(H )

is compared with H and H1/2 dependences in Fig. 23.2. Overall, γv(H ) is better

represented by the solid straight line, which has a slope 0.75 mJ K�2 mol�1 T�1,

than the dashed curve for H1/2. (The HlnH dependence suggested for a dirty d-wave

superconductor [32] would not give a better fit.) For this reason, and particularly

because the low-field data suggest a finite limiting slope, these results are more

consistent with an isotropic gap than with the low-energy excitations associated

with nodes. Two other measurements of γv(H ), to 9 T, on K-doped BaFe2As2 have

been interpreted in the same way: For Ba0.6K0.4Fe2As2 an approximately H-pro-
portional dependence [17] with a slope 0.63 mJ K�2 mol�1 T�1, and for

Ba0.55Kx0.45Fe2As2 a more precisely determined H-proportional dependence [23]

with a slope 0.60 mJ K�2 mol�1 T�1 have been reported. There is no obvious

explanation for the curvature in γv(H ) in Fig. 23.2. The curvature predicted for an

isotropic gap [33] seems to be significant only at higher fields. For MgB2 there is a

relatively sharp bend in γv(H ) vsH that is associated with different values ofHc2 for

the two bands [34], and perhaps an effect of that kind, but with a smaller difference

in the values of Hc2, could be at work here. It is also interesting that a calculation of

the “Volovik” effect for a two-band superconductor with different isotropic gaps

and impurity scattering [35] gives a transition from the generic H-proportional
dependence of γv(H ) at low H to something approaching H1/2 at higher H. The
resulting negative curvature of γv(H ) depends on the ratio of the gap sizes and is

particularly strong for ratios of the order of 3.3 to 5. However, the calculations give

substantial non-zero values of γv(0), precluding quantitative comparison with our

results.

Band-structure calculations [36] for Ba1�xKxFe2As2 using the local-density

approximation (LDA), the virtual-crystal model, and allowing the positions of the

As atoms to relax according to the LDA energy minimization criterion, show a very

weak dependence of the DOS on doping. For the undoped BaFe2As2 the “bare”

band-structure DOS is N(EF) ¼ 3.06 states eV�1 f.u.�1; for the x ¼ 0.4 hole-doped

material N(EF) ~ 3.12 states eV�1 f.u.�1. However, the rigid-band calculation [36]

which gave essentially the same result for x¼ 0, gave N(EF) ~ 4.38 states eV
�1 f.u.�1

for x ¼ 0.4 [36]. Another calculation [37] gave N(EF) ¼ 4.553 states eV�1 f.u.�1 for

BaFe2As2, and, using a supercell model, N(EF) ¼ 5.526 states eV�1 f.u.�1 for

x¼ 0.5. The increase in N(EF) for x¼ 0.5 in that calculation was ascribed to the use

of the fixed experimental As position for the undoped compound [36]. For
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comparison with experimental quantities, we take, somewhat arbitrarily, the value

N(EF)¼ 3.12 states eV�1 f.u.�1 from [36]. The corresponding electron contribution

to the specific heat, represented as the coefficient of a T-proportional term, is

γ0 ¼ 7.35 mJ K�2 mol�1. The experimental value of γn, 40.1 mJ K�2 mol�1, then

suggests an effective mass renormalization that would be unusually strong for a

simple metal, for which the mass renormalization is produced by the electron-

phonon interaction represented by the electron-phonon coupling parameter (λ) and
γn ¼ (1 + λ)γ0. The value of λ would be 4.5, a factor 10 or so higher than the values
commonly attributed to the electron-phonon interaction in “simple” metals. The

theoretical value of N(EF) chosen for the comparison was among the lowest, but the

experimental value of γn was also among the lowest (see Sect. 6 of [4]), and any of

the possible comparisons would still give an extraordinarily high value of λ.
Although the mass renormalization for F-doped LaOFeAs, in the 1111 series of

Fe pnictide superconductors is not as strong as that found here for a member of the

122 series, it is strong enough to have attracted attention and it has motivated

several calculations of the electron-phonon interaction. In one calculation [38], the

electron-phonon λ was found to be ~0.2, and in another [39] 0.21. In both cases it

was concluded that these numbers are too small to explain the apparent mass

renormalization, and that the electron-phonon interaction is also too weak to

account for the observed Tc. There are differences between the 1111 and 122 series,
but, since the superconductivity occurs in the FeAs layers in both, it is reasonable to

assume that these conclusions, with some allowance for differences in the numbers,

would apply to Ba1�xKxFe2As2. It therefore seems likely that calculation of the

electron-phonon interaction for Ba0.59K0.41Fe2As2 would not account for the

observed mass enhancement.

The electron-phonon interaction accounts for both the normal-state mass

renormalization and the superconducting-state electron pairing in “conventional”

superconductors. The fact that it doesn’t account for either in the Fe pnictides raises
the question as to whether there is another interaction that contributes to both.

Interaction with spin fluctuations, which can support spin-singlet superconductivity

only if there is a sign-changing order parameter, has been suggested as the mech-

anism for the electron pairing [38]. It was also suggested that the pairing would be

“extended” s wave, designated s�, in which isotropic order parameters on different

sheets of the Fermi surface have opposite signs [38]. The approximate linearity of

γv(H ) in H (see Fig. 23.2) supports the argument in [38] that the s� pairing is more

likely than d-wave, which could also satisfy the requirement of a sign-changing

order parameter, but which would have nodes in the energy gaps. With respect to

the mass renormalization, it is suggested in [40], which includes a general com-

parison of the superconductivity in the 1111 and 122 series, that while spin

fluctuations might produce the strong mass enhancement in the 1111 series they

might not produce the stronger effect in the 122 series. However, there seem to be

no quantitative calculations. The specific-heat results emphasize the importance of

theoretical consideration of magnetically mediated electron-electron interactions

and their role in both mass enhancement and the occurrence of superconductivity.

In connection with other theoretical predictions, we note that, in common with most
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other experimental work, the relations between energy gaps and the DOS that we

report seem to be inconsistent with a theory of the superconductivity [40] based

solely on interband interactions.

Summary

The specific heat of a high-quality single crystal of Ba0.59K0.41Fe2As2, a near-

optimally hole-doped superconductor in the 122 series of Fe pnictides, was mea-

sured from 2 to 300 K, and below 50 K in fields to μ0H ¼ 14 T.

A novel method of analysis of the data, based on direct comparisons of α-model

expressions for the electron contribution with the measured total specific heat, was
used to obtain the parameters characteristic of the electron bands. It bypasses the

independent determination of the lattice contribution, an essential step in the

conventional analyses, in which the lattice contribution is subtracted from the

total to obtain the electron contribution, and it eliminates the substantial uncer-

tainties in the electron contribution associated with the approximations inherent in

the determination of the lattice contribution. The derived parameters characteristic

of the electron contribution are significantly different from those obtained by

conventional analyses for a group of five other near-optimally hole-doped

BaFe2As2 superconductors, which also show significant differences within the

group. We suggest that the approximations used in obtaining the lattice contribution

in the conventional analyses make an important contribution to these differences.

For Ba0.59K0.41Fe2As2 the total DOS, as measured by the value of γn, 40.1 mJ K�2

mol�1, is the sum of two contributions, γn1 ¼ 31.0 mJ K�2 mol�1 and γn2 ¼ 9.1 mJ

K�2 mol�1, from bands with superconducting-state energy gaps that are, respec-

tively, larger and smaller than the weak-coupling BCS value. As measured by the

gap-proportional parameter α, which is 1.764 � αBCS in the weak-coupling limit of

the BCS theory, the gaps correspond to α1 ¼ 3.30 and α2 ¼ 0.86. The energy gaps

derived from the specific-heat data are within the ranges of values obtained in

ARPES measurements, but there are some significant differences. The

H dependence of the T-proportional term in the vortex-state specific heat suggests

a nodeless order parameter and is consistent with extended s-wave pairing. The

relations between the DOS and energy gaps for the two bands are not consistent

with theoretical predictions [41] for a model in which superconductivity is pro-

duced by interband interactions alone. Comparison of the total DOS, as deduced

from the value of γn, with band-structure calculations shows a strong effective mass

renormalization that is without precedent in simple metals and is not theoretically

explained.
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