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ABSTRACT Given the multitude of extracellular enzymes at their disposal, many of 
which are designed to degrade nature’s polymers (lignin, cutin, cellulose, etc.), fungi 
are adept at targeting synthetic polyesters with similar chemical composition. Micro
bial-influenced deterioration of xenobiotic polymeric surfaces is an area of interest 
for material scientists as these are important for the conservation of the underly
ing structural materials. Here, we describe the isolation and characterization of the 
Papiliotrema laurentii 5307AH (P. laurentii) cutinase, Plcut1. P. laurentii is basidiomycete 
yeast with the ability to disperse Impranil-DLN (Impranil), a colloidal polyester poly
urethane, in agar plates. To test whether the fungal factor involved in this clearing 
was a secreted enzyme, we screened the ability of P. laurentii culture supernatants to 
disperse Impranil. Using size exclusion chromatography (SEC), we isolated fractions that 
contained Impranil-clearing activity. These fractions harbored a single ~22 kD band, 
which was excised and subjected to peptide sequencing. Homology searches using the 
peptide sequences identified, revealed that the protein Papla1 543643 (Plcut1) displays 
similarities to serine esterase and cutinase family of proteins. Biochemical assays using 
recombinant Plcut1 confirmed that this enzyme has the capability to hydrolyze Impranil, 
soluble esterase substrates, and apple cutin. Finally, we confirmed the presence of the 
Plcut1 in culture supernatants using a custom antibody that specifically recognizes 
this protein. The work shown here supports a major role for the Plcut1 in the fungal 
degradation of natural polyesters and xenobiotic polymer surfaces.

IMPORTANCE Fungi play a vital role in the execution of a broad range of biological 
processes that drive ecosystem function through production of a diverse arsenal of 
enzymes. However, the universal reactivity of these enzymes is a current problem 
for the built environment and the undesired degradation of polymeric materials in 
protective coatings. Here, we report the identification and characterization of a hydrolase 
from Papiliotrema laurentii 5307AH, an aircraft-derived fungal isolate found colonizing 
a biodeteriorated polymer-coated surface. We show that P. laurentii secretes a cutinase 
capable of hydrolyzing soluble esters as well as ester-based compounds forming solid 
surface coatings. These findings indicate that this fungus plays a significant role in 
biodeterioration through the production of a cutinase adept at degrading ester-based 
polymers, some of which form the backbone of protective surface coatings. The work 
shown here provides insights into the mechanisms employed by fungi to degrade 
xenobiotic polymers.
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F ungi are crucial to a variety of biological processes occurring in the environment. 
Fungi are well known for the degradation of organic matter in soil ecosystems, 

especially wood, from which these organisms can obtain nutrients and energy (1, 2). 
Through the expression of a diverse arsenal of extracellular enzymes, naturally designed 
to degrade natural polymeric compounds (lignin, cellulose, cutin, etc.), fungi are adept 
at targeting xenobiotic compounds with similar chemical composition (3, 4). Due to the 
universal action of these fungal enzymes (lipases, esterases, cutinases, etc.), fungi are 
candidates for plastic waste bioremediation and other pollutants, including hazard
ous chemicals (5–7). Furthermore, fungal extracellular enzymes represent a significant 
problem in the undesired colonization and deterioration of the built environment, such 
as polymeric materials with ester or urethane linkages in their backbone (8–11).

Polyester and polyether polyurethane-based polymers are commonly applied as 
physical barriers between underlying structural materials (e.g., wood, steel, and 
aluminum) and the environment, and are used widely to prevent deterioration 
by physical, chemical, and biological processes. Several studies have examined the 
enzymatic basis for polyester polyurethane degradation by bacteria and fungi. For 
example, the lipases PueA and PueB from select Pseudomonads have been shown to 
contribute to the degradation of the model colloidal polyester polyurethane Impranil 
(12, 13). Impranil is a protected aliphatic polyester-polyurethane colloidal dispersion 
used for textile, leather, and aircraft fabric coatings (14). Additionally, it has been used 
as a model polymer for the study of the degradation of polyester polyurethanes (12, 
14–16). For the last 30 years, organisms and their enzymes have been classified as 
being able to degrade polyurethanes using Impranil, with the first article describing this 
application published in 1984 (14, 17). For instance, an esterase produced by Corynebac
terium was shown to hydrolyze polyester polyurethanes (18), and a polyester hydrolase 
from actinomycetes was able to degrade Impranil as well as Elastollan B85A-10 and 
C85A-10 (19). Also, many cutinase enzymes (EC 3.1.1.74) have been isolated and reported 
for their ability to degrade thermoplastics, such polyethylene terephthalate (PET) and 
other related polyesters (20, 21). Cutinases, originally discovered in fungi, are enzymes 
that hydrolyze the ester bonds of plant cutin (22). Previously, our group reported that 
Papiliotrema laurentii (synonym Cryptococcus laurentii), an environmental, non-motile, 
encapsulated saprotrophic fungus that is rarely associated with human infection (23–26), 
can hydrolyze polyester-based coatings in nutrient-deprived conditions (8, 27). However, 
the specific fungal factors involved in this process remained to be identified. Thus, the 
purpose of this work was to understand the responsible enzymatic factors involved in 
these degradative processes.

In this work, we demonstrate that P. laurentii 5307AH culture supernatants are 
capable of clearing Impranil. We isolated supernatant fractions with activity against 
Impranil, soluble esters, and identified the responsible putative hydrolytic enzyme as a 
true cutinase with high similarity to a cutinase-like enzyme from Cryptococcus sp. S-2 (28, 
29). These findings lead to the hypothesis that cutinases and their respective biochem
ical activity represent a major degradative threat to surface coatings with polyester 
backbones. For instance, military performance topcoats for aerospace applications with 
polyester backbones are available commercially (Sherwin Williams, Aerospace Topcoats) 
and could be subjected to enzymatic degradation. Here, we provide key insights into 
the degradative mechanisms employed by P. laurentii to breakdown complex natural 
compounds and synthetic polyesters by directly linking the presence of the Plcut1 
enzyme to hydrolytic activity.
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MATERIALS AND METHODS

Culture conditions

P. laurentii strain 5307AH was isolated from an environmental consortium within an 
aircraft (8, 30), and its closest relatives are found within the Tremellales (Fig. S1). Cultures 
were maintained in glycerol stocks at −80°C, and overnight cultures were inoculated 
from tryptic soy agar (TSA) plates. Overnight cultures were grown from isolated colonies 
in sterile tryptic soy broth (TSB) at 27°C overnight. For strain requests, please contact Dr. 
Chia S. Hung (chia-suei.hung.2@us.af.mil).

Screening culture supernatants for hydrolytic activity

Overnight P. laurentii 5307AH cultures were diluted 1:1,000 into 50 mL of TSB and were 
incubated for 20–24 h with shaking at 27°C. Clarified growth medium was obtained 
by centrifuging the cultures in 50-mL conical tubes at >7,200 × g for 10 min, and the 
supernatant was filter sterilized (0.22-µm filters). The clarified supernatant was concen
trated 50-fold using 3,000 nominal molecular weight (MW) cutoff centrifugal concentra
tors (Pierce). Aliquots of 2–3 mL were injected onto a Sephacryl S-300 HR HiPrep size 
exclusion column by a Bio-Rad FPLC. Fractions were eluted in phosphate-buffered saline 
(PBS) (150 mM sodium chloride, 50 mM sodium phosphate, pH 7.4) at 0.5 mL/min. 
Fractions were collected in 5-mL aliquots and were screened for the ability to clear 
Impranil in TSA plates. For SDS-PAGE, the active fractions were reconcentrated (~40-fold) 
via 3,000 nominal molecular weight cutoff concentrators, and the samples were resolved 
in Novex Tris-Glycine gradient gels (4%–20%, Thermo Fisher).

Esterase activity in P. laurentii culture supernatants in TSB or TSB supplemented 
with glucose was monitored following a previously published protocol (12) with some 
modifications. Briefly, a single P. laurentii colony was inoculated in 10 mL of TSB followed 
by mixing to completely resuspend the inoculum. Next, the culture was split into two 
5-mL cultures and glucose was added, except for control samples that contained no 
additional carbon source, to a final concentration of 2%. The cultures were incubated 
overnight with shaking at 27°C. The cultures were pelleted, and the supernatants were 
diluted 1:50 in fresh TSB. The diluted supernatant (495 µL) was mixed with 5 µL of a 
25-mM 4-nitrophenyl hexanoate solution, and 150 µL of the reaction was immediately 
transferred to a 96-well plate. The OD405nm was monitored for 25 min using a Spectra 
Max M3 plate reader (Molecular Devices, CA, USA). Plcut1 levels were determined in 
parallel by Western blot (see section below).

Cloning, protein purification, and activity assays with recombinant enzyme

To purify recombinant Plcut1, the predicted ORF was codon optimized and cloned into 
pET28a using standard cloning techniques, to generate pET29a::plcut1 for the expression 
of His6-tagged Plcut1 in Escherichia coli BL21. Plcut1 was amplified by PCR using the 
primers and Plcut1 codon-optimized sequence listed in Table S1. Overnight cultures of 
the E. coli BL21 strain carrying pET29a::plcut1 were diluted 1:100 in 1 L LB with kanamycin 
(50 µg/mL) and were grown to an OD600nm of 0.7 at 37°C. Protein expression was 
induced with 0.1 mM IPTG for 16–18 h at 18°C. Harvested cells were lysed by sonication, 
and the cleared supernatant was incubated with nickel beads (Qiagen) for 2 h at 4°C 
with rotation. The beads were washed with 50× bed volume with Tris buffer salt (TBS, 
50 mM Tris-Cl, 150 mM NaCl, pH 7.4). His6-tagged recombinant Plcut1 was eluted with 
TBS containing 300-mm Imidazole and desalted using a desalting column (Bio-Rad). The 
protein was further purified by size exclusion chromatography (SEC) with an FPLC system 
using a Superdex 200 10/300 GL column (GE Healthcare). The TBS buffer was used as the 
mobile phase, and the flow rate was set at 0.4 mL/min.

For Impranil dispersion assays using recombinant Plcut1, Impranil (Lot: LP17M0022, 
Covestro) was diluted 1:20 in TBS. The resulting solution (10 µL) was mixed with 490 µL 
of TBS and 500 ng of Plcut1. Samples were briefly vortexed, and 150 µL was transferred 
to 96-well plates to monitor Impranil hydrolysis over time by measuring the OD600nm 
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using a Spectra Max M3 plate reader. Impranil-coated glass slides were prepared by 
pipetting and gently spreading Impranil stock solutions directly onto the surface of the 
glass slides. The glass slides were incubated at room temperature for 3 d for the solvent 
to completely evaporate. Four microliters of Plcut1 (0.5 µg/µL) was drop casted onto the 
glass slide and incubated for 2 d at 95% RH, 27°C before imaging on a Keyence VK-X250 
Microscope.

For determination of esterase activity using soluble esters, 5 µL of a 25-mM soluble 
ester substrate solution was mixed with 495 µL of TBS, followed by addition, or not, of 
15 ng of recombinant Plcut1. One hundred fifty microliters was transferred to a 96-well 
plate, and the OD405nm was monitored over time using the same plate reader mentioned 
above. Impranil and ester hydrolysis assays were performed at room temperature.

Western blots

Polyclonal antibodies against Plcut1 were generated by Pocono Rabbit Farm and 
Laboratory (Canadensis, PA, USA) following standard protocols. Protein samples resolved 
by SDS-PAGE were transferred onto PVDF membranes (Bio-Rad Turbo transfer system), 
followed by blocking with 4% milk in a PBS buffer containing 0.5% Tween-20 (PBS-T). 
Membranes were washed three times with PBS-T with gentle rocking for 5 min and were 
incubated with rabbit anti-Plcut1 serum diluted 1:2,000 in PBS-T overnight with gentle 
rocking at 4°C. Next day, the membranes were washed three times with PBS-T with 
gentle rocking. An Alexa Fluor 680-conjugated anti-rabbit secondary antibody (Invitro
gen) was diluted 1:5,000 in PBS-T, and a ChemiDoc Imaging System (Bio-Rad) was used to 
detect the signals.

Gas chromatography with mass spectroscopy (GC-MS) of hydrolyzed apple 
cutin

The ATR-IR (Cary 630 Diamond ATR-IR Accessory) of the isolated cutin sheets were 
identical to previously published IR spectra (31) for apple cutin with -OH stretches 
between 3,400–3,200 cm⁻¹ and the C=O stretch of the polyester at 1,731 cm⁻¹ (Fig. 
S2). The preparation of the hydrolyzed cutin for GC-MS was performed as previously 
published (32, 33). Briefly, the freeze-dried material in each vial from the enzymatic 
hydrolysis step was exposed to 0.2 mL of N-O-bis(trimethylsilyl)acetamide (Sigma) at 
90°C for 25 min. The excess silylating agent was removed via evaporation using a stream 
of nitrogen gas. The sample was then dissolved in 1 mL of chloroform, filtered with a 
0.2-µm PTFE syringe filter into the autosampler vials. A Trace 1310 Gas-Chromatography 
System with ISQ 7000 Single Quadrupole Mass Spectroscopy detector was used to 
analyze the hydrolysis products from the control and enzyme containing samples with 
electron impact (EI) ionization (70 eV, source temperature 200°C). Samples were injected 
directly onto a 30-m Rtx5-MS capillary column (Restek) using a splitless injection and 
a He carrier gas. The injector temperature was 250°C. The separations were performed 
using temperature profile starting at 80°C (holding for 2 min), followed by a 10°C/min 
temperature gradient to 150°C and holding for 5 min. Then, the temperature was 
increased to 300°C (5°C/min) and held for 2 additional minutes. The hydrolysis products 
were identified by comparing the mass spectra of each compound to the mass spectra 
contained in the five standard libraries present on the Chromeleon 7 software package 
(Thermo Fisher, 2019) and the NIST MS database within the program. No compounds 
were reported that had a matching probability, based on the fragmentation patterns, 
below 85%. We also focused on library matches that contained trimethylsilyl (TMS) 
groups as well.

RESULTS

P. laurentii supernatants clear Impranil dispersions

Recent findings showed that P. laurentii biofilms and planktonic cultures express factors 
capable of clearing Impranil and degrading polyester polyurethanes coatings (8, 27), but 

Full-Length Text Applied and Environmental Microbiology

May 2024  Volume 90  Issue 5 10.1128/aem.01694-23 4

https://doi.org/10.1128/aem.01694-23


it remained unclear if this occurred through a secreted factor. Thus, we hypothesized 
that P. laurentii secreted an active enzyme capable of hydrolyzing polyesters. To test this 
hypothesis, we used the dissolution of the Impranil dispersions by P. laurentii superna
tants as a qualitative indication of hydrolytic activity (14). Filter-sterilized, concentrated 
supernatants from overnight cultures were drop casted onto Impranil-containing TSA 
agar plates. Incubation of the concentrated supernatants on TSA-Impranil plates leads 
to Impranil deterioration, as shown by clearing and creation of a “halo” in the area 
where the supernatant was spotted (Fig. 1A). The region exposed to the concentrated 
supernatant showed obvious signs of clearing compared to the control region where the 
colloid is unchanged.

Identification of a hydrolytic protein in Impranil-clearing supernatant 
fractions

To identify the protein(s) responsible for Impranil clearing in the culture supernatants 
shown in Fig. 1A, we utilized SEC to isolate Impranil-degrading fractions. We isolated 
one fraction that induced Impranil clearing when compared to buffer controls (Fig. 1B). 
The hydrolytic and concentrated fractions were separated via SDS-PAGE, and a single 
prominent band was observed in the fraction with a molecular weight of ~22 kD (Fig. 
1C).

To determine the identity of the protein in the active fractions, peptide fragments 
from a tryptic digest were sequenced using liquid chromatography tandem mass 
spectrometry (LC-MS/MS). A total of seven peptide sequences were identified and are 
listed in Table S2. Top BLAST hits for peptides (1) and (2) are listed in Table S3. These 
peptides encoded similarities to a range of putative cutinases and esterases from a broad 
range of organisms.

The peptides detected by MS were used to search the P. laurentii 5307AH genome 
(accession #PRJNA500119) and were found to match segments of a predicted ORF with 
a putative cutinase domain (Papla1 543643, herein named “Plcut1”). Similarly, BLAST 

FIG 1 P. laurentii supernatants hydrolyze Impranil. (A) 50× concentrated supernatant disperse Impranil suspended in a TSA plate. (B) Isolation of an Impranil-

clearing fraction through size exclusion chromatography. (C) SDS-PAGE analysis of the fraction described in (B), showing a single prominent band with a size 

of ~22 kD (arrow).

Full-Length Text Applied and Environmental Microbiology

May 2024  Volume 90  Issue 5 10.1128/aem.01694-23 5

https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA500119
https://doi.org/10.1128/aem.01694-23


searches using the full Plcut1 sequence returned hits against proteins from the family 
of esterases and cutinases (Table S4). Cutinases are present across the fungal tree of 
life and their distribution across the Dikarya is shown (Fig. 2; Table S5). The Plcut1 ORF 
(237 residues long) was found to encode a 20 amino acid N-terminal signal peptide 
cleavage site using SignalP (34), which would result in a 217 amino acid mature protein 
with a predicted MW of 22,413 Da. The predicted MW of Plcut1 is closely aligned with 
the experimental MW (Fig. 1C). The in silico structure of Plcut1 is shown and it does 
not possess a lid over the enzyme site (Fig. S3). Multiple sequence alignments showed 
that Plcut1 harbors substantial sequence similarities with other cutinases (22, 28, 35–37), 
including the classical α/β hydrolase catalytic triad (Fig. 3). Phylogenetic analysis clusters 
Plcut1 with the cutinase-like enzymes from Moesziomyces antarcticus and Cryptococcus 
sp. S-2, and with the putative cutinases from Alternaria alternata and Aureobasidium 
pullulans EXF-150 (Fig. 4).

Plcut1 shows esterase and Impranil-degrading activity

Because Plcut1 shows homology to proteins in the esterase family, we tested whether 
the purified recombinant enzyme (Fig. 5A) displays soluble esterase activity in vitro (36). 
Our results showed that recombinant Plcut1 exhibits esterase activity and hydrolyzes p-
nitrophenyl soluble esters with chain lengths smaller than eight carbons (Fig. 5B). Also, 
we determined that Plcut1 esterase activity is temperature and pH dependent because 
the enzyme lost activity at 37°C and below pH 7.4 against 4-nitrophenyl hexanoate (Fig. 
S4). Moreover, we found that Plcut1 can clear Impranil in agar plates, as indicated by the 
formation of the halo where the enzyme was spotted (Fig. 5C). In addition, liquid 
Impranil reactions containing Plcut1 displayed a drastic decrease in OD600nm in contrast 
to buffer-only controls (Fig. 5D). These data suggest that Plcut1 is the responsible factor 

FIG 2 Cutinase distribution in the Dikarya. We identified cutinases in 595 previously published genomes across the Dikarya based on their functional annotation 

available on MycoCosm at https://mycocosm.jgi.doe.gov/dikarya.
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for the Impranil-clearing activity originally observed with the culture supernatants (Fig. 
1A).

Furthermore, NMR spectroscopy was performed to quantitatively determine hydroly
sis rates based on monitoring the hydrolysis products from Impranil incubated with 
Plcut1. The spectra are shown in Fig. S5 and indicate that the addition of the enzyme 
increased the rate of Impranil hydrolysis by 17-fold (1.0 ± 0.1 mM/day). This rate was 
roughly twice as fast as the rate of hydrolysis observed with an identical density of a 
commercial lipase with high Impranil hydrolysis rate (0.55 ± 0.08 mM/day) (14).

Plcut1 degradation of Impranil was not limited to liquid solutions as Plcut1 was also 
observed to degrade solid Impranil coatings (Fig. S6). In these images, the cracking of the 
coating was not observed if the enzyme was not present. Interestingly, P. laurentii 
cultures grown in minimal media with Impranil as the sole carbon source displayed 
higher survivability when compared to control cultures after 48 h, (Fig. S7) indicating 
hydrolytic activity and that the products released from Impranil deterioration can 
support the growth of P. laurentii.

To investigate the role of Plcut1 in the esterase activity present in culture superna
tants, we inoculated P. laurentii cultures in media containing an excess of glucose. 
Glucose supplementation has been shown to repress hydrolase expression (12, 41). 
Western blot analysis of P. laurentii culture supernatants grown in TSB showed substantial 
levels of Plcut1 (Fig. 6A). In contrast, Plcut1 was undetectable in culture supernatants of P. 
laurentii grown in TSB supplemented with 2% glucose. Importantly, we found esterase 
activity against 4-nitrophenyl hexanoate in supernatants of P. laurentii TSB cultures, but 
not in supernatants from TSB supplemented with glucose (Fig. 6B), even though these 
cultures contained similar protein concentrations.

P. laurentii Plcut1 is a bona fide cutinase

Cutinases are hydrolases secreted by many microorganisms to break the ester bonds of 
cutin, the waxy polyester component of the protective cuticle at plant surfaces and may 
also hydrolyze these bonds in xenobiotic polyester polymers (42, 43). As shown in Fig. 3, 
Plcut1 displays similarities to putative cutinases from other microorganisms. Thus, we 

FIG 3 Cutinase and cutinase-like amino acid alignment. Papla1 543643 (“Plcut1”) sequence was aligned using MUSCLE, as described in the Methods. The 

invariant cysteines are highlighted in yellow, the lipase box (Gly-X1-Ser-X2-Gly) is highlighted in blue, the catalytic triad residues are highlighted in green, and the 

oxyanion hole residues are highlighted in red. Blue and black underlines highlight the peptides shown in Table S3. Boxed residues emphasize overlapping amino 

acids between the underlined peptides.
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tested the ability of the recombinant Plcut1 to hydrolyze cutin. Apple cutin is a well-
established substrate for cutinases (44–46). Plcut1-dependent deterioration of the cutin 
sheet was observed as indicated by an increase in turbidity in the reactions (Fig. 7A). 
Comparison of the gas chromatograms of the negative control (gray trace) and the 
reactions containing Plcut1 (black trace) showed unique peaks that were only detectable 
in the reactions containing Plcut1 (Fig. 7B). Table S6 provides a list of the compounds 
identified through GC-MS after cutin hydrolysis. The compounds identified were a 
mixture of long alkyl chain alcohols and carboxylic acids with some of the most 

FIG 4 Phylogenetic relationship of Plcut1. The evolutionary history was inferred by using the maximum likelihood method and the JTT matrix-based model 

(38). The bootstrap consensus tree inferred from 200 replicates (39) is taken to represent the evolutionary history of the taxa analyzed. Branches corresponding 

to partitions reproduced in less than 50% bootstrap replicates are collapsed. The percentages of replicate trees in which the associated taxa clustered together 

in the bootstrap test 200 replicates are shown next to the branches (39). Initial tree(s) for the heuristic search was obtained automatically by applying 

neighbor-joining and BioNJ algorithms to a matrix of pairwise distances estimated using the JTT model and then selecting the topology with superior log 

likelihood value. There was a total of 327 positions in the final data set. Evolutionary analyses were conducted in MEGA11 (40). Accession numbers for the 

sequences used here are provided in Table S7.

Full-Length Text Applied and Environmental Microbiology

May 2024  Volume 90  Issue 5 10.1128/aem.01694-23 8

https://doi.org/10.1128/aem.01694-23


FIG 5 Hydrolysis of select soluble esters and Impranil-clearing activity of Plcut1. Plcut1 gene was codon optimized, and the predicted signal peptide 

(amino acids 1–20) was removed before cloning into pET28a. (A) SDS-PAGE followed by Coomassie staining of Plcut1 preparations used for esterase and 

Impranil-degrading activity assays. (B) Esterase activity assay. Colorimetric assay based on the release of nitrophenol after hydrolysis of select 4-nitrophenyl 

soluble esterase substrates by Plcut1. (C) TSA plates supplemented with Impranil were exposed to a 10-µL (2-µg) drop of Plcut1, and Impranil clearing was 

monitored. (D) Impranil-clearing liquid assays. Impranil hydrolysis was monitored by tracking the OD600nm after addition of recombinant cutinase to Impranil 

solutions.

FIG 6 Plcut1 expression and esterase activity in cell-free supernatants of P. laurentii grown in TSB or TSB supplemented with glucose. (A) Western blot of cell-free 

supernatants from P. laurentii cultures grown in TSB or TSB supplemented with 2% glucose. (B) Esterase activity of cell-free supernatants from indicated media. 

4-Nitrophenyl hexanoate was used as a substrate, and its hydrolysis was monitored by measuring the OD405nm.
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significant products in the C16-C18 lengths. These products are consistent with cutin 
hydrolysis (47). Thus, these data confirmed that the Plcut1 is a true cutinase and is 
capable of hydrolyzing apple cutin.

DISCUSSION

Microbial biodegradation of polyester polyurethane-based materials has been observed 
for a variety of fungi and bacteria (13, 48, 49), including one member of the rela
ted fungal genus, Cryptococcus (48, 50, 51). In this study, we described the isolation 
and biochemical characterization of the P. laurentii cutinase, Plcut1. We showed that 
recombinant Plcut1 hydrolyzes soluble esters with preference toward the shorter-chain 
substrates 4-nitrophenyl butyrate, -valerate, hexanoate, and octanoate. These findings 
align with previous work showing that esterases preferentially break shorter-chain fatty 
acids, whereas lipases have a larger substrate range (52). Furthermore, Plcut1 was found 
to disperse solutions and degrade solid coatings composed of Impranil, likely through 
ester hydrolysis (27). Impranil has been widely used to screen hydrolytic activity of 
bacterial and fungal enzymes, including cutinases (53–57). The degradation of Impranil 
solid coatings and apple cutin by Plcut1 suggests that this enzyme has hydrolytic activity 
at phase interfaces involving solid materials. These findings provide support to the idea 
that Plcut1 could play a major role in biodegradation of solid coatings in the built 
environment, such as the surface coatings of an aircraft, where this fungus was originally 
isolated, by exporting an enzyme capable of degrading solid ester-based polymers. 
Degradation of these surface coatings could compromise and negatively impact the 
material or instrumentation directly underneath. Unwanted and uncontrolled growth 
of microbes in the built environment, perhaps supported by the hydrolysis of surface 
coatings such as Impranil, could also pose a threat to the health of the warfighter and 
other staff.

The hydrolytic activity of this enzyme is likely encoded by a classic serine esterase 
catalytic triad in Plcut1, such as the one encoded by other related cutinases (58, 59), 
and further experimentation is underway to confirm its involvement in hydrolysis. We 
demonstrated that Plcut1 is a bona fide cutinase, which is known for optimal enzymatic 
activity toward a broad range of substrates, including plastics, at temperatures of 20–
70°C and pH 6–9 without the need of cofactors (60–65). Unexpectedly, Plcut1 displayed 
hydrolytic activity toward soluble esters at 4°C while maintaining optimal activity up to 
37°C, where a sharp decline in activity was observed. These data contrast the optimal 
activity of the Fusarium oxysporum cutinase, which displays maximum activity at 40°C 
(66). Even though P. laurentii and F. oxysporum are mesophilic fungi, we show that 
P. laurentii is armed with a cutinase capable of hydrolyzing ester-based polymers in 

FIG 7 Plcut1 hydrolyzes apple cutin. (A) Images of vials containing apple cutin incubated with recombinant Plcut1 or buffer controls (no Plcut1) in PBS after 72 h 

at 27°C. (B) Representative overlaid EI-GC-MS total ion count chromatograms from the silylated cutin hydrolysis products with Plcut1 and without Plcut1 (buffer).
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colder temperatures, potentially aiding its survival in a broad range of temperatures and 
environments, such as those experienced by aircraft during their lifetimes.

Remarkably, P. laurentii biofilms grow on polymer-coated surfaces with no additional 
nutrients and still display hydrolytic activity (8, 27). In such a scenario, the smaller 
monomeric products resulting from hydrolysis could potentially serve as a viable carbon 
source for P. laurentii. Indeed, we found that P. laurentii utilized Impranil as the sole 
carbon source to sustain survivability, which supports this hypothesis. Thus, under the 
low nutrient conditions encountered by P. laurentii in the environment, for example 
when colonizing vehicle coatings or other polymer-based surfaces, we speculate that 
cutinase expression could be induced to degrade these polymers and acquire nutrients. 
Natural plant cutin and many commercially important polymers are made of polyester 
backbones (67, 68) and thus equally susceptible to cutinases, which are found all over 
the Dikarya.

Previous work has shown that P. laurentii 5307AH degrades polyester coatings, but 
the causative factors remained to be identified. The work presented here provides 
an empirical view on the enzymatic machinery utilized by P. laurentii to hydrolyze 
ester-based materials. In support of our hypothesis, we have identified an active 
cutinase (Plcut1) in culture supernatants with hydrolytic activity toward polyester-based 
compounds in both liquid and solid formats. Further experimentation with Plcut1 
mutants will provide insights into the biological importance of Plcut1 for polymer 
biodegradation in nutrient-deprived environments and to gain a more complete 
understanding of the factors that are important for polymer biodegradation by P. 
laurentii. This work directly links Plcut1 levels to hydrolytic activity, which strongly 
suggests that Plcut1 is playing a key role in biodegradation and potentially represents a 
mechanism by which this yeast acquires nutrients in carbon-depleted environments, but 
further in situ experimentation is needed to assess the presence of this enzyme in the 
environment at or around P. laurentii-contaminated sites. Finally, the findings presented 
here suggest that there could be other fungal species involved in cutinase-depend
ent biodegradation of human-made materials because cutinases are found across the 
Dikarya and highlights the necessity to further understand the promiscuous nature of 
these enzymes to develop functional inhibitors that could prevent or mitigate cutinase-
driven biodeterioration.
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