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Wrinkle patterns in compressed thin sheets are ubiquitous in nature
and technology, from the furrows on our foreheads to crinkly plant
leaves, from ripples on plastic-wrapped objects to the protein film
on milk. The current understanding of an elementary descriptor of
wrinkles—their wavelength—is restricted to deformations that are
parallel, spatially uniform, and nearly planar. However, most natu-
rally occurring wrinkles do not satisfy these stipulations. Here we
present a scheme that quantitatively explains the wrinkle wave-
length beyond such idealized situations. We propose a local law
that incorporates both mechanical and geometrical effects on the
spatial variation of wrinkle wavelength. Our experiments on thin
polymer films provide strong evidence for its validity. Understand-
ing how wavelength depends on the properties of the sheet and
the underlying liquid or elastic subphase is crucial for applications
where wrinkles are used to sculpt surface topography, to measure
properties of the sheet, or to infer forces applied to a film.

elastic sheets | wrinkles | curved topography

Wrinkles emerge in response to confinement, allowing a thin
sheet to avoid the high energy cost associated with com-

pressing a fraction eΔ of its length (Fig. 1) (1–7). The wavelength,
λ, of wrinkles reflects a balance between two competing effects:
the bending resistance, which favors large wavelengths, and a
restoring force that favors small amplitudes of deviation from the
flat, unwrinkled state. Two such restoring forces are those due to
the stiffness of a solid foundation or the hydrostatic pressure of a
liquid subphase (Fig. 1A). Cerda and Mahadevan (1) realized
that a tension in the sheet can give rise to a qualitatively similar
effect (Fig. 1B) and thereby proposed a universal law that applies
in situations where the wrinkled sheet is nearly planar and sub-
jected to uniaxial loading:

λ= 2π
�
B
�
Keff

�1=4. [1]

Here the bending modulus B=Et3=½12ð1−Λ2Þ� (with E the
Young’s modulus, t the sheet’s thickness, and Λ the Poisson ratio),
whereas out-of-plane deformation is resisted by an effective stiff-
ness, Keff, which can originate from a fluid or elastic substrate, an
applied tension, or both. Eq. 1 is appealing in its simplicity, but it
applies only for patterns that are effectively one-dimensional. In
particular, it does not apply when the stress varies spatially or
when there is significant curvature along the wrinkles.
Here, we study two experimental settings in which these lim-

itations are crucial: (i) indentation of a thin polymer sheet
floating on a liquid, which leads to a horn-shaped surface with
negative Gaussian curvature, and (ii) a circular sheet attached to
a curved liquid meniscus with positive Gaussian curvature. In
both cases, wrinkle patterns live on a curved surface, show spa-
tially varying wavelengths, and are limited in spatial extent. The
extent of finite wrinkle patterns in a variety of such 2D situations
has recently been addressed (6, 8–11) and was found to depend
largely on external forces and boundary conditions. However, a
general prescription for the internal structure of the pattern (i.e.,
the wavelength and any spatial dependence) has been lacking.

Our work leads to two central insights: that the curvature of
the subphase gives rise to a new stiffness of geometric origin
(which dominates Keff here) and that a local version of the uni-
versal law [1] is sufficient to describe the spatial variation of
wrinkle wavelengths. These insights allow us to implement the
law [1] for a spatially varying λðxÞ by writing

KeffðxÞ=Ksub + σjjðxÞ½Φ′ðxÞ=ΦðxÞ�2 +YRjjðxÞ−2, [2]

where Ksub is the substrate’s stiffness (e.g., Ksub = ρg for a liquid
subphase), σjjðxÞ and RjjðxÞ are, respectively, the tensile stress and
radius of curvature along the wrinkles, Y =Et is the stretching mod-
ulus of the sheet, and Φ(x)2 is proportional to the fractional lengtheΔ absorbed by the wrinkles. The use of [2] together with [1], which
we call the “local λ law,” greatly expands the quantitative descrip-
tion of wrinkle patterns.

Theory
We derive the local λ law in Eqs. 1 and 2 by considering the setup
depicted in Fig. 1C: a rectangular sheet of thickness t and length
L attached to a deformable, cylindrical substrate of radius R.
Although this idealized system is not studied here experimentally
(and a real cylinder may not actually buckle in the orderly way
shown in Fig. 1C), it provides a simple, pedagogic framework in
which to consider the various types of stiffnesses that govern the
wrinkle wavelength.
For simplicity, we assume the Winkler model, where the sub-

strate responds linearly to a deflection from its rest shape, and use
the Föppl–von Kármán (FvK) equations for the mechanical
equilibrium of the sheet. Here the sheet can be described using
planar coordinates ðx≈Rθ, yÞ with the y axis parallel to the
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cylinder axis. The shape of the sheet ζðx, yÞ is determined by the
normal force balance (first FvK equation)

B∇4ζ− σxx
∂2ζ
∂x2

− σyy
∂2ζ
∂y2

+Ksub
�
ζ− ζcylðxÞ

�
= 0. [3]

In the absence of boundary loads, there is no in-plane stress in
the sheet (σxx = σyy = 0). If the sheet is sufficiently thin or the
subphase is sufficiently stiff (large Ksub), the sheet will wrap the
substrate, ζðx, yÞ= ζ0ðxÞ, where ζ0ðxÞ is close to the cylindrical,
undeformed shape of the substrate, ζcylðxÞ.
Now consider the effect of a compression along the cylinder

axis (ey) and/or a tension T in the azimuthal direction (ex). These
will bring the sheet edges at (y=±L=2) together by an amount
ΔðxÞ. A sufficiently thin sheet will avoid compression by buckling
out of plane; we assume for the following discussion that the
sheet forms wrinkles of wavelength λ in the y direction about
ζ0ðxÞ that accommodate the excess length ΔðxÞ. A natural ansatz
for the shape is then

ζðx, yÞ= ζ0ðxÞ+ f ðxÞcosð2πy=λÞ. [4]

The amplitude of the wrinkles must exactly accommodate the
excess length ΔðxÞ. This “slaving condition” implies

f ðxÞ=λ≡ΦðxÞ≈
ffiffiffiffiffiffiffiffiffiffieΔðxÞq �

π, [5]

where eΔðxÞ=ΔðxÞ=L. Note that f=λ remains fixed as the sheet
thickness t→ 0 (such that the excess length is properly accommo-
dated), even though f and λ vanish individually.
The formation of wrinkles enables a complete relaxation of

compressive and shear stresses. As t→ 0, the stress field ap-
proaches the “tension-field” limit (12, 13) [also known as the
“membrane” (13) or “relaxed energy” (14, 15) limit] so that

σxx → σð0Þxx ≈T, σxy, σyy → 0. [6]

In the limit of highly bendable sheets (t→ 0), the tensile compo-
nent of the stress [6] remains finite (in an expansion of the FvK
equations in powers of the wrinkle amplitude, f, subjected to the

slaving condition [5]), as does the mean profile of the sheet,
ζ0ðxÞ; these are the leading-order results of the far-from-thresh-
old (FT) expansion of the FvK equations (16).
The next order in the FT expansion, as described in Supporting

Information, yields corrections to the stress tensor at Oðf 1Þ; these
corrections arise as the price of avoiding a large, energetically
costly shear stress

		σxyj∼ jζ0′ðxÞðf=λÞ
		=Oð1Þ. In particular, we

find a correction to the stress along the wrinkles’ direction

σð1Þxx =−Yζ0″ðxÞf cosð2πy=λÞ, [7]

which exists only if the mean shape, ζ0ðxÞ, is curved in the wrin-
kles’ direction. The significance of the correction in [7] can be
understood by substituting this stress component into the first
FvK equation [3], where it gives rise to a new force that is pro-
portional to f: an entirely new source of stiffness.
In detail, the linearized normal force balance [3] reads"

B


2π
λ

�4

−T
d2

dx2
+Yζ0″2 +Ksub

#
f =−σyy



2π
λ

�2

f , [8]

which, together with Eq. 5, admits a solution for any λ. Inspec-
tion of Eq. 8 reveals the mechanism underlying wrinkle forma-
tion. As in Euler buckling, a destabilizing compressive force
(∼ σyy) is resisted by a stabilizing bending force (∼B), which
favors small curvature (large λ). However, Eq. 8 reveals three
other types of stabilizing forces: the tension along wrinkles (∼T),
the stiffness of the substrate (∼Ksub), and its curvature along the
wrinkle direction (∼ ζ0″), all of which favor small-amplitude
wrinkles (hence small λ, by [5]). This competition leads to the
wavelength selection expressed in Eq. 1.
We define the energy density H0½λ� of wrinkles with wave-

length λ by identifying the leading terms of the energy associated
with the restoring forces in [8], and using Eq. 5,

H0½λ�=ΦðxÞ2
�
B
2
ð2πÞ4�λ2   +  

λ2

2
KeffðxÞ



, [9]

where the effective stiffness Keff, given by Eq. 2, was obtained by
replacing the relevant tension-field terms in Eq. 8 [namely, the
Oðf 0Þ part of the FT expansion] by their local values at x; namely,
T→ σjjðxÞ  ;   ðζ0″Þ2 →RjjðxÞ−2. Here, σjjðxÞ,RjjðxÞ−1 are the local
values of the components of the stress and curvature tensors along
the wrinkle direction. Minimizing H0½λ�, we obtain Eq. 2. Impor-
tantly, this derivation assumes that the wavelength varies suffi-
ciently slowly in space so that the energetic cost of gradients in
the wavelength, dλ=dx [due to the stress induced by spatial changes
in the wrinkle number (17, 18)] is negligible compared with H0½λ�.
Later on, we discuss a more complete framework that does not
make this assumption. Minimizing the local wrinkle energy density
H0½λðxÞ� everywhere, we obtain the local λ law, Eqs. 1 and 2.
Following ref. 1, we note that the three terms that compose

Keff, Eq. 2, correspond to distinct types of stiffness, associated
with the substrate, the exerted tension, and the curvature along
the wrinkles. By analogy to the substrate stiffness Ksub, we call the
last two terms, respectively, a tension-induced stiffness (Ktens)
and a curvature-induced stiffness (Kcurv). [We note two subtleties
of the setup shown in Fig. 1B that are not discussed in ref. 1.
First, the tension-induced stiffness, Ktens, operates only when the
confinement varies spatially, namely, Φ=ΦðxÞ. Second, our ex-
perience with this experimental geometry suggests that the oc-
currence and extent of wrinkles are very sensitive to gradients
created at the boundary.] Notably, the curvature-induced stiff-
ness has no explicit dependence on any force. Instead, it reflects
the sheet’s elastic response to the curved geometry alone. To our
knowledge, the geometric stiffness of sheets, which resembles a

R x

x)/2

T

L

y
x

T

T

A B

C

Fig. 1. Parallel wrinkles with three different sources of substrate stiffness:
(A) elastic or gravitational forces, (B) tensile stresses, or (C) curvature. The
examples shown are for (A) unaxial compression of a floating sheet (e.g.,
from ref. 27), (B) a rectangular sheet that is clamped along two edges and
stretched, and (C) the cylindrical setup discussed in Theory. In all examples, a
fraction eΔ=Δ=L of the sheet’s length in the confined direction is absorbed
by wrinkles. B is reprinted with permission from ref. 33.
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shell’s resistance (19), has not been noted before. We will show
that it can have a dramatic effect on the wrinkle’s wavelength.
Before proceeding to discuss specific examples, let us note that

although the tension-induced stiffness Ktens may be negligible in
comparison with Ksub or Kcurv, wrinkle patterns that are described
by a local λ law are often characterized by the existence of a
tensile direction (σjjðxÞ � jσ⊥⊥ðxÞj), whose spatial variation oc-
curs over a much larger scale than λ. Although Eq. 1 may be
relevant also for more complex types of wrinkle patterns [e.g.,
under biaxial compression (20) or depressurizing a shell with a
stiff core (21)], confinement of sheets in the absence of an im-
posed tension often leads to patterns with deep folds or stress-
focusing zones (22–24), rather than to the oscillatory wrinkles
described by Eqs. 1 and 2 and manifested in the following
experimental examples.

Indentation of a Floating Sheet
To test the local λ law, we study the indentation of a thin poly-
styrene (PS) sheet (thickness 40  nm< t< 400  nm) floating on a
deionized water bath. The sheet has Young’s modulus E= 3.4
GPa and Poisson’s ratio Λ= 0.34, and the bath has surface ten-
sion γ = 72 mN/m and density 1,000 kg/m3. The sheet is poked
from beneath by a rod with a spherical tip of radius 0.79 mm. The
deformation is observed by two cameras that capture the side
and top views of the sheet. The indentation height δ is changed
by a translation stage and is measured with an accuracy of 50 μm.
The combination of loads due to the indentation height δ at

the center (r= 0), the liquid–vapor surface tension γ that pulls
the edge of the sheet (r=Rfilm), and the liquid gravity ρg leads to
azimuthal compression that is released by radial wrinkles (Fig. 2
A–D). In ref. 11, tension-field theory was used to predict the
macroscale axially symmetric shape ζ0ðrÞ. (There, the sheet was
poked from above, but the same predictions apply here, because
the gravitational potential energy of the liquid is quadratic in ζ.)
The wrinkle pattern is governed by the dimensionless in-
dentation height, eδ= ffiffiffiffiffiffiffiffiffi

Y=γ
p

· ðδ=ℓcÞ, where ℓc =
ffiffiffiffiffiffiffiffiffiffi
γ=ρg

p
is the cap-

illary length. For sufficiently large eδ, wrinkles cover the whole sheet
(except in a small tensile core at the center), and the tension-field
prediction for the shape ζ0ðrÞ becomes ζ0ðrÞ≈ δAiðr=ℓcurvÞ=Aið0Þ,
where ℓcurv =R1=3

filmℓ
2=3
c , and AiðxÞ is the Airy function (11). Our

measurements of the radial profile show excellent agreement with
this prediction, for a wide range of thickness t and a factor of 2 in
Rfilm, as shown in Fig. 2 E and F. The sheet returns to being flat
over the scale ℓcurv, as predicted.
The shape ζ0ðrÞ predicted in ref. 11 allows us to compute the

curvature RjjðrÞ−1 ≈ ζ0″ along the wrinkles and hence the curvature-
induced stiffness KcurvðrÞ=Y=R2

jj. Furthermore, the tension-field
calculation also yields the stress σjjðrÞ≈ γRfilm=r and thence the
value of Φ=

�
πr=λ

�
f in this polar geometry, from which we

compute the tension-induced stiffness KtensðrÞ= σjjjΦ′=Φj2 (details
in Supporting Information). These stiffnesses, together with
Ksub = ρg due to the liquid gravity, yield predictions for the wrinkle
wavelength, via Eqs. 1 and 2.
For eδJ 15, theory predicts that KcurvðrÞ � KtensðrÞ,Ksub in

most of the wrinkled zone. Hence, Eq. 1 yields

λðrÞ≈ 2π
�
BRjjðrÞ2

.
Y
�1=4

=ZðrÞ ·
ffiffiffiffiffiffi
t=δ

p
, [10]

where ZðrÞ= 2π
ffiffiffiffiffiffiffiffiffiffiffiffi
Aið0Þp

=½12ð1−Λ2Þ�1=4ðℓ3curv=rAiðr=ℓcurvÞÞ1=2 is in-
dependent of t. Fig. 3A shows the experimentally measured wrin-
kle wavelength at a fixed radial distance r= ℓcurv (safely in the
middle of the wrinkled zone), as a function of indentation height,
for a wide range of sheet thickness. For eδJ 15, Fig. 3B shows not
only a collapse of the data with the predicted (curvature-domi-
nated) scaling relation, λðr= ℓcurvÞ∼

ffiffiffiffiffiffi
t=δ

p
, but also a quantitative

agreement with the predicted t-independent prefactor ZðrÞ in
Eq. 10.

For smaller values of indentation height, the data deviate from
curvature-dominated behavior. This is in agreement with the local λ
law, which predicts that Ktens becomes appreciable here as shown by
the solid black curves in Fig. 3B that include all three terms in Keff
(and exhibit also a weak dependence on sheet size through Rfilm=ℓc).
In Fig. 4 we plot the number of wrinkles, mðrÞ= 2πr=λðrÞ.

[Plotting mðrÞ, rather than λðrÞ, emphasizes that the number of
wrinkles changes with radial distance r.] Results are shown for a
wide range of t and eδ and for two film radii: Rfilm = 11.1 cm (Fig.
4 A and B) and Rfilm = 22.2 cm (Fig. 4C). The colored curves
show the prediction from Eqs. 1 and 2, whereas the black curve
is obtained by approximating Keff ≈Kcurv and is valid only if
Kcurv � Ktens,Ksub.
As we saw in Fig. 3, Kcurv dominates the other stiffnesses (Ktens

and Ksub) for r∼ ℓcurv; here we see that Kcurv is dominant also for

A

B

C D

E

F

Fig. 2. Axisymmetric deformations of an indented polymer film. (A and B)
Side and top views of a polystyrene (PS) film of thickness t = 113 nm and radius
Rfilm = 11.1 mm, floating on water and indented to height δ= 0.59 mm at its
center. A pattern of radial wrinkles emerges. (C and D) Filtered image in-
tensity, I, vs. polar angle θ at radii r = 0.2Rfilm and r = 0.7Rfilm. Within an angular
sector (here, 20° wide) there are more wrinkles at the larger radius. Thus, the
wrinkle number, mðrÞ= 2πr=λðrÞ, varies spatially. (E) Side profiles: height of
sheet, z, vs. horizontal coordinate, x. The t = 197-nm sheet corresponds to
Rfilm = 17.5 mm, and t = 198 nm corresponds to Rfilm = 22.2 mm; the rest have
Rfilm = 11.1 mm. (The z scale is stretched to show detail.) (F) The same data
scaled by δ and ℓcurv. The data over a wide range of thicknesses, radii, and
poking amplitudes all follow the predicted Airy function shape (dotted curve).
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other r as the indentation increases. Close to the inner bound-
ary of the wrinkled zone, the tension-induced stiffness, Ktens, has
a strong effect [due to the divergence of Φ′ðrÞ (25)] within a
region that becomes narrower as eδ increases. For larger r, the
wrinkled sheet is almost planar, and the dominant stiffness is
due to the substrate; we then expect λðrÞ= 2πðB=ρgÞ1=4 = cst and

consequently a linear variation of m with radial distance (26):
mðrÞ · ffiffiffiffiffiffi

t=δ
p

= ½12ð1−Λ2Þ�1=4ðeδ1=2ℓcÞ−1 · r.
Approaching the edge of the film, there is a substantial increase

in mðrÞ [decrease in λðrÞ]. Such a “wrinkling cascade” was ob-
served in experiments on a flat liquid bath, where the wrinkle
amplitude is suppressed at the edge of the film by a liquid me-
niscus, and the cascade was shown to decay over a distance ∼ ℓc
from the edge (27). Our experiments show a strong, as yet un-
explained dependence of the decay length on the indentation
height (Fig. 4B). (Fig. 4C presents data from large sheets; here the
edge fell outside the illuminated region, so the edge cascade was
not visible). The local effect of the liquid meniscus or other
boundary forces (18, 28–30) are not accounted for in Eqs. 1 and 2.
Finally, Figs. 3 and 4 also include data at large values of the

indentation height where crumples and folds appear in the sheet.
In contrast to the purely wrinkled state where the shape undu-
lates around an axially symmetric profile ζ0ðrÞ, the folded state
consists of a polygonal shape decorated by wrinkles (23). The
excellent agreement with our prediction of λðrÞ, which assumes
an axisymmetric profile ζ0ðrÞ, indicates that between adjacent
folds, the height profile closely follows the axisymmetric pre-
diction (i.e., the Airy function shown in Fig. 2F). This surprising
observation echoes recent studies on a related system (24).

A Sheet on a Drop
To test the generality of the local λ law, we study wrinkling of a
circular PS sheet in another geometry: a liquid surface with
positive Gaussian curvature. This is experimentally realized by
placing the sheet on (i) an air–water meniscus (as in ref. 8) or (ii)
a water drop in oil (dodecane or silicone oil) (24) and controlling
the curvature R of the water meniscus.
The dimensionless confinement, α=YR2

film=ð2γR2Þ, plays a
similar role (8) to that of the dimensionless amplitude eδ in the
indentation setup. This parameter expresses the ratio between
tensional terms and the Laplace pressure, P= 2γ=R, which acts
normal to the sheet. For αJ 5.16, radial wrinkles form in the
outer part of the sheet to relax azimuthal compression (8), as
pictured in Fig. 5A. The wrinkled zone grows as α increases. In
Fig. 5 B and C, Insets show the number of wrinkles, mðrÞ, for
several thicknesses and values of α.
A tension-field solution to the FvK equation was found (8),

using the assumption of small slopes, valid for Rfilm � R. This
yields all of the quantities needed to evaluate the stiffness: the

A B

C

Fig. 4. Spatial variation of wrinkles for an indented, floating PS sheet. (A, Inset) Wrinkle number, m, vs. radial coordinate, r. Sheet thickness (indicated by
symbol shape) and indentation amplitude (indicated by color) are both varied. In A, the data collapse in the rescaled variables, mðrÞ · ðt=δÞ1=2 and r=ℓcurv,
following separate curves for each value of eδ. As indentation increases, the data approach the theoretical prediction evaluated in the limit of large eδ (solid
black curve). Solid colored curves: Theoretical predictions including the stretching and gravity terms, which become significant at small and large radii, re-
spectively, for finite eδ. If the curvature term is omitted, the result does not describe the data (blue dashed curve calculated for A–C at eδ= 100). (B) Averages
over sheet thickness at each value of eδ. (The edge of the film is at Rfilm=ℓcurv = 2.56.) (C) Results for a larger sheet: Rfilm = 22.2 mm, t =198 nm. For large r=ℓcurv,
the gravity term becomes dominant over the curvature term, causing m to rise. (The edge of the film is at Rfilm=ℓcurv = 4.06.)

A

B

Fig. 3. Effects of geometry and tension on the wrinkle pattern. (A) Wrinkle
wavelength, λ (measured at r = ℓcurv) vs. indentation amplitude, δ, for a
floating PS sheet. Solid circles: Rfilm = 11.1 mm. Open triangles: Rfilm = 17.5 mm.
Open squares: Rfilm = 22.2 mm. For each thickness, wavelength is measured
from wrinkle onset as δ is slowly increased. The appearance of crumples is
denoted by the large open symbols, beyond which wavelength is measured in
an angular sector between two crumples. (B) The data are collapsed using
rescaled variables, λ=ðℓcurvet1=2Þ and eδ, where the tilde denotes scaling by
ℓc

ffiffiffiffiffiffiffiffiffi
γ=Y

p
. Solid curves: theoretical prediction with all three stiffnesses (upper

and lower solid curves, distinguishable only by their starting points, are for
Rfilm = 11.1 mm and Rfilm = 22.2 mm, respectively). Dashed line: theoretical
prediction with just the geometric stiffness term, Keff ≈Kcurvðr = ℓcurvÞ,
λ=ðℓcurvet1=2Þ≈ 5.64eδ−1=2.
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radial profile ζ0ðr; αÞ, the radius of the tensile (unwrinkled) core,
the radial (tensile) stress component σrr = γRfilm=r, and the absorbed
length ∼Φðr; αÞ2= m2f(r)2.
In our experiments, the substrate stiffness due to the gravity of

the drop is negligible because the sheet’s radius (and the de-
formation of liquid it induces) is smaller than the capillary length.
Hence, according to Eqs. 1 and 2, the wavelength λðrÞ is de-
termined only by the tension-induced and curvature-induced stiff-
nesses. As α increases, Kcurv becomes significantly larger than Ktens.
To illustrate this point, the predictions for the number of wrinkles
based on Ktens alone (dashed blue curve) and Kcurv alone (solid
black curve) are shown in Fig. 5. Hence one may predictmðrÞ using
the local λ law with Keff ≈Kcurv and ζ0″≈ 2r=ðRRfilmÞ (8) to give

mðrÞ= 2πr=λðrÞ≈ ð8α=eÞ1=4�r�Rfilm
�3=2, [11]

where the bendability, e−1 = γR2
film=B (16). As in indentation,

Kcurv becomes ever more dominant as confinement increases.
Fig. 5 shows our measurements of mðrÞ for a range of thick-

nesses, 20 nm< t< 160 nm, and confinement values, 20< α< 160.
The quantitative agreement between the data and the prediction of
the local λ law, Eqs. 1 and 2, with no fitting parameters, is espe-
cially good at large values of the confinement α in Fig. 5B. Fig. 5C
shows quantitative deviations from the prediction, which may be
due to the liquid meniscus at the free edge of the sheet; surface
tension is larger in Fig. 5C than in Fig. 5B, as denoted in the figure
legend. The wrinkling cascade due to the liquid meniscus, which
causes mðrÞ to rise at the edge of the sheet, is not accounted for in
the predictions we are testing. We note that the cascade occupies a
region that is much shorter than the capillary length (ℓc = 2.7 mm
for the data in Fig. 5C). These observations, along with what was
noted in the previous section for indentation, suggest that the
boundary cascade may be more complicated in curved geometries
than in a flat geometry, where the cascade dies exponentially with a
penetration length ∼ ℓc from the free edge (27).
Another common feature between this geometry and the in-

dentation experiment is an instability at a finite, large value of
the relevant confinement parameter (eδ or α) in which the sheet
becomes decorated with crumples (8). Nonetheless, the above
prediction for the number of wrinkles mðrÞ, which assumes the

radial curvature of the axisymmetric state, still agrees with the
data beyond this transition (αJ 150).

Discussion
We have shown excellent agreement between the prediction of the
local λ law, Eqs. 1 and 2, and experimental measurements of the
spatially varying wrinkle wavelength in two different geometries:
one with negative and one with positive Gaussian curvature. This
agreement illustrates the key role played by the geometric stiff-
ness, Kcurv, and provides strong evidence for the validity of the
local λ law in relatively complex scenarios.
A similar type of geometric stiffness, which is determined by the

underlying curvature rather than by the exerted loads, is known to
govern the (unwrinkled) response of intrinsically curved elastic shells
to loads (19). To demonstrate the geometric link between shells and
sheets, consider the uniaxial compression of a cylindrical shell: An
ordered pattern of diamond-like blocks is observed (31), whose
characteristic size is proportional to the geometric mean of the ra-
dius (R) and thickness (t) of the shell, λ∝

ffiffiffiffiffi
tR

p
. This result may be

obtained simply from Eq. 1 by substituting Keff =Kcurv =Y=R2. A
similar intermediate scale characterizes the formation of dimples in a
depressurized shell (21, 32). This observation suggests that the cal-
culation of Kcurv that was performed here for the one-dimensional
wrinkling ansatz (4) may extend to other, more complex patterns,
including those observed, e.g., in ref. 31. To our knowledge, Eqs. 1
and 2 compose the first attempt to describe the combined effect of
the geometric stiffness, Kcurv, with the more familiar, mechanical
sources of stiffnesses, Ksub and Ktens, and thus provide a quantitative
platform for predicting the microscale features of wrinkle patterns.
Notwithstanding the experimental evidence for the local λ law,

Eqs. 1 and 2, its validity is limited to situations in which the
spatial variation of the wavelength λðxÞ across the wrinkled sheet
is sufficiently slow. In the Ginzburg–Landau terminology, we
expect that λðxÞ is obtained as the minimizer of a more general,
effective “coarse-grained” energy functional:

H0½λ�+H1½∇ðaðxÞλÞ�. [12]

In this article we have accounted only for H0, given by Eq. 9.
Going beyond this, one might expect situations in which gradients

A B C

Fig. 5. Spatial variation of wrinkles for a sheet on a drop. (A) Top view of a circular PS sheet of thickness 77 nm and radius Rfilm = 1.52 mm at a curved air–
water meniscus (here α= 97). Radial wrinkles extend from the edge of the sheet inward. (B, Inset) Spatial variation of wrinkle number, mðrÞ, for a circular
sheet of radius Rfilm = 1.52 mm on an axisymmetrically curved meniscus (a water drop immersed in oil). The drop was formed in a glass container filled with
either dodecane or silicone oil, sitting on a layer of fluorinated oil, as in ref. 24. The curvature was controlled by withdrawing fluid from the drop through a
needle. Sheet thickness was also varied. Interfacial tension was measured by analyzing the gravitational deformation of the liquid interface away from the
sheet and ranged from γ = 19.0 mN/m to 32.5 mN/m. In B, the data are collapsed using rescaled variables, mðrÞ · ðe=αÞ1=4 and r=Rfilm. Solid colored curves:
Theoretical predictions with curvature and stretching terms. As confinement increases, the curves approach the theoretical prediction with Keff ≈Kcurv, in-
dicating that curvature underlies the dominant substrate stiffness (black curve). Dashed curve: Prediction with only the stretching term (Keff ≈Ktens), calculated
at α= 158. (C) Corresponding measurements for a sheet at an air–water interface (γ =72 mN/m), formed at the end of a cylindrical tube (sheet radius and
thickness denoted in Inset). The curvature was controlled by varying the hydrostatic pressure (8).
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in the wrinkle wavelength are explicitly penalized via H1, with aðxÞ
accounting for deviations of the wrinkle direction from the tension
lines spanned by the principal direction of the stress tensor.
For example, in the cylindrical geometry of Fig. 1C, the tension
lines are parallel to (ex) so that aðxÞ= cst. In the axisymmetric
setups studied here, the tension lines are radial, so deviations
of mðrÞ= 2πr=λðrÞ from a constant value require some stretch-
ing. We therefore expect that aðrÞ∝ 1=r. Thus, H1 encapsulates
bending and splaying of wrinkles beyond those prescribed
by the asymptotic stress field through aðxÞ. The specific form
of H1 remains unknown, despite some recent works that
addressed the energetic cost associated with smooth and sharp
transformations of n wrinkles to n+m wrinkles (17, 18, 25).
However, the unexpectedly good agreement obtained between
the simple local λ law and experiments suggests that, in cir-
cumstances that remain to be understood, the effect of H1 may
safely be neglected.

Materials and Methods
Film Preparation. We made polymer films by spin-coating dilute solutions of
polystyrene (Mn = 91 kDa, Mw = 95 kDa or Mn = 99 kDa, Mw = 105.5 kDa;
Polymer Source, Inc.) in toluene onto glass microscope slides, following ref. 5.

Different thicknesses were produced by varying the spinning speed (800–4,000
rpm) or the polymer concentration (1–5% by weight). Film thickness was
measured with a white-light interferometer (Filmetrics F20-UV). Circular films
were cut from the center of the slides, where thickness was found to be
uniform to within 2%.

Wrinkle Analysis. We performed a custom automated analysis (adapted from
ref. 8) of the top-view images to measure wavelength, λ, as a function of
radial coordinate in the wrinkle patterns. To reduce noise, image intensity
was first averaged over small intervals along the radial coordinate. We then
filtered the signal in the θ coordinate, to eliminate long-wavelength com-
ponents due to uneven lighting. Finally, an autocorrelation was performed
at each radius, which gave a decaying sinusoidal signal. The wrinkle wave-
length was determined as twice the distance to the first autocorrelation
trough. When crumples or folds were present, angular sectors lying between
these structures were analyzed in the same fashion.
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