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Combining Model Checking and Runtime
Verification for Safe Robotics

Ankush Desai, Tommaso Dreossi, and Sanjit A. Seshia

University of California, Berkeley

Abstract. A major challenge towards large scale deployment of au-
tonomous mobile robots is to program them with formal guarantees and
high assurance of correct operation. To this end, we present a framework
for building safe robots. Our approach for validating the end-to-end cor-
rectness of robotics system consists of two parts: 1) a high-level program-
ming language for implementing and systematically testing the reactive
robotics software via model checking; 2) a signal temporal logic (STL)
based online monitoring system to ensure that the assumptions about the
low-level controllers (discrete models) used during model checking hold
at runtime. Combining model checking with runtime verification helps
us bridge the gap between software verification (discrete) that makes as-
sumptions about the low-level controllers and the physical world, and the
actual execution of the software on a real robotic platform in the physical
world. To demonstrate the efficacy of our approach, we build a safe adap-
tive surveillance system and present software-in-the-loop simulations of
the application.

1 Introduction

Recent advances in robotics have led to the adoption of autonomous mobile
robots across a broad spectrum of applications like surveillance [1], precision
agriculture [2], warehouse [3], and delivery systems [4]. As autonomous robots
are finding applications in complex real-world systems that have acute safety
and reliability requirements, programmability with high assurance and provable
robustness guarantees remains a major barrier to their large-scale adoption.

At the heart of an autonomous robot is the specialized on-board software
that ensures safe operation without any human intervention. Controller software
stacks usually consist of several interacting modules that can be grouped into two
categories: high-level modules, taking discrete decisions and planning to ensure
that the robot safely achieves complex tasks, and low-level modules, usually
consisting of closed-loop controllers and actuators that determine the robot’s
continuous dynamics. Ensuring safe and reliable operation therefore requires
reasoning about both high and low levels of the software stack in the external
environment in which the robot is operating.

High-level controllers must be reactive to inputs from the physical world
and from other software components. These controllers are therefore generally
implemented as concurrent event-driven systems, whose testing and debugging



is notoriously difficult due to nondeterministic interactions arising from inputs
and scheduling of event handlers. Model checking is therefore a good fit for ver-
ifying such software. However, model checking such software monolithically is
impossible due to the intractable state space. Moreover, software model check-
ing invariably relies on having reasonable assumptions on interactions with the
physical world and on other software components. Not all software components
are amenable to model checking. Additionally, the dynamics of the physical
world is often highly non-linear, and in some cases, good environment models
are not even available. Simulation-based falsification of cyber-physical systems
(CPSs), including both software components and physical sub-systems, has re-
cently shown much promise (e.g. [5]); however, such techniques typically require
models of the entire closed-loop CPS, which is not always available in robotics
systems operating in uncertain and unknown environments. Thus, verifying the
combination of the software and the physical environment of robots is virtually
impossible today.

To address these problems, we present a framework for designing safe com-
plex real-world robotic applications. In our scheme, trusted software components
that must satisfy key properties are written in a high-level programming lan-
guage called P [6]. We use model checking to verify properties of this discrete,
event-driven portion of the robotic software system. Moreover, it uses a brand
of execution-driven, explicit-state model checking that has been found effective
for large software systems. Since such model checking may not exhaustively enu-
merate all states of the software, we will use the phrase “systematic testing”
interchangeably with “model checking”. However, this model checking still re-
quires assumptions on the interfaces of the checked software with the physical
world and with other untrusted software components. We capture such assump-
tions in signal temporal logic (STL), a specification language that has proved
effective for CPS. We provide a framework for online monitoring of STL prop-
erties and a system for feeding back the results of online monitoring to the
decision making in the robot’s software stack. Thus, we use a combination of
software model checking and runtime monitoring of STL to provide a high level
of assurance on the operation of robotic systems.

To summarize, there are three key features that enable our methodology:

1. The event-driven programming language P [6] for implementing and model
checking high-level robotic logics; P analysis assumes a discrete abstraction
of the continuous robot dynamics;

2. A combination of Signal Temporal Logic (STL) [7] and regression methods to
infer the parameters under which the assumptions made in (1) are satisfied;

3. An online monitoring based approach to ensure that the specifications de-
fined in (2) are not violated by the robot at runtime.

We implemented the proposed framework in a tool called Drona and we
used it to build and analyze a real-world surveillance application, where an
autonomous drone safely patrols a workspace. Our evaluation shows that the
methods implemented in Drona help find several critical bugs in the drone im-



plementation. Moreover, STL online-monitoring successfully catches instances
when the drone violates low-level assumptions during flight.

This paper is structured as follows: we first provide an overview of our pro-
posed methodology using a motivating example (Section 2) and define some ba-
sic terminology (Section 3); we next briefly describe the trusted software stack
(Section 4); in Section 5 we introduce STL and define specifications that, in
combination with regression analysis, formalize the assumptions made on low-
level dynamics; in Section 6 we define online monitors and their usage; Section 7
discusses Drona implementation details and shows some application to a surveil-
lance scenario; the paper ends in Section 8 with some concluding thoughts.

2 Overview

We consider a surveillance system using autonomous aerial drones as a case study
to present the challenges in building safe robotics systems and to demonstrate
how Drona can be used to address them.
Motivating example: Let us consider an application where a drone must pa-
trol a set of locations in a city. Figure 1a shows a snapshot of the workspace
from the Gazebo simulator [8]. Figure 1b presents the obstacle map for the
workspace with some surveillance points (blue dots) and a possible path that
the autonomous drone can take when performing the surveillance task (black
trajectory). Obstacles such as houses and cars are considered to be static.

(a) Workspace. (b) Obstacle map.

Fig. 1: Surveillance system using drones: (a) Workspace created in Gazebo simulator,

(b) Obstacle map for the workspace with surveillance points (blue) and an example

trajectory of the drone (black).

High level controllers of an autonomous drone performing complex tasks,
such as surveillance, usually involve several modes that change during the span
of a mission. Figure 2 presents an example of a high level controller and shows
how different modes are organized and connected by triggering events. A con-
troller execution can look like: the drone starts in Disarmed state; on receiving
the arm command it moves to Armed state where rotors are started; on receiving



Fig. 2: Operation modes of autonomous drone.

the takeoff command followed by the autopilot command, the drone moves
to the Mission mode where it starts performing the surveillance mission. In each
mode, different components cooperate with the goal of performing the desired
operations. For instance, in the mission mode components like application, mo-
tion planner, and plan executor together ensure that the robot safely performs
the surveillance mission. Irrespective of the mode of operation, the high level con-
troller must handle critical events that can happen at any time. For example,
a criticalBattery event must be handled correctly by aborting all operations
and safely returning to home location.

Implementing a high-level controller that satisfies desired properties is noto-
riously hard. For example, in surveillance applications, the drone should:
(P1) Sequencing : Visit all the surveillance points in priority order;
(P2) Coverage: Eventually visit all the surveillance points;
(P3) Obstacle avoidance: Never collide with an obstacle;
(P4) Valid trajectory : Compute valid trajectories leading to the goal location;
(P5) Safe trajectories: Follow the reference trajectory within an error bound.

These properties involve different reasoning domains and robot components.
For instance, properties P1-P2 are application specific and comprise discrete
events. Contrarily, properties P3-P5 are generic (i.e., they should be satisfied by
any safe robotics system) and concern both discrete and continuous domains.
Moreover, properties P3-P4 must be ensured by the motion planner (discrete)
that generates trajectories, whereas the property P5 is dependent on the low-level
controllers (continuous).

These observations motivate the need for decomposing the verification prob-
lem into subproblems that can be tackled by using the right technique. For in-
stance, traditional model checking approaches can address properties P1-P2, they
could be used to reason on properties P3-P4 under some abstractions/assumption
(e.g., state space discretization or robot dynamics linearization), but they hardly
provide guarantees about P5 due to the infinite/continuous domains involved.
The simulation and testing-based approaches can handle properties P1-P5 but
they suffer a lack of guarantees, in the sense that an exhaustive analysis would
require an infeasible infinite number of simulations.
Approach Overview: We now give an overview of the new methodology pro-
posed in this paper based on the software stack of a robotics system built using
our framework. The software stack is organized into four main blocks (Figure 3):
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Fig. 3: Robotics software stack

(1) the application block that imple-
ments the application specific logic;
(2) the trusted software stack that fo-
cuses on modules that can be reused
across different applications; (3) the
low-level controllers layer that imple-
ments the primitive controllers and
state-estimators (possibly provided
by third-parties); (4) the runtime ver-
ification block that implements on-
line monitoring to ensure that robot
always performs safe control actions.
The edges in Figure 3 represents in-

teraction between different blocks, for example, the components in the trusted
software stack can create monitors that observe the state of the robot by pro-
cessing the sensor streams and inform components in trusted software stack if
the monitored properties are violated.

To reason on the blocks (1) and (2), we use P [6], an event-driven pro-
gramming language for implementing and model checking high-level logics. A
P program comprises state machines communicating asynchronously with each
other using events accompanied by typed data values. For blocks (3) and (4) we
use Signal Temporal Logic (STL) [7], a formalism suitable to describe properties
on real-values signals over real-time. STL is used to define properties related to
assumptions needed by the blocks (1) and (2) and to monitor their status at
runtime while the drone performs a mission.

Our approach can be used to validate properties P1-P4 similar to the tradi-
tional verification approaches and simultaneously ensures that the system satis-
fies property P5 using runtime verification based on STL online monitoring.

3 Terminology and Definitions

In this section, we formalize the definitions needed for the rest of the paper.
Workspace: We represent the workspace for a robot W ⊆ R3 as a 3-D occu-
pancy map, where obstacles are assumed to be convex (Figure 1b). The set of
all locations occupied by obstacles is denoted by Ω. The set of free locations in
the workspace is denoted by F , where F = W \Ω.
Tasks: In an autonomous robotics system, tasks can be generated dynamically
and assigned to the robot. An atomic task is represented by the goal location
g ∈ F that the robot must visit in order to accomplish the task. A complex task
can be represented as a sequence of atomic tasks. For example, moving from one
surveillance point to another is an atomic task and periodically visiting all the
surveillance points is an example of a complex task.
Trajectory: The motion of a robot operating in W can be expressed by the
rule q′ = f(q,u) where q ∈ F is the current robot position, u ∈ Rm is the
current input, and q′ ∈ F is the future robot position under the influence of



u. We consider the robot as a black-box as we do not explicitly know f , but
we can observe the generated trajectories of a robot. A trajectory is a function
τ : T → F from a linearly-ordered time domain to a location in the workspace.

Let qi,qg ∈ W be two locations and q ∈ F be the current robot position.
Let d(q,qg) be the Euclidean distance between q and qg, and d(q, (qi,qg)) be
the distance between q and the line passing through qi and qg.
ε-close: A robot is ε-close to a location qg represented by close(qg, ε) if
close(qg, ε) := d(q,qg) < ε.
ε-tube: A robot is within the ε-tube surrounding the line passing through points
qi and qg, represented by tube((qi,qg), ε), if the distance between its current
position and the line is bounded by ε, i.e., tube((qi,qg), ε) := d(q, (qi,qg)) < ε.
Motion primitives: Motion primitives are a set of short closed-loop trajec-
tories of a robot under the action of a set of precomputed control laws [9,10].
The set of motion primitives form the basis of the motion of a robot. A robot
moves from its current location to a destination location by executing a motion
plan which is a sequence of motion primitives. The low-level controllers can be
used to move the robot from one location to another by continuously changing
either its velocity or thrust. We leverage these controllers to implement a motion
primitive, called goto, that moves the robot from its current location to the goal
location along the straight line joining the locations.

Given the complex dynamics of a robot, noisy sensors, and environmental
disturbances ensuring that the robot precisely follow a fixed trajectory is ex-
tremely hard (see Figure 5). Hence, we assume that on executing goto(qg), the
robot takes any trajectory from its current location qi to the goal location qg
such that tube((qi,qg), ε) holds for the duration of the goto, where ε is error
bound by which the robot can drift. In Section 5, we present formal specifica-
tion of goto using STL and describe an approach for learning error bound ε such
that the specification of goto is robust.

4 Trusted Robotics Software Stack

The first part of the proposed framework consists of a generic trusted software
stack that implements the common components required for building safe au-
tonomous robots. Our trusted software stack consists of three main components
(Figure 3):

1. Motion planner, that computes a safe motion plan from the current position
to the goal location required by the task,

2. Plan executor, that ensures that the robot correctly executes the generated
motion plan;

3. Helper modules, consisting of helper state-machines that continuously observe
the sensor streams published by the robot sensors and inform the high-level
components of unexpected events.

Given a high level task, the motion planning problem is to compute a safe
motion-plan such that on executing it the robot follows a safe trajectory to its
goal location without colliding with any obstacle.



Fig. 4: Motion plan as a sequence of goto

The adopted motion planning
technique is based on the composi-
tion of motion primitives [11]. A mo-
tion plan is defined as a sequence
of motion primitives that move the
robot from its current location to the
goal location qg. We use a sampling
based approach to compute a motion
plan denoted by the sequence µ =

(goto(q1) . . . goto(qg)), such that, on executing µ, the resultant trajectory does
not collide with any obstacle and takes the robot to the goal location (see Sec-
tion 7 for implementation details). Our plan executor ensures that the motion
primitives are executed in timely fashion so that the robot follows a safe tra-
jectory. Obstacle collision avoidance is guaranteed by the assumption that the
paths taken by the robot lie inside a safe tube (see Figure 4; safe (green) and
reference (red) trajectories). The motion planner ensures that the plan tube does
not collide with any obstacle. In the following, we will show how such a safe tube
can be determined (Section 5) and we will provide a method to monitor whether
the drone actually flies inside it (Section 6).
Verification approach: To model check our trusted software stack, we imple-
mented each high-level component as a collection of P state machines. The P
compiler generates code that can be model checked using state-of-the-art search
prioritization techniques (for details, see Section 7). We use over-approximating
models for all motion primitives and the robot state during testing, and replace
them with their implementations for real execution. In most cases, computing
a safe motion plan involves usage of complex constraint solvers [12,11] or graph
search (sampling) algorithms [13]. Hence, some part of the motion planner is
not implemented in P and is considered as a black-box. When verifying the
software stack, creating a sound model of such a motion planner is hard. To
resolve this problem, we use execution based model checking [14], a verification
technique based on executing the actual program implementation whenever the
sound model is not available during the systematic exploration. We extended
the model checker such that, whenever the motion planner invokes an external
function, it executes its native implementation. This technique is sound because
same implementation code is used during model checking and actual execution.

To summarize, we provide a method to implement verified motion planners
and plan executors (e.g, that satisfy properties like P3-P4). However, the verified
properties hold only under some specific assumptions, for instance, the trajec-
tories taken by the robot are contained by a safe tube (see Figure 4).

5 Validating Low-Level Controllers

When model-checking the high-level software we assumed a discrete abstraction
of the motion primitives used to control robot’s motion. For instance, when a
goto command is invoked, we assume that the drone reaches the target location



in a reasonable amount of time without drifting too much from the nominal
line connecting its current position and the target point. In this section, we first
specify the motion primitives using parametric Signal Temporal Logic. Next, we
use linear regressions to learn the specification parameters for a given robot.
Finally, we evaluate these specifications on several observed trajectories.

The formalization and analysis of the assumptions about motion primitives
allow us to bridge the gap between their discrete abstractions used during model
checking and their low-level implementation.

5.1 Signal Temporal Logic

We begin by introducing Signal Temporal Logic [7] (STL), a formalism par-
ticularly suitable for the specification of properties of real-values signals over
real-time, such as trajectories generated by robots.

A signal is a function s : D → S, with D ⊆ R≥0 an interval and either S ⊆ B
or S ⊆ R, where B = {>,⊥} and R is the set of reals. Signals defined on B are
called booleans, while those on R are said real-valued. A trace w = {s1, . . . , sn}
is a finite set of real-valued signals defined over the same interval D.

Let Σ = {σ1, . . . , σk} be a finite set of predicates σi : Rn → B, with σi ≡
pi(x1, . . . , xn) C 0, C ∈ {<,≤}, and pi : Rn → R a function in the variables
x1, . . . , xn. An STL formula is defined by the following grammar:

ϕ := σ | ¬ϕ |ϕ ∧ ϕ |ϕ UI ϕ (1)

where σ ∈ Σ is a predicate and I ⊂ R≥0 is a closed non-singular interval. Other
common temporal operators can be defined as syntactic abbreviations in the
usual way, like for instance ϕ1 ∨ϕ2 := ¬(¬ϕ1 ∧ϕ2), FI ϕ := > UI ϕ, or GI ϕ :=
¬FI ¬ϕ. Given a t ∈ R≥0, a shifted interval I is defined as t+I = {t+t′ | t′ ∈ I}.

Definition 1 (Robustness semantics). Let w be a trace, t ∈ R≥0, and ϕ be
an STL formula. The robustness ρ of ϕ for a trace w at time t is defined as:

ρ(p(x1, . . . , xn) C 0, w, t) = p(w(t)) with C ∈ {<,≤}
ρ(¬ϕ,w, t) = − ρ(ϕ,w, t)

ρ(ϕ1 ∧ ϕ2, w, t) = min(ρ(ϕ1, w, t), ρ(ϕ2, w, t))

ρ(ϕ1UIϕ2, w, t) = sup
t′∈t+I

min(ρ(ϕ2, w, t
′), inf

t′′[t,t′]
ρ(ϕ1, w, t

′′))

(2)

A trace w satisfies a formula ϕ (denoted by w |= ϕ) if and only if ρ(ϕ,w, 0) >
0. The robustness signal of a formula ϕ with respect to w is the signal ρ(ϕ,w, ·).
Note that a robot trajectory τ : T → F falls under the definition of trace (see
Section 3). With a slight notation overload, we say that a trajectory τ : T → F
satisfies a formula ϕ (denoted by τ |= ϕ) if and only if ρ(ϕ, τ, 0) > 0.

Differently from classic qualitative semantics, STL robustness provides quan-
titative information on the evaluated formula, i.e., it tells how strongly the spec-
ification is satisfied or violated by the considered trace. In our context, we can
use robustness to understand how close a robot trajectory is to a specification



violation. For instance, a small positive robustness value means that a slight
change in the robot trajectory might lead to a violation. The ability of reasoning
on trajectories combined with the qualitative semantics makes STL the right
formalism to capture the assumptions that low-level controllers must satisfy.

5.2 Assumptions as STL Formulas

In this section, we use STL to formally specify the goto motion primitive and
the motion plan which is a sequence of motion primitives.

The assumptions made about the goto motion primitive can be specified as:

goto(qg, t, ε) := tube((qi,qg), ε) U[0,t] close(qg, ε) (3)

This formula holds if the drone stays in the ε-tube connecting its original position
qi and the destination qg until it eventually is ε-close to the goal point qg. The
time interval [0, t] imposes a time constraint on the execution time of the goto
command.

Recollect that the robot moves from its current location to a goal location
by executing a motion plan (a sequence of gotos) generated by the planner
(Figure 4). We next specify the set of trajectories that the robot can take when
executing a motion plan µ = (goto(qg1), . . . , goto(qgn)). Let ξ = (qg1 , . . . ,qgn),
t = (t1, . . . , tn−1), and ε = (ε1, . . . , εn−1) be sequences of goto locations, the
execution times of each goto, and ε the parameter corresponding to each goto,
respectively. traj(ξ, t, ε) is recursively defined as follow:

traj(ξ, t, ε) :=

{
tube(qg1 ,qg2 , ε1) U[0,t1] close(qg2 , ε1) if n = 2

tube(qg1 ,qg2 , ε1) U[0,t1]
(
close(qg2 , ε1) ∧ traj(ξ′, t′, ε′)

)
otherwise

(4)

where ξ′ = (qg2 , . . . ,qgn), t′ = (t2, . . . , tn−1), and ε′ = (ε2, . . . , εn−1).
For the base case, similarly to the goto case, the specification asks the robot

to lie in the ε1-tube between qg1 and qg2 until it is ε1-close to the target position
qg2 . In the general case, a series of nested until specifications are imposed in
order to force the robot to follow the desired sequences of target locations with
their corresponding execution times and ε-tubes.

5.3 Parameter Prediction

We next describe how we learn the parameter values (ε and t) for the goto
and traj specifications (Equations 3 and 4) such that they tightly represent the
correct sets of behaviors for a given robot.

One way to instantiate the specification parameters is to manually choose
an upper bound value on the basis of knowledge about the system. However,
one value of the parameter might not suffice different templates of the same
specification. For instance, consider two goto executions, one to a close location
and the other to a distant target location. The duration of the former is likely
to be shorter than the latter. A large parameter value for the time duration



t satisfies both cases, but for the first one it leads to a highly conservative
specification. Similar argument holds for the value of ε, setting it to a large
value means that the radius of ε-tube is large which makes the motion planner
conservative discarding potentially feasible motion plans.

In general, we want a mechanism to dynamically tune the parameters de-
pending on the motion primitive. In our case, e.g., goto(qg) executed at location
qi, we want to define two parameter prediction functions ft, fε : F × F → R≥0
that return the expected duration t = ft(qi,qg) and overshoot ε = fε(qi,qg)
such that the instantiated STL formula goto(qg, t, ε) represents the set of valid
trajectory specifically for the start location qi and goal location qg.

Fig. 5: goto trajectories evaluation using
learned STL specification.

To this end, we adopt regression
analysis to estimate ε and t as func-
tions of the initial and target loca-
tions. We estimate the relationship
between the dependent variables ε
and t and the independent variables
l ∈ R≥0 and v ∈ [−1, 1]3, where
l = ‖qg − qi‖ and v = (qg − qi)/l
are the distance and the normalized
direction between qi and qg, respec-
tively. We chose distance and direc-
tion as independent variables since we
noticed that in our experiments the
overshoots (ε) and execution times (t)
are influenced by the direction and
distance of the target position.

A possible approach to defining prediction functions is to use multilinear
regression analysis [15] where the functions are of the form ft(qi,qg) = xTβt+εt
and fε(qi,qg) = xTβε + εε where x = (l v) are the independent variables,
βt, βε ∈ R4 are the parameter vectors, and εt, εε ∈ R are the error terms.
Learning parameters: Using multilinear regression, we learned the parameters
βt, βε, εt, εε analyzing more than 1000 trajectories generated by goto of random
lengths. The learned parameters led to the prediction functions:

ft(q,qg) = 30.3438l + 2.3065v1 − 0.9014v2 − 221.1588v3 + 217.6745

fε(q,qg) = 0.1060l − 0.0010v1 − 0.0139v2 + 0.0806v3 + 0.6180
(5)

To demonstrate that the parameters learnt using regressions tightly capture
the correct set of behaviors, we present another experiment where the learnt
parameter prediction functions are used to automatically instantiate the param-
eters of STL specifications.
Specification instantiation: We analyze the trajectories of the drone repeat-
edly flying along a tilted eight loop (see Figure 5). From the given way points
(stars), we generate the traj STL formula template (Equation 4) and we instan-
tiate it using the prediction functions previously learned (Equation 5). We then
evaluate the observed trajectory against the specifications. Figure 5 present 50



trajectories. Green trajectories robustly satisfy the specification (i.e., robustness
larger than 0.2); orange ones have a weak positive robustness (i.e., between 0.0
and 0.2); red ones violate the specification (i.e., negative robustness). Note how
most of the trajectories satisfy the traj specification and only two violate it,
demonstrating that the learnt parameters are tight.

This example shows how the proposed parameter prediction method is useful
to determined tight parameter evaluations and can be used to validate discrete
abstractions used during model checking. However, as these specifications are
tight but not sound, it is desirable to have runtime verification for catching
outliers.

6 Online Monitoring

In this section, we provide a method to monitor at runtime the specifications
learned in Section 5. An online monitor is useful as it can determine if any of
the assumptions (specifications) are violated and notify the operator about the
unexpected behavior or trigger some correcting input actions to fix the problem.

Differently from the offline approach used in the previous section, online
STL algorithms assume that partial traces are provided to the monitor. Partial
trajectories might prevent the monitor from computing definitive robustness
values. However, online monitors usually provide estimates (upper and lower
bounds) of the robustness by quantifying how close is the monitored trace to the
violation/satisfaction.

Fig. 6: Online goto monitoring using
learned STL specification.

To clarify the notion of robust-
ness estimates, consider the formula
G[0,10](x ≥ 0). This specification can
be declared satisfied only after ob-
serving x on the whole time interval
[0, 10]. However, its distance from the
violation provides an upper bound of
the final robustness. It is important to
note that a negative upper bound im-
plies the violation of the specification.

There are several methods to
online monitor temporal proper-
ties [16,17,18]. In this work, we
adopt the technique presented in [19]
where the monitor incrementally
computes upper and lower bounds of
the robustness by reasoning on the

provided partial trace. Intuitively, the online robustness semantics, slightly
different from the standard one (Definition 1), provides a best and worst
robustness estimates for the partially observed trace.
STL online monitoring: We monitor online the traj specification (Equation 4)
on one example trajectory. The drone is asked to pass through the way points



(stars) that generate a tilted eight loop (see Figure 6). The traj monitor is
instantiated with the parameters learnt in Section 5.3.

Figure 6 depicts the upper bound robustness signal colored according to its
robustness values. Green segments strongly satisfy the specification (i.e., robust-
ness larger than 0.2) while orange ones have a weak positive robustness (i.e.,
between 0.0 and 0.2). We can observe how the upper bound robustness signal
changes from strongly positive (green) to weak positive (orange) along the trajec-
tory. This provides us the exact point at which the trajectory does not strongly
(high robustness) satisfy the property, i.e., the instant in which the assumption
is getting close to a violation. In our framework, we use the decreasing robust-
ness during online monitoring as a warning to take preemptive action against
potential erroneous behavior.

To summarize, when a motion plan is executed by a robot in order to ac-
complish a high-level task, the following sequence of steps are performed:

1. A template of an STL formula is generated corresponding to the motion plan
(see Section 5.2);

2. The parameters of the specification are computed using the functions de-
scribed in Section 5.3;

3. A online monitor is created to monitor the STL specification that can be used
take fixed preemptive action.

7 Implementation and Experimental Evaluation

Our past work on Drona [12] was in the context of distributed mobile robotics.
For this work, we reimplemented the framework with a new motion planner that
uses goto primitives, plan executor, and runtime verification capabilities that
apply to real-world robot systems.

In this section, we first describe the implementation of Drona, followed by
the empirical evaluation to demonstrate its efficacy for building real-world safe
robotics applications. Videos and further details of the conducted experiments
are available at https://drona-org.github.io/Drona/.

7.1 Implementation

Figure 7 provides an overview of the Drona framework. The application and the
trusted robotics software stack are implemented using the programming language
P that allows programmers to write the implementation and its specification at
a high-level as a collection of communicating state-machines. P provides first-
class support for modeling concurrency, specifying safety and liveness properties,
and checking that the program satisfies its specification [20,6,21]. We extend P
so that programmer can syntactically specify the workspace configuration like
obstacle size and its position. The compiler generates code for both execution-
based model-checking and real execution when deployed on a target platform.

https://drona-org.github.io/Drona/


We modified an open-source implementation of the sampling-based motion
planner RRT* [13,22] to generate plans as compositions of goto motion primi-
tives. When executing a motion plan, the RV module automatically generates
an STL specification (as discussed in Section 5) and performs online monitoring
to catch violations. We use Matlab toolbox Breach [23] to online monitor the
STL specifications.

Application
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Fig. 7: Overview of Drona tool chain

For our experiments,
we use 3DR Iris [24]
drone that comes with
the open-source Pixhawk
PX4 [25] autopilot. We
implemented a collection
of motion primitives us-
ing the low-level con-
trollers provided by the
PX4 firmware that is
used to control the drone
in autopilot mode. Some
examples of the imple-
mented motion primitives

are arm, takeoff, goto. When invoked, motion primitives are converted into
series of MAVLINK messages (a protocol for communicating with unmanned
vehicles) and sent to drone via User Datagram Protocol (UDP).

7.2 Evaluation

As a case study, we implemented a safe real-world surveillance application.

Safe surveillance: The entire surveillance system, which includes application
and the trusted software stack, was implemented in around 3500 lines of P
code and was systematically tested using the execution-based model-checker. We
found some critical bugs in our high-level software implementation. For example,
we did not check that when the battery is low the drone should not take-off. This
bug was uncovered by the model checker within a few minutes but was not found
during simulations as the simulator always starts in full battery state.

After model-checking, we also performed stress-testing by running the surveil-
lance application for several hours performing software-in-the-loop simulation.
We did not find any new bugs in our implementation, except for some bugs at
the interface of the P and external C code. This example demonstrates how, for
this application, model checking performs better than simulation-based testing.

Obstacle avoidance: We next present simulation results to demonstrate the
effectiveness of our STL-based online monitoring approach. We created a surveil-
lance workspace in Gazebo [8] simulator environment (Figure 1a) that is inter-
nally represented by Drona as an obstacle map (Figure 1b). In our simulations,
we execute the PX4 firmware in the loop, meaning that we considered a real low-
level controller implementation that can be executed in the real deployment.



We consider an obstacle avoidance scenario, where the drone must never get
closer than 0.5m to any obstacle in the workspace during its 120s of flight. The
corresponding STL formula is:

ϕobs :=

n∧
j=1

¬F[0,120](d(q, obsj) < 0.5) (6)

where q ∈ F is the robot current position, and d(q, objj) represents the distance
between robot current position and the j-th obstacle.

We online monitored the requirement ϕobs on all the trajectories generated
by the drone during the surveillance task. Figure 8 shows two views of a faulty
trajectory of the drone with the upper bound of its online robustness. Note how
online monitoring detects a specification violation (red trace), meaning that the
drone gets too close (< 0.5m) to an obstacle. Also, observe that the robot ro-
bustly satisfy the specification in most part of the trajectory, with the exception
of few segments where the robustness is between 0 and 0.5 (orange traces).

Fig. 8: Online obstacle avoidance monitoring (Equation 6). Robustness legend:
green [0.5,+∞), orange (0, 0.5), red [−∞, 0).

Plan execution: In this case, we monitor the correctness of the trajectories
taken by the drone with respect to the reference ones computed by the motion
planner. Recollect that given a task, the motion planner returns a sequence of
waypoints or locations whose linear interpolation takes the drone from its current
position to the goal location. For every such path, we are interested in checking
whether the drone reaches all the waypoints while remaining inside a safe ε-tube.
To this end, we generated the STL specification in Equation 4 on the fly using
the locations returned by the motion plan and instantiated its parameters using
the prediction functions learned in Section 5.3. Note that Drona builds an ad-hoc
specification for every generated plan. Once that the specification is generated,
the online monitoring module checks it against the actual trajectory.

Figure 9 shows the robustness upper bound for an example trajectory com-
puted online. It is interesting to note how there are two falsifying segments (red),



i.e., parts of the trajectory that do not satisfy the generated STL specifications.
Note how both these segments refer to parts where the drone strays away from
the reference trajectories (dashed). The graph also shows some nonrobust traces
(orange) where the drone is quite distant from the reference trajectories but
does not violate the generated specification. Finally, note how in most part of
the trajectory the robustness is green as it is always close to the reference.

Fig. 9: Online trajectory following (Equation 4 with predicted parameters of
Equation 5). Robustness legend: green [0.2,+∞); orange (0, 0.2); red [−∞, 0).

8 Related Work

Recently, there is increased interest towards using temporal logic formalism
for synthesizing reactive robotics software [26,27,28,29,30,31]. This approach, in
principle, provides strong guarantees of correctness. However, the problem with
automated synthesis is that the algorithms scale poorly both with the complexity
of the mission and the size of the workspace.

Reachability analysis techniques for hybrid systems [32], such as
SpaceEx [33], Flow∗ [34], or Sapo [35], have been mainly used to check safety
conditions of symbolic models. These techniques can be used for validating low-
level controllers but require an explicit represent of the robot dynamics and ofter
suffer from scalability issues. Some simulation-based tools for the falsification of
black-box systems (such as Simulink or Stateflow models) are Breach [23], S-
TaLiRo [36], RRT-Rex [37], or C2E2 [38]. These tools have been used to analyze
complex industrial scale models. Falsification tools are efficient for falsification
of black-boxes, but generally, they fail to provide any formal guarantees.

Finally, the idea of synthesizing monitors from specifications [39,40,41] is
well studied in the runtime verification community. Runtime verification has
been applied to robotics [42,43,44,45] where monitors are used to checking the
status of path planner and tasks executions.



The related work for this paper addresses different parts of the robotics soft-
ware stack, our approach combines these well-known approaches in a practical
way to build real-world robotics applications
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