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ARTICLE

Agrochemicals increase risk of human
schistosomiasis by supporting higher densities of
intermediate hosts
Neal T. Halstead 1,14, Christopher M. Hoover2, Arathi Arakala3,4, David J. Civitello5, Giulio A. De Leo 6,7,

Manoj Gambhir3,8, Steve A. Johnson9, Nicolas Jouanard10, Kristin A. Loerns1, Taegan A. McMahon11,

Raphael A. Ndione10, Karena Nguyen1, Thomas R. Raffel12, Justin V. Remais2, Gilles Riveau10,13,

Susanne H. Sokolow6,7 & Jason R. Rohr1

Schistosomiasis is a snail-borne parasitic disease that ranks among the most important

water-based diseases of humans in developing countries. Increased prevalence and spread of

human schistosomiasis to non-endemic areas has been consistently linked with water

resource management related to agricultural expansion. However, the role of agrochemical

pollution in human schistosome transmission remains unexplored, despite strong evidence of

agrochemicals increasing snail-borne diseases of wildlife and a projected 2- to 5-fold increase

in global agrochemical use by 2050. Using a field mesocosm experiment, we show that

environmentally relevant concentrations of fertilizer, a herbicide, and an insecticide, indivi-

dually and as mixtures, increase densities of schistosome-infected snails by increasing the

algae snails eat and decreasing densities of snail predators. Epidemiological models indicate

that these agrochemical effects can increase transmission of schistosomes. Identifying

agricultural practices or agrochemicals that minimize disease risk will be critical to meeting

growing food demands while improving human wellbeing.
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The global human population is expected to reach
approximately 9.7 billion people by 20501. To meet the
food demands necessary to support this population, agri-

cultural production is projected to increase 60–70% globally, with
fertilizer use increasing 2- to 4-fold and pesticide use 2- to 5-fold
relative to levels in 20002,3. Most of the increase in both human
population and agrochemical use will occur in developing regions
of the world where schistosomiasis is endemic1–3. For example,
agricultural production is expected to nearly triple in sub-Saharan
Africa, the region experiencing the highest population growth
rates3.

Schistosomiasis is caused by trematodes (flatworms) of the genus
Schistosoma whose transmission relies on freshwater snails that act as
an intermediate host. Humans (and various other mammal species)
act as the definitive host (the host supporting the adult life stage of
the parasite) and are infected when cercariae (the free-swimming life
stage of trematodes) released from snails in infested waters penetrate
through the skin of the definitive host and mature into adult worms.
Global control strategies generally rely on morbidity control through
treatment with praziquantel that kills adult worms harbored in
human hosts, but drug therapy does not prevent re-infection from
future exposure to cercariae. Furthermore, water resources develop-
ment efforts in many developing countries, particularly the con-
struction of dams and implementation of surface irrigation, have
frequently been linked to increased distribution and prevalence of
human schistosomiasis4–8. Thus, elimination of schistosomiasis has
proven difficult throughout most of its geographic extent, with
approximately 800 million people living in schistosome-endemic
areas (and therefore at risk of infection)7–9, and at least 218 million
people in need of treatment for infection as of 201510.

In a trematode-amphibian system that provides a wildlife
analog to the schistosome-human system, herbicides and fertili-
zers increased trematode transmission by stimulating the growth
of attached algae (periphyton), the food source for snails
(a bottom-up ecological effect)11,12. Hence, there is good reason
to postulate that agrochemicals might also have important effects
on human schistosomiasis. Additionally, insecticides can be
deadly to insect and crayfish predators of snails, suggesting that
they might increase the number of infected snails by increasing
the overall density of snails (a top-down ecological effect)13, but
links between insecticides and wildlife or human trematode
infections have not been explored. Here we test the hypothesis
that fertilizer, a common herbicide (atrazine), and a common
insecticide (chlorpyrifos), individually and as agrochemical mix-
tures, amplify production of human schistosome cercariae
through bottom-up and top-down effects on snail resources and
predators, and that this in turn can increase schistosome trans-
mission to humans. We were interested in agrochemical mixtures
because they are more commonly detected in nature than indi-
vidual agrochemicals13–15.

Here, we use a field mesocosm experiment to demonstrate that
environmentally relevant concentrations of agrochemicals (ferti-
lizer, the herbicide atrazine, and the insecticide chlorpyrifos)
increase the densities of schistosome-infected snails. These effects
occur through both bottom-up effects by increasing the algae
snails eat (fertilizer and atrazine) and top-down effects by
decreasing densities of snail predators (chlorpyrifos). These
effects occur whether agrochemicals are applied individually or as
mixtures. In addition, we developed epidemiological models that
indicate that these agrochemical effects can increase transmission
of schistosomes to humans.

Results
Mesocosm experiment. We created outdoor freshwater pond
communities consisting of two snail predators (crayfish:

Procambarus alleni and water bug: Belostoma flumineum), three
snail species (Biomphalaria glabrata [native to the Neotropics,
introduced to Africa; an intermediate host of Schistosoma man-
soni], Bulinus truncatus [native to Africa, the Middle East, and
parts of southern Europe; an intermediate host of Schistosoma
haematobium], and Haitia cubensis [a non-host snail species
native to the Caribbean and southeastern United States]), zoo-
plankton, and algae in 60 1200 L mesocosms filled with 800 L of
water. Biomphalaria glabrata was chosen because laboratory-
reared snails were easily available, it is found in both South
America and Africa making our results relevant to two con-
tinents, and its native range overlaps extensively with that of H.
cubensis in the Caribbean. We included H. cubensis as a non-
schistosome host snail species to provide a potential alternative
prey source for crayfish predators rather than forcing these pre-
dators to only consume schistosome-hosting snails. Agrochemical
treatments were applied to the mesocosms in five replicate spatial
blocks and consisted of water and solvent (0.0625 mL/L acetone)
controls, and atrazine (102 μg/L), chlorpyrifos (64 μg/L), and
fertilizer (4400 μg/L N and 440 μg/L P) individually and in all
possible combinations (see Methods for details and additional
treatments). Globally, atrazine and chlorpyrifos are among the
most-used herbicides and insecticides, respectively16–19, and were
applied at their estimated environmental concentrations calcu-
lated using US EPA software (see Methods). All three agro-
chemicals are used commonly in schistosomiasis-endemic
regions17–19. Mature S. mansoni and S. haematobium eggs col-
lected from infected Siberian hamsters were added to each
mesocosm at three time points to simulate egg introduction from
humans in an endemic setting. From each mesocosm, we quan-
tified algal and snail abundance, temperature, light levels, and
snail reproduction every other week; S. mansoni cercariae shed-
ding rates from Bi. glabrata in weeks 8–10; and snail and predator
densities as well as snail infection status (for Bi. glabrata and Bu.
truncatus) at the end of the experiment. Additionally, we con-
ducted toxicity tests to evaluate whether there were any ecologi-
cally relevant direct effects of the agrochemicals on the egg,
miracidium, or cercaria stages of both schistosomes.

A combined factor and path analysis revealed that both top-
down and bottom-up effects of the agrochemicals indirectly
contributed to increases in infected Bi. glabrata densities
through increases in overall (infected and uninfected) densities
of Bi. glabrata (Figs 1a, 2; Supplementary Tables 1, 2). While Bi.
glabrata was the only snail species for which a sufficient number
of infected individuals were alive at the conclusion of the
experiment for analysis of the relationship between overall and
infected snail densities, treatment effects on the reproductive
output and overall densities of all three snail species were
significant and in the same direction (Fig. 1a; Supplementary
Fig. 1; Supplementary Table 1). Chlorpyrifos reduced densities
of crayfish and water bugs (Fig. 1b; Supplementary Fig. 2),
which indirectly increased densities of all three snail species by
releasing them from predation (Fig. 1c; Supplementary Fig. 1).
Both fertilizer and atrazine increased densities of all snail
species (when controlling for the effects of predators; Fig. 1d) by
increasing algal productivity (Fig. 1e). Fertilizer increased the
densities of both suspended and attached algae (Fig. 1a;
Supplementary Table 1). Consistent with previous studies11,
atrazine decreased suspended algae and increased the photo-
synthetic efficiency of attached algae because the reduction in
suspended algae increased light availability for the periphyton
(linear regression slope between phytoplankton chlorophyll a
and water column light: coef ± se=−334 ± 166; P= 0.0451).
This indirect positive effect of atrazine on attached algae was
even greater in the presence of fertilizer (Fig. 1a, Supplementary
Table 1).
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Fig. 1 Top-down and bottom-up effects of agrochemicals on snail densities. Combined factor and path analysis (a), demonstrating top-down effects of
chlorpyrifos increasing predator mortality (b) and snail density (c) and bottom-up effects of atrazine and fertilizer increasing snail density (d) through
increased algal productivity (e). Size of arrows in a are scaled to the standardized coefficient (top number next to each arrow), with black and red arrows
indicating positive and negative coefficients, respectively. Double-ended arrows exhibit significant covariation accounted for in the structural equation
model. P-values for paths in the model are reported below each standardized coefficient. Boxes represent exogenous predictor variables, circles represent
latent variables, and algal production was measured as a composite variable (hexagon). Indicator variables for latent and composite variables have been
omitted from the figure to reduce visual complexity, but are reported in Supplementary Table 1. Importantly, the latent variable snail density represents the
densities of all three snail species at multiple life stages (egg, hatchling, and adult), all of which exhibited similar responses across treatments. e represents
the net main effects of fertilizer and atrazine presence on composite algal productivity. Axes on panels b–e are derived from latent variable scores for each
replicate and thus have no units of measurement; however, raw data are available in the supplemental materials. PeQY= periphyton photosynthetic
efficiency; PeF0= periphyton chlorophyll a; Phyto= phytoplankton chlorophyll a and photosynthetic efficiency; At*Fe= atrazine x fertilizer interaction term
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Top-down regulation of snails by macroarthropod predators,
particularly crayfish, was much stronger than bottom-up effects
mediated by algal resources in this experiment (Fig. 1). This is
consistent with several previous studies that showed that decapod
crustaceans are effective biocontrol agents for reducing popula-
tions of Biomphalaria spp. and Bulinus spp.4,20–24. Separate field
trials using the non-native crayfish Procambarus clarkii in Kenya
and reintroduction of the West-African native prawn Macro-
brachium vollenhovenii in Senegal were both successful in
reducing Bulinus spp. densities and S. haematobium infection
rates in humans5,25. Additionally, reductions in the density of a
molluscivorous fish have been linked to increased infection rates
and transmission of urinary schistosomiasis in humans26,27,
underscoring the importance of predators in mediating infection
dynamics in natural systems28.

The combined effects of agrochemicals in our mesocosm
experiment accounted for 95.9% of the variation in overall snail
densities (accounting for all three snail species) in our path model
(Fig. 1a; Supplementary Table 1). Overall final densities of Bi.
glabrata accounted for 89.0% of the variation in the densities of
infected Bi. glabrata (in replicates with infected snails; Fig. 2) and
Bi. glabrata density was the only significant predictor of densities
of infected Bi. glabrata (coef ± se= 0.0056 ± 0.0012; P < 0.001;
Supplementary Table 2). Together, the indirect effects of
agrochemical exposures on snail densities mediated through
trophic interactions (top-down and bottom-up effects) and the
effect of Bi. glabrata density on the density of infected Bi. glabrata
accounted for 85.4% of the variation in densities of infected Bi.
glabrata. Importantly, there was no evidence of direct effects of
agrochemicals on the number of infected Bi. glabrata after
controlling for Bi. glabrata density (Supplementary Table 2).
There also was no evidence of direct effects of agrochemicals on
infection prevalence (Supplementary Table 3), cercaria produc-
tion per snail (Supplementary Table 4), cercarial survival (up to

12 h of exposure; Supplementary Table 5), or schistosome egg
viability in toxicity trials (Supplementary Table 6).

Epidemiological modeling. To examine the significance of the
mesocosm results for human infection, we expanded on clas-
sic29,30 and recent5 mathematical modeling studies of schistoso-
miasis transmission by incorporating into models the observed
agrochemical effects from our mesocosm experiment, effects from
previously published studies examining the same agrochemicals
and endpoints as our mesocosm experiment, and parameters fit
to previous research on S. haematobium transmission to humans
in Senegal (see Methods). Our epidemiological model revealed
that, in the absence of agrochemical effects and snail predators,
the basic reproduction number, R0 (the expected number of
mated female worms produced by a single mated female worm in
a disease-free setting), was 3.60 (95% CI: 1.32–6.06; Fig. 3a),
consistent with previous estimates and the endemic nature of
human schistosomiasis in Senegal5. The addition of snail pre-
dators reduced R0 below 1 (Fig. 3a, b), the minimum threshold for
sustained transmission of the disease in the human population,
supporting the notion that snail predators can reduce schistoso-
miasis and protect human health5. In contrast, by reducing snail
predators, ecologically relevant concentrations of chlorpyrifos
increased R0 up to 10-fold relative to controls (Fig. 3a, b, d),
suggesting that the removal of snail predators caused by pesti-
cides may lead to a remarkable increase in disease transmission.
In the absence of predators or the presence of chlorpyrifos,
atrazine and fertilizer further increased R0 by approximately 28%
through bottom-up effects (Fig. 3a, c, d).

Discussion
To our knowledge, this work represents the first experimental
research: 1) to examine the top-down effects of insecticides on
trematode transmission; 2) to quantify the top-down and bottom-
up effects of agrochemicals on the transmission of human
schistosomes; 3) to establish an experimental study system on
human schistosomes in outdoor mesocosms; and 4) to link
experimental findings on agrochemical effects to human schis-
tosomiasis risk by using parameterized epidemiological models.
Given that agrochemical use is expected to rise 2- to 5-fold
globally in the next 35 years to meet growing food demands2,
our study has important public health implications in
schistosomiasis-endemic regions, as it provides evidence of the
potential impact of agrochemicals on the transmission of human
schistosomes. Because human population growth rates in
schistosome-endemic regions are projected to be much higher
than throughout most of the more developed world1,3, it is likely
that the expected 2- to 5-fold mean global increase in agro-
chemical use will also be proportionally higher in schistosome-
endemic regions. Furthermore, environmental conditions (e.g.,
rainfall intensity and soil characteristics) throughout most
schistosome-endemic regions render surface waters highly vul-
nerable to pesticide runoff31 and projected increases in agri-
cultural activity in these countries is likely to result in significantly
higher probabilities of agrochemical contamination of surface
waters, underscoring the need to assess how changes in land use
might impact disease transmission32.

Our results also support recent findings that the presence of
generalist predators of snails, such as crayfish (tested here) and
the prawn Macrobrachium vollenhovenii (native to western
Africa) – both of which are omnivores with very similar
diets4,5,20,25,33,34 – can limit or prevent sustained transmission of
schistosomiasis (i.e., R0 < 1) by controlling the density of infected
snails5,21,25. However, consist with previous research demon-
strating that the common insecticide chlorpyrifos can induce
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Fig. 2 Actual number of infected Biomphalaria glabrata as a function of live
Bi. glabrata at the end of the experiment. The response shown is restricted
to mesocosm tanks in which infected Bi. glabrata were present (n= 15
mesocosms), effectively depicting the count portion of the zero-inflated
model used to analyze effects on infected Bi. glabrata density. However, all
60 replicate mesocosms were used in the analysis (see Methods and
Supplementary Table 2 for full model results). Live Bi. glabrata density was
the only significant predictor of the count of infected Bi. glabrata in the
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density of S. mansoni-infected Bi. glabrata in replicates in which infected
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generalized linear model with a Poisson distribution including first- and
second-degree polynomial terms for live Bi. glabrata density as predictors.
Dashed lines indicate the 95% confidence band
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considerable mortality in the snail predator population at envir-
onmentally relevant concentrations35, here we demonstrate that
the addition of chlorpyrifos results in R0 estimates equivalent to
those in predator-free environments that experience endemic
transmission (i.e., R0 > 1). Additionally, our results suggest that
applications of the common herbicide atrazine and fertilizer can
increase the risk of human schistosomiasis in situations where
snail predators, such as prawns, exist at densities too low to
effectively regulate snail populations (e.g., where dams have been
constructed or in surface irrigation canals4,5,7,8). To ensure that
schistosomiasis-endemic regions can address their current and
pending human malnutrition crises without increasing schisto-
somiasis, it will be important to implement farming practices that
minimize agrochemical runoff, continue advances in the sus-
tainable use of snail biological control agents5, and identify
agrochemicals that can increase food production without
increasing snail densities.

Methods
Mesocosm experiment. We established outdoor freshwater ponds in 1200 L
mesocosms filled with 800 L of water at a facility ~20 miles southeast of Tampa, FL,
USA. The tanks were filled with tap water on 4 June 2010 and allowed to age for 48
h before being seeded with algae (periphyton and phytoplankton) and zooplankton
collected from local ponds on 6 June 2010. Algal and zooplankton communities
were allowed to establish over a four-week period and 40 L of water was mixed
between tanks weekly to attempt to homogenize initial communities before
application of agrochemical treatments. Sediment (1 L play sand and 1 L organic
topsoil (The Scotts Company, Marysville, OH, USA)) was added to each tank on 1
July 2010 (Supplementary Fig. 3). Immediately before application of agrochemical
treatments on 8 July 2010, snails (27 Biomphalaria glabrata (NMRI strain), 11
Bulinus truncatus (Egyptian strain), and 30 Haitia cubensis) and snail predators (3
crayfish (Procambarus alleni), and 7 giant water bugs (Belostoma flumineum)) were
added to each tank. Initial snail and predator densities were chosen within eco-
logically relevant limits36–38 and determined by availability from either the NIAID
Schistosome Resource Center (for laboratory passaged strains of Bi. glabrata and
Bu. truncatus) or local availability for H. cubensis, P. alleni, and B. flumineum from
wetlands in the Tampa, FL, area. More specifically, densities of P. alleni in South
Florida exhibit a high degree of spatiotemporal variability, and can exceed 10
crayfish m-2, but are typically significantly lower36. We chose a density on the
lower end of observed natural densities (0.6 crayfish m-2) because 1) our initial
stocking densities for snail species were also relatively low, 2) crayfish presence/
absence (rather than density) determined the variation in snail survival and
recruitment in previous mesocosm studies13,39, and 3) we wanted to limit our
impact on local source populations of crayfish (given that we had 60 mesocosms to
supply with predators). Finally, our initial crayfish densities were nearly identical to
the maximum natural prawn densities reported in the literature (~0.6 prawns m-2)38,
which is also the estimated density of prawns necessary to extirpate local snail
populations and well above the threshold density of prawns needed to reduce/elim-
inate schistosomiasis locally (~0.3 prawns m-2)5, but significantly lower than aqua-
culture densities that can exceed well over 10 prawns m-240,41. The mesocosm
experiment was approved under USF Institutional Biosafety Committee Study
number 0971.

Sixty tanks were randomly assigned (using a random number generator) to one
of 12 treatments in 5 replicated spatial blocks. Water and solvent (0.0625 mL/L
acetone) controls were used to ensure that any observed effects in agrochemical
treatments were not due to the presence of solvent. The herbicide atrazine and the
insecticide chlorpyrifos were dissolved in acetone and applied at their respective
estimated peak environmental concentrations (EEC: atrazine= 102 μg/L;
chlorpyrifos= 64 μg/L), determined using USEPA’s GENEEC (v2.0, USEPA,
Washington, D.C.) software, manufacturers’ label application recommendations,
and the physicochemical properties of each pesticide (Supplementary Table 7).
Target concentrations of fertilizer (N: 4,400 μg/L, P: 440 μg/L) were based on ponds
identified as highly productive in a field survey conducted by Chase42. Hence, the
agrochemical concentrations selected for this study are environmentally relevant
and well within the ranges observed in the field. Fertilizer was applied as a mixture
of sodium nitrate and sodium phosphate dissolved in acetone. Each chemical was
applied individually at its EEC, at 2x the EEC, and in all pairwise combinations.
The 2x EEC treatments were included as an additional reference to account for
pairwise mixtures having approximately twice the amount of chemicals added.
Technical-grade pesticides were used for all treatments (purity > 98%;
Chemservice, West Chester, PA, USA) and actual concentrations of pesticides
applied to the replicates were confirmed using ELISA test kits (Abraxis, LLC,
Warminster, PA, USA) in the Rohr lab. ELISA assays were calibrated by using
standards of known concentration for each pesticide, or calculated from established
cross-reactivity to the chemical used to determine the standard curve. For any

nominal concentrations below the limit of detection for the kit, we confirmed the
concentration of the stock solution used for serial dilutions.

Schistosoma mansoni (NMRI strain) and S. haematobium (Egyptian strain) eggs
were collected from infected Siberian hamsters and added to mesocosms at three
separate occasions during the experiment. Eggs were added on multiple occasions
after application of agrochemical treatments to better simulate the relatively
constant input of schistosome eggs into waterbodies as opposed to more infrequent
pulses of agrochemical runoff into surface waters. Snails and infected hamsters
were provided by the NIAID Schistosomiasis Resource Center. Five infected
hamsters were euthanatized on 27 July 2010, 4 August 2010, and 12 August 2010),
and S. haematobium eggs were collected from the intestines. Eggs were isolated
from tissue using a handheld immersion blender and collected on a 45 μm USA
standard test sieve (Fisher Scientific, Pittsburgh, PA, USA). Mature eggs were
stored in a 1.4% NaCl solution to inhibit hatching in a 50 mL centrifuge tube. Eggs
were suspended repeatedly using a vortex mixer and sixty-five 3 mL aliquots were
prepared for each schistosome species and added to the tanks within two hours of
collection. An additional three aliquots were preserved to quantify the total number
of eggs added to each tank. Egg viability was quantified by placing subsamples of
the remaining mature eggs in artificial spring water43 and observing the proportion
of hatched miracidia within 1 h. The mean number of S. mansoni eggs in each
aliquot was 981.1 (±46.5 SEM) eggs, with a mean viability of 29.4% (±4.6% SEM),
which resulted in an estimated 289 S. mansoni miracidia added to each tank at each
weekly addition. The mean number of S. haematobium eggs in each aliquot was
2276.7 (±107.5 SEM) eggs, with a mean viability of 8.5% (±1.9% SEM), which
resulted in an estimated 193 S. haematobium miracidia added to each tank at each
weekly addition. Collection of schistosome eggs from infected hamsters was
approved by animal care and use committee protocols T 3829 and R 3517 at the
University of South Florida.

Strict biosafety protocols were established and approved by USF Biosafety (IBC
#1334) to minimize the risk of infection to researchers and escape of snails from
the mesocosms. Researchers working at the mesocosm facility wore personal
protective equipment, including shoulder-length PVC gloves (#7451, Galeton,
Foxborough, MA, USA), when removing or replacing items in tanks. In addition,
all researchers working on the mesocosm experiment had blood drawn before and
several months after conducting the experiment. Blood samples were sent to the
Centers for Disease Control and Prevention to test for schistosome infections.
Tanks had an inward-projecting outer rim along the top edge, were only filled
halfway, and were covered with heavily weighted shade cloth to prevent snail
escape or entry of any large organisms. The mesocosm facility was surrounded by
two layers of silt fence with molluscicide (1.0% iron phosphate; Natria®, Bayer
Advanced, Research Triangle Park, NC, USA) applied between the fences at the
recommended rate of 1 pound per 1000 square feet every two weeks during the
experiment. Tanks were a minimum of 200 m from the nearest waterbody and the
entire facility was surrounded by chain link and barbed wire fencing. At the end of
the experiment, each tank was over-treated with pool shock (71.8% trichloro-s-
triazinetrione, Recreational Water Products, Buford, GA, USA; applied at 0.15 g/L)
to kill all of the snails and schistosomes before the tanks were emptied and the
snails were removed and preserved.

Periphyton measurements were recorded from 100 cm2 clay tiles suspended
vertically 15 cm from the bottom of each tank (approximately 20 cm below the
water’s surface), facing south along the northern wall of each tank. Five clay tiles
were added to each tank when they were initially filled with water. Algal samples
were collected immediately prior to agrochemical addition (Week 0) and at 1, 2, 4,
8, and 12 weeks post-application. Phytoplankton and periphyton chlorophyll a and
photosynthetic efficiency (measured as F0 and QY, respectively), were measured
from samples stored in darkness for 1 h, using a handheld fluorometer (Z985
Cuvette AquaPen, Qubit Systems Inc., Kingston, Ontario, Canada). Temperature
and light levels were quantified on the same dates as algal sampling by suspending
a data logger (HOBO Pendant UA-002–64, Onset Computer Corporation, Bourne,
MA, USA) 20 cm below the water surface for 30 minutes in each replicate within a
spatial block near midday. Loggers were rinsed in tap water after the 30-minute
data collection period for each block before being transferred to the next spatial
block to avoid cross contamination of agrochemicals. Midday temperatures 20 cm
below the water surface were 32.55 ± 0.10 °C on 9 July 2010, 30.49 ± 0.08 °C on 15
July 2010, 31.47 ± 0.10 °C on 22 July 2010, and 31.29 ± 0.07 °C on 5 August 2010
(all mean ± se).

Snail reproductive effort and density was estimated using two 15 × 30 cm pieces
of Plexiglass placed in each tank; one suspended vertically 10 cm from the bottom
of each tank and one resting horizontally along the tank bottom (see
Supplementary Fig. 3). Snail egg masses, juveniles, and adults were quantified from
each sampler at weeks 1, 2, 4, 8, and 12. Visual searches for dead P. alleni and B.
flumineum occurred 24 and 48 h after agrochemical addition, and upon each snail
sampling session. Ten weeks after agrochemical addition, pool shock was added to
each tank as described above to kill any infective schistosome cercariae and tanks
were subsequently drained through a kick net (800/900 μm, 425-K11, Wildlife
Supply Company, Yulee, FL, USA) to collect remaining organisms. All snails and
macroinvertebrates were collected, fixed in formalin for one week, and
subsequently preserved in 70% ethanol. Snail infection status was determined by
cracking each snail’s shell and inspecting the hepatopancreas and gonads under a
dissecting microscope. Researchers were not blind to treatments when collecting or
analyzing data.
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There was no effect of solvent on any response variables, so solvent and water
controls were pooled and treated as a single control treatment. Likewise, there was
no effect of concentration on any of the observed response variables, so 1 × and 2 ×
EEC single pesticide treatments were combined for analysis. Photosynthetic
efficiency was logit-transformed prior to analysis. All other response variables were
natural log+1 transformed.

Structural equation modeling was used to explore combined causal pathways of
pesticide mixtures using the lavaan package44 in R statistical software45. Because a
sample size of 60 tanks restricted the number of causal pathways we could infer, we
first constructed a latent variable for predator mortality (P. alleni and B. flumineum
mortality at 24 h and the end of the experiment) and a second model consisting of
latent variables for phytoplankton production (F0 and QY from weeks 1–8),
periphyton chlorophyll a (F0 from weeks 1–4), and periphyton photosynthetic
efficiency (QY from weeks 1–4). Model comparison using AICc was performed to
select the best latent variable model from alternative configurations of indicator
variables (i.e., algal parameters as separate or combined latent variables without a
composite variable). The scores for each latent variable model were then extracted
using the predict function and used for construction of a structural equation model
that included snail response variables (number of egg masses on snail samplers
from weeks 1–4, the number of snail hatchlings on snail samplers from weeks 4–8,
and the number of live snails collected at the end of the experiment for each
species, including the non-host H. cubensis) as indicators of a latent variable of
overall snail density.

The relationship between infected Bi. glabrata density and density of live Bi.
glabrata at the end of the experiment was analyzed using generalized linear models
in the pscl package46,47 in R statistical software45. This relationship is only
presented for Bi. glabrata because there were too few infected Bu. truncatus alive at
the end of the experiment to perform the same analysis. Final Bi. glabrata density
in addition to fixed main effects of agrochemicals, their interactions, and block
were used as predictors of the count of infected Bi. glabrata in each tank, with a
zero-inflated Poisson distribution (Supplementary Table 2). We also tested for
direct effects of agrochemicals on infection prevalence using a beta binomial error
distribution of infected vs uninfected Bi. glabrata in each tank with fixed effects of
agrochemicals, their interactions, and block as predictors (Supplementary Table 3).
Model selection indicated that the beta binomial error distribution was a better fit
to the prevalence data than a binomial distribution (ΔAICc= 8.3). Analysis of
prevalence data was performed using the glmmADMB package48,49 in R45. Light
availability was tested as a response of phytoplankton chlorophyll a and fixed
effects of block in week 2, using the glmmADMB package in R.

The observed algal dynamics are consistent with previous research11. Fertilizer
increased phytoplankton density (chlorophyll a) and photosynthetic efficiency, and
increased periphyton density, but photosynthetic efficiency of periphyton was
reduced in fertilizer treatments. However, phytoplankton density was a negative
predictor of light availability in the water column (coef ± se=−334 ± 166; P=
0.0451), and decreased light availability is therefore likely to reduce the
photosynthetic efficiency of periphyton. Conversely, atrazine decreased
phytoplankton chlorophyll a and photosynthetic efficiency. Thus, although
atrazine negatively impacted periphyton chlorophyll a, photosynthetic efficiency of
periphyton increased in the presence of atrazine because more light was available
for photosynthesis, and a positive interaction between the joint presence of atrazine
and fertilizer in mixtures increased periphyton density substantially (Fig. 1,
Supplementary Table 1). The lack of complex refugia for snails in the mesocosms
may have artificially decreased the apparent strength of bottom-up effects on snail
densities relative to top-down regulation by predators. We explored the potential
for a submerged macrophyte, Hydrilla verticillata, to provide refugia for snails in a
separate mesocosm experiment, and found no evidence that H. verticillata provided
effective refugia from omnivorous crayfish (see Supplementary Methods,
Supplementary Fig. 4, Supplementary Table 8). However, because crayfish readily
consume both living and decaying plant matter, non-consumable refugia might
provide a stronger mediating effect on the relative strengths of top-down versus
bottom-up regulation of snail populations.

Cercaria production experiment. To test for indirect effects of agrochemical
exposure on cercarial production (through potential effects of agrochemicals on
resource composition, quality, and/or abundance), fifteen freshwater mesocosms
were established at the same time and using the same methods as noted above for
the main mesocosm experiment, with the exception that no snails or snail pre-
dators were added to these tanks. Instead, algal and zooplankton dynamics were
allowed to respond to agrochemical treatments in the absence of periphyton her-
bivores. This mesocosm experiment was also approved under USF Institutional
Biosafety Committee Study number 0971.

Tanks were randomly assigned to one of 5 treatments in 3 replicated spatial
blocks. Atrazine, chlorpyrifos, and fertilizer were applied at their respective EECs as
described previously. Solvent controls were used to account for the presence of
solvent used to deliver agrochemicals in solution. In addition, a treatment
combining atrazine and fertilizer at their respective target concentrations was
included to test for a potential interaction between these two agrochemicals.
Technical-grade pesticides were used for all treatments and actual concentrations
of chemicals applied to the replicates were confirmed as described above for the
main mesocosm experiment.

Forty infected Bi. glabrata (NMRI strain) were obtained from the NIAID
Schistosomiasis Resource Center and added to the first block of tanks four weeks
post-miracidia exposure (snails exposed 28 July 2010, added to first block 24
August 2010). Eight snails were added to each of the five replicate tanks in one
block and left in the tanks for three days before calculating cercaria production
rates. On the third morning after adding snails to each tank, snails were removed
from each tank and placed individually in 250 mL specimen containers filled with
100 mL of ASW for 1 h. After 1 h, snails were removed from each container and
five drops of Lugol’s iodine were added to preserve and stain cercariae. Snails were
haphazardly assigned to replicate tanks in the next spatial block and left for three
days before repeating the cercaria production trials. This process continued until
the infected snails were rotated through each block a total of two times. Cercariae
were counted in the laboratory under a dissecting microscope.

We tested for main effects of agrochemical treatment on the total number of
cercariae shed per hour with a negative binomial generalized linear model, using
the glmmADMB package in R48,49. We used fixed main effects for each chemical
and days since miracidia exposure and included random effects of tank nested in
block nested by trial number (first or second trial) as predictors of the cercaria
shedding rate. In addition, we tested for an interaction between atrazine and
fertilizer in the absence of chlorpyrifos. Cercaria production rates per snail
increased with increasing time since miracidial exposure (coef ± se= 0.138 ± 0.035;
P < 0.001; Supplementary Table 4), but there were no effects of agrochemical
exposure (all P > 0.35; Supplementary Table 4).

Direct effects of agrochemical exposure on schistosome cercariae. To test for
direct effects of agrochemical exposure on the cercariae of S. mansoni, six replicates
of four agrochemical treatments (atrazine, chlorpyrifos, fertilizer and a solvent
control each at their EEC as described above for the mesocosm experiment) were
randomly assigned to the wells of a 24-well tissue culture plate (Falcon® # 353047,
Corning Incorporated, Corning, NY, USA) containing freshly collected Schisto-
soma mansoni (NMRI strain) cercariae in 400 μL of COMBO50 (8.65 ± 0.64 cer-
cariae/well). One-hundred μL of stock solution of each agrochemical was added to
randomly assigned wells at the beginning of each trial to reach the target EEC for
each treatment at a total volume of 500 μL. Survival of cercariae was assessed at 2,
4, 8, 12, and 24 h after agrochemical addition using a separate 24-well plate for each
time point. At the given end point for each trial, the number of dead cercariae was
determined by adding 15 μL of trypan blue, a selective stain that is taken up only by
dead cercariae51, to each well. Following staining with trypan blue, 20 μL Lugol’s
iodine was added to each well to kill and stain all cercariae in the well.

Cercarial survival at each time point was tested using a binomial generalized
linear model in the glmmADMB package in R45,48,49. Fixed main effects of each
agrochemical and time were used as predictors of the proportion of dead cercariae
in each well. There was a significant negative effect of time since agrochemical
exposure on cercarial survival (coef ± se=−0.264 ± 0.017; P < 0.001), but not of
any agrochemicals (all P ≥ 0.10). When analyzing cercarial survival at each time
point independently, no main effects of agrochemicals were evident within 12 h of
exposure to agrochemicals (all P ≥ 0.10; Supplementary Table 5). Chlorpyrifos and
fertilizer each had significant negative effects on cercarial survival at 24 h post-
exposure (Supplementary Table 5). However, because infectivity of S. mansoni
cercariae declines rapidly and is very low beyond 8–15 h52, any treatment effects of
agrochemicals after 12 h are less ecologically relevant than earlier time points.

Schistosome egg viability experiment. To test for direct effects of agrochemical
exposure on the egg viability of S. mansoni and S. haematobium, we conducted
standard toxicity trials on the hatching rates of schistosome eggs exposed to
agrochemicals. Eggs were collected from the tissues of two S. mansoni-infected
Swiss-Webster mice and two S. haematobium-infected Siberian hamsters, on 1 Sep
2011, 6 September 2011, and 8 September 2011. See Methods for the mesocosm
experiment for detailed methods on egg collection. Eggs were stored in 1.4% NaCl
to prevent hatching before beginning egg viability trials on each day. For each
species on each date, twelve agrochemical treatments (described above) were
randomly applied to wells filled with 1.0 mL ASW in two spatial blocks in a 24-well
tissue culture plate (Falcon® # 353047, Corning Incorporated, Corning, NY, USA).
After applying agrochemicals to each well, approximately 20 eggs of either S.
mansoni or S. haematobium were added to each well. The number of miracidia in
each well was counted after 1 h. Lugol’s iodine was then added to each well to stain
and count the unhatched eggs in each well. One plate trial was performed on each
date for each species, for a total of six replicate trials per species. Egg viability was
tested with a beta binomial generalized linear mixed-effects model, using the
glmmADMB package in R45,48,49. Fixed main effects of and interactions between
agrochemicals and random effects of block nested within plate were used as pre-
dictors of hatching success. No main effects of agrochemicals or interactions
between agrochemicals on schistosome egg viability were evident (all P > 0.05;
Supplementary Table 6).

Modeling experiments. A model expanding on previous5 and classic29,30 work
was used to investigate agrochemical effects—of atrazine, chlorpyrifos, and ferti-
lizer—on human schistosomiasis transmission intensity. The model includes snail
population dynamics of Bulinus truncatus, the intermediate host of Schistosoma
haematobium, subject to logistic population growth and the influence of predation.
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We focus on S. haematobium for our modeling because it is the predominant
schistosome species found in the village in Senegal where the epidemiological data
used to parameterize our model were collected. The population dynamics of
generalist predators (P) are included, subject to an agrochemical-sensitive mortality
rate, μP,q, that reflects chlorpyrifos toxicity to the predator population as estimated
by the mesocosm experiments and previous work35. Because crayfish and prawns
are generalist predators and will switch to other resources when snail densities are
low, the model assumes that predator population dynamics are independent of
snail density. Also included is a parameter representing agrochemical enhancement
of the snail carrying capacity, φN,q, which models the snail population response to
bottom-up effects caused by algal stimulation by atrazine and fertilizer as estimated
in the mesocosm experiments and other experiments examining the same agro-
chemicals and outcomes. Additional model state variables represent susceptible,
exposed and infected snails (S, E, and I, respectively) and the mean worm burden
in the human population (W). The number of mated female worms, M, is esti-
mated assuming a 1:1 sex ratio and mating function, γ(W, k), as in ref.53. The per
capita snail predation rate by predators, modeled as a Holling type III functional
response as in ref.54, ψ, and the total snail population, N, are shown separately for
clarity. Parameter values, definitions and reference literature are listed in Supple-
mentary Table 9.

dS
dt

¼ f N 1� N
φN � φN;q

 !
Sþ Eð Þ � μNS� PψSn � βMS ð1Þ

dE
dt

¼ βMS� μNE � PψEn � σE ð2Þ

dI
dt

¼ σE � ðμN þ μIÞI � PψIn ð3Þ

dW
dt

¼ λI � μH þ μW
� �

W ð4Þ

dP
dt

¼ f P 1� P
φP

� �
Pð Þ � ðμP þ μP;qÞP ð5Þ

M ¼ 0:5WHγðW; kÞ ð6Þ

ψ ¼ α

1þ αThNn ð7Þ

N ¼ Sþ E þ I ð8Þ

Derivation of R0. Using the next generation matrix method55, we calculate R0 for
this system as:

R0 ¼
ffiffiffiffiffiffiffiffiffiffiffi
T1 T2

T3

r

Where:

T1 ¼ 0:5βHN�

T2 ¼ λσ

T3 ¼ μW þ μH
� �

μN þ P�ψ�

3
þ σ

� �
μN þ P�ψ�

3
þ μI

� �

ψ� ¼ αN�n�1

1þ αThN�nð Þ

and N* and P* represent disease-free equilibrium values of the snail and predator
populations, respectively, derived by setting equations (1) and (5) equal to 0 such
that:

P� ¼ 1� f �1
P μP þ μPq

� �� �
φP

and N* is estimated by solving for N* in the polynomial:

0 ¼ fN 1� φNφNq

� ��1
N�

� �
� μN � P�ψ�

The model expressed as equations (1) through (8) was fit to previously
published worm burden data from a baseline and follow-up survey of Schistosoma
haematobium infection in a rural community upstream of the Diama Dam in
Senegal5. The human-to-snail transmission parameter, β, and two values of the
snail-to-human transmission parameter, λlo and λhi, were fit to the seasonal
reinfection data using maximum likelihood estimation in R with the optim
function45, with all other parameters held to values shown in Supplementary
Table 9, and agrochemical and predation effects turned off (i.e., φN,q= 1 and P=
0). Estimates of uncertainty associated with model fitting were generated by
exploring the three-dimensional parameter space around the best-fit values of β,
λlo, and λhi (shown in Supplementary Table 9) by varying each plus or minus 90%
of its best-fit value. Assuming the negative log likelihood profile follows a chi-
square distribution with three degrees of freedom, all parameter triplets that have
negative log likelihood within 7.815 (95% CI, two-sided chi-square critical value) of
the negative log likelihood produced by the best-fit values are within the 95%
confidence interval. These parameter triplets were used in Monte Carlo simulations
described further below to generate estimates of R0. When estimating steady-state
transmission indices such as R0 a time-weighted average of λlo and λhi was used.

Point estimates of the baseline daily predator mortality rate, μP, and the
chlorpyrifos-enhanced predator mortality rate, μP,q, were derived directly from 24 h
mortality endpoints in the mesocosm experiment by treating all Procambarus alleni
in chlorpyrifos tanks (75 total) as a treatment cohort and all Procambarus alleni in
chlorpyrifos-free tanks (105 total) as a control group (Supplementary Table 9). A
parametric distribution of the predator mortality rate was obtained by fitting beta
distributions to 5000 bootstrapped samples of daily predator mortality in each of
the 25 mesocosm tanks with and 35 mesocosm tanks without chlorpyrifos added
(Supplementary Table 10).

To investigate the influence of a broader range of chlorpyrifos concentrations
on estimates of R0, a probit model of predator mortality was derived spanning the
range of chlorpyrifos concentrations (0–64 µg/L) tested in ref.35, conservatively
assuming 99% mortality in the highest tested concentration groups instead of 100%
to account for potential resistance in a small number of predators. Daily, per capita
predator mortality rates were derived across the range of tested concentrations and
used in the R0 expression to generate Fig. 3b–d and Supplementary Fig. 5.

Because crayfish are generalists, we modeled their predation of snails using a
Holling type III functional response (eqn 7) in which the per capita predation rate
is sigmoidal due to prey switching at low snail densities and restriction by the
handling time (Th) at high snail densities54,56,57. Though not directly interpretable,
the exponent, n, of the type III functional response is often assumed to be 2 for
invertebrate predators56,58. However we also tested a range of values from 1–4 for
the exponent, n, and found little qualitative difference in results when n > 1. When
n= 1, the functional response reduces to a Holling type II in which the predation
rate increases rapidly at low prey density and asymptotes at high prey densities
where predation is restricted by the handling time. In our model, this leads to
predation-induced extirpation of the snail population and R0= 0, a result we would
not expect in real-world transmission settings in which we expect prey switching by
the predator population as well as refuge-seeking by snails to diminish predatory
activity at decreasing snail densities.

Bottom-up effects in the mesocosm were introduced through model parameter
φN,q, a scalar that represents a proportional change in the baseline snail density-
dependence parameter, φN. To quantify the effect of atrazine and fertilizer, alone
and in combination, on this parameter while controlling for the strong influence of
predators on snail population dynamics, we calculated the mean proportional
increase in final Bu. truncatus density in the mesocosm tanks when fertilizer and
atrazine were added in combination with chlorpyrifos (Supplementary Table 10).
We found no previous studies in which chlorpyrifos had a significant direct effect
on snail population dynamics nor on algal dynamics at the concentrations tested in
the mesocosm. The distribution of the density dependence scalar, φN,q, was
obtained by fitting normal distributions to 5000 bootstrapped samples of the
parameter estimate derived from individual tanks within each treatment group
(Supplementary Table 10). To further investigate the influence of atrazine at
concentrations below the maximum expected environmental concentration—as
was tested in the mesocosm—we derived another atrazine-dependent scalar of the
carrying capacity based on the results of ref.59. Briefly: the scalar was calculated
according to the proportional increase in the peak growth rate at the tested atrazine
concentrations over the observed peak growth rate of the control group, as
discussed in refs. 60.

To produce estimates of R0 that incorporate uncertainty associated with both
model fitting and agrochemical parameterization, we ran 1000 Monte Carlo
simulations for each agrochemical treatment and the control group; drawing
randomly from the agrochemical parameter probability distributions described
above and from the range of best-fit transmission parameters (Supplementary
Table 10). The probability of sampling particular transmission parameter triplets
was weighted by a normalized index of their likelihood so that triplets that better fit
the model were more likely to be included in the simulation.

Code availability. All scripts containing the code used for data analysis in R are
available from the corresponding author upon request.
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Data availability. The experimental data that support the findings of this study are
publicly available in figshare with the identifier https://doi.org/10.6084/m9.
figshare.5797389.
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