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Abstract

Global environmental change has implications for the spatial and temporal 
distribution of water resources, but quantifying its effects remains a 
challenge. The impact of vegetation responses to increasing atmospheric 
CO2 concentrations on the hydrologic cycle is particularly poorly 
constrained1,2,3. Here we combine remotely sensed normalized difference 
vegetation index (NDVI) data and long-term water-balance 
evapotranspiration (ET) measurements from 190 unimpaired river basins 
across Australia during 1982–2010 to show that the precipitation threshold 
for water limitation of vegetation cover has significantly declined during the 
past three decades, whereas sub-humid and semi-arid basins are not only 
‘greening’ but also consuming more water, leading to significant (24–28%) 
reductions in streamflow. In contrast, wet and arid basins show 
nonsignificant changes in NDVI and reductions in ET. These observations are 
consistent with expected effects of elevated CO2 on vegetation. They 
suggest that projected future decreases in precipitation4 are likely to be 
compounded by increased vegetation water use, further reducing streamflow
in water-stressed regions.

Main

Experiments have shown that elevated atmospheric CO2 affects vegetation 
productivity and water use5. CO2 is the substrate for photosynthesis, and 
concentrations above current ambient levels stimulate carbon assimilation 
by plants. This CO2 fertilization effect should in principle lead to increased 
biomass and green vegetation cover (‘greening’). Simultaneously, increasing
CO2 lowers stomatal conductance, reducing water loss through leaves. 
Reduced stomatal conductance and/or stimulated photosynthesis lead to 
enhanced water-use efficiency, the amount of water required to produce a 
unit of biomass. The effect of CO2 on vegetation is commonly expected to 
manifest most strongly in water-limited environments6,7, where moisture is 



the main limitation on plant growth. However, not all studies show a strong 
link between aridity and the strength of the CO2 effect8, and the magnitude 
of associated greening and water savings are generally not well constrained 
across species and ecosystems9,10,11.

CO2-induced structural and physiological changes in vegetation potentially 
have consequences for water resources. CO2 fertilization and associated 
greening tends to increase vegetation water consumption by increasing the 
amount of transpiring leaf area, whereas reduced stomatal conductance 
tends to decrease transpiration per unit leaf area—two effects with opposing 
consequences for streamflow2. Furthermore, increased vegetation cover can 
change the partitioning of rainfall into rainfall interception, infiltration and 
runoff, while shading by increased foliage cover may lead to reductions in 
soil evaporation by decreasing the amount of radiation reaching the ground 
surface12. It remains unresolved whether these various processes in 
combination have led to a detectable imprint in ET or streamflow. At the 
global scale, both decreases and increases in ET due to CO2 have been 
reported1,2 and the results seem to be data- and model-dependent3. The 
direction and magnitude of the CO2 effect on ET and streamflow thus 
remains poorly understood at catchment and regional scales. This situation is
compounded by difficulties in estimating ET at large scales13,14.

We investigated the correlates and potential causes of long-term changes in 
vegetation across Australia using remotely sensed NDVI. NDVI has been 
found to relate to primary productivity15, foliage cover16 and biomass17 and 
has been widely employed to quantify vegetation trends6,18,19 and 
processes20. We also examined long-term changes in ET and streamflow in 
unregulated, unimpaired Australian river basins in climates of varying aridity.
ET was assessed by the water-balance method, which relies directly on 
observations of precipitation and streamflow.

We first investigated the spatial distribution of long-term changes in NDVI 
across Australia. Large areas of Australia have undergone greening during 
1982–2010 (Fig. 1a); precipitation explained about 50% of these trends 
(calculated as the coefficient of determination from a linear regression of 
NDVI and precipitation trends). Strong greening was observed, particularly in
water-limited areas (marked by positive NDVI–precipitation correlation; Fig. 
1b), where 65% of significant (P ≤ 0.5) NDVI trends were positive (excluding 
areas of significant precipitation increase).



We then quantified changes in the vegetation–precipitation relationship in 
areas of natural and semi-natural vegetation across Australia. By examining 
temporal changes in the upper 95th percentile bound for the spatial 
relationship between annual precipitation and NDVI (Fig. 2, see Methods) we 
identified long-term changes in the maximum NDVI attainable for a given 
amount of precipitation, and the extent of vegetation water limitation. We 
found that the maximum NDVI attainable for a given precipitation level has 
increased over time in water-limited areas (Fig. 3a; P = 0.059). This implies 
that a given amount of precipitation has sustained greater levels of plant 
production over time, which is consistent with CO2 fertilization. In addition, 
the breakpoint marking the precipitation limit where vegetation ceases to be 
water-limited decreased over time (P = 0.039; Fig. 3b). This trend indicates a
relaxation of vegetation water limitation, consistent with the increased 
water-use efficiency that is expected to accompany rising CO2.



To analyse long-term changes in vegetation and hydrology at the river-basin 
scale, we calculated CO2 sensitivity coefficients for NDVI and ET across 
basins grouped into four aridity categories (wet, sub-humid, semi-arid and 
arid), as theory would predict that a CO2 effect should differ systematically 
between the categories. The sensitivity coefficients express the fractional 
change in ET and NDVI per unit fractional change in CO2 concentration (after 
correcting ET and NDVI for precipitation and potential evapotranspiration 
(PET) variations, as detailed in Methods). A positive sensitivity coefficient of 
ET to CO2 of comparable magnitude to that of NDVI would indicate that a CO2

stimulation of vegetation cover dominates over a reduction in stomatal 
conductance with rising CO2, owing to an increased surface area of leaves for



transpiration and rainfall interception. A negative sensitivity coefficient of ET 
to CO2 (which can be of magnitude up to −1 at high CO2 concentrations) 
indicates that the reduction in stomatal conductance with rising CO2 
dominates over the CO2 stimulation of vegetation cover. We predict 
theoretical sensitivities around −0.6 in wet climates and −0.4 in arid 
climates owing to the effect of a reduction in stomatal conductance with 
rising CO2 on ET (see Methods).

In sub-humid and semi-arid basins, the data show a significant positive 
sensitivity coefficient of ET and NDVI to CO2 (0.44 ± 0.14 and 0.18 ± 0.08 for
ET, 0.10 ± 0.04 and 0.18 ± 0.11 for NDVI, respectively; Fig. 4a). In sub-
humid basins, the sensitivity coefficient of ET to CO2 is similar to the 
sensitivity coefficient of ET to precipitation (0.64 ± 0.05 calculated from 
uncorrected data; Supplementary Fig. 2a and Supplementary Table 2). In 
semi-arid basins, the sensitivity coefficient of ET to CO2 is about a fifth of its 
sensitivity coefficient to precipitation (0.86 ± 0.02). The CO2 concentration 
increased by 48 ppm during the period 1982–2010. Based on the sensitivity 
coefficients, the CO2-induced ET increases during this time period amount to 
43 mm in sub-humid and 14 mm in semi-arid basins on average. These 
translate to a 6% and 2% increase, respectively, in mean annual ET (Fig. 4b).
The relative changes in mean annual ET due to CO2 are similar to those due 
to precipitation (−6% and 1%, respectively; Supplementary Fig. 2b and 
Supplementary Table 5) and significantly larger than those due to PET (−1% 
and 0%, respectively; Supplementary Fig. 2b and Supplementary Table 6). 
Together with significant positive NDVI sensitivity coefficients to CO2 (Fig. 
4a), this finding suggests an effect of rising CO2 on both NDVI and ET, and 
that the fertilization effect dominates over stomatal closure.



In wet basins, the sensitivity coefficient of ET to CO2 was found to be 
negative (−0.42), consistent with theoretical predictions (see Methods), but 
this value was not statistically distinguishable from zero (Fig. 4a). No 
greening was detected. In wet environments, vegetation cover is nearly 
complete and expected to be limited by light and nutrients rather than 
water. Thus limited greening should occur, and the principal effect of CO2 on 
ET would be a decline due to reduced stomatal conductance.

We also found negative but nonsignificant CO2 coefficients on ET (−0.33 ± 
0.55) and NDVI (−0.11 ± 0.34) in arid basins (Fig. 4a). This finding runs 
counter to the common expectation that CO2 effects should be most 
pronounced in the most strongly water-limited environments. However, it is 
consistent with field experimental evidence showing no long-term change in 
biomass or water-use efficiency under elevated CO2 in a desert 
environment8. This lack of a detectable response has been attributed to a 
high frequency of years with very low precipitation, inhibiting any sustained 



increase in vegetation biomass8. Warm arid areas also tend to harbour a 
larger proportion of C4 grasses, which we estimate to cover 43% of the area 
in arid basins on average (further discussed in Supplementary Section 1) C4 
plants show reduced stomatal conductance under elevated CO2, consistent 
with the observed reduction in ET, but the stimulation of photosynthesis in C4

plants is limited compared to C3 plants that dominate in cooler and wetter 
regions5,21 and occurs only under drought conditions5. The high proportion of 
C4 vegetation may thus further contribute to the lack of a CO2 fertilization 
effect in arid basins.

We investigated the implications of the long-term ET changes for streamflow.
Where ET exceeds streamflow, changes in ET are magnified in streamflow. 
This was apparent in sub-humid and semi-arid basins, where a small (26%) 
increase in ET led to substantial percentage reductions in streamflow. 
Calculated streamflow (factoring out precipitation effects) declined during 
1982–2010 by 24% in sub-humid basins and by 28% in semi-arid basins (Fig. 
4b), which, considering the CO2 sensitivities for these regions, is consistent 
with a response to CO2. Given the actual observed declining trend in 
precipitation in the sub-humid basins (−3 mm yr−2, P < 0.001; Supplementary
Fig. 4), increasing CO2 is likely to have aggravated the pressure on water 
resources in these basins. In arid basins, a 4% decrease in ET would have led
to a 132% increase in streamflow and in wet basins a 5% ET decrease would 
have led to a 5% increase in streamflow. However, neither effect is 
statistically significant, so we cannot detect a CO2 effect on streamflow in 
either the wettest or the driest regions on the basis of these measurements.

Our results provide evidence that rising atmospheric CO2 has led to 
observable changes in terrestrial ecosystems and hydrology across a large 
part of Australia, with implications for carbon and water cycling at regional to
global scales. Terrestrial ecosystems worldwide at present withdraw about a 
quarter of all anthropogenically emitted CO2 when averaged over a decade22.
A recent study23 showed that semi-arid areas, particularly in Australia, play a 
major regional and even global role in modulating interannual variations in 
the rate of terrestrial carbon uptake. Increased carbon sequestration rates 
due to CO2-induced greening in these semi-arid regions may lead to 
enhanced uptake of CO2 from the atmosphere in the future. Furthermore, the
response to rising CO2 has the potential to either magnify or counteract 
future changes in precipitation. Precipitation is projected to decline in semi-
arid and arid Australia during the twenty-first century4, and increasing CO2 is 
thus likely to put further pressure on water resources in already water-
stressed regions. Our results may have similar implications for other water-
limited subtropical regions in the Mediterranean, southern Africa and the 
Americas, where precipitation is also projected to decline with increasing 
global temperature4. We conclude that increasing atmospheric CO2 is likely 
to have left a detectable imprint on Australian ecosystems and hydrology, 
and such responses should be taken into account in future projections of 
water resources.



Methods

Core data sets.

Normalized difference vegetation index. We obtained a time series of third-
generation NDVI (NDVI3g) from the Global Inventory Modelling and Mapping 
Studies (GIMMS; ref. 24). This data set is gridded at 0.083° spatial resolution 
and was averaged from biweekly to annual time steps. The annual average 
for a given grid cell was determined only if >80% of biweekly values were 
available and was set to missing otherwise. Similarly, pixel trends were 
calculated only for pixels with annual time series >80% complete. Basin-
specific NDVI values were obtained by averaging gridded data over basin 
areas.

Climatic variables. Monthly climatic fields (precipitation, minimum and 
maximum air temperature and shortwave radiation) were obtained from the 
ANUCLIM archive25. The Australia-wide data are gridded at 0.05° spatial 
resolution and were produced by the ANUSPLIN software package25,26 from 
meteorological station data using a thin-plate smoothing spline.

An annual time series of atmospheric CO2 concentrations was obtained from 
National Oceanic and Atmospheric Administration Earth System Research 
Laboratory (NOAA ESRL; http://www.esrl.noaa.gov/gmd/ccgg/trends). The 
data report the mean annual CO2 concentration measured at Mauna Loa 
observatory in parts per million. We ignored latitudinal differences in CO2 
concentration as these are small compared to the signal of interest.

Potential evapotranspiration (PET) was calculated using the Priestley–Taylor 
method as in ref. 27, using inputs of shortwave radiation and the mean of 
minimum and maximum air temperature from the ANUCLIM archive. The 
Priestley–Taylor method has been shown to be appropriate for estimating 
large-scale PET (refs 28,29) and has been adopted in other basin-scale 
studies14,30,31.

Water-balance evapotranspiration. Water-balance evapotranspiration was 
calculated as the difference of observed annual precipitation and streamflow 
integrated over the river basin area. The water-balance method remains the 
most firmly observationally based estimator of ET, but assumes negligible 
changes in soil water storage at annual to decadal timescales (see 
Supplementary Section 1 for further discussion). Streamflow time series were
acquired from a streamflow collation for unregulated catchments across 
Australia32. Gaps in the water-balance ET time series (accounting for <5% of 
monthly records) were filled using simulations from the Australian Water 
Availability Project33, further detailed in Supplementary Section 1.

Study basins. The 190 study basins were chosen based on the completeness 
of streamflow records (>95%) and the extent of irrigated and farmed land 
(<5% of basin area). The basins were classified into wet, sub-humid, semi-
arid and arid using the climatological aridity index A (A = PET/P, where PET =
annual mean potential ET and P = annual mean precipitation) (see 



Supplementary Fig. 1 for basin locations and aridity classification). River 
basins with mean annual aridity index <1 were classified as wet, 1–2 as sub-
humid, 2–5 as semi-arid and >5 as arid (adapted from UNEP (1997)34). See 
Supplementary Section 1 for further details on basin selection and 
classification criteria.

Breakpoint regression.

Five-year running mean NDVI values were binned according to their 
corresponding precipitation values. Following ref. 6, the 95th percentile 
value was determined for each 20-mm-wide precipitation bin separately for 
each running mean. Breakpoint regression was applied to the 95th percentile
values to calculate the first regression slope marking the maximum NDVI 
attainable for a given precipitation and the breakpoint where the vegetation–
precipitation relationship plateaus and vegetation ceases to be water-limited.
We then constructed time series of the slopes and breakpoints (Fig. 3) and 
determined linear trends for both variables. As running means were used to 
construct the time series, degrees of freedom were adjusted when 
determining the significance of trends. Farmlands, irrigated areas and 
wetlands were excluded from this analysis using the Dynamic Land Cover 
Dataset of Australia35 (see Supplementary Section 1).

CO2 sensitivity coefficients.

Estimation of observed CO2 coefficients. Dimensionless CO2 sensitivity 
coefficients were calculated from NDVI and ET corrected for precipitation and
PET (a function of temperature and shortwave radiation). Precipitation and 
PET present the main climatic constraints on plant growth36 and are the two 
first-order controls on ET (ref. 37). The effects of precipitation and PET were 
removed using linear regression: separately for each basin, annual ET (E) 
and NDVI were regressed against precipitation and PET and the annual 
corrected values were calculated as the sum of the regression residual and 
the 1982–2010 mean of the variable. The corrected annual variables were 
then log-transformed and regressed against log-transformed annual CO2 
concentrations (Ca) to derive the CO2 sensitivity coefficients σET = ∂lnE/∂lnCa 
and σNDV I = ∂lnNDV I/∂lnCa. The sensitivity coefficients represent the 
fractional change in the relevant variable per unit fractional change in CO2, 
so that a change in ET (mm) due to CO2 is well approximated by ΔE/E ≍ σE. 
ΔCa/Ca for ΔE ≪ E and ΔCa ≪ Ca (as in this study). ET and NDVI sensitivities to
precipitation were calculated from uncorrected data using the same 
principles (further detailed in Supplementary Section 2).

Prediction of theoretical ET sensitivity to CO2. The theoretical sensitivity of ET
(E) to CO2 concentration (Ca) for C3 photosynthesis on a unit leaf area basis 
can be calculated by writing the CO2 assimilation rate (A) and E in the form 
of diffusion equations:

and



where gs is the stomatal conductance to CO2, χ is the ratio of internal CO2 
concentration (Ci) to Ca, and D is the vapour pressure deficit. χ is a function 
of D and leaf temperature38,39 and typically takes values from 0.4–0.5 in arid 
climates to 0.8–0.9 in wet climates. Substitution of gs from equation (1) into 
equation (2) yields

Differentiating with respect to Ca, holding D and χ constant, gives:

where σA is the sensitivity of A to Ca:

Equation (4) implies that the sensitivity of E to Ca approaches −1 as the CO2 
fertilization effect on A saturates. However, so long as A is increasing with Ca,
the sensitivity is smaller in magnitude than −1. The sensitivity of A to Ca can 
be calculated conservatively by invoking the coordination hypothesis 
(approximate equality of the carboxylation- and electron transport-limited 
rates of photosynthesis under field conditions: see, for example, ref. 40). 
With the further assumption that limitation by the maximum rate of electron 
transport (Jmax) is not relevant in the field (because Rubisco limitation takes 
over at the highest light levels), we can express the assimilation rate as

where φ0 is the intrinsic quantum efficiency of C3 photosynthesis, Iabs is the 
absorbed photosynthetic photon flux density and Γ∗ is the photorespiratory 
compensation point. Differentiating A with respect to Ca, holding χ constant, 
gives:

Evaluating equation (7) and then (4) at 25 °C, Ca = 370 ppm for illustration 
gives σE = −0.61 for χ = 0.8 and −0.38 for χ = 0.5.
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