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Single-cell analysis of habituation in Stentor coeruleus

Deepa Rajan*,1, Tatyana Makushok*,1, Asa Kalish1, Lilibeth Acuna2, Alex Bonville2, Kathya 
Correa Almanza2, Brenda Garibay2, Eric Tang2, Megan Voss2, Athena Lin1, Kyle Barlow3, 
Patrick Harrigan3, Mark M. Slabodnick1, Wallace F. Marshall1

1Department of Biochemistry and Biophysics, University of California San Francisco, San 
Francisco, CA, USA

2CCC Summer course, Center for Cellular Construction, San Francisco State University, San 
Francisco, CA, USA

3Integrative Program in Quantitative Biology, University of California San Francisco, San 
Francisco, CA, USA

SUMMARY:

Although learning is often viewed as a unique feature of organisms with complex nervous 

systems, single-celled organisms also demonstrate basic forms of learning. The giant ciliate 

Stentor coeruleus responds to mechanical stimuli by contracting into a compact shape, presumably 

as a defense mechanism. When a Stentor cell is repeatedly stimulated at a constant level of 

force, it will learn to ignore that stimulus, but will still respond to stronger stimuli. Prior studies 

of habituation in Stentor reported a graded response, suggesting that cells transition through a 

continuous range of response probabilities. By analyzing single cells using an automated apparatus 

to deliver calibrated stimuli, we find that habituation occurs via a single step-like switch in 

contraction probability within each cell, with the graded response in a population arising from 

the random distribution of switching times in individual cells. This step-like response allows 

Stentor behavior to be represented by a simple two-state model whose parameters can be estimated 

from experimental measurements. We find that transition rates depend on stimulus force and also 

on the time between stimuli. The ability to measure the behavior of the same cell to the same 

stimulus allowed us to quantify the functional heterogeneity among single cells. Together our 
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results suggest that the behavior of Stentor is governed by a two-state stochastic machine whose 

transition rates are sensitive to the time series properties of the input stimuli.

Graphical Abstract

eTOC blurb

Rajan, Makushok, et al. analyze learning in the unicellular organism Stentor coeruleus, which 

habituates to mechanical stimuli. A gradually decreasing response in a population of cells is due to 

step-like transitions in individual cells. Transition rates between the responsive and non-responsive 

states depend on stimulus intensity and frequency.

INTRODUCTION

Habituation, in which organisms learns to ignore repetitive stimuli, is a form of learning 

found in most animals1. Habituation has been extensively studied in animals ranging 

from invertebrates to mammals2–4 in which it is found that most instances show ten 

characteristics5, among which are the response decreasing faster when the stimulations are 

more frequent and the spontaneous recovery of the response after the stimulation is stopped.

Intriguingly, habituation has also been observed in plants6 and in individual free-living 

cells7,8, including in bacteria9 and in the polyploid plasmodium of the slime mold Physarum 
polycephalum10. Habituation has been particularly well studied in ciliate protists, whose 

large size and easily observable behaviors11,12, such as directed swimming and cell 

contraction, greatly facilitates the study of learning and behavior. Specific examples include 

Spirostomum13, in which it has been shown that habituation does not require the presence of 

nucleus, and Vorticella14, a ciliate that habituates to both mechanical and electrical stimuli. 
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The ubiquity of habituation across such widely varying branches of biodiversity suggest it is 

somehow a fundamental property of living things.

What is the mechanism of learning in protists? In animals, habituation involves neuronal 

circuits in which the response of a neuron to the activity of other neurons is modified during 

learning3. In contrast, the molecular mechanism of habituation in single-celled organisms is 

less well understood. Habituation in single cells has been best studied in the ciliate Stentor 
coeruleus15, which displays habituation to mechanical stimuli16. Stentor (Figure 1A,B) 

attach to surfaces and contract in response to stimulation (Figure 1C). Contraction takes a 

few milliseconds17,18 while re-extension takes about a minute. If an identical stimulus is 

applied repeatedly, Stentor gradually stop responding, indicating they have habituated11,16. 

Weaker stimuli cause faster habituation than stronger stimuli16. Strong stimuli still elicit 

a contraction in habituated cells, and repeated strong stimuli prevent habituation, arguing 

against simple exhaustion as a mechanism. These features of habituation in Stentor match 

those seen in animal habituation1,5.

Electrophysiological and drug treatment studies19–21 have shown that mechanical 

stimulation triggers an initial membrane depolarization, which then triggers an action 

potential, leading to calcium influx that drives contraction mediated by fibers composed 

of calcium binding proteins. Repeated mechanical stimulation leads to a decrease in 

mechanoreceptor potential amplitude20,21. The molecular identity of the mechanosensory 

channel remains unknown, although its electrophysiological properties have been well 

studied by Wood. Mechanosensitivity is localized at the regions of the cell membrane 

overlaying stripes of blue pigment granules22, indicating that the mechanoreceptor molecule 

is likely localized in these areas. Stimulation of one region of the cell surface leads to 

habituation of the cell as a whole, indicating that habituation is not simply local adaptation 

of individual stimulated mechanoreceptor molecules in response to their own individual 

activation23.

Wood21 has found that the action potential remains almost the same during habituation, 

whereas in contrast a much stronger effect is seen on the receptor potential, implying that 

haibutation works by modifying the properties of the ion channel associated with sensing the 

stimulus. Those studies indicated that the conductance of the receptor channel was reduced 

during habituation, and, importantly, that the effect was not due to decreased numbers of 

receptors, but to an alteration in their voltage dependence. Based on these results, Wood 

proposed a model for habituation in which a modification of the gating charge of the 

receptor associated channel, possibly due to phosphorylation. Such a model would naturally 

give a graded response, as various individual receptor channels became modified, leading 

to a gradual alteration in the voltage dependence, and a gradual change in mechanoreceptor 

potential amplitude. Such a gradual change in receptor potential would fit the gradual 

reduction in response probability seen in populations of cells16.

Here, we quantified the response of individual cells during stimulation, and found that 

although the population response is graded, the response of individual cells is best accounted 

for by a step-like response, in which a cell can be in either of two states, with stochastic 

switching between the states.
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RESULTS

Observation of single-cell response during habituation

Using an Arduino-controlled system to apply mechanical stimuli (Figure 1D; for details see 

Methods and Figure S1) we imaged Stentor cells subjected to a series of stimuli applied at 

uniform frequency, allowing us to visualize cells before and after stimulation (Figure 1E,F). 

Consistent with previous reports of habituation in Stentor16 we observed that the fraction of 

cells contracting at each stimulation decreased over time (Figure 1G). Both the frequency 

of response and the habituation rate observed with our apparatus were comparable to those 

reported by Wood16. Also consistent with prior reports16, we found that the fraction of cells 

contracting decreased more rapidly when weaker stimuli were applied (Figure 1G,H).

These results show that a population of cells habituates gradually to the stimulus. We 

next examined the responses of individual cells, by manually tracking cells through video 

images acquired during habituation. For each cell, we checked its contraction behavior at 

each stimulation, and recorded whether or not it contracted. Figure 2A gives representative 

examples of such recordings. The complete set of responses are given in Figure S2A and 

B. It is visually apparent that individual cells start out responding to a large fraction of the 

stimuli, and after maintaining this degree of response for some time, the responses become 

less frequent. This visual pattern suggested that cells might undergo a switch in response 

probability from a high response to a low response probability, thus giving a step-like 

response.

In order to test for a step-like response in an unbiased fashion, we implemented an algorithm 

to identify steps in the response pattern by testing partitions of each time series, to identify 

the time point at which the response probability before and after that point differ maximally. 

To perform this test (see Methods for details), each timepoint is considered as a possible 

step, and the fraction of cells contracting per stimulus before and after that time point are 

compared using Fishers exact test. The timepoint at which the test shows the maximal 

difference is taken as the location of the step. The inferred step points for two examples are 

indicated in Figure 2A by the line graphs. Out of 22 cells from three separate experiments 

using the same starting culture, 20 showed a statistically significant difference (P<0.02) 

in the response before and after the step point. As a control, we repeated the analysis on 

scrambled data in which the same set of responses for each cell were randomly permuted. 

As shown by the first two columns in Figure 2B, the minimum P values for scrambled 

data are much larger than for the original data, arguing that most cells show a statistically 

significant step transition in their response probability.

To determine whether additional steps take place other than the step defined above, we 

repeated the same procedure for the subset of time-points before and after the primary 

step. In each case, we asked if the resulting sub-partitions show a significant difference in 

contraction probability when split at any time point in their range. Figure 2B shows the 

distribution of p values for the two sub-partitions, which both show a similar range of values 

as for scrambled data. Neither prior to the original step-point, nor after the original step 

point, did any of the cells show a statistically significant difference in response within any 

sub-partition, suggesting that only a single step took place during the experiment.
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However, a key question is whether the test employed here can discriminate a single 

step from a graded process. To ask this question, we simulated single-cell data using the 

population contraction probability in Figure 1G, and then analyzed the simulated datasets 

using the step detection algorithm. As shown in Figure 2C, the graded model produced a 

distribution of step p values that is skewed towards larger values, indicating cases in which 

no step was detected, but it does partially overlap the real data, indicating that in a number 

of cases the graded model produces apparent steps. Based on the distribution of scores for 

real versus simulated graded data, the single-step model provides a better fit to the real data 

than the graded model (p=0.000034, Mann-Whitney test for unpaired data), but because the 

graded model can in some cases produce apparent steps, we cannot strictly rule out the 

graded model from this comparison alone.

As a further way to discriminate single-step from graded behavior, we asked how the dwell 

times in the responsive state are distributed. For each cell determined by Figure 2B to 

show a single step (n=18), we used an edge detector based on the step detection procedure, 

as described in Methods, to determine the time point at which the response first drops 

significantly below the initial response rate for each cell. The distribution of dwell times 

in the responsive state is plotted in Figure 2D. For a single-step process with a constant 

probability of switching per unit time, the dwell time histogram should show a geometric 

distribution. As shown by the orange bars in Figure 2D, the real data do in fact fit well 

to a geometric distribution (χ2 = 0.86, p = 0.93). We note that the geometric distribution 

plotted was not derived by fitting, but by using the inverse of the average dwell time taken 

directly from the experimental data. We also note that the mean dwell time estimated by this 

method is in good agreement with the half-time for decay of the response at the population 

level as plotted in Figure 1G. In contrast to the good fit between the single-step model (as 

judged by the geometric distribution), the step time distribution obtained from the simulated 

graded data in Figure 2C, indicated by the gray bars in Figure 2D, does not fit well with the 

experimentally observed step time distribution (χ2 = 22.8, p=0.00014). Taken together, our 

data show that the single-step model provides a better fit to the observed cell behavior than 

the graded model, particularly in terms of the step time distribution.

We repeated the same analysis for another 44 cells from the low force experiment of Figure 

1H, with results given in Figure S2B–E. Unlike the case with the higher force regime, some 

cells did not show any obvious downward step in response, instead showing a uniformly 

low frequency of contracting throughout the course of the experiment. However, for the cells 

that did show a decrease in contraction probability during the course of the experiment, 

they only showed a single step, with no evidence for multiple stepping, and the dwell 

times in the responsive state again showed a distribution that was not significantly different 

from a geometric distribution, consistent with a uniform probability of switching states per 

unit time (Figure S2E orange bars, χ2 = 3.2, p=0.53). The step time distribution estimated 

from the population response to mimic a graded response (as was done above) did not 

fit the real data as well (Figure S2E grey bars, (χ2 = 8.4, p=0.08). In this case, the real 

data are potentially consistent with either the single-step (geometric distribution) or graded 

(distribution obtained from simulations using population data) models, however the quality 

of the fit is numerically better for the single-step model.
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We conclude that while a population of Stentor cells shows gradual habituation, the 

response of individual cells may be better described by a single switch-like transition from 

a responsive to a non-responsive state, rather than a graded response. This observation 

immediately suggests a two-state model, which we consider next.

Two-state model for habituation in Stentor

Learning requires that the internal state of the system must change in response to past 

history. The simplest model for this process is a two-state model represented by the state-

transition diagram of Figure 3A. In each of the two states, the cell has a fixed probability 

of contracting in response to the stimulus. State 1 represents a cell in a “responsive” state 

with a high probability of contracting, while State 2 represents a cell in a “non-responsive” 

state that is less likely to contract when stimulated. In between successive stimuli, the cell 

switches between the two states with some fixed transition probability, as suggested by the 

geometric distribution of stepping times (Figure 2D). The probabilities of responding and 

of switching are both potentially functions of the stimulus strength. These types of state 

models have been used to model decision making in humans and animals24. In our case, we 

assume that prior to the application of any stimulus, most of the cells are in State 1 (the 

responsive state), which would be the case if the forward transition rate p12 (from State 1 

to State 2) is much lower than the reverse transition rate p21 (from State 2 back to State 

1) in the absence of external stimulus. Habituation would take place if, in the presence of 

a stimulus, the transition probabilities shift such that the forward transition becomes more 

probable. This would cause some of the cells to switch into the non-responsive state, leading 

to the observed decrease in response. With continued stimulation, the population of cells 

would reach a steady-state distribution with the majority of cells in the non-responsive state 

but some cells in the responsive state.

At any given stimulus level, the model is characterized by four parameters: p12 describes 

the probability of switching from State 1 to State 2, p21 describes the probability of the 

reverse transition, and P1 and P2 are the probabilities of contracting while in state 1 or state 

2, respectively. The schematic model of Figure 3A can be characterized by a differential 

equation that describes the probability of a cell being in State 1, as follows:

dP (State 1)
dt = p21(1 − P (State 1)) − p12P (State 1) (1)

In this model, which is a continuous time version of the discrete transitions, the probability 

of contraction should show an exponential decay from an initially high response probability 

prior to stimulation to a steady-state response probability of

Ps = P2p12 + P1p21
p12 + p21

(2)

with a decay time of
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τ = 1
p12 + p21

(3)

Stochastic simulations of this model (Figure 3B) show that habituation is indeed observed, 

and that the change in response probability is approximated by an exponential. This simple 

two-state model is thus able to replicate the gradual decrease in response probability in 

a population of cells. Even though individual cells undergo a discrete switch from a high 

probability of response to a low probability of response, different cells undergo this switch 

at different times, and this results in a gradually reduced response in the population. We 

conclude from these simulations that the step-like responses of individual cells as described 

in Figure 2, involving just two states, are sufficient to explain the graded response in 

populations of cells as observed in Figure 1.

We note that we have formulated this model as a Discrete Time Markov Process, in which 

transitions occur at regular time intervals corresponding to moments when an input stimulus 

is received, such that the transitions rates p12 and p21 are unitless probabilities. In reality, 

there is no reason for a cell to be waiting for inputs at 1 minute intervals and so it is far more 

likely that the system is behaving as a Continuous Time Markov Process, in which there is a 

constant transition rate per unit time, with p12 and p21 reflecting the integral of the transition 

probability over the time interval between successive stimuli.

Using single-cell measurements to estimate parameters for the two-state model

The two-state model is characterized by four parameters. The habituation decay curve such 

as seen in experimental data of a population of cells can be fully characterized by three 

parameters - the initial response probability, the final response probability, and the decay 

time. The fact that the data can be described with just three parameters, but the model 

requires four parameters, suggests that population level plots such as that in Figure 1GH 

may not contain enough information to reliably estimate parameter values in the model. 

Indeed, as shown in Figure 3B, different sets of parameter values can give apparently 

identical habituation results.

In order to provide additional information for fitting model parameters, we use our single-

cell data to compute the run lengths for successive contractions or non-contractions of 

individual cells. Simulations of the two-state model show that run-time distributions (the 

number of contractions in a row or the number of non-responses in a row) can be different 

between sets of model parameters that have identical habituation responses (Figure 3C,D), 

showing that single-cell measurements may provide additional information for estimating 

model parameters compared to population level analysis.

We implemented a strategy for parameter estimation for the two-state model (detailed in 

Methods) in which we sweep parameters, carry out stochastic simulations, and compare the 

results with observed data based on a joint cost function involving the decay time, steady 

state contraction probability, and the first three moments of the steady state contraction and 

non-contraction run times. Simulations confirmed that this procedure is able to recover the 

parameter values used for the simulations.
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We then combined the single cell data for one set of conditions (1 min between stimuli, 

5.3 mm swing, which we refer to as “high force”) and used the combined data (initial 

response, decay time, final response, and first three moments of single-cell contraction and 

non-contraction run time distributions) to estimate model parameters. Figure 3E–G shows 

the experimentally measured response for the high force experiment overlayed with the 

results of a simulation using the parameters obtained by our fitting procedure, confirming 

a close agreement. Figure 3H–J shows the model fit for data obtained using the low 

force stimulation. The results of the model fitting are summarized in Figure 3K which 

provides state transition diagrams that best predict the single-cell experimental results under 

the two force regimes. Two notable features are that the transition probability from the 

non-responsive state to the responsive state, p21, is extremely small in both cases, and that 

the transition probability p12 from the responsive to the non-responsive state is higher for 

cells stimulated with lower force, consistent with the faster rate of habituation seen when 

weaker forces are applied16. The very small rate of transition p21 is consistent with the direct 

analysis of single-cell steps in Figure 2 which suggests that once a step has occurred to 

the non-responsive state, it is highly unlikely for the cell to take a second step back to the 

responsive state.

To confirm the general features of this model, we repeated the analysis using 43 cells with a 

2.5 minute interval between stimuli (Figure S3). When single cell data from these cells were 

used for fitting parameters of the two-state model, we found again that p21 was very small 

and that p12 was much larger for cells stimulated with a lower force (summarized in Figure 

S3G).

The transition rates and response probabilities of Figure 3K were obtained by parameter 

fitting using moments of the single cell run time distributions, an approach taken to ensure 

robustness in the face of relatively small numbers of measurements from individual cells. 

An alternative method is to directly estimate a hidden Markov model using the Baum-Welch 

algorithm25 applied to the set of individual single-cell records. As shown in Figure 3L, when 

parameters were estimated using this methods, the results were qualitatively similar to the 

moment-based estimator, namely, it was found that the probability of the reverse transition, 

p21, is extremely small for both high and low force, and the transition probability p12 is 

larger for lower forces.

Forgetting: state transition in the absence of stimulus

The fact that p21 is effectively zero is inconsistent with previous reports (16) that cells 

completely lose habituation in less than 1 hour after cessation of the stimuli. With our 

estimated values for p21 on the order of 0.001 min−1, the habituated state should decay with 

a half-life of approximately 5 hours, far slower than what Wood has reported. This raised 

the possibility that the rate of transitioning from the non-responsive state to the responsive 

state might itself be a function of the applied stimulus. To address this possibility, we carried 

out the experiment shown in Figure 4A, in which we applied a high-force stimulus once per 

minute for 30 minutes, then waited 15 minutes without applying any force, after which the 

stimulus was resumed for 5 more minutes. As shown in Figure 4B, we found that within 

15 minutes, 90% of habituated cells became fully responsive again, from which we can 
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calculate a transition rate of 0.15 min−1. This is two orders of magnitude larger than the 

value of p21 estimated above in our two-state model. We note that the two values of p21 both 

describe the transition probability in the absence of a stimulus - in the normal experiment the 

transition occurs during the 1 min intervals between stimuli, and in the experiment of Figure 

4B, it occurs during the 15 min interval after the stimulus train. Our results indicate that 

the transition rate is not constant per unit time, but increases as a function of elapsed time 

after the last stimulus, such that if stimuli continue to occur within some minimal timescale, 

the habituated state is maintained indefinitely, but when the stimulus is missing for a longer 

period, the habituated state is lost. This type of behavior is often employed in an engineering 

context in the form of a “watchdog timer” which continuously resets itself as long as 

some input continues to be received, but then triggers a different response when no input 

occurs during the desired time interval. We speculate that the maintenance of habituation in 

Stentor may involve a molecular analog of such a watchdog timer mechanism. A biological 

example is the exonuclease activity of DNA polymerase, which is normally inactive and 

only triggered when the time between successive nucleotide incorporation events becomes 

long26. We also note that the fact that transitions occur even when stimuli are not being 

applied confirms that the reverse transition is taking place as a continuous time, rather than 

discrete time, process.

State transitions in a higher force regime

Wood16 has reported that with sufficiently strong stimuli, habituation takes place very 

slowly if at all. We analyzed contraction of single cells in a higher force regime generated 

by a stepper motor (Figure 4C–F, see Methods) under which habituation was approximately 

3–6 times slower than in the lower force examples in Figure 1. Applying the step detection 

algorithm, out of 20 cells examined, all 20 showed a single statistically defined step 

according to our procedure (Figure 4E). One cell showed potential support for a second 

step after the primary step, but with a much lower degree of statistical support than the 

primary steps for any of the 20 cells. Analysis of step time distributions (Figure 4F) 

showed a dramatic difference at high forces compared to the previous data in Figure 

2. Instead of a geometric step time distribution in which most of the steps took place 

within the first 5 stimuli, we observed a step time distribution with a clear peak in stimuli 

5–10. This peaked distribution was well fit with an Erlang distribution having shape 

factor 5 (χ2 = 0.86 p=0.83). In contrast, a simulated step time distribution representing 

a graded response by simulating contractions using population data did not fit the actual 

step time distribution (χ2 = 9.8 p=0.04). These results indicate that even at a very 

high force, habituation takes place through a single state transition, but unlike at lower 

forces, at high force the probability of transition p12 is no longer constant per unit time. 

Erlang distributions typically arise in processes where an observable transition requires 

multiple independent, unobserved transitions, with the shape factor indicating the number of 

unobserved independent transitions.

State transitions at higher stimulus frequency

The “forgetting” experiments of Figure 4A–B indicate that the reverse transition rate p21 

is a function of stimulus frequency. To ask whether the forward transition rate p12 might 

also depend on frequency, we applied stimuli at a period of 1.2 seconds (Figure 4G) using 
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the same force as Figure 4C. The result was dramatically faster habituation. Within 2.5 

minutes, the cells had switched to the nonresponsive state, representing at least an order of 

magnitude faster habituation compared to that seen when stimuli were applied at a period of 

1 min (Figure 4C). As noted above, two state model of Figure 3A did not specify whether 

transitions took place only at discrete times when stimuli arrive, or continuously over time. 

In the former case, we would expect that habituation with higher frequency stimuli might 

take place with a similar number of stimuli, while in the second case it would require a 

higher number of stimuli for a transition to occur, since less time elapses between them. As 

shown in Figure 4H, when we plot contraction versus stimulus number for the 1 min and 1.2 

second stimuli, it is apparent that a higher number of stimuli are required to achieve the state 

transition with 1.2 seconds between stimuli, arguing against the idea that state transitions 

occur only at the arrival of stimuli. However, as shown in Figure 4I, the rate of habituation as 

a function of time is clearly higher when the stimuli arrive at higher frequency.

We conclude that, as with reverse transitions (forgetting) that can take place in between 

stimuli and for which the magnitude of the rate p21 is a function of stimulus frequency, the 

same is true for the forward transition (habituation). But in contrast to p21, which decreases 

with stimulus frequency, p12 increases with stimulus frequency. It is interesting to consider 

whether cells might have a single timer or other mechanism that tracks stimulus frequency 

and modulates both p12 and p21 accordingly.

Stentor does not anticipate stimuli

One potentially confounding effect not included in the two state model could occur if cells 

learn to anticipate the next stimulus, as has been demonstrated for Physarum27. Under our 

imaging conditions, spontaneous contractions are extremely rare. But given the period nature 

of our stimulus, cells might learn to contract periodically, something that is not included 

in the two state model. In order to test for such anticipation directly, we performed the 

experiment of Figure S4A in which cells were subjected to a train of high-force stimuli with 

a period of 1 minute, after which the stimulus was stopped and the response monitored at 

the next 1 minute interval. In this experiment, none of the cells contracted when the stimulus 

was removed (Figure S4B), arguing that anticipation is unlikely to be a major factor in the 

contraction response.

Heterogeneity in cell behavior at steady state

The two-state model as formulated assumes that all cells have the same contraction 

probability as other cells in the same state. Because cells appear to remain in the non-

responsive state after switching, we can test this assumption for the non-responsive state. 

As shown in Figure S4C,D, the distribution of contraction counts in the non-responsive 

state (which we assume for cells at timepoints 20 and above) clearly does not match a 

Poisson distribution, potentially indicating heterogeneity among cells. Selecting timepoints 

for steady state as described in Methods, the average number of contractions for low and 

high force were 1.3 and 6.1, with variances of 2.1 and 25 respectively. The fact that the 

variance to mean ratios are substantially greater than 1 confirms that the contractions do not 

obey a simple Poisson distribution.
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These data suggest that cells do not all have the same probability of contraction. If we 

assume that each cell has a constant probability of contraction, but that these probabilities 

vary randomly from cell to cell, the result is a Poisson mixture model, in which the 

distribution of contractions observed in a population of cells consists of a weighted sum 

of individual Poisson distributions having different Poisson parameters corresponding to 

different probabilities of contraction. As outlined in Methods, the mean and variance of 

the distribution of Poisson parameters in such a mixture model can be estimated from the 

mean and variance of the observed numbers of contractions in a collection of individuals. 

Using this approach together with the mean and variances reported above, we calculate the 

coefficient of variation for the contraction probabilities (see Methods) to be approximately 

0.7 for both force regimes, suggesting less than two-fold variation across different cells.

DISCUSSION

Summary of results

By collecting data on the behavior of single Stentor cells during stimulation by a computer-

controlled apparatus, we found that the graded habituation response previously reported 

for populations of cells reflects step-like behavior of individual cells. These data lead to a 

simple two-state model, in which individual cells step from a responsive to a non-responsive 

state with transition probabilities that depend on the force and frequency of the stimuli. The 

transitions in this model occur continuously in time and not just when stimuli are applied. 

For very large stimulus forces, the step time distribution for the forward transition suggests 

multiple underlying steps. The ability to observe individual cells responding to repeated 

stimulation allowed us to calculate the heterogeneity of the response, showing a less than 

two fold difference in response probabilities from cell to cell.

Force-dependence of state transition rates

It has previously been shown16, and we have confirmed, that habituation is slower in 

response to larger stimuli. In the context of our two-state model, either the rate of 

transitioning from responsive to nonresponsive states (p12) must be smaller with large 

forces, or the rate of transitioning back to a responsive state from the nonresponsive state 

(p21) must be larger. Based on the parameter values estimated in Figure 3K,L and Figure 

S3G, we find that when force is reduced, p12 and p21 both increase by a factor of about two. 

Only the increase in p12 can contribute to the increased speed of habituation at low force, 

since an increase in p21 would lead to faster forgetting rather than faster habituation, and in 

any case p21 remains very small even in the low force experiments. We conclude that the 

effect of force on habituation rate first noted by Wood is due to an effect on the transition 

rate p12.

Comparison to other studies of Stentor behavior and learning

Our work confirms the previously reported dynamics of habituation in populations of 

Stentor cells16,19 but differs from these previous reports by analyzing single-cell response 

data, which allowed us to show that the apparent graded response previously reported 

actually results from step-like behavior. Wood19 showed that during habituation, the 

mechanoreceptor depolarization in a population of cells decreased while the action 
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potential remained the same. Since the receptor induced depolarization is presumably what 

determines the triggering of the action potential, the decrease in this potential observed by 

Wood is consistent with the switch to a lower probability of response in our model.

Stentor roeselli, a close relative of Stentor coeruleus, responds to stimuli using three 

possible escape mechanisms (bending, ciliary reversal, and contraction), which it employs 

sequentially11,12,28. A simple two-state model like we propose could produce a different set 

of responses in the two states, but would not permit the cell to show differential habituation 

rates for distinct responses, and would not produce the sequential use of different responses 

that has been seen. Future studies with Stentor coeruleus may expand our two-state model to 

incorporate other escape mechanisms beyond contraction. Considering just the contraction 

response of S. roeselli, Jennings only gave examples of the responses of several individual 

cells, but in these few examples a single step in contraction probability is visibly apparent11.

Possible molecular basis of the two-state model

There are many possible molecular implementations of a two state model such as that 

described here29. In the specific case of Stentor habituation, almost any component of 

the stimulus-response pathway, from sensor to effector, could be the key molecule that 

undergoes a state switch to take the cell from a responsive to less responsive state. 

We know that mechanosensitive ion channels are involved in the variable response21, 

and that EF-hand calcium-binding protein fibers drive the mechanical contraction30,31. 

Both mechanosensitive channels and EF-hand proteins are known to be regulated by 

phosphorylation32–34, and either could provide the basis of reduced response probability 

if modified during habituation.

Wood21 has shown clearly that the voltage dependence of the mechanoreceptor associated 

channel changes during habituation, making this by far the most likely candidate for the 

substrate of learning in Stentor. In order to achieve a step-like switch in response probability, 

it would somehow be necessary for all of these channels to be modified in a coordinated 

way. Such coordination, together with the apparent involvement of timers in setting the 

transition rates in between successive stimuli, suggest that complex molecular computation 

may be taking place upstream of the receptor modification, as opposed to a simple gradual 

accumulation of phosphorylations.

STAR METHODS

RESOURCE AVAILABILITY

Lead contact: Requests for further information or resources should be directed to the lead 

contact, Wallace Marshall, wallace.marshall@ucsf.edu

Materials availability: This study did not generate any new unique reagents.

Data and code availability:

• All data reported in this paper will be shared by the lead contact upon request.
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• All original code has been deposited on Github and is publically 

available. https://github.com/WallaceMarshallUCSF/StentorHabituation. The 

DOI (10.5281/zenodo.7262341 is listed in the Key Resources Table.

• Any additional information required to reanalyze the data reported in this paper 

is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAIL—Stentor coeruleus cells, 

originally obtained from Carolina Biological (Burlington, NC) were grown in filtered 

spring water and fed using a previously described feeding protocol35 with the exception 

that cells were fed Chilomonas, also obtained from Carolina Biological, as opposed to 

Chlamydomonas. The number of mating types in Stentor has not yet been determined, nor 

do any methods exist to determine mating type, so we are unable to report this information 

for our cells.

METHOD DETAILS

Apparatus to analyze Stentor habituation—The habituation device (Figure S1A) 

consists of a steel strip (12 inch metal ruler) clamped to a post (Thorlabs P14) and free 

at the other end. A 35 mm petri dish (Benz Microscope Optics Center, L331) containing 

Stentor cells is anchored to the top of the strip with double-stick tape. Below the free end, 

an electromagnet (E-28-150, Magnetic Sensor Systems, Van Nuys, CA) is positioned 1 cm 

from the strip (Figure S1B,C). When the magnet is energized, the end of the steel strip is 

drawn downwards. An adjustable mechanical stop determines the extent of the motion, and 

thereby controls the strength of the stimulus applied. The position of the stop is adjusted 

by a micrometer (Thorlabs PT1). Activation of the magnet is controlled using an Arduino 

coupled with a custom control circuit (Figure S1D,E) consisting of a MOSFET (IRF510, 

Radio Shack) and flywheel diode to control the electromagnet, an LED to indicate when 

the system is running, set to flash five seconds before each stimulus, and two switches 

to manually trigger the magnet for setup and demonstration purposes. A USB microscope 

(Celestron 44308) mounted on a ring-stand is used to image the cells during the experiment. 

Figure S1F shows a calibration curve relating the distance moved by the tip of the metal 

strip to the fraction of cells that contract on the first stimulus. Experiments done in the “high 

force” regime were performed with the micrometer set to produce a swing of 5.3 mm. For 

the “low force” regime, the swing was adjusted to 4.0 mm. These swings were chosen so as 

to be low enough in magnitude to permit habituation, while being large enough in magnitude 

to produce a sufficient number of contractions at least for the first several time-points. The 

reason that the two setting differ by 1.3 mm is that the micrometer is calibrated in tenths of 

an inch, thus these two setting correspond to adjacent major lines on the micrometer handle. 

For the experiments to detect anticipation in Figure 4AB, the swing was 6.6 mm, chosen 

large enough to ensure that the majority of cells would contract when stimulated and that 

habituation would not take place. The Arduino program that runs the habituation device is 

available on github (https://github.com/WallaceMarshallUCSF/StentorHabituation). For the 

experiments of Figure 4C and 4G, a modified version of the device was used in which the 

force on the metal ruler was generated by a stepper motor rather than an electromagnet. Due 

to the rapid motion of the motor compared to the slower response of the metal strip to the 
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magnet, this devices allowed stimuli to be applied at higher forces and frequencies than the 

magnet based device.

Setup of apparatus for habituation experiments—For each experiment, 1 mL of 

media from the Stentor culture was added to a 35 mm petri dish with a circular pieces of 

glass fiber filter (Omicron Scientific 133047) cut to size and placed on the bottom, which 

encourages attachment of the cells. 10–20 cells were then added to the media in the dish 

using a pipette in a volume of approximately 1mL making the total volume in the dish 2 mL. 

The apparatus was set up and then allowed to sit for 8 hours with the cells in place, with 

the dish covered, without any mechanical stimulation, to allow them to recover from being 

transferred to the dish and to adapt to the new environment. Experiments were performed 

under uniform illumination, making sure room lights stay on during the pre-adaptation 

phase. This is necessary because Stentor demonstrates a strong photophobic response as well 

as adaptation to light36.

For experiments involving the stepper motor apparatus, the same procedure was followed 

with a few exceptions: The cells were fed Chlamydomonas35 rather than Chilomonas, and 

each experiment involved 100 cells in a total volume of 4 mL filtered spring water within the 

35 mm petri dish. No glass fiber filter was used because the petri dish was instead manually 

coated with 0.01% poly-ornithine solution (Millipore Sigma, P4957) overnight to facilitate 

anchoring of cells to the bottom of the plate. For the experiment in Figure 4C, the cells 

were allowed to sit for 2 hours without any mechanical stimulation prior to the start of the 

experiment. For the experiment in Figure 4G, the cells were allowed to sit overnight without 

perturbations. The cells cannot be exposed to any mechanical stimuli for a minimum of 2 

h before the start of a habituation experiment because the Stentor forgetting timescale after 

experiencing mechanical stimulation is 2–6 hours16.

Measurement of cell contractions—In order to score cell contractions, images are 

acquired within 5 seconds before the start of each image, and then 5 seconds after, 

allowing the response of each cell to be determined. Cells are manually tracked between 

successive images. Only cells that were continuously attached to the substrate during the 

whole experiment were scored. Any cells that detached and swam away were excluded 

from analysis, as were any cells that swam into view and then became attached after the 

experiment had begun. These cells were excluded in order to avoid potential complications if 

the response of cells swimming, or their perception of the mechanical stimulus, is different 

from cells while attached. We also applied these criteria to the cells in the high-frequency 

learning experiments in Figure 4G, although a few cells detached over the course of 

the experiment because the high density of cells precluded unambiguous detection of 

each detached cell – however, the vast majority remained attached for the entirety of the 

experiment. We only observed two cells that were undergoing cell division during any of 

the experiments, and these were also excluded. In some cases, a cell could be seen to stay 

attached through the course of the experiment but it was not possible to unambiguously 

determine its contraction state at some time points due to interference from debris on the 

dish. In those cases, the contraction of the cell was included in population-level plots for any 

time point at which the cell could be observed. Such cells were, however, excluded from the 
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single cell run-time analysis because the missing time-points would create ambiguity in the 

run time distributions.

Because the apparatus involves bending a metal strip with the petri dish attached, the dish 

is tilted during the experiment such that regions of the dish nearer to the end of the strip 

will undergo a somewhat larger vertical deflection. To test whether this difference in vertical 

deflection leads to a difference in cell stimulus, we divided the field of view into two halves 

and compared the probability of cells contracting in the half of the field of view closer to 

the clamped end of the strip versus in the half of the field of view closer to the moving 

end of the strip. We then quantified the fraction of cells contracting in the two half fields of 

view. As shown in Figure S1G, the difference in contraction probability was not significantly 

different. Probabilities were compared using a 2×2 contingency table test with Fisher’s exact 

test, with p values given in the figure legend.

QUANTIFICATION AND STATISTICAL ANALYSIS

Automated detection of steps in response probability—Statistical analysis of step-

like transitions in response probability was performed using a custom R program. For 

each data record from a single cell, each time point was examined sequentially. At each 

time point, Fisher’s exact test was used to compare the proportion of cells contracting per 

stimulus before (and including) that time point versus the proportion of cells contracting 

after that time point. The time point at which the p value from Fisher’s test was minimum 

was defined as the time of stepping. To test whether only a single step was present, each 

of the two sub-partitions of the data record, before and after the stepping time point, were 

re-examined using the same procedure and the minimum p value for sub-partitioning each 

of the initial partitions was recorded. The log10 of the p values are plotted in the beeswarm 

plots, noting that the Y axis is scaled differently for different experiments as indicated.

To obtain distributions of step times, an edge detection method was implemented using the 

same procedure was followed except that the first timepoint at which the p value dropped 

below 0.01 was taken as the step time. This procedure was used because as the time point 

increases, larger numbers of timepoints are included before the point of interest, such that 

the p value continues to decrease. In a comparison of the edge finding method versus the 

Fishers test method applied to simulated single-step data based on the parameters estimated 

in Figure 3K, the correlation coefficients between the step times estimated by the two 

methods compared to the actual step time in each simulation run were 0.73 and 0.52 for 

the edge detector and Fisher methods, respectively, suggesting that the edge detector gives a 

better estimate. This analysis was applied to all cells in each dataset regardless of whether a 

step was detected using the previous method. Cells for which no step was detected, based on 

the failure of the p value to drop below 0.01, were assigned a dwell time of zero. These data 

were included to allow for comparison between real data and different models, as described.

Numbers are given in figure legends and test statistics are reported in the main text Results 

section.

Quantifying heterogeneity in single-cell responses—To model heterogeneity, we 

assume that each cell has some probability of contracting, and that this contraction 
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probability varies randomly from cell to cell. For any given cell, we assume that responses 

to successive stimuli are independent of each other, such that the number of contractions 

observed during the course of an experiment in a single cell, X, is assumed to follow a 

Poisson distribution. This distribution is characterized by a parameter λ that is equal to 

the average number of contractions expected if the experiment was repeated many times. 

Because the underlying contraction probabilities are different from cell to cell, the Poisson 

parameter λ is itself a random variable with some unknow distribution. The resulting model 

is thus a Poisson Mixture model. The variability in the values of λ for different cells is a 

way to quantify the degree of heterogeneity.

For Poisson mixtures37 the variance and mean of the Poisson parameter λ are related to the 

variance and mean of the experimental outcomes according to the following two equations

E[X] = E[λ]

σ2(X) = E[λ] + σ2(λ)

From which we derive

σ2(λ) = σ2(X) − E[X]

Finally, to characterize heterogeneity, we calculate the coefficient of variation for the 

Poisson parameter λ as follows:

cv(γ) = σ2(X) − E[X]
E[X]

Since the number of contractions is proportional to the contraction probability times the 

number of trials, the coefficient of variation in contraction probabilities is the same as the 

coefficient of variation in Poisson parameters, and this is the value reported in the Results. 

From our single cell measurements, we count for each cell the number of contractions taking 

place after timepoint 20, by which time we assume steady state has been reached. The 

counts are then used to compute E[X] and var(X). Numbers are reported in the main text 

Results section.

Stochastic simulations and parameter estimation from moments of run-lengths

Simulations of the two-state model were carried out in MATLAB using a custom program 

that tracks the state of each cell and switches from one state to another with the given 

probability at each time step of the simulation. For parameter estimation, simulations 

were run by sweeping parameter values at equal intervals. p21, p12, and P2 were swept, 

while P1 was set equal to the observed probability of contracting at the first stimulus. For 

each parameter combination, 500 cells were simulated for 500 time intervals and results 

compared to eight derived quantities for each experiment: decay time, fraction of cells 

contracting at steady state, the first three moments of the distribution of successive runs, and 
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the first three moments of the distribution of successive non-runs. The use of moments to 

describe the run lengths was based on the idea that observed runs will represent a mixture of 

cells in two different states (responsive or non-responsive) and thus the overall distribution 

of run lengths should be approximately a mixture of exponentials. It has been shown that the 

first three moments of a two-exponential distribution can be sufficient to estimate the shape 

of the distribution38.

Hidden Markov model parameter estimation

As an alternative to the moment-based estimation using simulations, we also estimated 

two-state model parameters using the Baum-Welch algorithm to estimate hidden Markov 

models from multiple input sequences25. For each force condition, individual cell records 

were truncated so that each cell dataset had the same number of time points, and the 

outcomes contract and non-contract were denoted by the symbols 2 and 1. These data were 

then used as input for the hmmtrain() function in Matlab, using [0.5,0.5;0.5,0.5] as the 

initial estimate for the transition probability matrix (i.e. making no initial assumption about 

transition rates) and using [0.2, 0.8; 0.9, 0.1] as the initial estimate for the emission matrix 

to reflect approximate frequencies of contraction and non-contraction at the start and end of 

the experiment. The final result was completely insensitive to the specific values used in the 

initial guess emission matrix except that the emission probability for symbol 2 needed to be 

initialized to a large probability in state 1 than in state 2, in order to maintain a consistent 

definition of state 1 referring to the higher probability of contracting state.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

ACKNOWLEDGMENTS:

This work was an outgrowth of experiments started in the UCSF Cellular Cognition Minicourse 2012. We 
acknowledge stimulating discussions with the students in that course as well as in subsequent years of the same 
course and in the Physiology Course at the Marine Biological Laboratory in Woods Hole. We also thank current and 
former members of the Marshall lab, as well as Rob Phillips, Tao Long, Kurt Thorn, Nicholas Ingolia, Adam Frost, 
and Steve Beckwith, for discussions about this project. This work was supported by NSF grant MCB-2012647 
and NIH grant R35 GM130327. Work from students in the CCC summer course was supported by NSF grant 
DBI-1548297. Initial work on this project was supported by a new frontiers award from the UCSF Program in 
Breakthrough Biomedical Research.

References

1. Thompson RF, and Spencer WA (1966). Habituation: a model phenomenon for the study of neuronal 
substrates of behavior. Psych. Rev. 73, 16–43.

2. Harris JD (1943). Habituatory Response Decrement in the Intact Organism. Psychological Bulletin. 
40, 385–422.

3. Castellucci VF, Pinsker H, Kupferman I, and Kandel ER (1970). Neuronal mechanisms of 
habituation and dishabituation of the gill-withdrawal reflex in Aplysia. Science 167, 1745–1748. 
[PubMed: 5416543] 

4. Thompson RF (2009). Habituation: A history. Neurobiology of Learning and Memory. 92, 127–134. 
[PubMed: 18703156] 

5. Rankin CH et al. (2009). Habituation revisited: an updated and revised description of the behavioral 
characteristics of habituation. Neurobiol Learn Mem. 92, 135–138. [PubMed: 18854219] 

Rajan et al. Page 17

Curr Biol. Author manuscript; available in PMC 2024 January 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



6. Gagliano M, Renton M, Depczynski M and Mancuso S (2014). Experience teaches plants to 
learn faster and forget slower in environments where it matters. Oecologia. 175, 63–72. [PubMed: 
24390479] 

7. Baluska F, and Levin M (2016). On Having No Head: Cognition throughout Biological Systems. 
Front Psychol. 7, 902. [PubMed: 27445884] 

8. Tang SKY, and Marshall WF (2018). Cell Learning. Curr. Biol. 28, R1180–1184. [PubMed: 
30352182] 

9. Lyon P (2015). The cognitive cell: bacterial behavior reconsidered. Front Microbiol. 6, 264. 
[PubMed: 25926819] 

10. Boisseau RP, Vogel D, and Dussutour A (2016). Habituation in non-neural organisms: evidence 
from slime moulds. Proc. R. Soc. Lond. B 283, 20160446.

11. Jennings HS (1902). Studies on reactions to stimuli in unicellular organisms. IX. On the behavior 
of fixed infusoria (Stentor and Vorticella) with special reference to the modifiability of protozoan 
reactions. Am. J. Physiol. 8, 23–60.

12. Dexter JP, Prabakaran S, and Gunawardena J (2019). A Complex Hierarchy of Avoidance 
Behaviors in a Single-Cell Eukaryote. Curr. Biol. 29, 4323–4329.e2 [PubMed: 31813604] 

13. Applewhite PB, Lapan EA, and Gardner FT (1969). Protozoan habituation learning after loss of 
macronuclei and cytoplasm. Nature 222, 491–492. [PubMed: 4976711] 

14. Patterson DJ (1973). Habituation in a protozoan Vorticella convallaria. Behaviour. 45, 304–311. 
[PubMed: 4707172] 

15. Tartar V (1961). The Biology of Stentor. Pergammon Press.

16. Wood DC. (1970a). Parametric studies of the response decrement produced by mechanical stimuli 
in the protozoan, Stentor coeruleus. J Neurobiol. 1, 345–360.

17. Jones AR, Jahn TL, and Fonseca JR (1970). Contraction of protoplasm. III. Cinematographic 
analysis of the contraction of some heterotrichs. J. Cell Physiol. 75, 1–7. [PubMed: 4984851] 

18. Newman E (1972). Contraction in Stentor coeruleus: a cinematic analysis. Science 177, 447–449. 
[PubMed: 5043148] 

19. Wood DC. (1970b). Electrophysiological correlates of the response decrement produced by 
mechanical stimuli in the protozoan, Stentor coeruleus. J. Neurobiol. 2, 1–11. [PubMed: 4333386] 

20. Wood DC. (1988a). Habituation in Stentor: a response-dependent process. J Neurosci. 8, 2248–
2253. [PubMed: 3249222] 

21. Wood DC. (1988b). Habituation in Stentor: produced by mechanoreceptor channel modification. J 
Neurosci. 8, 2254–2258. [PubMed: 3249223] 

22. Wood DC (1989). Localization of mechanoreceptors in the protozoan, Stentor coeruleus. J Comp 
Physiol A. 165, 229–235. [PubMed: 2746550] 

23. Wood DC (1972). Generalization of habituation bewteen different receptor surfaces of Stentor. 
Physiol. Behavior 9, 161–165.

24. Busemeyer JR, and Diederich A (2009). Cognitive modeling. Sage Publications.

25. Rabiner LR (1989). A tutorial on hidden Markov models and selected applications in speech 
recognition. Proc. IEEE 77, 257–286.

26. Kunkel TA, and Bebenek K (2000). DNA replication fidelity. Annu Rev Biochem. 69, 497–529. 
[PubMed: 10966467] 

27. Saigusa T, Tero A, Nakagaki T, and Kuramoto Y (2008). Amoebae anticipate periodic events. 
Phys. Rev. Lett. 100, 018101. [PubMed: 18232821] 

28. Trinh MK, Wayland MT, and Prabakaran S (2019). Behavioral analysis of single-cell aneural 
ciliate, Stentor roeseli, using machine learning approaches. J. R. Soc. Interface 16, 20190410. 
[PubMed: 31795860] 

29. Phillips R (2020). The molecular switch: Signaling and Allostery. Princeton University Press.

30. Huang B, Pitelka DR. (1973). The contractile process in the ciliate, Stentor coeruleus. I. The role 
of microtubules and filaments. J. Cell Biol. 57, 704–28. [PubMed: 4633444] 

31. Maloney M, McDaniel W, Locknar S, and Torlina H (2005). Identification and localization of a 
protein immunologically related to caltractin (centrin) in the myonemes and membranelles of the 

Rajan et al. Page 18

Curr Biol. Author manuscript; available in PMC 2024 January 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



heterotrich ciliate Stentor coeruleus. Journal of Eukaryotic Microbiology, 52, 328–338. [PubMed: 
16014010] 

32. Wegierski T, Lewandowski U, Mueller B, Sickmann A, and Walz G (2009). Tyrosine 
phosphorylation modulates the activity of TRPV4 in response to defined stimuli. J. Biol. Chem. 
284, 2923–2933. [PubMed: 19033444] 

33. Lutz W, Lingle WL, McCormick D, Greenwood TM, and Salisbury JL (2001). Phosphorylation of 
centrin during the cell cycle and its role in centriole separation preceding centrosome duplication. 
J. Biol. Chem. 276, 20774–80. [PubMed: 11279195] 

34. Lukasiewicz KB, Greenwood TM, Negron VC, Bruzek AK, Salisbury JL, and Lingle WL (2011). 
Control of centrin stability by Aurora A. PLoS One 6, e21291. [PubMed: 21731694] 

35. Lin A, Makushok T, Diaz U, and Marshall WF (2018). Methods for the Study of Regeneration in 
Stentor. J Vis Exp. 10.3791/57759.

36. Hong CB, Prusti RK and Song PS (1987). Light-Adaptation in the Photophobic Response by 
Stentor-Coeruleus. Arch. Microbiol. 147, 117–120. [PubMed: 3109345] 

37. Karlis D, and Xekalaki E (2005). Mixed Poisson distributions. Int. Stat. Rev. 74, 35–58.

38. Rider PR (1961). The method of moments applied to a mixture of two exponential distributions. 
Ann. Math. Stat. 32, 143–147

Rajan et al. Page 19

Curr Biol. Author manuscript; available in PMC 2024 January 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Highlights

• Stentor is a single celled organism that can learn to ignore repetitive stimuli

• Individual cells learn by switching from a response to a non-responsive state

• Stepwise transitions of individual cells produce a graded response in a 

population

• Transition rates depend on stimulus force but also on the time between stimuli
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Figure 1. Confirming habituation in Stentor coeruleus using an Arduino-controlled device.
(A) Image of Stentor coeruleus cell. Scale bar 200 μm. (B) Diagram showing key anatomical 

features. Immediately beneath the ciliary rows are myonemes, contractile filaments that can 

drive a rapid change in cell shape. (C) When a Stentor cell is mechanically stimulated, 

for example by contact with a predator, the cell contracts into a ball. If a cell has been 

repeatedly stimulated and thus habituated, it will ignore the stimulus and remain in its 

elongated shape. (D) Diagram of apparatus for testing Stentor habituation. Cells are placed 

in a petri dish attached to a metal strip. An electromagnet is positioned to deflect the metal 
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strip downward when energized, thus providing a mechanical stimulus to the cells in the 

dish. Two mechanical stops determine the range of motion and thus the level of force applied 

to the cells. (E,F) Image of Stentor cells before (E) and after (F) applying a mechanical 

stimulus using the device. The cells can be seen to have contracted into a more compact 

shape. Scale bars 1 mm. (G) Fraction of cells contracting after each of 30 stimuli applied 

at 1 min intervals. The stops were adjusted to produce a large deflection (5.3 mm) of the 

metal strip, thereby creating a large force stimulus. Habituation is indicated by the gradual 

reduction in the probability of cells contracting with successive stimuli. Data shown are 

the aggregate results of three independent experiments, with a total of 31 cells. Error bars 

indicate standard error calculated from the Bernoulli distribution. (H) Fraction of cells 

contracted per stimulus in a separate set of experiments in which the stops were adjusted to 

produce a smaller deflection (4.0 mm) and thus a lower force stimulus. Data shown are the 

aggregate results of four separate experiments with a total of 44 cells. Error bars indicate 

standard error. Additional information about the apparatus is provided in Figure S1.
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Figure 2. Stentor habituation in single cells occurs via a single step in response probability.
(A) Examples of single cell data. Grid bars indicate response of individual cells to 

successive stimuli at the high force regime corresponding to Figure 1G. Line graphs below 

the grid bars indicate the steps inferred using Fishers exact test as described in the main 

text. (B) P values for Fisher’s exact test for the optimal step, and for the optimal second 

steps inferred for the two sub-partitions created by the first step. For each cell, a control was 

generated by randomly permuting the data and applying the same test. Note that P values 

are plotted on a log scale. N=22. The much smaller P values for the first step compared 
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to the scrambled data indicate the step is not a statistical artifact of the analysis procedure. 

The lower P values for the first step compared to the putative steps identified before or 

after the main step, indicate that the cells are predominantly taking just a single step. (C) 

Results of applying step analysis to simulated graded response data generated according to 

the experimental probabilities of contraction at each time point from the population data of 

Figure 1G. Larger P values indicate weaker evidence for a step. (D) Step time distribution 

for experimental data (blue) compared to a geometric distribution based solely on the mean 

step time (orange) and to the step time distribution obtained from the mock data of panel C 

simulating a graded response (grey). Note that the geometric distribution was not fit to the 

data but calculated from the average step time. The first bin, listed as a dwell time of zero, 

denotes cells for which no step was detected. Step analysis of another 44 cells, subject to the 

low force stimulus, as per Figure 1H, are given in Figure S2.
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Figure 3. Two-state model for Stentor habituation can account for observed habituation 
dynamics.
(A) In the two-state model, a cell can be in either of two states, responsive or non-

responsive, which we label as states 1 and 2, respectively. Between successive stimuli, the 

cell can switch from one state to the other with specified transition probabilities p12 and 

p21, which denote the probability of switching from state 1 to state 2, or from state 2 back 

to state 1, respectively. Within each state, the cell has a given probability of contracting 

when stimulated. We denote the probability of contracting when stimulated while in states 
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1 or 2 as P1 and P2 respectively. (B) Stochastic simulation of the two-state model. The 

transition diagrams give two different parameter sets which produce the same population 

level habituation response as shown by the graph. The color of the dots in the graph 

corresponds to the color of the text in the two state diagrams to the left. (C) Steady-state 

run length distribution for successive contraction events, for simulations using the two 

parameter sets from panel B. The distribution is calculated once the population level data 

has reached its final plateau in order to focus on the steady state condition. Although these 

two sets of parameters gave identical results for the habituation plot in panel B, they give 

different run length distributions and can therefore be distinguished using single cell data. 

(D) Run length distribution for successive non-contractions. Again, the two parameter sets 

that gave identical population responses in Panel B can be distinguished based on single cell 

data in the form of non-contraction run length distributions. (E,F,G) Fitting experimental 

data using high force stimulus to the two-state model. The model was simultaneously fit 

to the population response data (E), the steady-state run length distribution of successive 

contractions (F), and the steady-state run length distribution of successive non-contractions 

(G). Experimental data in blue reflects 153 contraction runs and 153 non-contraction runs. 

Simulation results for the best-fit two state model are shown in the red line in panel E and 

the orange bars in panels F and G. (H,I,J) Fitting experimental data using low force stimulus 

to the two-state model. Experimental data in blue reflects 141 contraction runs and 141 

non-contraction runs. (K) Two-state models inferred for high and low forces. (L) Two-state 

model inferred for high and low force using the Baum-Welch HMM estimation algorithm 

as described in Methods. A completely separate set of experiments using two different force 

levels with a 2.5 min interval between stimuli is given in Figure S3.
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Figure 4. Dynamics of state transitions.
(A) Testing the timescale over which Stentor forgets its habituated state. Diagram depicts 

experiment in which successive stimuli are applied until the cells become habituated, after 

which the stimulus is paused for 15 minutes. The stimulus is then resumed and the response 

recorded. (B) Fraction of cells contracting at the start of the experiment, at the end of the 

habituation period, and at the first stimulus after the pause. (N=32,29, and 24 respectively). 

Error bars show standard error calculated from a Bernoulli distribution. (C) Response of 

cells to a higher force stimulus generated with a stepper-motor based device. N=20. (D) 
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Individual cell responses for the cells of panel C. (E) Step detection results for the cells of 

panel C. (F) Step time distribution for the higher force data of panel C (blue) compared to an 

Erlang distribution with k=5 (orange) and a predicted graded response obtained by applying 

the step detector to data simulated from the population data of panel C. (G) Response of 

cells to stimuli applied at a period of 1.2 seconds. (H) Comparing 1.2 seconds versus 1 

min responses (panels C versus G) as a function of stimulus number. (blue) 1 min stimulus 

period, (red) 1.2 seconds stimulus period. (I) Comparing 1.2 seconds versus 1 min responses 

(panels C versus G) as a function of time. Additional information regarding the dynamics 

of memory formation, specifically concerning the question of anticipation, is provided in 

Figure S4.
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Key resources table

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

n/a

Bacterial and virus strains

n/a

Biological samples

n/a

Chemicals, peptides, and recombinant proteins

0.01% poly-ornithine solution Millipore Sigma Cat #P4957

Critical commercial assays

n/a

Deposited data

n/a

Experimental models: Cell lines
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Experimental models: Organisms/strains

Stentor coeruleus Carolina Biological (Burlington, NC) Cat #131598

Chilomonas Carolina Biological (Burlington, NC) Cat #131734

Oligonucleotides

n/a

Recombinant DNA

n/a

Software and algorithms

Software for analysis of Stentor habituation Github/zenodo DOI:10.5281/zenodo.7262341

MATLAB Mathworks, Natick MA n/a

Other

Arduino UNO microcontroller board Jameco Electronics, Belmont CA Cat #2151486

USB microscope Celestron Cat #44308

Electromagnet Magnetic Sensor Systems, Van Nuys, CA Cat #E-28-150

 Aluminum breadboard, 4” × 24” × 1/2” Thorlabs, Newton, NJ  Cat #MB424

 IRF510 MOSFET transistor Radio Shack  Cat #2762072

Right Angle Bracket Thorlabs, Newton, NJ  Cat #AP90

Large Right Angle Bracket Thorlabs, Newton, NJ  Cat #AP90RL

Mounting Post Thorlabs, Newton, NJ Cat #P14

Glass Fiber Filters Omicron Scientific Cat #133047

Single axis translation stage with micrometer Thorlabs, Newton, NJ Cat #PT-1
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