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ABSTRACT: The ionization potential of molecular chains is well-
known to be a tunable nanoscale property that exhibits clear
quantum confinement effects. State-of-the-art methods can accu-
rately predict the ionization potential in the small molecule limit and
in the solid-state limit, but for intermediate, nanosized systems
prediction of the evolution of the electronic structure between the
two limits is more difficult. Recently, optimal tuning of range-
separated hybrid functionals has emerged as a highly accurate
method for predicting ionization potentials. This was first achieved
for molecules using the ionization potential theorem (IPT) and
more recently extended to solid-state systems, based on an ansatz
that generalizes the IPT to the removal of charge from a localized
Wannier function. Here, we study one-dimensional molecular chains
of increasing size, from the monomer limit to the infinite polymer limit using this approach. By comparing our results with other
localization-based methods and where available with experiment, we demonstrate that Wannier-localization-based optimal tuning is
highly accurate in predicting ionization potentials for any chain length, including the nanoscale regime.

I. INTRODUCTION
Accurate prediction of the electronic properties of molecular
and solid-state systems is of crucial importance in electronics
and optoelectronics. In particular, the ionization potential (IP),
electron affinity (EA), and therefore the fundamental gap,
defined as the difference between the IP and EA, are key
quantities in understanding materials and device properties. Ab
initio many-body perturbation theory, typically within the GW
approximation,1−7 can be a highly accurate method for
predicting these quantities. But owing to its relatively high
computational cost, there is an ongoing interest in developing
accurate enough approximations within density functional
theory (DFT) (see, e.g., refs 4,8−14), that can serve as an
inexpensive yet potentially still accurate alternative for
computing these important properties.
Within the framework of DFT, we focus on optimal tuning

(OT)15 of (screened)16 range-separated hybrid ((S)RSH)
functionals, where screening is included for the case of bulk
solids. OT-(S)RSH has been shown to be a highly accurate,
nonempirical method for predicting electron removal/addition
energies and therefore fundamental gaps for a variety of
molecular systems (see, e.g., refs 15,17−24) and molecular
solids (see, e.g., refs 16,25−30). Generally, RSH functionals
allow for a different combination of exchange and correlation
approximations at different ranges of electron−electron
interactions and therefore offer flexibility in choosing
appropriate functional parameters.31−34 OT-(S)RSH allows
one to choose such parameters nonempirically by enforcing

two conditions: the correct asymptotic behavior of long-range
interactions35−37 and the ionization potential theorem
(IPT).35,36,38,39 The latter has been shown to be particularly
crucial not only for IP predictions, but also for accurate EA and
therefore gap predictions.40

Unfortunately, optimal tuning based on straightforward
application of the IPT fails in the solid-state limit. This is
because, owing to the natural delocalization of electronic
orbitals in this limit, the IPT is trivially satisfied for any choice
of functional parameters, regardless of the accuracy (or lack
thereof) of the obtained electronic structure.41−44 To over-
come this significant limitation, a Wannier-localization-based
optimal tuning of SRSH (WOT-SRSH) has been proposed.45

This approach enforces a generalized IPT ansatz,46 based on a
constrained removal of charge from a localized Wannier
function.47 WOT-SRSH has recently been shown to be highly
successful in predicting band gaps and optical spectra of solids,
both alone45,48,49 and as an optimal starting point to GW
calculations,49,50 without any empiricism.
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The success of OT-RSH in the molecular limit and WOT-
SRSH in the solid-state limit immediately raises important
questions as to the utilization of (W)OT approaches for
intermediate-size systems. Specifically, for systems of increas-
ing size, at which point does localization become necessary for
optimal tuning? How do OT and WOT calculations compare
with one another and how well do they predict the evolution of
electronic properties with system size, compared to experiment
and/or other benchmark calculations?
A class of systems where such questions arise naturally and

can be examined systematically is that of linear oligomers, i.e.,
linear molecular chains composed of a variable number of
repeating units of a given monomer. Indeed, such systems have

been previously used to test the accuracy of various approaches
within DFT.13,17,51−57

Here, we use these benchmark systems to answer the above
questions by employing OT- and WOT-RSH to compute the
IPs of three different one-dimensional molecular chains of
increasing length, from the monomer limit to the infinite
polymer limit. By comparing our results to other methods and
to experiment where available, we show that OT- and WOT-
RSH yield essentially identical results for shorter chains, but
deviate from each other for larger chains, with WOT-RSH
yielding a correct convergence to the infinite polymer limit and
providing consistently more accurate results than OT-RSH, as
compared to reference theoretical results.

Figure 1. Ionization potential as a function of n, the number of repeating units (top axis), and the inverse of n (bottom axis), for (a) alkanes, (b)
trans-oligoacetylenes (tOAs), and (c) oligothiophenes (OLTs). Computed results are given by the negative of the HOMO energy based on OT-
RSH (red circles), WOT-RSH (green triangles), KIPZ (magenta squares, from ref 59), and LOSC (cyan plus signs, from ref 13). Experimental
results (black stars) are taken from the following sources: For alkanes: n = 0.5: ref 73, n = 1: ref 74, n = 1.5, 2, 2.5: ref 75, n → ∞: refs 76−78. For
tOAs: n = 1,2: ref 75, n = 3: ref 79, n = 4: ref 80, n → ∞: ref 81. For OLTs: refs 51,82. Inset: schematic view of the repeating unit of each chain,
showing carbon atoms in black, hydrogen atoms in gray, and sulfur atoms in yellow.
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II. METHODS
II.I. Benchmark Systems. We study three types of one-

dimensional molecular chains: Linear alkanes, trans-oligoace-
tylenes (tOAs), and oligothiophenes (OLTs), the chemical
formulas of which are C2nH4n+2, C2nH2n+2, and C8nH4n+2S2n,
respectively (see inset of Figure 1). Half-integer n values
correspond to an odd number of carbon atoms for the alkanes
and tOAs and an odd number of sulfur atoms for the OLTs.
For clarity, throughout we use the term “polymer” to refer only
to the limit of n → ∞, namely polyethylene, trans-
polyacetylene and polythiophene, respectively. Molecular
geometry was optimized using molecular mechanics, without
further optimization at the DFT level (to which spectral
properties are sensitive58), so that the effect of orbital
delocalization is due to chain length increase alone. This
follows a similar practice in refs 55,59. See the Supporting
Information (SI)60 for more details.

II.II. Range-Separated Hybrid Functionals. In RSH
functionals,61,62 the Coulomb operator is partitioned into two
terms, typically by exploiting the error function, erf, in the form

r
r

r
r

r
1 erf( )

xx

1 erf( )

SLx
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= + + [ + ]

(1)

where r is the interelectronic distance and α, β, γ are free
parameters. While eq 1 represents a trivial identity, this split of
the Coulomb repulsion allows for use of different approx-
imations for the electron exchange associated with each term.
For the first term, we use Fock (exact) exchange (xx), whereas
for the second we use semilocal exchange (SLx). This leads to
two limiting-case fractions of exact exchange: α for short-range
(SR) interactions (r → 0) and α + β for long-range (LR)
interactions (r → ∞). These two limits are interpolated
smoothly via the error function, with the transition governed
by the range-separation parameter, γ. Accordingly, the
exchange energy of RSH is expressed as

E E E E
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In this work, we choose α as 0.25 throughout, as in global
and short-range hybrid functionals,63−65 in order to retain a
useful balance between exchange and correlation in the short-
range.66 The correct asymptotic limit of the potential is
attained by setting α + β = 1/ε, where ε is the scalar dielectric
constant.25 In this work we set ε = 1, the appropriate choice for
an isolated molecule in vacuum,35−37 which is correct also for
the polymers, where asymptotic screening vanishes owing to
the low dimensionality (see, e.g., refs 67−69, for two
dimensions). We use the range-separated version70,71 of the
Perdew−Burke−Ernzerhof (PBE) exchange functional72 to
treat the semilocal exchange components in the RSH, along
with full PBE semilocal correlation. Nonempirical methods
employed to select γ are discussed below.
Once the three parameters are selected, one can compute

any property of interest. In this work, we focus on the
eigenvalue corresponding to the highest occupied molecular
orbital (HOMO), the negative of which provides a prediction
for the IP in an optimally tuned functional.

II.III. Optimal Tuning of RSH. As mentioned in the
introduction, in the OT-RSH approach γ is selected to enforce
the IPT, which is an exact physical condition in DFT. Here, we
enforce the IPT for the neutral system, namely we seek γ such
that

J E N E N( 1) ( ) 0H+ = (3)

where Eγ(N) and Eγ(N − 1) are the total ground-state energies
for the neutral system with N electrons and the singly ionized
cation, respectively, and ϵHγ is the HOMO eigenvalue for the
N-electron system. See the SI60 for more computational details.

II.IV. Wannier-Localization-Based Optimal Tuning of
RSH. As mentioned above, in the bulk limit the IPT is trivially
satisfied for any choice of γ, which precludes the predictive

Figure 2. HOMO (top row) and highest expectation energy Wannier function (bottom row) for selected alkanes: (a) ethane (n = 1), (b) propane
(n = 1.5), (c) butane (n = 2), and (d) polyethylene (n → ∞). Carbon and hydrogen atoms are shown in black and gray, respectively. The wave
function isosurface is shown in light blue and yellow for a value of 2.0.
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selection of a unique range-separation value based on eq 3.
Many authors have explored localized orbitals as a means of
circumventing this limitation of the IPT, in the context of
different approaches within DFT.11,13,45,46,56,59,83−95 In the
context of SRSH functionals, Wing et al.45 adopted an ansatz46

that generalizes the IPT to the removal of an electron from a
state that corresponds to a localized Wannier function, namely

I E N E N H( 1) ( ) 0N[ ] + | | = (4)

where ϕ is the maximally localized Wannier function47 for
which the expectation energy with respect to the DFT
Hamiltonian of the N-electron system, ⟨ϕ|ĤNγ |ϕ⟩, is the largest.
Eγ[ϕ](N − 1) is the total energy of the constrained (N − 1)-
electron system, which differs from the ground-state (N − 1)-
electron system in that an electron has been removed from the
Wannier function.45 This constraint is imposed via a Lagrange
multiplier that controls the occupancy of the Wannier function,
which is constructed of the occupied-orbital manifold using the
PBE functional. We emphasize that for finite systems,
maximally localized Wannier functions reduce to Foster-Boys
orbitals,96−99 and can be viewed as their solid-state
equivalent.47 We use the term Wannier functions throughout,
because it applies in both the molecular and solid-state limits
and because the localized orbitals that we use are generated
with the WANNIER90 code.100 Additional computational details
are given in the SI.60

III. RESULTS AND DISCUSSION
Figure 1 shows the computed IP, based on the negative of both
the OT-RSH and WOT-RSH HOMO energy, as a function of
the inverse of n, the number of repeating units, for each of the
three systems studied in this work. These results are compared
with those obtained from two other localization-based
methods: the integer Koopmans plus Perdew−Zunger
(KIPZ) correction method for the alkanes, taken from ref
59, and the localized orbital scaling correction (LOSC)
approach for the tOAs, taken from ref 13. The computational
results are further compared with experiment where available.
First, we compare the OT-RSH and WOT-RSH results. We

observe two trends that are common to all three systems. First,
the two methods predict essentially identical IPs for the shorter
chains, where the HOMOs are “naturally” localized owing to
the small system size. This is a significant observation, because
it demonstrates the validity and generality of the IPT ansatz
used in WOT-RSH, even in a realm for which it was not
designed and in which it is not strictly necessary. Second, the
deviation between the two methods increases with chain length
and becomes as large as ∼0.8 eV for the case of alkanes with n
= 7. We attribute this to the delocalization of the HOMO in
the longer chains, shown in Figure 2 for selected alkanes and in
the SI for selected tOAs and OLTs. This delocalization
ultimately prevents the use of OT-RSH altogether for large
enough chains, as the IPT is approaching the point where it is
trivially obeyed and a numerically stable determination of the
range-separation parameter is no longer possible. In contrast,
the WOT-RSH relies on a Wannier function that is localized
by construction and changes little with n, as also shown in
Figure 2 for selected alkanes and in the SI for selected tOAs
and OLTs. As a result, the WOT-RSH procedure is
numerically stable and physically meaningful for any n,
including n → ∞, i.e., the polymer limit.

Interestingly, while the trend of OT- and WOT-RSH results
deviating from one another is common to the three systems, it
appears to be more abrupt for the alkanes, where the deviation
starts already at relatively short chains, but more gradual and at
larger n for the two other systems. We note that the abrupt
deviation in the alkanes occurs between n = 1.5 and n = 2. This
can be associated with an abrupt change in the symmetry of
the HOMO, owing to orbital reordering, between these two
chains, as demonstrated in Figure 2(b,c). The same symmetry
as in n = 2 is then maintained for all n > 2. The symmetry of
the HOMO for the tOAs and OLTs, on the other hand, is
unchanged for all n, as demonstrated in the SI.
Next, we compare our results to benchmark computational

data. As shown in Figure 1, the general trend of the IP
saturating with increasing chain length, up to the polymer
limit, is clearly captured. This trend is less observed in the
tOAs, in agreement with the results of ref 55, which showed
that the saturation occurs in longer chain lengths that are
outside the range studied in this work. Furthermore, the WOT-
RSH results agree very well quantitatively with previous
localization-based schemes�to ∼0.1 eV with KIPZ results and
∼0.2 eV with LOSC, on average. Conversely, and as expected
based on the above discussion, the OT-RSH results do not
extrapolate to the correct polymer limit.
Finally, we compare the computed results to experimental

ones. For alkanes, the experimental results agree well with all
theoretical methods for n = 0.5 and n = 1. For n = 1.5, all
theoretical methods appear to agree, but predict a value larger
than experiment by ∼0.5 eV. For n = 2 and n = 2.5, WOT-RSH
and KIPZ overestimate experiment by a similar amount, while
OT-RSH is in better agreement with it. This, however, may be
accidental, given the fact that the n = 1.5 result of OT-RSH
overestimates experiment. The IP for n → ∞, polyethylene,
agrees well with several experimental estimations.76−78

For the tOAs, agreement with existing experimental values
for finite chains is consistently good for all theoretical methods.
The experimental value for trans-polyacetylene is taken from
solid-state measurements, where the IP can be smaller by
hundreds of meV from the gas-phase IP,81 possibly explaining
the deviation from the WOT-RSH prediction. For the OLTs,
with the exception of the n = 0.5 monomer, our results
underestimate experimental ones by more than 0.3 eV.
Whether this discrepancy is related to structural differences,
thermal effects, experimental uncertainties, or theoretical
limitations is at present unknown. Even so, the WOT-RSH
results agree qualitatively and semiquantitatively with the
experimental ones, whereas the OT-RSH results do not.
Overall, then, the WOT-RSH results provide good agreement
with experimental trends, where available, throughout.
In order to obtain a deeper understanding of the similarities

and differences between OT-RSH and WOT-RSH, we further
analyze quantities that are central to the optimal tuning
procedure. Figure 3(a) shows the spatial spread, R, which is the
square root of the second moment of the position operator,47

and therefore a measure of the degree of localization (see the
SI for additional details). It is shown for all systems studied in
this work, as a function of effective chain length, for both the
HOMO used in the OT approach (eq 3) and for the Wannier
function used in the WOT approach (eq 4). Figure 3(b)
similarly shows the optimal tuning length, namely the inverse
of the optimally tuned range-separation parameter γ*. Here,
the effective chain length is defined via c0 + nc1, where c0 and c1
have been determined through a linear fit of R of the HOMO
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to n. This means that the effective chain length is simply the
linear fit of R, based on the (justified) assumption that the
HOMO is delocalized across the entire chain.
The first observation of note is that the HOMOs and

Wannier functions exhibit different spreads already for short
chains. Nonetheless, for the same shorter chains γ* values are
nearly identical in OT and WOT. We further tested this result
by applying the same methodology to benzene. This yielded
spreads of 1.7 and 1.1 Å for the HOMO and Wannier function,
respectively, but similar γ* values of 0.42 and 0.39 Å−1 from
OT and WOT, respectively. This indicates that the energy
differences caused by the different densities used in the OT
and WOT procedures are compensated for, consistently, by
the different tuning criteria of the two approaches. Thus, using
WOT over OT for small molecules is not strictly necessary but
is useful for consistency along the evolution of system size.
The second observation of note is that the spread of the

HOMO continues to increase as chain length increases,
reflecting the increased delocalization observed in Figure 2,
with a concomitant increase in the optimal tuning length. In
fact, there is an almost perfectly linear relation between orbital
spread and optimal tuning length for the longer chains in all
three molecule types. This validates, by providing a more
quantitative framework, the conceptual argument regarding the
failure of OT for increasingly larger systems due to a uniform
removal of an electron from the entire system.
A third observation of note is that despite the spread of the

Wannier functions attaining its n → ∞ limit already for very
short chains (manifested as near constant red plots in Figure
3(a)), the optimal tuning length continues to vary more
significantly as the chain length increases. This can be
rationalized by considering that the WOT procedure
represents the removal of a localized electron, but that
electron is still effectively removed from the entire molecule.
This shows that the WOT procedure is indeed capable of
capturing features of the “true” potential, including those on a
larger scale than the orbital itself. Taken together, the above
observations explain the utility of the WOT approach
throughout the evolution of the chain length.

IV. CONCLUSIONS
We have compared two optimal tuning methods of RSH,
namely OT-RSH and WOT-RSH, for the computation of the
IP of one-dimensional molecular chains of increasing length.
We have demonstrated the known failure of OT-RSH for long
chains, owing to orbital delocalization. We found, however,
that WOT-RSH is successful in predicting accurate IPs
throughout the evolution of the chain length, not only in the
polymer limit for which it was originally designed, but
throughout the entire range of oligomers, from monomer to
polymer. Specifically, WOT-RSH results agree with both
experimental trends and past localization-based computational
schemes. This provides a first step in the application of optimal
tuning to nanosized objects where neither the molecular nor
the bulk limits apply.
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(43) Vlcěk, V.; Eisenberg, H. R.; Steinle-Neumann, G.; Kronik, L.;
Baer, R. Deviations from piecewise linearity in the solid-state limit
with approximate density functionals. J. Chem. Phys. 2015, 142,
No. 034107.
(44) Görling, A. Exchange-correlation potentials with proper
discontinuities for physically meaningful Kohn-Sham eigenvalues
and band structures. Phys. Rev. B 2015, 91, No. 245120.
(45) Wing, D.; Ohad, G.; Haber, J. B.; Filip, M. R.; Gant, S. E.;
Neaton, J. B.; Kronik, L. Band gaps of crystalline solids from Wannier-
localization-based optimal tuning of a screened range-separated
hybrid functional. Proc. Natl. Acad. Sci. U.S.A. 2021, 118,
No. e2104556118.
(46) Ma, J.; Wang, L.-W. Using Wannier functions to improve solid
band gap predictions in density functional theory. Sci. Rep. 2016, 6
(1), No. 24924.
(47) Marzari, N.; Mostofi, A. A.; Yates, J. R.; Souza, I.; Vanderbilt,
D. Maximally localized Wannier functions: Theory and applications.
Rev. Mod. Phys. 2012, 84, 1419−1475.
(48) Ohad, G.; Wing, D.; Gant, S. E.; Cohen, A. V.; Haber, J. B.;
Sagredo, F.; Filip, M. R.; Neaton, J. B.; Kronik, L. Band gaps of halide
perovskites from a Wannier-localized optimally tuned screened range-
separated hybrid functional. Phys. Rev. Mater. 2022, 6 (10),
No. 104606.
(49) Ohad, G.; Gant, S. E.; Wing, D.; Haber, J. B.; Camarasa-
Gómez, M.; Sagredo, F.; Filip, M. R.; Neaton, J. B.; Kronik, L. Optical
absorption spectra of metal oxides from time-dependent density
functional theory and many-body perturbation theory based on
optimally-tuned hybrid functionals. Phys. Rev. Mater. 2023, 7 (12),
No. 123803.
(50) Gant, S. E.; Haber, J. B.; Filip, M. R.; Sagredo, F.; Wing, D.;
Ohad, G.; Kronik, L.; Neaton, J. B. Optimally tuned starting point for
single-shot GW calculations of solids. Phys. Rev. Mater. 2022, 6 (5),
No. 053802.
(51) da Silva Filho, D. A.; Coropceanu, V.; Fichou, D.; Gruhn, N. E.;
Bill, T. G.; Gierschner, J.; Cornil, J.; BreDas, J.-L. Hole-vibronic
coupling in oligothiophenes: Impact of backbone torsional flexibility
on relaxation energies. Philos. Trans. R. Soc., A 2007, 365 (1855),
1435−1452.
(52) Körzdörfer, T.; Sears, J. S.; Sutton, C.; Brédas, J.-L. Long-range
corrected hybrid functionals for π-conjugated systems: Dependence of
the range-separation parameter on conjugation length. J. Chem. Phys.
2011, 135, No. 204107.
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