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CONTROLLING STOCHASTICITY IN

EPITHELIAL-MESENCHYMAL TRANSITION THROUGH

MULTIPLE INTERMEDIATE CELLULAR STATES

Catherine Ha Ta, Qing Nie and Tian Hong ∗

Department of Mathematics, Univ. of California Irvine

Irvine, CA 92697-3875, USA

Abstract. Epithelial-mesenchymal transition (EMT) is an instance of cellu-

lar plasticity that plays critical roles in development, regeneration and cancer

progression. Recent studies indicate that the transition between epithelial and
mesenchymal states is a multi-step and reversible process in which several in-

termediate phenotypes might coexist. These intermediate states correspond to

various forms of stem-like cells in the EMT system, but the function of the
multi-step transition or the multiple stem cell phenotypes is unclear. Here, we

use mathematical models to show that multiple intermediate phenotypes in the

EMT system help to attenuate the overall fluctuations of the cell population
in terms of phenotypic compositions, thereby stabilizing a heterogeneous cell

population in the EMT spectrum. We found that the ability of the system
to attenuate noise on the intermediate states depends on the number of inter-

mediate states, indicating the stem-cell population is more stable when it has

more sub-states. Our study reveals a novel advantage of multiple intermediate
EMT phenotypes in terms of systems design, and it sheds light on the general

design principle of heterogeneous stem cell population.

1. Introduction. Epithelial-mesenchymal transition (EMT) is an extreme form of
cellular plasticity that is involved in morphogenesis, tissue regeneration and cancer
progression. During EMT, epithelial cells undergo dramatic changes in cell mor-
phology and behavior to form mesenchymal cells. These changes include loss of
cell-to-cell junction, loss of cell polarity and acquisition of migratory and invasive
properties [5] [16]. The migratory behavior of newly formed mesenchymal cells is
critical for the formation of internal organs during embryonic development [5], and
it is also involved in cancer metastasis, which often requires the dissemination of
cancerous epithelial cells from the primary tumors [25]. After arriving to their des-
tinations, mesenchymal cells sometimes revert to epithelial cells via a process called
mesenchymal-epithelial transition (MET), suggesting that EMT is a reversible pro-
cess [2].

Previous theories and experiments showed that EMT does not give rise to ter-
minal mesenchymal phenotype in some biological scenarios [24] [30] [36]. In other
words, intermediate epithelial-mesenchymal phenotype may be generated by par-
tial EMT. Interestingly, it has been shown that partial EMT, or intermediate EMT
phenotype, is associated with the stemness of epithelial and mesenchymal cells [9].
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In addition, it was hypothesized that partial EMT is responsible for collective mi-
gration and invasiveness of cancer cells [24]. These observations and hypothesis
strongly suggest that EMT is a multi-step transition, and various degrees of the
transition may have distinct physiological outcomes.

Using modeling and experimental approaches, we recently demonstrated the ex-
istence of multiple intermediate phenotypes in the EMT spectrum [12]. This is
consistent with the observations which show four epigenetic states in multi-step
EMT [29], multiple epithelial/mesenchymal stem cell phenotypes [1] and four dis-
tinct types of ovarian cancer cells in the EMT spectrum [14]. We also showed that
the multiple intermediate states arise from complex gene regulatory networks con-
sisting of interconnected feedback loops [12]. Previous theoretical studies suggested
the role of heterogeneity in cell population and its feedback control in stem cell
regeneration [20]. However, it is unclear why the epithelial/mesenchymal cell pop-
ulation needs these multiple intermediate states, or why the stem cells in the EMT
spectrum need to have several subtypes. In particular, what performance objective
does the system evolve to achieve by having multiple intermediate states at the
expense of simplicity of cellular phenotypes?

To address these questions, we built and compared a series of mathematical
models containing various number of intermediate states in EMT spectrum. By
analyzing the behaviors of the system in facing noise in cell populations, we found
that multiple intermediate phenotypes in the system help to attenuate the overall
fluctuations of the cell population in terms of phenotypic compositions, suggest-
ing their ability to stabilize a heterogeneous cell population. When we compared
the models with at least one intermediate state, we found that the number of in-
termediate states positively correlates with the ability to attenuate noise on the
intermediate states, indicating that the stem-cell population is more stable when it
has more sub-states. These results suggest a performance objective that the EMT
system might have evolved to achieve by having multiple intermediate phenotypes,
and it sheds light on the general principles of heterogeneous stem cell population in
term of systems design.

2. Mathematical models and stochastic simulation of multiple state EMT
models.

2.1. Model construction. We explored the functional significance of the interme-
diate states in the EMT process by adapting the population dynamics to modelling
the transition from epithelial to mesenchymal phenotypes. Each steady state in the
transition was portrayed by a population of cells that assumed the phenotype reflec-
tive of that state. In other words, an n-state EMT system has n different popula-
tions of cell, with one of them being epithelial cells and another being mesenchymal
cells. Hence there is a total of n − 2 groups that represent the cell populations of
different intermediate stages. In this paper, we discussed the population dynamics
for four different systems: two-state, three-state, four-state, and five-state EMT
processes (Figure 1). In each system, each population of cells was characterized by
death rate and transition rates from/to another population. The populations that
corresponded to the intermediate states were given stem cell features, described
by self-renewal rates and lower death-rates than other types of cells. We modeled
the population of each cell phenotype with a linear ordinary differential equation
(ODE), where we introduced a constant influx of cells to the mesenchymal popula-
tion under the assumption that mesenchymal cells are mobile and invasive. With
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Figure 1. Four population dynamics models for four distinct
EMT systems: two-state, three-state, four-state, and five-state
transitions. In each model, E denotes the epithelial population, M
mesenchymal population, and Ii the population corresponding to
the ith intermediate state. In each model, the blue arrows describe
the transitions of cells between two populations, where the arrow
heads describe the direction of each transition. The black arrows
indicate cell death, the yellow arrows the self-renewal of (stem)
cells in the intermediate states, and the green arrows that point
towards the mesenchymal population indicate a constant influx of
cells into this population.

this influx, all of the matrix systems in our models are nonsingular. The ODE
that depicts the change in the population size of a particular cell phenotype Pi,
i = 1, 2, ..., n, is as followed:

dPi

dt
=

∑
k 6=i

αkiPk −
∑
k 6=i

αikPi − diPi + siPi (1)

where αki is the cellular conversion rate from Pk to Pi, di is the death rate, and
si is the self-renewal rate where si = 0 if the phenotype of the cell population Pi

is epithelial or mesenchymal. The cellular conversion rates, death rates, and self-
renewal rates all assume constant values. In addition, if Pi describes the population
of mesenchymal cell, then

dPi

dt
=

∑
k 6=i

αkiPk −
∑
k 6=i

αikPi − diPi + siPi + IM (2)

with IM being the constant influx of cells into the mesenchymal population. For our
simulations, we chose the range for our parameter values to be between 1e−5 and
10, with the death rates di of the “stem cell” populations to be between 1e−5 and
1e−2 to reflect the lower death rates of stem cells. Meanwhile, since the epithelial
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and mesenchymal populations were assumed to have higher death rates, we chose
the death rates to be between 0.05 and 10. The quantity of cell population is in
arbitrary unit. One time unit in our model corresponds to one day.

In order to explore the noise attenuation properties of each population dynamics
model, we introduced multiplicative noise σiPidWi to our ODE system via multiple
means, where σi is the noise coefficient and Wi describes the Standard Brownian
motion. This noise is referred to as “input noise” in this paper. First, we added noise
to the epithelial and mesenchymal populations, then observed the effects that noise
introduction had on each individual population as well as overall. Next, we added
noise to one intermediate population besides the two existing noises on epithelial
and mesenchymal cells, and finally we introduced multiplicative noise to each cell
population. To ensure consistency between the population fluctuations, we chose
the noise coefficient σi = 1 for all i = 1, 2, ...n.

2.2. Model comparison through differential evolution algorithm. To com-
pare various models with distinct number of parameters, we used Differential Evolu-
tion (DE) to optimize these models with respect to their ability to attenuate noise,
and we subsequently compared the optimized parameter sets in terms of the noise
attenuation property. DE is a method for improving a set of parameter values (i.e.,
a parameter vector x, as above) with respect to an objective function, Φ(x), by
generating a sequence of trial parameter vectors by processes of reproduction and
selection [26]. Reproduction generates an offspring parameter vector u from a par-
ent parameter vector x by diversification. If the offspring performs better than the
parent, then the cost value produced by the objective function for the offspring is
less than that of the parent, i.e. Φ(u) < Φ(x). In this case, the parent vector x is
replaced by the offspring vector u in the next generation. The DE algorithm was
previously shown to be efficient in optimizing models for biological systems [13].
With this algorithm, we iteratively searched for a newer set of parameter values
that provided a better cost to the objective function Φ(x) than the previous set
until the cost converged to the most optimal value. We chose the cost to be the
average coefficient of variation of the population size for all phenotypes, i.e. the
sum of the coefficients of variation of all the cellular populations divided by the
number of states in a particular EMT system that we study. As a result, a lower
cost value implies an overall reduction in fluctuations in each cell population and is
thus desirable. We applied the optimization algorithm ten times to obtain ten sets
of parameters with their corresponding cost values.

During DE, parameter vectors evolve from generation to generation. Each gen-
eration (indexed by t = 0, 1, ...) consists of N parameter vectors xj , j = 1, ..., N .
Hence, the real number xij(t) is the value of the ith parameter in the jth parent in
the tth generation. Let uj(t) be the parameter vector for the single offspring of the
jth parent in the tth generation. The components of this vector, uij(t) for i = 1,
..., D, are constructed in two steps (mutation and crossover). Then, given the two
parameter vectors xj(t) and uj(t), a decision is made as to which one is propagated
to generation t + 1. The following three operations propagate parameter vectors
from one generation to the next:

1. Mutation: First, we create a “mutant” vector vj(t) by perturbing a parental
vector xj(t). In our DE approach, we let the perturbation vector be the dif-
ference between the parameter vectors of two additional parents, j′ and j′′,
chosen at random from the tth generation of parents. All three parents must
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be different. The “mutant” vector is defined by:

vj(t) = xj(t) + F · (x′j(t) − x′′j (t)) (3)

where F is a scalar, 0 < F < 1, that determines how “aggressive” the mutation
is.

2. Crossover: Next we allow for crossover between the parental parameter set
xj(t) and the mutant parameter set vj(t). Component-wise, the offspring vec-
tor uj(t) receives a parameter value from the mutant vector with probability
C (the crossover probability) or from the parent vector with probability 1−C:

ui,j(t) =

{
vi,j(t), if rand(0, 1) ≤ C

xi,j(t), otherwise
(4)

i = 1, 2, ..., D and j = 1, 2, ..., N.

We choose C = 0.5 so that parental values and mutant values have equal
chances to be in the offspring vector.

3. Selection: Depending on their relative performances, xj(t) or uj(t) passes on
to the next generation. There are two possibilities here. For “greedy” selection,
the offspring replaces its parent if it is superior:

xj(t+ 1) =

{
uj(t), if Φ(uj(t)) < Φ(xj(t))

xj(t), otherwise
(5)

For “non-greedy” selection, the condition for replacement is:

Φ(uj(t)) ≤ Φ(xj(t)) (6)

We implement DE using the Matlab code available in Price and Storn’s algorithm
for DE [38].

2.3. Application of fluctuation dissipation theorem. To measure the fluc-
tuations on each cell population, we calculated the coefficient of variation of the
population size for each cell phenotype from the covariance matrix that we found
using the Fluctuation Dissipation Theorem [17] [18]. The Fluctuation Dissipation
Theorem helps to predict the behaviors of a system in thermal equilibrium by es-
tablishing a relation between the frictional force and random force created by the
Brownian particle’s impacts with surrounding molecules. We applied the version
of the Fluctuation Dissipation Theorem mentioned in [32] to our system of linear
stochastic ODEs:

dP = AP(t)dt+ Γ(P(t))dWt (7)

where A is a constant matrix and Γ(P(t))dWt represents the multiplicative noise
term. Γ(P(t)) is a diagonal matrix whose ith entry is σiPi(t). With this application
of the Fluctuation Dissipation Theorem, we found the covariance matrix Σ for the
equilibrium system through the formula

AΣ + ΣAT = −Γ2(Pss(t)) (8)

with Pss(t) being the steady states of the deterministic system dP/dt = AP(t).
To quantify the noise attenuation performance of each EMT system, we aggregate

the results of ten different optimization simulations using the DE algorithm [26]
and calculate the mean and standard deviation of the coefficients of variation that
describe the fluctuations in a specific population. Figures 2-8.

http://www1.icsi.berkeley.edu/~storn/code.html
http://www1.icsi.berkeley.edu/~storn/code.html
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2.4. Sensitivity analysis. In our sensitivity analysis, we defined our parameters
as followed: kij describes the cellular transition rate from the population in the
i-state to the population in the j-state where i, j = E, M, I, 1, 2, and 3. Here,
E denotes epithelial state, M mesenchymal state, I the intermediate state in the
three-state EMT system, and 1, 2, and 3 denote the three intermediate states I1,
I2, and I3 in the four-state and five-state systems. The parameter ksI is the self-
renewal rate of the intermediate population in the three-state EMT system while
the parameters ks1, ks2, and ks3 are the self-renewal rates of the I1, I2, and I3
populations in the five-state process.

The sensitivity of each parameter is measured by the average change in the
average coefficient of variation upon perturbation by 50%. For some transition
rates, a positive change in the parameter value due to perturbation results in a
significantly smaller average coefficient of variation but this parameter value can be
discounted because it lies outside the designated value range that we used in our
optimization algorithm Figures 4 and 8.

3. Results.

3.1. Intermediate states reduce stochastic fluctuations in EMT. We first
asked if the intermediate state helps to attenuate the fluctuations in E and M cells.
We used two optimized parameter sets for a two-state (E and M) model and a
three-state (E, I and M) model for comparison, and we obtained two representa-
tive trajectories under the influence of identical level of input noise in E and M
states. When we compared these two trajectories in terms of the fractions of M
cells (Figure 2A), we found that the fluctuations in the fraction of M cells were re-
duced by 3.6% after adding the intermediate state. To exclude the possibility that
the reduction of fluctuations is due to the lack of input noise in the intermediate
state, we compared the two-state model and the three-state model with noise in
all of the three states, and the latter model still showed discernible reduction of
fluctuations in fraction of M cells under this condition (Figure 2B). We performed
similar analysis on the fraction of E cells, and we found that when the input noise
was only in E and M states, the three-state model performed significantly better
than the two-state in terms of minimizing the fluctuations in E cells (Figure 3A),
but when the input noise was in all the states, adding intermediate state resulted
in a moderate increase of the fluctuations (Figure 3B). These results suggest that
the intermediate state attenuates the fluctuations in M cells, and it may decrease
or increase the fluctuations in E state depending on the source of noise.

We quantified the average fluctuations of all cellular states with the two-state
and the three-state models. When we added noise on E and M states, the aver-
age cellular fluctuations were markedly reduced in the presence of the intermediate
state (Figure 4A), and there was still a moderate reduction of average fluctuations
when the noise was on all cellular states (Figure 4B). This suggests that the overall
performance of the three-state model is better than that of the two-state model in
terms of stability of phenotypic compositions.

We next asked which cellular state transition rates are critical for maintaining the
stability. By perturbing the parameters representing the rates transitions among
the three cellular states (input noise was added to all three states), we found that
the performance of noise attenuation in the three-state system is most sensitive to
three parameters: the transition rate from I to E (kIE), the transition rate from I to
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Figure 2. Comparison of the noise attenuation property between the
two-state and three-state EMT systems in terms of the effects on the
mesenchymal population size. A) Multiplicative noise is introduced to
the epithelial and mesenchymal populations. B) Multiplicative noise is
introduced to the epithelial, intermediate (three-state system), and mes-
enchymal populations. Top two panels are the time-course trajectories
that represent the normalized number of mesenchymal cells NM/µ(NM )
over a period of 10 days. To obtain the normalization, we perform sto-
chastic simulations on the steady state population of mesenchymal cells,
then divide the mesenchymal population size at each time point by its
mean value obtained over the 10-day period. In the middle two panels,
the normalized mesenchymal population size is plotted against the num-
ber of times that particular size occurs. Yellow: two-state EMT, green:
three-state EMT. Bottom two panels display the quantification of the
noise attenuation performance of the two-state and three-state systems
using the mean and standard deviation of the coefficients of variation
(CV) of the mesenchymal population. The mean is plotted here in the
form of a bar graph (blue), while the standard deviation is described by
the red error bar.
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Figure 3. Comparison of the noise attenuation property between
the two-state and three-state EMT systems in terms of the effects
on the epithelial population size. A) Multiplicative noise is intro-
duced to epithelial and mesenchymal populations. B) Multiplica-
tive noise is introduced to the epithelial, intermediate (three-state
system), and mesenchymal populations. Top two panels are the
time-course trajectories that represent the normalized number of
epithelial cells NE/µ(NE) over a period of 10 days. Middle two
panels illustrate the distribution of the different population sizes
of the normalized epithelial population. Here, the normalized ep-
ithelial population size is plotted against the number of times that
particular size occurs. The color coding scheme for each system is
similar to that of Figure 2. Bottom two panels display the quan-
tification of the noise attenuation performance of the two-state and
three-state systems.
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Figure 4. Comparison of the noise attenuation property between the
two-state and three-state EMT systems on the average population size.
A) Noise is introduced to epithelial and mesenchymal populations. B)
Noise is introduced to the epithelial, intermediate (three-state system),
and mesenchymal populations. Top panels: trajectories of normalized
average number of cells Navg/µ(Navg) over 10 days. Middle panels:
distribution of the different sizes of the normalized average population
using the color coding scheme of Figure 2. Bottom panels: quantification
of the noise attenuation performance of both systems. C) Sensitivity
analysis of the parameters representing unique cell transition rates in
the three-state EMT system. Here, we plot the mean of the average
change in the average CV as bar graphs (blue) accompanied by red error
bars that describe the standard deviation of the average change.
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M (kIM ) and the transition rate from M to I (kMI) (Figure 4C). These results sug-
gest that the transitions involving the intermediate states are important for noise
attenuation, and they further corroborate the advantage of the intermediate state.
They correlation between these transition rates and the ability of the system to
attenuate noise may be tested in future experiments.

5.png

Figure 5. Comparison of the noise attenuation property between
the three-state, four-state, and five-state EMT systems in terms of
the effects on the mesenchymal population size. A) Multiplicative
noise is introduced to epithelial and mesenchymal populations. B)
Multiplicative noise is introduced to the epithelial, mesenchymal,
and one intermediate populations. C) Multiplicative noise is intro-
duced to all the populations. Top three panels are the time-course
trajectories that represent the normalized number of mesenchymal
cells NM/µ(NM ) over a period of 10 days. To obtain the nor-
malization, we perform similar stochastic simulations to those in
Figures 2-4. Middle three panels illustrate the distribution of the
different population sizes of the normalized mesenchymal popula-
tion. Here, the normalized mesenchymal population size is plotted
against the number of times that particular size occurs. Green:
three-state EMT, blue: four-state EMT, red: five-state EMT. Bot-
tom three panels display the quantification of the noise attenuation
performance of the three-state, four-state, and five-state systems.
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Figure 6. Comparison of the noise attenuation property between
the three-state, four-state, and five-state EMT systems in terms
of the effects on the average intermediate population size. A)
Multiplicative noise is introduced to epithelial and mesenchymal
populations. B) Multiplicative noise is introduced to the epithe-
lial, mesenchymal, and one intermediate populations. C) Mul-
tiplicative noise is introduced to all the populations. Top three
panels are the time-course trajectories that represent the normal-
ized average number of cells taken over all the intermediate states
NI,avg/µ(NI,avg) over a period of 10 days. Middle three panels
illustrate the distribution of the different population sizes of the
normalized average intermediate population. Here, the normalized
average intermediate population size is plotted against the number
of times that particular size occurs. The color coding scheme for
each system is similar to that of Figure 5. Bottom three panels
display the quantification of the noise attenuation performance of
the three-state, four-state, and five-state systems.

3.2. Multiple intermediate states enhance noise attenuation. Next, we ex-
plored the advantages of modeling the EMT system with multiple steady states.
Using identical input noise on E and M populations, we examined the noise buffer-
ing property of three different EMT models: three-state, four-state, and five-state
transitions. Analysis of the fluctuations in M cells demonstrates a reduction in noise
effects in systems with more than one intermediate states, as evident by the normal-
ized trajectories of the fraction of M cells and the coefficient of variation that reflects
the variability of the mesenchymal population size (Figure 5A). In addition, five-
state system filters noise more efficiently than four-state system. Similarly, when
we introduced noise to one intermediate population in addition to the E and M
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Figure 7. Comparison of the noise attenuation property between
the three-state, four-state, and five-state EMT systems in terms
of the effects on the epithelial population size. A) Multiplicative
noise is introduced to epithelial and mesenchymal populations. B)
Multiplicative noise is introduced to the epithelial, mesenchymal,
and one intermediate populations. C) Multiplicative noise is intro-
duced to all the populations. Top three panels are the time-course
trajectories that represent the normalized number of epithelial cells
NE/µ(NE) over a period of 10 days. Middle three panels illustrate
the distribution of the different population sizes of the normalized
epithelial population. Here, the normalized epithelial population
size is plotted against the number of times that particular size oc-
curs. The color coding scheme for each system is similar to that
of Figure 5. Bottom three panels display the quantification of the
noise attenuation performance of the three-state, four-state, and
five-state systems.

populations, we observed the same correlation between the number of intermediate
populations in an EMT system and the noise attenuation property of that system
(Figure 5B). We also confirmed this result by adding noise to all the populations
in every EMT system, where the five-state system achieved the best noise filtering
results, followed closely by the four-state system (Figure 5C). From analyzing the
responses of the average intermediate population to noise with similar approach, we
found that the populations of the five-state and four-state systems outperformed
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Figure 8. Comparison of the noise attenuation property between
the three-state, four-state, and five-state EMT systems in terms
of the effects on the average population size. A) Multiplicative
noise is introduced to epithelial and mesenchymal populations. B)
Multiplicative noise is introduced to the epithelial, mesenchymal,
and one intermediate populations. C) Multiplicative noise is intro-
duced to all the populations. Top three panels are the time-course
trajectories that represent the normalized average number of cells
Navg/µ(Navg) over a period of 10 days. Middle three panels il-
lustrate the distribution of the different population sizes of the
normalized average population. The color coding scheme for each
system is similar to that of Figure 5. Bottom three panels display
the quantification of the noise attenuation performance of all the
EMT systems. D) Sensitivity analysis of the parameters repre-
senting unique cell transition rates in the five-state EMT system.
Here, we plot the mean of the average change in the average CV
as bar graphs (blue) accompanied by red error bars that describe
the standard deviation of the average change.
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that of the three-state system in attenuating noise at the intermediate levels, re-
gardless of how noise was introduced to the different populations (Figure 6A-C).
This suggests that the number of stem cell sub-states correlates with their ability
to reduce the fluctuations of stem cell population. When we studied the effects of
noise on the fraction of E cells, we did not observe a similar trend to that of the M
and I cells. When input noise was added to E and M populations only, the epithelial
population of the five-state system was more susceptible to the fluctuations (Figure
7A) while the epithelial population of the same system showed the least variability
when noise was also added to one intermediate population (Figure 7B). With noise
in every state, the difference in the performance of each system in filtering noise
at the epithelial level was not discernible (Figure 7C). These results suggest that
when the number of intermediate state varies, there might be a tradeoff between
attenuating noise in E cells and other cells.

Lastly, we quantified the overall performance of each EMT system by consider-
ing the fluctuations on the average population of all cellular states. In the scenario
where noise is only introduced to the E and M states, the five-state system performs
the best at suppressing noise, while the four-state system displays better noise at-
tenuation than the three-state system (Figure 8A). With the addition of noise in
one intermediate state, the four-state and the five-state EMT processes demonstrate
improvement in noise attenuation from their three-state counterpart by 6.9% and
9.6% respectively (Figure 8B). Likewise, we confirmed our results with the addition
of noise to all cellular populations and concluded that the EMT system achieves
better noise attenuation property when more intermediate states are taken into
consideration (Figure 8C).

Using the five-state EMT process with noise in every state, we analyzed the sen-
sitivity of the parameters that described the cellular transition/self-renewal rates.
For our analysis, we examined the average change in the average coefficient of vari-
ation of all five populations upon perturbing each parameter. We performed the
optimization procedure ten times, whereupon, we carried out the perturbations each
time and presented our results in Figure 8D. We found that the parameters that
described the transition rate from any intermediate population I1, I2, or I3 to the
epithelial population (k1E , k2E , k3E) are most sensitive to their own perturbations,
resulting in a marked increase in the average coefficient of variation, therefore a de-
crease in noise buffering ability of this EMT system. Besides those three transition
rates, the cellular transitions from the mesenchymal population to the intermediate
populations (kM1, kM2, kM3) , also show considerable sensitivity to perturbations.
We thus recognize the crucial roles that the intermediate states such as the I1, I2,
and I3 states play in ensuring the better noise attenuation performance of the five-
state system. The significance of the transitions between intermediate states and
the others reinforce the notion that having multiple intermediate states is beneficial
to reducing the effects of the fluctuations on the overall population.

4. Discussion. Studying the multi-step and reversible dynamics of EMT is es-
sential for understanding the roles of EMT in various biological processes such as
development and cancer progression. Previous studies revealed multiple intermedi-
ate states lying between terminal epithelial and mesenchymal states [12] [14] [29],
and this is consistent with the observations that epithelial cell populations show
remarkable heterogeneity in normal and tumor tissues [19][35]. These intermedi-
ate states are associated with stemness and invasiveness during cancer progression
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[9] [15], but the functions of these multiple intermediate states and the complex
transitions among all the phenotypic states are unclear. In this study, we used
mathematical models to show that systems with multiple intermediate (stem cell)
states have advantages in attenuating fluctuations of the heterogeneous cell popula-
tion, and this effect is particularly beneficial for maintaining stable fractions of stem
cells in cell populations, thus providing a strategy for maintaining homoeostasis in
facing stochasticity of cell fate changes. The possible performance objective at sys-
tems level suggests a new design principle for multi-step EMT and other multi-state
systems involving transitions among diverse types of cells.

Complex networks in biological systems have been extensively studied in terms
of design principles and performance objectives [21] [31]. However, most of these
studies focused on intracellular networks of molecular interactions and influence,
and much less is known for networks formed by phenotypic transitions among cell
types [10]. We showed that the later type of networks can carry rich information in
terms of performance objectives such as facilitating noise attenuation. This finding
improves our understanding of systems design at tissue level, and suggests that the
formation of cellular states and the transitions among them may have evolved to
reach performance objectives that are beneficial to the organisms. It is likely that
multiple performance objectives are influencing the evolution of the cellular net-
works, and further studies are needed to identify these objectives.

Due to the stochastic nature of biochemical reactions and fluctuating environ-
mental conditions, many biological systems are designed to attenuate noise such
that stable response to signals can be attained [6] [33]. Intermediate states and
regulators have been previously found to improve the robustness of developmental
patterning [3]. Our finding that adding intermediate cell states can reduce the fluc-
tuations in cell population provides another strategy for noise attenuation at tissue
level. The fluctuations that we included in our simulations represent the stochastic-
ity of cell division [7], cell death [8] and phenotypic transitions [4], all of which were
previously observed in experiments. Nonetheless, the sources of these types of noise
are mostly molecular fluctuations that affect various types of rates of the cellular
activities [37]. In order to describe the dynamics of the noise in more details, future
models will need to incorporate the stochastic dynamics of biomolecules into the
framework.

Multiple intermediate cell states may arise from complex gene regulatory net-
works with interconnected positive feedback loops [12] [13]. It is conceivable that
the formation of more intermediate cells would require more complex gene regu-
latory networks, which in turn need some other strategies and/or more energy to
control. Therefore, the correlation between the number of states and the ability to
attenuate noise suggests that a tradeoff between the simplicity of the gene regula-
tory network and noise attenuation may exist when the system is subject to design
via evolution.

Dynamic equilibrium of sub-states of stem cells is observed not only in the EMT
system, but also in hematopoietic and embryonic stem cell populations [11] [27]
[34]. Moreover, it was suggested that heterogeneity of cell population might be re-
lated to disseminated cancer cell dormancy [28]. Although these sub-states of stem
cells might represent distinct functional entities in specific contexts, the recurring
phenomena indicate that there might be advantages of this dynamic behavior at
systems level. Our modeling work provides a general framework to study the cell
differentiation systems with multiple sub-states of stem cells, and our conclusions
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with respect to the noise attenuation property of multiple stem cell states can apply
to other systems, such as embryonic stem cell and disseminated cancer cell [11] [28].
In addition, feedback control among multiple cellular states have been shown to be
critical to the growth and stability of cell populations [20] [22] [23]. Future works
are warranted to investigate the role of feedback controls involving the multiple
intermediate states.

In conclusion, our computational analysis shows that the existence of multiple
intermediate states between epithelial and mesenchymal states and the transitions
among these states are able to attenuate the fluctuations of the fractions of cell
population. We found a general correlation between the number of states and the
ability to attenuate fluctuations. In particular, the fluctuations of the stem cell
populations are reduced by increasing the number of intermediate states. These
results improve the understanding of the intermediate states in the EMT system
in terms of performance objectives, and provide insights into the stem cell systems
with multiple sub-states in general.
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