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ABSTRACT OF THE DISSERTATION

The Segal–Bargmann Transform in Noncommutative Probability

by

Ching Wei Ho

Doctor of Philosophy in Mathematics

University of California San Diego, 2018

Professor Todd Kemp, Chair

Discovered by Segal and Bargmann in 1960s, the Segal–Bargmann trasnform is an

important tool in mathematical physics, intertwining the Heisenberg and Fock pictures in quantum

mechanics. We will discuss representations of the two-parameter free unitary Segal–Bargmann

transform, which is the large-N limit of Segal–Bargmann–Hall transform on unitary group.

Motivated by a conditional expectation interpretation of the Segal-Bargmann transform, we derive

the integral kernel for the large-N limit of the two-parameter Segal-Bargmann-Hall transform over

the unitary group, and explore its limiting behavior. We also extend the notion of circular systems

to more general elliptic systems, giving an alternate construction of our new two-parameter free

unitary Segal-Bargmann-Hall transform via a Biane-Gross-Malliavin type theorem.
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Chapter 1

Introduction

1.1 Historical Development and Background

In early 1960s, Segal [Seg62, Seg63] and Bargmann [Bar61, Bar62] introduced a unitary

isomorphism from L2 to holomorphic L2, known as the Segal-Bargmann transform (also known

in the physics literature as the Bargmann transform or Coherent State transform), as a map

St : L2(Rn,ρn
t )→ L2

hol(C
n,ρ2n

t/2)

where ρn
t is the standard Gaussian measure ( 1

2πt )
n/2 exp(− 1

2t |x|2) dx on Rn and L2
hol(C

n,ρt/2)

denotes the subspace of square ρt/2-integrable holomorphic functions on Cn. St is given by

convolution with the heat kernel, followed by analytic continuation to Cn.

In [Hal94], Hall generalized the Segal-Bargmann transform to any compact Lie group K;

the generalization is also known as the Hall’s transform or the Segal-Bargmann-Hall transform.

He considered the heat kernel measure ρt of variance t on K determined by an Ad-invariant

inner product on Lie(K), and the corresponding heat kernel measure µt/2 of variance t
2 on the

complexification KC of K; the transform, again denoted by St , is defined as in the Euclidean case
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by

St f = (e
t
2 ∆K f )C

where e
t
2 ∆K is the time-t heat operator on K and ( · )C means the analytic continuation from K

to KC. It is a unitary isomorphism between the Hilbert spaces L2(K,ρt) and L2
hol(KC,µt). In

this paper, we will be particularly interested in the case K = U(N), the group of N×N unitary

matrices, and its complexification KC = GL(N), the general linear group of N×N invertible

matrices of complex entries.

In an even more general setting, given two positive numbers s and t with s > t
2 , Driver

and Hall introduced in [DH99, Hal99] the two-parameter Segal-Bargmann transform

Ss,t : L2(K,ρs)→ L2
hol(KC,µs,t)

given by the same formula as St but applied to a different domain space where µs,t is another heat

kernel measure on KC. The original transform St is the same as St,t . Hall also considered the case

as s→ ∞ and s→ t
2 .

Having an infinite dimensional version of the classical Segal-Bargmann transform for

Euclidean spaces [Seg78], it is natural to construct an infinite dimensional limit of the Segal-

Bargmann transform for compact Lie groups. To define the transform on U(N), we fix an

Ad-invariant inner product on the Lie algebra u(N) = {X ∈M(N) : X∗ =−X} of U(N), where

M(N) is the space of all N×N complex matrices. The most obvious approach to the N→∞ limit

would be to use an N-independent Hilbert-Schmidt norm on all the u(N); however, M. Gordina

[Gor00a, Gor00b] showed that this approach does not work because the target Hilbert space

becomes undefined in the limit. Indeed, Gordina showed that with the metrics normalized in this

way, in the large-N limit all nonconstant holomorphic functions on GL(N) have infinite norm

with respect to the heat kernel measure µt .

Biane [Bia97b] suggested an alternative approach to the N → ∞ limit of the Segal-

2



Bargmann transform on U(N); instead of taking an N-independent Hilbert-Schmidt norm on all

u(N), we scale the Hilbert-Schmidt norm on u(N) by an N-dependent constant as

‖X‖2
u(N) = NTr(X∗X) = N

N

∑
j,k=1
|X jk|2. (1.1.1)

With this N-dependent constant, Biane carried out a large-N limit of the Lie algebra version of

the transform. He considered the classical Euclidean Segal-Bargmann transform SN
t acting on

M(N)-valued functions with norm ‖X‖2 = NTr(X∗X), which are given by functional calculus,

componentwise on the Lie algebra u(N). The target inner product space M(N) is equipped with

another norm ‖X‖2 = 1
N Tr(X∗X). Even though the result of applying SN

t to a single-variable

polynomial function is in general not a single-variable polynomial function, [Bia97b, Theorem 2]

asserts that for each single-variable polynomial P, there is a unique single-variable polynomial Pt

such that

lim
N→∞
‖SN

t P−Pt‖L2(M(N),γt/2;M(N)) = 0.

Recall that γt is the variance-t Gaussian measure on the Euclidean space. Biane’s limit transform

maps P to Pt .

In the later sections, Biane introduced a free version of (one-parameter) Segal-Bargmann

transform by means of free probability [Bia97b] as well as free stochastic calculus on a full

Fock space. The underlying free probability space is the L2 space of a semi-circular system

whose construction is parallel to the classical construction of Gaussian variables on a Boson

Fock space. The range space of the free Segal-Bargmann transform is the holomorhpic L2 space

of the corresponding circular system. We shall extend the free Segal-Bargmann transform to

a two-parameter version whose range space is the holomorphic L2 space of a two-parameter

elliptic system which will be developed in Section 3.3.1. In the other direction of generalization,

Kemp [Kem05] studied the generalization of the free Segal-Bargmann transform on different

Fock spaces.
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Biane also constructed the “large-N limit Segal-Bargmann transform on U(N)” Gt using

Malliavin calculus techniques and gave a Gross-Malliavin identification [GM96]. Gt is a unitary

isomorphism between an L2 space of a measure on the unit circle U, which is the multiplicative

analogue of the semi-circular distribution, and a reproducing kernel Hilbert space of analytic

functions on some domain of the complex plane. In his paper [Bia97b], Biane did not prove

the transform Gt can be obtained by taking a large-N limit from applying the Segal-Bargmann

transform SN
t on U(N) to M(N)-valued functions; instead, he used the Gross-Malliavin type

approach to identify the polynomials that should be transformed to monomials, and computed

their generating function.

The construction of the unitary isomorphism Gt uses the tools developed in [Bia98].

Motivated from development of free processes with free additive/multiplicative increments, Biane

showed the existence of (free) Markov transition functions for such processes. He then applied

the result to the free unitary Brownian motion in [Bia97b] to obtain a kernel which gives a free

analogue of constructing the heat kernel from the Gaussian measure. The transform Gt is defined

by integrating the L2 function against the free kernel.

Driver, Hall and Kemp [DHK13] proved, by explicit calculation with combinatorial

tools and solving partial differential equations, that Gt is the direct limit of the Segal-Bargmann

transform on U(N). They considered the two-parameter Segal-Bargmann transform SN
s,t on U(N)

acting on M(N) - valued functions and showed that for each single-variable polynomial P, even

though SN
t P is typically not a single-variable polynomial, the sequence (SN

s,tP)
∞
N=1 does have a

single-variable polynomial limit Gs,t p in the following sense:

lim
N→∞
‖SN

s,tP−Gs,tP‖L2(GL(N),µN
s,t ;M(N)) = 0.

They computed in [DHK13, Theorem 1.31] that for s > t
2 > 0, there are polynomials p(k)s,t ,

k = 1,2, · · · , such that Gs,t p(k)s,t = (·)k and the generating function Πs,t(u,z) = ∑k≥1 p(k)s,t (u)zk

4



satisfies

Πs,t(u,ze
1
2 (s−t) 1+z

1−z ) =
(

1−uze
s
2

1+z
1−z

)−1
−1; (1.1.2)

in particular, Gt,t = Gt , since the generating function in s = t case defined in [Bia97b] concerning

the polynomials whose transform under Gt are monomials. The main results of [DHK13] were

also proved simultaneously and independently by Cébron in [Céb13], using free probability and

combinatorics techniques. The techniques [DHK13] and [Céb13] used were different; Cébron

considered Brownian motions on U(N) and GL(N) and the free Brownian motions while Driver,

Hall and Kemp did not use free probability at all. However, Cébron related the one-parameter

free unitary Segal-Bargmann transform of polynomials to computing conditional expectations.

We will combine Cébron’s and Driver, Hall and Kemp’s work to give a conditional expectation

form of the two-parameter free unitary Segal-Bargmann transform.

Gross and Malliavin [GM96] showed that the Segal-Bargmann transform on compact Lie

groups can be recovered from an infinite dimensional version of the Segal-Bargmann transform

through the endpoint evaluation map, by imbedding the L2 space of the heat kernel measure on a

Lie group of compact type into the L2 space of the Wiener measure associated with Brownian mo-

tion on its Lie algebra. Biane [Bia97b] used a free analogue of the Gross-Malliavin identification

to define the putative large-N limit of the Segal-Bargmann transform on U(N). It can be recovered

from the free Segal-Bargmann transform through functional calculus, by imbedding the L2 space

of the measure on the unit circle into the L2 space of the free unitary Brownian motion on a free

probability space. The free multiplicative Brownian motion was generalized to the free multiplica-

tive (s, t)-Brownian motion which has been studied for couples of years (see, e.g., [CK, Kem14]);

it satisfies a free stochastic differential equation which looks the same as the stochastic differential

equation for (s, t)-Brownian motion on GL(N). The two-parameter free Brownian motion is the

main ingredient of the range space of the two-parameter free Segal-Bargmann transform which

will be discussed in Section 3.3.1 of the present paper.

The rest of this introduction is devoted to summary and explanation of the results of the

5



current paper. We consider the family of distributions νt of a free unitary Brownian motion at

time t on the unit circle U whose Σ-transform ft(z)
z is e

t
2

1+z
1−z (See Section 2.2 for definition). We

denote the inverse of ft by χt , which is analytic on the unit disk D (See [Bia97b]).

We first put [Céb13] and [DHK13] together to give the following proposition; see Section

3.1.

Proposition 1.1.1. Let bs,t be the free multiplicative (s, t)-Brownian motion and ut be the free

unitary Brownian motion. Suppose that the processes ut and bs,t are free to each other. Then we

have, with an abused notation bs,t = bs,t(1),

Gs,t f (bs,t) = τ[ f (bs,tut)|bs,t ]

for all Laurent polynomials f .

We let ut and ũt be free unitary Brownian motions which are free to each other. For s > t,

the operator bs,t(1) has the same holomorphic moments as us−t , which is stated in [Kem14].

Theorem 2.2.9, which was proved in [Bia98] by Biane, asserts, with µ = νs−t and ν = νt where

νt is the distribution of ut , that the existence of a Feller Markov kernel H = h(·,dω) on U×U

such that

τ[ f (us−t ũt)|us−t ] = H f (us−t)

for any bounded Borel function f and kernel h(ζ,dω) is determined by the moment generating

function ∫
U

zω

1− zω
h(ζ,dω) =

χs,t(z)ζ
1−χs,t(z)ζ

where χs,t = fs−t ◦χs is an analytic function on D. It follows that in the s > t case, by Proposition

1.1.1, again since us−t and bs,t(1) have the same holomorphic moments,

Gs,t f (us−t) = τ( f (us−t ũt |us−t) = H f (us−t) =
∫
U

f (ω)h(us−t ,dω)

6



which is an integral transform version of the two-parameter Segal-Bargmann transform. We will

also construct such a kernel for s≥ t
2 > 0. The computation above will be given in much details

in Section 3.1.

Having given this motivation, we then move on to establish the integral formula for the

two-parameter free unitary Segal-Bargmann transform. We are concerned with s≥ t
2 > 0. We

first prove that χs,t = fs−t ◦χs is an injective conformal map from D onto its image (see Definition

3.2.5). Then we define a kernel ks,t( · ,dω) whose L2 space is the same as L2(νs); for the exact

statement, see Theorem 3.2.6 and Proposition 3.2.9. And the integral formula for the large-N limit

of the Segal-Bargmann transform on U(N), called the free unitary Segal-Bargmann transform, is

a unitary isomorphism from L2(νs) to a reproducing kernel Hilbert space As,t defined for each

f ∈ L2(νs),

G̃s,t f (ζ) =
∫
U

f (ω)
|1−χs,t(ω)|2

(ζ−χs,t(ω))(ζ−1− χ̄s,t(ω))

1−|χs,t(ω)|2

1−|χs(ω)|2
νs(dω)

for all ζ ∈ Σs,t where the domain Σs,t of the analytic function Gs,t f has a very precise description

given in Section 3.2.2. The topology of Σs,t depends on s only. For s < 4, Σs,t is simply connected

while for s > 4, Σs,t is of conformal type as an annulus; in the complicated case s = 4, Σs,t itself

is simply connected but the complement of Σ̄s,t has two components. Here is a theorem which

summarizes Theorem 3.2.20 and Theorem 3.2.22:

Theorem 1.1.2. 1. The transform G̃s,t is a unitary isomorphism between the Hilbert spaces

L2(νs) and the reproducing kernel Hilbert space As,t of analytic functions on Σs,t generated

by the positive-definite sesqui-analytic kernel

K(z,ζ)

=
∫
U

|1−χs,t(ω)|2

(z−χs,t(ω))(z−1− χ̄s,t(ω))

|1−χs,t(ω)|2

(ζ−χs,t(ω))(ζ−1− χ̄s,t(ω))

(
1−|χs,t(ω)|2

1−|χs(ω)|2

)2

νs(dω).
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2. G̃s,t coincides to Gs,t , the large N-limit of the Segal-Bargmann transform on U(N); i.e. G̃s,t

extends Gs,t to a unitary isomorphism between the two Hilbert spaces.

We also compute the limit behavior of the domain Σs,t . If we hold t fixed and let s→ ∞,

the region Σs,t converges to an annulus with inner and outer radii e−
t
2 and e

t
2 ; in the s = t case, if

we let s = t→∞, Σt,t is asymptotically an annulus of inner and outer radii e−
t
2 and e

t
2 respectively.

We will also define the two-parameter analogue of the free Segal-Bargmann transform

on some free probability spaces and prove the Biane-Gross-Malliavin identification in the two-

parameter setting. The L2 completion of a semicircular system is a free analogue of the L2 space

of the Gaussian measure in the classical case and the L2 completion of the holomorphic elliptic

system is the analogue of the holomorphic L2 space of a certain anisotropic Gaussian measure, cf.

[DH99]. The two-parameter free Segal-Bargmann transform is a unitary isomorphism between

the two free probability spaces. The Biane-Gross-Malliavin identification is the commuting

diagram between free probability spaces: the L2 spaces of free unitary Brownian motion, free

(s, t)-Brownian motion and the L2 function spaces of the integral transform. For s > t
2 > 0, the

integral transform of the free unitary Segal-Bargmann transform Gs,t can be recovered from the

free Segal-Bargmann transform Ss,t through functional calculus on the free probability spaces.

The identification is presented in the following theorem, a full statement is stated as Theorem

3.3.7.

Theorem 1.1.3. Let s > t
2 > 0. Suppose us(r) is a time-rescaled free unitary Brownian motion

given by the (unique) solution of the free stochastic differential equation

dus(r) = i
√

sus(r)dxr +
s
2

us(r)dr.

We abuse the notations to write us(1) and bs,t(1) as the functional calculus and holomorphic

functional calculus respectively. Then the following diagram of Segal-Bargmann transforms and

8



functional calculus commute:

L2(νs)
us(1) //

Gs,t
��

L2(us(1),τ)

Ss,t
��

As,t bs,t(1)
// L2

hol(bs,t(1),τ).

All maps are unitary isomorphisms.

The dissertation is organized as follows. In chapter 2, we provide definitions, background

and main tools for this paper. In chapter 3.1, we will explain how we can combine [Céb13]

and [DHK13] to give the two-parameter free unitary Segal-Bargmann transform in the form of

conditional expectation. We will then make use of the result to obtain a simplified version of

an integral version of the two-parameter free unitary Segal-Bargmann transform. In chapter

3.2, we derive the integral representation for the two-parameter free unitary Segal-Bargmann

transform, which is the large-N limit of the Segal-Bargmann-Hall transform on U(N), through a

direct generalization of the work in the previous chapter. In chapter 3.3, we first introduce elliptic

systems which extends circular systems and define the two-parameter free Segal-Bargmann

transform; we then prove a version of the analogue of the Biane-Gross-Malliavin theorem which

recovers the free unitary Segal-Bargmann transform from the free Segal-Bargmann transform by

means of free stochastic calculus and funcitonal calculus.

This chapter contains material from “The two-parameter free unitary Segal–Bargmann

transform and its Biane-Gross-Malliavin identification”, Journal of Functional Analysis, 271,

12(2016), 3765-3817.
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Chapter 2

Preliminaries

2.1 Heat Kernel Analysis on U(N)

In this section, we give the main lines of how to construct the Laplacian on U(N) and the

definition of the two-parameter Segal-Bargmann transform on U(N). The N-dimensional unitary

group U(N) is a compact matrix Lie group with Lie algebra u(N) = {X ∈M(N) : X∗ = −X}.

The Lie algebra u(N) is equipped with the scaled Hilbert-Schmidt (real) inner product

〈X ,Y 〉u(N) =−NTr(XY ). (2.1.1)

Definition 2.1.1. For each X ∈ u(N), the associated left-invariant vector field in the direction X

is the differential operator ∂X : C∞(U(N),M(N))→C∞(U(N),M(N)) given by

(∂X F)(A) =
d
dt

∣∣∣∣
t=0

F(AetX)

for all A ∈ U(N) whenever F ∈C∞(U(N),M(N)).

Remark 2.1.2. Most authors refer to ∂X as X̃ .
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Definition 2.1.3. Let βN be an orthonormal basis for u(N) under the inner product given in

(2.1.1). The Laplacian ∆U(N) on C∞(U(N),M(N)) is the operator

∆U(N) = ∑
X∈βN

∂
2
X

which is independent of the choice of the orthonormal basis βN . For t > 0 the heat operator is

e
t
2 ∆U(N) and the heat kernel measure ρN

t is characterized as the linear functional

∫
U(N)

f (U) ρ
N
t (dU) =

(
e

t
2 ∆U(N) f

)
(IN)

for all f ∈C(U(N)) where IN is the identity matrix in M(N).

The Lie group complexification of U(N) is GL(N); in particular gl(N,C) = u(N)⊕ iu(N).

We define the Laplacian ∆GL(N) to be

∆GL(N) = ∑
X∈βN

∂
2
X + ∑

X∈βN

∂
2
iX .

Let s > t
2 > 0. We define the operator AN

s,t on C∞(GL(N),M(N)) by

AN
s,t =

(
s− t

2

)
∑

X∈βN

∂
2
X +

t
2 ∑

X∈βN

∂
2
iX .

The measure µN
s,t on GL(N) is determined by

∫
GL(N)

f (A) µN
s,t(dA) =

(
e

1
2 AN

s,t f
)
(IN)

for all f ∈Cc(GL(N)).

Observe that AN
s,s =

s
2∆GL(N) and As,0 = s∆U(N); AN

s,t interpolates between the two heat
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kernels.

We now give the definition of the scalar unitary Segal-Bargmann transform and boosted

unitary Segal-Bargmann transform on U(N). The space M(N) is equipped with the inner product

〈A,B〉M(N) =
1
N

Tr(B∗A) =
1
N

N

∑
j,k=1

A jkB̄ jk.

Definition 2.1.4. Let s > t
2 > 0. The scalar unitary Segal-Bargmann transform

SN
s,t : L2(U(N),ρN

s )→ L2
hol(GL(N),µN

s,t)

is defined by the analytic continuation of e
t
2 ∆U(N) f to an entire function on GL(N); it is a unitary

isomorphism between the two Hilbert spaces .We note that the function e
t
2 ∆U(N) f always possesses

an analytic continuation to entire GL(N) (see [Dri95, DH99, HS98]).

The transform SN
s,t also acts on M(N)-valued functions componentwise; we abuse the

notation to define

SN
s,t : L2(U(N),ρN

s )⊗M(N)→ L2
hol(GL(N),µN

s,t)⊗M(N)

which is also an unitary isomorphism. All tensor products are over C.

We will discuss the action of the boosted Segal-Bargmann transform throughout the

paper; from this point on, SN
s,t will always refer to the boosted unitary Segal-Bargmann on U(N).

Studying the large-N limit of SN
s,t on single-variable polynomials helps understand the large-N

limit of the operator on functions given by functional calculus. In general, for a single-variable

polynomial p, SN
s,t p is not necessarily a single-variable polynomial; an example from [DHK13] is

12



that, if we take p(u) = u2, then

(SN
s,t p)(Z) = e−t

[
cosh(t/N)Z2− t

sinh(t/N)

t/N
ZtrZ

]
= e−t [Z2− tZtrZ]+O

(
1

N2

)

in which trZ is involved. However, we have [DHK13, Theorem 1.30]:

Theorem 2.1.5. Let s > t
2 > 0, and p be a single-variable Laurent polynomial. Then there is a

unique single-variable polynomial Gs,t p such that

‖SN
s,t p−Gs,t p‖2

L2(GL(N),µN
s,t ;M(N))

= O
(

1
N2

)
.

The limit transform Gs,t is referred as the free unitary Segal-Bargmann transform. The

following theorem [DHK13, Theorem1.31] showed, restricting to the space of all single-variable

polynomials, Gs,t coincides to the integral transform defined on an L2 space of a measure on the

unit circle introduced by Biane in [Bia97b].

Theorem 2.1.6. Let s > t
2 > 0 and let, for k ≥ 1, p(k)s,t be the polynomials such that Gs,t p(k)s,t is the

single-variable monomial of order k. Then the power series

Πs,t(u,z) = ∑
k≥1

p(k)s,t (u)z
k

converges for all sufficiently small |u| and |z|, and the generating function Πs,t satisfies (1.1.2).

As a last remark in this section, Section 3.2.3 will concern the construction of the integral

transform formula of Gs,t .
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2.2 Free Probability

Definition 2.2.1. 1. We call (A ,τ) a W ∗-probability space if A is a von Neumann algebra

and τ is a normal, faithful tracial state on A . The elements in A are called (noncommunta-

tive) random variables.

2. The ∗ - subalgebras A1, · · ·An ⊆ A are called free or freely independent if, given any

i1, i2, · · · , im ∈ {1, · · · ,n} with ik 6= ik+1, ai j ∈Ai j are centered, then we have τ(ai1 · · ·aim) =

0. The random variables a1, · · · ,am are free or freely independent if the ∗-subalgebras they

generate are free.

3. For a self-adjoint element a ∈ A , the law µ of a is a compactly supported probability

measure on R such that whenever f is a continuous function, we have

∫
R

f dµ = τ( f (a)).

Definition 2.2.2 (Σ-transform). Let µ be a probability measure on C. Define the function

ψµ(z) =
∫
C

ωz
1−ωz

µ(dω)

for those z with 1
z 6∈ supp µ. ψµ is analytic on its domain. If µ is supported in U, it is customary to

restrict ψµ to the unit disk D; if µ is supported in R, it is customary to restrict ψµ to the upper

half-plane C+. Define χµ = ψµ/(1+ψµ). This function is injective on a neighborhood of 0

if supp µ ⊆ U and the first moment of µ is nonzero; it is injective on the left-half plane iC+ if

supp µ⊆ R+, cf. [BV93]. The Σ-transform Σµ is the analytic function

Σµ(z) =
χ−1

µ (z)
z

for z in a neighborhood of 0 in the U-case and for z ∈ χµ(iC+) in the R+-case.
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Remark 2.2.3. The function χµ defined here is usually denoted by ηµ and is called the η-transform

of the measure µ. We choose to use the notation χ here because in the rest of the paper, we follow

the notation of Biane in [Bia97b].

A measure on the unit circle U is completely determined by its moments; the η and Σ -

transforms characterize the measures on U by the corresponding class of holomorphic functions

on D. The corresponding class of holomorphic functions for the η-transform is those analytic self

maps f on D satisfying | f (z)| ≤ |z|, cf [Bel05]; the class of functions for the Σ-transform can be

easily seen from the definition of the Σ-transform which is related to the η-transform.

For two freely independent unitary random variables x and y with laws µ and ν respectively.

We define the free multiplicative convolution µ�ν to be the law of the unitary random variable

xy. Σ-transform plays an important role to analyze the free multiplicative convolution; it makes

the free multiplicative convolution multiplicative in the following sense:

Σµ�ν = ΣµΣν.

Consider measures {νt}t∈R supported on U for t ≥ 0 and supported on R for t ≤ 0 having

Σ-transforms

Σνt (z) = e
t
2

1+z
1−z .

Write ft(z) = zΣνt (z) for all t ∈R, which is a meromorphic function on C with the only singularity

at 1. The following proposition summarizes the results in [BB04, BB05, BV92, Bia97b, Zho14]

concerning the maps ft .

Proposition 2.2.4. For t > 0, νt has a continuous density ρt with respect to the normalized Haar

measure on U, the unit circle. For 0 < t < 4, its support is the connected arc

supp νt =

{
eiθ :−1

2

√
t(4− t)− arccos

(
1− t

2

)
≤ θ≤ 1

2

√
t(4− t)+ arccos

(
1− t

2

)}
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while supp νt = U for t ≥ 4. The density ρt is real analytic on the interior of the arc. It is

symmetric about 1, and is determined by ρt(eiθ) = Re κt(eiθ) where z = κt(eiθ) is the unique

solution (with positive real part) to
z−1
z+1

e
t
2 z = eiθ.

The function ft maps Ωt = {z ∈ D : ft(z) ∈ D} onto D conformally and extends to a homeomor-

phism from Ω̄t to D̄. Ωt is a Jordan domain and

(
1+ ·
1− ·

)
(Ωt) =

x+ iy : x > 0,
∣∣∣∣x−1
x+1

e
t
2 x
∣∣∣∣< 1, |y|<

√
(x+1)2− (x−1)2etx

etx−1

 .

For t < 0, νt has a continuous density ρt with respect to Lebesgue measure on R+. The

support is the connected interval suppνt = (x+(t),x−(t)) where

x±(t) =
2− t±

√
t(t−4)

2
e−

1
2

√
t(t−4).

The density ρt is real analytic on the interval (x−(t),x+(t)) unimodal with peak at its mean 1; it

is determined by ρt(x) = 1
πx Im l(x) where z = l(x) is the unique solution to

z
z−1

e−t(z− 1
2 ) = x.

The function ft maps Ωt = {reiθ ∈ C+ : 0 < r < ∞,γt(r)< θ < π} where γt(r) satisfies

sinγt(r)
γt(r)

r
1+ r2−2r cos(γt(r))

=−1
t

onto C+ conformally and extends to a homeomorphism from Ω̄t to C̄+. Ωt is a Jordan domain

and γt(r) is a strictly increasing function of r on the interval (z−(t),1] and a strictly decreasing

16



function of r on [1,z+(t)) where

z±(t) =
2+ t±

√
t(t +4)

2
.

Remark 2.2.5. When 4 > t > 0, Biane computed in [Bia97b] that

(
1+ ·
1− ·

)
(Ωt)∩ iR= i

[
−
√

4
s
−1,

√
4
s
−1

]
.

Therefore, Ω̄t ∩U is the arc

−i
√

4
s −1−1

−i
√

4
s −1+1

,
i
√

4
s −1−1

i
√

4
s −1+1


which does not include 1.

Remark 2.2.6. In [Bia97b, Proposition 10], Biane proved that by the Herglotz Representation

Theorem

νt(dω) = Re
(

1+χt(ω)

1−χt(ω)

)
dω

where χt = χνt is defined on D and extended to a homeomorphism on D̄.

Remark 2.2.7. As mentioned in [Bia97b], the function ft preserves inversion, for all t > 0; we

can extend χt to C \ D̄ so that χt and ft are still inverse to each other. If 0 < t < 4, χt can be

analytically continued to the complement of supp νt in the Riemann sphere C∞. For t ≥ 4, χt can

be extended to C∞ \ supp νt = D∪ (C∞ \ D̄). χt |D and χt |C∞\D̄ just differ by an inversion. If we

put Σt =C∞ \χt(C∞ \ supp νt), the range of Gt lies inside the Hardy space H2(Σt), equipped with

different inner products.

Remark 2.2.8. For the t < 0 case, since γt(r) is a strictly increasing function of r on the interval

(z−(t),1] and a strictly decreasing function of r on [1,z+(t)). we have for each θ ∈ [0,γt(1)), the

quadratic equation r2−
(

2cosγt(r)+
t sinγt(r)

γt(r)

)
r+1 = 0 has two nonnegative roots, one < 1 and
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the other > 1. So if r < 1, r is a strictly increasing function of θ for θ ∈ [0,γt(1)].

We will continue using the notations χt , ft ,νt ,x±(t),z±(t),Ωt , γt throughout the paper.

We try to make sense of the free convolution of a function and a measure. We first state a

theorem which was first proved in [Bia98].

Theorem 2.2.9. Let (A,τ) be a W ∗-probability space, B⊆ A be a von Neumann subalgebra, and

U,V ∈ A such that U and V are unitary, with distributions µ and ν respectively. Suppose that

U ∈ B and V is free with B. Then there exists a Feller Markov kernel K = k(ζ,dω) on U×U

and an analytic function F defined on D such that

1. for any bounded Borel function f on U,

τ( f (UV )|B) = K f (U);

2. F(z)≤ |z|, for all z ∈ D;

3. for all z ∈ D, ∫
U

zω

1− zω
k(ζ,dω) =

F(z)ζ
1−F(z)ζ

;

4. for all z ∈ D, ψµ(F(z)) = ψµ�ν(z).

If µ has nonzero first moment, the map F is uniquely determined by (2) and (4).

The F in Theorem 2.2.9 is called the subordination function of ψνµ�ν
with respect to

ψµ. In the classical case, we can construct from a measure a Feller Markov kernel by means of

convolution. Biane [Bia97b, Bia98] suggested that, given a measure ν on U and a bounded Borel

function f , with µ = δ1, K f is the free convolution of a function and a measure. The choice of

µ = δ1 can be compared to the kernel constructed from (additive) convolution that the kernel at 0

is simply the original measure.
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2.3 Semi-circular System on a Fock Space

We denote (A ,τ) a W ∗-probability space and H a real Hilbert space, with inner product

〈 ·, · 〉. We first recall the definition of semi-circular system.

Definition 2.3.1. A linear map s : H →A is a a semi-circular system if

1. for each h ∈H , s(h) is self-adjoint and has semi-circular distribution of variance 〈h,h〉;

2. whenever h1, · · · ,hn ∈H are orthogonal, the family (s(h j))
n
j=1 is free.

We shall construct the semi-circular systems on a free Fock space. The semi-circular

system was constructed in [Bia97b]. Let H C be the complexification of H . Denote F(H C)

the free Fock space associated to H C, which is the Hilbert space orthogonal direct sum

F(H C) = CΩ⊕
∞⊕

n=1

(H C)⊗n

where Ω is a unit vector orthogonal to H , called the vacuum. For each h ∈H , we define the

annihilation and creation operators ah and a∗h, which are bounded operators on F(H C) and

adjoint to each other, by the linear extension of

ah(Ω) =0,

ah(h1⊗·· ·⊗hn) = 〈h1,h〉h2⊗·· ·⊗hn,

a∗h(h1⊗·· ·⊗hn) =h⊗h1⊗·· ·⊗hn.

Note that the convention for inner product here is linear in the first entry and sesqui-linear in the

second entry. Obviously a f a∗g = 〈g, f 〉 for all f ,g ∈H . Therefore any product of creation and
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annihilation operators is a scalar multiple of

a∗f1 · · ·a
∗
fnag1 · · ·agm .

For each h ∈H , we define

X(h) = ah +a∗h

and let S C (H ) = W ∗{X(h) : h ∈ H } be the von Neumann subalgebra of the operators

B(F(H C)) on F(H C) generated by all X(h) with h ∈H . We also let τ to be the restriction to

S C (H ) of the pure state associated to the vector Ω, i.e. τ(T ) = 〈T Ω,Ω〉 for T ∈S C (H ).

We now quote a proposition from [Bia97b, Proposition 2] whose proof can be derived

from [VDN92]:

Proposition 2.3.2. The state τ is a faithful normal tracial state on S C (H ) so that (S C (H ),τ)

is a W ∗-probability space. Moreover, the map X : H → (S C (H ),τ) is a semi-circular system.

Let L2(S C (H ),τ) be the Hilbert space completion of S C (H ) with the inner product

〈A,B〉= τ(AB∗). The following proposition from [Bia97b, Proposition 3] relates L2(S C (H ),τ)

and F(H C) whose proof uses techniques from [Voi85]. The Tchebycheff polynomials of type II

(Tk)
∞
k=1 are defined by the generating function

∞

∑
n=0

zkTk(x) =
1

1− xz+ z2

which form a family of complete orthogonal polynomials of the semicircle law.

Proposition 2.3.3. Let (Tk)
∞
k=0 be the Tchebycheff polynomials of type II, and let (e j)

∞
j=1 be an

orthonormal basis of H . Then for any integers k1, · · · ,kn and j1, · · · jn such that j1 6= j2 6= · · · 6= jn,

we have

Tk1(X(e j1)) · · ·Tkn(X(e jn)) = ek1
j1 ⊗·· ·⊗ ekn

jn .
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In particular, the map A 7→ AΩ extends to a unitary isomorphism from L2(S C (H ),τ) to

F(H C).

2.4 Free Stochastic calculus

In this section, we will review free (semicircular) Brownian motion, free unitary Brownian

motion and free multiplicative Brownian motion as well as free stochastic calculus. For more

details of these topics, the reader is directed to [Bia97a, Bia97b, BS98, KS92]; the reader could

also read [CK14, Kem14] for a simple introduction..

Definition 2.4.1. A free (semicircular) Brownian motion in a W ∗-probability space (A ,τ) is a

weakly continuous free stochastic process (xt)t≥0 with free and stationary semicircular incre-

ments.

The free Brownian motion can be constructed as a family of operators on a Fock space,

cf. [Bia97b, BS98]. If we take the real Hilbert space H = L2(R), and define Xt = X(1[0,t]),

where X is the sum of creation and annihilation operators defined in Section 2.3, then Xt is a free

Brownian motion; in the later sections, we will focus on the concrete realization of the Brownian

motions to fit the use of free Segal-Bargmann transform.

For the von Neumann algebra A , we denote A op its opposite algebra, equipped with

the trace τop = τ. The reason to consider the opposite algebra is simply because this makes A

and A ⊗A have a left A ⊗A op - module structure (here the tensor product is algebraic) in

the way that (a⊗b)]u = aub and (a⊗b)](u⊗ v) = au⊗ vb. We will also use the L2 completion

L2(A ⊗A op,τ⊗ τop).

A simple biprocess Θt is a piecewise constant map t 7→ Θt from R+ into the algebraic

tensor product A ⊗A op with Θt = 0 for all t large enough; it is said to be adapted to xt if

Θt ∈Wt⊗Wt where Wt =W ∗{xs : s≤ t}, the von Neumann subalgebra generated by {xs}s≤t , for
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all t ≥ 0. For Θ = A⊗B1[t1,t2] with A,B ∈Wt1 , we define the free stochastic integral

∫
Θs]dxs = A(xt2− xt1)B

and extend the definition linearly to all simple adapted biprocesses. For an adapted biprocess

Θ ∈ L2(A ⊗A op), we define the free stochastic integral as an L2(A ⊗A op,τ⊗ τop)-limit of

step functions of the form ∑k Θtk−1](xtk− xtk−1) over partitions {0 = t0 < t1 < · · ·< tn = t} as the

partition width sup j |t j− t j−1| → 0. We define

∫ t

0
Θs]dxs =

∫
Θs1[0,t]]dxs.

We will frequently write
∫ t

0 θs dxsθ̃s, meaning Θt = θt⊗ θ̃t from the preceding paragraph;

the free stochastic integral φt is abbreviated as dφt = θt dxt θ̃t . Standard Picard iteration shows

that if h1,h2 are Lipschitz functions, then the left free stochastic differential equation

θt = h1(θt) dxt +h2(θt) dt

and the mirrored right integral equation with a given initial condition have a unique adapted

solution.

We will also deal with free stochastic integration with respect to two free Brownian

motions. Suppose xt and yt are freely independent free Brownian motions. We consider the

filtration Wt =W ∗{xs,ys : s≤ t} and the free stochastic integral with respect to xt and yt can be

defined. Analogous to the free stochastic integration with respect to one free Brownian motion, if

h1,h2,h3 are Lipschitz functions then the free stochastic differential equation

θt = h1(θt) dxt +h2(θt) dxt +h3(θt) dt
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with initial condition θ0 has a unique adapted solution; any of the integral in the above equation

could be changed from a left integral to a right integral.

Remark 2.4.2. Lipschitz functional calculus only makes sense for self-adjoint or normal processes.

If we go beyond the self-adjoint or normal category, we need to restrict the functions hk concerned

in the preceding paragraphs to be polynomials to make sense of everything; however, under this

restriction, the Lipschitz requirement holds only for first order polynomials. In fact, Kümmerer

and Speicher [KS92] considered the functions hk which are left or right multiplications by a

(possibly non-constant) process with extra conditions. Nevertheless, later we will only look at

the free stochastic equations for free unitary Brownian motion and free multiplicative Brownian

motion; we only need to consider the cases of first order polynomials.

The most important computational tool is the free Itô formula whose proof could be found

in [BS98].

Proposition 2.4.3. Let (A ,τ) be a W ∗-probability space with two freely independent free semi-

circular Brownian motions xt and yt . Let θt , θ̃t be adapted processes. Then the following hold:

τ

(∫ t

0
θs dxs θ̃s

)
= τ

(∫ t

0
θs dxs θ̃s

)
= 0;∫ t

0
dxs θs dxs =

∫ t

0
dys θs dys =

∫ t

0
τ(θs)ds;∫ t

0
dxs θs dys =

∫ t

0
dys θs dxs = 0.

Moreover, we also have the Itô product rules

d(θt θ̃t) = dθt · θ̃t +θt ·dθ̃t +dθt ·dθ̃t

and

dxtdt = dytdt = dt2 = 0.
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2.5 Free Unitary and Free Multiplicative Brownian Motions

2.5.1 Free Unitary Brownian Motion

The (left) free unitary Brownian motion was introduced in [Bia97a] as the solution to the

free Itô stochastic differential equation

dut = iut dxt−
1
2

ut dt

with initial condition u1 = 1 where xt is a free Brownian motion. The adjoint u∗t satisfies

du∗t =−idxt u∗t −
1
2

u∗t dt.

The process ut is a unitary-valued stochastic process whose law is a measure νt on the unit circle,

which was introduced in Section 2.2, for each t > 0. It turns out [Bia97a] that the free unitary

Brownian motion has free, stationary multiplicative increments with law νt , and is also weakly

continuous. The moments of the free unitary Brownian motion, also computed by Biane, are

νn(t) :=
∫

ω
n

νt(dω) = e−
nt
2

n−1

∑
k=0

(−t)k

k!
nk−1

(
n

k+1

)
, n≥ 0.

2.5.2 Free Multiplicative Brownian Motion

Fix s > t
2 > 0. The time of the processes in this section will be denoted by r. Let (A ,τ) be

a W ∗-probability space that contains two freely independent free semicircular Brownian motions

x and y. Let

ws,t(r) =

√
s− t

2
x(r)+

√
t
2

y(r);

we will call this a free elliptic (s, t)-Brownian motion. A concrete construction on a Fock space of

the free elliptic (s, t)-Brownian motion will be demonstrated in Section 3.3.1 to fit the application
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of free Segal-Bargmann transform. The free multiplicative Brownian motion bs.t of parameters

s, t is the unique solution of the free stochastic differential equation

dbs,t(r) = ibs,t(r)dws,t(r)−
1
2
(s− t)bs,t(r)dt

subject to the initial condition bs,t(0) = 1.

Remark 2.5.1. In [Kem14], Kemp indexed the free multiplicative Brownian motion as br,s in

which the indices (r,s) are a linear change of the indices (s, t) we are using here. Indeed, the

bs,t we are considering here is bs− t
2 ,

t
2

in [Kem14]. The linear change here is convenient for the

discussion on Segal-Bargmann transform.

When s = t = 1, ws,t(r) = 1√
2
(x(r)+ iy(r)) which is the variance-normalized circular

Brownian motion which was studied by Biane [Bia97a, Bia97b]. In the degenerate case s = 1, t =

0, the process reduces to the free unitary Brownian motion. Kemp [Kem14, Proposition 1.8]

computed the moments

τ[bs,t(r)n] = νn((s− t)r). (2.5.1)

The free multiplicative (s, t)-Brownian motion bs,t(r) is invertible (see, for example, [Kem14]),

and its inverse satisfies the free stochastic differential equation

d(bs,t(r)−1) =−dws,t(r)bs,t(r)−1− 1
2
(s− t)bs,t(r)−1.

The relation between the time and the parameters is that in distribution

bs,t(r) = bsr,tr(1).

In particular, when s = t = 1, the process reduces to the one-parameter free multiplicative

Brownian motion bt = bt,t(1) = b1,1(t) in distribution.
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This chapter contains material from “The two-parameter free unitary Segal–Bargmann

transform and its Biane-Gross-Malliavin identification”, Journal of Functional Analysis, 271,

12(2016), 3765-3817.
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Chapter 3

Free Unitary Segal–Bargmann Transform

In this chapter, we will discuss the free unitary Segal-Bargmann transform.

3.1 The Conditional Expectation Representation

In this section, we will relate the two-parameter free unitary Segal-Bargmann transform

to a form of conditional expectation. We first review trace polynomials.

Definition 3.1.1 ([Céb13]). Let I be an arbitrary index set.

1. Denoted by (C{Xi : i ∈ I}, tr,(Xi)i∈I) the unique (up to an I-adapted isomorphism) object

which satisfies the universal property:

For all algebras A with a center-valued trace τ and for all elements (Ai)i∈I from A , there

is a unique homomorphism φ from C{Xi : i ∈ I} to A such that

(a) for all i ∈ I, φ(Xi) = Ai;

(b) for all X ∈ C{Xi : i ∈ I}, we have τ(φ(X)) = φ(trX)).
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C{Xi : i ∈ I} has a canonical basis given by

{M0trM1 · · · trMn : n ∈ N,M0, . . .Mn are monomials of C〈Xi : i ∈ I〉}.

2. Consider C{X ,X−1}, the trace Laurent polynomials with two elements X and X−1. Then

given any unital complex algebra A , with trace τ, and A ∈A an invertible elements, the

map φ : C{X ,X−1}→A by

φ(P) = P(A)

is a homomorphism from C{X ,X−1} to A .

When the unital ∗-algebra A and the invertible element A ∈A is specified, taking the map

φ of an element in C{X ,X−1}is called evaluation. For convenience, when A and A are

specified, we will write P(A) instead of φ(P).

A construction of the space C{Xi : i ∈ I} is given in the appendix of [Céb13].

When I has only one element, the Cébron’s definition of trace polynomials generated by

a single element is isomorphic to the Driver, Hall and Kemp’s definition, which is given in the

statement of Theorem 3.1.3; the precise relation is stated in [CK, Lemma 2.3]. We first summarize

some results from Cébron [Céb13].

Theorem 3.1.2 ([Céb13]). There exists an operator ∆U on the trace polynomials C{X ,X−1}

such that the one-parameter free unitary Segal-Bargmann transform Gt satisfies, for all Laurent

polynomials f ,

Gt f (bt) = (e
t
2 ∆U f )(bt) (3.1.1)

where bt is the free multiplicative Brownian motion and ut is the free unitary Brownian motion. If

in addition, ut and gt are free to each other, we have

Gt f (bt) = τ( f (btut)|bt). (3.1.2)
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Recall that L2
hol(bt ,τ) is the Hilbert space completion of the algebra generated by bt and

b−1
t , with norm ‖A‖2

2 = τ(A∗A). Gt f (bt), which is a polynomial in bt , lies in L2
hol(bt ,τ). So,

Theorem 3.1.2 considers the free unitary Segal-Bargmann transform on the operator-side of the

Biane-Gross-Malliavin picture.

In general if z and ut are free to each other, z 7→ τ( f (zut)|z) gives us a trace polynomial

in z. Evaluating at bt in (3.1.2), all the moments τ(bk
t ) are evaluated as 1 (see Section 2.5.2 and

equation (2.5.1)).

It is not hard to combine the work from Cébron [Céb13] and Driver, Hall and Kemp

[DHK13] to obtain the two-parameter free unitary Segal-Bargmann transform Gs,t for polynomials

in the form of conditional expectation. Let us quote the result from [DHK13].

Theorem 3.1.3 ([DHK13]). Let u and {vn}n∈Z be commuting intermediates. Denote P1 =

C[u,u−1] the Laurent polynomials in u, P0 = C[vn : n ∈ Z] and P = P1⊗P0 = C[u,u−1;vn :

n ∈ Z].

Let πs be a map on P which evaluates all the vk as νk(s) (see definition of νk from

equation (2.5.1)). Then there is an operator D on P such that the two-parameter free unitary

Segal-Bargmann transform Gs,t is given by

Gs,t = πs−t ◦ exp
( t

2
D
)
.

The u from Theorem 3.1.3 is playing the role of a matrix or an operator-valued variable

while the vk is acting as a notation of the kth moment τ(uk). The transform Gs,t right now is only

defined on Laurent polynomials; it is one of the main purposes of the current paper to extend Gs,t

to be a Hilbert space isomorphism.

The D in Theorem 3.1.3 is the same as the operator ∆U in Theorem 3.1.2; see [DHK13,

Lemma 1.19] and [Céb13, Lemma 4.1]. The formulations of Theorem 3.1.2 and Theorem

3.1.3 are just slightly different; Cébron evaluated all the trace moments by evaluating the trace
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polynomial at bt , the free multiplicative Brownian motion at time t while Driver, Hall and Kemp

defined explicitly the map to evaluate the moments of bs,t . The evaluation at bt in Cébron’s

formulation makes his work on the operator side of the Biane-Gross-Malliavin picture. The above

observation suggests that if we evaluate e
t
2 ∆U f at bs,t , the trace moments will be evaluated as

νk(s− t) which gives us the two-parameter free unitary Segal-Bargmann transform.

Proposition 3.1.4. Let bs,t be the free multiplicative (s, t)-Brownian motion and ut be the free

unitary Brownian motion. Suppose that the processes ut and bs,t are freely independent. Then we

have, where bs,t = bs,t(1) as an abuse of notation,

Gs,t f (bs,t) = τ[ f (bs,tut)|bs,t ]

for all Laurent polynomials f .

Proof. Define Φ on P , the space defined in Theorem 3.1.3, with range C{X ,X−1} by the algebra

isomorphism extension of

Ψ(u) = X Ψ(u−1) = X−1
Ψ(vn) = tr(Xn).

Note that this map is simply the one mentioned in [CK, Lemma 2.3].

The paragraph before this proposition regarding the fact that D and ∆U are the same

rigorously means that for any Laurent polynomial f ∈ C[X ,X−1],

e
t
2 ∆U f = Ψ

(
e

t
2D f

)
.

Thus, since πs−t mentioned in Theorem 3.1.3 means to evaluate vn in P by the n-th moment

νn(s− t) of bs,t , we have

Gs,t f (bs,t) =
(

πs−t ◦ exp
( t

2
D
))

f (bs,t) = Ψ

(
e

t
2D f

)
(bs,t) = e

t
2 ∆U f (bs,t)
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for all Laurent polynomials f .

The proof is completed by [Céb13, Proposition 3.4], which states that for all invertible B

which is free from ut ,

τ( f (utB)|B) =
(

e
t
2 ∆U f

)
(B)

for all f ∈ C{X ,X∗,X−1,X∗−1}.

3.2 The Integral Transform

3.2.1 Subordination

Let ut and ũt be free unitary Brownian motions which are free to each other. Theorem

2.2.9 asserts the existence of a Feller Markov kernel H = h(·,dω) on U×U and an analytic

function F defined on D such that

τ[ f (us−t ũt)|us−t ] = H f (us−t)

for any bounded Borel function f ;

∫
U

zω

1− zω
h(ζ,dω) =

F(z)ζ
1−F(z)ζ

and the analytic function F satisfies

ψs−t(F(z)) = ψνs−t�νt = ψs(z).

where ψβ = ψνβ
as defined in Definition 2.2.2. A simple computation shows that

F =

(
ψs−t

1+ψs−t

)−1

◦
(

ψs

1+ψs

)
= fs−t ◦χs.
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We define χs,t = fs−t ◦χs. It follows that in the s > t case, by Proposition 3.1.4, again since us−t

and bs,t(1) have the same holomorphic moments, for all polynomials f ,

Gs,t f (us−t) = τ[ f (us−t ũt)|us−t ] = H f (us−t) =
∫
U

f (ω)h(us−t ,dω). (3.2.1)

which gives us the integral kernel of the two-parameter free unitary Segal-Bargmann transform

and suggests that we look for some substitutes for s≥ t
2 > 0; see Remark 3.2.7.

3.2.2 The Two-Parameter Heat Kernel

Section 3.2.1 suggests to look at the subordination function χs,t = fs−t ◦χs. The map is

well defined for all s, t > 0; nevertheless, we first study some important properties of this map.

In order to better understand the statements in the following lemmas, the regions Ωs for some

s > 0 (see Proposition 2.2.4) are plotted in the end of the paper. Recall, from Proposition, 2.2.4,

χs extends to a homeomorhpism from D̄ onto Ω̄s.

Lemma 3.2.1. For all s, t > 0, fs−t maps Ω̄s∩D into D and Ω̄s∩U into U ; in particular, χs,t

maps D into D.

Proof. For each z ∈ Ω̄s, we have fs(z) ∈ D̄ and

| fs−t(z)|=
∣∣∣e s

2
1+z
1−z

∣∣∣ ∣∣∣e− t
2

1+z
1−z

∣∣∣= | fs(z)|e−
t
2 Re( 1+z

1−z).

All the conclusions now follow because the Möbius transform z 7→ 1+z
1−z maps the unit disk onto

the right half plane.

Lemma 3.2.2. If s ≥ t
2 > 0, χs,t is a conformal map from D onto its image and extends to a

homeomorphism from D̄ to χs,t(D).

Proof. For s≥ t case, the lemma follows from [Bia97b] since Ωs is increasing in s: Ωs1 ⊆Ωs2 if

s1 < s2.
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Consider the case t
2 ≤ s < t. Since fβ is symmetric along the real axis, for all β ∈ R, it

suffices to show Ω̄s∩C+ ⊆ Ω̄s−t . By Proposition 2.2.4, it suffices to prove that | fs(reiγs−t(r))| ≥ 1,

i.e. fs maps the boundary of Ω̄s−t outside the unit disk; recall that γs−t is defined in Proposition

2.2.4. By solving the quadratic equation between r and γs−t(r), we can express r in terms of θ for

θ ∈ [0,γs−t(1)]:

r = cosθ+
(t− s)sinθ

θ
−

√(
cosθ+

(t− s)sinθ

θ

)2

−1.

In the rest of the proof, we will denote by r the function of θ as defined above. Put

x = Re
1+ reiθ

1− reiθ =
2

t− s
θ

sinθ

√(
cosθ+

t− s
2

sinθ

θ

)2

−1.

We claim that the function | fs(reiγs−t(r))| = re
s
2 x of θ is strictly decreasing on [0,γt−s(1)]. Let

φ = t−s
2 x. Then

dr
dθ

+ r
dφ

dθ
=

−(t− s)(−1+2θ2 + cos2θ)
( 2θ

sinθ

)( t−s
2

sinθ

θ
+ cosθ−

√(
cosθ+ t−s

2
sinθ

θ

)2−1
)

4θ3

√(
2cosθ+ (t−s)sinθ

θ

)2
−4

.

Observe that t−s
2

sinθ

θ
+cosθ−

√(
cosθ+ t−s

2
sinθ

θ

)2−1= r > 0 for all θ∈ [0,γs−t(1)]. On

the other hand, d
dθ
(−1+2θ2+cos2θ) = 4θ−2sin2θ> 0 on (0,γs−t(1)] and−1+2θ2+cos2θ=

0 when θ = 0. We again have −1+ 2θ2 + cos2θ > 0 on (0,γs−t(1)] and thus dr
dθ

+ r dφ

dθ
< 0 on

(0,γs−t(1)]. Since dr
dθ

> 0 on (0,γs−t(1)) by 2.2.4, dφ

dθ
< 0 on (0,γs−t(1)). Now our claim follows

from

d
dθ

re
s
2 x =

dr
dθ

e
s
2 x + r

s
2

dx
dθ

e
s
2 x = e

s
2 x
(

dr
dθ

+ r
s

t− s
dφ

dθ

)
≤ e

s
2 x
(

dr
dθ

+ r
dφ

dθ

)
< 0

because if s≥ t
2 , then s

t−s ≥
2s
t ≥ 1. Notice that re

s
2 x = 1 when θ = γs−t(1), we see that re

s
2 x > 1

33



for all θ ∈ [0,γs−t(1)). Since χs,t(D) is a Jordan domain, by the Carathéodory’s Theorem, it is a

conformal map from D onto its image in the disk and extends to a homeomorphism from D̄ to

χs,t(D).

Lemma 3.2.3. For s ≥ t
2 > 0, 1 6∈ χs,t(D). Thus in addition to the proof of Lemma 3.2.2 we

actually have Ω̄s∩C+ ⊆Ωs−t .

Proof. Since fs−t maps Ω̄s∩D into D by Lemma 3.2.1, it suffices to consider fs−t(Ω̄s∩U). If

s ≥ 4, χs(D) ⊆ D, the statement follows obviously. If s < 4, the case s > t follows from the

fact that, since fs−t is a homeomorphism between χs(D) and D̄, fs−t(χs(D)∩U)⊆ U\ supp νs−t

which does not contain 1. By the symmetry of fs−t about the real axis, we only need to consider

f (χs(D)∩U∩C+) but by the description of Ωs−t in Proposition 2.2.4 and Remark 2.2.5, it

suffices to show that fs−t

(
i
√

4
s−1−1

i
√

4
s−1+1

)
6= 1.

Let

w =
i
√

4
s −1−1

i
√

4
s −1+1

= 1− s
2
+ i

s
2

√
4
s
−1 = eiarccos(1− s

2).

Observe that d
ds arccos

(
1− s

2

)
− 1

4

√
s(4− s) = 2+s

4
√

s(4−s)
> 0 when 0 < s < 4. We have

π > arccos
(

1− s
2

)
> arccos

(
1− s

2

)
+

s− t
2
√

s

√
4− s≥ arccos

(
1− s

2

)
− 1

4

√
s(4− s)> 0

and so

we
s−t
2

1+w
1−w = ei

(
arccos(1− s

2)+
s−t
2
√

s

√
4−s

)
6= 1.

fs−t is a homeomorphism mapping Ωs−t ∩D to C+∩D. fs−t maps U∩∂Ωs−t to U∩R.

But in fact if w ∈ U∩∂Ωs−t , fs−t(w) = 1 since fs−t(−1) =−1. The last assertion now follows

from the above display equation.

Proposition 3.2.4. For all s, t > 0, fs−t maps Ω̄s into D. If, in addition, s ≥ t
2 , then χs,t is a

conformal map from D onto its image, which lies inside the disk, and extends to a homeomorphism
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from D̄ to χs,t(D); furthermore, 1 6∈ χs,t(D).

Proof. Combine Lemmas 3.2.1, 3.2.2, 3.2.3.

Now the properties of the map χs,t is clear. We introduce a notation here.

Definition 3.2.5. Denote Ωs,t = χs,t(D)⊆ D. We define fs,t to be the inverse of χs,t = fs−t ◦χs;

its existence is guaranteed by Proposition 3.2.4. It is an analytic function on the domain Ωs,t .

Recall from the remark after Theorem 2.2.9 that χt can be analytically continued to

C∞ \ supp νt . We now see χs,t can be analytically continued to C∞ \ supp νs; the restrictions of

χs,t to D and C\D just differ by an inversion.

Theorem 3.2.6. For all s, t > 0 and all ζ∈U, there exists a unique probability measure ks,t(ζ,dω)

on U characterized by the moment-generating function

∫
U

zω

1− zω
ks,t(ζ,dω) =

χs,t(z)ζ
1−χs,t(z)ζ

.

If s = t, ks,t(ζ,dω) = ks(ζ,dω).

Even though only s≥ t
2 > 0 is of our interest, ks,t nevertheless exists for all s, t > 0 since

χs,t is well-defined on D.

Proof. This is a simple consequence of Herglotz’s Representation Theorem to, for each ζ ∈ U,

the holomorphic function

z 7→
1+χs,t(z)ζ
1−χs,t(z)ζ

defined on D.

Remark 3.2.7. The construction of the kernel ks,t from Theorem 3.2.6 is what we have been

looking for since the introduction of the kernel h in Section 3.2.1. The kernels ks,t and h are

characterized by the same moment generating function, or equivalently, the same complex Poisson
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integral in terms of χs,t . Of course, due to the nice behavior of the map χs,t when s≥ t
2 > 0, we

will focus our attention to this case and construct the two-parameter free unitary Segal-Bargmann

transform.

In [Bia97b], Biane showed that when s = t, the measure kt(ζ,dω) is absolutely continuous

with respect to the measure νt , for each t > 0, ζ ∈ Σt ∩U. The result holds also for νs,t for

s≥ t
2 > 0, ζ ∈ Σs,t ∩U where Σs,t = C∞ \ (χs,t(C∞ \ supp νs)) = C∞ \ ( fs−t(C∞ \ Σ̄s)) for s≥ t

2 .

Some pictures of the regions Σs,t are included in the end of the paper. Note that Biane also plotted

some regions Σt in [Bia97b] which are the s = t cases.

Proposition 3.2.8. For s≥ t
2 > 0, and ζ ∈ Σs,t ∩U, the measure ks,t(ζ,dω) is absolutely continu-

ous with respect to the measure νs, with density

|1−χs(ω)|2

(ζ−χs,t(ω))(ζ−1− χ̄s,t(ω))

1−|χs,t(ω)|2

1−|χs(ω)|2
.

Proof. The idea of the proof is exactly the same as the proof of [Bia97b, proposition 12] except

replacing χt by χs,t .

For all z ∈ D, ζ ∈ U,

ζ+χs,t(z)
ζ−χs,t(z)

=



ζ−1
ζ+1

+κs,t(z)

1+κs,t(z)
ζ−1
ζ+1

if ζ 6=−1

1
κs,t(z)

if ζ =−1.

ζ−1
ζ+1 is purely imaginary and the Möbius transform

w 7→

ζ−1
ζ+1

+w

1+w
ζ−1
ζ+1
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maps the right half plane into itself. If ζ ∈ Σs,t ∩U, the functions

z 7→
ζ+χs,t(z)
ζ−χs,t(z)

are bounded in D̄ and is a homeomorphism of D̄ with a bounded region in the right half plane.

Hence, by Herglotz’s Representation Theorem, ks,t(ζ,dω) is absolutely continuous with respect

to dω with density

Re
(

ζ+χs,t(z)
ζ−χs,t(z)

)
=

1−|χs,t(ω)|2

(ζ−χs,t(ω))(ζ−1− χ̄s,t(ω))
.

By Lemma 3.2.3, 1 6∈ χs,t(U).

So, in particular, we have νs(dω) = ks,s(1,dω) given by (which is also a result from

[Bia97b])

νs(dω) =
1−|χs(ω)|2

|1−χs(ω)|2
dω.

Because |χs,t(ω)|= 1 if and only if |χs(ω)|= 1 by Lemma 3.2.1, νs and ks,t(ζ,dω) have

the same support and

ks,t(ζ,dω) =
|1−χs(ω)|2

(ζ−χs,t(ω))(ζ−1− χ̄s,t(ω))

1−|χs,t(ω)|2

1−|χs(ω)|2
νs(dω)

3.2.3 The Two-Parameter Free Unitary Segal-Bargmann Transform

In [Bia97b], Biane defined the integral transform Gt on L2(νt) as

Gt f (ζ) =
∫
U

f (ω)
|1−χt(ω)|2

(ζ−χt(ω))(ζ− χ̄t(ω))
νt(dω)

which converges for all ζ ∈ Σt . Gt f is analytic on Σt .
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The issue raised is that if we would like to a priori integrate f (ω) ∈ L2(νs) against the

measure ks,t(ζ,dω), would the integral converge? The answer is affirmative; in fact, they have

the same L2 functions:

Proposition 3.2.9. For s ≥ t
2 and ζ ∈ Σs,t ∩U, the measures νs and ks,t(ζ,dω) are absolutely

continuous with respect to each other with bounded densities; in particular, they have the same

support.

Proof. By proposition 3.2.8, we have

ks,t(ζ,ω) =
|1−χs(ω)|2

(ζ−χs,t(ω))(ζ−1− χ̄s,t(ω))

1−|χs,t(ω)|2

1−|χs(ω)|2
νs(dω).

It remains to prove that the density is bounded above and bounded away from 0. By

Lemma 3.2.3 and the fact that Σs,t is open,

|1−χs(ω)|2

(ζ−χs,t(ω))(ζ−1− χ̄s,t(ω))

is bounded above and bounded away from 0. The function

ω 7→
1−|χs,t(ω)|2

1−|χs(ω)|2

is well defined and bounded on supp νs, by an application of the L’ Hôpital’s Rule;

lim
ω→α

1−|χs,t(ω)|
1−|χs(ω)|

= lim
ω→α

1−
∣∣∣∣ωe−

t
2

1+χs(ω)
1−χs(ω)

∣∣∣∣
1−
∣∣∣∣ωe−

s
2

1+χs(ω)
1−χs(ω)

∣∣∣∣ = lim
ω→α

1− e−
t
2 Re 1+χs(ω)

1−χs(ω)

1− e−
s
2 Re 1+χs(ω)

1−χs(ω)

=
t
s

where α = e±i
(

1
2

√
t(4−t)+arccos(1− t

2)
)
.

The above proposition shows that it makes sense to make the following definition.
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Definition 3.2.10. Let s≥ t
2 > 0. For each f ∈ L2(νs), we define

G̃s,t f (ζ) =
∫
U

f (ω)
|1−χs(ω)|2

(ζ−χs,t(ω))(ζ−1− χ̄s,t(ω))

1−|χs,t(ω)|2

1−|χs(ω)|2
νs(dω)

for all ζ ∈ Σs,t .

Remark 3.2.11. Using standard arguments, for example, applying Morera’s Theorem, G̃s,t f

defines an analytic function on Σs,t .

We shall note that G̃s,t f =
∫
U f (ω) ks,t( · ,dω) on U∩Σs,t , from the proof of Proposition

3.2.8. We will show G̃s,t = Gs,t .

Having defined the integral transform, we are concerned with its range. In the case of

Lie group G, the Segal-Bargmann-Hall transform is an isomorphism between an L2 space and a

holomorphic L2 space. In the case of s = t, Biane proved, in [Bia97b], that Gt is an isomorphism

between L2(νt) and a reproducing kernel Hilbert space when t 6= 4. Before we discuss the range

of the integral transform G̃s,t , we first find a Cauchy integral representation of it.

Lemma 3.2.12. For s≥ t
2 > 0, we have

(
1+

t χs−t(χs,t(z))
(χs−t(χs,t(z))−1)2 +(s− t)χs−t(χs,t(z))

)
χ
′
s,t(z)z = χs,t(z)

for z ∈ D̄, where if z ∈ U, the derivative means to differentiate along the curve U.

Remark 3.2.13. Even though in Proposition 2.2.4 when t < 0 the map χt is defined on Ωt ⊆

C+ with range in C+, the map ft , which is symmetric about the real axis, is one-to-one on

Ωt ∪ (−∞,z−(t))∪ (z+(t),∞)∪ conj Ωt where conj Ωt = {z̄ : z ∈Ωt}. Thus, χs−t(χs,t(z)) makes

sense even for χs,t(z) in the lower half plane and s < t.
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Proof. Differentiating χs,t(z) = fs−t ◦χs(z) = ze−
t
2

1+χs(z)
1−χs(z) gives χ′s,t = ( f ′s−t ◦χs) ·χ′s and

χ
′
s,t(z) = e−

t
2

1+χs(z)
1−χs(z) + z

−t e−
t
2

1+χs(z)
1−χs(z)

(χs(z)−1)2)

χ
′
s(z).

Rearranging the terms, we have

χ
′
s,t(z)e

t
2

1+χs(z)
1−χs(z) +

tzχ′s(z)
(χs(z)−1)2 = 1.

Since e
t
2

1+χs(z)
1−χs(z) = z

χs,t(z)
and χ′s =

χ′s,t
f ′s−t◦χs

, the above equation is the same as

zχ
′
s,t(z)

(
1

χs,t(z)
+

t
(χs(z)−1)2

1
f ′s−t ◦χs(z)

)
= 1

which is, after computing f ′s−t(z) = e
s−t
2

1+z
1−z

(
1+(s−t−2)z+z2

(z−1)2

)
,

zχ
′
s,t(z)

1+
tχs,t(z)

e
s−t
2

1+χs(z)
1−χs(z) (1+(s− t−2)χs(z)+χs(z)2)

= χs,t(z).

Now, the result follows from χs,t(z) = χs(z)e
s−t
2

1+χs(z)
1−χs(z) , 1+(s− t− 2)χs(z)+χs(z)2 = (χs(z)−

1)2 +(s− t)χs(z) and χs(z) = χs−t ◦χs,t(z).

Now we are ready to give the Cauchy integral representation of Gs,t .

Proposition 3.2.14. Suppose g ∈ L2(νs), then for any ζ ∈ Σs,t ,

G̃s,tg(ζ) =
1

2πi

∫
∂Σs,t

g( fs,t(z))
(

1+
t χs−t(z)

(χs−t(z)−1)2 +(s− t)χs−t(z)

)
dz

z−ζ
.

Proof. Since G̃s,tg is analytic, it suffices to prove the result for all ζ ∈ Σs,t ∩U. Let hs =

1
2

√
(4− s)s+ arccos(1− s/2) if s ≤ 4, hs = π if t > 4 so that the arc {eiθ : −hs ≤ θ ≤ hs}
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is the support of νs,t . Then we have, from the fact that χ̄s,t(eiθ) = χs,t(e−iθ), for all ζ ∈ U∩Σs,t ,

G̃s,tg(ζ) =
1

2π

∫ hs

−hs

g(eiθ)
1
2

(
ζ+χs,t(eiθ)

ζ−χs,t(eiθ)
+

ζ−1 + χ̄s,t(eiθ)

ζ−1− χ̄s,t(eiθ)

)
dθ

=
1

2π

∫ hs

−hs

g(eiθ)
1
2

(
ζ+χs,t(eiθ)

ζ−χs,t(eiθ)
−

ζ+χs,t(e−iθ)−1

ζ−χs,t(e−iθ)−1

)
dθ

=
1

2π

∫ hs

−hs

g(eiθ)
χs,t(eiθ)

ζ−χs,t(eiθ)
dθ− 1

2π

∫ hs

−hs

g(eiθ)
χs,t(e−iθ)−1

ζ−χs,t(e−iθ)−1 dθ.

For the first term, we apply Lemma 3.2.12 to get

1
2π

∫ hs

−hs

g(eiθ)
χs,t(eiθ)

ζ−χs,t(eiθ)
dθ

=
1

2πi

∫ hs

−hs

g(eiθ)

(
1+

t χs−t(χs,t(z))
(χs−t(χs,t(eiθ))−1)2 +(s− t)χs−t(χs,t(eiθ))

)
χ′s,t(e

iθ)ieiθ dθ

ζ−χs,t(eiθ)

=
1

2πi

∫
∂Σs,t∩D̄

g( fs,t(z))
(

1+
t χs−t(z)

(χs−t(z)−1)2 +(s− t)χs−t(z)

)
dz

z−ζ
;

we have used the fact that the parametrization θ 7→ χs,t(eiθ) (θ∈ [−hs,hs]) for ∂Σs,t∩D̄ is negative-

oriented. For ∂Σs,t ∩ (C∞ \D), we use the parametrization θ 7→ χs,t(e−iθ)−1 (θ ∈ [−hs,hs]) which

satisfies a similar relation in Lemma 3.2.12; the parametrization for this part is positive-oriented

so

− 1
2π

∫ hs

−hs

g(eiθ)
χs,t(e−iθ)−1

ζ−χs,t(e−iθ)−1 dθ

=
1

2πi

∫
∂Σs,t∩(C∞\D)

g( fs,t(z))
(

1+
t χs−t(z)

(χs−t(z)−1)2 +(s− t)χs−t(z)

)
dz

z−ζ
.

3.2.4 The Range of the Transform

In this subsection, we will show that the transform G̃s,t has range into the Hardy space

H2(Σs,t) (see Definition 3.2.16). We will also find the range of G̃s,t for which G̃s,t is a unitary

41



isomorphism. We will prove that G̃s,t and Gs,t coincide on polynomials as well.

Lemma 3.2.15. For all s≥ t
2 > 0, define an operator Zs,t on L2(νs) by

Zs,tg(z) = g( fs,t(z))
(

1+
t χs−t(z)

(χs−t(z)−1)2 +(s− t)χs−t(z)

)

for all g ∈ L2(νs). Zs,t has range in L2(σs,t) where σs,t is the arc-length measure on Σs,t . If s 6= 4,

there are constants c,C such that

c‖g‖L2(νs) ≤ ‖Zs.tg‖L2(σs,t) ≤C‖g‖L2(νs)

for all g ∈ L2(νs). If s = 4, there is a constant C such that

‖Zs.tg‖L2(σs,t) ≤C‖g‖L2(νs)

for all g ∈ L2(νs).

Proof. By Proposition 3.2.9, it suffices to prove the lemma with L2(ks,t(1,dω)) instead of L2(νs).

In this proof, we will denote ks,t(1,dω) by νs,t , to shorten the notation. Recall from the proof of

Proposition 3.2.8 that νs,t(dω) =
1−|χs,t(ω)|2
|1−χs,t(ω)|2

dω. The image of the measure νs,t under the map χs,t

is absolutely continuous with respect to σs,t with density

∣∣∣∣1−|z|2|1− z|2

(
1+

tχs−t(z)
(χs−t(z)−1)2 +(s− t)χs−t(z)

)∣∣∣∣
on ∂Σs,t ∩ D̄; similarly, the image of νs,t under the map 1/χ̄s,t is absolutely continuous with

respect to σs,t with density

∣∣∣∣1−|z|2|1− z|2

(
1+

tχs−t(z)
(χs−t(z)−1)2 +(s− t)χs−t(z)

)∣∣∣∣ .
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Let g ∈ L2(νs,t). Then

‖g‖L2(νs,t) =
∫

∂Σs,t

|g( fs.t(z))|2
∣∣∣∣1−|z|2|1− z|2

(
1+

tχs−t(z)
(χs−t(z)−1)2 +(s− t)χs−t(z)

)∣∣∣∣σs,t(dz)

=
∫

∂Σs,t

|Zs,tg(z)|2
∣∣∣∣∣1−|z|2|1− z|2

(
1+

tχs−t(z)
(χs−t(z)−1)2 +(s− t)χs−t(z)

)−1
∣∣∣∣∣σs,t(dz)

=
∫

∂Σs,t

|Zs,tg(z)|2
∣∣∣∣1−|z|2|1− z|2

(χs−t(z)−1)2 +(s− t)χs−t(z)
(χs−t(z)−1)2 + sχs−t(z)

∣∣∣∣σs,t(dz).

If s > 4, since χs,t(U)⊆ D and χ′s,t = f ′s−t ◦χs ·χ′s never vanishes ( fs−t only vanishes at z±(s− t)

mentioned in Proposition 2.2.4 and f ′s is bounded on Σs), there are constants 0 < c,C < ∞ such

that

0 < c <
∣∣∣∣1−|z|2|1− z|2

(χs−t(z)−1)2 +(s− t)χs−t(z)
(χs−t(z)−1)2 + sχs−t(z)

∣∣∣∣<C < ∞.

If s < 4, note that by Lemma 3.2.12 and f ′s,t = f ′s ◦χs−t ·χ′s−t is bounded above on the compact set

∂Σs,t (by Lemma 3.2.3, χ′s−t makes sense on ∂Σs,t), 1+ tχs−t(z)
(χs−t(z)−1)2+(s−t)χs−t(z)

is bounded above.

We have that
(χs−t(z)−1)2 +(s− t)χs−t(z)

|1− z|2

is bounded below away from 0 and above. On the other hand,

1−|z|2

(χs−t(z)−1)2 + sχs−t(z)
=

(1−|z|)(1+ |z|)
(χs−t(z)−bs)(χs−t(z)− b̄s)

where bs and b̄s are the intersections of ∂Σs with U since by Proposition 2.2.4
√

(x+1)2−(x−1)2esx

esx−1 →

i
√

4
s −1. Since the derivatives of the function, for 0 < s < 4, s 7→

√
(x+1)2−(x−1)2esx

esx−1 goes to

0 as x → 0, by Proposition 2.2.4, the curves ∂Σs intersects U orthogonally; it follows that

(1− |z|)/(χs−t(z)− bs) and (1− |z|)/(χs−t(z)− b̄s) are bounded above and below from 0 for
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z ∈ ∂Σs,t . Therefore,

0 < c <
∣∣∣∣1−|z|2|1− z|2

(χs−t(z)−1)2 +(s− t)χs−t(z)
(χs−t(z)−1)2 + sχs−t(z)

∣∣∣∣<C < ∞.

If s = 4, ∂Σs,t fails to intersect U orthogonally, so we only have

0 < c <
∣∣∣∣1−|z|2|1− z|2

(χs−t(z)−1)2 +(s− t)χs−t(z)
(χs−t(z)−1)2 + sχs−t(z)

∣∣∣∣
but not the bounded above side.

We first quote the definition of the Hardy space of a general domain from [Rud55].

Definition 3.2.16. For any domain G⊆C, we define the Hardy space H2(G) as the set containing

all the analytic functions f on G for which there exists a harmonic function u on G such that

| f |2 ≤ u

on the domain G.

Proposition 3.2.14 and Lemma 3.2.15 have an immediate consequence .

Proposition 3.2.17. For s≥ t
2 > 0, G̃s,t is a bounded map mapping L2(νs) into the Hardy space

H2(Σs,t).

Proof. By Proposition 3.2.14 and Lemma 3.2.15,

G̃s,tg(ζ) =
1

2πi

∫
∂Σs,t

Zs,tg(z)
z−ζ

dz,

and Zs,tg is in the L2 space of the arc-length measure of ∂Σs,t . Since Σs,t is a domain with piecewise

analytic boundary, the proposition follows from a direct application of [Rud55, Theorem 3.2].

Before we completely describe the range of G̃s,t , we prove one more important property.
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Lemma 3.2.18. G̃s,t : L2(νs)→ H2(Σs,t) is injective, for all s 6= 4.

Proof. We shall separate the cases s < 4 and s > 4. For s > 4, the compact set χs,t(D̄) is contained

in D; therefore, the power series expansion

Re
(

ζ+χs,t(ω)

ζ−χs,t(ω)

)
= 1+

∞

∑
n=1

(
ζ
−n

χs,t(ω)
n +ζ

n
χ̄s,t(ω)

n)
converges uniformly for ζ,ω ∈ U. The measure νs is equivalent to the Haar measure dω by

Proposition 3.2.8; thus L2(dω) = L2(νs). Let g ∈ L2(dω) such that G̃s,tg = 0 on U. Now,

G̃s,tg(ζ) =
∫
U

g(ω)Re
(

ζ+χs,t(ω)

ζ−χs,t(ω)

)
dω

=
∫
U

g dω+
∞

∑
n=1

ζ
−n

∫
U

g(ω)χs,t(ω)
n dω+ζ

n
∫
U

g(ω)χ̄s,t(ω)
ndω

(3.2.2)

is the Fourier expansion of G̃s,tg. That G̃s,tg = 0 on U implies that all the Fourier coefficients

∫
U

g(ω)χs,t(ω)
n dω =

∫
U

g(ω)χ̄s,t(ω)
ndω = 0.

Since the continuous function χs,t is one-to-one, it separates points on U. By the Stone-Weierstrass

Theorem, polynomials in χs,t and χ̄s,t are dense in the continuous functions on U; hence we can

approximate L2(dω) functions by polynomials in χs,t and χ̄s,t . It follows from (3.2.2) that

∫
U

gϕ dω = 0

for all ϕ ∈ L2(dω), which implies g = 0.

Now let s < 4 and let G̃s,tg = 0. Then the Cauchy Transform of Zs,tg is 0 as in Lemma
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3.2.14. By Cálderon’s Theorem, this implies that Zs,tg is the boundary function of the function

ζ 7→ 1
2πi

∫
∂Σs,t

g( fs,t(z))
(

1+
t χs−t(z)

(χs−t(z)−1)2 +(s− t)χs−t(z)

)
dz

z−ζ

for ζ ∈ C\ Σ̄s,t which vanishes at infinity and is in the Hardy space of the region C\ Σ̄s,t . Now,

we will define four conformal maps h1, h2, h3, h4 so that the composition of the four functions

maps C∞ \ Σ̄s,t onto C∞ \ D̄ as follows.

1. The map h1(z) = fs,t(z) is an injective conformal map from C∞ \ Σ̄s,t onto C∞ \ supp νs,t . It

should be highlighted that h1(z̄) = h1(z); this fact follows from the same reflection property

for fs−t and χs.

2. Let h2(z) = 2as+1
as−1

z−1
z+1 , which is an injective conformal map from C∞ \ supp νs,t onto

C∞\ [−2,2] where as = h1(bs), bs,t ∈C+∩U∩∂Σs,t and as is the endpoint of the connected

arc of supp νs,t . We observe that h2(z̄) =−h2(z), from the fact that ās is the other endpoint

of supp νs, an arc on the unit circle.

3. Define

h3(z) =
1
2
(z+

√
z2−4) =

∫ 2

−2

1
2π

√
4− x2

x− z
dx

where the square root is chosen so that this defines a conformal map from C∞ \ [−2,2]

onto C∞ \ D̄. Note that h3(z̄) = h3(z), h3(−z) =−h3(z) and h3(iR)⊆ iR; the second and

third properties follow easily from a simple substitution x 7→ −x in the Cauchy integral.

(The function h3 is an inverse of the Jakowski transform J(z) = z+1/z, from which these

properties also easily follow.)

4. We finally denote h4(z) = i1−zc̄s
z−cs

, where cs = h3 ◦ h2(∞). Because h2(∞) is not in the

interval [−2,2], cs is a point in C∞ \ D̄. The map h4 is a Möbius transform mapping C∞ \D

onto itself (and similarly from D onto itself) since h4(0) =−i/cs ∈ D.
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We now consider the composition Φ = h4 ◦h3 ◦h2 ◦h1 which defines an injective conformal map

from C∞ \ Σ̄s,t onto C∞ \ D̄. Here is a list of important properties of Φ:

(i) Φ(∞) = ∞; this follows from h1(∞) = ∞, h2(∞) = 2as+1
as−1 , h3(h2(∞)) = cs and h3(cs) = ∞.

(ii) Φ(z̄) = Φ(z) for all z. This can be seen by direction computations that h2 ◦ h1(z̄) =

h2(h1(z)) =−h2 ◦h1(z), h3(−w̄) =−h3(w) and h4(−w̄) = h4(w).

(iii) Φ′ and 1/Φ′ are bounded on C∞ \Σs,t . We first list out the zeros and the poles of all the h′i.

The map h′1 has simple zeros at bs,t and b̄s,t (which follows directly from the fact that the

derivative of its inverse χ′s,t = ( f ′s−t ◦χs) ·χ′s only has poles at the endpoints of supp νs,t)

as well as a double pole at ∞; h′2 has a pole of order 2 at −1 and a zero of order 2 at ∞;

h′3 has simple poles at J(1) = 2 and J(−1) =−2 as well as a zero of order 2 at ∞; h′4 has

poles and zeros, both of order 2, at cs and ∞ respectively. Then we conclude that the zeros

and the poles are all cancelled out when we apply the chain rule to the derivative of Φ,

the composition of the four analytic functions. It follows that Φ′ is bounded above and

bounded away from 0.

(iv) Φ has an analytic continuation to a neighborhood of C∞ \Σs,t . When the analytic function

fs,t is restricted to (C∞ \Σs,t)∩D, it has an analytic continuation to a neighborhood of

the closure of (C∞ \Σs,t)∩D; this is because fs,t = fs ◦ χs−t and both fs and χs−t are

actually defined on a larger domain. Similarly, on (C∞ \Σs,t)∩ (C\D), fs,t has an analytic

continuation to a neighborhood of the closure of (C∞ \Σs,t)∩ (C\D) since fs,t preserves

inversion. It follows that fs,t has an analytic continuation to a neighborhood of C∞ \Σs,t .

All the other hi are nice enough to compose with the analytic continued fs,t .

Whence φ 7→ φ◦Φ−1 is a bounded map, with bounded inverse, from H2(C∞ \ Σ̄s,t) onto H2(C∞ \

D̄) so that Zs,t f ◦Φ−1 is the boundary function of some function in H2(C∞ \ D̄). The map

z 7→ Zs,t f ◦Φ−1(1/z) is the boundary function of some function in H2(D) which vanishes at 0.
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Let

Ψ(z) = h−1
4 (1/Φ(z)).

By construction, Φ(bs,t) = h4 ◦h3 ◦h2(as) = h4 ◦h3(2) = h4(1) and similarly Φ(b̄s,t) = h4(−1).

By property (ii) of Φ mentioned above,

Ψ(bs,t) = h−1
4 (1/Φ(bs,t)) = h−1

4 (Φ(bs,t)) = h−1
4 (h4(−1)) =−1

and similarly Ψ(b̄s,t) = 1.

We claim that

Ψ(1/z̄) = Ψ̄(z)

for all z∈C∞\ Σ̄s,t . Fix a z and set ζ= h3◦h2◦h1(z). Since h1(1/z) = 1/h1(z), h2(1/z) =−h2(z)

and h3(−z) =−h3(z), we have Φ(1/z) = h4(−ζ) and Φ(1/z̄) = h4(ζ̄). Thus

Ψ(1/z̄) = h−1
4 ◦

1
h4

(ζ̄)

and

Ψ(z) = h−1
4 ◦

1
h4

(ζ).

Now, the claim follows easily from explicit computations that h−1
4 ◦ (1/h4)(ζ) =−1/ζ, using the

fact that cs is purely imaginary.

Since we have

1+
t χs−t(Ψ

−1(z))
(χs−t(Ψ−1(z))−1)2 +(s− t)χs−t(Ψ−1(z))

=
(χs−t ◦Ψ−1(z)−bs)(χs−t ◦Ψ−1(z)− b̄s)

(χs−t ◦Ψ−1(z)−1)2 +(s− t)χs−t ◦Ψ−1(z)
,

the function

(
1+

t χs−t(Ψ
−1(z))

(χs−t(Ψ−1(z))−1)2 +(s− t)χs−t(Ψ−1(z))

)−1

(1− z2)
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is holomorphic and bounded on D, so that the function

gs,t(z) = Zs,tg◦Φ
−1(z)

(
1+

t χs−t(Ψ
−1(z))

(χs−t(Ψ−1(z))−1)2 +(s− t)χs−t(Ψ−1(z))

)−1

(1− z2)

is the boundary function of some function in H2(D) which vanishes at Φ(∞). By the definition

of this function and the properties of Ψ and χs−t which gives us χs−t ◦Φ(1/z̄) = χs−t ◦Φ(z), we

see that gs,t(e−iθ) =−e−2iθgs,t(eiθ) on U. Since gs,t(eiθ) = ∑
∞
n=0 aneinθ, we have an = 0 for all

n 6= 0,2 and a0 =−a2. Since gs,t is the boundary function of an H2(D) function which vanishes

at some point in D, we conclude gs,t = 0 hence g = 0.

Remark 3.2.19. This proof followed the proof of [Bia97b, Lemma 17], but that proof had typos

in the definition of h4 and used a third function h5 which should have been h5 = h−1
4 .

We finally are able to state the following theorem.

Theorem 3.2.20. The transform G̃s,t is an unitary isomorphism between the Hilbert spaces L2(νs)

and the reproducing kernel Hilbert space As,t of analytic functions on Σs,t generated by the

positive-definite sesqui-analytic kernel

Ks,t(z,ζ)

=
∫
U

|1−χs(ω)|2

(z−χs,t(ω))(z−1− χ̄s,t(ω))

|1−χs(ω)|2

(ζ̄− χ̄s,t(ω))(ζ̄−1−χs,t(ω))

(
1−|χs,t(ω)|2

1−|χs(ω)|2

)2

νs(dω).

Proof. For each z ∈ Σs,t , let

hz(ω) =
1−|χs,t(ω)|2

1−|χs(ω)|2
|1−χs,t(ω)|2

(z−χs,t(ω))(z−1− χ̄s,t(ω))

be defined on U. We will drop the subscripts s and t for K in this proof and denote Kζ(z) = K(z,ζ)
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as an analytic function on Σs,t . Observe that for any f ∈ L2(U,νs),

G f (ζ) =
〈

f , h̄ζ

〉
L2(U,νs)

.

Define As,t ≡ G (L2(U,νs)) equipped with an inner product

〈F,G〉As,t
≡
〈
G−1F ,G−1G

〉
L2(U,νs)

which is well-defined since G is injective. G is an isometry from L2(U,νs), which is a Hilbert

space, onto As,t and G has range in H2(Σs,t); thus (As,t ,〈 ·, · 〉As,t
) does define a Hilbert space of

analytic functions. By the construction here, G is a unitary isomorphism between L2(U,νs) and

As,t .

It is easy to see that Kζ(z) = G h̄ζ(z) and for any F ∈As,t ,

〈
F,Kζ

〉
As,t

=
〈
G−1F , h̄ζ

〉
L2(U,νs)

= G (G−1F)(ζ) = F(ζ).

This shows that K is a reproducing kernel for As,t .

Lemma 3.2.21. Let P(n)
s,t be the polynomials determined by the generating function

∞

∑
n=1

znP(n)
s,t (u) =

fs,t(z)u
1− fs.t(z)u

ane denote P(n)∗
s,t (u) = P(n)

s,t (ū). Then we have

G̃s,tP
(n)
s,t (ζ) = ζ

n

and

G̃s,tP
(n)∗
s,t (ζ) = ζ

−n.
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Proof. As in the proof of Theorem 3.2.6, we can compute, without difficulty, that the moment

generating function of ks,t(ζ,dω) is

∫
U

zω

1− zω
ks,t(ζ,dω) =

χs,t(z)ζ
1−χs,t(z)ζ

.

so that ∫
U

fs,t(z)ω
1− fs,t(z)ω

ks,t(ζ,dω) =
zζ

1− zζ
.

G̃s,tP
(n)
s,t (ζ) = ζn follows by expanding both sides in power series with respect to z and then

analytic continuation of G̃s,tP
(n)
s,t (ζ) to Σs,t .

G̃s,tP
(n)∗
s,t (ζ) = ζ−n follows without difficulties. In view of the proof of Proposition 3.2.8,

ks,t(ζ,dω) is absolutely continuous with respect to the Haar measure dω on U with density

1−|χs,t(ω)|2

(ζ−χs,t(ω))(ζ−1− χ̄s,t(ω))
.

Replacing ω by ω̄ from the density, we have, by χs,t(ω̄) = χ̄s,t(ω),

1−|χs,t(ω̄)|2

(ζ−χs,t(ω̄))(ζ−1− χ̄s,t(ω̄))
=

1−|χs,t(ω)|2

(ζ− χ̄s,t(ω))(ζ−1−χs,t(ω))
.

Therefore,

∫
U

fs,t(z)ω̄
1− fs,t(z)ω̄

ks,t(ζ,dω) =
∫
U

fs,t(z)ω
1− fs,t(z)ω

ks,t(ζ
−1,dω) =

zζ−1

1− zζ−1 .

The result follows a priori by expanding both sides with respect to z and the observation that

∞

∑
n=1

znP(n)∗
s,t (u) =

fs,t(z)ū
1− fs.t(z)ū

.
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Theorem 3.2.22. The transform G̃s,t coincides to Gs,t on polynomials, the large N-limit of the

Segal-Bargmann transform on U(N); i.e. G̃s,t extends Gs,t to a unitary isomorphism between the

two Hilbert spaces.

Proof. By Lemma 3.2.21, the generating functions of the transform G̃s,t and the large N-limit of

the Segal Bargmann transform on U(N) coincide.

We will from now on write Gs,t instead of G̃s,t . That the range of Gs,t contains all the

polynomials has the simple result:

Corollary 3.2.23. The reproducing kernel Hilbert space As,t is a dense subspace of H2(Σs,t).

Remark 3.2.24. We shall note that even in the case s = t, we do not know whether the Hilbert

spaces As,t and H2(Σs,t) coincide; however, as mentioned in [Bia97b], they are equipped with

different inner products and there is no measure m on C such that

∫
C

F(z)Ḡ(z) m(dz) = 〈F,G〉As,t

for all entire functions on C, at least in the case s = t, and presumably in general.

3.2.5 Limiting Behavior as s→ ∞

In this section we start by showing the following theorem on the asymptotic behavior of

the boundary of Σs,t when s→ ∞.

Theorem 3.2.25. If we fix t > 0, |χs,t | → e−
t
2 as s→ ∞ uniformly on U. In the case s = t,

e
t
2 |χt,t | → 1.

Since χs,t is the inner boundary curve of the region Σs,t , the above theorem actually says

that with t > 0 fixed, the region Σs,t converges to an annulus with inner and outer radii e−
t
2 and e

t
2

respectively as s→∞ (see Corollary 3.2.26); in the case s = t, Σt,t approaches (but not converges)
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to an annulus of inner and outer radii e−
t
2 and e

t
2 respectively.

Proof. Recall that χs,t denotes the inner curves (inside the D) of the region Σs,t . We can compute

the modulus of χs,t easily:

|χs,t(z)|= exp
(
− t

2
Re

1+χs(z)
1−χs(z)

)
.

So we attempt to estimate Re 1+χs(z)
1−χs(z)

for large t. As mentioned in the first part of Proposition

2.2.4, x = Re 1+χt(z)
1−χt(z)

satisfies

φt(x) :=
∣∣∣∣x−1
x+1

∣∣∣∣e t
2 x < 1.

For t > 4, there exists 0 < α−(t) < 1 < α+(t) such that φt < 1 on [α−(t),α+(t)] (see

[Bia97b]). We will approximate α±(t). Observe that φt is differentiable on (0,1), φ′t(0) > 0,

φt(0) = 1 and φt(1) = 0; there is a point
√

1−4/t such that φ′t(
√

1−4/t) = 0. Thus, α−(t)>√
1−4/t and φ′t(x)< 0 for all

√
1−4/t < x < 1. Therefore, x2−1 >−4/t for all

√
1−4/t <

x < 1 and so

φ
′′
t (x) =

etx/2

4(1+ x)3 (−16+8t(1+ x)+ t2(x2−1)(x+1))> 0.

Now, by the Fundamental Theorem of Calculus,

−1 = φt(1)−φt(α−(t)) =
∫ 1

α−(t)
φ
′
t ≤ φ

′
t(1)(1−α−(t)) =−

1
2

e
t
2 (1−α−(t))

and hence 1−α−(t)≤ 2e−
t
2 .

We now estimate α+(t). We first compute for t > 4, x > 1, in this case, it is even easier to
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get

φ
′′
t (x) =

etx/2

4(1+ x)3 (−16+8t(1+ x)+ t2(x−1)(x+1)2)> 0.

So φt is convex and

1 = φt(α+(t))−φt(1) =
∫

α+(t)

1
φ
′
t ≥

t
2

e
t
2 (α+(t)−1)

where the quantity 1
2e

t
2 comes from the fact that d

dx
x−1
x+1e

t
2 x
∣∣∣
x=1

= 1
2e

t
2 . It follows that

α+(t)≤ 1+2e−
t
2 .

Whence |α±(t)−1| ≤ 2e−
t
2 when t large enough.

We are ready for the estimates to

|χs,t(z)|= exp
(
− t

2
Re

1+χs(z)
1−χs(z)

)
.

When s 6= t, |α±(s)−1| ≤ 2e−
s
2 implies Re 1+χs(z)

1−χs(z)
→ 1 uniformly. So if we fix t and let s→ ∞,

|χs,t(z)| → e−
t
2

uniformly. For the case s = t,

e−
t
2

|χt,t(z)|
= exp

(
t
2

(
Re

1+χt(z)
1−χt(z)

−1
))

.

But the same estimate for α±(t) shows that t
2

(
Re 1+χt(z)

1−χt(z)
−1
)
→ 0 uniformly as t→ ∞.

Now it comes to the formulation of the observation we made in the beginning of this

section.
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Corollary 3.2.26. When t > 0 is fixed, Σ̄s,t → At in Hausdorff distance as s→ ∞, where At =

{z ∈ C : e−
t
2 ≤ |z| ≤ e

t
2} is the annulus with inner and outer radii e−

t
2 and e

t
2 respectively.

Proof. Fix t > 0. We first notice that Σ̄s,t ⊆ At for all s > t
2 . Recall that for all s > 4, Σ̄s,t =

C \ (χs,t(D)∪ 1/χs,t(D)). The region χs,t(D) is a simply connected, with boundary χs,t(U); it

contains B(0,e−
t
2 ).

Let ε > 0. Denote ms = maxz∈χs,t(U) |z| which exists since the curve χs,t(U) is compact.

By Theorem 3.2.25, there is an s0 > 4 such that for all s > s0, ms− e−
t
2 < ε. If there exists

|w| = e−
t
2 such that w is not in the ε-neighborhood of χs,t(U) for some s > s0, then for this

s, χs,t(D) cannot contain B(0,e−
t
2 ) since χs,t(D) is a region with boundary curve χs,t(U). A

similar statement holds for 1/χs,t(U). It follows that the ε-neighborhood of Σ̄s,t contains At for

all s > s0.

3.3 The Biane-Gross-Malliavin Theorem

3.3.1 Elliptic Systems and Free Segal-Bargmann Transform

The (classical) Segal-Bargmann transform is a unitary isomorphism between the Hilbert

spaces L2(Rn,ρs), where ρs is the Gaussian density with variance s, and L2
hol(C

n,ρs,t), where

ρs,t is a two-parameter heat kernel due to Driver and Hall [DH99]. The W ∗-probability space

(S C (H ),τ) defined in Section 2.3 is a candidate of a free analogue of L2(Rn,ρs). In this section,

we will introduce and construct an (s, t)-elliptic system on the Fock space which generalizes

the circular system introduced in [Bia97b] and plays the role of L2(Cn,ρs.t) in the free context;

we will then define the free (s, t)-Segal-Bargmann transform between the semi-circular and

(s, t)-elliptic systems.

Definition 3.3.1. Suppose that s ≥ t
2 > 0. A linear map c : H →A is called an (s, t)-elliptic

system if
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1. there exist semi-circular systems x and y such that c =
√

s− t
2x+ i

√
t
2y;

2. the subsets {x(h) : h ∈H } and {y(h) : h ∈H } are free in (A ,τ).

We shall construct the (s, t)-elliptic systems on a free Fock space, parallel to the con-

struction of circular system in [Bia97b, Kem05]. Let H be a real Hilbert space and H C its

complexification. We consider the sum X(h) = ah + a∗h of annihilation and creation operators

defined on the Fock space F((H ⊕H )C) (See Section 2.3). For each h ∈H , we define

Zs,t(h) =

√
s− t

2
X(h,0)+ i

√
t
2

X(0,h).

Then Zs,t is a (s, t)-elliptic system on the W ∗-probability space E s,t(H ) =W ∗{Z(h) : h ∈H }

equipped with the canonical vacuum state τ. Let E s,t
hol(H ) be the Banach algebra generated

by {Z(h) : h ∈H } and L2(E s,t
hol(H )),τ) its Hilbert space completion under the inner product

〈A,B〉= τ(AB∗). We now compute the action of Z(h) on (H ⊕H )⊗n:

Zs,t(h)(h1,g1)⊗·· ·⊗ (hn,gn)

=
√

s− t
2

[
(h,0)⊗ (h1,g1)⊗·· ·⊗ (hn,gn)+ 〈h1,h〉(h2,g2)⊗·· ·⊗ (hn,gn)

]
+ i
√

t
2

[
(0,h)⊗ (h1,g1)⊗·· ·⊗ (hn,gn)+ 〈g1,h〉(h2,g2)⊗·· ·⊗ (hn,gn)

]
=
(√

s− t
2 h, i
√

t
2 h
)
⊗ (h1,g1)⊗·· ·⊗ (hn,gn)+

〈√
s− t

2 h1 + i
√

t
2 g1,h

〉
(h2,g2)⊗·· ·⊗ (hn,gn).

If all (hk,gk) are of the form (
√

s− t
2 hk, i
√

t
2 hk), we have

Zs,t(h)
(√

s− t
2 h1, i

√
t
2 h1
)
⊗·· ·⊗

(√
s− t

2 hn, i
√

t
2 hn
)

=(
√

s− t
2 h, i
√

t
2 h)⊗

(√
s− t

2 h1, i
√

t
2 h1
)
⊗·· ·⊗

(√
s− t

2 hn, i
√

t
2 hn
)

+(s− t)〈h1,h〉(
√

s− t
2 h2, i

√
t
2 h2)⊗·· ·⊗ (

√
s− t

2 hn, i
√

t
2 hn).

(3.3.1)
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In particular, when all hk = h with ‖h‖= 1, we have

Zs,t(h)
(√

s− t
2 h, i
√

t
2 h
)⊗n

=
(√

s− t
2 h, i
√

t
2 h
)⊗(n+1)

+(s− t)
(√

s− t
2 h, i
√

t
2 h
)⊗(n−1)

where the latter term is 0 when n−1 < 0. We shall also note that when h and k are orthogonal to

each other, from the computation of equation (3.3.1), we have

Zs,t(h)
(√

s− t
2 k, i
√

t
2 k
)⊗n

= (
√

s− t
2 h, i
√

t
2 h)⊗

(√
s− t

2 k, i
√

t
2 k
)⊗n

.

We define δs,t(h) = 1√
s (
√

s− t
2 h, i
√

t
2 h) for h ∈H C and extend it to F(H C) by δs,t(h1⊗·· ·⊗

hn) = δs,t(h1)⊗·· ·⊗δs,t(hn). The extension δs,t on F(H C) is an isometry. The above computa-

tions prove the following proposition:

Proposition 3.3.2. 1. The sequence (Q(n)
s,t )

∞
n=1 of Tchebycheff type II polynomials with param-

eter s− t satisfying the recurrence relation

Q(n+1)
s,t (x) = xQ(n)

s,t (x)− (s− t)Q(n−1)
s,t (x)

with Q(0)
s,t (x) = 1, Q(1)

s,t (x) = x has the property that for any h ∈H ,

Q(n)
s,t (Zs,t(h))Ω =

(√
s− t

2 h1, i
√

t
2 h1
)⊗n

.

2. Let (e j)
∞
j=1 be an orthonormal basis of H . For any integers k1, · · · ,kn and j1, · · · jn such

that j1 6= j2 6= · · · 6= jn, we have

Q(k1)
s,t (Zs,t(e j1)) · · ·Q

(kn)
s,t (Zs,t(e jn))Ω = δs,t(e j1)

k1⊗·· ·⊗δs,t(e jn)
kn.

3. The map A 7→ AΩ extends to a unitary isomorphism from L2(E s,t
hol(H ),τ) to δs,t(F(H )).
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Remark 3.3.3. When s = t, the polynomials Q(n)
s,t are monomials; on the other hand, Q(n)

1,0 are

the Tchebycheff type II polynomials with parameter 1. Thus, in general Q(n)
s,t interpolate, or

extrapolate due to the sign of s− t, between the two kinds of polynomials.

We shall now define the free (s, t)-Segal-Bargmann transform which gives (up to the map

δs,t) unitary equivalence between L2(S C (H ),τ) and L2(E s,t
hol(H ),τ).

Definition 3.3.4. The free (s, t)-Segal-Bargmann transform Ss,t is defined to be the composition

of the isomorphisms so that the following diagram commute:

F(H C) �
� δs,t // F((H ⊕H )C)

L2(S C (H ),τ)
Ss,t

//

A 7→AΩ

OO

L2(E s,t
hol(H ),τ)

A 7→AΩ

OO

When s = 1, t = 1/2, the definition coincides with the free Segal-Bargmann transform de-

fined by Biane [Bia97b]. The free (s, t)-Segal-Bargmann transform then maps the Q(k)
s,0(
√

sX(h))

to Q(k)
s,t (Zs,t(h)) because X = Zs,0. For a discussion on the left side of the commuting diagram

which defined the free Segal-Bargmann transform, see Section 2.3.

We take H = L2(R). {Xr := X(1[0,r])}r≥0 and {Zs,t(r) := Zs,t(1[0,r])}r≥0 are concrete

constructions of free semicircular Brownian motion and free elliptic (s, t)-Brownian motion

on Fock spaces. We call a process Fr an adapted semi-circular (resp. elliptic (s, t)) process if

Fr ∈S C (L2([0,r])) (resp. Fr ∈ E s,t(L2([0,r]))) for all r ≥ 0. The free (s, t)-Segal-Bargmann

transform relates the free stochastic integrals of adapted semi-circular processes and adapted

elliptic (s, t) processes nicely.

Proposition 3.3.5. Suppose that Fr,Gr are adapted semi-circular processes. Then we have

Ss,t

(∫ R

0
Fr d(

√
sXr) Gr

)
=

∫ R

0
Ss,t(Fr) dZs,t(r) Ss,t(Gr)

where Ss,t is the free Segal-Bargmann transform defined in Definition 3.3.4.
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Proof. For an adapted biprocess A⊗B1[s1,s2], A,B ∈Ws1 :=W ∗{X(1[0,r]) : r ≤ s1}. Also, Xs2−

Xs1 = X(1[s1,s2]) with 1[s1,s2] is orthogonal to the subspace L2([0,s1]). In the case that A =

Q(k1)
s,0 (
√

sX(h)), B = Q(k2)
s,0 (
√

sX(k)) are Tchebycheff polynomials at time s of
√

sX(h),
√

sX(h)∈

Ws1 respectively, it is obvious that, by Proposition 2.3.3 and Proposition 3.3.2,

Ss,t

(∫ R

0
Fr dXr Gr

)
= Q(k1)

s,t Zs,t(1[s1,s2])Q
(k2)
s,t =

∫ R

0
Ss,t(Fr) dZs,t(r) Ss,t(Gr).

For general A, B, we can approximate A,B by operators of the form Q(k)
s,0(
√

sX(h)). And

the conclusion holds for processes of the form A⊗B1[s1,s2]. Standard approximation argument

completes the proof.

3.3.2 A Biane-Gross-Malliavin Type Theorem

Gross and Malliavin showed how to derive the Segal-Bargmann-Hall transform on a

compact Lie group from the infinite-dimensional Segal-Bargmann transform on the corresponding

Lie algebra by the endpoint evaluation maps.

Theorem 3.3.6 ([GM96]). Let K be a connected, simply-connected Lie group of compact type

and G its complexification. Also let W (k) be the Wiener space of the Lie algebra k of K and

H(H(g)) be the Hilbert space completion of Gaussian L2-cylinder functions on the space H(g) =

{z ∈ C([0,1];g) : z is absolutely continuous,z(0) = 0,and ‖z‖2 =
∫ 1

0 |z′(r)| dr < ∞}. Then the

following diagram of isometric transforms commute:

L2(K,ρ1)
S1 // L2

hol(G,ρ1)

L2(W (k))

ẽ

OO

S1 //H(H(g)).

e

OO

where S1 is the Segal-Bargmann-Hall transform on K, S1 is the infinite-dimensional Segal-

Bargmann transform and ẽ and e are the endpoint evaluation maps.
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Biane proved a free version of the Gross-Malliavin Theorem in [Bia97b], which is the

one-parameter version of of Theorem 3.3.7. He stated that the one-parameter free unitary Segal-

Bargmann transform, denoted Gt,t in this paper, can be recovered by the free Segal-Bargmann

transform, which is defined on semi-circular systems, the free analogue of the Wiener space.

Instead of evaluating the stochastic path at the endpoint, the Biane applied functional calculus to

the L2 function. As in the case of Gross-Malliavin Theorem, all the maps, including the functional

calculus map, are unitary isomorphisms.

In this section, we will prove a Biane-Gross-Malliavin type theorem. We rescale the

(additive) free Brownian motion to get a time-rescaled free unitary Brownian motion (us(r))r≥0

given by the free stochastic differential equation

dus(r) = i
√

sus(r)dX(r)− s
2

us(r)dr

and recall (bs,t(r))r≥0 is the free (s, t)-multiplicative Brownian motion defined as the solution of

the free stochastic differential equation

dbs,t(r) = ibs,t(r)dZs,t(r)−
1
2
(s− t)bs,t(r)dr

with us(0) = bs,t(0) = 1. We note that us(r) = bs,0(r).

Theorem 3.3.7. Let s > t
2 > 0. The following statements hold:

1. The holomorphic functional calculus, abusedly denoted as bs,t : F 7→ F(bs,t), extends to an

isometry from As,t onto L2
hol(bs,t).

2. The free Segal-Bargmann transform Ss,t maps L2(us,τ) onto L2
hol(bs,t ,τ).
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3. The following diagram of Segal-Bargmann transforms and functional calculus commute:

L2(νs)
us(1) //

Gs,t
��

L2(us(1),τ)

Ss,t
��

As,t bs,t(1)
// L2

hol(bs,t(1),τ).

All maps are unitary isomorphisms.

We introduce several lemmas before we prove the theorem.

Lemma 3.3.8. Let as,t(r) = e
1
2 (s−t)rbs,t(r). Then for n ∈ N

d(as,t(r)n) = i
n

∑
k=1

as,t(r)k dZs,t(r)as,t(r)n−k +(s− t)1n≥2

n−1

∑
k=1

kas,t(r)k
τ(as,t(r)n−k)dr.

Proof. This is exactly [Kem14, Proposition 4.4]; it is a straightforward calculation in free Itô

calculus.

We recall there are polynomials defined implicitly by the generating functions

∞

∑
n=1

znP(n)
s,t (u) =

fs,t(z)u
1− fs,t(z)u

(3.3.2)

where we recall fs,t = fs ◦χs−t ; fs(z) = ze
s
2

1+z
1−z and χs its right inverse defined on D.

Lemma 3.3.9. We have

Ss,t(P
(1)
sr,tr(us(r))) = bs,t(r)

for all r > 0.

Proof. Put vr = e
sr
2 us(r) and as,t(r) = e

(s−t)r
2 bs,t(r). Applying the Itô product rule, we have

dvr = ivr d(
√

sxr)
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and

das,t(r) = ias,t(r)dZs,t(r).

They are free stochastic differential equations whose coefficients are linear polynomials. Because

as,t(r) and ur satisfy the same initial condition, by Proposition 3.3.5 and the preliminary results

in Section 2.4, we have unique solution to the equation and Ss,tvr = as,t(r) which is equivalent

to saying that

Ss,t(e
tr
2 us(r)) = bs,t(r).

Differentiating the Equation (3.3.2) with respect to z gives us

∞

∑
n=1

nzn−1P(n)
s,t (u) =

f ′s,t(z)u
(1− fs,t(z)u)2 .

Since f ′r(0) = e
r
2 , we have f ′sr,tr(0) = f ′sr(χ(s−t)r(0))χ′(s−t)r(0) = e

sr
2 e−

(s−t)r
2 = e

tr
2 . Therefore,

P(1)
sr,tr(us(r)) = e

tr
2 us(r) and concludes the result.

Lemma 3.3.10. Fix 0 < θ < 2 and R > 0. Then, there is an open neighborhood O of 0 such that

for all z ∈ O, we have the free stochastic differential equation

d

(
∞

∑
n=1

f(s−t)r(z)
nP(n)

sr,tr(us(r))

)

= i

(
∞

∑
n=1

f(s−t)r(z)
nP(n)

sr,tr(us(r))

)
d(
√

sxr)

(
∞

∑
n=0

f(s−t)r(z)
nP(n)

sr,tr(us(r))

)
,

for 0 < r < R.

Proof. First we note that by Itô product rule, we have

d(vn
r ) = i

n

∑
k=1

vk
r(d
√

sxr)vn−k
r − s

n−1

∑
k=1

kvk
rτ(vn−k

r ) dr. (3.3.3)

Take O to be the open neighborhood of 0 such that Equation (3.3.2) converges in f(s−t)R(O).
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Observe that

∞

∑
n=1

f(s−t)r(z)
nP(n)

sr,tr(us(r)) =
fsr(z)us(r)

1− fsr(z)us(r)
=

∞

∑
n=1

fsr(z)nus(r)n

which satisfies the free stochastic integral (by easily replacing the details in [Bia97b] with (3.3.3))

d

(
∞

∑
n=1

fsr(z)nus(r)n

)
= i

(
∞

∑
n=1

fsr(z)nus(r)n

)
d(
√

sxr)

(
∞

∑
n=0

fsr(z)nus(r)n

)
.

It follows that

d

(
∞

∑
n=1

f(s−t)r(z)
nP(n)

sr,tr(us(r))

)

= i

(
∞

∑
n=1

f(s−t)r(z)
nP(n)

sr,tr(us(r))

)
d(
√

sxr)

(
∞

∑
n=0

f(s−t)r(z)
nP(n)

sr,tr(us(r))

)
.

Lemma 3.3.11. Fix 0 < t
2 < s and R > 0. Then, there is an open neighborhood O of 0 such that

for all z ∈ O, we have the free stochastic differential equation

d

(
∞

∑
n=1

f(s−t)r(z)
nbs,t(r)n

)
= i

(
∞

∑
n=1

f(s−t)r(z)
nbs,t(r)n

)
dZs,t(r)

(
∞

∑
n=0

f(s−t)r(z)
nbs,t(r)n

)

for 0 < r < R.

Proof. We take O is as in Lemma 3.3.10. Let hr(z) = e−
(s−t)r

2 f(s−t)r(z). Applying Itô’s Formula

to hr(z)nas,t(r)n, we get

d(hr(z)nas,t(r)n) = i
n

∑
k=1

hr(z)nas,t(r)k dZs,t(r) as,t(r)n−k.

63



Summing over n, we get

d

(
∞

∑
n=1

hr(z)nas,t(r)n

)
= i

(
∞

∑
n=1

hr(z)nas,t(r)n

)
dZs,t(r)

(
∞

∑
n=0

hr(z)nas,t(r)n

)
.

Now the proposition follows from the fact that hr(z)nas,t(r)n = f(s−t)r(z)nbs,t(r)n.

Proposition 3.3.12. We have

Ss,t(P
(n)
sr,tr(us(r))) = bs,t(r)n and Ss,t(P

(n)
sr,tr(us(r)∗)) = bs,t(r)−n.

Proof. Combining Lemmas 3.3.10, 3.3.11 and Proposition 3.3.5, we see that the two series

∑
∞
n=1 f(s−t)r(z)nS −1

s,t (bs,t(r)n) and ∑
∞
n=1 f(s−t)r(z)nP(n)

sr,tr(us(r)) satisfy the same free stochastic

differential equation. Notice that Lemma 3.3.10 is equivalent to

d

(
∞

∑
n=1

f(s−t)r(z)
nP(n)

sr,tr(us(r))

)
= i

∞

∑
n=1

n

∑
k=1

f(s−t)r(z)
nP(k)

sr,tr(us(r)) d(
√

sxr)P
(n−k)
sr,tr (us(r)) (3.3.4)

and the similar equation holds for d
(

∑
∞
n=1 f(s−t)r(z)nS −1

s,t (bs,t(r)n)
)

. Since f(s−t)r(z) is ana-

lytic in z and f(s−t)r(0) = 0 for all r > 0, differentiating Equation (3.3.4) n times gives us a

recurrence relation of P(n)
sr,tr(us(r)) in terms of P(k)

sr,tr(us(r)), k = 1,2, . . . ,n−1. However, because

d
(

∑
∞
n=1 f(s−t)r(z)nS −1

s,t (bs,t(r)n)
)

satisfies the same free stochastic differential equation as Equa-

tion (3.3.4), the recurrence relation of P(n)
sr,tr(us(r)) holds for S −1

s,t (bs,t(r)n). Now Lemma 3.3.9

tells us S −1
s,t (bs,t(r)) = P(1)

sr,tr(us(r)) so for n≥ 2,

Ss,t(P
(n)
sr,tr(us(r))) = bs,t(r)n

follows from the recurrence relation.

For Ss,t(P
(n)
sr,tr(us(r)∗)) = bs,t(r)−n, we can handle it similarly. Since fs,t maps R into R,

the derivatives are all real; as a result, all the polynomials P(n)
sr,tr are of real coefficients. Taking

64



adjoint in Lemma 3.3.10, we have

d

(
∞

∑
n=1

f(s−t)r(z)
nP(n)

sr,tr(us(r)∗)

)

=−i

(
∞

∑
n=0

f(s−t)r(z)
nP(n)

sr,tr(us(r)∗)

)
d(
√

sxr)

(
∞

∑
n=1

f(s−t)r(z)
nP(n)

sr,tr(us(r)∗)

)
.

By [Kem14, Proposition 4.17], d(bs,t(r)−1) =−idZs,t(r)bs,t(r)−1− 1
2(s− t)bs,t(r)−1 dr and it is

easy to compute that

d

(
∞

∑
n=1

f(s−t)r(z)
nbs,t(r)n

)
=−i

(
∞

∑
n=0

f(s−t)r(z)
nbs,t(r)n

)
dZs,t(r)

(
∞

∑
n=1

f(s−t)r(z)
nbs,t(r)n

)
.

Now, it is trivial to proceed as in the preceding paragraph to complete the proof.

We are finally ready to prove the Biane-Gross-Malliavin type theorem.

Proof of Theorem 3.3.7. The diagram holds for polynomials by Proposition 3.3.12, in which we

apply θ = t
s and r = s, and Lemma 3.2.21. Since polynomials are dense in L2(νs) and all the

maps are unitary isomorphisms, the holomorphic functional calculus map bs,t can be extended to

the entire Hilbert space As,t and the theorem is established.

This chapter contains material from “The two-parameter free unitary Segal–Bargmann

transform and its Biane-Gross-Malliavin identification”, Journal of Functional Analysis, 271,

12(2016), 3765-3817.
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(a) t = 0.5 (b) t = 2

(c) t = 3 (d) t = 3.99

(e) t = 4 (f) t = 4.5

Figure 3.1: The Region Ωt
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(a) s = 0.5, t = 0.1 (b) s = 0.5, t = 0.5

(c) s = 0.5, t = 0.9

(d) s = 3, t = 1

(e) s = 3, t = 3 (f) s = 3, t = 5

(g) s = 4, t = 2
(h) s = 4, t = 4

(i) s = 4, t = 6

Figure 3.2: The Region Σs,t
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(a) s = 5, t = 1 (b) s = 5, t = 1 (Close View)

(c) s = 5, t = 5
(d) s = 5, t = 5 (Close View)

(e) s = 5, t = 9

(f) s = 5, t = 9 (Close View)

Figure 3.3: The Region Σs,t (Continued)

68



Bibliography

[Bar61] V. Bargmann. On a Hilbert space of analytic functions and an associated integral
transform. Comm. Pure Appl. Math., 14:187–214, 1961.

[Bar62] V. Bargmann. Remarks on a Hilbert space of analytic functions. Proc. Nat. Acad. Sci.
U.S.A., 48:199–204, 1962.

[BB04] S. T. Belinschi and H. Bercovici. Atoms and regularity for measures in a partially
defined free convolution semigroup. Math. Z., 248(4):665–674, 2004.

[BB05] S. T. Belinschi and H. Bercovici. Partially defined semigroups relative to multiplicative
free convolution. Int. Math. Res. Not., (2):65–101, 2005.

[Bel05] Serban Teodor Belinschi. Complex analysis methods in noncommutative probability.
ProQuest LLC, Ann Arbor, MI, 2005. Thesis (Ph.D.)–Indiana University.

[Bia97a] Philippe Biane. Free Brownian motion, free stochastic calculus and random matrices.
In Free probability theory (Waterloo, ON, 1995), volume 12 of Fields Inst. Commun.,
pages 1–19. Amer. Math. Soc., Providence, RI, 1997.

[Bia97b] Philippe Biane. Segal-Bargmann transform, functional calculus on matrix spaces and
the theory of semi-circular and circular systems. J. Funct. Anal., 144(1):232–286,
1997.

[Bia98] Philippe Biane. Processes with free increments. Math. Z., 227(1):143–174, 1998.

[BS98] Philippe Biane and Roland Speicher. Stochastic calculus with respect to free Brownian
motion and analysis on Wigner space. Probab. Theory Related Fields, 112(3):373–409,
1998.
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