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Abstract

Data-Driven Decision Making Algorithms For Internet Platforms

by

Titouan Jehl

Doctor of Philosophy in Engineering - Industrial Engineering and Operations
Research

University of California, Berkeley

Professor Max Z. Shen, Chair

Internet platforms have been growing at a fast pace since the early 2000s and offer
now a variety of products and services to their customers through digital devices. E-
retailing platforms such as Ebay, Amazon.com, Alibaba and JD.com are changing the
way people shop around the planet, while e-hailing platforms such as Lyft, Uber and
Didi have reshaped how we commute. Moving the interaction with their customers
online allowed internet platforms to gather valuable information for decision making.
This data provides internet platforms with the necessary tools to make informed
decisions on their key business strategies such as adapting their offer to the demand
of regional markets.

An assortment of products is a subset of the products the internet platform offers
to its customers in a regional market. To optimize their business metrics, e-retail
platform design assortments of products to be held in warehouses while e-hailing
platforms decide on which products to offer in what cities. The value of such an
assortment may come from the synergies between different products. For instance,
an e-retail platform holding products often purchased together in the same warehouse
reduces its shipping costs and an e-hailing platform offering a premium service and
a discounted one can cover several customer segments.

In this essay, we focus on selecting and studying assortments of products for e-retail
and e-hailing platforms. We build data driven algorithms to guide such decisions.
We provide thorough numerical analyses build on real world data sets to prove the
performance of these methods.



2

E-retail platforms

E-retail platforms face many logistics challenges such as designing their delivery net-
work, selecting assortments of products to be held in these warehouses and optimizing
the replenishment policy. These problems are tied together but solved independently
due to the intractability of the general problem. In this essay we focus on building
the assortment of products for a given delivery network assuming the replenishment
policy will minimize stock-outs of the assorted products.

Orders placed on an e-retail platform website may contain one or several products.
If such an order can not be entirely fulfilled from a single warehouse, it is said to be
split. Split orders typically result in a slower shipping speed and greater fulfillment
costs. In Chapters 1 and 2, we develop algorithms to build assortments of products
that minimize order split subject to capacity constraints. Acyclic delivery networks
are studied in Chapter 1 and we extend these results to cyclic delivery networks in
Chapter 2.

E-hailing platforms

E-hailing platforms cover multiple customer segments by offering different products
such as X, Pool, Select, etc. for Uber; Lyft, Shared, Lux, etc. for Lyft; and Taxi,
Express, Premier, etc. for DiDi. At a high level, these products can be partitioned
between classic private rides and shared rides. Classic is a service that provides
on demand transportation by dispatching drivers to passengers when a request is
made. Shared is a service that matches riders travelling in the same direction with
an available shared car. Classic is typically more expensive and Shared is often slower
as sharing a vehicle may induce additional travel time. To keep Shared travel time
reasonable, e-hailing companies set a detour constraint to place an upper bound on
how much detour a rider can experience.

When two riders travelling in the same direction are matched, some supply cost is
saved as a single car can serve both requests. The likelihood of such event increases
with the demand density. Although a Shared request creates less revenue as the
service is sold at a discount, a high density of demand coupled with an efficient
matching algorithm, can result in a profitable market for the product. There is an
economy of scale. To increase demand density, an e-hailing company can either offer
greater discount thus decreasing the revenue per Shared riders or tighten the detour
constraint, further constraining the matching algorithm and limiting the amount of
feasible matches.
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These two types of products are not offered together in every region where the e-
hailing platform operates. Although offering Shared captures demand from other
transportation solutions, it can also cannibalize demand from Classic. In Chapter
3, we study where and when it is profitable for an e-hailing company to offer both
products.
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Part I

E-retail Platforms
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Chapter 1

Data-Driven Inventory Placement
for E-Tailer

In the US alone, e-commerce sales have grown each year by over 13% for the past
8 years and now account for more than 9% of the total retail sales ([9]). A survey
([29]) shows that 63% of customers see delivery speed as an important feature when
choosing a product and 27% will pay attention to the same day delivery option when
choosing an e-retailer. Shipping faster at a reduced or no premium is a competitive
advantage in capturing a greater share of the growing e-commerce market. E-retailers
are thus looking at cutting their delivery time in order to be more attractive to
customers. Our business partner, JD.com, relies on a two-level delivery network.
Regional distribution centers (RDCs) are large warehouses holding every SKU vended
online. Forward distribution centers (FDCs) are closer to customers distance-wise
to provide fast shipping services. These warehouses are smaller than the RDCs.
They have constrained inventory and rely on daily shipments for replenishment.
Because of the fast increasing number of SKUs JD.com sells on its website, the
company needs to restrict the number of SKUs stored at each FDCs. This business
constraint comes from the organization of JD.com’s delivery network. An RDC
groups several storage facilities receiving replenishment directly from suppliers. They
can accommodate the sorting of all JD.com products. An FDC is a smaller single
storage facility that relies on daily replenishment from only one RDC. To achieve
this dynamic replenishment, the company needs high quality forecasting and fast
sorting and storing at the FDC level. Moreover, given the pace at which the number
of products grows and the packaging changes, it is near to impossible to keep track
of every single SKU volume or weight, making the traditional capacity constraint
unrealistic. JD.com thus periodically builds whitelists of SKUs to store and replenish
in an FDC. Because of these constraints, it is vital for e-retailers to identify a subset
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of SKUs to be kept at the FDC level, whose cardinality verifies the above constraints.
JD.com covers over 99% of the Chinese population over enormous distances.

When covering such a large area, e-retailer structure their delivery network meticu-
lously. A very connected network has high in stock rate but also high shipping cost
per package due to the low utilisation of some routes. On the contrary, a less con-
nected network has low in stock rate and low shipping cost thanks to fully utilized
routes. To simplify the replenishment decisions and optimize its operating costs,
JD.com selected the latter, structuring its delivery network as a tree (see figure 1.1).
It is known in the company that more complex structures would enable risk pooling
and more effective deliveries, these structures are also being studied and the results
are shared in Chapter 2. In JD.com’s network, each customer area is handled by a
single FDC which relies on one RDC for replenishment. When products are missing
from an FDC, they can be shipped directly from the RDC to the customers. In this
setting, the assortment of each FDC can be studied independently. The rest of the
Chapter will focus on a single RDC-FDC pair, by replicating the method for each
FDC, the optimal assortment for each node in the tree is found.

Delivery speed is a key feature when a customer chooses an e-retailer, thus one
of the main strategies of JD.com is the so called 211 program. Under this program,
JD.com promises same day delivery for orders placed before 11 a.m. and next day
delivery before 3 p.m. for orders placed between 11 a.m. and 11 p.m. Because of the
structure of JD.com’s delivery network, an order can benefit from the 211 program
only if every items purchased are located in the closer FDC. If a single item is missing
from the FDC, the order won’t meet the service level of 211 program. When this
happens, the order is either routed to the parent RDC or split in multiple packages.
In both cases, the delivery speed of the whole order is delayed and considered a miss
in JD.com’s operational metrics. In order to optimize the delivery speed metrics,
a reasonable proxy is to assume that if a single item is missing from the FDC, the
entire order is routed to the RDC.

Although the traditional constraint used for managing assortment is volume,
limiting the number of SKUs is a practical choice adopted by JD.com, as packaging
of SKUs changes frequently, making it difficult to keep track of the volume and
weight. The FDC of JD.com have operation constraints on the maximum number of
distinct SKUs per storage shelf. This can help to improve the stowing and picking
efficiency in the warehouse based on current operation procedures. Furthermore, as
the assortment decision is also commonly aided by manual adjustments, a constraint
by distinct SKU number is much easier to operate than a similar constraint by
expected volume or total unit count. The frontline operator may not have sufficient
information on the expected units per SKU in the storage. The simpler SKU count
constraint provides them with a much more straightforward process to work with.
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Figure 1.1: Simple RDC FDC network

A significant portion of orders placed on the online marketplace are composed of
more than a single product. The subset of SKUs placed at FDC should maximize
the number of orders that can benefit from fast shipping, i.e., that can be shipped
from the closest FDC. Such orders are said to be locally fulfilled. In this setting, two
distinct orders may share one or several products. The number of SKUs needed to
fulfill both orders is smaller than the sum of their length. Consequently, unlike items
of a knapsack problem, an order cannot be associated with an occupied volume in
the warehouse.

As explained above, the delivery network of JD.com has lower in stock rate than
a more connected network. It is thus primordial to optimize the selection of product
in each DC. In this paper, we study the setting where an e-retailer needs to decide at
the beginning of each cycle what subset of products to place in the FDC to maximize
the number of orders that can be shipped from the FDC during the upcoming period.
Because this problem does not have to be solved online, it is increasingly interesting
to trade some of the computational efficiency of the industry standard algorithms for
better performance. To achieve the trade-off, we propose a novel graph-based data-
driven algorithm to output near-optimal solutions. We first relax the problem to a
selection problem and show the equivalence between it and a minimum parametric cut
problem that can be solved efficiently. To incorporate the stochasticity of demands,
we introduce item-level demand forecasts into the problem and show how they can
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be used in place of order level demand forecasts, which are nearly intractable given
the combinatorial nature of possible order types.

1.1 Literature review

The problem of selecting subsets of products arises owing to two main objectives:
maximizing the revenue under a capacity constraint and minimizing the order split
given constrained containers or shelves. The first problem, also known as the assort-
ment problem, has widely been studied for brick-and-mortar shops. The problem
faced by e-retailers is determining how products may together constitute items sets
of high values to optimize SKU assortment. Identifying item sets of high values is
commonly tackled with association rules. [26] developed an efficient algorithm to
mine association rules from large relational databases. An example of such a rule
could be “30% of the transactions that contain beers also contain diapers.” The al-
gorithm starts with the generation of frequent item sets using an algorithm based
on the Apriori algorithm; then it generates candidate rules to finally filter out the
most relevant ones. The algorithm runs linearly with the number of entries in the
database. [5] used data mining to identify frequently purchased item sets and then
improved the assortment decision by solving an MIP that included this additional
information. Each item set is associated with a positive weight in the objective such
that selecting every item it is composed of increases the objective value. This algo-
rithm has several orders of magnitude less variables than if every possible set were
used. Solving this relaxed problem thus only provides a lower bound for the optimal
decision. Other studies have focused on how to identify the relationship between
products to build a better assortment. We point the reader to a survey of this topic
[13].Association rules are more commonly used for maximizing revenue rather than
for maximizing local fulfillment.

Machine learning techniques have been proposed to embed all products in a vector
space such that the distance between two products becomes a proxy for how often
they are ordered together. Assuming such an embedding is found, running clustering
algorithms on the embedded vectors provides reasonable solutions for minimizing
the order split. Google developed the famous word2vec architecture [8] that uses
sentences as contexts to map words to a latent space. This algorithm can easily
be extended such that orders are used as contexts to then map products to a latent
space. Further architectures of neural networks have been explored by [30] to preserve
the initial structure of the data to several levels. Most of the work mentioned before
tends to keep the distance between two product vectors small if the products are
often ordered together. Using the distance in the vector space as a proxy of how
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often products are purchased together relies on the assumption that the last metric
verifies the triangular inequality. Two products that are often ordered with a third
one will lie in close range of each other no matter how often they are ordered together.
A simple example is the case where two products A and A′ that are substitutes of each
other from the same category of products are frequently ordered with a third product
B. In such a setting, the above algorithms will likely group the three products in the
same cluster, though it is not trivial that they should be stored in the same place.

Several studies have tackled the organization of the warehouses to minimize ship-
ping time. [20] reviewed different methods of organizing a warehouse to reduce the
time needed to assemble an order. Among the techniques used, SKU grouping is rel-
evant to our work. [21] designed a model that partitions the products into k subsets
such that the minimum number of groups have to be accessed when retrieving a given
order under a pick-by-order policy. However, the algorithm developed in this paper
does not consider the stochasticity of demands and tries to solve the problem using
ejection chain algorithms. We note that the problem we are studying here is much
simpler as it needs only one subset that does overlap with the global set. However,
the datasets considered in this Chapter are much larger and uncertainty cannot be
ignored.

Our work uses parametric s-t cut minimization to output assortments in order
to maximize the number of orders that can be fulfilled locally from FDC in the
upcoming cycle. [3] shows that a selection problem can be solved faster by solving
a minimum s-t cut on a bipartite graph than by solving a Linear Program (LP).
[12] shows that the parametric minimum s-t cut is solved efficiently under some
assumptions on the parametric capacity of the graph’s arcs. Building on these two
papers, [15] proposes an algorithm to decide what facility to open given a budget
constraint. By solving a minimum parametric s-t cut problem, the paper computes
an efficient frontier providing an upper bound on the performance of the optimal
solution. [31] uses a similar algorithm to select a product assortment to maximize
the revenue coverage. Both papers assume full knowledge of all variable. We solve a
significantly different problem where the metric to maximize is the delivery speed of
orders with an SKU count constraint. Furthermore, because e-retailers experience
rapidly shifting demand, it is important to provide an algorithm that optimizes for
the delivery speed of future orders. Therefore, our work focuses on solving a non-
deterministic problem and cannot assume full knowledge of all variables. In this
Chapter, simplifying assumptions are made to use parametric s-t cut minimization.
Used jointly with ensemble methods and other heuristics, we provide insight and
algorithms to robustly handle changing demand. Parametric cut minimization has
also been used in many different fields such as image segmentation ([16], [18], [14]),
but has not been very much used for supply chain problems or assortment problems.
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There is to our knowledge no paper using this technique in a non-deterministic setting
for solving a product assortment problem.

In summary, this Chapter proposes a novel algorithm to decide what products to
place in the FDC given the large transaction databases of e-commerce companies.
We first show how the deterministic problem can be solved as a parametric cut in
section 1.3. We then present, in section 1.4, two algorithms extending the previous
methods to non-deterministic setting assuming demand is stationary and we show
how to use product level forecast. Finally, We provide the reader with preliminary
analysis and information about the data used to generate results before comparing
our work to the benchmark methods in Section 1.5.

1.2 Problem definition

E-retailers provide customers with an online catalog containing a large number of
products. The DCs where these products are kept, however, are constrained by
the number of SKUs they can hold. Unlike for brick-and-mortar stores, customers
decisions on an e-commerce website are rarely influenced by stock-outs, as every
product remain visible online. In this section we present a method for leveraging
these observations to maximize, for a single RDC-FDC pair, the number of orders
that can be fulfilled from the FDC under a capacity constraint.

Definitions and notation

Consider a pair of warehouses with one RDC and one FDC. The RDC holds every
stock-keeping unit (SKU) and can fulfill any order. The FDC is dedicated to a
single customer area. The number of SKUs that can be stored at the FDC level
is constrained as explained above by capacity and daily replenishment. When an
order is placed, either all products purchased are located in the FDC, or the order
is routed to the RDC. The goal is to maximize the number of orders that will be
fulfilled from the FDC in the upcoming period. Let I be the set of products stored
in the RDC. For i ∈ I, the random variable Gi models the demand for product i
with mean µGi . Gi is the product level demand for product i. We define the random
vector GI = {Gi}i∈I as a vector of product level demands with a mean µGI

.
Let O be the set of unique order types: the set of product combinations. For

o ∈ O, o is a combination of products, and o ⊂ I. The demand for order type o is
a random variable Do with a mean µDo . Do is called the order level demand. We
define the random vector DO = {Do}o∈O as the vector of order level demands with
a mean µDO

.
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Let k be the maximum number of SKUs that can be placed in the FDC. S ⊂ I is
a feasible assortment if |S | ≤ k. We define fµDO such that fµDO (S ) is the expected
number of orders that can be fulfilled with S , given a random vector of demands
DO, with mean µDO

.

Mathematical formulation

For each product i ∈ I, we associate a binary decision variable Xi that models
whether or not product i is selected in the assortment. We let Xi be 1 if product i
is selected and 0 otherwise. As the goal is to maximize the number of orders that
can be fulfilled, for each order o ∈ O, we associate a binary decision variable Yo that
characterizes whether or not order o can be fulfilled from the FDC using assortment
S . The FDC cannot fulfill order o ∈ O using assortment S if any product i ∈ I,
purchased in order o is missing from the assortment. Therefore, Yo needs to verify
the constraint Yo ≤ Xi, ∀o ∈ O, i ∈ I, i ∈ o. We can formulate the problem as an
MIP:

max
X,Y

E
[∑
o∈O

DoYo

]
=
∑
o∈O

µDoYo (MIP)

s.t.
∑
i∈I

Xi ≤ k (1)

Yo ≤ Xi ∀o ∈ O, i ∈ I, if i ∈ o (2)

Xi ∈ B, Yo ∈ B

The objective is to maximize the expected number of orders that can be fulfilled from
the FDC, subject to (1) no more than k unique SKUs can be placed in the FDC
and (2) if any product is missing from the FDC inventory then the order cannot be
locally fulfilled. The k-densest subgraph problem reduces to a specific instance of
(MIP). Therefore, the FDC inventory placement problem is NP-hard (see appendix
A.1).

1.3 Solution to the problem given known

demands

In this section, we assume that the mean demand for each order type o ∈ O is given
as µDo . As we have shown above (1.2) that the FDC inventory placement is NP-
hard, we first derive the Lagrangian relaxation of the problem in subsection (1.3)
and we show that this problem reduces to a selection problem that is equivalent to
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a minimum s-t cut problem on a bipartite graph in subsection (1.3). In subsection
(1.3), we show that every integer solution to the Lagrangian relaxation for any value
of the Lagrangian parameter λ can be found with a complexity no greater than the
complexity of solving for a single minimum s-t cut in the bipartite graph. Finally, in
subsection (1.3), we define a product score for each SKU that will be used for solving
the non-deterministic problem.

Lagrangian relaxation

As we showed in subsection (1.2) that the problem (MIP) is NP-hard, we first con-
sider solving the Lagrangian relaxation of the original formulation. We define λ as
the Lagrangian multiplier, the Lagrangian relaxation of the problem is given by

max
∑
o∈O

µDoYo − λ
∑
i∈I

Xi (LR)

Yo ≤ Xi ∀o ∈ O, i ∈ I, if i ∈ o (1)

Xi ∈ B, Yo ∈ B

(LR) is a problem that can be solved efficiently. For a fixed λ, (LR) is a selection
problem where each order is a set with benefit µDo and each product is an item with
cost λ. The constraint matrix of this problem has exactly one coefficient being +1
and one coefficient being −1 for each row. The constraint matrix is thus totally
unimodular, and there exists an optimal linear programming solution that is an
integer solution. [3] showed that this problem can be solved faster by solving a
minimum s-t cut problem in a graph than by solving the linear program.

Solving a selection problem as a minimum s-t cut

In the following paragraph, we construct a bipartite graph on which solving for a
minimum s-t cut is equivalent to solving LR. This graph has on the left-hand side
a set of nodes VI such that for each SKU i ∈ I, a corresponding node vi lies in VI .
On the right-hand side, it has a set of nodes VO such that for each unique order type
o ∈ O, a corresponding node vo lies in VO. We define G = (V = {s}∪VI∪VO∪{t}, A)
as a bipartite graph with V being the set of nodes and A the set of arcs. For each
order type o ∈ O and each product i ∈ I, if i is placed in o, i.e., i ∈ o, an arc of
capacity infinity links the corresponding SKU node vi to the corresponding order
node vo, i.e., (vi, vo) ∈ A. In addition, there exists a source node s and a sink node
t for the graph, and for each SKU i ∈ I, we add an arc (s, vi) of capacity us, vi = λ
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Figure 1.2: Example of a graph corresponding to a set of orders

to A. Furthermore, for each order type o ∈ O, we add an arc (vo, t) of capacity
uvo, t = µDo to A. Figure 1.2 provides an example of such a bipartite graph.

An s-t cut in this graph is a partition of the node set {s} ∪ VI ∪ VO ∪ {t} to two
subsets S and its complement S̄ = V \ S such that s ∈ S, t ∈ S̄ and S ∩ S̄ = ∅. We
define the capacity of the cut C(S, S̄) as the sum of the capacities of every arc linking
a node in S to a node in S̄, i.e., C(S, S̄) =

∑
v∈S,v′∈S̄ uv,v′ . For a given Lagrangian

parameter λ, let Gλ be the bipartite graph build as instructed above. Solving for
the minimal source set minimum s-t cut, we find a minimum cut (S∗λ, S̄

∗
λ), where

S∗λ = arg minS{|S| : (S, S̄) is a minimum cut in Gλ}. Given (S∗λ, S̄
∗
λ), setting Xi

(resp. Yo) to 1 for all products i ∈ I (resp. order type o ∈ O) such that vi ∈ S̄∗λ
(resp. vo ∈ S̄∗λ) and 0 otherwise is optimal for (LR).

Let us prove the above statement. We first show that solving for a minimum s-t
cut is a feasible solution for (LR). Note that because S = {s} is a feasible s-t cut
with C(S, S̄) = λ × |I|, any minimum s-t cut is finite. Consequently, no arcs of
infinite capacity can lie in a minimum s-t cut, i.e., if two nodes v and v′ are linked
by an arc (v, v′) of infinite capacity, v ∈ S∗λ =⇒ v′ ∈ S∗λ. For each product i ∈ I
and for each order type o ∈ O in which product i is placed, an arc (vi, vo) of capacity
infinity is added to the graph. Therefore, vo can lie in S̄∗λ only if for all products
i ∈ I placed in o, vi lies in S̄∗λ. This indicates that setting Xi (resp. Yo) to 1 for all
products i ∈ I (resp. order type o ∈ O) such that vi ∈ S̄∗λ (resp. vo ∈ S̄∗λ) and 0
otherwise is feasible for (LR).

Let us show it is optimal for (LR) by deriving the capacity of the minimum s-t
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cut:

C(S∗λ, S̄
∗
λ) = min

S

∑
vi∈VI∩S̄

λ+
∑

vo∈VO∩S

µDo +
∑

vi∈VI∩S,vo∈VO∩S̄

∞1i∈o

= max
S

∑
vo∈VO∩S̄

µDo −
∑

vi∈VI∩S̄

λ+
(∑
o∈O

µDo

)
Note that

∑
o∈O µDo is a constant. Therefore, setting Xi (resp. Yo) to 1 for all

products i ∈ I (resp. order type o ∈ O) such that vi ∈ S̄∗λ (resp. vo ∈ S̄∗λ) and 0
otherwise gives ∑

o∈O

µDoYo −
∑
i∈I

λXi = max
S

∑
vo∈VO∩S̄

µDo −
∑

vi∈VI∩S̄

λ

Therefore, solving for the minimum s-t cut solves (LR). For a given Lagrangian
parameter λ and S̄∗λ the sink set of the minimum s-t cut in the bipartite graph
constructed as instructed above, Sλ = {i ∈ I|vi ∈ S̄∗λ} is the optimal set of products
for this selection problem with fixed λ. Let k′ = |Sλ|. Then if the capacity of the
FDC is k′, Sλ is the optimal solution to the inventory placement problem (MIP).

Solving for all ranges of λ by solving for the parametric
minimum s-t cut

In this subsection we will show that we can solve (LR) for any range of Lagrangian
parameter λ efficiently. This will provide a list of nested assortments of products
that are optimal for specific capacity constraints. This has high value for a company
as it provides an upper bound for the optimal value for any capacity constraint and
an optimal solution for some capacity constraints. The company can then decide to
adapt the capacity of the FDC accordingly.

Let T (n,m) be the time complexity for solving a minimum s-t cut on a graph
with n nodes and m arcs. For example, the pseudoflow algorithm used in this paper
achieves T (n,m) = O(mn log(n

2

m
))([17]). [12] showed that the solving the minimum

s-t cut problem in a graph where the arc leaving the source nodes have a capacity
increasing with some parameter λ can be done simultaneously for any range of λ in
the same complexity as a single minimum s-t cut problem. Solving for the minimum
s-t cut on such a graph for a range of λ is called solving for the minimum parametric
s-t cut. For a fixed Lagrangian parameter λ, solving for the minimum s-t cut is
equivalent to solving (LR). Therefore, solving the minimum parametric cut problem
is equivalent to solving (LR) for any range on λ ≥ 0 and thus (LR) is solvable in
O(T (n,m)).



CHAPTER 1. DATA-DRIVEN INVENTORY PLACEMENT FOR E-TAILER 12

[17] proved that source sets of the parametric cut verify the nestedness property :
for λ2 ≤ λ1, S∗λ2

⊆ S∗λ1
. We showed in subsection (1.3) that for a given λ, the

optimal assortment is the set of products whose product nodes lie in S̄∗λ. Therefore,
if λ1 ≥ λ2, Sλ1 ⊆ Sλ2 . When λ decreases, this algorithm outputs nested optimal
assortments of products for increasing capacities.

We will now show that the capacity of the minimum parametric s-t cut is a piece-
wise linear function of λ. We thus call values of λ that correspond to a breakpoint
of the capacity of the minimum parametric s-t cut breakpoints. Note that, given
a feasible source set S, λ 7→ λ|VI ∩ S̄| +

∑
vo∈VO∩S

µDo is a linear function of λ. Let

g(λ) = λ|VI ∩ S̄∗λ|+
∑

vo∈VO∩S∗λ
µDo it follows from the definition that g is the minimum

of a set of linear functions of λ; it is thus a piecewise linear concave function. Fur-
thermore, as for any feasible source set S, |VI ∩ S| ≥ 0, it is also a non-decreasing
function. We can conclude that the capacity of the parametric minimum s-t cut is a
piecewise linear non decreasing function of lambda.

λ is said to be a breakpoint if for any ε > 0, S∗λ−ε ⊂ S∗λ, that is, when the slope
of g changes. For λ2 ≤ λ1, because of the nestedness property, we have S∗λ2

⊆ S∗λ1
.

Therefore, we cannot find more than |I| distinct nested optimal source sets. This
indicates that at most |I| − 1 breakpoints can be found.

Figure 1.3: Nested cuts obtained by solving the parametric cut for Figure 1.2

Solving the minimum parametric cut problem outputs a set of q ≤ |I| nested sets
such that λ1 > λ2 > · · · > λq are the breakpoints and S̄∗λ1

⊂ S̄∗λ2
⊂ · · · ⊂ S̄∗λq are the

corresponding sink sets of the minimum s-t cut. Figure 1.3 shows nested minimum
s-t cuts for increasing values of λ.
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This indicates that solving the parametric minimum s-t cut outputs nested sets
of products Sλ1 ⊂ Sλ2 ⊂ · · · ⊂ Sλq for the decreasing Lagrangian parameter
λ1 > λ2 > · · · > λq such that the selection is optimal for the relaxation of the FDC
inventory placement problem (LR). Furthermore, by letting ki = |Sλi |, we have q
optimal assortments respectively for the q capacities k1, k2, . . . , kq.

Solving the minimum parametric s-t cut does not solve all instances of (MIP).
A counter example is O = {(a), (b, c), (a, b)} such that D(a) = 3, D(d,e) = 4, and
D(a,b,c) = 5 with a probability of 1. We can easily that the optimal solutions to (MIP)
and their objective value for unit increasing capacity are {S = (a), fµDO (S ) =
3}, {S = (d, e), fµDO (S ) = 4}, {S = (a, b, c), fµDO (S ) = 8}, and {S =
(a, b, c, d, e), fµDO (S ) = 12}. In such an instance, solving the parametric cut out-
puts the nested sets (a), (a, b, c), (a, b, c, d, e) and their corresponding breakpoints.
Note that, if solving the minimum parametric s-t cut problem provided a solution
for any instance of (MIP), it would contradict the assumption P 6= NP , as (MIP)
is NP-hard, and the parametric minimum s-t cut problem is polynomial.

Product score

We have shown in the previous subsection (1.3) that solving the relaxation (LR) of
the original problem outputs solutions optimal for the original problem for specific
capacities. E-retailers sometimes set constraints on the marginal benefits of adding
an SKU to the assortment rather than on the size of the assortment. In this section,
we introduce the concept of a product score. This product score will later be used in
sampling and aggregating to refine the solutions obtained from solving the relaxation.

Let us define for each product i ∈ I a product score ri that corresponds to the
maximum value of the Lagrangian parameter such that product i is included in the
FDC assortment, i.e., λ is such that ri = max{λ ∈ {λ1, . . . , λq}|i ∈ Sλ}. To obtain a
solution to the FDC inventory placement problem, we select products in decreasing
order of product scores.

Note that the definition of breakpoints places an upper bound on the marginal
benefit of adding an additional product to the FDC. We have proven that the ca-
pacity of the minimum parametric s-t cut is a piecewise linear concave function. It
follows that at each breakpoints, at least two s-t cut have equal capacities. Given
two consecutive breakpoints λl−1 and λl (recall that λl−1 > λl), by definition the
corresponding minimum s-t cut (S∗λl , S̄

∗
λl

) is optimal for λ = λl but not for λl + ε
for any ε > 0. Recall that λl < λl − 1, it follows that the two solution have equal
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capacity when the parameter λ is set to λl.∑
vi∈VI∩S̄∗λl

λl +
∑

vo∈VO∩S∗λl

µDo =
∑

vi∈VI∩S̄∗λl−1

λl +
∑

vo∈VO∩S∗λl−1

µDo

|Sλl |λl +
∑

vo∈VO∩S∗λl

µDo = |Sλl−1
|λl +

∑
vo∈VO∩S∗λl−1

µDo

λl =

∑
vo∈VO∩(S∗λl−1

\S∗λl )
µDo

|Sλl \Sλl−1
|

=
#additional fulfillable orders when going from Sλl−1

to Sλl

#product added when going from Sλl−1
to Sλl

This result follows from Sλl−1
⊂ Sλl and S∗λl ⊂ S∗λl−1

proven in part (1.3).
Sλl−1

remains optimal for λ ∈ [λl, λl−1], for λ ≤ λl, Sl is optimal. For any
s ⊂ Sλl \Sλl−1

, Sλl−1
∪ s is suboptimal or not maximal for the selection problem

with λ ∈ [λl+1, λl]. Therefore, the marginal increase of adding s to Sλl−1
, defined as

fµDO
(Sλl−1

∪s)−fµDO (Sλl−1
)

|s| = #addition fulfillable orders
#additional products

, is no greater than λl. The products

lying in Sλl and not in Sλl−1
are called the lth layer of products added to the FDC

inventory.
This indicates that every product lying in the lth layer has a product score of

λl. Consequently, each product in a layer has a product score equal to the marginal
benefit of its layer. Furthermore, any subset of the lth layer of products yields a
marginal benefit as a set smaller than or equal to λl.

Note that the product score, i.e., λl = #addition fulfillable orders
#additional products

, of every item lying in

the lth layer, i.e., i ∈ Sλl \Sλl−1
, corresponds to the average number of orders each

of these products add to the set of locally fulfillable order types. For a business that
selects breakpoint solutions, this score can be interpreted as the marginal benefit
of adding a product to the DC, provided that every product with greater score
have been already assigned. For industry use, it may be interesting to know the
product score of an SKU with respect to a given assignment. This can easily be
done by modifying the graph on which the parametric minimum cut is solved. For
each SKU already assigned, remove the arc between the source and the SKU node.
Removing the arc ensures the product node always fall in the sink set and thus is
always selected in the assortment. Solving the parametric cut and computing the
product score will return the marginal benefit of each product with respect to the
given starting assignment. This product score provides managerial implication on
evaluating the benefit of an additional product which can be compared to the cost
of sorting and storing an additional product.
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1.4 Solution approach to the non-deterministic

problem

In the following section, we present three algorithms to solve the problem under
specific assumptions. These algorithms heavily rely on the approach we chose for
solving the deterministic FDC inventory placement problem (see section 1.3). Given
T time steps, for t ∈ {1, . . . ,T }, Dt

o and Gt
i are the random variables respectively

modeling the order level and the SKU level demand. For a given decision cycle τ ,
the realization dto and gti of these random variables for t ∈ {1, . . . , τ − 1} can be
used to decide what assortment S to select for the upcoming cycle. In the first
subsection (1.4), we assume the order level demands are stationarily distributed
random variables. As it is difficult to estimate order level demands, we compute
a very sparse Monte Carlo estimate assuming that every unobserved order type is
removed for the set of order types O. In the second subsection (1.4), we use random
sampling and aggregating to increase the stability of the solution. Finally, in the
last subsection (1.4), the stationary order demands assumption is relaxed. Using an
oracle for SKU level demands, SKU costs are derived to compute better assortments.

Product placement under stationary order level demands

Assuming that the order demands are stationary, for a given order type o ∈ O,
for t ∈ {1, . . . ,T }, µDto = µDo is a static quantity. For each decision cycle, the
sales observation is a random sample of the demand with respect to the stationary
distribution. We can thus obtain a Monte Carlo estimate µ̄Dto of µDto by simply
averaging the number of times order type o ∈ O is placed during the last decision
cycles. This assumption is restrictive, however, as it greatly reduces the complexity.
The number of possible order types grows exponentially with the number of products
considered. However, most of the possible order types are never observed in the
transactions data. Therefore, with the above assumption, each order type o ∈ O
that is not observed in the training set by setting µ̄Dto = 0 can be ignored.

Let cycle τ be the upcoming cycle. Replacing µDτo by the estimate µ̄Dτo in (LR)
gives the following mathematical formulation:

max
∑
o∈O

µ̄DτoYo − λ
∑
i∈I

Xi (SLR)

Yo ≤ Xi ∀o ∈ O, i ∈ I, if i ∈ o
Xi ∈ B, Yo ∈ B
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For the selection problem (see section 1.3), setting µ̄Dτo = 0 is equivalent to removing
o from O, as the value of Yo is not significant. This reduces the number of nodes
in the corresponding bipartite graph on which minimum parametric cut is solved,
thus reducing the time complexity (see 1.3). Empirically, with this assumption, the
number of order types, is only one order of magnitude larger than the number of
products.

Algorithm 1: Stationary PC

Data: Training set of several cycles of transaction data
Capacity k
Result: Assortment of products to maximize future order fulfillment from

the FDC
Step 1: Ignore every order types not observed in the training set
Step 2: Compute the Monte Carlo estimate µ̄Dτo for every order type in the
training set

Step 3: Solve (SLR) by solving for minimum parametric s-t cut on the graph
as detailed in section (1.3) with Pseudo-Flow algorithm [14]

Step 4: Find the assortment for each breakpoint
Step 5: Select the assortment Sλl corresponding the the breakpoint λl such
that the capacity kl of the assortment is the closest to the capacity
constraint k of the original problem (MIP)

return Sλl

Solving the minimum s-t parametric cut using µ̄Do in place of µDo outputs nested
assortments along with product scores that can be used to decide what subset of
SKU to keep in the FDC. We will refer to this algorithm as Stationary PC.

Though there is no guarantee that a breakpoint will be found in a range of
the Lagrangian parameter λ, algorithm Stationary PC yields many breakpoints and
rather small layers. We removed the 5% SKUs with highest product score and the
40% SKUs with smallest product score as they respectively always fall in or out
of the assortment. To be most conservative, we remove these easy to assort SKUs
and empirically measure the size of the layers as a percentage of the 55% remaining
SKUs. We observe that most layers contains less than 0.1% of the SKU of interest
(see Figure 1.4).

Bootstrapping and aggregating results

In the previous section, we explained how to compute a Monte Carlo estimate µ̄Do
of µDo for o ∈ O using the training transaction data set and use these in place of
µDo to solve the problem. This algorithm yields very unstable assortment prediction.
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Figure 1.4: Empirical CDF of layer sizes measured as percentage of the number SKUs
of interest

Instability in a prediction problem occurs when a small perturbation of the training
set causes significant changes in the prediction. Figure 1.5 provides an example of
two training sets that differ from each other by a single unit of order level demand
moved from one order type (e, f) to (b, c). Solving for each training set outputs two
predicted assortment with empty intersection.

[4] proposes an ensemble algorithm that can greatly reduce instability and im-
prove accuracy. The Bagging predictor described in this paper is a method for
generating multiple versions of a predictor and using these to build an aggregated
predictor. The idea is to build multiple learning sets by making bootstrap repli-
cates of the training set. Recall that a bootstrap sample is a uniform sample with
replacement. A predictor is trained on each learning set and the aggregation aver-
ages the numerical outcome of each predictor. This idea can easily be extended to
our setting. In our work, we create learning transaction sets by making bootstrap
replicates of the training transaction set. By solving for the minimum parametric
s-t cut using algorithm Stationary PC for each replicate of training data, we get a
numerical product score for each product in I. The aggregation averages the scores
of each product i ∈ I provided by each result of algorithm Stationary PC over a
replicate.

The training transaction data set contains all the transactions of the most re-
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SKU Set
(a, b, c, d, e, f)

Training order set

Order 
type

#obs in 
training

(a) 7

(a, b) 5

(d) 7

(d, e) 5

(b, c) 9
(e, f) 10

SKU Set
(a, b, c, d, e, f)

Training order set

Order 
type

#obs in 
training

(a) 7

(a, b) 5

(d) 7

(d, e) 5

(b, c) 10
(e, f) 9

Assortment for k=3
(d, e, f)

Assortment for k=3
(a, b, c)

Figure 1.5: Example of two very similar transaction sets leading to significantly
different assortments

cent cycles. We sample N batches of b orders selected uniformly at random with
replacement from the transaction data. b is set to the average number of orders
placed during a cycle. For each batch, solving the minimum parametric cut outputs
a vector of product scores. Missing products receive a score 0. The aggregated score
of product i ∈ I over batches is r̂i = 1

N

∑N
j=1 r

j
i where rji is the product score output

for i obtained by solving the minimum parametric cut on the graph corresponding
to the jth batch of transaction data. This is algorithm Bagging PC.
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Algorithm 2: Bagging PC

Data: training set of several cycles of transaction data
capacity constraint k
number of batches N
batch size b
Result: Assortment of products to maximize future order fulfillment from

the FDC
Step 1: for j ← 0 to N do

Create a bootstrap replicate of the training set by uniformly sampling b
orders out of the transaction dataset:

Sum up the observation to get the replicate dO such that
∑

o∈O do = b
Run algorithm 1 with dO as the estimate µ̄DO

; for i ∈ I do

Define rji = max{λ|i ∈ Sλ}

Step 2: Define r̂i = 1
N

∑N
j=1 r

j
i

Step 3: Define S as the set of k products of highest score r̂i
return S
Note that for the general problem with an expected demand vector µDO

, optimal
solutions for increasing capacity are not necessarily nested. Recall the example we
provided in section 1.3, where O = {(a), (d, e), (a, b, c)} such that µD(a)

= 3, µD(d,e)
=

4 and µD(a,b,c)
= 5. The optimal solutions to (MIP) and their objective value for

unit increasing capacity are {S = (a), fµDO (S ) = 3}, {S = (d, e), fµDO (S ) = 4},
{S = (a, b, c), fµDO (S ) = 8}, and {S = (a, b, c, d, e), fµDO (S ) = 12}. However,
Algorithm 2 outputs a ranking of the products; therefore, for two different capacity
constraints, it returns two nested assortments. Consequently, it does not solve (MIP)
in a non-deterministic setting. Running algorithm 2 on the above example outputs
{S = (a), fµDO (S ) = 3}, {S = (a, b), fµDO (S ) = 3}, {S = (a, b, c), fµDO (S ) =
8}, and {S = (a, b, c, d, e), fµDO (S ) = 12}. It is not the optimal solution for (MIP);
it however generalizes well if order level demands receive a small perturbation, and it
does not show a large optimality gap. As this algorithm reduces the instability, the
output assortment generalizes better, thus leading to a performance improvement.
In the section 1.5, we show that the experimental results are very promising.

Product placement under non stationary product level
demand

Assuming stationary demand is strong, given that most products have a life cycle,
for a given cycle τ ∈ {1, . . . ,T }, solving Algorithm Stationary PC or 2 using the
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estimate µ̄Dτ
O

computed with past demand realizations or using the demand real-
ization vector dτO of the upcoming cycle as demands estimate, we observe a gap in
term of objective values between the two solutions. This is attributed to product
level demand that can vary with seasonality and promotions. Figure 1.6 shows an
example of a demand pattern that is not addressed by the former algorithms. In this
example, the periodic cycle of high sales and low sales is nearly in phase with the
training/testing transaction sets. When testing on a high sales period (resp. on a
low sales period), the algorithm is trained on a low sales period (resp. on a high sales
period). Therefore, the SKU is selected by the algorithm for upcoming cycle of low
sales and left out of the assortment for upcoming cycles of high sales, which prevents
it from appearing in the FDC inventory when needed. Assuming an oracle, e.g.,
the forecasting team of the company, can provide expected demand at the product
level, by incorporating the knowledge of seasonality, cycles, etc., we need to relax
the stationary assumption and improve the inventory placement decision by taking
in such additional information.
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Figure 1.6: Example of a product having a periodic demand pattern

µGt
I

is defined as µGt
I

= {µGti}i∈I , the vector of product level demand. Assum-
ing that an oracle provides an estimate µ̄Gt

I
= {µ̄Gt

I
}i∈I of the mean product level

demand vector, the assumption of stationary demand is relaxed. We defined αt (see
section 1.2) as the sparse matrix that maps the spread of product level demands to
order level demands. Recall that for i ∈ I,

∑
o∈O α

t
i,o = 1 and µDto = αti,oµGti . A

natural assumption is to assume that product level demands is divided into order
level demands stationarily, i.e., α is stationary.
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This assumption is weaker than the stationary assumption because it allows prod-
uct level demands and order level demands distributions to change with respect to
time. We observe experimentally that even though demands can widely change from
one cycle to the next, sales for a given item i ∈ I are divided into sales of order
types in similar proportions. Therefore, assuming that α is stationary is a reason-
able assumption. Given an estimate of the product level demand vector µ̄Gt

I
, under

this assumption, an estimate of the order level demand vector µ̄Dt
O

can be computed.
Such an estimate would be nearly impossible to compute directly without this as-
sumption as the size of the vector would grow exponentially with the number of
products.

Given this assumption and the product level demand estimate vector µ̄Gτ
I

pro-
vided by the oracle for the cycle τ , the straightforward approach is to construct an
order level demands estimate µ̄Dτ

O
. We cannot simply set µ̄Dτo to αi,oµ̄Gτi for some

product i placed in order type o. For two products i, i′ ∈ I such that both i and
i′ are placed in order type o, i.e., i ∈ o and i′ ∈ o, there is indeed no guarantee
that αi,oµ̄Gτi = αi′,oµ̄Gτ

i′
. Therefore, assuming that α is stationary, our best guess

is to build an estimate ᾱτ−1 of the spread over the training set and an estimate ᾱτ

of the spread over the testing set that provides feasible order level demands while
minimizing ||ᾱτ−1 − ᾱτ ||F :

min
ᾱτ
||ᾱτ−1 − ᾱτ ||F (CP)

s.t.
∑
o∈O

ᾱτi,o = 1 ∀i ∈ I

ᾱτi,oµ̄Gτi = ᾱτi′,oµ̄Gτi′ ∀i, i′ ∈ I, ∀o ∈ O

Rather than solving (CP) for additional time complexity, we modify (LR) to incor-
porate new information. Assuming that α is stationary, for a given assortment, if a
product i ∈ I is expected to sell twice as much, then each order type o ∈ O fulfillable
locally that contain product i should yield approximately twice as many additional
fulfillable orders.

Intuitively, if the oracle predicts that a product is going to sell more, there should
be more incentive to place the product in the FDC. On the contrary, if the product
is predicted to sell less, there should be a penalty for placing this product in the
FDC. This can easily be achieved by assigning costs to the products in the selection
problem. For i ∈ I, gτ−1

i is the sales observation for i over the most recent cycle as
training transaction data, and µ̄Gτi the product level demand estimate for i provided
by the oracle for the upcoming cycle. We assign to product i a cost cτi . If sales have
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been recorded for SKU i in the training set, we set the cost to cτi =
gτ−1
i

µ̄Gτ
i

, otherwise

we let cτi = 1 and we set µ̄Dτ
(i)

= µ̄Gτi . We further assume that the order level demand

estimate vector can be constructed as in part 1.4 or 1.4. With this additional cost,
(LR) becomes:

max
∑
o∈O

µ̄DτoYo − λ
∑
i∈I

cτiXi (SLR2 )

Yo ≤ Xi ∀o ∈ O, i ∈ I, if i ∈ o
Xi ∈ B, Yo ∈ B

Solving the parametric minimum s-t cut problem associated with the above problem
is referred to as Algorithm PC with forecast.

Algorithm 3: PC with product level forecast

Data: training set of several cycles of transaction data
Capacity k
product level demands estimate µ̄Gτi
Result: Assortment of products to maximize future order fulfillment from

the FDC
Step 1: Ignore every order type not observed in the training set
Step 2: Compute the Monte Carlo estimate µ̄Dτo for every order type in the
training set

Step 3: for i ∈ I do
if gτ−1

i > 0 then

Compute costs cτi =
gτ−1
i

max(µ̄Gτ
i
,1)

else
set cτi = 1
set µ̄Dτ

(i)
= µ̄Gi for order type (i) ∈ O

Step 4: Solve (SLR2 ) by solving for minimum parametric s-t cut on the
graph as detailed in section (1.3) with the above modifications, find the
assortment for each breakpoint

Step 5: Select the assortment Sλl corresponding the breakpoint λl such that
the capacity kl of the assortment is the closest to the capacity constraint k
of the original problem (MIP)

return Sλl

Let us develop the intuition motivating the creation of this product cost. Let
Sλ1 ⊂ Sλ2 ⊂ · · · ⊂ Sλq be the set of nested solutions for (SLR2 ) with λ1 > λ2 >
· · · > λq being the corresponding breakpoints. Suppose there exists i ∈ I and l ∈
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{1, . . . , q} such that Sλl+1
\Sλl = {i}. Then we have λl+1 =

fµ̄Dτ
O

(Sλl
∪{i})−fµ̄Dτ

O
(Sλl

)

cτi
=

#additional orders fulfillable by adding i (w.r.t. µ̄Dτ
O

)

cτi
. λl+1 is equal to the additional number of

orders that can be fulfilled by adding i to Sλl given µ̄Dτ
O

(i.e., the marginal increase
in the number of locally fulfillable orders, assuming order level demand is stationary)
divided by the product cost cτi = gτ−1

i /µ̄Gτi . Let µ̃D
τ
o = µ̄Dτo × µGτi /g

τ−1
i , note that

the breakpoint value can be written: λl+1 = #additional orders fulfillable by addingiw.r.t. µ̃D
τ
o

1
.

Because of how we defined cτi , dividing the marginal increase in the number of locally
fulfillable orders of i by cτi re-scales it to how much we expect the marginal increase
to be under the assumption that α is stationary. If furthermore, solving (CP) first
and the (1.3) also places product i in a singleton layer, the cost cτi does re-scale the
marginal increase so that solving (SLR2 ) yields the same product score as solving
(CP) first and then solving the minimum parametric s-t cut with the estimates µ̄Do
obtained in place of µDo .

This result does not extend to |Sλl+1
\Sλl | ≥ 2. However, if the oracle provides

a close enough product level demand estimates of the real upcoming sales, we obtain
very good experimental results. In practice, adding this product cost breaks the
degeneracy of most minimum s-t cut solutions, thus yielding more breakpoints. We
showed in section 1.3 that there are at most |I| breakpoints. The more the break-
points, the more the layers that can be of cardinality 1, thus verifying the above
intuition. Furthermore, when more breakpoints are found, more nested assortments
are output, thus making it easier to find a breakpoint solution whose cardinality is
very close to the capacity constraint of (MIP). Many of the nested sets differ by
a single product. This algorithm empirically outperforms the former ones in our
experiments.

Heuristic for building an assortment between two
breakpoints

Although it is not guaranteed that many breakpoints are found, in practice we find
many granular layers. Solving the problem between two layers can be complex and
it loses the nestedness property. Therefore selecting a breakpoint assignment and
completing the assignment by selecting the optimal selection of SKU from the layer
is not necessarily optimal. The algorithm however provides an upper bound on the
optimal solution for every SKU capacity. One can complete a breakpoint assignment
by solving the integer program or by using the industry standard algorithm. Consider
the case where the target number of SKUs in the assortment in k. Solving the
parametric minimum cut outputs 2 consecutive assortments S1 and S2 such that
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|S1| < k < |S2|. These assortments are associated with a product score r1 > r2. By
definition of a breakpoint solution and of the product score, we know that for any
λ ∈ [r2, r1], every assortment S verifies:

fµDO (S )− λ|S | ≤ fµDO (S1)− λ|S1|

This is thus also true for the optimal assortment of k products S ∗
k . It follows that

the absolute optimality gap is:

fµDO (S ∗
k )− fµDO (S1) ≤ r2 ∗ (k − |S1|)

Once an assortment of size k has been built by completing S1, the optimality gap
can only be smaller and can be computed.

1.5 Numerical Analysis

JD.com selected two typical RDCs to evaluate the impact of this new method. As
most information about these dataset must remain confidential, we will provide order
of magnitude when possible. For each pair of RDC/FDC, we selected for our experi-
ment 15 cycles such that we can use up to 5 cycles for training and the 10 remaining
cycles can all be used for evaluation purposes. Each cycle accounts for over 500
thousand SKUs and over 2 million unique order types. Some preliminary analyses
show that 72% of the orders are singleton orders. Figure 1.7 shows the distribution
of order size for RDC 1 with error bars of two times the standard deviation. These
estimates are computed using 15 cycles as samples. Because about 30% of the orders
are not singletons, it is extremely important for e-retailers to consider how products
are purchased together to optimize product placement in warehouses.

Because the demand is not always comparable from one cycle to another and as
we study FDCs with different capacities, an invariant metric is needed to compare
the results of the algorithms on different datasets. The main metric we consider is the
order fulfillment ratio, which is the fraction of all orders routed to the FDC and can
be fulfilled from the FDC locally. The objective is equivalent to selecting a placement
of products that maximizes the fulfillment ratio under capacity constraints.

As forecasting is a challenging problem, we use several oracles providing product
level demands estimates with different levels of error. The output estimate is the
demand realization of next cycle with added Gaussian noise. We want the predictor
to be centered on the demand realization and have a level of error proportional to the
demand realization. Consequently, we re-scale the noise by the demand realization.
As demands cannot be negative, we truncate the estimate. For i ∈ I and the
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Figure 1.7: Distribution of order size at RDC 1

upcoming cycle τ ∈ {1, . . . ,T }, the oracle with parameter σ outputs µ̄Gτi = (1+ε)+gτi
with ε ∼ N (0, σ2). For instance, the algorithm PC with noisy forecast 0.4 has
σ = 0.4 resulting in µ̄Gτi ∈ [0.5gτi , 1.5gτi ] with probability 79% and µ̄Gτi > 2gτi with
probability 0.6% Letting σ take different values results in oracles with different levels
of error with respect to the demand realization. Using this set of oracles, we can
compare the performances of our algorithms given forecasts with increasing average
errors. Using σ = 0 corresponds to using perfect knowledge of the product demands.
Using this, e-retailers can choose whether or not to use their own forecast data based
on how confident they are about the forecasting error.

We use two comparisons to assess the quality of our results. For the lower bound
on the performance, we use an industry standard algorithm that ranks the products
based on how often they sold (see Appendix A.2 for the algorithm and its theoretical
performance). For the upper bound on the performance, we call optimal the solution
of Stationary PC on the realized vector of demand. This is equivalent to solving the
minimum parametric cut a posteriori. We only benchmark against breakpoints of
the solution on the test data so that we compare them to an optimal decision for a
given FDC capacity.

We compare our results under different capacity settings to show the robustness
of our algorithms. In Figure 1.8, each curve is a piecewise linear function. We
benchmark the results of our algorithms to breakpoint solutions on the test set and
for better visualization, we connect the dots.

Figure 1.8 shows that about a 1% improvement over the industry standard algo-
rithm can be achieved using algorithm Bagging PC, while algorithm PC with forecast
can achieve values that are less than 2% away from the optimal assortment depend-
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ing on the quality of the forecast. This improvement for a company such as JD.com
accounts for a delayed order reduction of over 100 million annually.
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Figure 1.8: Comparison of fulfillment rates on different RDC/FDC pairs for different
algorithms

It appears from Figure 1.9 that the optimality gap of solutions obtained by the
proposed methods varies with respect to the warehouse. Though algorithm Bagging
PC has an optimality gap of around 8 - 10% depending on the capacity, the perfor-
mance of algorithm PC with forecast is quite impressive with an optimality gap that
is as low as 2% perfect product level demands and Monte Carlo order level demand
estimates. We note a clear improvement over the performance of the industry stan-
dard algorithm. However, there is still room for better placement optimizations if
no good product level forecast is available.

The experiments ran on an Intel(R) Core(TM) i7-8700K CPU @ 3.70GHz. For
RDC1 the training transaction dataset covers two cycles of operations: 3,833,283
orders out of which 927,596 are unique order types and 265,967 are unique SKUs.
On this real size dataset, our algorithm, runs in 4 to 6 minutes.

Sensitivity Analysis on order length distribution

The algorithms we presented above are designed for capturing the co-purchase be-
havior of products and reduce order split. Although less than 70% of JD.com orders
are singleton orders, the distribution of order length can vary a lot in the e-retail
industry. In this Subsection, we study the impact of order length distribution on
the performance of Stationary PC. From JD.com sales data set, it appears that the
order length follows an exponential distribution. Consequently, we analyze the per-
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Figure 1.9: Comparison of optimality gaps on an RDC-FDC pair for different algo-
rithms

formance improvement of Stationary PC over the industry standard for different
parameters of exponential distribution of order length.

To create synthetic data sets to experiment upon, we use importance sampling on
JD.com’s data to obtain realistic sales data with a different order length distribution.
Let g be the empirical distribution of order length on the sales data set, g(l) returns
the observed probability of an order to be of size l. Let f be the targeted distribution
of order length. Instead of sampling orders with probability proportional to their
demand, using importance sampling, an order o with demand do and length l is
sampled with probability proportional to do ∗ f(l)/g(l).

Letting the parameter of the exponential distribution vary from 0.2 to 1.2, 10
sampled data sets of 2 million orders are created for each parameter. On each
sampled data set, the size of the assortment is selected as a percentage of the total
number of SKUs needed to fulfill all the 2 million orders. Figure 1.10 shows the
performance of the algorithm for assortments ranging from 3% to 7% of the total
number of SKUs. As the number of long order increases, it is harder to fulfill many
orders with a small proportion of the SKUs. Note that this range of assortment
results in fulfillment ratio ranging from 27% to 43% for Exponential(0.2) and from
51% to 64% for Exponential(1.2).

This analysis provides insight on what business will benefit the most from our
algorithms. It shows e-retailers with a heavy distribution of singleton orders, like
JD.com, can get a few percentage points of performance from using our algorithm
and that the performance gain quickly increases when the distribution is flatter. This
algorithm should provide maximum performance gain for e-retailers offering a sub-
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Figure 1.10: Performance of Stationary PC for different distribution of order lengths

scribe and save service. Such a service offers discount to a customer ordering several
products together regularly. This results in stationary demand and a distribution
of order length less heavy on singleton orders. Such a service verifies the assump-
tions for using Stationary PC and has an order length distribution suited for high
performance increase.
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Comparative analysis of industry standard ranking and our
product score

With the algorithm, we proposed a product score which captures the co-purchase
behavior of SKUs. In Section 1.3, we showed that this score captures the marginal
benefit of adding a layer of SKUs to the assortment. The industry standard algorithm
(see Appendix A.2) builds a score for each SKU based on the ratio of demand for
the product by size of the orders it is purchased in. The two scores are very much
related to the SKU sales, we thus conduct a comparative analysis to understand how
our product score differs from the industry ranking.

Figure 1.11 shows a strong correlation between the industry standard ranking
and the product score. This is expected as each algorithm is based on the amount
of sales that an SKU accounts for. This result also clarifies why the performance of
the two algorithms differs only by a few percentage points. On Figure 1.11, two red
dashed lines separate the main cloud of points from points that either received high
industry rank (in the upper part of the figure) or a low industry rank (in the lower
part of the figure) compared to their product score. This few points account for the
gap in fulfillment, consequently we focus our analysis on the corresponding SKUs.
Note that the scores on Figure 1.11 have been rescaled to keep all information about
JD.com sales confidential.

We already explained that Stationary PC solves the problem to optimality under
some assumptions. Therefore, in this Subsection, we are trying to understand what
type of product get misclassified by the industry standard algorithm. Specifically, it
is important to understand what type of demand pattern leads the industry stan-
dard algorithm to overestimate or underestimate the value of a given SKU in the
assortment.

By construction, the industry standard gives a heavy weight to an SKU with
very high demand and lowers it if it is often in long orders. However, the algorithm
only considers the length of orders without considering the diversity of product a
given SKU is ordered with. For similar demand and order length, an SKU that is
always purchased with a small group of other SKUs is preferable to an SKU that
is randomly purchased with any other SKU. Consequently, we expect the industry
standard algorithm to overestimate the importance of SKUs falling in shorter orders
on average even if they are often ordered with a wide variety of other SKUs.

To verify the above hypothesis, we compare a few metrics. As we expect the
industry standard to give too much importance to the average order length, we mea-
sure the empirical cumulative density function of order length associated with an
SKU. Last, we know that the product score we designed capture the co-purchase
behavior. It captures the marginal benefit of adding a product to the closest break-
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Figure 1.11: Correlation between industry standard ranking and product score

point assortment. Since this is our best metric of how important a product is in the
optimal assortment, we measure the empirical distribution of product score of the
co-purchased SKUs weighted by how often they are sold with the SKU of interest.

Figure 1.12 shows the comparison between two SKUs, one overestimated by the
industry standard algorithm and the other underestimated. For this example al-
though they seem to have similar distribution of order length, the SKU that is over-
estimated by the industry standard algorithm has a distribution less concentrated
on the mean. The two SKU have a very different empirical distribution of product
scores. On Figure 1.12, we show on the left a product which score is under-estimated
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Figure 1.12: Comparison of two SKUs that the industry standard algorithm fails to
score correctly

by the industry standard algorithm. We note that co-purchased items accounting for
90% of the sales have very high product score. Consequently, the co-purchased items
are among the most important to be placed in the assortment, therefore, although
this SKU is purchased on average in long orders, the items it is purchased with are
in the optimal assortment thus this SKU has a higher score. On the contrary, the
SKU on the right is assigned an industry standard score that over-estimates its value
in the assortment. We note that only co-purchased products accounting for 10%
of the sales have high product score. Consequently most of the co-purchased prod-
ucts needed to fulfill the demand for the SKU of interest are not placed in a very
constrained assortment. Thus this SKU receives a lower score.

To validate these observations, we aggregate the resulting curves from all SKUs
which scores have been over-estimated or under-estimated by the industry standard
algorithm. We first note that the industry standard algorithm ranks properly most
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SKUs with heavy singleton demand. As shown on Figure 1.13a, very few of these
SKUs are often sold as singleton. We explained above that the industry standard
algorithm attributes a score inversely proportional to the average order length of
an SKU. Figure 1.13a also shows that the industry standard algorithm tends to
overestimate the score of SKUs with order length distribution shifted to shorter
orders and underestimate the score of SKUs with order length distribution shifted
to longer orders. We note that the items which score is under-estimated by the
industry standard have a low singleton demand. Finally, and most importantly,
Figure 1.13b shows the shortcoming of the industry standard in only considering the
order length and ignoring what are the co-purchased SKUs. Figure 1.13b shows that
a large portion of the sales of SKUs which scores are under-estimated by the industry
standard algorithm are attached to co-purchased products with high product score.
On the contrary, SKUs which scores are over estimated tend to have a uniform
empirical CDF resulting in fewer orders containing highly scored products.
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Figure 1.13: Comparison of empirical CDF for overestimated and underestimated
ranking of SKUs by industry standard

From this analysis, we can conclude that for distribution of order length similar
to JD.com, the industry standard algorithm tends to attribute a similar ranking to
SKUs than our algorithm. Our algorithm draws most of its benefits from flatter
distribution of order length and from SKUs with high demand but low singleton
sales. Our algorithm can manage that last category of SKUs much better than the
industry standard.
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1.6 Discussion

The problem of selecting the best assignment of SKUs to be placed in a FDC is a
multi-stage problem. Swapping an SKU for another between two period comes at
a cost that has been ignored until now. Because the number of order types grow
exponentially with the number of SKU, e-retailer don’t try to forecast demand at
the order level. Estimating demand at a product level is very common, it is a
very complex problem and the error of the prediction grows quickly with how far in
the future the model is predicting. Consequently, we assumed that the order level
demand was stationary and considered the impact of product level demand forecast
in our model. For all these reasons, although the problem is multistage by design,
we solved it with a myopic approach. This approach tends to be very good from
one cycle to the next, the seasonality of demand can be seen when evaluating the
performance of an assignment on the demand a few cycles later. Figure 1.14 shows
that a large portion of the SKUs assigned for a given cycle remain in the optimal
assignment for many cycle while 10% to 20% of SKUs are removed after the first
cycle due to seasonality.

Figure 1.14: Size of the intersection of consecutive placements of size 12,000

Depending on the business seasonality of demand may become a bigger issue. For
businesses with large seasonality in demand from one cycle to the next, this algorithm
can still be used although two problems will be solved. First step solve the problem
on a very large number of cycle to capture the steady order level demand. Doing so
we obtain breakpoints, layers and product scores for the steady demand. Then by
solving the problem on less cycles, the seasonality and the trend in the demand can
be captured. Once an assignment is selected using the steady order level demand, a
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cost γ can be assigned to removing an SKU from the steady assignment by adding
an arc from each SKU node corresponding to selected SKU to the sink with capacity
gamma. This cost can also be a linear function of the product level demand for
the SKU. The cost needs to be comparable to the optimized unit, that is either the
number of locally fulfilled orders or the profit from locally fulfilled orders.

1.7 Conclusion

Focusing on the industry problem of the largest Chinese e-retailer, we presented
in this Chapter novel algorithms to optimize the product assignment in a delivery
network. For the setting of JD.com with regional and local DCs structured as a tree,
our algorithm outperformed significantly the industry standard that was formerly
used by the company.

Given the resources of the company and the predictability of the product level
demands, we presented algorithms that outperform the industry standard while not
increasing the running time excessively. These algorithms highlight the products
responsible for bundle sales and allow for a better inventory placement. Thanks to
the product score, the most important products for local fulfillment can be easily
identified thus allowing e-retailer or other business to investigate the demand pattern
of such product more in depth.

In practice, though RDC can be very far from an FDC customer area, neighbor-
ing FDCs can be much closer. Therefore, they may be able to fulfill some of the
neighboring customer demands in a timely manner. With JD.com we also developed
a similar algorithm for a more complex network to investigate the impact of flexi-
bility in the network. This work will be presented in Chapter 2. By adding a few
arcs in the warehouse network and proposing an inventory placement algorithm we
aim at getting close to the performance of a fully connected network. The algorithm
relying on a parametric cut minimization cannot work on this generalized network.
It is, however, possible to design intuitive extensions such as solving FDC inventory
placement problems iteratively until convergence. Furthermore under additional as-
sumptions on the delivery network structure, the problem becomes tractable.
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Chapter 2

Warehouse Assortment Planning
with Fulfillment Flexibility

In Chapter 1, we have studied the problem of maximizing local fulfillment for each
pair of RDC and FDC independently. In this chapter, we study the impact of
flexibility in the fulfillment network. At the high level, adding flexibility to a delivery
network introduces a trade-off between the in-stock rate and fulfillment cost. A fully
connected network will reach a maximum in-stock rate, whereas the low utilization
of many links in the network will result in a high per package fulfillment cost. On
the contrary, an inflexible network will have a much lower in-stock rate owing to
capacity constraints and will achieve much lower fulfillment cost. Additionally, a
fully connected network may not be realistic. Each DC has a limited number of
docks, thereby limiting the number of outbound routes. Therefore, each node in the
network has a maximum number of outgoing arcs. To further increase the flexibility
of the network, sortation centers, which are additional nodes in the network, are
needed as intermediaries so that each DC can reach each region.

In China, shipping by air is considerably more expensive than in the US. This led
our business partner, JD.com, to originally invest in an inflexible delivery network.
Our work focuses on optimizing the in-stock rate of groups of SKUs, i.e., orders, by
introducing flexibility. Owing to their current delivery network design, the problem
we consider excludes sortation centers (JD.com’s sortation centers are not set up
to handle cross-front distribution center (cross-FDC) shipping) and admits limited
flexibility. We solve the product placement problem and illustrate the performance
of our algorithms on real-world datasets.

Although having a fully connected fulfillment network would definitely reduce the
number of split orders, it would not ensure fast delivery, as packages may have to
travel long distances to reach the customer. Approximately one third of the orders
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placed on JD.com consist of multiple products. When an SKU placed in a customer
order is missing from the dedicated FDC, the e-retailer can still fulfill this order
from another DC, if it holds every SKU placed in the order. This fulfillment decision
prevents the order from being split into multiple packages, thereby saving on packing
costs and achieving higher customer satisfaction. When the closest DC cannot fulfill
an order and it is routed to a more distant DC, this is known as a spillover.

Historically, JD.com has restricted spillover to only be from the RDC to the FDC
(see Figure 1.1). Adding flexibility, i.e., spillover from one FDC to another, to such a
constrained network would allow risk pooling and improve the overall performance of
the delivery network. Consequently, JD.com is investigating how much flexibility is
needed and how to manage the inventory in a flexible network. This work, along with
others published with the company ([11]), highlights the benefit of such a network
and how to manage it. We assume that an order placed in a customer area can be
fulfilled by neighboring FDCs instead of the closest one if it avoids splitting the order
or routing it to the closest RDC. Spillover is only considered if the order can reach
the customer faster than if it were shipped from the RDC. To illustrate the benefit
of allowing flexibility in a fulfillment network, we use real-world data from JD.com
and test the impact of various degrees of flexibility in the network.

Given an inventory allocation, deciding which DC should fulfill which order leads
to a very complex and dynamic program, which is intractable owing to the curse
of dimensionality. We relax this by assuming that if a product is placed at the
FDC level, it will be replenished often enough to never stock out. Although this
assumption simplifies the problem, determining the constrained SKU allocation of
each FDC is a combinatorial optimization that is difficult to solve, owing to the large
scale of the problem.

These challenges motivate the construction of a flexible delivery network that
reduces the cost of fulfilling demand without slowing down the delivery speed, in
which a product assortment allocation can be determined efficiently. The model pro-
posed in this study was developed in close collaboration with expert practitioners to
capture the most relevant aspects of network flexibility and split orders. Although
the model relies on simplifying assumptions, experts from our business partner con-
sider it to be sufficiently detailed to guide strategic decision-making about network
flexibility and product assortment allocation.

The rest of the paper is organized as follows. In Section 2.1, we review the
literature about network flexibility in e-retailing. In Section 2.2, we introduce a
mathematical model for the SKU allocation problem for a single RDC-FDC pair
and for a flexible fulfillment network. In Section 2.3, we prove that selecting a
subset of SKUs for each FDC to minimize fulfillment costs can be solved efficiently
for specific configurations of the flexible fulfillment network. In Section 2.4, we
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study the impact of gradually adding flexibility to a fulfillment network using real-
world transaction data from our business partner. Finally, in Section 2.5, we present
some promising results by applying this method to our business partner’s full-scale
transaction dataset.

2.1 Literature Review

Our work is related to an effort to reduce the rate of split orders. Split orders
occur when a customer order is fulfilled from multiple DCs. Opportunities to reduce
customer order splitting exist at different echelons of the supply chain. Starting
with choosing a product assortment to place in a DC, the problem has been proven
to be difficult for a single warehouse with capacity constraints and we provided an
algorithm to solve it efficiently under reasonable assumptions in Chapter 1. In the
case where several facilities can hold a subset of SKUs, determining the assortment
allocation to minimize the total number of facilities that must be accessed to fulfill
every order is tackled with heuristics and neighborhood search [6], [21].

The design of flexible fulfillment networks is motivated by the concept of process
flexibility [19]. In their paper, they focus on the question of how much flexibility is
needed and show that, under realistic assumptions, a well-designed limited-flexibility
system can yield most of the benefits of a fully flexible system. In this work, we only
review flexibility studies related to e-retailing. [2] studied the resource allocation
problem with long-chain design and online stochastic requests. [32] extended their
research and provided a method for designing a flexible network when the number
of facilities is much smaller than the number of customer areas. [11] further refined
their work by considering the spillover cost when designing a fulfillment policy. These
studies provide methods for designing a fulfillment strategy; however, they either
assume that the initial inventory is given, or compute the initial inventory of a small
number of SKUs (tens of thousands). Our work differs by focusing on inventory
placement, i.e., what SKU to hold at what DC, in a flexible delivery network.

The inventory placement problem for e-retailers, along with the replenishment
policy, has been studied by [7]. The study considers the general problem of choosing
what SKUs to place in what DCs to minimize the total cost. The literature focusing
on fulfillment policy and inventory placement considers each SKU individually, thus
simplifying the problem. Our paper differs from existing studies, as it focuses on
designing product assortments to be placed in distribution centers to minimize the
shipping costs while limiting order splitting. This research is inspired by a prelim-
inary data analysis, which shows that nearly one third of the orders placed on our
business partner’s website are bundles of several products.
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2.2 Problem statement

Flexibility provides the ability to fulfill an order from different neighboring FDCs.
A customer order that is fulfilled from an FDC is efficiently fulfilled, as oppose to an
order fulfilled from the RDC. Spillover enables this group of FDCs to cover a wider
set of order types, i.e. sets of SKUs, thus increasing the number of efficiently fulfilled
orders. In this section, we explore the modeling of flexibility in a fulfillment network.

Definition and notation

Consider a set of FDCs, j ∈ J , associated with a single RDC. The RDC holds every
SKU and can fulfill any order. FDC j ∈ J is dedicated to a single customer area.
Let I be the set of SKUs of the company.

Owing to the manner in which products are stored at the FDC and RDC, the
time needed to load and unload the daily shipment from the RDC to the FDC is
proportional to the number of SKUs that are shipped. Thus, the number of SKUs
that FDC j can hold is upper-bounded by its capacity and the time consumption
of the daily replenishment. Let kj denote the maximum number of SKUs that can
be placed in the FDC j. When an order is placed at FDC j, either all products
purchased in the order are located in FDC j, or it is routed to another warehouse.

An SKU combination is called an order type and is denoted o ⊆ I. We denote
by O be the set of order types, i.e., the set of product combinations. For order type
o ∈ O and FDC j ∈ J , the random variable Dj

o models the demand for order type o
at FDC j with mean µ(Dj

o).
We assume that the RDC virtually holds every SKUs the company sells. An

order that is routed to the RDC yields a penalty of 1, i.e., the maximum penalty
since the RDC can fulfill any order type. Under the flexible setting, a neighboring
FDC j′ can fulfill the order placed at j for a penalty of pj′,j ∈ [0, 1]. Note that
assuming that no spillover is allowed from j′ to j is equivalent to setting the penalty
pj′,j = 1. By definition pj, j = 0.

For each product i ∈ I and FDC j ∈ J , we associate a binary decision variable
Xj
i that models whether or not product i is located at FDC j. We let Xj

i be 1 if
product i is located at FDC j and 0 otherwise. The set of products located at FDC
j is called an assortment and denoted S j = {i ∈ I|Xj

i = 1}.
For each order type o ∈ O, and for each FDC j ∈ J , we associate a binary

decision variable Y j
o that models whether or not order type o can be fulfilled from

FDC j. This variable is set to 1 if and only if FDC j can fulfill order o.
The goal is to select an assortment S j for each FDC to minimize the total

penalty. Note that if for all j, j′ ∈ J such that j′ 6= j, we have pj′,j = 1 this problem
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is identical to the single RDC/FDC pair problem of Chapter 1.

Problem formulation

In this subsection, we derive the mathematical formulation of the problem. We
formulate it as a maximization problem.

An order type o ∈ O placed at FDC j ∈ J is fulfilled by the FDC j′ which
minimizes the shipping penalty to j, i.e. pj′,j, subject to the constraint that FDC j′

can fulfill order type o. As shipping from the RDC yields a penalty of 1, we assume
for simplification that if no FDC can ship an order for a penalty lower than 1, the
order is shipped from the RDC.

If FDC j′ can fulfill order type o, i.e. Y j′
o = 1, when placed at FDC j, it allows

to reduce the penalty from 1, i.e. shipping from RDC, to pj′,j, i.e. shipping from j′.
We denote W j

o the decision variable such that the penalty associated with an order
type o placed at FDC j is µ(Dj

o)(1−W j
o ). Because the order type is fulfilled by the

FDC with minimum shipping penalty, W j
o = max

j′∈J
{Y j′

o (1− pj′,j)}.

A given FDC j cannot fulfill an order type o from its assortment S j if any
product i included in the order type o, is missing from the assortment. Therefore,
Y j
o must satisfy the constraint Y j

o ≤ Xj
i , ∀o ∈ O, i ∈ I, j ∈ J, i ∈ o.

Minimizing the sum of penalties over all order types results in the following
objective function:

min
Xj
i ,Y

j
o ,W

j
o

∑
j∈J, o∈O

µ(Dj
o)(1−W j

o )

max
Xj
i ,Y

j
o ,W

j
o

∑
j∈J, o∈O

µ(Dj
o)W

j
o

We can formulate the flexible problem as a mixed integer program (f-MIP):

max
Xj
i ,Y

j
o ,W

j
o

∑
j,∈J, o∈O

µ(Dj
o)W

j
o (f-MIP)

s.t. W j
o = max

j′∈J
{Y j′

o (1− pj′,j)} ∀o ∈ O, j ∈ J (2.1)∑
i∈I

Xj
i ≤ kj ∀j ∈ J (2.2)

Y j
o ≤ Xj

i ∀o ∈ O, i ∈ I, j ∈ J, j′ ∈ J, if i ∈ o (2.3)

Xj
i , Y

j
o ∈ {0, 1} ∀i ∈ I, j ∈ J, o ∈ O (2.4)

Similarly to the single RDC/FDC formulation (MIP) from Chapter 1, the f-MIP
is intractable to solve. We have shown in Chapter 1 that the Lagrangian relaxation
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of MIP is efficiently solvable by reduction to a minimum s–t cut. The same method
cannot be used for f-MIP. With additional assumptions on the topology of the
fulfillment network, we show in Section 2.3 that the Lagrangian relaxation of f-MIP
can be evaluated by solving a minimum s-t cut problem.

2.3 Solving f-MIP for closed chain fulfillment

network

It is well known in the process flexibility literature (e.g., [19]) that limited flexibility
configured in the right way can yield most of the benefit of total flexibility. In their
paper, they introduce the notion of chain and closed chain where one flexible link is
added per product–plant pair.

In the context of the flexible assortment assignment, we call N = (V ,A ) the
fulfillment network such that each pair of FDC-customer is modelled by a node in
V . We denote by vj ∈ V the node associated with the FDC-customer pair of FDC
j. When spillover is allowed from j to j′, i.e. pj′,j < 1, an arc (vj, vj′), is added to
the fulfillment network.

We say there is no flexibility when each FDC is responsible for shipping to a single
customer areas. No spillover from other FDC is allowed, i.e. A = ∅, therefore, if
an order type can not be fulfilled from an FDC, it is routed to the RDC. This
configuration is illustrated on Subfigure 2.1a.

The fulfillment network is fully connected if each FDC can ship to every other
FDC with a penalty lower than 1, i.e. the penalty for shipping from the RDC. N is
fully connected, A = V 2. This configuration is illustrated on Subfigure 2.1b.

For any node vj in the fulfillment network, if the count of incoming arcs (·, vj) ∈
A , i.e. in degree, and the count of outgoing arcs (vj, ·) ∈ A , i.e. out degree, are
set to 1, the fulfillment network is made of cycles. Additionally, if N is connected,
there exists a single cycle in the network, this configuration is called a closed chain.
Such configuration is illustrated on Subfigure 2.1c

In this Section, we explore the Lagrangian relaxation of the capacity constraint
for the closed chain configuration. We show that the Lagrangian dual function can
be efficiently solved as a minimum cut and we provide an algorithm to optimize the
Lagrangian function.

(f-MIP) reformulation

Let us simplify the mathematical formulation (f-MIP) for a flexible fulfillment net-
work structured as a closed chain. We will show that for any number of chains of
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(a) No flexibility (b) Full flexibility (c) Closed chain
(d) Three occur-
rences of two-chains

Figure 2.1: Flexibility comparison

even number of links, the Lagrangian relaxation of the problem can be solved effi-
ciently. In this flexible fulfillment network, we call n(j) the FDC such that spillover
is allowed from n(j) to j. In a closed chain configuration, such FDC is unique. Un-
der this setting, each order o placed at FDC j can only be fulfilled either by the
dedicated FDC j or by the neighboring FDC in the chain n(j). Therefore, as each
FDC j has a unique neighbor FDC, we can denote the penalty of fulfilling an order
from the neighboring FDC as pj = pn(j),j ∈ [0, 1].

We called W j
o the decision variable such that the penalty associated with an

order type o placed at FDC j is µ(Dj
o)(1−W j

o ). Only FDC j and its neighbor FDC
j′ can fulfill this order type at this location. Note that µ(Dj

o) ≥ µ(Dj
o)(1 − pj).

Therefore, if one of the two FDCs can fulfill order type o, the reward is at least
µ(Dj

o)(1−pj). If the dedicated FDC j can fulfill the order, then the reward increases

by an additional µ(Dj
o)pj. We let Z

j,n(j)
o be a binary variable that is 1 only if neither

the dedicated FDC j nor the neighboring FDC n(j) can fulfill the order. That is,
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Z
j,n(j)
o + Y j

o + Y
n(j)
o ≥ 1. The objective of f-MIP becomes:

max
Xj
i ,Y

j
o ,Z

j,n(j)
o

∑
j∈J, o∈O

µ(Dj
o)pjY

j
o + µ(Dj

o)(1− pj)(1− Zj,n(j)
o )

s.t. Zj,n(j)
o + Y j

o + Y n(j)
o ≥ 1 ∀o ∈ O, j ∈ J

We will write this constraint as Z
j,n(j)
o + Y j

o − (1 − Y
n(j)
o ) ≥ 0 to make more

apparent the similarity with the mathematical formulation of the minimum s-t cut.
The mathematical formulation becomes:

min
Xj
i ,Y

j
o ,Z

j,n(j)
o

∑
j∈J, o∈O

µ(Dj
o)pj(1− Y j

o ) + µ(Dj
o)(1− pj)Z

j,n(j)
o

s.t. Zj,n(j)
o + Y j

o − (1− Y n(j)
o ) ≥ 0 ∀j ∈ J, o ∈ O (2.5)∑

i∈I

Xj
i ≤ kj ∀j ∈ J (2.6)

Y j
o ≤ Xj

i ∀o ∈ O, i ∈ I, j ∈ J, if i ∈ o (2.7)

Y j
o , X

j
i , Z

j,n(j)
o ∈ {0, 1} ∀o ∈ O, i ∈ I, j ∈ J (2.8)

For this new formulation, the Lagrangian relaxation only introduces |J | La-
grangian parameters denoted as λj for j ∈ J .

Evaluating the Lagrangian dual function by solving a
minimum cut

The Lagrangian dual function g(λ = {λj}j∈J) is formulated as follows:

g(λ) = min
Xj
i ,Y

j
o ,Z

j,n(j)
o

∑
j∈J, o∈O

µ(Dj
o)pj(1− Y j

o ) + µ(Dj
o)(1− pj)Zj,n(j)

o

+
∑

i∈I,j∈J

λjX
j
i −

∑
j∈J

λjkj

s.t. Zj,n(j)
o + Y j

o − (1− Y n(j)
o ) ≥ 0 ∀j ∈ J, o ∈ O

Y j
o ≤ Xj

i ∀o ∈ O, i ∈ I, j ∈ J, if i ∈ o
Y j
o , X

j
i , Z

j,n(j)
o ∈ {0, 1} ∀o ∈ O, i ∈ I, j ∈ J

Note that
∑
j∈J
λjkj is not a function of any of the decisions variable, hence it can

be ignored when searching for optimal solutions.
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Assuming that there is an even number of FDCs in the closed chain, this reduces
to solving a minimum s-t cut problem. Actually, we will prove a slightly more general
result: assuming that a customer node can receive orders from at most two FDCs
and that there exist two groups of FDCs such that no two FDCs from the same
group can ship to the same customer node, the Lagrangian relaxation of the flexible
FDC assortment problem can be solved efficiently as a minimum s–t cut. In the case
of a closed chain of an even number of FDCs, the FDCs can trivially be partitioned
into two such groups by assigning a randomly chosen FDC to the first one, and then
iteratively assigning the neighbor of the most recently assigned FDC to the other
group.

Recall that the minimum s-t cut problem in a graph G = (V,A), where V is the
set of nodes and A is the set of arcs, can be formulated as follows:

• du,v ≥ 0 ∀(u, v) ∈ A a variable per arc

• zv ∀v ∈ V \ {s, t} a variable per nonterminal node

• cu,v ≥ 0 ∀(u, v) ∈ A a nonnegative capacity per arc

min
du,v ,zv

∑
(u,v)∈A

cu,vdu,v

s.t. du,v − zu + zv ≥ 0 ∀(u, v) ∈ A, u 6= s, v 6= t

ds,v + zv ≥ 1 ∀(s, v) ∈ A
du,t − zu ≥ 0 ∀(u, t) ∈ A
du,v ≥ 0 ∀(u, v) ∈ A

We note that the first constraint of this formulation is very similar to the first
constraint of the Lagrangian relaxation of the flexible FDC assortment problem.

Let us construct a graph on which solving the minimum cut is equivalent to
solving the Lagrangian relaxation. Let G = (V,A) be a graph such that V is its set
of nodes and A is its set of arcs. For o ∈ O and j ∈ J , let vjo be a node in V . For
SKU i and FDC j, let vji be a node in V . By assumption, the FDCs can be separated
into two groups such that no two FDCs from the same group can ship to the same
customer node. Let J+ and J− be these two groups.

For o ∈ O and j ∈ J+, by assumption, n(j) ∈ J−, We set:

• (s, vjo) ∈ A with capacity cs,vjo = pjµ(Dj
o)

• (v
n(j)
o , vjo) ∈ A with capacity c

v
n(j)
o ,vjo

= (1− pj)µ(Dj
o)
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• (vjo, v
j
i ) ∈ A with capacity cvjo,vji

=∞

• (vji , t) ∈ A with capacity cvji ,t
= λj

Conversely, for o ∈ O and j ∈ J−, by assumption, n(j) ∈ J+. We set:

• (vjo, t) ∈ A with capacity cvjo,t = pjµ(Dj
o)

• (vjo, v
n(j)
o ) ∈ A with capacity c

vjo,v
n(j)
o

= (1− pj)µ(Dj
o)

• (vji , v
j
o) ∈ A with capacity cvji ,v

j
o

=∞

• (s, vji ) ∈ A with capacity cs,vji
= λj

The minimum s-t cut formulation on G is:

min
du,v ,zv

∑
(u,v)∈A

cu,vdu,v

s.t. d
v
n(j)
o ,vjo

− z
v
n(j)
o

+ zvjo ≥ 0 ∀o ∈ O, j ∈ J+

d
vjo,v

n(j)
o
− zvjo + z

v
n(j)
o
≥ 0 ∀o ∈ O, j ∈ J−

zvji
− zvjo ≥ 0 ∀o ∈ O, i ∈ I, j ∈ J+, if i ∈ o

zvjo − zvji ≥ 0 ∀o ∈ O, i ∈ I, j ∈ J−, if i ∈ o

ds,vjo + zvjo ≥ 1 ∀o ∈ O, j ∈ J+

dvjo,t + zvjo ≥ 0 ∀o ∈ O, j ∈ J−

dvji ,t
+ zvji

≥ 0 ∀i ∈ I, j ∈ J+

ds,vji
+ zvji

≥ 1 ∀o ∈ O, j ∈ J−

Note that the objective can be rewritten as follows:

min
du,v ,zv

∑
o∈O,i∈I,j∈J+

µ(Dj
o)pjds,vjo + µ(Dj

o)(1− pj)dvn(j)
o ,vjo

+ dvji ,t
λj

+
∑

o∈O,i∈I,j∈J−
µ(Dj

o)pjdvjo,t + µ(Dj
o)(1− pj)dvjo,vn(j)

o
+ ds,vji

λj
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min
du,v ,zv

∑
o∈O,i∈I,j∈J+

µ(Dj
o)pj(1− zvjo) + µ(Dj

o)(1− pj)dvn(j)
o ,vjo

+ zvji
λj

+
∑

o∈O,i∈I,j∈J−
µ(Dj

o)pjzvjo + µ(Dj
o)(1− pj)dvjo,vn(j)

o
+ (1− zvji )λj

By letting Z
j,n(j)
o = d

v
n(j)
o ,vjo

, Y j
o = zvjo , and Xj

i = zvji
for i ∈ I, o ∈ O, and j ∈ J+;

conversely, Z
j,n(j)
o = d

vjo,v
n(j)
o

, Y j
o = (1− zvjo), and Xj

i = (1− zvji ) for i ∈ I, o ∈ O, and

j ∈ J−. The objective becomes:

min
Y jo ,X

j
i ,Z

j,n(j)
o

∑
o∈O,i∈I,j∈J+

µ(Dj
o)pj(1− Y j

o ) + µ(Dj
o)(1− pj)Zj,n(j)

o +Xj
i λj

+
∑

o∈O,i∈I,j∈J−
µ(Dj

o)pj(1− Y j
o ) + µ(Dj

o)(1− pj)Zj,n(j)
o +Xj

i λj

min
Y jo ,X

j
i ,Z

j,n(j)
o

∑
o∈O,i∈I,j∈J

µ(Dj
o)pj(1− Y j

o ) + µ(Dj
o)(1− pj)Zj,n(j)

o +Xj
i λj

The objective of the minimum s-t cut on G is equal to the objective of the
Lagrangian relaxation. The z variables are the labels of the nodes. zv = 1 if node v
is in the source set and 0 otherwise.

The above conversions from zvjo to Y j
o and from zvji

to Xj
i are equivalent to

selecting a SKU in the assortment of FDC j ∈ J+ if the corresponding node lies in
the source set of the minimum s-t cut and conversely it is in the assortment of FDC
j ∈ J+ if the corresponding node lies in the sink set. Furthermore, ∀o ∈ O, j ∈ J ,
we have:

d
v
n(j)
o ,vjo

− z
v
n(j)
o

+ zvjo ≥ 0 ∀o ∈ O, j ∈ J+

d
vjo,v

n(j)
o
− zvjo + z

v
n(j)
o
≥ 0 ∀o ∈ O, j ∈ J−

}
→ Zj,n(j)

o + Y j
o + Y n(j)

o ≥ 1

And ∀o ∈ O, i ∈ o, j ∈ J :

zvji
− zvjo ≥ 0 ∀o ∈ O, i ∈ o, j ∈ J+

zvjo − zvji ≥ 0 ∀o ∈ O, i ∈ o, j ∈ J−

}
→ Y j

o ≤ Xj
i

This confirms that the two problems are equivalent. Let n be the number of
nodes in G, m be the number of arcs, and T (n,m) be the time complexity of solving
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the minimum s-t cut on such a graph.

n = (|I|+ |O|) ∗ |J |+ |{s, t}|

m = (|I|+ 2 ∗ |O|+
∑
o∈O

|o|) ∗ |J |

= (|I|+ (2 + δ)|O|) ∗ |J |

Where δ is the average order length. Using the Pseudoflow algorithm [14], we get
T (n,m) = O(mn log(n

2

m
)). As the number of orders dominates the number of prod-

ucts, this simplifies the expression to:

O

(
(2 + δ)|O|2|J |2 log

(
|O||J |
2 + δ

))
This confirms that for a closed-chain structure of an even number of DCs, tak-

ing the Lagrangian relaxation of the SKU capacity constraint leads to a tractable
problem. In the following section, we will explain how to update the Lagrangian
parameter.

Optimizing Lagrangian parameters

In this section, we show how to update the Lagrangian parameter.
Note that the Lagrangian dual objective function:

g(λ) = min
Xj
i ,Y

j
o ,Z

j,n(j)
o

∑
j∈J, o∈O

µ(Dj
o)pj(1− Y j

o ) + µ(Dj
o)(1− pj)Zj,n(j)

o

+
∑

i∈I,j∈J

λjX
j
i −

∑
j∈J

λjkj

is a concave piecewise linear function of λ.
Let β(X,Y ) be a scalar such that β(X,Y ) = min

Xj
i ,Y

j
o

∑
j∈J, o∈O

µ(Dj
o)pj(1 − Y j

o ) +

µ(Dj
o)(1−pj)Z

j,n(j)
o . Let α(X,Y ) be a vector of dimension |J |, such that α(X,Y ) ={∑

i∈I
Xj
i − kj

}
j∈J . Let 〈·|·〉 be the usual inner product. We can formulate g(λ) as

follows:
g(λ) = min

X,Y
〈α(X,Y )|λ〉+ β(X,Y )

For Xj
i , Y

j
o binary,

{
〈α(X,Y )|λ〉 + β(X,Y )

}
is a set of linear functions of λ.

Taking the minimum over this set of functions for any value of λ results in a concave
piecewise linear function of λ.
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We have proven that evaluating g(λ) is tractable. Solving for a given Lagrangian
parameter υ, the minimum cut provides an optimal value for all the decision variables
Xj
i , Y

j
o , we can thus set αυ and βυ such that g(υ) = 〈αυ|υ〉+ βυ. By definition, we

have g(λ) ≤ 〈αυ|λ〉 + βυ. Each time g(λ) is evaluated, a linear constraint on dual
can be stored thus building a matrix A and a vector B such that g(λ) ≤ Aλ+B.

To solve the Lagragian relaxation, gradient descent would work. However, be-
cause of the structure of the problem we presented above, different values of λj
may be associated with the same cut. Hence, gradient descent may lead the algo-
rithm to solve multiple minimum cut problem with identical optimal solutions. We
have shown that every time we solve a minimum cut problem to evaluate g(λ), it is
equivalent to finding a bounding constraint for:

g(λ) = min
X,Y
〈α(X,Y )|λ〉+ β(X,Y )

Consequently, by solving the following linear program:

max
λ

obj

s.t. obj ≤ Aλ+B

λ ≥ 0

we find a λj corresponding to an extreme point of the set of feasible solutions.
Evaluating g(λ) for this value returns one of two outcomes: (i) the cut that minimizes
the Lagrangian relaxation is not yet stored in the matrix A and vector B, hence we
add it to the set of constraint and continue solving, (ii) the cut that minimizes the
Lagrangian relaxation is already in matrix A and vector B, we have found an optimal
solution of λj

2.4 Comparative analysis of configurations of the

fulfillment network

To better understand how different configurations of flexible fulfillment network im-
pact the optimal value of the objective function of f-MIP, in this Section, we explore
the impact of flexibility on two toy use cases. In the first experiment, we consider
that for j ∈ J , pj, j = 0 and for j′ ∈ J with j 6= j′, pj′,j is either 0 or 1, i.e., either as
efficient as a dedicated FDC or as costly as routing the order to the RDC. This means
that if spillover is allowed from FDC j′ to FDC j, fulfilling an order type placed at
FDC j from either FDC j or FDC j′ is equivalent. In the second experiment, the
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penalty is proportional to the distance between the two FDCs. The toy use cases
are solved to optimality using the Gurobi solver on different flexible networks.

To explore the performance of each structure, we generate small instances of f-
MIP, such that |O| = 1, 000, by randomly sampling order types from our business
partner’s transaction dataset. We let the number of FDCs |J | take values from 4 to
16.

Metrics of interest

To measure the performance of each configuration, we define the following metrics.
For a configuration and a set of orders, we call score the optimal objective value of
f-MIP.

We call fulfillment ratio, the expected ratio of the score obtained for a configura-
tion by the maximum score that could be reached should all the capacity constraints
be relaxed.

We also evaluate how robust each configuration is to demand changes by adding
perturbations to the demand datasets. Each output assortment allocation is tested on
several perturbed transaction datasets. By repeating this experiment several times,
we compute an estimate of standard deviation of the fulfillment ratio associated with
each configuration over these perturbed datasets. We call this metric robustness

The no-flexibility configuration provides an lower bound on the objective func-
tion of f-MIP, hence on every configuration’s fulfillment ratio. We call baseline the
fulfillment ratio of the no-flexibility configuration. To compare every other configu-
ration to the no-flexibility one, we call performance increase the difference between
a configuration’s fulfillment ratio and baseline, divided by baseline, i.e. the relative
fulfillment ratio increase over baseline.

We will report the fulfillment ratio of each studied configuration, along with the
performance increase per flexible link. The first metric provides quantitative insights
on the quality of the configuration for our objective function, while the second shows
the marginal value of each flexible link. Although we do not directly optimize for the
second metric in this Chapter, we remind the reader that each flexible link requires
fixed costs to be set up and kept active. For each new flexible link, the e-retailer
needs to solve many optimization problems such as route planning, labor planning,
and scheduling, thereby making configurations with high performance increase per
link more desirable than others. If the volume of goods shipped through a flexible
link is not large enough it may be too costly to operate. In reality, e-retailers balance
the fulfillment ratio and the cost associated with setting up the extra fulfillment links
to select new links to operate.
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Evaluating the impact of flexibility in fulfillment network
with binary penalty parameters

We focus on the flexible fulfillment network presented on Figure 2.7. For each of these
configurations, we solve the problem to optimality. The fulfillment ratios are reported
as bars in Figure 2.2 while the robustness appears as error bars. These experiments
show that the closed chain and the set of two-chains tend to yield nearly half of
the fully connected performance increase. We also note that the gap between the
fulfillment ratio of chaining and the one of fully connected increases with the number
of FDCs in the network. The Figure also shows that the closed-chain configuration
yields higher fulfillment ratio than multiple two-chains, along with more robustness.
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Figure 2.2: Flexibility comparison with binary shipping costs

On Figure 2.3, we report the performance increase per flexible link of each con-
figuration. The Figure shows that even though the fulfillment ratio of the fully
connected configuration grows faster with the number of FDCs than the closed chain
configuration one, the growth does not compensate for the number of additional
flexible links. Among all the configurations we study, the closed chain configuration
yields the maximum performance increase per flexible link.
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Figure 2.3: Comparison of performance increase per flexible link with binary shipping
costs

Evaluating impact of flexibility in fulfillment network with
shipping costs proportional to distance between DCs

To investigate the impact of the flexibility configuration in a more realistic setting, we
uniformly distribute the FDCs on the unit circle and set the penalty of shipping from
FDC j to FDC j′ to be equal to min{1, 0.6 ∗ dj,j′}, where dj,j′ is the usual distance
in the 2D plane between these two FDCs. Because the FDCs are distributed on
the unit circle, the distance from any FDC to the RDC is d = 1. To have more
profitable flexible links with a small number of FDCs, the penalty is set to be equal
to a fraction of the distance between the two FDCs, i.e., min{1, 0.6∗dj,j′}. Figure 2.4
shows that under this assumption, the closed-chain configuration achieves over 50%
of the full flexibility benefit for up to 10 chained FDCs; furthermore, its performance
remains over 40% of the full flexibility performance even when the number of FDCs
is increased to 16.

Similarly to the previous case study, we report on Figure 2.5 the performance
increase per flexible link of each configuration. The Figure indicates that although
the fulfillment ratio of the fully connected configuration outperforms the closed chain
configuration one, the performance increase per flexible link of the closed chain con-
figuration is much higher. The figure tends to show that when shipping penalties
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Figure 2.4: Flexibility comparison on the unit circle

are proportional to distances, and the FDCs are distributed over the unit circle, the
performance increase per link of the closed chain reaches a maximum for 10 facilities
and decreases for longer chains.

Figures 2.6a and 2.6b show the flexible network built as explained above with
8 and 16 FDCs. The blue dot represents the RDC and the orange dots represent
the FDCs. Each line represents a flexible link between two FDCs, where the color
of the line indicates the penalty from green for 0 to red for 1. This shows that
while using a closed chain for 8 FDCs only removes 3 flexible links per FDC, the
same configuration for 16 FDCs removes 9 links per FDC. This explains why the
relative performance of the closed-chain configuration compared to the fully flexible
configuration decreases with the number of FDCs.

2.5 Numerical Analysis

In this section, we evaluate the performance of the algorithm and the value of closed-
chain flexibility. We have proven that a solution to the Lagrangian relaxation of
the f-MIP is found in polynomial time for closed chains of even number of FDCs.
Using the transaction data of our business partner, JD.com, we benchmark the above
algorithm against heuristics. Here, we use the data and the warehouses cluster of our
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Figure 2.5: Comparison of performance increase per flexible link with shipping costs
proportional to distances

business partner to assess the performance of our method when flexibility is added
to the fulfillment network. To protect our business partner from revealing sensitive
data to the competition, the data presented in this section are a masked version of
the real data.

This section is divided into two experiments. The first one has unpenalized
flexibility on small datasets. The second models the flexibility cost as proportional to
the distance between warehouses in one of our business partner’s warehouse clusters
and relies on real-sized datasets. The benchmark compares two algorithms as a
baseline for assessing the performance of our method: single iteration and multiple
iteration.

The algorithm single iteration solves the FDC assortment problem for each FDC
customer node pair individually. This algorithm is currently used in the industry
for product placement decisions. We use the solution output by this algorithm and
evaluate the performance of the assortment under the flexible setting. This provides
the benchmark with a baseline.

A simple heuristic for solving the f-MIP when flexibility creates a closed chain
of FDCs is to iterate the single iteration algorithm. In the original FDC assortment
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(a) 8 FDCs (b) 16 FDCs

Figure 2.6: FDCs distributed over the unit circle, with green lines representing the
flexible links

problem, the benefit of being able to fulfill an order is set to the expected demand
µ(Dj

o). When we iterate single iteration, we change the benefit to allow the assort-
ments of each FDC to evolve with respect to the assortments of neighboring FDCs.
Let wjo be the benefit associated with being able to fulfill order type o from FDC j.
As j′ is the neighboring FDC, if j′ can fulfill o, then placing the required SKUs in j so
it can also fulfill this order type only yields an additional reward of (1−pj)µ(Dj

o). Be-
cause the flexibility forms a closed chain, there exists an FDC j′ such that n(j′) = j.
Therefore, if j can fulfill o, it can also fulfill occurrences of this order type at FDC
j′. This only has an additional reward of pj′µ(Dj′

o ) if FDC j′ cannot fulfill the order.

This confirms that wjo = µ(Dj
o) − Y

n(j)
o pjµ(Dj

o) + (1 − Y j′
o )pj′µ(Dj′

o ). The idea of
multiple iteration is to fix the value of the decision variables for all FDCs apart from
one. Without loss of generality, let FDC j be the FDC of which the assortment is
being optimized, the decision variables Y j

o and Xj
i are not fixed. At each iteration,

compute the order type reward wjo for each o ∈ O and deduce an assortment for j
using single iteration. We iterate several times over each FDC randomly and keep
the best solution found.
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Experiment with unpenalized flexibility

The dataset on which the benchmark is run is built from a real transaction dataset
from our business partner. We randomly select 100,000 order types observed during
a month of operation and uniformly distribute the demand over four or six fictional
FDCs. For different SKU capacities ranging from 100 to 5,000 units, we compute the
fulfillment ratio obtained by each algorithm. This ratio is computed by dividing the
objective value reached by the algorithm by the maximum objective value reachable
if each FDC were to hold every single item. Figure 2.7a shows that when the closed
chain has a cost of 0 for shipping to a neighboring FDC, the scores of multiple
iteration and our algorithm are much higher than the score of single iteration. This
shows that adding flexibility in the network as a closed chain creates opportunities
for better performance. Furthermore, we see that our algorithm outperforms the
multiple iteration algorithm by a large margin. Note that the capacities chosen for
this comparison are such that our algorithm finds an optimal solution to the problem.
It appears in Figure 2.7b that multiple iteration is consistently only a few percent
below the optimal solution, thereby making it a powerful and efficient heuristic for
industries to use. Figure 2.8b further shows that the gap between the optimal solution
found with the minimum cut algorithm and those found with heuristics widens with
the number of FDCs in the closed chain.
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Figure 2.7: Performance comparison for four FDCs, |O| = 100, 000, |I| = 71, 346

Experiment on realistic warehouse cluster

In this subsection, our business partner provided transaction data for a warehouse
cluster, along with information on how often product placement decisions are made.
Figure 2.9 shows the warehouse cluster with the RDC and four FDCs. The red arcs
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Figure 2.8: Performance comparison for six FDCs, |O| = 100, 000, |I| = 71, 346

model the cost of a missed order that is fulfilled from the RDC; the green arcs model
the flexible links between FDCs, which are shaped as a chain of four warehouses. The
flexibility cost associated with each of the green links is proportional to the distance
between the two FDCs. Our business partner selects the assortment of products to
keep in each warehouse for every specific length of time. We call the period between
two decisions the decision cycle. During a decision cycle, approximately one million
unique order types are placed across the four FDCs. The set of order types consist of
approximately 300,000 SKUs. When an e-retailer selects the assortment of SKUs to
keep in each warehouse, the decision is based on past transaction data and forecasts.
Therefore, we optimize the assortments on a given decision cycle and evaluate based
on both the next cycle and that for which the assortment is optimized. This shows the
performance of the algorithm on a given optimization problem compared to industry
practices and highlights the robustness of the algorithm for deciding which SKUs to
keep in which warehouses

Unlike the previous experiment, where the flexibility costs were set to 0, in this
experiment, they are proportional to the distance between FDCs. As the flexibility
cost increases, the use of flexible links becomes less profitable and routing an order
to the RDC yields a comparatively lower penalty. Therefore, the optimality gap is
smaller for industry heuristics. Figure 2.10 shows the performance of each algorithm
on the decision cycle for which they are optimized. Our algorithm shows an increase
of a few percent, even when the flexibility costs are up to 75% of the cost of routing
an order to the RDC.

Figure 2.11 shows the performance of the given assortments on the upcoming
decision cycle. As demand varies from one cycle to the next, the fulfillment ratio
slightly decreases. However, our algorithm still shows better performance than the
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Figure 2.9: Warehouse cluster with flexibility

industry heuristics.

Case study on how optimal assortments are changed by
flexibility

We have shown in the above paragraphs that well optimized assortments in a flexible
network outperform the assortments in an inflexible network by a large margin.
In this subsection, we review a case study to show how products in assortments
are replaced with others when flexibility is introduced. This will help managers to
evaluate the cost of upgrading their product assortments if they introduce flexibility
in the network and provide some intuition on what type of fulfillment networks
benefits the most from flexibility.
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Figure 2.10: Performance comparison on a decision cycle for a real warehouse cluster
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Figure 2.11: Performance comparison on the upcoming decision cycle for a real
warehouse cluster

We consider the four warehouses from Figure 2.9. This case study is based on
real large-scale demand and arbitrary realistic capacities. Note that all figures have
been rescaled to preserve confidentiality. In this example, presented on Figure 2.12a,
the upper DC has a larger demand than the other DCs for similar SKU capacity; on
the contrary, the lower DC has a much smaller capacity compared to the demand.
The capacity constraint of these two DCs have much higher shadow prices than the
two other DCs. As expected, the added flexibility takes advantage of this imbalance
of demands by redistributing SKUs from the DCs with high shadow price capacity
constraint to the others. After adding flexibility to the network, the composition
of the assortment changes. The red arrows in Figure 2.12b show how many SKUs
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removed from a given DC are placed in the neighboring DC. The numbers are rescaled
and do not correspond to percentages.

The right and left DCs have lower shadow price associated with their capacity
constraints for the no flexibility configuration. Consequently, we expect the added
flexibility to enable these two to fulfill orders placed at the top and bottom DCs,
i.e., DCs with higher shadow price on their capacity constraints. Compared with
the assortments for the no flexibility configuration, the right and left DCs remove
approximately 15% of the SKUs and replace these mostly with SKUs needed to fulfill
orders placed at the top and bottom DCs. The red arrows on Figure 2.12b show that:

• 1.5 units of SKUs originally held at the bottom DC in the no flexibility con-
figuration are moved to the right DC, such a change represents approximately
15% of the right DC’s assortment

• 0.6 units of SKUs originally held at the top DC in the no flexibility configuration
are moved to the left DC, such a change represents approximately 6% of the
left DC’s assortment

How the assortment of the right and left DCs evolve when flexibility is added to the
fulfillment network enable these DCs to better support the top and bottom DCs that
have high shadow cost associated with their capacity constraints.

On the contrary, the top and left DCs have higher shadow price on their capacity
constraints. Consequently, flexibility will enable neighboring DCs to fulfill demand
for the top and bottom ones. We observe that the top DC removes approximately 8%
of its assortment for the no flexibility configuration, by moving 80% of these products
to the left DC, as indicated by the top left red arrow on Figure 2.12b. Similarly,
the bottom DC removes 50% of the SKUs of its assortment for the no flexibility
configuration and most of these SKUs are held at the right DC for the closed chain
configuration, as indicated by the bottom right red arrow on Figure 2.12b. Both
DCs rely heavily on their neighboring DCs to fulfill demand.

Figure 2.12b makes it very clear that although the two DCs with lower shadow
prices take in SKUs from the other two DC, the reverse does not occur. Adding
flexibility in the network balances the SKUs in order to relax the capacity constraint
with the highest shadow prices. Finally, the figure indicates on each link the number
of orders that are shipped. As expected, the links sending orders to the top and
bottom DCs are used more heavily than the other flexible links.

No typical pattern was observed among products that get assigned to neighboring
DC when the flexibility is added. We cannot draw general conclusions at the product
level. From our case study, we can conclude that flexibility relaxes the constraints
with high shadow price, thus improving the overall performance.
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Figure 2.12: Case study on how assortments change when flexibility is introduced

Sensitivity analysis on order length distribution

The work presented above focuses on optimizing the in-stock rate of a group of SKUs
and ensuring efficient fulfillment. The results presented in this paper are tied to the
distribution of order length of our business partner, JD.com. E-retailers may have
different distributions of order length. In this subsection, we provide a sensitivity
analysis, by studying the impact of different order length distributions.

In order to make this analysis as realistic as possible, similarly to how it is con-
ducted in Chapter 1, we use importance sampling to resample real datasets with
different order length distributions. For this analysis, we let the exponential pa-
rameter vary from 0.2 to 1 and we study three different SKU capacity constraints.
For this experiment, the SKU capacity constraints are an indication; the problem is
solved with specific Lagrangian parameters leading to assortments close to these ca-
pacities. Although all the experiments are run with the same Lagrangian parameters,
the resulting capacities are slightly different.

Figure 2.13 shows the relative performance of our algorithm. To compute this
metric, we compute the performance of our minimum capacity cut algorithm and
the performance of the multiple iteration (iterate industry standard ten times). The
metric shown on the graph is the ratio of performance increase of our minimum cut
algorithm over multiple iteration by the performance of multiple iteration. Our algo-
rithm captures the co-purchase behavior of products and utilizes the added flexibility
far better than the industry standard algorithm, thus leading to larger increases in
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performance when the average order length increases. As a small number of prod-
ucts are responsible for a large volume of orders, the performance increase rises with
tighter capacity constraints. Finally, when the distribution is heavier on singletons
(one-SKU orders), all curves converge toward the performance increase presented
above.
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Figure 2.13: Sensitivity analysis of the impact of order length distribution on the
performance of our algorithm in a four-warehouse closed-chain network

We observe in the data that products purchased together form clusters that are
less connected with other products. This pattern exists because some products pro-
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vide a higher value when grouped together compared to independent cases. These
patterns are important for our algorithm and flexibility to overperform the industry
standard algorithm. If such patterns did not exist, when the order length distribution
becomes heavier on longer orders, the flexibility would not increase the performance
of the network as much, as each DC would have to hold all products to fulfill highly
interconnected orders. Owing to these patterns, a DC can rely on its neighboring
DC to handle a cluster of longer orders.

2.6 Discussion

The above experiments show a performance improvement four-fold greater than that
measured in Chapter 1 for an inflexible network. Our work highlights the signifi-
cant improvement that can be achieved by allowing flexibility in the network and
optimizing for it.

The method proposed in this study shows sufficient robustness for selecting a
product assortment for an upcoming decision cycle. However, the performance of
the algorithm could be greatly improved if forecasted information were provided and
predictive modeling techniques were applied.In Chapter 1, we developed techniques
to make use of forecasted sales of SKUs per warehouse to build better assortments
for a single RDC/FDC pair. This algorithm is build on the assumption that each
FDC is independent of the other, i.e. there is no flexibility, consequently, it cannot
be applied directly to the scenario presented in this work. Adapting the techniques
from Chapter 1 and designing new ones to use predictive modeling in a flexible
fulfillment network is a challenging problem that could be interesting to tackle in
future research.

Selecting which SKUs to place in which DC for each cycle is a multistage problem.
Replacing an SKU from one period to the next has a cost. In the work presented
above, we assumed this cost can be ignored. Because the cardinality of order types
grows exponentially with the number of SKUs, predictive models usually focus on
predicting the product-level demand. To solve the multistage problem, the model
must first be updated to account for the predicted demand. Therefore, we chose to
leave this improvement for future work. We instead provide here a heuristic-based
algorithm for the multistage problem. We assume that products can be partitioned
between seasonal products whose demand vary significantly with time and nonsea-
sonal products whose demand is relatively steady. Under this assumption, using our
algorithm on many periods will result in SKU allocation that captures the steady
demand well. Once this assortment allocation is found, the cost of replacing a prod-
uct in an FDC can be computed. By adding arcs from the product node in an FDC
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to the sink node or the source node, according to whether the FDC lies in J+ or J−

with capacity equal to that cost, the problem can be solved again for each new cycle
and will only allow a small number of changes in the assortment allocation.

Finally, it should be noted that solving the Lagrangian relaxation of the prob-
lem does not guarantee finding an optimal solution to the f-MIP. It provides sets
of feasible solutions that are optimal for more constrained capacity and of unfea-
sible solutions that would be optimal for relaxed capacity. Solving the Lagrangian
relaxation can be used in two ways. We can first consider completing a feasible as-
sortment allocation provided by the Lagrangian relaxation. Using the Lagrangian
parameter of this feasible solution, an upper bound on the optimality gap can be
easily computed. The Lagrangian parameter also has a managerial impact. It can be
used as a cost in terms of a number of orders of adding an SKU to a DC. An industry
that has an estimate of how costly it is to add or change an SKU in the assortment
allocation can set a value υ, such that only SKUs adding at least υ orders to the
set of efficiently fulfilled orders can be considered. These SKU costs per DC can be
directly used as Lagrangian parameters to obtain an optimal allocation of SKUs.

2.7 Conclusion

In this Chapter, we have extended the delivery network of our business partner,
JD.com, to a more connected flexible network. Using their transaction data, we
have experimentally demonstrated the impact of flexibility for product placement in
a fulfillment network. We observed that short closed-chain structures — where each
local DC serves two customer areas, thus forming a cycle — achieve over 50% of the
performance increase of a fully connected network. As most of the warehouse clusters
of our business partners are constituted by fewer than 10 DCs, we developed an
efficient algorithm for solving the product placement problem in a flexible fulfillment
network, where the flexible links create a closed chain of an even number of DCs. This
new algorithm outperforms by a factor of four the former performance improvement
achieved on an inflexible network in Chapter 1 and other heuristics used in the
industry. Such a performance increase represents hundreds of millions of additional
orders that can be efficiently fulfilled every year.
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Part II

E-hailing Platforms
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Chapter 3

Shared Ride Sustainability

The rise of transportation network companies (TNCs) such as Didi, Lyft and Uber
has reshaped the ride hailing industry. These companies offer different modes of
transportation among which the two main modes are on-demand private rides and on-
demand ride-sharing, referred to as classic rides and shared rides. When opening the
ride-hailing app, users often choose between two fares: the full fare for classic ride and
the discounted fare for shared ride. When selecting the discounted fare, the passenger
implicitly accepts that she may share the ride with another shared passenger. When
this happens, the passenger is said to experience a match. Experiencing a match
often increases the duration and the distance of the ride due to an additional detour
needed to pickup and/or drop-off the other shared passenger. Shared ride is different
from the usual carpooling services such as WazeCarpool, as dispatching drivers and
matching passengers are processed in real time by the ride hailing platform. Hence,
the detour a passenger experiences when matched is the result of the decisions made
by a matching algorithm. Another difference is e-hailing companies typically pay
their driver by time and distance the same rates whether the driver is serving a
classic ride or a shared ride. Specifically, the e-hailing company pays the driver the
same amount regardless of whether the shared passenger experiences a match or not.
When two shared passengers are matched, the e-hailing platform pays only one driver
to complete both trips thus reducing its operating costs. Owing to such settings,
offering shared rides for a discount to passenger is only profitable if the e-hailing
company recovers the discount offered to passengers by matching passengers. Not
all matches reduce costs for the company. When two passengers share a significant
portion of their rides, having a single driver serve both trips can save up to half of
the costs incurred by each passenger having its own driver. Such a match is said
to be efficient, i.e., matching the two passenger saves a large portion of the costs
incurred by dispatching one driver per passenger. A shared trip that reaches its
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destination without being matched is said to be unmatched. The cost savings of a
match denotes the difference between the costs incurred by letting each of the two
passenger unmatched and the costs of serving both passengers with the same driver.
The efficiency of a match denotes the ratio of its cost savings by the costs incurred
when both passengers remain unmatched. Contrary to the former example, when
long detours are needed to match two passenger, the company pays the driver for the
extra detour and the match is less efficient. Although passengers pay a discounted
price when they request a shared ride, this service can still turn a profit if the e-
hailing platform achieves an average efficiency per shared ride that compensate for
the discount offered to passengers.

High efficiency matches occurs when two passengers request a similar ride almost
at the same time. The likelihood of such an event increases with the demand for
shared rides, consequently, most ride hailing companies only operate their shared
mode in their densest markets.

When deploying shared ride mode in a region, the e-hailing company is carrying
the risk of having too many unmatched shared rides for the mode to be profitable.
Furthermore, as it can take some time to grow the demand for this new mode of
transportation, shared ride mode can remain unprofitable for an extended period of
time. Because starting shared ride in a new region is very uncertain, e-hailing com-
panies mostly only propose the mode in their densest markets. Our work focuses on
providing quantitative insights on the existence of a profitable equilibrium with both
shared and classic in a regional market. We propose a framework based on past clas-
sic ride data to compute such insights before introducing shared ride in the market.
That way, we aim at answering the managerial question of whether or not should
shared ride be offered in a regional market. In our model, we consider that each
passenger can choose among shared ride, classic ride and any competitive option.
In this paper, we will focus on public transit as the only competitive option. Typi-
cally, these three modes can be ranked from the slowest and most affordable mean
of transportation to the fastest most expensive mode in this order: public transit,
shared ride, classic ride. We assume that the passengers are utility-maximizing and
that the utility associated with a trip is a function of how much time and money is
spent on the mean of transportation. The utility of shared rides increases with the
discount offered and decreases with the detour experienced. A e-hailing company
can thus increase the shared ride utility, hence growing the demand for shared ride,
by restricting the maximum detour a passenger can experience and by lowering the
fare.

To increase demand density, the e-hailing company can improve the user experi-
ence by lowering the maximum amount of detour a passenger can experience or by
lowering the fare for shared ride. However, tightening the detour constraint, i.e., the
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maximum amount of detour a passenger can experience when matched, makes match-
ing passengers more difficult thus decreasing the ratio of matched shared passengers
and the average efficiency of the matches.

In this paper, we provide a model for studying an equilibrium with both shared
and classic in a regional market. The general formulation of customer choices and
expected profit we propose in Section 3.2 is intractable to solve, to provide quanti-
tative insights on the equilibrium, we propose to approximate a few key functions
from simulations in Section 3.3 and 3.4. Finally, we conduct in Section 3.5 a case
study in Manhattan to showcase the relevance of this framework. As this model is
part of a larger effort to understand the conditions for the existence of a profitable
equilibrium with both shared and classic, we detail in Section 3.6 the extensions of
this research.

3.1 Literature review

Our work is part of a growing effort to estimate the economic sustainability of the
ride sharing industry and to measure the impact it has on our cities. Numerous
studies analyse the dynamics of a ride sharing system through simulations. A major
contribution [25] was made by studying shareability networks in New York City to
estimate what percentage of rides could be shared under the constraint that each
passenger should not experience a delay greater than some value. Experimenting
both with offline and online algorithm, they observed that limiting the capacity of
the vehicle to two passenger has very little consequence for a maximum delay of
three minutes in a dense city such as New York city. They showed how much travel
time and how many trips could be saved if all users were to shift and use a ride
sharing service. Also built on simulations, a scaling law of urban ride sharing has
been approximated [27]. It provides a close form estimate of the percentage of rides
that can be shared given a hourly demand density. These studies remain descriptive
of the dynamics of the ride sharing industry. The demand for shared ride is given
and none of these study focuses on the equilibrium that exists when both shared and
classic are offered in a market.

We next focus our attention on economic contributions. Different model based
approaches have been considered to evaluate the profitability of a ride sharing service.
[24] proposes a model to estimate the benefit of introducting a ride sharing service
in a market. Their analysis focuses on the impact such change would have on driver
earnings and on the profit of the e-hailing platform. However, contrary to how most e-
hailing platform price sharing services, this work assumes that the discounted price
of a shared ride is granted to a rider only if the ride is shared. [33] studies the
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equilibrium when customers are choosing among public transport, shared rides and
classic taxis. This analysis is built on the assumptions that (i) shared riders can
wait until a match occurs, (ii) the match rate of a e-hailing platform is an exogenous
parameter, instead of modeling it as a function of shared demand density . Both
of these studies assume that the average efficiency of matches is exogenous and is
set to the maximum value for two party matching: 50%, i.e., the cost of a driver
completing both rides is equal to the cost of a driver completing one of the two rides
(assuming equal length).

3.2 Problem statement

In this paper we aim at understanding the economic feasibility of introducing shared
rides into a regional market. The goal of our analysis is to provide a quantitative
insight on the conditions for the existence of a profitable equilibrium with both shared
and classic rides in a given region. In particular, we are interested in understanding
the effect of the parameters in the existing economy (e.g., the regional demand density
and its geographical distribution, the topology of the transportation network, the
quality of public transit as an outside option, etc) on whether or not introducing
shared ride rides into a regional market is an economical choice.

In order answer this question, we develop a model for computing the profit realized
by an e-hailing platform that offers both modes.

Definition and Notations

We begin by defining notations that will be useful throughout the paper.

Trips and passengers decisions

The road network of the region studied is modeled by an arc weighted graph N =
(V ,A ). Each node in V represents an intersection, if two intersections corresponding
to nodes u, v ∈ V are linked by a road, then (u, v) ∈ A constitutes an arc in N .
The graph N is endowed with a distance function l : A → R+. By extension and
for the convenience of notation, we may use l(u, v) as the shortest path distance from
node u to node v in N . Without lose of generality, we assume that drivers move on
the road network with a speed of 1, which means that getting from u to v will take
l(u, v) units of time.

A trip in the N is defined by a pair of nodes (O,D) ∈ V 2 and a request time t.
A trip is denoted by τ = (O,D, t). By extension, we let l(τ) = l(O,D) be the travel
distance associated to the trip.
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Table 3.1: Notation

Road network:

N Road network in which drivers and passenger travels
V Set of nodes in N , a node corresponds to a crossroad
A Set of arcs in N , an arc corresponds to a street
l Shortest path length between any two nodes in N

Trip:

τ Trip from origin O to destination D requested at t
l(τ) Shortest path length from O to D in N
T Set of trips, denoted Tc, Ts, Tt for classic, shared, transit
D Distribution of set of trips
λ Demand density, denoted λc, λs, λt for classic, shared, transit
pc,s,t Fare per unit of distance associated with a classic, shared, transit

Passenger choice:

i Passenger associated to the ith trip in T
τi Trip of passenger i
αi Time sensitivity of passenger i
Fα Cumulative density function of the random variable α
uic,s,t Utility function of passenger i for classic, shared or transit
d, D Discounts associated with shared and transit compared to classic
δπ, ∆ Expected additional travel time associated with shared and transit

compared to classic
Pc,s,t Probability that a user chooses classic, shared or transit
c Fraction of the classic fare that is paid to the driver by the e-hailing

platform

Shared Matching policy:

π Matching policy
δπ Expected detour for matches created by the matching policy π
effπ Expected efficiency realized by matching policy π
δmax Maximum detour a shared passenger can experience
π(·, δmax) Matching policy subject to the detour being upper bounded by δmax
π(Ts, δmax) Sets of pairs of trips returned by running π(·, δmax) on Ts

lπ({τi, τj}) Total distance travelled by the driver to realize {τi, τj} under π
liπ({τi, τj}) Total distance travelled by i experiencing match {τi, τj} under π
δiπ({τi, τj}) Detour experienced by i when matched in {τi, τj} under policy π
Vπ Expected profit associated with the matching policy π
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A stream of passengers arrive at the system according to some random arrival
process and request a trip in N with respect to some distribution. We denote by i
the ith passenger and by τi the trip she requests. The set of trips requested according
to this process is denoted T and is distributed with respect to D . We define demand
density λ as the average cardinality of the set of trips per unit of time.

To complete her trip τ, each passenger decides to use one of the available options.
In this paper, we consider three options for the passenger while on the platform:
two options provided by the platform and one outside option; namely, (i) classic ride
denoted by c, (ii) shared ride denoted by s, and (iii) the outside option, e.g. public
transit denoted t.

We denote by pc, ps and pt the fare per unit of distance travelled for each mode.
(Note that both pc and ps are to be decided by the platform – we shall come back to
this later.) The price and the travel time associated with each option is proportional
to the trip distance l(τ).

We remind the reader that we chose the scales of time and distance in a way
that drivers move with the speed of one unit of distance per unit of time. Hence,
the expected time spent in a classic ride is simply l(τ). However, the topology
of the public transit network and the likelihood of experiencing a detour for the
pickup of another shared passenger often prevent both transit and shared mode of
transportation to travel from O to D along the shortest path. Consequently, it will
take more time for a passenger to reach her destination using either public transit or
shared ride. We let δπ ≥ 0 be an endogenous variable and ∆ ≥ 0 be an exogenous
variable such that the expected time needed to complete trip τi would be (1+∆)·l(τi)
under public transit and (1 + δπ) · l(τi) under shared ride. We emphasize that the
subscript π in δπ denotes the matching algorithm chosen by the platform for shared
rides.

We consider utility-maximizing passengers, where each passenger’s utility is linear
in time and money she spends on the mean of transportation. The utility passenger
i associates with completing her trip τi is denoted as ui0(τi). This utility is large
enough such that for all trip, at least one of the three modes we consider is associated
with a non-negative expected utility. The time sensitivity of passenger i is a random
variable denoted by αi and distributed i.i.d. with respect to some cumulative density
function Fα . For her trip τi, we denote by uic(τi), u

i
s(τi) and uit(τi) the expected utility

associated with the modes classic, shared, and public transit, calculated as follows.

uic(τi) = ui0(τi)− l(τi) · (pc + αi)

uis(τi) = ui0(τi)− l(τi) · (ps + αi · (1 + δπ))

uit(τi) = ui0(τi)− l(τi) · (pt + αi · (1 + ∆))
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Each passenger chooses the option that maximizes her utility. We denote by Tc,
Ts and Tt the resulting partition of T over the three modes of transportation. We
also denote by λc, λs and λt the demand density for each mode.

Shared rides characteristics

E-hailing platforms attempt to minimize the operating costs of shared ride while
providing a good user experience to retain customers on the platform. Unlike a
classic rider, a shared rider can share her trip with another shared rider. This leads
to a potentially more efficient transportation platform. In return, the platform offers
a discount to the shared rider that we denote by d ∈ [0, 1], leading to a lower price
per unit of distance travelled for shared rides compared to classic rides. In other
words, ps = pc · (1− d).

The e-hailing platforms pay drivers based on the time and the distance travelled
with passengers. However, as a result of our constant speed assumption, we can focus
only on the time component. We denote by c · pc the driver pay per unit of distance
travelled, where c ∈ [0, 1]. One can think of 1 − c as the platform’s commission
percentage in classic rides.

The assumption of perfect supply refers to a situation where a driver is always
available at a passenger’s pickup location. Under this assumption, there is no cost
incurred for driving to pickup a passenger at the beginning of the trip and no addi-
tional waiting time once a driver has been dispatched to a passenger. The positioning
and dispatch of available drivers to pick up passengers is a crucial challenge for e-
hailing platforms. However, we would like to focus our attention on the effect of the
quality and pricing of shared ride on the economy. Therefore, in our model we work
with the perfect supply assumption.

When two passengers i and j share a vehicle such that a single driver is needed
to complete both trips τi and τj, we say that i and j experience a match. We denote
this match by {τi, τj}. A matching is a set of pairs of shared trips, i.e. matches, such
that every trip is in a pair and the intersection of two pairs is empty. Note the pair
{τi, τi} corresponds to leaving trip τi unmatched.

A matching policy π is a set of constraint and an algorithm to compute a matching
for a given set of trips. The set of constraint models the restrictions that apply to
the matching policy. Perhaps the most natural among such restriction is that of
online matching policies which asserts that they cannot use knowledge of future ride
requests (although, they may use distributional information regarding that, should
such information be available). Finally, with a slight abuse of notation, for any match
pair of trips {τi, τj} under a given matching policy π, we denote by lπ({τi, τj}) the
distance travelled by the driver in order to complete the requests τi and τj should
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these two trips be matched together under π. Similarly, let liπ({τi, τj}) denote the
total distance travelled by passenger i when matched to j under the matching policy
π should these two trips be matched together.

With a slight abuse of notation, let π(Ts) denote the matching returned by the
matching policy π for the set of shared trips Ts; in other words, π(Ts) denotes
the set of pairs among shared rides Ts matched together by the matching policy
π. url adjustbox xcolor enumerate geometry amsmath amssymb textcomp graphicx
subcaption [utf8]inputenc tabularx,tabulary multirow

In order to show these notations in action, let us consider a policy called “optimal
offline”. Since this is an offline policy, it has the complete knowledge about all the
trips. It quantifies how efficient any pair of trips can be matched together. It then
finds a maximum weighted matching in a graph where the nodes correspond to the
trips and the edge weights demonstrate the efficiency of the two corresponding end-
nodes. Let us denote this policy by π∗. For any pair of trips τi and τj, ignoring
the request time of each trip, the match {τi, τj} is associated with one of the four
orderings of origin and destinations of the two trips. Note that each passenger goes
from an origin to a destination and that they only share the trip if the second
passenger is picked up before the first passenger is dropped off. The four possible
orderings are: (Oi, Oj, Di, Dj), (Oi, Oj, Dj, Di), (Oj, Oi, Dj, Di) and (Oj, Oi, Di, Dj).

Before providing the formula for calculating lπ∗ and for the sake of completeness,
we must note that an offline policy – by the virtue of its clairvoyance – can potentially
route a driver (possibly with the first passenger already in the car) towards the pick-
up point of a passenger who has not showed up yet.1 The car may even reach the
pick-up point of the second passenger before she shows up. The time that the driver
(along with the first passenger) is waiting at the pick-up point of the second passenger
is a part of the trip. Without loss of generality, let us assume that the first passenger
is the one in τi and the second passenger belongs to τj. (This happens in two of the
cases, namely (Oi, Oj, Di, Dj) and (Oi, Oj, Dj, Di)). We denote by ωπi,j the waiting
time of passenger i at the pick-up point of passenger j before j shows up under a
matching policy π. One can see that for the optimal offline policy we have

ωπ
∗

i,j = (tj − (ti + w + l(Oi, Oj))
+. (3.1)

Here, w denotes the maximum time allowed between the arrival time of a request and
its pick-up time. Also, (ti + w + l(Oi, Oj) corresponds to the latest time passenger
i could reach to the pick-up point Oj. Note that if passenger i does not reach Oj

before tj, then ωπ
∗

i,j will be zero.
1We emphasize that this is by no means limited to the offline policy; an online policy that has

access to good enough statistics regarding the requests in the future – such as a concert ending in
a specific venue – may route preemptively as well.
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Now, we are ready to present the formula for lπ∗ , the distance of a possible match
{τi, τj} under the optimal offline policy.

lπ∗({τi, τj}) = min


l(Oi, Oj) + ωπ

∗
i,j + l(Oj, Di) + l(Di, Dj);

l(Oi, Oj) + ωπ
∗

i,j + l(Oj, Dj) + l(Dj, Di);
l(Oj, Oi) + ωπ

∗
j,i + l(Oi, Dj) + l(Dj, Di);

l(Oj, Oi) + ωπ
∗

j,i + l(Oi, Di) + l(Di, Dj).


Here, each of the four possibilities correspond to (i) the distance between the first
and second pick-up points, (ii) the possible wait at the second pick-up point, (iii) the
distance between the second pick-up point and the first drop-off point, and finally
(iv) the distance between the first and second drop-off point, for the specific or-
dering. Note that the total distance of the match lπ({τi, τj}) is lower bounded by
max{l(τi); l(τj)}.

We denoted by d the percentage reduction the classic fare to obtain the shared
fare: ps = pc ·(1−d). Similarly, given a matching policy π, we call efficiency effπ the
function that maps a match onto the cost reduction compared to classic. For instance,
in the match {τi, τj}, the cost induced by passenger i is: l(τi)·c·pc ·[1−effπ({τi, τj})],
where l(τi) · c · pc is the cost of serving τi as a classic ride.

effπ({τi, τj}) is the ratio of the cost savings realized with the match, i.e., l(τi) +
l(τj)− lπ({τi, τj}), by the cost of serving both rides as classic ride, i.e., l(τi) + l(τj).

effπ({τi, τj}) = 1− lπ({τi, τj})
l(τi) + l(τj).

As lπ({τi, τj}) ≥ max{l(τi); l(τj)} and the platform can only match two passenger
together, the efficiency ratio is upper bounded by 50%. We also note that by summing
up the cost induced by each passenger in the match {τi, τj}, we recover the cost of
the match:

l(τi)·c·pc·[1−effπ({τi, τj})]+l(τj)·c·pc·[1−effπ({τi, τj})] = c·pc·[l(τi)+l(τj)]·
lπ({τi, τj})
l(τi) + l(τj)

.

A shared rider, when matched, can experience a detour since her trip gets longer.
Under a matching policy π, we define as δiπ the function that maps a match onto
the ratio of additional travel distance for passenger i by the shortest distance from
origin to destination l(τi). For example, consider the match {τi, τj} under the policy
π, we have:

δiπ({τi, τj}) =
liπ({τi, τj})

l(τi)
− 1
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Note that similarly to discount and efficiency, we can use the detour function to
compute the expected shared travel time as a function of the expected classic travel
time: l(τi) · [1 + δiπ({τi, τj})].

To maintain reasonable travel time for a shared rider, a constraint is set to keep
the detour experience by each passenger under some maximum allowed value, denoted
by δmax. A matching policy subject to such detour constraint is denoted by π(·, δmax)
and the set of pairs among shared rides Ts matched together by such policy is denoted
π(Ts, δmax).

The average shared ride detour with respect to a policy is a function that maps a
shared demand density λs and the maximum allowed detour δmax onto the expected
detour experienced by a shared rider δπ for the matching solution obtained with the
matching policy π(·, δmax).

δπ(λs, δmax) =
1

λs
ETs∼D

[ ∑
{τi,τj}∈π(Ts, δmax)

δiπ(·, δmax)({τi, τj})+δ
j
π(·, δmax)({τi, τj})

∣∣∣|Ts| = λs

]

Similarly, the average efficiency of a shared ride with respect to a policy is a
function that maps a demand density and a maximum detour δmax onto the ex-
pected efficiency associated to a shared rider for the matching solution obtained
with π(·, δmax).

effπ(λs, δmax) =
1

λs
ETs∼D

[ ∑
{τi,τj}∈π(Ts, δmax)

lπ(·, δmax)({τi, τj})

/∑
τi∈Ts

l(τi)

∣∣∣∣∣|Ts| = λs

]

Using the definition of shared discount and average detour, we note ps = (1−d)·pc.
The expected utility of user i for shared mode becomes:

uis(τi) = ui0(τi)− l(τi) ·
(
pc · (1− d) + αi ·

[
1 + δπ(λs, δmax)

])
Note that the expected utility of a user for shared is the solution of a complex fixed
point equation as the shared demand density λs is a function of the distribution of
shared expected utility: λs = λ · P

(
us(τ) ≥ max{uit(τ); uc(τ)}

)
Alternative option characteristics

We consider the existence of a public transit option that is the cheapest yet slowest
option. By comparing this option to a classic ride, similar to our formulation for
the characteristics of shared rides, we define D and ∆ as the average discount and
average detour associated with choosing public transit.
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As for shared ride, using the above definitions, we note pt = pc · (1 − D). The
utility of a user for public transit becomes:

uit(τi) = ui0(τi)− l(τi) ·
(
pc · (1−D) + α · (1 + ∆)

)
Model

Our model estimates the expected profit the company can realize with a choice of
discount d and maximum allowed detour a user can experience.

Modeling profit

Profit is a function Vπ that maps the shared ride’s discount d and maximum allowed
detour δmax selected by the e-hailing platform onto its expected profit under some
matching policy π. For the sake of simplicity, let l denote the average shortest path
distance from origin to destination of a trip: l = Eτ{l(τ)}. We assumed that the trip
requested by a passenger is independent of the mode she selects, consequently the
average distance l is an exogenous parameter.

A classic trip generates per unit of distance a revenue of pc and a cost of c ·pc. By
summation, the expected profit per classic ride is (1− c) · pc · l. Similarly, a shared
trip generates a revenue of pc · (1− d) per unit of distance.

Given a matching policy π(·, δmax) and a shared demand density λs, by definition
of expected efficiency effπ, a shared trip generates an expected cost of c · pc · [1 −
effπ(λs, δmax)] per unit of distance. By summation, the expected profit per shared
ride is: [

1− d− c · (1− effπ(λs, δmax)
]
· pc · l

Summing up the expected profit for both shared and classic rides multiplied by
their respective demand densities, we compute the expected profit of the e-hailing
company:

Vπ(d, δmax) = pc · l · Eλc,λs
{
λc · (1− c) + λs ·

[
1− d− c · (1− effπ(λs, δmax)

]}
= pc · l · Eλc,λs

{
(λc + λs) · (1− c) + λs ·

[
c · effπ(λs, δmax)− d

]}
here the distribution of λs and λc is a function of the utility model and the

distribution of T , hence a function of δπ(λs, δmax) and d.
As D is not known, it is not possible to solve this expectation.
We will build an estimate of this expectation to approximate the expected profit.
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Modeling demand

In this section, we focus on the decisions of passengers conditioned on the total
demand density λ. We assume the average detour function δπ(λs, δmax) is known
to the customers prior to making their decision. This assumption can be supported
by the customers acquiring a sense of average detour by spending some time on the
platform.

Given the shared demand density, the probability that a passenger chooses classic,
shared or transit is a function of the shared demand density λs, the maximum allowed
detour δmax and the shared discount d. We note these probability respectively Pc,
Ps and Pt.

As each user chooses the option that maximizes her utility function, user i will
chose classic ride if: uic(τi) > uit(τi) and uic(τi) > uic(τi). Given the shared demand
density, this event occurs if αi >

D
∆
pc and αi >

d
δπ(λs,δmax)

pc. Therefore,

Ps(λs, δmax, d) = 1− Fα

(
max

{
D

∆
;

d

δπ(λs, δmax)

}
pc

)
.

Similarly, user i will choose public transit if uit(τi) > uic(τi) and uit(τi) > uis(τi).
Conditioned on the shared demand density, this event occurs if αi ≤ D

∆
pc and α ≤

D−d
∆−δπ(λs,δmax)

pc. As a result,

Pt(λs, δmax, d) = Fα

(
min

{
D

∆
;

D − d
∆− δπ(λs, δmax)

}
pc

)
.

Finally user i will choose shared ride if uis(τi) > uic(τi) and uis(τi) > uit(τi). The
caveat is that if D−d

∆−δπ(λs,δmax)
> d

δπ(λs,δmax)
, then for any customer quality sensitivity

αi, the shared ride option is dominated by either the classic ride option or by public
transit and as a result, there will be no demand for shared rides. Hence,

Ps(λs, δmax, d) =

[
Fα

(
d

δπ(λs, δmax)
pc

)
− Fα

(
D − d

∆− δπ(λs, δmax)
pc

)]+

.

Conditioned on the total demand density λ, the shared demand density will be
a solution of the equation

λs = λ · Ps(λs, δmax, d).

This establishes that the shared demand density conditioned on the total demand
density is a function of the total demand density λ, the maximum allowed detour
δmax and the shared discount d.
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As presented in the model, there are two key parameters – chosen by the plat-
form – that affect the expected profit of shared ride: (i) the shared discount d and
(ii) the maximum allowed detour δmax. The expected shared profit decreases when
d increases, however increasing δmax increases the shared demand by raising the
expected utility. On the other hand, increasing the maximum allowed detour δmax
increases the expected unit profit of shared rides while decreasing the shared demand.

The maximum allowed detour is a constraint of the matching policy, thus relaxing
the constraint by increasing δmax increases effπ. However, the average detour δπ is
also an increasing function of δmax, thus increasing δmax reduces the expected shared
utility.

The platform must find the optimal balance between these parameters. To study
the profitability of shared rides in a given region of interest, we analyse for what
ranges of d and δmax the expected profit increases by introducing shared rides to the
market, i.e. V (d, δmax) > V (0, ·).

We emphasize that the expected profit as described above is intractable as it
needs solving a discontinuous fixed point equation. The rest of the paper presents
the estimators we build for δπ(λs, δmax), effπ(λs, δmax) and P (d, δmax).

3.3 Estimating detour and efficiency

The expected detour δπ and the expected efficiency effπ functions are intractable to
compute for all matching policy π and distribution of set of trips D .

In this section, we develop estimates for the expected detour δπ and expected
efficiency effπ functions.

We have called π a matching policy and for any given set of shared trips Ts, we
have denoted by π(Ts) the set of matches realized by π.

Throughout this section, we use π to establish a relationship between the shared
demand density λs, the maximum allowed detour δmax, the efficiency effπ and the
average detour δπ. For samples of sets of trips (T k

s ) and a matching policy π, we
will compute Monte Carlo estimates of the efficiency effπ and the average detour
δπ.

Due to different constraints on waiting and travelling time, the description of
matching policies is not trivial, it is covered in Appendix B.

Demand and trip set distribution

Since the distribution of trips and the utility are independent, we assume that a
uniform sample of λ trips from a data set of taxi requests is distributed with respect



CHAPTER 3. SHARED RIDE SUSTAINABILITY 77

to the distribution of set of trips D conditioned on the cardinality of the set being
λ.

The average detour δπ(λs, δmax) and the average efficiency effπ(λs, δmax) are con-
ditional expectations of some random variable with respect to the distribution of set
of trips D conditioned on the cardinality of the set being λ.

We sample N sets of taxi trips (T k
s )k∈{1,...,N} of cardinality λs. By averaging the

detours and efficiencies, we build Monte Carlo estimates δ̂π(λ, δmax) and ˆeffπ(λ, δmax)

δ̂π(λ, δmax) =
1

λs ·N
∑

k∈{1,...,N}
{τi,τj}∈π(T k

s , δmax)

[
δiπ(·, δmax)({τi, τj}) + δjπ(·, δmax)({τi, τj})

]

ˆeffπ(λ, δmax) =
1

λs ·N
∑

k∈{1,...,N}

[ ∑
{τi,τj}∈π(T k

s , δmax)

lπ(·, δmax)({τi, τj})

/ ∑
τi∈T k

s

l(τi)

]

For tractability reasons, we cannot build such Monte Carlo estimates for all units
of shared demand density and all possible values of the maximum allowed detour
δmax. Hence we propose to approximate the expected detour and efficiency by fitting
a function which closed form is known on the Monte Carlo estimates. The parameters
of such the closed form estimates are fitted by minimizing the squared distance
between the estimate and average detour and efficiency over each sampled data set.

3.4 Estimating the profit function

In this section, we build an estimate of the expected profit of a e-hailing platform
using the matching policy π(·, δmax).

We first estimate the expected profit conditioned on the total demand density
λ. From the matching simulations, we have obtained Monte Carlo estimates of the
average efficiency and the average detour conditioned on the shared demand density
λs. Conditioning on the total demand density λ and using δ̂π(·, δmax)(λs,δmax), we let

λ̂s and λ̂c be the estimated demand densities.
We define V̂π(·, δmax)(d,δmax,λ) as the estimate of the expected profit conditioned on

the total demand density λ.

V̂π(d, δmax, λ) = pc · l ·
(

(λ̂c + λ̂s) · (1− c) + λ̂s ·
[
c · ˆeffπ(λ̂s, δmax)− d

])
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3.5 Numerical analysis

Our first analysis focuses on the regional market of Manhattan. We study the peak
hours on Monday morning between 8 A.M. and 9 A.M. Our goal is to provide quan-
titative insights on whether or not there is a profitable market for both classic and
shared ride in Manhattan during peak hours.

This analysis is based on publicly available data such as Open Street Map [23]
for the road network, New York Yellow Taxi Dataset for the distribution of sets of
trips, MTA data [22] for the demand density.

Estimating detour and efficiency

The matching policy plays a crucial role in determining the discount and maximum
detour a market is suited for and it directly impacts the expected efficiency and
the estimated profit a e-hailing company can realize. To increase the relevance of
this analysis, we compare three matching policies described in Appendix B: Greedy
batching, Vertex additive and Clairvoyant offline.

Clairvoyant offline solves the matching problem to optimality with perfect knowl-
edge of all trip requests. It sets an upper bound on the expected profit of the regional
market.

Greedy batching batches trip requests for a short period of time then myopi-
cally matches the available requests. This policy can be implemented by a e-hailing
company, it thus sets a lower bound on the expected profit of the regional market.

Vertex additive is a matching policy developed to solve a dynamic matching
problem under limited time [1]. This policy uses the spatial distribution of trip
requests to set spatial minimum efficiencies. Similarly to Greedy batching, this
policy batches trip requests for a short period of time. It then matches the available
requests subject to the constraint of minimum efficiency. This policy is meant to be
comparable with the proprietary algorithms of e-hailing companies.

In the model, we assume the trip request and the choice of mode of transportation
are independent. Consequently, a sample of n trips from the New York Taxi Data is
distributed with respect to D knowing that the demand density is n.

Estimates for expected detour and efficiency are built on sets of trips sampled
from a data set of New York yellow taxi trips that occurred on Monday morning
during peak hours.

For each maximum detour value studied and each demand density of interest, we
sample 40 sets of trips and compute an estimate of detour and efficiency.
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Estimates of expected efficiency

The Monte Carlo estimates of efficiency for each policy are presented in Figure 3.1
with the policies from left to right in this order: Greedy batching, Vertex additive
and Clairvoyant offline. The value of the maximum detour δmax is reported on the
y-axis, while the shared demand density λs is reported on the x-axis. We note that
as the demand density increases and the detour constraint relaxes, the expected
efficiency increases to reach an asymptotic maximum. As expected, the efficiency of
the Vertex additive policy falls between the one of Greedy batching and Clairvoyant
offline.

Figure 3.1 shows a common structure: efficiency gain with demand density or
maximum detour value is decreasing exponentially. We use a closed form estimates
built on three parameters to capture this structure. By a slight abuse of notation,
we denote the first parameter by eff∞π . It models the maximum expected efficiency
reachable by the matching policy when both maximum detour δmax and shared dis-
count d go to infinity. The two other parameters are denoted θλπ (resp. θδπ), modeling
the rate at which expected efficiency gain is decreasing with demand density (resp.
maximum detour value). We propose the following close form estimate:

ˆeffπ(λs, δmax) = eff∞π · (1− exp{−θλπ · λs}) · (1− exp{−θδπ · δmax}) (3.2)

Figure 3.2 shows these closed form estimates fitted on the Monte Carlo estimates.
We provide in Figure 3.3 the mean squared error associated with each closed form
estimate. The policy Greedy batching, Vertex additive and Clairvoyant offline are
presented from left to right in that order.

Similarly, the Monte Carlo estimates of expected detour for each policy are pre-
sented in Figure 3.4. The expected detour for a match realized by a matching policy
π has been defined as a function of shared demand density λs and detour constraint
value δmax. The caveat with this formulation is that the shared demand density λs,
conditioned on the demand density λ, is the solution of a fixed point equation:

λs = λ ·
(
Fα

(
d

δπ(λs, δmax)
pc

)
− Fα

(
D − d

∆− δπ(λs, δmax)
pc

))+

Figure 3.4 shows that demand density has a limited impact on the estimates
of expected detours. Its impact appears to be restricted to lower ranges of shared
demand density. Such ranges of demand density are likely to not generate enough
efficiency for shared ride to be profitable. Note that ignoring the impact of demand
density on the expected detour introduces a positive bias on expected detour for
low density thus making the mode less attractive to users. Consequently, such a



CHAPTER 3. SHARED RIDE SUSTAINABILITY 80

0
20

00
40

00
60

00
80

00
10

00
0

Sh
ar

ed
 d

em
an

d 
de

ns
ity

 (
s)

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Maximum detour (max)

Gr
ee

dy
 B

at
ch

in
g 

Av
er

ag
e 

Ef
fic

ie
nc

y

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

0.
40

0
20

00
40

00
60

00
80

00
10

00
0

Sh
ar

ed
 d

em
an

d 
de

ns
ity

 (
s)

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Maximum detour (max)

Ve
rte

x 
Ad

di
tiv

e 
Av

er
ag

e 
Ef

fic
ie

nc
y

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

0.
40

0
20

00
40

00
60

00
80

00
10

00
0

Sh
ar

ed
 d

em
an

d 
de

ns
ity

 (
s)

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Maximum detour (max)

Cl
ai

rv
oy

an
t O

ffl
in

e 
Av

er
ag

e 
Ef

fic
ie

nc
y

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

0.
40

F
ig

u
re

3.
1:

E
st

im
at

es
of

ex
p

ec
te

d
effi

ci
en

cy
p

er
p

ol
ic

y

0
20

00
40

00
60

00
80

00
10

00
0

Sh
ar

ed
 d

em
an

d 
de

ns
ity

 (
s)

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Maximum detour (max)Gr
ee

dy
 B

at
ch

in
g 

Av
er

ag
e 

Ef
fic

ie
nc

y 
Pr

ed
ict

or 0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

0.
40

0
20

00
40

00
60

00
80

00
10

00
0

Sh
ar

ed
 d

em
an

d 
de

ns
ity

 (
s)

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Maximum detour (max)Ve
rte

x 
Ad

di
tiv

e 
Av

er
ag

e 
Ef

fic
ie

nc
y 

Pr
ed

ict
or 0.

05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

0.
40

0
20

00
40

00
60

00
80

00
10

00
0

Sh
ar

ed
 d

em
an

d 
de

ns
ity

 (
s)

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Maximum detour (max)Cl
ai

rv
oy

an
t O

ffl
in

e 
Av

er
ag

e 
Ef

fic
ie

nc
y 

Pr
ed

ict
or 0.

05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

0.
40

F
ig

u
re

3.
2:

F
it

te
d

cl
os

ed
fo

rm
es

ti
m

at
es

of
ex

p
ec

te
d

effi
ci

en
cy

p
er

p
ol

ic
y

0
20

00
40

00
60

00
80

00
10

00
0

Sh
ar

ed
 d

em
an

d 
de

ns
ity

 (
s)

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Maximum detour (max)Gr
ee

dy
 B

at
ch

in
g 

Ef
fic

ie
nc

y 
Pr

ed
ict

or
 M

SE

0.
00

2

0.
00

4

0.
00

6

0.
00

8

0.
01

0

0.
01

2

0.
01

4

0
20

00
40

00
60

00
80

00
10

00
0

Sh
ar

ed
 d

em
an

d 
de

ns
ity

 (
s)

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Maximum detour (max)

Ve
rte

x 
Ad

di
tiv

e 
Ef

fic
ie

nc
y 

Pr
ed

ict
or

 M
SE

0.
00

2

0.
00

4

0.
00

6

0.
00

8

0.
01

0

0.
01

2

0.
01

4

0
20

00
40

00
60

00
80

00
10

00
0

Sh
ar

ed
 d

em
an

d 
de

ns
ity

 (
s)

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Maximum detour (max)Cl
ai

rv
oy

an
t O

ffl
in

e 
Ef

fic
ie

nc
y 

Pr
ed

ict
or

 M
SE

0.
00

2

0.
00

4

0.
00

6

0.
00

8

0.
01

0

0.
01

2

0.
01

4

F
ig

u
re

3.
3:

M
ea

n
sq

u
ar

ed
er

ro
r

of
th

e
fi
tt

ed
es

ti
m

at
es

of
ex

p
ec

te
d

effi
ci

en
cy

p
er

p
ol

ic
y



CHAPTER 3. SHARED RIDE SUSTAINABILITY 81

simplification does not make low shared density ranges seem more profitable in our
estimate of profit than they really is. Therefore, to simplify the equation of expected
profit, we propose to use a function of the detour constraint δmax only as a closed
form formulation of the estimate of expected detour. Similarly to the structure of
efficiency, we note that the marginal increase of expected detour decreases exponen-
tially with the maximum detour value. We use a closed form estimates built on
two parameters to capture this structure. Again with a slight abuse of notation, we
denote the first parameter by δ∞π . It models the maximum expected detour reached
by a matching policy π when the maximum detour value δmax goes to infinity. The
second parameter, i.e., the rate at which marginal gain decreases exponentially, is
denoted γδπ:

δ̂π(δmax) = δ∞π · (1− exp{−γδπ · δmax})

Figure 3.5 shows such closed form estimate fitted, along with the mean squared
error on Figure 3.6. On both figures, policies Greedy batching, Vertex additive and
Clairvoyant offline are presented from left to right in this order.

Demand density

A closed form formulation of the demand density for each mode can be computed
from the estimate of expected detour. We are specifically interested in the classic
and shared demand density conditioned on the trip demand density to compute the
profit:

λs(λ, δmax) = λ ·
(
Fα

(
d

δ̂π(δmax)
pc

)
− Fα

(
D − d

∆− δ̂π(δmax)
pc

))+

λc(λ, δmax) = λ ·
(

1− Fα
(

max

{
d

δ̂π(δmax)
;
D

∆

}
· pc
))

For this analysis, we assume that the time sensitivity of passenger, denoted α is
distributed with respect to an exponential distribution of parameter . At this stage,
this assumption is not yet backed by thorough data analyses, following research
will focus on developing more realistic utility functions. Note that our goal is to
provide a framework to e-hailing platform’s managers so they can take decisions
driven by quantitative insights. As e-hailing platforms survey their users, they learn
the distribution of their time sensitivity and can use this information in the present
framework.
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λs(λ, δmax) = λ ·
(

exp

{
− · D − d

∆− δ̂π(δmax)
pc

}
− exp

{
· d

δ̂π(δmax)
pc

})+

λc(λ, δmax) = λ ·
(

exp

{
max

{
d

δ̂π(δmax)
;
D

∆

}
· pc
})

Figure 3.7 shows the probability that a passenger selects any of the three modes as
a function of the discount d. The maximum detour value δmax is set to 40% and the
estimate of expected profit of the Vertex additive policy is used in place on δ̂π.
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Figure 3.7: Market share of each mode as a function of discount and detour constraint

Profit estimates

We are now equipped to compute an estimate of the profit. During Monday morning
peak hours, entry data from the MTA subway [22] indicates that nearly a million
people are looking for a mean of transportation. Assuming for instance that the
supply cost c is of 75%, Figure 3.8 reports the expected profit as a function of the
shared discount d on the x-axis and the detour constraint δmax on the y-axis. In
each subfigures of Figure 3.8, the top left triangle shows a constant profit value. For
this range of discount and detour constraint, the demand density for shared ride is
negligible and the profit is generated by classic rides. To strengthen the relevance of
this study, we run sensitivity analysis with respect to the supply cost c, Figure 3.8
also shows the expected profit for c = 0.9 and c = 0.99.
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The numerical analysis indicates there is a profitable market for shared rides in
Manhattan during Monday morning peak hours. This observation holds even for
the weaker Greedy batching policy. This suggests that even when unsure about the
quality of its matching policy, having shared rides in Manhattan during morning
commute hours is probably still worthwhile for an e-hailing platform. Note that
this regional market is unique and has high expected efficiency even for the Greedy
batching policy, such statement may not be possible in other markets or during
another time of the day.

3.6 Conclusion

In this Chapter, we proposed a framework to study the existence of a profitable
equilibrium with shared and classic rides in a regional market. As the general formu-
lation is intractable to solve, we developed a simulation engine to estimate quantities
such as expected efficiency and expected detour. We ran the analysis on Manhattan
regional market during morning commute hours and the results indicate that there
is a profitable equilibrium for this market.

This project is part of an ongoing effort to understand the interaction between
detour and discount in the ride sharing industry. Here are some of the extension we
will be working on:

The topology of the road network and the demand pattern have a direct impact
on the efficiency effπ of a matching policy π. In this paper, we chose to focus on
Manhattan for the shared ride market of the island has been well studied in the
literature and the city makes publicly accessible taxi data-sets. A similar approach
can be applied to other cities. We will conduct a comparative study on different
cities in the United States. The goal of this analysis is to quantify the impact of
demand patterns, such as pendulum migrations, on the efficiency in a given road
network.

Our analysis is based on a single discount value d set for the regional market. In
reality, e-hailing platforms set the discount per trip in hope of nudging passengers
away from requesting a shared ride on a less efficient routes. The model of this
paper relies on the assumption that a passenger’s choice of mean of transportation
is independent of the trip she requests, with a trip specific shared discount, this
assumption does not hold. We will further our research in this direction to provide
impactful insight for e-hailing companies.

The rise of the e-hailing platforms sparked the development of stiffer regulations
from the cities. The city of New York has been particularly fast to voting new
regulation to protect drivers and favor taxis over e-hailing companies. For instance,
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it had e-hailing companies limit the number of cars they have on their apps [28] and
enforces a minimum pick-up fee for the pick up of each shared passengers [10]. These
regulations often have unintended consequences on the industry. We will extend
the framework of this paper to provide quantitative insight on the impact of these
regulations on the shared ride industry.
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Appendix A

Data-Driven Inventory Placement
for E-Tailer

A.1 Complexity of the FDC inventory placement

problem

The FDC assortment problem is NP hard by reduction from the k densest subgraph
problem. For G = (V,E) an undirected graph, solving the k densest subgraph
problem corresponds to finding a subset U ∈ V of vertices of size k so that it
maximizes the average degree d∗ = 2|E(U)|/k where |E(U)| denotes the number of
edges in the subgraph induced by U . For each vertex vi ∈ V , let product i be in the
set of products I. For each edge (vi, vj) ∈ E, let order type o = (i, j) be in the set of
order type O with µDo = 1. Solving the k FDC assortment problem selects the set S
of k products that fulfills the maximum number of orders, which is equivalent to the
set of nodes that maximizes |E(U)|. Therefore, if MIP can be solved in polynomial
time, so can the k-densest subgraph.

A.2 Industry standard: ranking algorithm

This industry standard algorithm assigns a score to each SKU i equal to
∑

o∈O,i∈o µDo/|o|.
The algorithm outputs the k SKUs with the highest score. This algorithm in practice
shows good performance.

There is no performance bound. Let aj, bj, c
aj
1 , c

aj
2 , c

aj
3 be 5k unique products for

j ∈ {1, . . . , k}. By setting µDo = 1 only for o ∈ {{bj}, {aj, c
aj
1 }, {aj, c

aj
2 }, {aj, c

aj
3 }},

this algorithm selects the {aj|j ∈ 1, . . . , k} missing all the orders where the optimal
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solution {bj|j ∈ 1, . . . , k} fulfills k orders.
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Appendix B

Matching policies for Shared Ride
simulations

Since we do not have access to any e-hailing platform proprietary matching policy,
we will evaluate the efficiency and the detour of three matching polices. The first
matching policy, called Clairvoyant offline, provides an upper bound on the efficiency
an e-hailing platform can realize. The two others are more realistic policies, both
weaker in knowledge and more restrictive than the clairvoyant offline policy.

Clairvoyant offline solves the matching problem with perfect knowledge of all
requests. It provides an upper-bound on the efficiency any e-hailing platform can
achieve subject to the same constraints.

Greedy batching is a simple myopic matching policy that solves to optimality a
weighted matching problem every few seconds. This matching policy will provide a
lower bound on the e-hailing platform profit

Vertex Additive is a state of the art matching policy for dynamic stochastic match-
ing under limited time. This algorithm can easily be implemented by an e-hailing
platform, it will therefore provide a realistic estimate of the e-hailing platform profit.

B.1 Passenger waiting time

Under the assumption of perfect supply, it is always feasible to immediately pickup
a passenger. We also assume that every vehicle moves at a constant speed in the
road network N

E-hailing platform have their passenger wait before a driver is dispatched to batch
demand and make better matching decisions. To keep waiting time reasonable, the
waiting time of a shared rider is upper bounded by w.
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During the waiting time, a trip τi can be matched to τj only if both passengers
can be picked up before the end of their waiting windows. We focus on the case
where i is picked up first, the other cases are defined analogously. For passenger i
being the first pick up, the match is feasible only if i can reach Oj before j leaves its
waiting window. The earliest time i can start moving toward Oj is at request time
ti. Thus, the match is feasible only if ti + l(Oi, Oj) ≤ tj + w

If a passenger is still unmatched at the end of her waiting time, she has to be
picked up by a driver and start moving in some direction with respect to the matching
policy π. For instance, since clairvoyant offline policy has perfect knowledge of all
requests, it can route a passenger toward the pickup location of some passenger that
has yet to request.

Once the waiting time has elapsed, the passenger is picked up by a driver and any
additional wait time or travelled distance is accounted for in the detour experienced
by the passenger and the total cost of the route.

B.2 Clairvoyant offline policy

In this Subsection, π will refer to the Clairvoyant offline policy.
The offline matching policy is a clairvoyant policy, i.e., it has perfect knowledge

of all trip requests. Consequently, this policy can route a passenger in any direction
and this at any moment during the passenger’s waiting time.

For simplification of notation, we focus on the match {τi, τj}, where passenger
i is picked up first and the driver has to pass by Oi, Oj, Di and Dj in that or-
der. All other cases (Oi, Oj, Dj, Di), (Oj, Oi, Di, Dj) and (Oj, Oi, Dj, Di) are defined
analogously.

Once the waiting time has elapsed, the passenger is picked up by a driver, and
can start moving in any direction. In our example, the latest time at which passenger
i can reach Oj is ti + w + l(Oi, Oj), hence the minimum additional waiting time for

i in {τi, τj} is:
(
tj − [ti + w + l(Oi, Oj)]

)+
where (·)+ = max(0; ·). This additional

waiting time is accounted for in the detour and the total distance travelled.
We can derive the total distance travelled by passenger i when matched with j

under the clairvoyant offline policy π. We called this distance liπ({τi, τj}). In our
example, passenger i is being picked up first and start moving toward Oj such that
her additional waiting time is minimized. Consequently, she will travel l(Oi, Oj) +

l(Oj, Di) to reach her destination and will wait
(
tj − [ti + w + l(Oi, Oj)]

)+
at Oj:

liπ({τi, τj}) = l(Oi, Oj) + l(Oj, Di) +
(
tj − [ti + w + l(Oi, Oj)]

)+
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Passenger i experiences a longer trip due to the match {τi, τj}. Her trip is delayed

by: l(Oi, Oj) + l(Oj, Di) +
(
tj − [ti + w + l(Oi, Oj)]

)+ − l(Oi, Dj). This quantity is
captured by the ratio of additional travel distance for i that is denoted δiπ({τi, τj}):

δiπ({τi, τj}) =
l(Oi, Oj) + l(Oj, Di) +

(
tj − [ti + w + l(Oi, Oj)]

)+ − l(Oi, Dj)

l(Oi, Dj)

Similarly, passenger j stops at Di, hence she travels l(Oj, Di) + l(Di, Dj). Since
the match is feasible only if the second pickup j can be picked up during her waiting
time, j does not experience any additional waiting time:

ljπ({τi, τj}) = l(Oj, Di) + l(Di, Dj)

Passenger j experiences a longer trip due to the match {τi, τj}. Her trip is delayed by:
l(Oj, Di) + l(Di, Dj)− l(Oj, Dj). The ratio of additional travel distance is computed
as follows:

δjπ({τi, τj}) =
l(Oj, Di) + l(Di, Dj)− l(Oj, Dj)

l(Oj, Dj)

The total distance and additional wait time that has to be paid to the driver has
been called lπ({τi, τj}). In our example, it is computed as follows:

lπ({τi, τj}) = l(Oi, Oj) + l(Oj, Di) + l(Di, Dj) +
(
tj − [ti + w + l(Oi, Oj)]

)+

To make the mode more attractive, e-hailing platforms have maximum detour
value δmax, the offline policy subject to such detour constraint is denoted π(·, δmax).
Under this matching policy, the match {τi, τj} is feasible only if

δiπ({τi, τj}) ≤ δmax and δjπ({τi, τj}) ≤ δmax

Only the feasible ordering for π(·, δmax) that minimizes the total travelled dis-
tance is relevant. We note that minimizing the total travelled distance is equivalent
to maximizing the cost savings lπ(·, δmax)({τi, τj})− l(τi)− l(τj)

The Clairvoyant offline policy minimizes the total distance travelled for a set of
shared trips Ts by finding a maximum weighted matching in a graph where the nodes
correspond to the trip and the edge weights are the cost saving realized by the match
of the two corresponding end-nodes.

B.3 Restriction on feasibility of matches for

Greedy batching and Vertex additive

In this Subsection, π refer to a Greedy batching or a Vertex additive policy inter-
changeably.
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Greedy batching and Vertex additive are not clairvoyant policies, hence matches
have to be made dynamically with only partial information of the set of trip requests.
Both policies only have knowledge of past requests and the available waiting time of
passengers.

For simplification of notation, we focus on the match {τi, τj}, where passenger
i is picked up first and the driver has to pass by Oi, Oj, Di and Dj in that or-
der. All other cases (Oi, Oj, Dj, Di), (Oj, Oi, Di, Dj) and (Oj, Oi, Dj, Di) are defined
analogously.

Once the waiting time of a passenger has elapsed, should she remain unmatched,
she is picked up by a driver and starts moving from her pickup location to her drop-
off location along the shortest path p in N . By a slight abuse of notation, we denote
pi the shortest path associated with trip τi

In our example, passenger i starts moving from the pickup location Oi toward the
drop-off location Di along the shortest path pi in N at time ti+w. The earliest time
passenger i can be routed toward passenger j’s pickup location is when passenger j
requests at tj. At that time, passenger i has travelled (tj − ti − w).

We denote by Ui(tj) the first node passenger i can reach along the shortest path
after passenger j has requested, and κi(tj) the distance left to cover to reach this
node. Figure B.1 provides an example of such situation, it represents a snapshot
at tj with passenger i on route and passenger j at its pickup location. The match
{τi, τj} is feasible only if passenger j is still in her waiting window when passenger i
reaches Oi: κi(tj) + l(Ui(tj), Oj) ≤ tj + w. Ui(t) and κi(t) are computed as follows:

Ui(t) = arg min
u∈pi

{
l(Oi, u)|l(Oi, u) ≥ (t− ti − w)+

}
κi(t) = ti + w + l

(
Oi, Ui(t)

)
− t

We can now derive the total distance travelled by passenger i when matched
with passenger j. This distance has been called liπ({τi, τj}). In our example, when
passenger j requests at time tj, passenger i can be routed toward Dj after traveling
from Oi to Ui(tj).

liπ({τi, τj}) = l(Oi, Ui(tj)) + l(Ui(tj), Oj) + l(Oj, Di)

Passenger i experiences a longer trip due to the match {τi, τj}. Her trip is delayed
by l(Oi, Ui(tj)) + l(Ui(tj), Oj) + l(Oj, Di) − l(Oi, Di). This quantity is captured by
the ratio of additional travel distance for i denoted δiπ({τi, τj}):

δiπ({τi, τj}) =
l(Oi, Ui(tj)) + l(Ui(tj), Oj) + l(Oj, Di)− l(Oi, Di)

l(Oi, Di)
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Figure B.1: Example of a passenger j requesting while passenger i is on route

Similarly, passenger j stops at Di, hence she travels l(Oj, Di) + l(Di, Dj). Since
j is the second pickup, there is no additional detour:

ljπ({τi, τj}) = l(Oj, Di) + l(Di, Dj)

Passenger j experiences a longer trip due to the match {τi, τj}. The trip is delayed
by ljπ({τi, τj}) = l(Oj, Di) + l(Di, Dj) − l(Oj, Dj) and the ratio of additional travel
distance is computed as follows:

δjπ =
ljπ({τi, τj}) = l(Oj, Di) + l(Di, Dj)− l(Oj, Dj)

l(Oj, Dj)

We have called lπ({τi, τj}) the total distance travelled by the driver. In our
example, it is computed as follows:

lπ({τi, τj}) = l(Oi, Ui(tj)) + l(Ui(tj), Oj) + l(Oj, Di) + l(Di, Dj)

For a maximum detour value δmax, the matching policy subject to such detour
constraint is denoted π(·, δmax). Under this matching policy, the match {τi, τj} is
feasible only if

δiπ({τi, τj}) ≤ δmax and δjπ({τi, τj}) ≤ δmax
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Added to these constraints, the Vertex Additive policy has an additional con-
straint per match on the cost savings. The trips are clustered in trip types and a
minimum cost savings parameter is learnt with respect to each trip type’s arrival
rate. The detail of this computation can be found in [1].

Greedy batching and Vertex additive policies are both heuristics to minimize the
total operating costs. These policy batch demand for a short period of time and then
find a maximum weighted matching on a graph where the nodes correspond to past
unmatched trip requests and the edges weight are the cost savings realized by the
match of the two corresponding end-nodes.




