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Abstract 
We propose and implement a relatively simple computational 
neural-network model of number comparison. Training on 
paired comparisons of the integers 1-9 enables the model to 
efficiently and accurately simulate some fundamental 
empirical phenomena (distance and ratio effects on accuracy 
and response time). It also generalizes robustly to more 
advanced tasks involving multidigit integers, negative 
numbers, and decimal numbers. The work demonstrates that 
small neural networks can sometimes efficiently learn a 
powerful system that exhibits extremely robust generalization 
to untrained items. Some important alternate models of number 
comparison are considered to establish a broader context. 
Several predictions and suggestions are made for future 
empirical and computational research in this area.  

Keywords: number comparison; neural networks; 
generalization.  

Introduction 
We all occasionally engage in comparing two numbers to 
each other to determine which is smaller or larger. Such 
comparisons are common, seemingly automatic, and roughly 
accurate. Examples include an investor estimating returns on 
two different investments, a shopper looking for a good deal, 
or a young child selecting a lesser or greater collection of 
similar items such as candies or toys.  

Early psychological research quickly established that such 
number comparisons are not done by consulting a memory 
lookup table. That solution would be inefficient because of 
the number of possible numerical comparisons being 
potentially infinite, and the inability of table lookup to 
account for subtle characteristics of the numbers being 
compared. For example, a sample of  Stanford University 
students asked to quickly and accurately select the larger of 
two single-digit integers in the range 1-9 took longer to 
decide and made slightly more errors when the difference 
between the two integers was small than when it was large 
(Moyer & Landauer, 1967). The authors noted that such 
phenomena also occurred when people were asked to 
compare physical quantities such as length, weight, or 
loudness, suggesting that magnitudes had to be estimated and 
compared before a decision could be made. 

Subsequent experiments found that the ratios between the 
two integers created similar phenomena for both reaction 
time and errors (e.g., Adriano, Girelli, & Rinaldi, 2021). 
When the smaller/larger ratio of the two integers was large 
(e.g., 8/9 = .889), reaction time and errors increased as 
opposed to comparisons involving smaller ratios (e.g., 2/3 = 

.667). Summarizing these empirical findings, integer 
comparisons are quicker and more accurate when the relevant 
magnitudes are easier to distinguish from each other.  

Eventually, various computational models were 
formulated to help explain these and other related 
psychological phenomena. Most of these models utilized 
artificial neural networks. There are currently at least 15 
associated empirical phenomena to explain, and no model 
that simulates and explains all of these phenomena, although 
one model comes close (Huber, Nuerk, Willmes, & Moeller, 
2016).  

In this relatively short paper, there is insufficient space to 
summarize the many empirical and computational modeling 
studies on number comparison. We focus instead on devising 
and implementing a relatively simple computational model 
that does two things. It first simulates some of the 
fundamental empirical phenomena in the number comparison 
literature, namely the effects of distance and ratios between 
the numbers being compared. Second, our model explores the 
issue of how well learning the relative magnitudes of the 1 to 
9 digits generalize to more complex number-comparison 
skills, involving multi-digit, negative, and decimal numbers.  

Method 
To simulate learning how to compare numbers, we use an 
artificial neural network algorithm called cascade-correlation 
(Fahlman & Lebiere, 1990) that has been used effectively in 
many simulations of cognitive development (Dandurand & 
Shultz, 2014; Shultz, 2017). During learning, connection 
weights are adjusted so that overall network error is reduced: 

𝐸 = ∑ ∑ $𝐴!" − 𝑇!"(
#

"!      (Equation 1) 
where E is sum-of-squared error, A is the actual output 
activation for unit o and pattern p, and T is the target output 
activation for this unit and pattern. 

Cascade-correlation training starts with a two-layer 
network (i.e., only the input and the output layer), and then 
recruits hidden units one at a time, if needed, to solve the 
problem being learned. Number comparison turns out to be 
sufficiently simple that there is no need to recruit any hidden 
units when the 1-9 integers are being compared. Our cascade-
correlation networks use an asymmetric sigmoid activation 
function for the output units:  

𝑦$ = 1 (1 + 𝑒%&!)⁄      (Equation 2) 
where y is the receiving unit i’s output, 𝑥$ is the net input to 
unit i, and e is the exponential function. Thus, output unit 
activations range from a floor of 0 to a ceiling of 1.  
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A drawing of our number comparison network (dubbed 
NCN) is presented in Figure 1. As is common in neural 
networks, input values are specified numerically. For 
example, to describe a comparison of the numbers 2 and 3, 
activity of the left input unit is 2 and that of the right input 
unit is 3. The activation signal sent to the output units is the 
sum of products of each sending unit activation and its 
connection weight, passed through the activation function 
specified in Equation 2. Output target values are 1 for larger 
and 0 for smaller. A bias unit is typical in neural networks, 
functioning like the intercept added into a linear equation. 
The bias unit has a constant input of 1 and learnable output 
connection weights. This allows shifting the activation 
function in binary comparisons to the left or right, which may 
be important for successful learning.  

A problem in feed-forward neural networks is an inability 
to simulate variation in reaction time because activation 
passes through the network in constant time. To simulate 
reaction times, we add a module that elaborates the network’s 
final decision by cycling the network output to decision units 
in a gradual fashion, while recording the number of cycles 
required for a decision to satisfy a specified constraint. In our 
case, the two decision weights, fixed at 0.1, convey the 
magnitude information to corresponding decision units that 
are initialized to 0. When the absolute difference between the 
decision units reaches a value of .9, cycling stops and the 
number of cycles reached is reported as an index of reaction 
time. The more decisively different the magnitude estimates 
are, the less time it takes to satisfy this criterion. Reaction 
time requires two or more outputs. 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: Diagram of our NCN model. Magnitude outputs of 
a cascade-correlation learning network (colored black) are 
fed to a decision module (colored red) which eventually 
generates an explicit decision and reports the number of 
cycles required to reach that decision. The seven units in the 
cascade-correlation network (black rectangles) are variously 
active and send their activity signals over connection weights 
(black arrows), exciting or inhibiting activity in receiving 
units. The six connection weights in each CC network are 
learned in the service of reducing sum-of-squared-error in the 
magnitude estimations, while the two connection weights in 
the decision module (red arrows) are each fixed at 0.1, 
allowing a gradual buildup of decision strength. 

Results 
Simulation results focus on two important empirical effects 
(difference and ratio) and eventual generalization to later 
developing skills (with multidigit numbers, negative integers, 
and decimal numbers). We run 20 number comparison 
networks in each simulation, allowing for statistical analysis 
of the results. Network performance varies as each network 
is randomly initialized with small connection weights in the 
learning module. 

Difference Effect 
Difference and ratio effects are evident in measures of both 
error and reaction time. Figure 2 shows that error decreases 
as a function of the absolute difference between each pair of 
integers being compared, reflected in a large main effect in a 
repeated-measures ANOVA, F(7, 133) = 191, p < .00001, 
𝜂"#	= .91. Tukey comparisons between adjacent means are 
statistically significant at differences from 1-6, but not from 
6-8, where error is virtually 0.  

In this simulation, networks learn in a mean of 9.65 epochs, 
with an SD of 4.20. Each epoch presents each of the 72 
paired-integer comparisons once, along with the correct 
feedback about which is larger. At the end of each epoch, the 
6 connection weights in the learning network are adjusted to 
lower the sum-of-squared error (Equation 1).  
 

 
 

Figure 2: Mean error (with SD) as a function of difference 
between the two integers being compared. 

 
Two examples of learning progress by individual networks 

are shown in Figure 3. The first network starts with no pairs 
correct and reaches complete correctness in 7 epochs. The 
second network starts with half of the pairs correct (by 
chance) and reaches fully correct performance in 9 epochs. 
Such up and down progress is typical in this learning. 
Because initial connection weights are initialized to random 
values, networks vary in their learning performance. 
Importantly, these two examples demonstrate that, without 
learning, a network has no knowledge of the relative 
magnitude of numerical digits.  

 

  Decide left 
 

   Decide right 

      Left magnitude Right magnitude 

     Left number Right number Bias 
unit 
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Figure 3: Learning progress in each of two representative 
networks across epochs. 

 
In an analogous ANOVA of cycles to reach a decision, 

Figure 4 shows that mean cycles to reach a decision decrease 
as a function of the absolute difference between the integers 
being compared, with a large main effect of difference, F(7, 
133) = 158, p < .00001, 𝜂"#	= .89. Tukey comparisons 
between adjacent means are statistically significant at 
differences from 1-7, but not from 7-8, where cycles 
approach a floor asymptote.  
 

 
 

Figure 4: Mean cycles to reach a decision as a function of 
difference between the two integers being compared, in 20 

neural networks. 
 

In other work, we developed a mathematical model of 
NCN system to gain insights into how and why this neural 

network accomplishes accurate number comparison. An 
interesting prediction of the math model is that the positive 
and negative weights entering an output node are additive 
inverses of each other, ensuring that they sum to about 0. 
Other aspects of the learned connection weights vary 
randomly, as initial weight values are set randomly.  

We test this additive inverse prediction by analyzing the 
sizes and signs of the learned connection weights. A typical 
example of this analysis is shown in Figure 5, which presents 
the final connection weights learned by a single 
representative network in the number-difference simulation. 
There, the weight pairs that become approximate additive 
inverses are:  
• LN-LM (1.4) and RN-LM (-1.22). These are the two 

weights multiplying the left and right integers leading 
to the left magnitude output, which for this network 
are 1.4 and -1.22, respectively.  

• RN-RM (.97) and LN-RM (-1). These are the two 
weights multiplying the left and right integers leading 
to the right magnitude output, which for this network 
are .97 and -1, respectively.  

Direct weights (that favor left side or right side) become 
positive, while crossover weights (from one side to the other 
side) become negative, which helps to inhibit the opposite 
alternative. This connection-weight pattern is approximated 
by all the networks in all the present simulations, although 
each network solution is effectively unique because of 
different initial weight values.  

 
 

 
 
Figure 5: Connection weights in a representative single 
network in the difference-effect simulation. LN is left input 
number, B is bias unit, RN is right input number, LM is left 
magnitude output, and RM is right magnitude output. 
Positive input weights are colored gold, negative input 
weights are colored purple, and bias weights are colored 
black. 
 

The additive-inverse prediction of the mathematical model 
is confirmed overall in Figure 6 which plots the value of the 
crossover weight as a function of the direct weight entering a 
magnitude output unit. Linear regressions explain nearly all 
the R2 variance, as noted in Figure 6.  
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Figure 6: Crossover weights as a function of direct weights 
for each of 20 networks in the number-difference simulation. 
Each circle represents a pair of weights entering the left or 
right magnitude output unit. The fact that these weights cling 
to the estimated line shows that the two weights are nearly 
additively inverse, summing to approximately 0 and 
confirming the math model prediction. 
 
Ratio Effect 
 
A second simulation addresses the ratio effect, the idea that 
increasing ratios of the smaller to larger integer would 
increase difficulty in the form of both increases in error and 
slower reaction time. Figure 7 presents the impact of these 
ratios on error. A repeated-measures ANOVA of error yields 
a large main effect of ratio, F(26, 494) = 92, p < .00001, 𝜂"#	= 
.83. Sum of squared error increases with the ratio of the 
smaller to the larger integer being compared.  

Similarly, an analogous ANOVA produces a large main 
effect of ratio on mean cycles to make a decision, F(26, 494) 
= 83, p < .00001, 𝜂"#	= .81. As shown in Figure 8, it takes 
longer to reach a decision as the ratio of smaller to larger 
integer increases.  
 
 

 
 

Figure 7: Mean error as a function of the ratio of the 
smaller to larger integer being compared. 

 

 
 

Figure 8: Mean cycles to reach a decision as a function of 
integer ratio. 

 
Although it was noted at the dawn of number comparison 

research that distance and ratio measures could be related 
(Moyer & Landauer, 1967), we precisely quantify this 
relationship by computing a Pearson correlation between 
absolute differences and smaller/larger ratios for the integer 
pairs 1-9, r(34) = -.843, p < .00001. There are 72 of these 
unequal pairs, but only 36 if the direction of the differences 
is correctly ignored. This strong relationship implies that 
difference and ratio effects could be confounded in some 
studies of the 1-9 integer pairs, although the distance to a 
perfect correlation (.157) leaves room for the two effects to 
be somewhat independent in this integer range.  

 
Generalization to Advanced Number Types 
 
Three additional simulations examine whether training only 
on pairs of the 9 single digits would generalize to novel 
combinations of two, three, and four digit numbers. The 
answer is an emphatic yes. Each of these simulations uses 20 
randomly drawn pairs of 2-, 3-, or 4-digit numbers. As shown 
in Table 1, training on the 1-9 single digits generalizes 
strongly to untrained novel comparisons of 2-, 3-, and 4-digit 
integers.  
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In the last row of Table 1 are the potential numbers of digit 
pairs to which this level of generalization applies. This 
potential number is computed with the standard equation for 
permutations of n numbers taken r at time, where order 
matters: 𝑛𝑃𝑟 = 𝑛! (𝑛 − 𝑟)⁄ ! 

 Although the number comparison model could generalize 
to untrained integers of more than 4 digits, we do not have 
access to a computer that could generate the potential number 
of patterns at 5 digits. Suffice it to say that NCN generalizes 
robustly from learning the 72 pairs of the first 9 integers.  

 
Table 1: Mean proportion of correct generalizations out of 

20 randomly selected example pairs, with SD and number of 
possible permutations of those digits. 

 
 2 digits 3 digits 4 digits 

Integer range 10-99 100-999 1000-9999 
Mean correct .97 .96 .93 
SD correct .04 .02 .08 
Potential 
number of 
pairs 

8,010 809,100 80,911,000 

 
Two further simulations show similarly strong 

generalization from learning the 1-9 pairs to untrained 
negative integers and 2-digit decimal numbers (Table 2).  

 
Table 2: Mean proportion of correct generalizations to 72 

test pairs of negative numbers (-1 to -9) and 72 test pairs of 
decimal numbers (1.5 to 9.5), each increasing in steps of 1. 

   
Indicator Negatives Decimals 

Mean correct .90 .9993 
SD correct .07 .003 

Discussion 
Our NCN system simulates a range of number comparison 
phenomena: distance and ratio effects and strong 
generalization to multidigit integers and other advanced 
number types (negative numbers and decimal numbers). It is 
essential to cover distance and ratio effects, showing that the 
underlying computation is not a memory-based lookup table 
and supporting a more abstract principle that accuracy and 
reaction time both improve with numbers that are easier to 
distinguish, whether by differences or ratios.  

As far as we know, this is the first computational model to 
explore generalization across number types. Previous 
computational models of number comparison invariably 
trained and tested on a single type of number, whether 2-digit 
integers, negative numbers, or decimal numbers. The NCN 
model uniquely generalizes robustly from training on only 
the 1-9 digits to multidigit numbers, negative numbers, and 
decimal numbers, with success rates in the mid .90s.  

We do not claim children automatically generalize that 
well to these advanced types because they obviously do not. 
But we do believe that training on the single digit numbers 
establishes a strong foundation for eventually moving on to 

these advanced number types. To generalize well, individuals 
would also have to learn the technical vocabularies for 
auditory presentation of number pairs, e.g., millions, billions, 
trillions, quadrillions, etc., as well as appropriate scientific 
notation for written input number presentations.  

It is interesting that the strong generalization ability of the 
NCN model provides a notable exception to the claim that 
artificial neural networks require immense amounts of 
training and still do not generalize nearly as well as humans 
do  (Lake, Ullman, Tenenbaum, & Gershman, 2017).  

An important reason for such strong NCN generalization 
here is that this small CC artificial neural network learns the 
basics of a powerful number system, not merely a large 
collection of unrelated numerical facts. This powerful 
system, variously named Arabic, Hindu-Arabic, or Western-
Arabic, first emerged in the tenth century BC (1000 BC – 901 
BC) (Kunitzsch, 2003; Plofker, 2009). It is a base 10 system, 
encompassing not only the digits 1-9 but also 0. Importantly, 
it enables progression to more advanced numeric forms such 
as multidigit numbers, negative numbers, and decimal 
numbers.  

Despite harnessing all this potential numeric power, the 
NCN system is simpler than other computational models of 
number comparison. For example, one of the leading number 
comparison models employs at least six networks and many 
parameters and connection weights, and requires up to 
100,000 epochs of training (Huber et al., 2016). This higher 
degree of complexity is designed to deal with fifteen other 
identified empirical phenomena in number comparison.  

An alternative input option used in number comparison 
experiments is that of dot patterns or physical objects, 
presenting a more perceptual task. A popular and effective 
neural-network technique for coding such perceptual stimuli 
is thermometer coding, in which a number is represented by 
a set of activated units corresponding to its numerosity (Zorzi 
& Butterworth, 1999; Zorzi & Testolin, 2018). For example, 
6 would be represented by activating units 1-6 from left to 
right, and 16 by activating units 1-16, again from left to right. 
Although thermometer coding may appear to be a natural way 
to represent a collection of dots or objects, it seems 
implausible that a biological number comparison system 
would be equipped with precisely the correct number of input 
units in anticipation of processing a virtually infinite range of 
number pairs to be compared. We are currently working on a 
different approach to dot pattern or object inputs using 
convolutional deep-learning networks that learn to map 
perceived object collections onto numbers, avoiding such 
implausible evolutionary engineering. 

Many of the coding techniques used to model number 
comparison in neural networks share the assumption that 
larger numbers create higher activation levels than do smaller 
numbers (e.g., Huber et al., 2016; Zorzi & Testolin, 2018). 
This makes sense and works well, particularly by relying on 
the use of sigmoidal activation functions that effectively 
convert all numbers to a standard range, most often 0 to 1. 
This allows a network to benefit from important 
characteristics of the Arabic number system, including proper 
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subsets, a number line, and compression effects. Smaller 
numbers are proper subsets of larger numbers. The number 
line orders the numbers from left to right and seems to 
compress into smaller steps on the right where numbers get 
large. As our simulations demonstrate, these two 
characteristics are either preserved (proper subset) or 
constructed (number line, compression) in the NCN model. 
Any parts of a number line can be constructed by ordered 
NCN results in a particular number region. Larger small/large 
ratios can make it seem that far right regions are more 
compressed than are far left regions. Although a number line 
and its perceived compressions are often viewed as primary 
causes of psychological phenomena, NCN shows how those 
constructions could naturally arise during learning and 
generalization; they do not need to be assumed.  

The NCN model also provides a relatively simple example 
of how rules could be implemented in neural systems. Here, 
a simple feed-forward neural network learns and generalizes 
with such strong regularity that the outcomes are only 
distinguishable at the behavioral level by virtue of a few 
small errors. Further study of such simple problems might 
eventually provide insights into how more complex symbol 
systems could be implemented in neural systems. Here, a 
small NCN network generalizes so well from a bit of learning 
that it only very rarely makes mistakes on more complex, 
related problems. Symbolic systems could explain error-free 
performance but would likely have trouble accounting for 
very rare errors and difference and ratio effects, all of which 
are empirically well established and thus stand as worthy 
simulation targets for computational models.  

Our findings with NCN networks demonstrate an 
important role for learning in the development of 
mathematical skills. The NCN model starts without any 
knowledge of integer comparisons and thus must learn them. 
This necessity of learning is consistent with a recent 
theoretical review supporting the view that mathematical 
knowledge is not innate but rather is learned 
(O’Shaughnessy, Gibson, & Piantadosi, 2022). Those authors 
examined six predictions of strong numerical nativism, 
finding that each is contradicted by evidence from 
anthropological research. Their extensive and detailed review 
notes a lack of number systems in some human groups and 
considerable variability in the form of numerical systems that 
do emerge, highlighting the importance of social and 
economic factors in constructing cognitive systems that 
satisfy culturally specific goals.  

We hope that our NCN model would inspire further 
empirical research on number comparison in children, 
including young children. Our modeling was, in fact, partly 
inspired by a spontaneous game of number comparison with 
a grandson at 3 years, 3 months of age. He answered several 
questions comparing two-digit numbers that he had never 
encountered before, and he was invariably correct. He also 
detected our intentional mistakes on 2-digit comparisons that 
he spontaneously posed to us. More systematic number 
comparison studies should be done on children as young as 
three years and older as they move up to larger-digit 

comparisons and comparing advanced number forms such as 
negative and decimal numbers.  

We expect that results of such studies would roughly 
conform to the first-appearance stages of several documented 
number-knowledge acquisitions (Siegler, 2022): single-digit 
integers at 3-5 years, 2-digit integers at 5-7 years, 3-digit 
integers at 7-12 years, and decimal and negative number 
forms at 11+ years. Interestingly, there is a representational 
shift from logarithmic to linear within each of these three age 
periods. Such a shift is consistent with our view that ratio 
effects and number-line compressions are emergent mental 
constructions in humans and neural networks rather than 
innately hard-coded features.  

It is important to note that our NCN model is a neural 
network which is initially ignorant about the relative 
magnitudes of its numerical input. The network learns these 
magnitudes by training on pairs of the digits 1-9. Such 
training enables very strong, but not perfect, generalization to 
more advanced tasks involving multi-digit, negative, and 
decimal numbers. From its performance alone, a trained 
network looks as if it is operating at a symbolic level, apart 
from producing a very few errors. Such tiny error rates are in 
the neighborhood of those made by adult participants on 
single-digit pairs (Moyer & Landauer, 1967).   

It has also been found that children’s discovery of new 
arithmetic strategies proceeds with few or no flawed 
strategies (Siegler & Jenkins, 1989). When engaged with a 
rigorous number system, children’s advances are strongly 
constrained by the system being learned, which is also true in 
the NCN model.  

An advantage of the NCN model is that it naturally 
integrates with our model of the learning and use of 
probability distributions, Neural Probability Learner and 
Sampler (NPLS) (Shultz & Nobandegani, 2022). NPLS has 
simulated a series of empirical studies documenting that 
infants from about 6 months of age learn and use probability 
distributions to select actions that are more likely to provide 
desirable outcomes (Denison, Reed, & Xu, 2013; Denison & 
Xu, 2010, 2014; Xu & Garcia, 2008). Because magnitude is 
often confounded with probability, it is important to 
disentangle them in such experiments, by including 
conditions in which the two are in conflict, where higher 
probability of getting the desired object has fewer of those 
objects. Both processes are encompassed by the CC 
algorithm, with probability learning often recruiting hidden 
units. This integration of NCN and NPLS facilitates coherent 
simulations of empirical phenomena that involve the use of 
probabilistic and magnitude strategies across ages and 
conditions.   
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