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Reverse cosine jet profile is applied. . . . . . . . . . . . . . . . . . . . . . . 73

ix



Figure 3.11: Time histories of thrust FT when Rej = 50 and 500. Reverse cosine jet profile
is applied. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Figure 3.12: The prescribed jet speed profile of a complete deflation-inflation cycle. T is
the period of deformation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Figure 3.13: (a) Comparison between the net force Fn and jet-generated thrust FT in a
single deflation, (b,c,d) thrust contributions Fj , Fσ and Fm. . . . . . . . . . . 79

Figure 3.14: Comparison of axial velocity distribution ux(r) at the nozzle plane between
Rej = 50 and 500. Both cases are shown at t = 0.5TD. . . . . . . . . . . . . 80

Figure 3.15: Same as Fig. 3.13 except that the deformation is inflation. . . . . . . . . . . 81
Figure 3.16: Time histories of (a) the jet speed Vj , (b) the body eccentricity e, (c) the net

force Fn, the thrust force FT and Fr = Fn − FT , and (d) the components of
the thrust force FT during a full deflation-inflation cycle. St = 0.06, Re = 150. 83

Figure 3.17: Dependence of the time-averaged thrust FT upon Re with different values of
Rej . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Figure 3.18: Time histories of Fj and Fσ for various Re. Rej = 20. . . . . . . . . . . . . 85
Figure 3.19: Snapshots of the flow fields for the case of Re = 10 and 100 with Rej = 20.

The flow fields are visualized through streamlines and normalized pressure
distribution (p/ρṼ 2
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ABSTRACT OF THE DISSERTATION

Numerical Investigation of Squid-Inspired Pulsed-Jet Propulsion

by

Xiaobo Bi

Doctor of Philosophy in Structural Engineering

University of California San Diego, 2021

Professor Qiang Zhu, Chair

Inspired by the locomotion method of cephalopods such as squids, we propose a novel

concept of underwater propeller that utilizes pulsed jet for thrust generation. A squid-inspired

robot is expected to possess multiple advantages such as mechanical simplicity, high swimming

speed, and low environmental footprint. To understand the physical mechanisms of squid-like jet

propulsion, computational simulations are conducted to explore the underlying fluid dynamics and

fluid-structure interaction problems.

A two-dimensional fluid-structure numerical model is firstly developed by using the Im-

mersed Boundary Method (IBM), which avoids the complexity of body-fitted grid regeneration,
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and is thus suitable for problems involving large body deformations. Through systematic simula-

tions we demonstrate that the 2D squid-inspired swimmer is capable of long-distance swimming

through cyclic deflation-inflation shape change. Through parametric studies, it is found that the

body oscillation frequency is the most important parameter determining the hydrodynamics of the

swimmer.

The 2D IBM-based model is then extended to an axi-symmetric numerical rendition. Based

on control volume analysis, a thrust-drag decoupling strategy and a thrust decomposition method are

proposed. In the thrust decomposition method the jet-related thrust is calculated as the summation

of three components, the jet flux force, the exit normal stress and the flow momentum force inside

the chamber. This method allows us to understand the underlying physics of force generation, e.g.

the effects of jet speed profile, jet acceleration, background flow and nozzle geometry. Moreover, it

enables the separation of thrust and drag forces on the body (a classical problem in free-swimming

bodies) so that it leads to a novel method to calculate the propulsive efficiency.

Finally, a potential-flow-based rendition of a 3D squid-inspired propulsion system is devel-

oped to explore the swimming process and the dynamic characteristics. The results show that in

the bursting phase its peak speed depends on the size of the body, the deformation time, the amount

of volume change during the deformation, and the size of the nozzle. The optimal speed is found to

coincide with the critical formation number, indicating that the formation of vortex rings in the

wake plays a pivotal role in the dynamics of the system.
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Chapter 1

Introduction

1.1 Background

1.1.1 Fish-inspired locomotion

With remarkable efficiency, controllability, and maneuverability, the locomotion capacity

of aquatic animals has inspired the development of numerous biomimetic underwater vehicles and

robots. The existing experiments, simulations, and prototypes are concentrated on the imitation of

fish swimming [5–9]. All underwater propulsion methods rely on the process of momentum transfer

from the body to the surrounding flow field. In fish and aquatic mammals this is achieved through

undulatory motions of the body and flapping motions of the appendages (fins or flippers). These

oscillatory motions lead to the formation of a reverse Kármán vortex street in the wake, where

two staggered arrays of counter-rotating vortices induce a jet stream between them, providing the

impulse for thrust generation.

Fish swimming is highly sophisticated. In steady swimming alone there are about 20

locomotion modes with different combinations of body undulation and unsteady flapping of fins,

providing plentiful prototypes for artificial swimmers [5]. For example, the fins of bony fish
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contain a soft collagenous membrane supported by embedded rays. Each ray consists of tendons

actuated by a group of muscles so that it can be controlled individually, allowing the fin to perform

complicated motions (e.g. the cupping motion, ‘W’-shape motion and ‘S’-shape motion) [6–8],

each associated with a particular swimming mode (cruising, bursting, braking, etc.).

To date, most of the man-made underwater robots are based on imitation of fin-activated fish

swimming. These robots therefore can be categorized into rigid robots since their bodies remain

undeformable during the locomotion, while the artificial fins perform complex flapping motion

to create driving force. The robots using rigid materials are perfect for repetitive operations due

to their rapid and precise dynamic response. Nevertheless, there are two major drawbacks for the

traditional rigid-bodied underwater robots. On the one hand, the rigid-bodied fish-like robots are

not able to operate in confined and unstructured spaces. Soft-bodied bio-inspired robots becomes a

solution to these issues. However soft structures have a delay in propagation of motion that limits

the rate of actuation.

On the other hand, fish-like (fin-activated) robots can not achieve the multi-degree-of-

freedom controllability using flapping foils (the mechanical replica of fish fins), which are usually

rigid or with uniform stiffness. As a consequence, today’s artificial swimmers perform far below

the standard of their natural counterparts in terms of speed, efficiency, etc. In fact, with the state-

of-the-art technology it poses tremendous challenge to artificial control and actuation systems to

create motions similar to fish fins for better locomotion capacity [10–12].

1.1.2 Squid-inspired locomotion

Compared with the fish swimming, cephalopods (i.e. squids, octopuses and cuttlefish)

locomotion have been mostly neglected. These animals are also capable of highly effective

swimming, especially when escaping from predators. Indeed, cephalopods have developed a much

simpler, yet equally effective method of escaping locomotion based on jet propulsion [13]. For
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Figure 1.1: (a) A sketch of the structure in a squid. (b) A inflation phase, during
which the mantle expands to refill the cavity. (c) A deflation phase, during which
the mantle shrinks, pushing water out of the body to form a jet. This figure was
modified from Fig. 1 in [1].

Figure 1.2: (a) In fin activated swimming the hydrodynamic load is concentrated
on the fin. (b) In cephalopod-like swimming the the hydrodynamic load is dis-
tributed over the whole body. This mechanism allows soft-body creatures to
achieve high speed swimming.
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example, in such a swimming mode a squid (as shown in Fig. 1.1) first inflates its compression

chamber (the mantle cavity) by sucking water through a wide inlet called mantle aperture. During

that process (refer to inflation phase) its lateral dimension is increased by 30%. It then contracts its

mantle and expels the water through a narrow funnel that can be pointed at a range of directions

(refer to deflation phase). This propulsion method, usually referred to as the jetting mode, is often

used in escape maneuvers.

Although squids are equipped with fins which are able to generate thrust and maneuvering

forces through undulating and flapping motions, due to the lack of embedded supports (skeletal

bones, rays, or fluid-filled cavities that enable hydrostatic support) these fins cannot sustain large

hydrodynamic load so that they are only able to function in relatively low speeds. In the jetting

mode, however, the hydrodynamic load is distributed over the whole body, rather than concentrating

on a small portion of it (e.g. caudal fins) (see Fig. 1.2). Moreover, the hydrodynamic load is

supported by the tension inside the body, rather than the bending stiffness of the body (as in

fin-activated swimming). This strategy thus enables these soft-bodied creatures to reach extremely

high bursting speeds of 10-25 body lengths per second [14, 15].

On the other hand, in this swimming method since the body deformation has to be reciprocal

the jet formation is intermittent. Subsequently, the forward speed is unsteady with acceleration

during the deflation phase and deceleration during the inflation phase. The unsteadiness of the

forward speed may actually be beneficial in terms of locomotion efficiency. Recent studies about

the hydrodynamics of the burst swimming of cephalopods illustrate that in addition to the repulsive

force created by the jet, this locomotion mode also depends on shape and volume variations of the

body [16–18]. Specifically, when the lateral dimension of a cephalopod-like swimmer decreases,

its added mass in the swimming direction will decrease with time, leading to an added-mass-related

force of − d
dt

(maV ) = −ṁaV −maV̇ (V is the instantaneous speed of the swimmer), in which

the term Fa = −ṁaV provides additional thrust to the system since ṁa < 0. This results from the
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recovery of the added-mass kinematic energy by the body, as demonstrated by the simulations in

previous studies [17,19]. This effect, together with the shrinking mass of the body itself when water

is expelled, contributes to the impressive bursting speed that can be achieved in this locomotion

mode.

1.1.3 State of the art

There exist only a handful of investigations in the unique locomotion technique of

cephalopods. The investigation started with observations and measurements of live animals

in field or laboratory environments [14, 15, 20]. In laboratory experiments, the kinematics of the

body (especially the fins) and the near-body flow fields in both the flapping and the jetting modes

have been recorded [21–23]. These studies indicate that squids employ both jet propulsion and fin

activation in locomotion. DPIV measurements also recorded various vorticity patterns in both fin

activated and jet propelled motions [21, 22]. Similar jet propulsion mechanisms have also been

discovered in other aquatic creatures [24].

Based on experimental observations of live animals, mechanical and robotic systems have

been designed and manufactured to imitate the jet-propelled mechanism of squids and other

cephalopods. A mechanical device containing a pressure chamber similar to the one in a squid

was developed and tested by Weymouth et al. [25]. Despite its simplicity, this design is capable of

reaching instantaneous speed comparable with its natural counterparts. Without a mechanism to

refill the pressure chamber, this prototype system is only able to perform one bursting-coasting

cycle. A more sophisticated design resolves this issue by using a motor-tendon system [26]. More

recently, a soft-bodied robot capable of pulsed-jet swimming through cyclic shape deformations

(inflation-deflation) has been developed by Christianson et al. [27].

The locomotion mechanism via jet formation and body deformation has also been studied

numerically. Existing models fall into two categories, low-fidelity models [26] and high-fidelity
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models [16–19]. The low-fidelity models are based on idealized fluid dynamics theory, in which

the details of the flow field and vortex dynamics are not considered. The high-fidelity models, on

the other hand, do not consider the flow inside the pressure chamber so that the jet flow is either

neglected or artificially prescribed.

1.2 Motivations

Compared with fish-like propulsion that has been studied in most existing work, the novel

squid-inspired jet propulsion will possess the following advantages:

1. Mechanical simplicity: Unlike the multi-degree-of-freedom controlling mechanism (e.g. the

control and actuation of individual fin rays) required for high-efficiency fishlike swimming, a

cephalopod-like swimmer relies on the inflation/deflation of its own body for locomotion.

This can be achieved by a low-degree-of-freedom control/actuation system. It is particularly

suitable for smart materials such as shape memory alloys so that no servo motors will be

needed. With minimum number of moving parts, this system will be highly robust and

reliable.

2. High speed and maneuverability: As demonstrated in observations of live animals [14, 15]

and experimentally measured from a simple mechanical replica [25], squid-like swimmers

may reach instantaneous speeds unreachable by today’s fish-like robots (and this is achieved

by a much simpler mechanical design). Moreover, if we use controllable nozzles similar to

the funnel tube of a squid, the swimming direction can be easily controlled through thrust

vectoring. By directly changing the direction of the thrust, this is expected to be a highly

effective measure for maneuvering.

3. Versatility: With the soft body, it enables the operations in unstructured space.
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4. Low noise: With few moving parts and no servo motors, the noise generation of a squid-like

robot is expected to be much lower than a traditional one with propeller.

5. Compatibility with sample testing: The inflation-deflation locomotion pattern of a squid-like

robot may be particularly useful when intermittent motion and sample testing is necessary.

For example, in each inflation-deflation cycle the water sample it sucks in may be tested by

instruments inside its body.

It is thus interesting and necessary to study in detail the dynamics of the squid-like jet

propulsion. The aims of this thesis are using numerical modeling and theoretical analysis to

understand the underlying physical mechanism of this propulsion mode and investigate the effect

of physical parameters (e.g. frequency and amplitude of the body motion) on its hydrodynamic

performance. This work will be a pioneering investigation in a novel locomotion mode that can be

used in underwater vehicles. It will also greatly improve our knowledge about the biomechanics

and locomotion performance of soft-bodied aquatic animals.

1.3 Dissertation outline

The rest of this thesis is organized as follows,

1. In Chapter 2, a fully coupled fluid-structure study of a two dimensional squid-inspired

swimmer is described. An activation and control system of cyclic inflation-deflation body

deformation, which can be directly applied in engineering, is also proposed.

2. In Chapter 3, an axis-symmetric squid-inspired swimmer is numerically analyzed in low

Reynolds number regime using immersed-boundary method.

3. In Chapter 4, we extend our investigation to high Reynolds number regime to explore the

dynamics of a three dimensional potential-flow-based numerical model.
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4. In Chapter 5, conclusions and future directions will be presented.
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Chapter 2

Fully Coupled Fluid-Structure Investigation

of a Squid-Inspired Swimmer

In this Chapter, we create a two-dimensional fully-viscous fluid-structure interaction model

of a squid-inspired propulsion system. Unlike the existing work in squid swimming, our purpose

is not to investigate the biomechanics of actual squids. Instead, we aim to explore the possibility

of a bio-inspired mechanical system that inherits some key design characteristics of squids, e.g.

a pressure chamber that can be inflated and deflated through body deformation, and a orifice(or

nozzle) through which jetting is allowed. Through numerical simulations we investigate the

interactions among the structure, the activation system, and fluids inside and outside of the body.

We are particularly interested in examining effects of body-shed vortices as well as robustness of

the activation strategy.

Stemming from the immersed-boundary framework [28–30], this model takes full account

of the effect of fluid viscosity (therefore the vorticity shedding from the body as well as the exit),

the structural response of the body, and the underlying fluid-structure interaction mechanisms.

This model is then applied to investigate the hydrodynamic performance of the system over
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repeated deflation-inflation cycles, including the force generation, travelling speed and energetics.

Nevertheless, in the current study we will be concentrated in relatively low Reynolds numbers so

that turbulence effects, which may be important in the high-speed swimming mode of real squids,

are not considered.

2.1 Model geometry

As shown in Fig. 2.1, we consider a two-dimensional rendition of the squid-inspired

propulsion system consisting of a pressure chamber enclosed within an outer shell idealized as an

inextensible beam with zero thickness. A swimming cycle is decomposed into two phases, deflation

and inflation. During the deflation phase the eccentricity of the body shape (hereby represented as

part of an ellipse with an open end; a detailed description of this geometry is included in Appendix

A) changes from e0 to e1 (e1 > e0) so that the fluid inside the pressure chamber is expelled, creating

a jet flow behind. In the inflation phase fluid is sucked back into the chamber and the eccentricity

of the body shape decreases back to e0. The equilibrium state of the beam coincides with the shape

e1. Current design is characterized by a single opening through which the fluid enters (during the

inflation phase) and exits the chamber (during the deflation phase), i.e. this opening works as both

the inlet and the exit (albeit a departure from the real squid).

2.2 Actuation system

The activation system of a squid consists of two groups of muscles (radial and circular) and

a mantel wall [20]. The contraction of the radial muscles causes hyper-inflation of the mantel cavity,

which is needed at the beginning of an escape maneuver. The deflation for jetting is activated by

the contraction of the circular muscles. For continuous swimming, the refilling is enabled mostly

by the elastic recoiling of the mantel wall. Inspired by this design, we have tested various measures
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Figure 2.1: A complete deflation-inflation cycle during squid-inspired swimming.

to power the periodic deflation and inflation deformations of our model system, including, e.g.

a system containing both longitudinal springs (similar to the radial muscles) and lateral springs

(similar to the circular muscles), as well as a system in which the refilling/inflation process is

powered using the bending energy stored in the beam (functioning as the mantel wall). Among all

these options, a system containing springs with variable unstretched lengths outperform others in

terms of controllability (the ability to achieve targeted body deformation) and repeatability (the

ability to achieve periodic body deformations in long term simulations). In this particular design,

the bending stiffness of the beam is chosen to be small. Its primary function is to prevent buckling

of the body.

As shown in Fig. 2.2a, in our depiction the contraction/expansion of the body is driven

by a model actuation system consisting of a sequence of linear springs, K1 to K8, from which

lateral contraction/expansion forces are generated. Each of these springs has two unstretched

lengths, L(d)
i and L(i)

i (i = 1, · · · , 8), corresponding to the deflated and the inflated states of the

body, respectively. These unstretched lengths are chosen to fit in the aforementioned reference

body shapes e0 and e1. For example, during the deflation phase these springs are in natural states at

the deflated reference shape with eccentricity e1. On the other hand, during the inflation phase they

are in their natural state at the inflated reference shape with eccentricity e0. Uniformly distributed
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Figure 2.2: (a) Schematic depiction of the model, (b) deformation of the body (the
fully deflated/inflated configurations are shown in black solid lines). Unstretched
lengths for deflation phase (c) and inflation phase (d), the arrow indicates the
direction of spring force.
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in the longitudinal direction, these springs do not interact directly with the surrounding fluid. For

simplicity, the stiffnesses of the springs are chosen to be identical, i.e. Ki = K, i = 2, · · · , 8

except for the one at the exit, K1, which is equal to 10K so that the change in the size of the exit

(D) is negligibly small. This activation system, albeit developed mostly for modeling purpose, may

be engineered either through mechanical design (e.g. a system that switches between two sets of

springs) or by using materials with special properties (e.g. bi-state shape memory alloys).

A typical inflation-deflation cycle is activated in the following manner. Starting from the

deflated state, the unstretched lengths of the springs are set as L(i)
i so that they expand to inflate

the pressure chamber. After the total remaining strain energy in the springs is less than 2% of

its maximum value (Em =
∑8

i=2
1
2
K(L

(i)
i − L

(d)
i )2), the unstretched lengths of the springs are

switched to L(d)
i , causing them to contract and triggering the deflation phase. Similar to the inflation

phase, the deflation phase ends after the remaining strain energy in the springs is below 2% of Em,

when the unstretched lengths of the springs are switched back to L(i)
i .

It is necessary to point out that the reference shapes (i.e. the ellipses with eccentricities

e0 and e1) are only used as a convenient way to determine the unstretched lengths of the springs.

It is not necessary for the actual deflated and inflated body shapes to match these reference ones

perfectly. Due to the small but finite bending stiffness of the beam and the fluid dynamic forcing

on the body, there does exist certain difference between the actual body shapes and the reference

ones, per se. What is important is that the actual shapes (especially the area difference between

the inflated and the deflated shapes, which is directly related to jetting) are consistent at different

values of K. Also, during time evolution they remain almost unchanged from period to period after

the steady state is reached (see Fig. 2.6).
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2.3 Mathematical formulations

2.3.1 Governing Equations

An immersed-boundary method is employed to solve the fluid-structure interactions in-

volved in the aforementioned swimming process. In this approach, the motion of fluid particles

is described within a Eulerian coordinate x ≡ (x, y), while the dynamics of the structure is de-

picted with a Lagrangian coordinate s, which denotes the arclength along the beam from one end.

The structural variables include the instantaneous position X(s, t) and the corresponding velocity

V(s, t), the hydrodynamic force density F(s, t), the tension σ(s, t), the bending force density Fb,

the stretching force density Fs, and the spring force density Fr. Hereby Fb and Fs stem from the

elasticity of the body itself, Fr represents the effect of the activation system. Detailed descriptions

of these terms are provided later. The fluidic variables are the velocity u(x, t) ≡ (u, v), the pressure

p(x, t), and the body force density exerted by the immersed boundary f(x, t). Other parameters are

the excessive line density of the body ml, the bending rigidity cb, the damping coefficients for the

structure (i.e. the beam) λ and for the spring λk, the total contour length of the beam L, the fluid

density ρ, the size of the exit D, the dynamic viscosity of the fluid µ, as well as the inflow velocity

u0. The governing equations for the fluid dynamics are

ρ

(
∂u
∂t

+ u · ∇u
)

= −∇p+ µ∇2u + f(x, t), (2.1)

and

∇ · u = 0. (2.2)

For the structural dynamics, we have

ml
∂2X(s, t)

∂t2
+ λ

∂X(s, t)

∂t
= Fs + Fb − F(s, t) + Fr, (2.3)
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where

Fs =
∂

∂s
[σ(s, t)τ (s, t)], τ (s, t) =

∂X

∂s
/

∣∣∣∣∂X∂s
∣∣∣∣ , (2.4)

Eb(X, t) =
1

2

∫
Γib

cb

∣∣∣∣∂2X

∂s2
− ∂2X0

∂s2

∣∣∣∣2 ds, (2.5)

Fb = −℘Eb(X, t)
℘s

= −cb
(
∂4X

∂s4
− ∂4X0

∂s4

)
, (2.6)

and

Fr(s) =
8∑
j=1

Fr,jδ(s− sj), Fr,j = K∆xj − λk∂xj/∂t. (2.7)

τ (s, t) represents the unit tangent vector to the immersed boundary. Eb stands for the

bending energy. X0 denotes equilibrium configuration of the body. ℘ denotes the perturbation

operator [31]. ∆xj is the elongation of the jth spring, whose relative velocity at the ends is

expressed by ∂xj/∂t. We use the Dirac delta function δ to distribute the spring force (point force at

sj) to the structural body.

2.3.2 Fluid-structure coupling

The structural dynamics and the fluid dynamics are coupled through the following rendition

using the two-dimensional Dirac delta function

U(s, t) =

∫
Ωf

u(x, t)δ(x− X(s, t))dx, (2.8)

∂X(s, t)/∂t = V(s, t), (2.9)

F(s, t) = α

∫ t

0

[U(s, τ)− V] dτ + β [U(s, t)− V] , (2.10)
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and

f(x, t) =

∫
Γib

F(s, t)δ(X(s, t)− x)ds, (2.11)

where Γib and Ωf denote the structural and fluidic domain, respectively. U(s, t) denotes the local

fluid velocity at the immersed boundary point s, which is calculated by interpolation flow velocity

using delta the function. In order to enforce the structural boundary conditions, the matching

between U and V is achieved through the feedback algorithm in Eqn. (2.10), which simultaneously

offers us the feedback force F. This strategy is similar to the PI feedback control scheme [32].

Physically, this feedback equation implies that the adjacent fluid particle and structural point are

connected through a linear spring with stiffness α and damping coefficient β, which are sufficiently

large negative numbers. More details on this feedback law and its numerical stability can be found

in an earlier publication [33]. The interacting force F then could be distributed to the fluid domain

using the delta function to update the fluid field.

2.3.3 Implementation of structural inextensibility

Since the beam is assumed to be inextensible, the tension force σ(s, t) can be determined by

solving the following equation, in which the inextensibility constraint τ̃ · τ̃ = 1 (where τ̃ = ∂X
∂s

)

is imposed [34].

∂2

∂s2
(στ̃ ) · τ̃ =

ml

2

∂2

∂t2
(τ̃ · τ̃ )−ml

∂τ̃

∂t
· ∂τ̃
∂t

+
λ

2

∂

∂t
(τ̃ · τ̃ )− ∂

∂s
(Fb + Fr − F) · τ̃ . (2.12)

With σ(s, t) determined, we are able to update the structural position through Eqn. (2.3) together

with the following boundary conditions at the two ends

∂2X(s, t)

∂s2
=
∂2X0

∂s2
,
∂3X(s, t)

∂s3
=
∂3X0

∂s3
, σ = 0 at s = 0 or L (2.13)
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2.4 Numerical approach

2.4.1 Fluid solver

Following the previous studies [34–37], the Navier-Stokes equations are solved with the

fractional step method on a staggered Cartesian grid. As shown in Fig. 2.3, the fluidic velocity and

momentum forcing are defined on the staggered grid while the pressure is defined at the element

center. In this algorithm each term in the equation (except the structural forcing term) is treated

implicitly using the Crank-Nicolson scheme so that the accuracy is second order in time. The

spatial derivatives are calculated using the central difference approach based on the staggered grid.

Let H,G,D,L be the convective, gradient, divergence and Laplacian operators, the discretized

form of the Navier-Stokes equation at the (n+ 1)th time step can be written as

A(un+1) + G(δp) = r,D(un+1) = 0, (2.14)

where

A =
1

∆t
[ρI + ∆t(ρN − µL

2
)], (2.15)

r =
ρ

∆t
un − G(pn−1/2) +

µ

2
L(un) + fn, (2.16)

pn+1/2 = pn−1/2 + δp, (2.17)

where I is the identity matrix, ∆t denotes the time step andN is a linear operator for the convective

term defined as

N (un+1) =
1

2
(H(un+1) +H(un)). (2.18)

The nonlinear convective term is linearized by using a linearization scheme so that the linear

convective operator only contains velocity at time step n [35].

LU decomposition and approximate factorization (approximating G(δp) with ∆tAG(δp)/ρ)
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are employed to decouple the velocity and pressure, then Eqn. (2.14) can be rewritten in matrix

form, A 0

D −∆tDG
ρ


u∗

δp

 =

r

0

 (2.19)

and I ∆tG
ρ

0 I


un+1

δp

 =

u∗

δp

 , (2.20)

where u∗ is an intermediate value of un+1. The velocity and pressure at time level n+ 1 are then

calculated via the following steps,

A(u∗) = r, (2.21)

∆tDG(δp) = ρD(u∗), (2.22)

un+1 = u∗ − ∆tG(δp)

ρ
, (2.23)

and

pn+ 1
2 = pn−

1
2 + δp. (2.24)

2.4.2 Structural dynamics solver

Regarding the numerical algorithm for the structure, uniform staggered grids are also used

on the body along s so that the tension σ is defined in the index i + 1/2 and other structural

variables are defined in i (1 ≤ i ≤ N ). The first, second and third-order s−derivatives of Xi are

approximated by the central difference algorithm as

DsXi = (Xi+1/2 − Xi−1/2)/∆s, (2.25)
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and

DssXi = (Xi+1 − 2Xi + Xi−1)/∆s2, (2.26)

where ∆s is the body grid size. The discretizated form of Eqn. (2.3) is now written as

X∗ = 2Xn − Xn−1, (2.27)

and

ml
Xn+1
i − X∗i

∆t2
+ λ

Xn+1
i − Xn

i

∆t

= [Ds(σ∗DsXn+1)]i − cb[Dss(Xn+1 − X0)i+1 − 2Dss(Xn+1 − X0)i

+Dss(Xn+1 − X0)i−1]/∆s2 − Fn
i + (F∗r)i, i = 2 · · ·N − 1. (2.28)

At the free ends i = 1 and N , the boundary conditions (Eqn. (2.13)) are applied so that the right

hand side of Eqn. (2.28) at these two ends becomes, respectively,

RHS = 2(σ∗DsXn+1)1+1/2/∆s− 2cbDss(Xn+1 − X0)2/∆s
2 − Fn

1 + (F∗r)1, (2.29)

and

RHS = −2(σ∗DsXn+1)N−1/2/∆s+ 2cbDss(Xn+1 − X0)N−1/∆s
2 − Fn

N + (F∗r)N , (2.30)

where the superscript ‘∗’ denotes the intermediate time step. The spring force term F∗r is explicitly

calculated through the intermediate position X∗, whereas the tension force σ∗i+1/2 is implicitly
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computed by solving Eqn. (2.12), whose discretized form is

Dss(σ∗i+1/2τ̃
∗
i+1/2) · τ̃ ∗i+1/2 = ml[1− 2(τ̃ · τ̃ )ni+1/2 + (τ̃ · τ̃ )n−1

i+1/2]/2∆t2 +

λ[1− (τ̃ · τ̃ )ni+1/2]/2∆t−ml(DsV · DsV)ni+1/2 − [Ds(F∗b + F∗r − Fn)] · τ̃ ∗i+1/2,

where τ̃ ∗i+1/2 = DsX∗i+1/2 =
X∗i+1−X∗i

∆s
, i = 1, · · · , N − 1.

The fluid-structure interaction Eqns. (2.8) to (2.11) are discretized as

Un
i =

∑
x

uni (x)δh(x− Xn
i )∆x∆y, (2.31)

Vn
i = (Xn

i − Xn−1
i )/∆t, (2.32)

Fn
i = α

n∑
j=1

(Uj
i − Vj

i )∆t+ β(Un
i − Vn

i ), (2.33)

and

fn =
∑
s

Fn
i (s)δh(x− Xn

i (s))∆s, (2.34)

where ∆x,∆y are the sizes of the uniform grids around the body. In the following simulations, we

use mesh size ∆x = ∆y = h in both x and y directions near the immersed boundary. The Dirac

delta function δ is approximated by a smoothed delta function δh so that

δh(x) = h−2φ
(x
h

)
φ
(y
h

)
, (2.35)

where

φ(r) =


1
8
(3− 2|r|+

√
1 + 4|r| − 4r2) 0 ≤ |r| < 1

1
8
(5− 2|r|+

√
−7 + 12|r| − 4r2) 1 ≤ |r| < 2

0 2 ≤ |r|

(2.36)
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Figure 2.4: The computational domain and boundary conditions (not to scale).

The validation of this method was elaborated in previous studies through comparisons

with benchmark results (theoretical studies, numerical results, and experimental measurements).

Specifically, the accuracy of the fluid solver has been demonstrated in simulations of flow around

a stationary cylinder, cylinder with prescribed oscillations [36],an accelerating plate, and an

oscillatory wing [37]. The structural solver has been validated by simulating the dynamics of a

hanging filament [37]. Finally, the validity and accuracy if the fluid-structure coupling algorithm

have been corroborated through simulations of an elastic ring [38], an elastically mounted cylinder

[36], a flexible flag, two side-by-side filaments, and galloping motions of rectangular objects [39].
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2.5 Tethered swimming mode

To illustrate the propelling performance of the system shown in Fig. 2.2, we conduct

numerical simulations by using the immersed-boundary algorithm depicted in the previous section.

Specifically, in this section we concentrate upon a tethered motion case in which the body is fixed

at its front end. This is achieved by mooring the front point of the body with a stiff spring.

We use thrust coefficient CT (here we define the generated thrust as the net axial force

acting on the body), hydrodynamic efficiency ηh and mechanical efficiency ηm to measure the

propelling performance of the system. CT is obtained by

CT =
FT
ρu2

0L
(2.37)

and

FT = −
∫

Γib

Fx(s, t)ds. (2.38)

In the tethered case with a constant incoming flow speed, we define a hydrodynamic efficiency as

ηh =
F Tu0T

P
, (2.39)

where F T is the average thrust in a deformation period T , P represents the overall power expendi-

ture per cycle, which is expressed by

P =

∫
T

∫
Γib

F · Udsdt. (2.40)

The potential energy stored in the springs is calculated by

PE =
8∑
j=2

1

2
K |∆xj|2 . (2.41)
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So the mechanical efficiency ηm is

ηm =
F Tu0T

2×∆PE
, (2.42)

where ∆PE is the overall spring potential energy released in deflation(or inflation), which is

equivalent to the maximum value of PE.

Using the fluid density ρ, the incoming flow speed u0, the contour length L of the body, and

characteristic time T0 = L/u0 as the reference variables, all results will be presented in normalized

form. The Reynolds number is defined as

Re =
ρu0L

µ
, (2.43)

which will be chosen to be 400 for all simulations of tethered mode. At lower Reynolds number

the thrust-generation performance of our system tends to be low. If the Reynolds number is high,

on the other hand, the effect of symmetry-breaking instability is more pronounced (see §2.5.3).

As depicted in Fig. 2.2, driven by the internal springs (with stiffness K and damping

coefficient λk), the reference shape of the body varies periodically at frequency f ≡ 1/T between

the swollen state with eccentricity e0 = 0 and the slender state with eccentricity e1 = 0.99

in a uniform flow u0. The body stiffness cb is determined through numerical tests so that it is

sufficiently large to prevent buckling and ensure smooth body deformations, yet small enough

so that the discrepancy between the body deformations at difference values of spring stiffness

K is not significant (as mentioned earlier, this discrepancy is associated with the finite value of

potential energy stored in the beam so that the strain energy in the springs will not be completely

released). Besides, when the beam is sufficiently soft it does not induce large initial vibrations at

the beginning of each simulation. Thus determined, the combinations of K and the corresponding

bending stiffness cb used in our simulations are included in Table. 2.1.

As shown in Fig. 2.4, the computational domain is chosen to be a rectangular box with
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Table 2.1: Combinations of K and cb (in non-dimensional form).

K/ρu2
0 0.5-1.5 2.0-4.5 6-12 15-40

cb/ρu
2
0L

3 0.01 0.02 0.03 0.05

Table 2.2: List of parameters used in the simulations.

ml λ λk/K α β N ∆t ∆x,∆y
10−4ρL 0.01ρu0 0.05T0 −105ρu2

0/L −100ρu0 300 3.0× 10−5T0 0.004L
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Figure 2.5: (a) Sensitivity of CT with respect to fluid grid size ∆x (N = 300 and
∆t = 3 × 10−5T0). (b) The effect of the number of Lagrangian element on CT
(∆x = 0.004L and ∆t = 3 × 10−5T0). (c) Sensitivity of CT with respect to the
time step (N = 300 and ∆x = 0.004L). K = 15ρu2

0, D = 0.1L.
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0 ≤ y ≤ 4L, 0 ≤ x ≤ 12L. Dirichlet boundary condition is applied in inflow and far-field

boundaries, whereas convective boundary condition is used in outflow. The initial mass center of

the body is located at (2L, 2L). Sensitivity tests have been conducted to ensure that the results

are not sensitive to the spatial and temporal steps (see Fig. 2.5). Based on these tests, in the

following simulations the number of Lagrangian elements and the time step are chosen to be 300

and 3× 10−5T0, respectively. Uniform fluid grids with ∆x = ∆y = 0.004L are used in the vicinity

of the body and grids are stretched outside towards the boundary [36]. Other parameters used in

this study are listed in Table 2.2.

2.5.1 Steady-state responses

To check if the activation algorithm we apply meets the requirements for consistency (i.e.

not sensitive to K) and periodicity (i.e. minimum variations from period to period), in Fig. 2.6a and

b we plot the inflated and deflated shapes of the body at two different values of K. For comparison

the referent shapes (with eccentricities e1 and e0, respectively) are also plotted. It is seen that

although there do exist certain differences between the reference shapes and the actual body shapes

due to the finite bending stiffness of the beam and the fluid dynamic force, the differences between

the body shapes obtained at different values of K are relatively small. For further illustration in

Fig. 2.6c we plot the time histories of the area change ∆∀, defined as the difference between the

internal area at the inflated state and that at the deflated state. After the first period the value of

∆∀ remains steady. Moreover, the difference between ∆∀ obtained with the two different values

of K is negligibly small. Indeed, in all the cases we study once the steady state is established the

variation of ∆∀ at steady state is less than 3%.

Figure 2.7 demonstrates the steady state response of a typical case (usually it takes just one

period for the steady state to be reached). In Fig. 2.7a, we plot time histories of the internal area of

the body (∀) and the potential energy stored in the springs (PE) of the typical case. As designed,
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Figure 2.6: (a) Inflated shapes of the reference state (e0) and the actual states with
different values of K. (b) Deflated shapes of the reference state (e1) and the actual
states with different values of K. All of these shapes are obtained in the fourth
period. (c) Time histories of the internal area change ∆∀ (i.e. the internal area of
the inflated shape minus that of the deflated shape). In each period two data points
are obtained, one from the deflation phase and the other from the inflation phase.
D = 0.1L.
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the instantaneous potential energy in the springs jumps to a peak right after ∀ reaches its maximum

or minimum point (corresponding to the switching of the unstretched lengthes of the springs). It is

then released gradually to drive the body deformation in the following phase.

Figure 2.7b displays the time histories of average jet speed and the thrust force coefficient

CT the system generates. Hereby the average jet speed is calculated as Vj = − 1
D
d∀
dt

. It is seen

that thrust generation is achieved in the deflation phase, where Vj > 0. During the inflation phase

(Vj < 0) negative values of CT is observed. Its magnitude is relatively low so that the time averaged

thrust in this particular case is still positive. There exists, however, a clear phase difference between

Vj and CT , which is attributed to the time varying drag force the body sustains and fact that jet

momentum is not the only thrust source, the variation of the internal fluid momentum and the over

pressure at the orifice exit (which are more or less related to jet acceleration) make fairly large

contribution to thrust generation during the unsteady jetting (see §3.4).

Time variations of the added mass ma and its contribution to thrust generation Ca =

Fa/ρu
2
0L where Fa = −ṁau0, are plotted in Fig. 2.7c. The instantaneous configuration of the

body is simplified as an ellipse with semi-minor axis b so that the added mass can be expressed

as ma = ρπb2. Since the swimmer speed u0 is constant in this case, although the magnitude of

Ca is in the same order as that of CT , its time averaged value is negligibly small so that it has

almost no contribution to the average thrust. This result, however, is closely associated with the

tethered swimming assumption. In free swimming scenario the forward speed is high during the

deflation phase (ṁa < 0) and low during the inflation phase (ṁa > 0), so that a positive value of

time averaged Ca is reached. This effect will be included in our studies of free swimming cases.

The evolution of the near-body flow field is shown in Fig. 2.8. It is seen that aside from the

vortices inside the pressure chamber, two pairs of counter-rotating vortices are generated within

one inflation-deflation period and prorogate downstream into the wake, one pair from the outer

surface of the body and the other from the exit. These vortices are shed in a staggered way -
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Figure 2.8: Evolution of the near-body flow field (visualized through the vorticity
contour) within an inflation-deflation period T . The positive values of vorticity
(solid lines) correspond to clockwise vortices. The negative vorticity (dashed lines)
represent counter-clockwise vortices. K = 3.0ρu2

0, D = 0.1L.
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the body-originated vortices are developed during the inflation phase (from t = 0 to T/2 in the

figure; note that for clarity in this figure we redefine the time corresponding to the starting of the

inflation phase as t = 0), whereas the exit vortices (which are closely related to the jet flow) are

created during the deflation phase (starting at t = T/2). These vortices form a complicated, yet

well-organized and symmetric (with respect to the x− axis) wake behind the body, before it is

disturbed and eventually destroyed by a symmetry-breaking instability (see §2.5.3).

The flow field produced by our system bears certain resemblance to the experiments and

simulations of a tube which generates a jet via an internal piston [1, 40, 41]. In both cases the

vortices generated by the jet and those by the body itself coexist in the wake. However, in our

case the body-shed vortices and the exit-shed vortices are generated in a staggered manner through

the body deformation. This effect was not considered in the those studies since the body they

considered (a tube with a piston inside) was rigid.
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2.5.2 Parametric studies

The dynamics of the system are expected to be dependent upon physical parameters such

as the frequency of the body oscillation and size of the exit/inlet D. With other parameters fixed,

the oscillation frequency f (or, alternatively, the Strouhal number St ≡ fL/u0) is determined by

the stiffness of the internal springs K. Figure 2.9 plots the time histories of the internal area Λ at

different values of spring constant K. It shows stronger springs create higher frequency motions.

This tendency is shown more clearly in Fig. 2.10a, which also demonstrates that the growth rate

of the St −K curve decreases with K. Subsequently, beyond a certain point (e.g. K = 40) it is

difficult to further increase St through K. For that reason, our simulations are confined within

certain range of St. As demonstrated in Fig. 2.10b, where variations of the mean thrust coefficient

CT , the hydrodynamic efficiency ηh, and the mechanical efficiency ηm on different values of St

are plotted, the body sustains drag at low St (e.g. CT = −0.062 at St = 1.5) and produces thrust

at relatively high values of St. It shows that higher values of St tend to produce larger thrust CT

while the propulsive efficiencies (both mechanical and hydrodynamic) are found to reach peaks at a

certain St (in this case, the highest points of ηh and ηm occur at St = 2.5 and 2.2, respectively).

To understand the dependence of the propulsive performance of this system upon the

oscillation frequency and its correlation with the near-body flow field, we draw the snapshots of the

vorticity field around the body at different values of St. As shown in Fig. 2.11, there exist three

distinctive wake patterns. The first pattern, occurring at low frequency (St = 0.72 and 1.2 in the

figure), is dominated by the vortices that are shed from the outside of the solid boundary (mostly

in the inflation phase). These vortices are organized into vortex pairs. During each oscillatory

cycle one pair of vortices is generated. The rotational directions of these vortices are consistent

with those in a drag-type wake. Vortex pairs that are generated from the exit in deflation phase, by

comparison, are much weaker than the body-shed ones. Right after shedding they are dissipated

away rapidly.
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At higher values of St the second wake pattern appears, where these two types of vortices

(exit-generated vortices and body-generated ones) are comparable in strength (see Fig. 2.11 at

St = 1.65). Consequently, these coexisting vortices interact with each another and propagate

downstream together. The third wake pattern occurs when the deformation frequency is further

increased (see, e.g. St = 2.5). Under this condition, the wake structure is dominated by the exit

vortices so that the vorticity distribution displays the opposite scenario against the first pattern (i.e.

a thrust wake). Upon closer inspection, it is found that the maximum hydrodynamic efficiency ηh

is reached at St = 2.5, which roughly coincides with the transition to the exit-vortex-dominated

wake pattern.

Figure 2.12 displays the pressure distribution in the near-body flow field at three distinctive

wake patterns (St = 0.72, 1.65 and 3.5) and the corresponding time histories of thrust the swimmer

produces. Two snapshots of pressure contours are plotted for each case, obtained during the

deflation(t = T/4) and the inflation (3T/4) phases. A high speed jet flow is generated at the exit

during the deflation phase, leading to a high pressure area in the rear side of the swimmer. The

front side of the body, on the contrary, is surrounded by negative pressure as the shrinking body

backs away from the fluid. As a result, positive thrust is created. The above phenomenon becomes

more pronounced as St increases, leading to larger thrust generation. The high pressure region in

the rear created in the earlier deflation phase will be gradually neutralized in the following inflation

process. Consequently, a low pressure area will appear in the rear. Together with high pressure

environment in the front, a negative thrust is created. In the case of St = 0.72 where the jet speed

is relatively low, the high pressure effect in the deflation phase is weak so that the thrust force

generated in the contraction process is insufficient to overcome the resistance effect in the inflation

phase, resulting in negative average thrust over a cycle. On the other hand, when St = 3.5, the

jetting process is strong enough so that the high pressure effect is able to dominate the rear of the

body in the deflation phase. Even in the inflation phase there could be small positive pressure area
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near the exit as the high pressure field created in the deflation phase is sucked back (see the case

with St = 3.5 at 3T/4). Thus a positive average thrust is generated under this condition. The case

of St = 1.65 is a transition between those two scenarios.
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Figure 2.12: (Top) Pressure (normalized by ρu2
0) contours in the near-body flow

field and (bottom) time histories of thrust at St = 0.72, 1.65, and 3.5.

The interpretation of these results involves the interplay between the drag effect and the

jet-related thrust generation. In this system the horizontal force generation comes from three

sources: 1) the viscous drag on the body, which is associated with the body-shed vortices; 2)

the repulsive force from the jet, which is represented by the exit-generated vortices; and 3) the

added-mass related thrust. Among these three the added-mass effects play a negligibly small role in

mean force generation due to the tethered motion assumption (see §2.5.1 for a discussion). When

the oscillation frequency is low the jet effect is weak - the jet speed at the exit is roughly given as

− 1
D
dΛ
dt

. In these cases the net thrust production is negative or small since the weak jet is not able to

overcome the drag. The propulsive efficiency is thus low, albeit the energy expenditure may also be
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Figure 2.13: Mean thrust CT , mechanical efficiency ηm and hydrodynamic effi-
ciency ηh as functions of St at D = 0.06 and 0.14.

low. With the increasing frequency, the production of thrust rises with the strength of the jet, so

does the propulsive efficiency. At higher frequency, however, the efficiency decreases when the jet

is too strong.

Another parameter that significantly affects the dynamic of the system is the size of the exit

D. In the following we consider different exit diameters (D = 0.06L and 0.14L) to explore the

performance of the system as well as wake characteristics. This range of D is a bit higher than

the relative size of the orifice of a squid. The reason is that due to morphological restrictions the

volume change of the mantel cavity (corresponding to the volume of water discharged in each

jetting) of a squid is limited. The diameter of the funnel tube has to be small to reach sufficient

jet speed. Our squid-inspired system does not have this issue. On the other hand, in our system

small exit leads to stronger wake, which tends to become unstable after small number of cycles

(see §2.5.3).

As demonstrated in Fig. 2.13a, the results (i.e. the dependance of thrust generation and

efficiencies upon St) at D = 0.06L are similar to D = 0.1L. The mean thrust CT increase

monotonously with St, whereas both ηm and ηh are maximized at St = 2.05, a bit below the
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Figure 2.14: Same as Fig. 2.11 except that D = 0.06L.

Strouhal numbers corresponding to peak efficiencies in the case of D = 0.1L. This is explained by

the fact that at the same oscillation frequency, smaller exit increases the speed of the jet flow (and,

subsequently, the jet-related thrust generation), while its effect on the drag force (associated with

the body-generated wake) is not that big.

Figure 2.14 displays the wake signatures at different frequencies when D = 0.06L. All the

three distinctive wake patterns are observed in the range of St ∈ (0.62, 2.8). Most importantly, the

case of St = 2.05, in which the highest efficiency is obtained, also lies at the border between the

second and the third wake patterns.

The case when D = 0.14L, however, is different from the previous two (D = 0.06L and

0.1L). As shown in Fig. 2.13b, in this case there is no peak for neither the mechanical efficiency

ηm nor the hydrodynamic efficiency ηh within the achievable range of St, although the mean thrust
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displays the same tendency, i.e. it monotonously increases with respect to St. The corresponding

wake structures are illustrated in Fig. 2.15. It is seen that considerable body-shed vortices remain in

the wake over the whole range of St that can be reached. It is thus consistent with our observation

that the highest propulsive efficiency is achieved at the lowest St when the exit vortices dominate

the wake.

2.5.3 Symmetry-breaking instability

As mentioned earlier, in our system it takes just one inflation-deflation period to reach

steady state. However, in many cases the swimmer can only stay in this state for about 6 ∼ 9

cycles before a symmetry-breaking instability steps in. The consequence of the symmetry-breaking

instability on the propulsive performance of the system is clearly demonstrated in Fig. 2.16a,

where time histories of the thrust coefficient CT and the transverse force coefficient Cy are plotted.

It shows that lateral force becomes significant around t = 6.5T0. This is also accompanied by

decreases in thrust generation, since part of the energy input is utilized to generate the transverse

force instead. Further examinations show that the symmetry-breaking instability exists in all cases
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three curves the points when |Cy| approaches zero are not included). D = 0.06L.

(see Fig. 2.16b). However, in some of the cases we study (e.g. the one with K = 3.0ρu2
0 in Fig.

2.16b) it grows so slowly that within the limited simulation time its effect is not shown. A typical

process of such a transition is depicted in Fig. 2.17. It is seen that the instability starts in the

wake and eventually affects the deformation of the body itself. For example, when t = 6.0T0 the

configuration of the body is almost symmetric, although the wake displays a little asymmetric

disturbance. After that, the disturbance in the wake grows quickly with time and its induced velocity

soon destroys the symmetric pattern in body deformation (see the snapshot at t = 6.9T0). This

phenomenon suggests that the symmetric wake pattern in steady state is unstable and can easily be

disturbed under certain perturbation.

The symmetric-breaking instability leads to three issues on the propulsive performance

of our system: the need to overcome the lateral force and maintain straight line swimming, the

decreased thrust force and propulsive efficiency, and the difficulty to control the body deformation.

Indeed, due to deformations associated with fluid-structure interaction it is often impossible to

continue the simulation by using the activation method specified in §2.2 since the strain energy
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0.

stored in the springs can not be fully released. A possible solution is to add a resting period after a

few inflation-deflation cycles so that the system can be restarted. This, of course, will reduce the

average speed of the swimmer.

Finite-core vortex model

The underlying physical mechanism of the symmetry-breaking instability is associated with

nonlinear interactions among the vortex pairs in the wake, which essentially form a multiple-body

problem. For further insight we consider a simple system of an array of identical vortex pairs

consisting of clockwise vortices Γ and counter-clockwise vortices −Γ, forming a thrust-type wake

as shown in Fig. 2.18a. These vortex pairs are artificially added to the flow field at a period of

T . In an incoming uniform flow field (with speed u0 in the x direction), the two points of vortex

generation (shown as bullets in the figure) lie at (0, D/2) and (0,−D/2), similar to the upper and

lower edges of the exit.

By using the finite-core vortex model [42], the induced angular velocity of each vortex is
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forming a thrust-type wake. (b) Growth of the asymmetric parameter xaf at three
different values of vortex strength Γ with StD fixed. (c) Growth of the asymmetry
factor xaf at three different values of StD with vortex strength Γ fixed.

Γ
2πr

exp{−(r/r0)2}, where r is the distance measured from the center of the vortex, and r0 is the

size of the core. For illustration, we assume that u0 = 1 and r0 = 0.1. The distance between the

centers of the vortices in each pair, D, is chosen to be 1.

An initial disturbance in the form of a 0.1% increase in strength in one of the vortices within

the first pair introduced to the flow field is applied. The motion of the vortices is then calculated

numerically through an Euler integration algorithm. To monitor the growth of asymmetry in the

wake, we define an asymmetry factor xaf so that xaf ≡
∑n

1 [|xi − x′i|+ |yi + y′i|] /n, where xi (yi)

and x′i (y′i) are the x (or y) locations of the clockwise and counter-clockwise vortices within the

i−th vortex pair, respectively. n is the total number of vortex pairs in the field, which grows with
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time.

As shown in Figs. 2.18b and c, in every case we simulate the instability grows with time

and the wake eventually becomes asymmetric with respect to the x axis. The growth rate of

the symmetry-breaking instability depends on the vortex strength Γ and the shedding frequency

f ≡ 1/T (or, alternatively, the Strouhal number StD ≡ fD/u0). In general, larger values of Γ

contribute to faster growth of xaf , indicating that wake with stronger vortices is easier to go unstable.

The effect of frequency f is more complicated. On the one hand, higher shedding frequency is

associated with more densely packed vortex pairs so that the inter-pair hydrodynamic interaction is

more pronounced, which encourages instability growth. On the other hand, in lower frequencies it

takes longer time to have the same number of vortices in the field (note that in Figs. 2.18b and c

the horizontal aces are t/T , corresponding to the number of vortex pairs in the wake). Therefore in

these cases there is longer time for the instability to grow. Indeed, in all the three frequencies we

show in Fig. 2.18c, the asymmetry parameter reaches the same level after 10 periods.

In the curves shown in Figs. 2.18b and c, the sawtooth pattern is caused by the periodic

introduction of fresh vortex pairs into the wake, which are perfectly symmetric at the moment

they appear. With this model it is also easy to show that although the instability itself does not

depend on the exact form of disturbance, its detailed growth is affected by when, where, and how

strong the asymmetric disturbances are introduced (in our direct numerical simulations the source

of disturbance is numerical error).

Further discussion

When fluid viscosity is taken into account, the vortices weaken as they travel downstream

due to the dissipation effect. Accordingly it takes longer time for the symmetry-breaking instability

to grow. It is also more difficult for instabilities in the wake to prorogate upstream and affect the

structural deformation. Thus it is expected that as lower Reynolds numbers this symmetry-breaking

42



instability is less pronounced. This is consistent with results from our direct numerical simulations.

A similar phenomenon was reported by [43] in a simulation of jellyfish swimming using

an immersed-boundary method. It was observed that the wake becomes asymmetric when the

Reynolds number surpassed 500. In our system, the instability may be more pronounced since the

instability in the wake induces asymmetric responses from the structure and the activation system

so that there exists a positive feedback effect.

Most of the simulations in jellyfish swimming, on the other hand, do not show instability in

the wake. This may be attributed to the following reasons: a) As illustrated by our simple model,

the growth rate of this kind of instability depends on the strength of vortices. The wake created by a

jellyfish is usually much weaker than that behind a squid or a squid-like swimmer. b) Many of these

studies are focused on relatively low Reynolds numbers, where it takes extremely long time for the

instability to grow. To date it is not known if similar instabilities exist in three-dimensional cases

with multiple vortex rings in the wake. To answer this question it requires fully three-dimensional

studies (rather than axisymmetric models) to examine the interactions between vortex rings in an

array.

2.6 Untethered Swimming Mode

To proceed, we consider the dynamics of the aforementioned two-dimensional squid-like

swimmer in free-swimming mode. Our focus is on the swimming performance of this system

with different design parameters (e.g. the frequency of body deformation and the size of the

inlet/exit). The near-body flow field and vorticity control mechanisms will also be examined.

The swimming performance is measured by the average forward speed per deformation cycle V x,

travelling distance Ld and cost of transport, which is CoT = ∆PE/Ld.
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2.6.1 Measurement of velocity

Through the aforementioned deflation-inflation cycles, the system is able to undergo long-

distance swimming, which requires a large computational domain, and subsequently, significant

computational effort. To overcome this issue, an uniform background flow with velocity u0 in

the opposite direction of swimming is employed to keep the swimmer from escaping out of a

relatively small computational domain during the simulation. Towards this end, the ideal choice

of u0 should be close to the average speed of the swimmer. In practice, for each case a series of

testing simulations are required to determine the appropriate value of u0. The total speed of the

swimmer in quiescent water equals u0 plus the corresponding velocity measured in the imposed

stream. Numerically, u0 is imposed by using a Dirichlet boundary condition at the inflow boundary.

The velocity is measured at the center of mass of the internal volume denoted by Vx whose peak

value Vxm is used to define Reynolds number,

Rem =
ρVxmL

µ
. (2.44)

2.6.2 Normalization

u0 is inappropriate to be the reference velocity since it varies in various simulations. Instead,

we then choose V0 = µ
ρL

as the characteristic velocity. The characteristic density, length, and time

are respectively ρ, L, and T0 = ρL2/µ. All results in this section will be presented in normalized

form using these reference variables. Note that since dynamic viscosity µ is involved in the

reference framework, most dimensionless quantities will be in large scale.
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2.6.3 Time histories during the free locomotion

In order to illustrate the locomotion characteristics of the swimmer in long-distance free

swimming, in Fig. 2.19 we plot simulation results in the case of K = 2 × 106ρV 2
0 , D = 0.08L,

where the background flow speed u0 is set to be 700V0. Following the activation strategy in §2.2,

the system undergoes cyclic deformations between deflated and inflated states, leading to periodic

variations of the internal area of the swimmer with frequency f (Fig. 2.19a). As displayed in

Fig. 2.19b, in this particular case the swimmer experiences a 4-cycle accelerating process before

reaching a steady state, whose maximum velocity is around 1400V0. Meanwhile a symmetry-

breaking instability originates from the wake of vortex pairs comes into play, which grows over

time and eventually makes it difficult for the system to maintain straight line swimming, as shown

in Fig. 2.19b after two cycles of steady-state swimming. The time evolution of this instability is

clearly shown in Fig. 2.19c, where the time history of Vy (the speed of the system in the lateral

direction) is plotted in logarithmic scale. Aside from pronounced lateral motion, this instability

also considerably diminishes the forward speed (Fig. 2.19b).

In the free-swimming case it is difficult to separate the thrust from the viscous drag. Instead,

we use an indirect method to estimate the thrust force FJ produced by the jet. It is known that

in free swimming FJ is balanced by 1) the viscous drag and 2) the inertia effect associated

with acceleration of the body ml and its added mass ma. We approximate the viscous drag by

1
2
ρV 2

x CDDp, in which CD is the drag coefficient of the elliptical body with minor axis Dp. For

simplicity we choose CD to be the drag coefficient of an ellipse with eccentricity e0 = 0 (the

fully inflated shape) at the instantaneous Reynolds number [44]. The second part (the inertia

force) is calculated as (ml +ma)V̇x, where the added mass ma is expressed by ρπb2, in which b

denotes the semi-minor axis of ellipse. Figure 2.19d presents the time history of thrust coefficient

CJ = FJ/ρV
2

0 L. Meanwhile the added-mass-related thrust coefficient Ca = Fa/ρV
2

0 L, in which

Fa = −Vxṁa is also displayed in the same figure. Even though Ca is negative during the inflation
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0 (d-f). D = 0.08L.

phase since ṁa > 0, its time-averaged value is still positive since the swimming velocity in

deflation is larger than that in inflation. In addition, the magnitude of Ca is comparable to that of

the jet-related thrust CJ . This conclusion is different from the one we reached in simulations of a

tethered swimmer . The discrepancy is caused by the fact that in the tethered swimmer the forward

speed (in that case the speed of the incoming flow) is a constant. In that scenario the positive

contribution to thrust generation from added mass during the deflation phase is cancelled by the

negative contribution during the inflation phase.

According to simulations of tethered motion of the system, there exist three distinctive

types of wake pattern. With constant forward speed that is prescribed, at low pulsating frequencies

(corresponding to soft springs) the wake is dominated by body-shed vortices. In these cases the

weak jetting fails to overcome viscous drag so that the overall thrust is negative. At relatively high

frequencies, however, the exit vortices become sufficiently strong to dominate the vorticity field.
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The third pattern is a transit pattern between those two scenarios, i.e. vortex pairs from the two

origins coexist in the wake.

Unlike the tethered cases, in free-swimming cases the wake signature is found to be

dependant upon the stage of motion. For example, Fig. 2.20 displays the wake signatures in two

cases, K = 2×106ρV 2
0 andK = 0.1×106ρV 2

0 (in both casesD = 0.08L). The Reynolds numbers

Rem for these two case are 1400 and 280, respectively. It is seen that despite the large difference in

spring stiffness K (and, subsequently, the frequency of body pulsation), the evolutions of wake

in these two cases are similar to each other. During the acceleration stage, the thrust produced by

the swimmer (which is associated with the jet-generated wake) is larger than the drag (which is

associated with the body-generated wake). For that reason at this stage the wake appears to be

dominated by exit vortex pairs (see Figs. 2.20a and d).

As the body is accelerated, the drag effect is getting more pronounced (the drag the body

sustains is proportional to the square of speed) until the steady state is reached, in which a

balance between time-averaged drag and thrust is achieved. As demonstrated in Figs. 2.20b and

e, at this stage the two types of vortices (exit vortices and body-shed ones) are comparable in

strength and coexist behind the body. Finally, the asymmetrical vorticity distribution caused by the

aforementioned instability is displayed (Figs. 2.20c and f). As a result, lateral force will be induced

which deviates the body from its track.

2.6.4 Parametric study

In long-distance swimming the propulsive performance is measured by the average velocity

V x as well as the travelling distance Ld and cost of transport CoT over one cycle after the steady

state is established. Systematic simulations have been conducted to study the parametric effect. As

shown in Fig. 2.21, stiffening the springs tends to increase the deformation frequency f , although

its growth rate decreases with K. Higher values of frequency f is associated with larger mean
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Figure 2.21: (a) Deformation frequency f against K, (b) average speed per cycle
V x, (c) travelling distance Ld, and (d) CoT as functions of f .

velocity yet lower efficiency (CoT rises steeply with f ). The swimming distance Ld = V x × T

grows with f until reaching a peak, after which it will decline slowly due to the fact that the growth

of V x fails to compensate the diminish of the time period T ≡ 1/f . The maximum value of Ld the

is achieved at f = 600V0/L,900V0/L and 1100V0/L for D = 0.06L, 0.08L and 0.1L, respectively.

2.7 Summary and remarks

Inspired by the locomotion mechanism of squids and other cephalopods, we propose a novel

underwater propulsion system using pulsed jet enabled by repeated body inflation and deflation

deformations. The specific design includes a flexible body with a pressure chamber and an opening
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at the rear end, which functions as both the inlet to let water in during the inflation phase and the

exit to create the jet during the deflation phase.

To understand the fluid-structure interaction mechanisms involved in the propulsive perfor-

mance of such a design, a two-dimensional model consisting of a deformable body (depicted as a

beam with fixed length) and a number of internal springs is created. The inflation and deflation

deformations of the body are achieved through a simple activation strategy using variations in the

unstretched lengths of the springs. An immersed-boundary algorithm is employed to solve the

fluid-structure interaction problem.

First we concentrate on the tethered swimming performance of this system. The tethered

swimming configuration allows us to use the traditional definition of propulsion efficiency, so that

our results can be put in context in a broad field of oscillatory propulsive devices such as flapping

fins (most of the existing studies in that field use tethered motion as well). In addition, the device

we study can not only be used as a stand-alone swimmer, but also be used as a propeller of an

underwater vehicle. In the latter case the forward speed is determined by the whole system so that

as far as the propeller is concerned the forward motion is similar to a prescribed motion.

Our numerical simulations show that the activation strategy we use is capable of achieving

periodic body inflation and deflation. The frequency of oscillation is determined mostly by the

stiffness of the springs. The mean thrust generation is found to increase monotonously with

increasing frequency, whereas the propulsive efficiency reaches a peak at an optimal frequency

before it decays.

The flow field around the system has also been illustrated. In each cycle of oscillation

two pairs of vortices are generated and shed into the wake. During the inflation phase a pair of

vortices is formed on the outer surface of the body. Another pair is created at the exit during the

deflation phase, accompanying the jet formation behind the body. Depending on the frequency of

oscillation, there are three distinctive wake patterns, the one dominated by the body-shed vortices,
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the one in which the body-shed vortices and the exit vortices are comparable in strength, and the

one dominated by the exit vortices. The simulations also suggest that the peak propulsive efficiency

is usually reached between the second and the third wake patterns (i.e. when the exit vortices start

to dominate the wake).

Our long-term simulation shows that due to a symmetry-breaking instability in the wake

the steady-state response can only be sustained for a limited number of inflation-deflation cycles

before the flow field and the body deformation become asymmetric in the lateral direction. This

effect compromises the propulsive performance by reducing the thrust force and inducing a lateral

force as well. Moreover, the instability diminishes the controllability of the system so that it is

often impossible to continue with the inflation-deflation cycles. A straightforward solution of this

problem is to stop the body deformation when the instability occurs and then restart it when the

disturbances in the wake are dissipated away. This strategy reduces the average speed the swimmer

can reach. The detailed implementation of this working-resting strategy is highly case dependent.

Firstly, when the resting period is needed depends on how many inflation-deflation cycles the

system can go without being significantly disturbed by the instability. Secondly, the duration of the

resting period is determined by how fast the previously shed vortices decay or propagate into the

far field, which depends on many factors such as the Reynolds number. It might also be possible to

mitigate the effect of this instability through active or passive flow control techniques (e.g. active

control of body deformation and direction of the exit via thrust vectoring). These methods will be

explored in future studies.

Second we investigate the dynamics of the propulsive system in free swimming mode. Our

results show that in long-distance swimming with multiple inflation-deflation cycles, the swimmer

undergoes three different phases, acceleration, steady state and symmetry breaking, each with

its own distinctive wake signature. The acceleration stage is associated with wakes dominated

by vortices shed from the exit. When steady-state swimming is reached, this pattern is replaced
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by a transit wake, in which the strengthes of the exit-generated vortices and the body-shed ones

are comparable. Finally, when the symmetry-breaking instability dominates the wake becomes

asymmetrical and the swimmer deviates from its track. The increase of the deflation-inflation

frequency enhances the swimming speed at the expense of lower efficiency.

Finally, our current design focuses on a two-dimensional system which bears certain

resemblance of the jetting mechanism of squids. Nevertheless to closely imitate the dynamics of

squid swimming an three dimensional or axisymmetric design may be a better option (although

it will still not be representative of real squids, which are not axisymmetric). With a circular exit

there will be vortex rings in the wake, which are associated with physical mechanisms somewhat

different from the vortex pairs examined in the current work. Moreover, it will be interesting to

study if the interaction among these rings may also lead to symmetry-breaking instabilities.

This chapter, in part, is a reprint of the material as it appears in the following papers.

• Xiaobo Bi and Qiang Zhu, “Fluid-structure Interaction of a Squid-inspired Swimmer”,

Physics of Fluids, vol. 31, pp. 101901, 2019.

• Xiaobo Bi and Qiang Zhu, “Dynamics of a Squid-Inspired Swimmer in Free Swimming”,

Bioinspiration & Biomimetics, vol. 15, no. 1, pp. 016005, December 2019.

The dissertation author is the primary investigator and author of these papers.
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Chapter 3

Fluid Dynamics of an Axisymmetric Jet

Propulsion System via Body Deformation

In this chapter we develop an axisymmetric fluid dynamics model that consists of a de-

formable body with a pressure chamber similar to the one possessed by a squid in jetting mode and

a orifice exit through which fluid is sucked or ejected, imitating the funnel tube of squids. Through

this simplified axisymmetric swimmer, we aim at exploring the jetting dynamics of squid-inspired

propulsion, especially the effect of jet speed, jet acceleration, the vortex ring formation etc. on the

performance of the swimmer.

3.1 Problem statement

Similar to the two dimensional model in the previous chapter, the axisymmetric propulsion

system contains a deformable body and an orifice (see Fig. 3.1a). The body is idealized as an

ellipsoidal shell of zero thickness with a circular exit whose diameter is D, which is set to be 0.1L

(L is the contour length of the body). The axisymmetric numerical model used in this study is

presented in Fig. 3.1b. The propulsion process includes two phases, deflation and inflation, both
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Figure 3.1: (a) Rendition of the axisymmetric squid-inspired system, (b) the
simulation model and body deformation.

accomplished by prescribed body shape change. During the body deformation the swimmer is

tethered at the orifice plane.

The deformation trajectory is depicted by the time history of the ellipsoidal eccentricity

e(t), which in its turn is determined by the jet speed profile Vj(t) we prescribe, where Vj (the

spatially averaged axial flow speed at the exit plane) is defined as

Vj(t) =
−1

A

d∀
dt

=
−4

πD2

d∀
dt
. (3.1)

in which ∀(e) is the volume of the internal chamber depending on the eccentricity e, A = πD2/4

denotes the area of the exit. Equation (3.1) enables us to determine the time evolution of the internal

body volume ∀ with the prescribed Vj(t), then map onto e(t), which describes the body deformation

trajectory. With L, D and e being known, the geometry of the swimmer can be determined using

the algorithm describe in Appendix A.
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3.2 Governing equations

The fluid dynamics is governed by the incompressible axisymmetric Navier-Stokes equa-

tions. Within the immersed-boundary framework [28–30], an additional forcing term is incorporated

into the governing equations to enforces the boundary conditions associated with the solid body

and its deformation.

Let x ≡ (x, r) be a cylindrical frame with x in the direction of the jet and r the radial

direction, u(x, t) ≡ (ux, ur) corresponds to velocity components in each direction, p(x, t) is the

pressure distribution, and f(x, t) ≡ (fx, fr) stands for the force density exerted by the immersed

boundary Γib on the surrounding flow. In the immersed-boundary approach the Navier-Stokes

equations in the fluid domain Ωf and the continuity equation are

fx = ρ
∂ux
∂t

+ ρu · ∇ux +
∂p

∂x
− µ

[
∂2ux
∂x2

+
1

r

∂

∂r
(r
∂ux
∂r

)

]
(3.2)

fr = ρ
∂ur
∂t

+ ρu · ∇ur +
∂p

∂r
− µ

[
∂2ur
∂x2

+
1

r

∂

∂r
(r
∂ur
∂r

)− ur
r2

]
(3.3)

0 =
∂ux
∂x

+
1

r

∂(rur)

∂r
, (3.4)

where ρ represents the fluid density and µ stands for the dynamic viscosity. The corresponding

boundary conditions are

• Inflow: ux = u0, ur = 0, ∂p
∂x

= 0;

• Outflow: ∂(ux,ur)
∂t

+ u0
∂(ux,ur)

∂x
= 0, ∂p

∂x
= 0;

• Rotating axis: ∂ux
∂r

= 0, ur = 0, ∂p
∂r

= 0;

• Far field: ux = u0, ur = 0, ∂p
∂r

= 0.

where n is the outward normal unit vector of the domain boundaries.
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In this axisymmetric numerical model, the body kinematics are described in the same way

as the two dimensional problem in chapter 2. The feedback algorithm (see Eqns (2.8)- (2.11))will

also be incorporated to treat the fluid-structure coupling in the axisymmetric case.

Integrating the distributed interaction force F(s, t) in the −x direction along the body Γib,

we have the net axial hydrodynamic force acting on the body, which is given as

Fn = −
∫

Γib

2πr(s)Fx(s, t)ds. (3.5)

3.3 Numerical algorithm

The governing equations (Eqns.(3.2)-(3.4)) are solved to update the fluid velocity, pressure

and interacting force at (n + 1)th time step using data from its previous time step n. Following

Kim et al. [35], the fluid-dynamics equations are temporally discretized with the Crank-Nicholson

scheme and spatially discretized using the finite difference method within a rectangular domain

filled with staggered grid (see Fig. 2.3). The discrete governing equations are presented as

ρ
un+1
x − unx

∆t
+ ρ
H(un+1

x ) +H(unx)

2
= −Gx(pn+1/2) + µ

Lx(un+1
x ) + Lx(unx)

2
+ fnx ,

ρ
un+1
r − unr

∆t
+ ρ
H(un+1

r ) +H(unr )

2
= −Gr(pn+1/2) + µ

Lr(un+1
r ) + Lr(unr )

2
+ fnr ,

Dx
(
un+1
x

)
+Dr

(
un+1
r

)
= 0,

(3.6)

where the operators are defined as

Gx = Dx =
∂

∂x
, Gr =

∂

∂r
, Dr =

1

r

∂

∂r
r, H = ux

∂

∂x
+ ur

∂

∂r
,

Lx =
∂2

∂x2
+

1

r

∂

∂r
r
∂

∂r
, Lr =

∂2

∂x2
+

1

r

∂

∂r
r
∂

∂r
− 1

r2
.

The presence of convective terms makes the problem nonlinear since the velocities are
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unknown, e.g. H(un+1
x ) = un+1

x
∂un+1

x

∂x
+un+1

r
∂un+1

x

∂r
. Hereby we linearize the equations by employing

the scheme of Beam & Warming [45] with second-order temporal accuracy.

H(un+1
x ) +H(unx)

2
= Nxx(un+1

x ) +Nxr(un+1
r ), (3.7)

H(un+1
r ) +H(unr )

2
= Nrx(un+1

x ) +Nrr(un+1
r ), (3.8)

in which the linear convective operators only include the velocity at n time step:

Nxx =
∂

∂x
unx +

1

2r

∂

∂r
runr , Nxr =

1

2r

∂

∂r
runx,

Nrx =
1

2

∂

∂x
unr , Nrr =

1

2

∂

∂x
unx +

1

r

∂

∂r
runr

Assuming δun+1
x = un+1

x − unx, δun+1
r = un+1

r − unr , δp = pn+1/2− pn−1/2, we then rewrite

the discretized and linearized equations in matrix form as


Ax ρNxr Gx

ρNrx Ar Gr

Dx Dr 0



δun+1

x

δun+1
r

δp

 =


Rx

Rr

0

 , (3.9)

where

Ax = 1
∆t

[
ρI + ∆t

(
ρNxx − µ

2
Lx
)]
,

Ar = 1
∆t

[
ρI + ∆t

(
ρNrr − µ

2
Lr
)]
,

Rx = µLx(unx) + fnx − ρNxx(unx)− ρNxr(unr )− Gx(pn−1/2),

Rr = µLr(unr ) + fnr − ρNrx(unx)− ρNrr(unr )− Gr(pn−1/2).

To solve Eqn. (3.9), inversion of the large sparse coefficient matrix is needed, which
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requires significant CPU time and memory. Instead, we use LU decomposition to factorize the

coefficient matrix so that velocity and pressure are decoupled, yielding


Ax 0 0

ρNrx Ar 0

Dx Dr −∆t(DxGx+DrGr)
ρ



I ∆tNxr ∆tGx

ρ

0 I ∆tGr
ρ

0 0 I



δun+1

x

δun+1
r

δp

 =


Rx

Rr

0

+ err(∆t2), (3.10)

where the second-order residual error term is

err = ∆t


(
ρNxx − µ

2
Lx
)
Nxr(δun+1

r ) +
(
Nxx − µ

2ρ
Lx
)
Gx(δp)

ρNxrNrx(δun+1
r ) +

(
Nrr − µ

2ρ
Lr
)
Gr(δp) +NrxGx(δp)

DxNxr(δun+1
r )

 .

Note that since δun+1
x , δun+1

r and δp are O(∆t), the residual error term is O(∆t2), making the

above approximation second order in time.

Let δu∗x and δu∗r be the intermediate values of the velocity increments at (n + 1)th time

step, Eqn. (3.10) can be rewritten as


Ax 0 0

ρNrx Ar 0

Dx Dr −∆t(DxGx+DrGr)
ρ



δu∗x

δu∗r

δp

 =


Rx

Rr

0

 , (3.11)

and 
I ∆tNxr ∆tGx

ρ

0 I ∆tGr
ρ

0 0 I



δun+1

x

δun+1
r

δp

 =


δu∗x

δu∗r

δp

 . (3.12)

The following steps are taken to update the flow field:
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Step 1: solve the intermediate velocity increments via Axδu∗x = Rx and Arδu∗r = Rr −

ρNrxδu∗x;

Step 2: solve δp from the elliptic equation ∆t(DxGx +DrGr)δp = ρDxδu∗x + ρDrδu∗r;

Step 3: update the velocity increments at n+ 1 time level via δun+1
r = δu∗r −∆tGrδp/ρ and

δun+1
x = δu∗x −∆tNxrδun+1

r −∆tGxδp/ρ;

Step 4: update the velocities and pressure at time level n + 1 via un+1
x = unx + δun+1

x ,

un+1
r = unr + δun+1

r , and pn+1/2 = pn−1/2 + δp.

We proceed by rewriting the equation Axδu∗x = Rx in the first step as,

1

∆t
[ρI + ∆tM ] δu∗x = Rx, (3.13)

where M =
(
ρNxx − µ

2
Lx
)
. we then split the matrix M into two parts, i.e Mx and M r, which

only involve the derivative of x and r, respectively. Hence

1

∆t
[I + ∆t(Mx +M r)] δu∗x = Rx. (3.14)

The equation can be approximated by

1

∆t
(I + ∆tMx)(I + ∆tM r)δu∗x = Rx, (3.15)

in which the temporal second order accuracy is preserved. The approximation steers away from the

inversion of large sparse coefficient matrix Ax. Instead, we only need to handle tridiagonal matrices

Mx andM r. The same treatment can also be applied to the second equationArδu∗r = Rr−ρNrxδu∗x

in the first step.
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Figure 3.2: Time histories of jet speed of impulsive, cosine and half-cosine profile.

The validity and accuracy of this numerical method is delineated through comparisons with

benchmark results of a canonical problem as shown in Appendix C.

3.4 Escaping mode through single deflation stroke

First of all, we consider the escaping locomotion of the swimmer through a pulsed jetting

accomplished by body deflation. In this scenario, the simulations are performed in static fluid so

that the incoming flow speed u0 is set to be zero. Three jet velocity profiles, namely impulsive,

cosine and half-cosine, are examined. The jet speed Vj are prescribed by following equations

Impulsive jet: Vj(t) =


0.5Ṽj[1− cos( πt

o.4TD
)] if t ∈ [0, 0.4TD]

Ṽj if t ∈ (0.4TD, TD]

(3.16)

Cosine jet: Vj = 0.5Ṽj [1− cos(2πt/TD)] , (3.17)

Half-cosine jet: Vj = 0.5Ṽj [1− cos(πt/TD)] . (3.18)
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where Ṽj stands for the maximum (or upper-bound) spatially averaged jet speed at the exit plane,

TD is the time duration of the body deflation. Figure 3.2 presents the time histories of jet speed for

different jet profiles. A jet-based Reynolds number is defined as

Rej =
ρṼjD

µ
. (3.19)

All simulations of this section will be conducted at Rej = 150.

3.4.1 Independence tests

To find proper numerical parameters, a grid independence study has been performed as

shown in Fig. 3.3a, where ∆x is the size of the fluidic grid in the neighborhood of the body. The

effect of time step ∆t is also studied (see Fig. 3.3b). These tests show that the results are not

sensitive to the grid size and the time step if they are sufficiently small. Hereafter we choose

∆r = ∆x = 0.03D, ∆s = 0.0167D and ∆t = 5× 10−4T0, where T0 = D/Ṽj .

3.4.2 Vortex ring formation and evolution

By using a piston-cylinder apparatus, Gharib et al. [46] found that the formation of vortex

rings by jet flow was determined by a dimensionless parameter called formation number, which

was defined as L/D, where L and D are the length and diameter of the jet plug, respectively. The

formation number coincides with the stroke ratio of the piston. According to their observations,

increasing this parameter will enhance the vortex ring until a threshold called critical stroke ratio

(formation number) is reached. Beyond this threshold, the Pinch-off of the vortex ring occurs.

Specifically, the fluid discharged thereafter forms minor vortex rings behind the leading ring, rather

than being entrained into it, i.e. the leading vortex ring reaches saturation state at the critical stroke

ratio. Note that the experiment was performed at Rej = 2100.
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Figure 3.3: (a) Sensitivity tests for fluidic grid size when ∆r = ∆x and ∆t =
5×10−4T0, where T0 = D/Ṽj; (b) sensitivity tests for time step when ∆x = ∆r =
0.02D. The impulsive jet velocity profile (Eq. (3.16)) is used with ∆s = 0.0167D
and Γm = 4.6.
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Table 3.1: Maximum formation number Γm for various initial states e0 with the
fully deflated state fixed as e1 = 0.95.

e0 0.92 0.90 0.86 0.80 0.65
Γm 2.9 4.6 7.3 10.4 15.0

A theoretical explanation of this phenomenon was provided by Linden and Turner [47].

In that work they compared properties of the jet plug (volume, circulation, impulse, and kinetic

energy) with those of a finite-core vortex ring. Their results indicate that the critical formation

number corresponds roughly to the limiting case when these properties of the jet plug match those

of a single vortex ring, i.e. the jet is completely rolled into a vortex ring with maximum strength.

They further demonstrated that at this particular case the impulse created by the jet was maximized

for given energy input.

Herein, we will explore the effect of the Pinch-off phenomenon upon the dynamics of the

swimmer. The effective formation number associated with the deflation deformation is defined

as Γ = 4Λ/(πD3), where Λ = ∀(e0)− ∀(e) is the fluid volume ejected out of the chamber. The

maximum value of Γ, labelled as Γm, is reached at the end of body shrinking. Its exact value is

4(∀(e0) − ∀(e1))/(πD3). Table 3.1 presents a sequence of cases with different Γm that will be

examined in this section.

Using the impulsive velocity profiles(see Eqn.(3.16)), we investigate the vortex ring genera-

tion process during the deflation deformation. Figures 3.4a and d present the flow field at the end of

the deflation for the cases with Γm = 2.9 and Γm = 7.3, respectively. The corresponding flow fields

visualized via streamlines (Figs. 3.4b and e) and Q criterion (Figs. 3.4c and f) are also displayed.

These figures show that in the case of Γm = 2.9 most of the ejected fluid is entrained into a single

vortex ring. When Γm is 7.3, on the other hand, the wake consists of a leading vortex followed

by a trailing flow. The behavior here is somewhat different from previous observations that show

additional vortices being formed in the trailing flow [46]. The difference is mostly attributed to
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Figure 3.4: Vorticity visualization (a,d), streamline (b,e) and Q criterion distribu-
tion (c,f) of the wake at Γm = 2.9 and 7.3. The vorticity is normalized by Ṽj/D.
These snapshots are captured at the end of the deflation phase. Impulsive jet profile
is applied.
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Figure 3.5: Wake evolution at Γm = 10.4 visualized via vorticity. Impulsive jet
profile is applied.

the Reynolds number effect. Indeed, these results are consistent with experimental data at similar

range of Reynolds numbers [2].

For further insight, Fig. 3.5 displays snapshots of the flow field at various time instants

throughout the jetting process for the case of Γm = 10.4. It shows that the jet flow continuously

feeds the leading vortex ring until around Γ = 4, when the leading vortex ring detaches from the

trailing flow. As mentioned earlier, in this low Reynolds number regime the trailing flow is not

sufficiently strong to induce a secondary vortex ring. Instead, it remains connected with the nozzle

as well as the leading vortex ring. The consequence is that after Γ = 4 the trailing flow is still able

to feed the leading vortex ring. Although complete disconnection between these two flow structures

(the leading vortex ring and its trailing flow) may never occur [48], a clearer separation is observed

at Γ = 6 ∼ 7. After that, the strength of the leading ring stops growing and decays slowly due to

viscous dissipation. This is clearly shown in Fig. 3.6a, where the circulation of the leading vortex

ring C is plotted as a function of Γ.
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Figure 3.6: (a) Vortex ring circulation C as a function of Γ, (b) peak value of
vortex ring circulation Cm as a function of Γm. Results from a cylindrical piston
experiment by Zenit [2] are presented for comparison.
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As displayed in Fig. 3.6a, the normalized circulation of the vortex ring reaches a peak value

around 2.0 when Γ = 6 ∼ 7. This implies that after the apparent separation of the vortex ring from

the trailing flow, it is still fed by the jet. The supply rate, however, decreases gradually as the ring

moves downstream away from the nozzle so that the growth rate of the circulation curve declines

prior to the plateau. At Γ = 6 ∼ 7 the supply rate is balanced by the rate of dissipation and the

leading ring stops growing. This coincides with a clearer spatial isolation of the leading vortex ring

(see Fig. 3.5).

Figure 3.6b displays the peak circulation of leading vortex ring Cm as a function of Γm.

For comparison, results from a cylindrical piston experiment are plotted in the same figure as well.

Even though the maximum value of Cm we obtain is in good agreement with the reported value,

there is still certain discrepancy in terms of the critical formation number (stroke ratio). This is

likely to be caused by differences in details of the jet profile. First, a constant piston velocity

profile without an acceleration phase was applied in the experiment, while our system undergoes

an accelerating stage that accounts for about 25% of the whole deformation time. The viscous

dissipation is more significant in our model so that higher formation number is needed to attain the

saturated state. Second, the difference in nozzle geometry (conical versus tubular) may also cause

some difference in vortex ring formation.

Next we examine the two other jet profiles, i.e. cosine and half-cosine as described in

Eqns. (3.17-3.18). Figure 3.7 presents time histories of the leading vortex ring circulation. For

the half-cosine velocity distribution, in which the jet is accelerated throughout the entire deflation

process, the circulation of vortex ring keeps growing till the end of jetting because of the continuous

vorticity feeding from the jet. Without exception, lower Γm yields larger circulation for a fixed

Γ since the same amount of fluid mass is ejected with higher speed. For the same reason, the

maximum values of circulation in these cases are lower than that with the impulsive velocity

profile. With the cosine profile, the circulation reaches a peak after an initial increase. The peak
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Figure 3.7: Vortex ring circulation C as functions of Γ,(a) half-cosin profile; (b)
cosine profile.
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occurs approximately at Γ = 0.75 ∼ 0.85Γm, when the jet speed Vj slows down to 0.3 ∼ 0.5Ṽj .

Afterwards the vorticity supply from the jet is unable to compensate for the viscous dissipation due

to the decreasing jet speed and the increasing distance between the ring and the nozzle, so that the

circulation of the leading vortex ring is gradually reduced.

An important factor that determines the value of C at any formation number Γ is the time

history of the jet speed before that instant. The differences among the impulsive jet profiles with

different values of Γm are much smaller than those among the cosine (or half-cosine) jet profiles

since a significant portion of an impulsive profile is constant. This explains why the C versus Γ

curves in the impulsive case are closer to each other than those in the cosine and half-cosine cases.

3.4.3 Thrust generation

We then calculate the instantaneous thrust FT generated by the jet flow. Since the swimmer

is tethered within static fluid, the swimmer sustains negligible drag force so that the net hydrody-

namic load on the body Fn is expected to be equivalent to the trust FT , i.e. FT ≈ Fn. Note that

even though finite drag may be created by the body centroid translation during the body shrinking,

its magnitude is far smaller than FT according to our simulations.

Figure 3.8 displays the instantaneous thrust FT (approximated by Fn) and jet flux momen-

tum Fj (ρD2V 2
j ) created by the impulsive jet with various Γm. It is shown that after the jet speed

Vj reaches its steady value the main source of the thrust FT is the momentum flux, i.e. FT ∼ Fj .

However, in the initial stage the overall thrust generation is much larger than the contribution

from the momentum flux (which is small during the acceleration procedure). The thrust FT of

other two velocity profiles (half-cosine and cosine) are displayed in Fig. 3.9. In the half-cosine

profile accelerating jet speed leads to increasing FT . In the cosine profile positive thrust is created

during the accelerating period, whereas during the deceleration period the thrust generation could

be negative. Similar to the impulsive profile, the thrust FT does not match with Fj . It suggests
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Figure 3.8: Time histories of thrust FT for various Γm. Impulsive jet is applied,
and the corresponding jet flux momentum Fj is also plotted.

that there exists other thrust sources that dominate the thrust generation during the unsteady jet

process, in which the fluid inertial effect (associated with jet acceleration aj = dVj/dt) is present.

The mechanism of thrust generation will be further illustrated in §3.6.1.

3.5 Recovery process through the inflation deformation

During the recovery (inflation) phase, the swimmer inflates its body back to e0 to get

ready for the next stroke. It is necessary to study the dynamics of the system during the inflation

process(t ∈ (0, TI)). Only reversed cosine jet profile (opposite jet direction) will be considered in

this section.

Figure 3.10 displays the flow field snapshots visualized through azimuthal vorticity at two

different Rej . It is shown that internal vortices are formed as fluid is sucked into the pressure

chamber, yet the vorticity evolution differs significantly between the two cases with different
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Figure 3.9: Time histories of thrust FT for half-cosine profile(a) and cosine
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Reynolds numbers. When Rej = 500, the internal flow consists of a leading vortex and a trailing

flow behind. The leading vortex is stopped when it approaches the internal surface of the body,

inducing a counter-rotating vortex as the body expands. At t = 0.75TI , this new vortex splits

the jet flow into two parts. The leading vortex, the secondary vortex, and the trailing flow then

interact with each other till the end of the inflation, when there still exist fairly strong vortices in the

chamber. When Rej = 50, however, the jet flow evolution takes a different path. In the chamber

no leading vortex is formed due to large viscous effect. Indeed, the jet flow even fails to reach the

front wall. At the end of inflation, there is no residual vorticity in the chamber due to dissipation.

Figure 3.11 presents the time evolution of thrust FT during the inflation. Similar to the

deflation phase, FT is approximated by Fn since the drag force (hydrodynamic load on the outer

surface) is negligible. Previously it was believed that the inflation phase generates mostly drag

force [49], however we find that although negative thrust is indeed created at the initial stage, it

is followed by positive thrust in the remaining time (note that this result is obtained without any

incoming flow). Meanwhile, it is shown that the case with Rej = 500 generates greater thrust than

the case of Rej = 50. Likewise, the underlying physics will be discussed in §3.6.1.

3.6 Long distance locomotion via cyclic inflation-deflation de-

formation

To achieve long-distance swimming, the swimmer should perform repeated inflation-

deflation body shape change with certain frequency f = 1/T (T stands for the time duration of

the a whole cycle). We then explore the dynamics of the swimmer in long-distance swimming

mode via simulations. The computations are conducted within a constant axial free stream u0. For

smooth transition between the deflation and inflation phases, cosine and reversed cosine jet profiles

are respectively employed in the two phases, as displayed in Fig. 3.12.
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Besides the maximum formation number Γm (determined by e0 and e1) and jet-based

Reynolds number Rej , there are other two important non-dimensional parameters, the incoming-

flow Reynolds number Re and the Strouhal number St, whose definitions are

Re ≡ ρu0D/µ, St ≡ D/(u0T ). (3.20)

The correlation among those quantities can be expressed as

Rej = 4ΓmStRe. (3.21)

To ensure that the problem remains axisymmetric, we only consider relatively low Reynolds number

(Re 6 150). Unless otherwise specified, we choose Γm = 10.4, achieved by setting e0 = 0.8 and

e1 = 0.95. The swimming capability is mainly characterized by the mean thrust FT and propulsive

efficiency η.

Indeed, the efficiency of locomotion via pulsed jetting has been the topic in some existing

studies [49–53]. Among these studies, Staaf et al. [49] measured the dynamics of squid larvae

around 1 mm in body length and found that they could reach swimming efficiency around 20%.

Moslemi and Krueger [52,53] experimentally measured the propulsive efficiency of a squid-inspired

pulsed-jet propulsion device with a rigid-body design for Reynolds number in the range of 37− 60

and 1300 − 2700, respectively. They found that the efficiency of the jetting process reached

15%− 32%. Hereby the efficiency is defined the conventional way, e.g. the useful power (thrust

multiplied by forward speed) divided by the total power expenditure (excess kinetic energy shed

into the wake plus the useful power). However, in the calculation of thrust these studies rely on

simplified models based on the jet flux momentum or the momentum change in the wake (which

includes not only the jet but also the body wake; the latter is actually related to drag rather than

thrust).
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In fact, the efficiency of jet propulsion is often calculated as the Froude efficiency, which

has been extended to study pulsed-jet propulsion including both the contraction and the refilling

phases [54]. Nevertheless, this is a quasi-steady method using the average forward speed and

average jet speed. The detailed time history of the jetting and refilling processes is not considered.

In a broader context of the dynamics of bio-inspired swimmers, for a reasonable estimation

of efficiency it is necessary to decompose the overall force on the body into thrust and drag.

Otherwise the efficiency based on overall force in steady-swimming scenario, in which thrust and

drag are balanced, will be zero. Traditionally, it was proposed to use the drag on a rigid swimmer as

a rough approximation for the drag on the deformable body [55]. The accuracy of this approach is

limited since body deformation may significantly affect the drag force. In an alternative approach,

the longitudinal force is separated into two parts, pressure force and viscous force. At any instant

the contribution from each part is counted as either thrust if it is in the swimming direction or

drag if it is in the opposite direction [56]. In terms of physical interpretation, this method is very

different from the traditional view, in which the thrust force can be either positive (towards the

swimming direction) or negative (against the swimming direction). Moreover, with this method

there will be nonzero drag force even if the forward speed is zero.

In free swimming mode, our swimmer will sustain three types forces, namely the drag

force Fd, the thrust FT and the added-mass-related force Fa(as described in §1, Fa = −u0
dma
dt

,

where ma is the added mass [19]). We hereby propose a novel thrust-drag decoupling strategy for

pulsed-jet propulsion by utilizing its special characteristics in terms of thrust and drag generation.

The thrust-drag decoupling algorithm is based on the physical observations and a control volume

analysis on the fluid inside the pressure chamber(see Appendix B). Through the decoupling strategy,

the instantaneous thrust FT is decomposed into three distinct components, namely the jet flux

momentum Fj , the excess normal stress at the orifice exit Fσ, and the fluid momentum inside the
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body Fm, i.e.

FT ≈
∫∫

A

ρu2
xdS +

∫∫
A

(−σ − p∞)dS +
d

dt

∫∫∫
Ω

ρuxdV = Fj + Fσ + Fm, (3.22)

where A denotes the orifice exit plane, p∞ is the background pressure, Ω represents the fluidic

volume inside the pressure chamber. σ is the normal fluid stress, i.e. −p + τ , in which τ is the

viscous stress in the axial direction. By using the decoupling method, we can estimate the pure

thrust FT with the information of flow field such as flow velocity and pressure. With FT being

obtained, we can calculate the propulsive efficiency in the traditional manner.

3.6.1 Validation

The validation of our thrust-drag decoupling algorithm is conducted through simulations of

three scenarios. The first scenario is a rigid body tethered in background flow (Rej = 0), in which

the jet-generated thrust in our definition is expected to be small so that Fd ≈ Fn (in this scenario

Fa = 0 since there is no body deformation). The second and third scenarios involve single deflation

and inflation motions without incoming flow (i.e. Re = 0), in which the incoming-flow-related

drag force Fd and added mass force Fa are expected to be negligible so that FT ≈ Fn. In these

two scenarios the underlying physics of force generation are also examined by using the thrust

decomposition technique developed in Appendix B.

a) Rigid body within incoming flow

Physically there should be no thrust generated in this scenario when Rej = 0. Based on our

definition, however, there might be a nonzero FT because due to the disturbance in the wake, the

fluid stress at the nozzle plane is not exactly zero. To examine how much error this brings to the

result, we simulate the steady flow around a rigid ellipsoidal swimmer with e = 0.88 at various

values of Re. Table 3.2 lists the measured thrust FT via Eqn. 3.22 and the drag force Fd calculated
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Table 3.2: Thrust, drag comparison when Rej = 0 and e = 0.88.

Re 7 20 60 100 150
Fd/ρu

2
0D

2 -8.15 -3.97 -2.03 -1.52 -1.22
FT/ρu

2
0D

2 -0.165 -0.063 -0.034 -0.030 -0.028
FT/Fd 2.0% 1.6% 1.66% 1.96% 2.29%

as Fn − FT . It shows that even though FT is non-zero, the values are extremely small (less than 3%

in all the cases) in comparison with Fd.

b) Single deflation without incoming flow

In this part we simulate the jetting process through a single deflation when its eccentricity changes

from e0 to e1 without any incoming flow. Two different values of jet-flow Reynolds number Rej

are considered.

We then calculate the jet-related thrust FT defined in Eqn. (3.22), i.e. FT = Fm + Fj + Fσ.

Hereby we present the obtained FT in Figure 3.13a, where the time history of the net force Fn

is also plotted. It confirms that FT stay close to Fn over the whole jetting process, verifying the

accuracy of our thrust extraction strategy.

Moreover, the decomposition of thrust into three distinct components helps us understand

the underlying physics of force generation. For this purpose we present the three thrust components

in Figs. 3.13b, c, d. Based on their definitions, Fj depends on V 2
j , which is always positive. On

the other hand, Fm is related to jet acceleration dVj/dt so that negative Fm is generated when

t > 0.5TD. Meanwhile, Fσ is found to be roughly proportional to the jet speed Vj . It is seen

that the jet-related thrust FT could be negative near the end of the deformation when the negative

contribution from Fm outweighs the positive ones from Fj and Fσ.

In terms of the effect of Rej , we found that lower Rej tends to create larger normalized

flux momentum Fj . For further insight, we present the axial velocity distributions along the nozzle

radius of these two cases at t = 0.5TD in Fig. 3.14. The case of Rej = 500 displays a narrower
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Figure 3.13: (a) Comparison between the net force Fn and jet-generated thrust
FT in a single deflation, (b,c,d) thrust contributions Fj , Fσ and Fm.
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Figure 3.14: Comparison of axial velocity distribution ux(r) at the nozzle plane
between Rej = 50 and 500. Both cases are shown at t = 0.5TD.

boundary layer near the outer surface of the nozzle (r = D/2) owing to reduced viscosity, so that

the axial flow speed at the nozzle core area, which is the main contributor to Fj , is slightly reduced

to keep Vj consistent. Therefore Rej = 500 creates slightly smaller jet flux momentum than

Rej = 50 (Fig. 3.13b). It is also seen that higher Rej leads to larger Fσ due to the reduced viscous

stress (Fig. 3.13c). For Fm, Rej does not play any role since it only depends on jet acceleration.

c) Single inflation without incoming flow

Numerical simulations are also conducted for the dynamics of the system during a single inflation.

Similar to the deflation case, FT matches well with Fn due to the negligibly small effects of Fd and

Fa, as shown in Fig. 3.15a.

To understand the physical mechanism, Figs. 3.15b,c and d present the thrust contributions

from Fj , Fσ and Fm, which are roughly proportional to V 2
j , Vj and dVj/dt, respectively. It indicates

that Fj is largely balanced by Fσ so that FT undergoes similar tendency as Fm. The case with
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Figure 3.15: Same as Fig. 3.13 except that the deformation is inflation.
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Rej = 500 generates greater thrust than the case of Rej = 50. The thrust enhancement mainly

results from the decrease of negative Fσ at the nozzle exit while the other two components, Fj and

Fm, vary little as Rej changes.

3.6.2 Time histories over a full cycle

We now consider complete deflation-inflation cycles and study thrust generation and

hydrodynamic efficiency in the tethered mode with incoming flow u0. The thrust-drag decoupling

and thrust decomposition methods in Appendix B will be utilized to obtain the jet-generated thrust

and the hydrodynamic efficiency. We will examine the effect of Reynolds number and stroke

ratio on the whole-cycle propulsive performance. Comparison between the propulsive efficiency

obtained using our thrust-drag decoupling method and those from traditional methods will also be

conducted.

According to our numerical tests, periodic responses are established after the first deforma-

tion cycle. Therefore all results presented in this section will be extracted from the third deformation

cycle.

In Figs. 3.16a and b we plot the time evolutions of jet speed and the corresponding body

eccentricity over an full deformation cycle for a representative case with St = 0.06 and Re = 150

(in this case u0 = 0.4Ṽj). Time histories of Fn, FT (calculated as Fj +Fσ +Fm) and Fr = Fd +Fa

(calculated as Fn − FT ) are also displayed in the same figure (see Fig. 3.16c). Since cyclic

propulsion is performed in an incoming flow, the drag force Fd and the added-mass-related force Fa

can not be ignored. Clearly, Fa is positive during the deflation phase (herein it can be considered as

an additional thrust contribution besides the jet-generated thrust) and negative during the inflation

phase (thus it can be regarded as additional drag force besides the free stream-generated drag).

This explains why the magnitude of Fr is much higher during the inflation phase than during the

deflation phase, as shown in Fig. 3.16c. Even though the instantaneous force includes the added
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Figure 3.16: Time histories of (a) the jet speed Vj , (b) the body eccentricity e, (c)
the net force Fn, the thrust force FT and Fr = Fn − FT , and (d) the components
of the thrust force FT during a full deflation-inflation cycle. St = 0.06, Re = 150.
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mass contribution, the average value of Fa over a full cycle is zero when u0 is a constant. In this

sense, the jet-generated thrust FT can be regarded as the only source of thrust over a full cycle, and

Fd is the only source of resistance.

The components of FT over a cycle are displayed in Fig. 3.16d. The time-averaged values of

Fj , Fσ and Fm are found to be Fj = 0.312ρṼ 2
j D

2, Fσ = −0.105ρṼ 2
j D

2, and Fm = 0, respectively.

It indicates that only Fj and Fσ contribute to time-averaged thrust generation, and the effect of Fm

is negligible with the particular jet profile we use.

3.6.3 Parametric studies

We then perform parametric investigations about the effects of Re and Rej upon the

locomotion dynamics.

Thrust generation

Figure 3.17 summarizes the dependence of the time-averaged thrust FT upon Re under

various Rej . Hereby Γm is fixed as 10.4 so that Rej is determined by the Strouhal number St. It

shows that when Rej is relatively small (e.g. Rej = 20), the average thrust varies significantly

with respect to Re. Specifically, increasing Re tends to cause reduced FT . Negative thrust is

observed when Re > 36. However, the dependence of FT upon Re becomes less pronounced as

Rej increases. Indeed, after normalization FT remains almost a constant within the range of Re

when Rej > 100 (FT ≈ 0.21ρṼ 2
j D

2).

To further understand the effect of Re upon thrust generation, we present the two thrust

components Fσ and Fj for the cases of Rej = 20 in Fig. 3.18 (as mentioned earlier the other

component Fm does not contribute to time-averaged thrust). According to its definition, the jet

flux Fj is determined by the jet velocity, so that Re has negligible effect on it. Therefore the

impact of Re on thrust generation rests solely on Fσ (see Fig. 3.18b). It shows that increasing
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Figure 3.18: Time histories of Fj and Fσ for various Re. Rej = 20.
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Re tends to generate reduced stress term Fσ. For further insight, Fig. 3.19 displays the pressure

(the predominant contribution to Fσ) and streamline distributions of the flow field at different

time instants. It is demonstrated that for low Re cases (e.g. Re = 10), the free stream starts

to separate from the surface of the outer shell, forming a closed recirculating vortex ring in the

wake at t = T/2 (the end of inflation phase). The body-generated vortex ring is quickly pushed

downstream and dissipated away in the deflation phase under the effect of the high-speed jet flow

(note that in this case the jet flow is relatively strong compared with the incoming flow). As Re

grows (e.g. Re = 100), a much stronger body-generated vortex ring exists after the inflation phase,

accompanying the presence of a negative pressure region on the rear side of the body (see Figs.

3.19f,g). This can be the reason why higher Re leads to lower Fσ, as displayed in Fig. 3.18b.

Meanwhile, we find that this vortex ring is sufficiently strong to survive well into the deflation

phase. Indeed the reverse flow within the vortex ring forms a ‘virtual wall’ that blocks the jet flow.

However, the influence of this virtual ‘ground effect’ on thrust generation is not pronounced in our

simulations.

For relatively high Rej (e.g. Rej = 100), The jetting dynamics will be dominated by the

high-speed jet and insensitive to the free stream. Figure 3.20 displays the time histories of Fj and

Fσ when Rej = 100. As expected, Re makes little difference on both of them.

Propulsive Efficiency

As noted earlier, the thrust-drag decoupling method allows us to define the propulsive

efficiency in the traditional manner. We have

η =
FTu0

Pin
, (3.23)
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j ).

50 100 1500.1

0.2

0.3

0.4

0.5

0.6

Re

F
j
/ ρV

j

2
D

2~_

t / T

F
j
/

ρ
V

j2
D

2

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2
Re=20

Re=50

Re=100

Re=150

~

(a)

t / T

F
σ

/
ρ

V
j2
D

2

0.2 0.4 0.6 0.8 1

­0.9

­0.6

­0.3

0

0.3

0.6

Re=20

Re=50

Re=100

Re=150

~

(b)
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where Pin represents the average power expenditure per cycle, i.e.

Pin =

∫
T

∫
Γib

2πr(s)F · Udsdt
T

. (3.24)

In Fig. 3.21a we present the dependencies of efficiency η, average net force Fn and average

drag Fr over a complete cycle upon Re for the case of Rej = 200 (since the time-averaged

value of the added-mass-related force Fa is zero, in the cyclic motion case Fr coincides with the

time-averaged drag force). As expected, both efficiency and drag force rise with increasing Re.

This efficiency definition is physically relevant in the scenario when the propeller is applied in an

underwater locomotion system with constant swimming speed u0. However, it is inappropriate

for efficiency measurements if the propeller works as a stand-alone swimmer since the prescribed

u0 does not necessarily match the free-swimming speed. To address this issue, we approximate

the average free-swimming speed as the free-stream speed u0 (or, alternatively, the incoming flow

Reynolds number Re) when the average net force on the system Fn disappears. For example, this

‘steady-swimming’ (or ‘free-swimming’) state of Rej = 200 is reached at Re = 60, where the

efficiency η equals 0.21. Through this approach, the steady-swimming efficiency at other values

of Rej and the corresponding steady-swimming Re can be obtained. As shown in Fig. 3.21b,

increasing the jet speed (Rej) requires higher Re to achieve steady swimming. The efficiency η is

also increased as Rej rises.

Meanwhile, we have also evaluated the steady-swimming efficiencies using existing ap-

proaches discussed in the introduction. These definitions of efficiency are physically equivalent to

the one used in the present study. Specifically, η
R

is defined by using the traditional thrust-drag

decoupling method in which the drag on the deforming body is approximated by the drag on a rigid

body [55], i.e.

η
R

=
(Fn − FDR)u0

Pin
, (3.25)
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where FDR is the drag force on the body whose eccentricity e = (e0 + e1)/2.

Another propulsive efficiency, ηF , is calculated as

η
F

=
2u0Vj

2u0Vj + 3u2
0 + Vj

2 , (3.26)

where Vj is the average jet speed. Originated from the Froude efficiency, η
F

was proposed by

Anderson and Demont [54] to calculate the whole-cycle propulsive efficiency of jet-propelled

organisms such as squid and scallops. Note that Eqn. (3.26) is valid when the average jet speed in

deflation equals the average flow intake speed in inflation, which is consistent with the jet profile

we consider herein.

As shown in Fig. 3.21b, η
R

is only slightly below η and they share the same trend as Rej

increases. η
F

, on the other hand, is significantly higher than η or η
R

, especially when Rej is small.

The implication is that this simplified definition may significantly overestimate the propulsive

efficiency, at least in the low Reynolds number regime.

It is necessary to point out that the ‘steady-swimming’ or ‘free-swimming’ state in this
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analysis is defined in the time-averaged sense. In a real free-swimming case the forward speed is

unlikely to be a constant. In fact, a more likely scenario is that the forward speed is larger in the

deflation phase and smaller in the inflation phase. The net contribution of the added mass related

thrust Fa averaged over a cycle will be positive [57]. Due to this effect the analysis based on the

tethered scenario may underestimate the propulsive performance of the system. The predicted

steady-swimming efficiency is thus a lower bound of the actual efficiency in free swimming.

Effect of stroke ratio

As demonstrated in §3.4.2, there is a universal scaling law that governs the vortex ring

formation of pulsed jetting at intermediate and high Rej (' 2000) [46]. Nevertheless, at low Rej

(' 150) the pulsed jetting is a very smooth process, in which the pinch-off scenario does not

happen. With the sinusoidal jet profile there does not exist a universal formation number featuring

the saturated state of the vortex ring. For this reason we anticipate that the maximum stroke ratio

Γm plays a less important role in the performance of the system we consider. Instead, it is indirectly

involved since it determines the value of Rej in the steady-swimming case (see Eqn. (3.21)). To

illustrate its effect we conduct simulations by using two additional values of Γm, 2.9 and 4.6, in

which the fully inflated states correspond to e0 = 0.92 and 0.9, and the fully deflated state e1 is

fixed at 0.95 (see Table 3.1).

As shown in Fig. 3.22a, the variation of Γm does not lead to much difference in the thrust

with Rej unchanged. However Γm is found to play certain role in drag generation. As displayed

in Fig. 3.22b, less drag force is generated in Γm = 4.6 than in Γm = 10.4, particularly within

the large Re regime. This is because smaller Γm corresponds to less inflated body. Therefore, at

Γm = 4.6 higher Re is required to compensate the drag loss to maintain the steady-swimming state.

As shown in Fig. 3.22b, at Rej = 200 the steady-swimming Re for Γm = 4.6 rises to 70 (instead

of 60 for Γm = 10.4). We note that the inflated state at e0 = 0.92 is geometrically close to the
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one at e0 = 0.9 so that the difference between Γm = 2.9 and 4.6 is far less pronounced. We then

present the steady-swimming Re and efficiency as functions of Rej for these three stroke ratios

in Fig. 3.23. As expected, decreasing Γm results in higher steady-swimming Re and propulsive

efficiency.

3.7 The impact of nozzle geometry

A key component of a squid’s jet propulsion system is the funnel tube, which functions

as a nozzle from which the jet flow is formed (see Fig. 1.1). Other species, e.g. jellyfish, do not

have such a morphological feature so that they are not capable of creating high-speed jet flows.

This significantly limits the swimming speed they are able to reach. A squid’s funnel tube can be

pointed at a range of directions so that maneuvers can be achieved through thrust vectoring. The

exact shape and size of the nozzle are also important factors in determining the performance. It is

thus of interest to examine effects of the design of a nozzle on the propulsion performance through

pulsed jetting.

The dynamics of pulsed-jet propulsion utilized in squid swimming have been investigated

through laboratory observations and measurements of live animals [21–23], experiments on bio-

inspired jetting tubes or robotic devices [25, 26, 46, 58, 59], and numerical studies [17, 60–62].

However, few of these studies examine the effect of detailed geometry of the nozzles on the

dynamics of the system. One exception is the experiment conducted by Krieg & Mohseni [63]. By

measuring the thrust generation of a piston jetting device with either tubular or conical nozzles,

they concluded that conical tubes outperform tubular ones in terms of force generation.

Inspired by these studies, we hereby conduct a numerical investigation concentrating on

the force generation capacity of the axisymmetric jet propulsion system with a nozzle. Systematic

simulations will be conducted to study the dynamics of the system with different nozzle character-
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Figure 3.24: Rendition of the axisymmetric squid-inspired system with orifice(a)
and nozzle tube(b).

istics (e.g. length and angle). Figure 3.24a displays the geometry of the original squid-inspired

propulsive system which includes a pressure chamber and an orifice. We attach an axisymmetric

nozzle to the ellipsoidal body at the orifice (Fig. 3.24b). To minimize energy loss the nozzle and the

body are joined smoothly as demonstrated in the inset. The nozzle configuration is characterized by

two independent parameters, i.e. the contour length l and angle of inclination θ. Hereby a variety

of nozzles with different l and θ will be tested while the body geometry (including the size of the

orifice) and deformation remain unchanged. In this section, we consider the escaping mode (via

single body deflation) without incoming flow u0. Thereafter, cosine jet profile will be used for all

simulations and Rej is chosen to be 50.

Quantities with subscript ‘1’ are related to quantities on the deformable body, while subscript

‘2’ is used to depict quantities on the nozzle. For instance, let F1 and F2 be the hydrodynamic force

acting on the deformable body Γib and the nozzles Γn, respectively. We have

F1 = −
∫

Γib

2πrFx(s, t)ds, F2 = −
∫

Γn

2πrFx(s, t)ds. (3.27)
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The overall thrust FT of the whole system (with a nozzle) is then the summation of F1 and F2, i.e.

FT = F1 + F2. Note that by definition positive FT , F1 and F2 all point towards the −x direction.

The instantaneous power expenditure P is calculated by

P =

∫
Γib

2πrF · Uds. (3.28)

To evaluate the efficiency, we then define a dimensional quantity called the cost of impulse COI ,

which is the ratio between the overall energy expenditure and the generated impulse calculated as

COI =
P

FT
, (3.29)

where FT is the time-averaged thrust and P is the mean power expenditure. Higher COI corre-

sponds to lower efficiency. The concept of cost of impulse stems from cost of transport that has

been widely used to evaluate the locomotion efficiency of aquatic animals.

Quantities with subscript ‘0’ are related to the system without nozzles. We first analyze

the dynamics of the model with no nozzle as shown in Fig. 3.24a. The results will be used as

a reference for the subsequent simulations with various nozzles included. After normalization,

the time-averaged thrust, power expenditure and the cost of impulse in this particular case are

F0 = 0.42, P0 = 0.35, COI0 = 0.831, respectively. The first two quantities are actually F1 and P

for the case of orifice jetting.

Next, a variety of nozzles with different combinations of l and θ will be affixed to the body

and tested with the prescribed body deformation. We will evaluate the influence of nozzles on the

original propulsion system (see Fig. 3.24a) by using λ1 = F1−F0

F0
. The synthetic performance of

the entire system (including the deformable body and the nozzle), characterized by λ = λ1 + λ2

(where λ2 = F2/F0), P/P0 and COI/COI0, will also be examined.
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Figure 3.25: λ1,λσ1 ,λ and the nozzle exit diameter D′ as functions of the nozzle
contour length l and the inclination angle θ.
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3.7.1 Thrust generation

The thrust decomposition scheme (Eqn. (3.22)) can be applied to the thrust F1. After time

averaging, we have F1 ≈ F j
1 + F σ

1 + Fm
1 ≈ F j

1 + F σ
1 (since Fm

1 ≈ 0 as discussed in §3.6.2).

Therefore λ1 can be decomposed into λj1 =
F j1−F

j
0

F0
and λσ1 =

Fσ1 −Fσ0
F0

. Since the body deformation

remains unchanged, the mean axial flow speed at the orifice is expected to be unchanged as well

(F j
1 ≈ F j

0 ). Subsequently, λj1 is small so that λ1 is dominated by λp1. Figures 3.25a,b demonstrate

the values of λ1 and λσ1 as functions of l and θ. The consistency between λ1 and λσ1 confirms

that after the installation of nozzles, the enhancement of thrust on the deformable body is mainly

attributed to the pressure augmentation at the orifice plane A.

Even though with a nozzle added there is significant increase in the thrust on the deformable

body (F1 > F0 according to Fig. 3.25a), the nozzle itself may sustain considerable drag force (i.e.

λ2 < 0) when the flow goes through them so that it is not clear if there is a net gain in the thrust

on the whole body including the deformable part and the nozzle. It is necessary to measure the

overall thrust created by the whole system, which is characterized by λ. In Fig. 3.25c, we present

the value of λ as a function of l and θ. It is shown that tubular nozzles (θ = 0) has little impact on

the thrust generation of the whole system (i.e. λ ∼ 0), which means that the thrust increase on the

deformable part is almost canceled by the drag force acting on the nozzle. Systems with converging

nozzles (θ < 0) tend to produce higher thrust (λ > 0) while those with diverging nozzles (θ > 0)

will produce reduced thrust (λ < 0).

Figure 3.25d presents the dependence of the nozzle exit diameter D′ on l and θ. Note that

hereafter the quantities defined at the nozzle exit plane A′ are labeled by adding primes to their

counterparts at the orifice plane A. Upon closer inspection, it is found that the contour lines of

D′ (Fig. 3.25d) are roughly correlated with those of λ (Fig. 3.25c), which implies that the thrust

generation of the entire system is closely related to the nozzle exit diameter D′, or alternatively the

jet speed at the nozzle exit Vj ′ since the body deformation is given.
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Figure 3.26: (a) The whole-system thrust FT and (b,c,d) their three components
for different converging nozzles. The force is normalized by ρṼ 2

j D
2.

To throw light upon the above phenomenon, we apply the decomposition strategy to the

entire propulsive system. Via this approach, the whole-system thrust FT = F1 + F2 can be

decoupled into three parts: F j
T ,F σ

T and Fm
T , where F j

T and F σ
T are defined at the nozzle exit A′ and

Fm
T is based on the overall fluidic volume including the fluid inside the pressure chamber and the

nozzle. In the following we will use the thrust decomposition to study the force generation at three

different scenarios, converging nozzle, tubular nozzle, and diverging nozzle.

a) Converging nozzles

We examine three converging nozzles (θ < 0) with the exit size being fixed at D′ = 0.7D. The
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combinations of geometry parameters (l, θ) for these nozzles are, respectively, (0.4D,−22◦),

(0.6D,−14.5◦) and (D,−8.6◦). Figure 3.26a shows that these three cases generated almost the

same thrust FT . With the nozzle exit diameter D′ being a constant, F j
T is nearly unchanged

for various converging nozzles as shown in Fig. 3.26b (the slight difference is attributed to the

discrepancy in spatial distribution of the axial velocity at A′). Figure 3.26c demonstrates the

time histories of Fm
T , which is found to have similar dependence upon the jet acceleration as Fm

0 .

Although the magnitude of Fm
T becomes higher as l increases, the time-averaged values are always

close to zero. We then present the fluid stress term F σ
T in Fig. 3.26d. There is indeed significant

differences among the three cases. However, it is observed that F σ
T only accounts for a small

percentage of the overall thrust FT . Instead, F j
T is the dominant source in FT , which depends on

the nozzle exit size D′.

Interestingly, the time evolution of F σ
T displays a twin-peak feature. A minor peak occurs

in the initial stage, followed by a major peak near the middle of the jetting process. The magnitude

of the first peak varies very little among the three cases, whereas there is a notable difference for
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Figure 3.29: (a) pc and pu for a converging nozzle with l = 0.6D and θ = −14.5◦;
(b) comparison of pc for various converging nozzles. The monitoring point is
r = 0.2R′. The pressure is normalized by ρṼ 2

j .

the second one. In order to investigate the mechanism of F σ
T generation during the jet pulsation,

in Fig. 3.27 we plot time histories of the over-pressure p − p∞ at two representative locations

on the nozzle exit, r = 0.2R′ and 0.6R′ (where R′ = 0.5D′) since F σ
T is mostly contributed

from F p
T =

∫∫
A′

(p− p∞)dS (see Appendix B). The over-pressure is found to experience similar

tendencies as F σ
T . It is thus necessary to study the underlying mechanism of over-pressure on the

exit.

Based on the unsteady inviscid flow theory, Krieg & Mohseni [63] derived an analytical

model to determine the over-pressure distribution along the exit boundary for axisymmetric jet

flow, i.e.
p(r)− p∞

ρ
=

∫ R∞

r

(
∂ur
∂t

+ u · ∇ur
)
d$, (3.30)

where R∞ is the infinity in the radial direction, $ is the dummy variable for the integration along

the radius. The formulation shows that the exit over-pressure is related to the material derivative of

the radial velocity on the exit, which indicates that a non-zero radial velocity is required for any

non-negligible over-pressure on the nozzle exit. Therefore, we present the radial velocity ur(r)

distributions along the exit radius at time instant t = 0.5TD for the three nozzles considered here in
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Fig. 3.28, where the corresponding result from the orifice scenario is also presented for comparison.

The converging nozzles produce negative radial velocity ur < 0 on the exit due to geometric effect.

Likewise, the orifice jetting also experience negative radial velocity because as body shrinks, the

orifice forms a conical nozzle, through which the flow is ejected with converging streamlines.

Figure 3.27 also presents the time evolution of the analytically obtained over-pressure

obtained using Eqn. (3.30). It is seen that the analytical model can qualitatively predict the

tendency since the two results are consistent in phase, especially during the second peak. The

quantitative inconsistency might be because viscosity is ignored in the analytical model. Figure

3.27 shows that more converging nozzles (with shorter l) result in higher exit pressure, which then

translates to higher F σ
T as shown in Fig. 3.26d.

Notwithstanding its quantitative accuracy, the analytical model is still useful for physical

insights. Let pu and pc respectively denote the integration of ur unsteady acceleration and convective

acceleration (pu =
∫ R∞
r

∂ur
∂t
d$, pc =

∫ R∞
r

u · ∇urd$), then the analytical over-pressure (Eq.

(3.30)) can be expressed as pu + pc. Figure 3.29a displays the time histories of pc and pu for a

representative case with r = 0.2R′, l = 0.6D, and θ = −14.5◦. It shows that the exit over-pressure

is predominantly contributed from the convective acceleration related pc. Increasing the nozzle

convergence (achieved through decreasing l) leads to larger radial velocity ur, as displayed in Fig.

3.28. This is accompanied by the augmentation of spatial derivative of ur along the streamline

direction (the convective acceleration) on the exit, leading to pc enhancement as shown in Fig.

3.29b, which eventually translates to higher F σ
T (see Fig. 3.26d). In addition, pc(r) can be rewritten

as
∫ R∞
r

ux
∂ur
∂x
d$ − 0.5u2

r, in which the second term is much smaller than the integration term

according to our simulations. Since ∂ur
∂x

> 0 is satisfied for converging nozzles, this new expression

explains the reason why F p
T (or alternatively F σ

T ) is more or less proportional to the jet speed,

hereby forming the second peak with the prescribed jet speed profile.

The mechanism for the first peak of F σ
T will be illustrated by using tubular nozzles as an
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Figure 3.30: Same as Fig. 3.26 except that tubular nozzles are used.

example since in that scenario the twin-peak phenomenon becomes more pronounced.

b) Tubular nozzles

We then examine three tubular nozzles (θ = 0 so that the nozzle exit diameter is a constant, i.e.

D′ = D) with different contour lengths l = 0.2D, 0.5D,D. Not surprisingly, Fig. 3.30a confirms

the consistency of the overall thrust FT in these three cases. The thrust components F j
T and Fm

T

have similar time histories as those with the converging nozzles (see Figs. 3.30b,c). Indeed, tubular

nozzles may share some characteristics with converging nozzles since in both cases converging

streamlines are generated at the orifice, which may not be fully flattened in the nozzle when l is

not sufficiently long. As a result, with tubular nozzles the other thrust component F σ
T also behaves
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Figure 3.33: The evolution of the pressure field for the tubular nozzle with
l = 0.2D, The solid lines represent the positive pressure contours and the dashed
lines indicate the negative pressure contours.

similar to that of the converging nozzles (both have twin peaks) as shown in Fig. 3.30d.

Figure 3.31 displays the radial velocity ur(r) at time instant t = 0.5TD with the three tubular

nozzles. As expected, the radial velocity is significantly reduced after applying tubular nozzles

to the orifice. For this reason, small over-pressure is created on the nozzle exit and subsequently

F σ
T is also small, as shown in Fig. 3.30d. As a result, the second peak is significantly diminished

due to the reduced radial velocity, making the twin-peak feature in F σ
T more pronounced. Figure

3.32 presents the comparison between the numerically obtained over-pressure and the analytical

predictions at the two monitoring locations for a sample case with l = 0.2D. Similar to the case

with converging nozzles, the analytical model is not able to predict the first peak.

A likely source of the first peak in F σ
T is the generation and evolution of the leading vortex

ring. When the jetting is initiated, a single vortex ring is generated and starts to grow in the wake

very close to the exit plane. The pressure on the exit is thus influenced by the coupled effect of the

jet flow and the wake flow associated with the vortex ring. In Fig. 3.33, we exhibit the evolution of

the pressure field near the nozzle exit during the initial stage (t < 0.36TD). It shows that the exit

is initially surrounded by positive pressure (e.g. t = 0.14TD). When it reaches t = 0.21TD, there
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appears a negative pressure region close to the nozzle boundary layer, corresponding to the vortex

ring generation (negative pressure has been found to coincide with the cores of vortex rings in

experiments [64]). Afterwards the negative pressure region grows gradually and eventually almost

fills the exit plane. When this vortex-induced negative pressure steps in, the exit pressure will

decline, a phenomenon related to the reduced F σ
T in 0.2TD < t < 0.3TD in Fig. 3.30d. Similar

discoveries have been reported by Gao et al. [65]. As the vortex convects downstream, its effect on

the exit pressure will be diminished and the radial velocity will become the dominant factor.

Besides the vortex-induced negative pressure, the jet acceleration may also play a role in

the formation of the first peak. According to control volume analysis (see Appendix D), to certain

extent F σ
T is dependent on the jet acceleration, particularly during the initial stage when the leading

vortex ring is near the exit plane. The time history of jet acceleration for cosine profile undergoes

the first peak at t ≈ 0.2TD, which implies that the acceleration peak may be another source of the

first peak of F σ
T , which occurs near that instant.

c) Diverging nozzles

For diverging nozzles (θ > 0), three configurations, (l, θ) = (0.4D, 22◦),(0.6D, 14.5◦), and

(D, 8.6◦) are chosen with the nozzle exit set to be constant (D′ = 1.3D). Figure 3.34 presents the

time histories of FT and its three components F j
T , F

m
T , F

σ
T . Like the previous cases with converging

and tubular nozzles, slight variations of these components among the three cases fail to cause

significant difference in FT . Unlike the converging and tubular nozzles, a diverging nozzle produces

positive radial flow speed (see Fig. 3.35), which creates a negative trough instead of the second

peak as displayed in Fig. 3.34d. For this reason in diverging nozzles F σ
T contributes negatively to

the thrust.
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Figure 3.34: Same as Fig. 3.26 except that diverging nozzles are used.
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3.7.2 Cost of impulse

Figure 3.36a plots the time-averaged power expenditure P (normalized by P0) as function

of θ and l. It shows that when θ 6 0, P > P0 so that it takes additional energy to expel fluid through

tubular or converging nozzles. For diverging nozzles, however, it depends on the inclination angle

θ. Specifically, additional power expenditure is still needed when θ < 20◦. Otherwise, when a

sufficiently diverging nozzle (e.g. θ > 20◦) is installed, P is close to P0. Figure 3.36b presents

the dependencies of the normalized cost of impulse COI/COI0 upon θ and l. Note that higher

cost of impulse corresponds to lower efficiency. We find that the shorter the nozzle is, the more

efficient the system will be. In fact, the orifice jetting in which l = 0 turns out to be the most

efficient. Moreover, It is found that the propulsive efficiency tends to be higher as the nozzle gets

more diverged till it reaches a threshold (approximately θ = 20◦), beyond which the efficiency

becomes insensitive to the inclination angle θ.

In summary, the geometry of nozzles affects the propulsion performance in terms of thrust

generation and efficiency. Specifically, after adding diverging nozzles, both thrust and efficiency

are decreased. The usage of tubular nozzles tends to reduce the efficiency while has negligible

effect on thrust generation. The converging nozzles, however, will improve the thrust at the cost of

efficiency.

3.8 Conclusions

Fluid dynamics of a squid-inspired jet propulsion system in low Reynolds number have been

numerically investigated by using the immersed-boundary method. The idealized axisymmetric

system includes a pressure chamber enclosed within a shell with zero thickness and a circular

nozzle. The body deformations (inflation and deflation) are prescribed to achieve three different

jet speed profiles with the nozzle size fixed. Three swimming modes, namely the escaping mode
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Figure 3.36: (a) Normalized power expenditure P/P0 as functions of θ and l, (b)
normalized cost of impulse COI/COI0 as functions of θ and l.

through body deflation, recovery mode through inflation and long-distance locomotion via cyclic

deformation are investigated.

First, we found that in low Reynolds number regime, the vortex ring does not pinch off

completely from its trailing jet throughout the jetting process, neither are there any secondary

vortex rings formed in the trailing flow. It suggests that the pulsed jetting in low Reynolds number

is a smooth vortex ring generation process, which is different from cases in high Reynolds numbers.

In order to predict the thrust and thrust-based propulsive efficiency of the system in long-

distance swimming mode within free stream u0, a thrust-drag decoupling strategy designed specifi-

cally for this problem is proposed based on control volume analysis. The jet-related thrust in our

definition can be further decomposed into three distinct components, the jet flux force Fj , the exit

fluid stress Fσ and the flow momentum force inside the body Fm. Fj and Fσ are closely associated

with jet speed, whereas Fm is proportional to jet acceleration. The feasibility and accuracy of the

thrust-drag decoupling method are demonstrated through three special scenarios, rigid-body dynam-

ics and single deflation or inflation dynamics without incoming flow. The thrust-drag decoupling

method enables the calculation of jet-related thrust, which is then used to define the propulsive

efficiency of repeated inflation-deflation cycles in a uniform free stream.
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Through systematic simulations, we found that the whole-cycle propulsive performance

depended mostly on the incoming flow Reynolds number Re and the jet flow Reynolds number Rej .

For relatively low Rej (e.g. 20), the time-averaged thrust varies considerably within the range of

Re we consider. This variation mainly results from the nozzle pressure force Fp, which is sensitive

to wake characteristics. It is shown that at low Rej when the jet is relatively weak, the nozzle

pressure can be easily affected by the negative pressure region induced by the vorticity shed from

the outer side of the shell. However, for relatively high Rej in which high-speed jet is discharged,

the body-shed vortex ring becomes too weak to affect the jet flow or the nozzle pressure. In these

cases the effect of Re on thrust generation is negligible. Our results suggests that the time-averaged

thrust over a full cycle is linearly dependent on the jet speed when Rej > 100.

The propulsive efficiency at the steady-swimming state (i.e. the state when the time-

averaged net force on the body is zero) is then calculated at various values of Rej . The results show

that the efficiency increases as Rej goes up. Finally, the effect of the maximum stroke ratio has also

been examined. It is demonstrated that within the current range of Rej , and with the prescribed

sinusoidal jet speed profile, the maximum stroke ratio does not directly affect thrust generation.

Systematic computations were conducted to simulate the pulsed jetting of the system with

different nozzles added. After installing nozzles, there could be considerable thrust enhancement

on the deformable body (without the nozzle), mainly attributed to augmentation of the orifice fluid

stress. For the performance of the whole system including the deformable body and the nozzle, the

thrust production is mostly from the jet flux term at the nozzle exit. The other two components

account for relatively small percentage of the overall thrust. As a result, variations in these two

components associated with different nozzles do not affect the overall thrust significantly. Therefore

the thrust generation of the whole system depends mostly on the nozzle exit size. For example,

tubular nozzles generate thrust close to the one by the system without nozzle. Converging and

diverging nozzles result in increased and declined thrust production, respectively. The propulsive
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efficiency of the whole system was also examined. It is shown that the usage of nozzles makes the

jet propulsion less efficient.

The current study concentrates on a simple sinusoidal jet profile, yet we are aware that

performance of the system can be highly sensitive to the detailed time history of the jet, an effect

beyond the reach of methods stemming from the concept of Froude efficiency since they are based

on time-averaged values. On the other hand, the method proposed in this study is fully capable of

studying cases with different jet profiles. Future studies will be conducted to understand how this

factor will affect the efficiency of the system.

The thrust-drag decoupling strategy proposed here is a novel method to compute thrust

force and the corresponding propulsive efficiency of squid-like underwater locomotion. It can be

easily extended to other locomotion problems involving pulsed-jet propulsion, e.g. locomotion of

other cephalopods such as octopuses and cuttlefish, salps, or jellyfish.

This chapter, in part, is a reprint of the material as it appears in the following papers.

• Xiaobo Bi and Qiang Zhu, “Pulsed-Jet Propulsion via Shape Deformation of an Axisymmetric

Swimmer”, Physics of Fluids, 32: 081902,2020.

• Xiaobo Bi, Qiang Zhu, “Efficiency of Pulsed-Jet Propulsion via Thrust-Drag Decou-

pling”,Physics of Fluids, 33: 071902,2021.

• Xiaobo Bi, Qiang Zhu, “Effect of Nozzle Geometry on the Performance of Pulsed-Jet

Propulsion”, under review.

The dissertation author is the primary investigator and author of these papers.
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Chapter 4

Three Dimensional Potential-Flow Model of

Squid-Inspired Locomotion with

Intermittent Bursts

In this chapter, we will investigate the squid-inspired locomotion at high Reynolds number

regime by using the potential flow theory. We hereby propose a three dimensional propulsion system

that is capable of long-distance locomotion through repeated body shape change. A numerical

model using the boundary element method is developed to computationally study the swimming

process and the dynamic characteristics of this system. In this particular work the deformation of

the body itself will be prescribed, whereas the forward motion will be simulated by solving the

fluid-structure interaction problem.

4.1 Description of the physical problem

Similar to the axisymmetric swimmer in Chapter 3, the system we consider is axisymmetric

(the axis of symmetry is shown as a dash-dotted line), as displayed in Fig. 4.1a. The diameter
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Figure 4.1: (a) Geometry and (b) deformation of the centerline of the wall (the
starting and ending positions are shown in solid lines).

of the opening is AB. The centerline of the wall (the dashed line) is part of an ellipse with an

eccentricity of e. The contour length from A to B along the centerline is L (see the Appendix A for

the determination of these curves). The thickness of the wall is much less than L (in the following

simulations its initial value is chosen to be around 0.04L) with tapering near the nozzle to create a

sharp trailing edge. The density of the wall is assumed to be the same as the surrounding fluid so

that the body is neutrally buoyant.

The body deformation is achieved by varying the value of e while keeping both D and L

unchanged (Fig. 4.1b). In the deformation process we adjust the wall thickness so that the overall

volume of the solid body (not including the fluid inside it) remains a constant to avoid any change

in the mass of the body itself. Furthermore, the deformation shown in Fig. 4.1 results in a (albeit

small) shift in the position of the center of gravity of the solid body. In simulations this drifting

motion due to deforming body is removed so that without the hydrodynamic loading the center of

gravity of the body itself remains at its initial position.

Unlike the swimmer in Chapter 3, the inlet of our model is in the upstream side so that the

swimmer is able to move forward for a certain distance during the recovery phase. Meanwhile
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Figure 4.2: A complete deflation-inflation cycle during cephalopod-inspired
swimming.

a coasting phase follows behind the deflation phase to make the kinetic energy of the body be

mostly released before initializing the inflation process. In Fig. 4.2 we illustrate a complete

deflation-inflation cycle, including a deflation period, a coasting period, and an inflation period.

The durations of these three periods are TD, TC , and TI . The corresponding traveling distances are

LD, LC , and LI , respectively. During deflation the exit is open and the compression chamber is

shrunk by increasing the eccentricity of the body from e0 to e1. This is followed by the coasting

period, during which both the inlet and the exit are closed so that the vehicle is depicted as a rigid

spheroid with eccentricity e1. The inflation phase starts when the residue speed is negligibly small.

In this phase the eccentricity increases from e1 to e0. In the inflation phase the body geometry

and deformation is described the same way as the one shown in Fig. 4.1, although the opening

(i.e. the inlet) is in the upstream side and its size is tagged DI to distinguish it from the size of the

orifice D. In the following simulations, we consider a complete cycle with three periods, deflation

(0 ≤ t ≤ TD), coasting (TD ≤ t ≤ TD + TC) and inflation (TD + TC ≤ t ≤ TD + TC + TI).

In the deflation period the eccentricity e increases linearly with time from its initial value e0

to the end value e1 as e = e(t) = e0 + (e1 − e0)t/TD. In the inflation period, on the other hand,
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linearly varying e causes numerical issues associated with sudden changes at the beginning of

the deformation. Thus a smooth starting curve e = e(t) = e1 + (e0 − e1) [(t− TD − TC)/TI ]
3 is

adopted. The initial speeds in the deflation and the inflation periods are both assumed to be zero.

4.2 Mathematical Model and Numerical Implementation

4.2.1 Mathematical formulations

The problem is described within a Cartesian coordinate system (x, y, z), in which x coin-

cides with the axis of symmetry and the body swims in the −x direction. In the high Reynolds

number regime we employ the potential flow assumption and define a flow potential Φ to describe

the flow fields both inside and outside of the body. In addition, the wake behind the body is depicted

as a zero-thickness shear layer originated from the sharp trailing edge at the nozzle.

The potential Φ satisfies the Laplace equation∇2Φ = 0 inside the fluidic domain. On the

interface between the fluid and the solid body we impose the no-flux condition so that ∂Φ/∂n =

Vb · n, where n is the unit normal vector pointing into the body and Vb is the velocity of the body.

By invoking Bernoulli’s equation, the distribution of pressure p in the fluid is given as

p(x, t) = −ρ
[
∂Φ

∂t
− 1

2
∇Φ · ∇Φ

]
, (4.1)

where x = (x, y, z). ρ is the density of the fluid. The fluid forcing on the body F and instantaneous

power expenditure P of the body are then calculated as

F(t) =

∫∫
Sb

pnds′, (4.2)
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and

P (t) =

∫∫
Sb

pVb · nds′, (4.3)

where Sb stands for surface of the body (including both the inner and the outer surfaces).

The displacement of the body is depicted by xbc and xc, the x locations of the centroids of

the solid body (without the fluid inside) and the body with inside fluid, respectively. Among them,

xbc is obtained by solving the dynamic equation

mbẍbc = Fx, (4.4)

where mb is the mass of the solid body and Fx is the x−component of F. xc is then determined

through geometric relations. The corresponding speeds of the two centroids are calculated as

Vbc = −ẋbc and Vc = −ẋc (the minus signs reflect the fact that the actual motion is in the −x

direction), respectively.

To study the energetics of the system, we define the energy transferred from the body to the

flow field from the beginning of the (deflation or inflation) deformation to time t as E. We have

E(t) =

∫ t

0

P (t′)dt′. (4.5)

During the deflation period, the instantaneous energy efficiency is defined as

η(t) =
1

2

[mb +mf (t)]V
2
c (t)

E(t)
, (4.6)

where mf is the mass of the fluid remaining inside the body. The quantity η measures how much of

the energy spent by the body is transferred to the kinetic energy of the system (including the body

and the fluid inside it). In this definition we assume the inner fluid moves together with the body

and its motion relative to the body is not considered.
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The performance of the system in the deflation phase is measured with the following

quantities: (1) the normalized speed V ′D = Vbc(TD)TD/L after the deflation; (2) the normalized

drifting distance after the deflation L′D = [−xbc(TD) + xbc(0)] /L; (3) the normalized energy

expenditure E ′D = EDT
2
D/(ρL

5) (where ED =
∫ TD

0
P (t′)dt′), and (4) the overall deflation effi-

ciency η
D

= η(TD). The performance in the inflation phase is represented by the normalized

energy expenditure E ′I = EIT
2
I /(ρL

5) (EI =
∫ TD+TC+TI
TD+Tc

P (t′)dt′) and the distance gained during

inflation defined as L′I = [−xbc(TD + TC + TI) + xbc(TD + TC)] /L.

4.2.2 Numerical method

To numerically solve the mathematical problem defined above, the flow potential Φ is first

decomposed into two parts, φb and φw. φb represents the contribution from the solid body, and

φw is the influence potential of the wake (i.e. the shear layer). These two potentials are solved

separately.

The body potential φb satisfies the boundary-integral equations, which suggests that the

solid surface can be replaced by distributions of singularities (e.g. sources) to satisfy the no-flux

condition. This condition leads to an integral equation for the strength of these singularities. We

employ the boundary element method to solve this problem. In this approach, quadruple elements

are distributed on the body surface (Fig. 4.3). Each element contains a constant distribution of

sources in it. The no-flux condition is then reformulated as a system of linear equations, which can

be solved numerically to find the source distribution on the body surface so that φb at that instant is

determined subsequently.

The wake is mathematically represented by distributions of dipole on a zero-thickness

flexible sheet. A similar boundary element approach is applied, in which the wake sheet is

segmented into quadruple elements. Within each element, the dipole strength is approximated as

a constant. It can be proven that such an element is equivalent to a small vortex ring around its
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Figure 4.3: Boundary elements on the inner (blue) and outer (red) surfaces of the
body. For clarity only half of the body is shown.

boundary. At each time step, a new row of wake elements are generated from the trailing edge

at the nozzle, where their strengthes are determined via the Kutta condition. Meanwhile wake

elements shed earlier are convected into the wake under the combined effect of induced velocity

of the body and the self-induced velocity of the wake. The strengthes of these wake elements

remain unchanged due to the lack of dissipation effects. The wake potential φw is evaluated by

summarizing contributions from all of these wake elements.

The boundary-element problem for φb and the determination of wake potential φw are

essentially coupled. In our model the decoupling is conducted in time domain in a staggered

manner. The wake sheet is physically unstable so that a desingularization technique is applied [66].

This method not only stabilizes the wake within the duration of the simulation, but also spread the

wake vorticity into a finite region so that it can be visualized (please refer to Fig. 4.8).

After the flow potential Φ is obtained with this method, the pressure field, the fluid dynamic

force on the body, and the power expenditure are calculated with Eqns. (4.1) to (4.3). The location

and velocity of the body is then updated through Eqn. (4.4) with a forward Euler algorithm. In this
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particular problem the added mass of the body is much larger than its own mass, leading to the

well-known added-mass-related instability. To avoid this issue, a special treatment is needed, in

which the contribution from added mass is removed from both sides of Eqn. (4.4) [67].

Details of this method have been included in our previous papers [66, 67]. In these studies

the validity and accuracy of the model have been tested extensively through convergence tests as

well as comparisons with experimental, numerical, and theoretical results in the literature. For

example, we have compared experimental measurements from a robotic fish and our numerical

predictions [66]. The model has also been compared with theoretical data about a flapping foil near

the free surface [68]. The fluid-structure interaction part has been validated in a comparison with

experiments of flexible flapping plates [67]. In all of these examinations predictions of our model

match well with the benchmark data.

4.3 Results

We hereby apply the boundary element model to numerically study the locomotion perfor-

mance of the cephalopod-inspired system described in §4.1. All the results in this section will be

normalized by the contour length L, the fluid/solid density ρ, and the deformation time TD (in the

deflation phase) or TI (in the inflation phase).

A convergence test has been conducted to examine the sensitivity of the results with respect

to mesh density and time step. In this test we consider the deflation phase and calculate the

normalized speed V ′D right after the deflation. As shown in Table 4.1, the results converge with both

mesh density and time step. In the following simulations we will use 12800 elements. The time

step ∆t is chosen to be TD/100. Based on the convergence test the numerical error is expected to

be smaller than 3%. Unless otherwise specified, the eccentricity of the swollen state of the body e0

is set to be 0, the one of the slender state (e1) is 0.9.
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Table 4.1: Convergence of the normalized peak speed V ′D with respect to the
number of elements and time step. e0 = 0, e1 = 0.9, D/L = 0.1.

TD/∆t \ Ne 4800 6400 12800
50 1.116 0.999 1.020
100 1.177 1.026 1.058
200 1.225 1.039 1.032

4.3.1 Deflation period (0 ≤ t ≤ TD)

Time histories during the deformation

In our simulations within the deformation time 0 ≤ t ≤ TD the eccentricity of the body

increases from e0 to e1 following the path defined in §4.1. Under this condition the variation of the

internal volume ∀ over time is shown in Fig. 4.4. In the same figure we plot the jet speed Vj at the

exit relative to the exit plane itself. It is seen that through this deformation a peak jet speed of 2.1

L/TD is achieved at t = TD. This will be a key mechanism of thrust generation.

In Fig. 4.5 we plot the time histories of the overall thrust FT and the contribution from

added-mass effect, Fa = −ṁaVbc. According to the result FT remains positive and increases

quickly till the end of the deflation period, so that the body accelerate over the whole duration of

deflation. Meanwhile, the portion in FT attributed to the added mass effect also increases with time.

For example, at t = TD/2 about 53% of the thrust is due to Fa. At the end of the deflation period

(t = TD), one the other hand, Fa accounts for 71% of the thrust. This is explained by the fact that

Fa is proportional to speed of the body, which increases monotonically during the deflation period

(Fig. 4.6).

Accompanying the positive thrust, the speed of the body increases until it reaches the

peak value at the end of the deflation phase. In this particular case (with e0 = 0, e1 = 0.9 and

D/L = 0.1) the peak speed is 1.058L/TD. If we choose L/π as the characteristic body length of

the system, with TD = 0.33 s it is able to reach 10 body lengths per second, the recorded speed of

larger squids [15]. To reach the speed of smaller squids (25 body lengths per second [14]) TD has to
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Figure 4.6: Time histories of the speed of the centroid of the body Vbc (solid line)
and the instantaneous energy efficiency η (dashed line) during deflation.

be 0.13 s. The corresponding energy efficiency approaches 0.13 so that at that moment about 13%

of the energy spent by the body to push the fluid out is transferred to its kinetic energy (including

the kinetic energy of the fluid remaining inside) in forward motion.

Characteristics of the wake

In the boundary element approach the vorticity distribution in the wake is assumed to

be concentrated on zero-thickness layers. New wake elements are generated from the nozzle at

every time step so that the wake sheet grows as it propagates downstream. As mentioned in the

methodology part, in our method a desingularization technique is employed so that this wake sheet

remains stable within the duration of a deformation period (i.e. t ≤ TD).

Figure 4.7 shows the evolution of the wake sheet during the simulation. It is clear that

under its self-induced velocity it rolls up into the shape of a torus behind the body. To visualize the

actual vorticity wake, in Fig. 4.8 the iso-surface of vorticity distribution in the wake is plotted (the
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Figure 4.7: Evolution of the wake elements during the deflation deformation.
D/L = 0.1.

Table 4.2: Formation number Γ at different values of e0 and D/L. e1=0.9.

e0 \ D/L 0.06 0.08 0.10 0.12 0.14 0.16 0.18
0.0 57.42 25.4 13.6 8.1 5.3 3.6 2.6
0.8 22.3 9.8 5.2 3.1 2.0 1.4 1.0

desingularization technique allows vorticity to be spread into the flow field rather than concentrated

on the wake sheet). The flow pattern is recognized as a single circular vortex ring.

Parametric effects

As clearly demonstrated in Figs. 4.7 and 4.8, a circular vortex ring is generated in the

wake by the jet flow from the nozzle. The formation of this vortex ring will thus play a role in the

dynamics of the system. This is reminiscent of the existence of a universal scaling law that governs

formation of such vortex rings as discussed in §3.4.2. It was proposed that the critical formation

number is related to optimal propulsion performance in pulsed thrust mechanisms involving vortex

ring generation [46, 48, 51, 69]. The exact value of the critical Formation number may vary

depending on different jet velocity profiles [70] and velocity distribution at the nozzle [71].

Following Gharib et al. [46], in our problem we define an equivalent stroke distance as

4(∀0 − ∀1)/πD2 so that our formation number is given as Γ = 4(∀0 − ∀1)/πD3, where ∀0 and ∀1

are the internal volumes at t = 0 and TD, respectively. When the size (represented by L) of the

122



Figure 4.8: Formation of a vortex ring behind the system visualized through
iso-surface of vorticity. t = 0.65TD. D/L = 0.1.

body is given, this formation number depends on three parameters, the initial eccentricity e0 (which

determines ∀0), the final eccentricity e1 (which determines ∀1), and the nozzle diameter D. We

hereby fix e1 to be 0.9, choose two values of e0 (0 and 0.8) and study a range of D/L from 0.06 to

0.18. The corresponding values of formation number Γ in these cases are included in Table 4.2.

Figure 4.9 displays the dependencies of the normalized final speed V ′D, the traveling

distance L′D, the energy expenditure E ′D, and the efficiency η
D

upon the formation number Γ with

the aforementioned ranges of e0 and D/L. The figure shows that the optimal performance in

terms of the speed and traveling distance is achieved at Γ ∼ 12. It implies the critical formation

number under this condition (e.g. the jet profile displayed in Fig. 4.4) might be around 12. On the

other hand, the efficiencies decrease monotonically with Γ, i.e. larger exits lead to higher energy

efficiency, although the speed they can achieve may be small.

To explain the dependence of performance upon the formation number we examine charac-

teristics of the wake in different cases. It is found that in the cases when Γ is above its critical value

(12), the vortex ring in the wake becomes unstable and break into smaller ones before the end of
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the deflation period, as is demonstrated in Fig. 4.10a via the wake sheet. This is consistent with the

wake pattern referred to as mode 2 in the DPIV visualization of flow around live squids [21]. If its

value is below the critical one, the vortex ring remains stable during the whole deformation process

(Fig. 4.10b), similar to another wake pattern (mode 1) observed in the aforementioned DPIV study.

These results, together with the tendency shown in Fig. 4.9, suggest that the speed that can be

achieved by the system is determined by the stability of the vortex ring it generates. Indeed, among

all arrangements of vorticity with certain impulse a steady axi-symmetric vortex ring contains

the maximum energy [72, 73]. On the other hand, it has been illustrated that with a given energy

input, the optimal vortex ring (i.e. a vortex ring formed at the optimal formation number) possesses

the maximum impulse so that it may be related to high-efficiency pulsed jet propulsion [47]. Our

numerical results with a free-swimming model indicate that even if the added-mass effect is counted

for, when the size of the body, the overall volume of the jet flow (determined by the body geometry

and its deformability), and the deformation time (determine by the performance of the actuation

system) are fixed, the thrust (and consequently the swimming speed) is maximized near the optimal

formation number determined by the size of the nozzle. Hereby the added-mass related thrust is

proportional to the forward speed so that it may just enhance the formation number effect. The

phenomenon that a single optimally-formed vortex ring outperforms a number of smaller vorticity

structures in thrust generation is reminiscent of the discovery that well-organized vorticity structures

are usually associated with better propulsion performance [39]. By investigating the dynamics of

a propulsion system containing multiple fins, it was illustrated that optimal thrust generation is

achieved when the wake generated by the system contains a single (and strong) reversed Kármán

vortex street (created through the merge of vortices from different fins), rather than a congregation

of weaker vortices generated by individual fins.
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Figure 4.10: Shapes of the wake sheet at (a) e0 = 0, e1 = 0.9, D/L = 0.08,
t = TD, Γ = 25.4; and (b) e0 = 0, e1 = 0.9, D/L = 0.12, t = TD, Γ = 8.1. The
insets show the corresponding iso-surfaces of vorticity.

4.3.2 Coasting period (TD ≤ t ≤ TD + TC)

In the coasting phase, the instantaneous speed of the body decreases gradually due to the

viscous resistance in the fluid. The fully deflated body (with the exit and inlet being closed) is

depicted as a neutrally-buoyant rigid prolate spheroid with eccentricity e = 0.9. Following Odar

and Hamilton [74],we propose the following governing equation

Λρ
dVbc
dt

= −1

2
ρS|Vbc|VbcCD(Re)− CAρΛ

dVbc
dt

, (4.7)

where 2a denotes the chord length of the ellipsoid. S = πa2(1− e2) stands for the projected area of

the ellipsoid in the direction of the motion. Λ = 4
3
πa3(1− e2) is the volume of the solid body. The

Reynolds number is defined as Re = 2aVbc
ν

, where ν is the kinematic viscosity of fluid. The terms

on the right hand side are, respectively, the quasi-steady drag force at instantaneous velocity Vbc,

and the inertial drag due to added mass. For simplicity, the term FH = CHρa
2
√
πν
∫ t

0
dVbc
dt

dτ√
t−τ

that accounts for the past acceleration history of the body is neglected because its significance

decreases rapidly as Re increases [75]. The added mass coefficient CA is determined by the axis

ratio of the spheroid. In this study, it is given by CA = α
α−2

, α = 2(1−e2)
e3

(1
2
log 1+e

1−e − e) [76]. The

quasi-steady drag coefficient CD can be approximated from the CD −Re curve (see Fig. 4.11a) of

126



R

C

10
3

10
4

10
5

10
60

0.1

0.2

0.3

0.4

0.5

e

D

(a)

t ­ T (s)

V
(m

/s
)

x
(m

)

0 10 20 30
0

0.5

1

1.5

2

2.5

0

2

4

6

8

10

b
c c
o
s

(b)

D

Figure 4.11: (a) CD−Re relation for a spheroid with eccentricity e = 0.87 [3]. (b)
Time histories of the speed Vbc (solid line) and the coasting distance xcos defined
as −xbc(t) + xbc(TD) (dashed line).

a spheroid with eccentricity e = 0.87 [3].

The motion of the body can then be calculated by numerically solving Eqn. (4.7) with the

Runge-Kutta method, from which the traveling distance Lc can be determined.

As an example,we consider a body with a chord length of 0.3m and an initial speed of

2.4m/s (so that the initial Reynolds number is 7.2× 105). In these conditions, the time histories of

speed and displacement are plotted in Fig. 4.11b. The coasting distance Lc is estimated to be 8 m

(27 body lengths).
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before and after the deformation. DI/L = 0.2.

4.3.3 Inflation period (TD + TC ≤ t ≤ TD + TC + TI)

As mentioned earlier, the inflation period starts after coasting speed approaches zero. During

this phase the eccentricity of the body decreases as a cubic function of time to enable a smooth start

and avoid numerical instability (see §4.1). In this process the internal volume increases as shown in

Fig. 4.12, which induces an jet flow into the pressure chamber. The variation of the average speed

relative to the inlet of this jet is shown in the same figure. It is seen that with our specified variation

of eccentricity, the speed of the incoming flow peaks at the middle of the inflation period. Its value

approaches zero at both the start and the end of this phase.

Similar to the deflation case, the vorticity sheet generated at the edge of the inlet also rolls

up into a torus structure (i.e. a vortex ring similar to the one shown in Fig. 4.8), although it occurs

inside the pressure chamber (Fig. 4.13).

The inflation of the body also induces motions of its own centroid. In Fig. 4.14 we plot

time histories of the body speed Vbc as its displacement during inflation. By comparing Fig. 4.14
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Figure 4.13: Evolution of the wake elements during the inflation deformation.
DI/L = 0.2.

with Fig. 4.12, a correlation between the forward speed of the body and the speed of the flow

being sucked into the pressure chamber is disclosed. In this particular case with DI/L = 0.2, the

forward speed remains positive over the whole inflation period. Indeed, after the inflation there is

still a small yet positive residue speed of 0.012 L/TI . Correspondingly, a forward displacement of

LI = 0.122L is achieved in the process.

A parametric examination about the effect of the size of the inlet (DI) has been conducted

and the results are summarized in Fig. 4.15, where we plot the normalized speed V ′I = Vbc(TD +

TC + TI)TI/L and the normalized displacement L′I after the inflation, as well as the normalized

energy expenditure E ′I over the inflation period within a range of DI/L between 0.18 and 0.28

(due to geometric restraint 0.28 is close to the maximum value DI/L can reach). The results show

that V ′I is positive unless DI/L is smaller than 0.19. The traveling distance L′I remains close to

0.12 over the whole range of DI . The energy expenditure decreases with increasing DI .

4.4 Conclusions and discussion

To study the performance of a novel propulsion mechanism imitating the escaping motion

of cephalopods, which combines body deformation and jet propulsion, we establish an idealized

model including an axisymmetric object filled with fluid. In our proposed system, for sustained
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long-distance locomotion the system must undergo repeated deflation/inflation cycles to swim

in a bursting-coasting style. The burst-coast cycle is decomposed into three phases, deflation,

coasting, and inflation. The eventual locomotion performance depends not only on the forward

speed achieved in the bursting (deflation) period, but also the effectiveness of the coasting and

inflation periods. During the deflation phase, the object undergoes prescribed deformation, the

internal volume shrinks and water is squeezed out through a exit, creating repulsive force that

propels the object forward. This is followed by the coasting phase, in which the object moves

forward as a rigid body via an initial speed gained in the deflation phase. Finally, after its kinetic

energy is almost exhausted due to viscous drag, the object enters the inflation phase characterized

by the expansion of its internal volume while water is sucked in.

The deflation and inflation problems are formulated within the potential-flow framework

and numerically solved by using the boundary element method. The vorticity wake is modeled

as a thin shear layer originated from the exit. During the deflation phase, by studying the overall

thrust on the body and the effect of the shrinking added mass, it is illustrated that the additional

thrust induced by added mass is most pronounced in the later stage of the deformation period,

when the forward speed is already high. Meanwhile, through flow visualization it is found that a

circular vortex ring is created in the wake. A parametric study has been conducted to document

the performance over different combinations of volume change and nozzle size. The optimal

performance in terms of speed is achieved when the formation number, a non-dimensional number

governing the formation of the vortex ring approaches its critical value. The energy efficiency,

defined as the portion of energy expenditure transferred into the kinetic energy of the body, is also

studied. Within the range of parameters examined herein, this efficiency increases monotonically

with the size of the exit and its maximum value approaches 0.5. However, in these high efficiency

cases the forward speed is too small to have any practical value.

In the inflation phase, when fluid rashes into the pressure chamber a vortex ring is formed
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there. The energy expenditure in this process is found to decay when the size of the inlet is

increased. The inflation of the body is also found to induce a forward motion, although the distance

gained in this phase is rather small.

This chapter, in part, is a reprint of the material as it appears in the following paper.

• Xiaobo Bi and Qiang Zhu, “Numerical Investigation of Cephalopod-Inspired Locomotion

with Intermittent Bursts”, Bioinspiration & Biomimetics, vol. 13, pp. 056005,2018.

The dissertation author is the primary investigator and author of the paper.
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Chapter 5

Summary and Future Directions

5.1 Summary

The research focuses on the fluid dynamics and fluid-structure interaction mechanism of a

novel jet propulsion mode inspired by squid locomotion with body deformation. This work is a pio-

neering investigation in the novel locomotion mode, aiming at paving the way for the development

of cephalopod-inspired underwater robots that will be useful in a variety of applications. Inspired

by the locomotion mechanism of squids, we proposed a novel underwater propulsion system using

pulsed jet enabled by cyclic body inflation and deflation deformations. The specific design includes

a flexible body with a pressure chamber and an opening.

To understand the fluid-structure interaction mechanisms involved in the propulsive perfor-

mance of such a design, a two-dimensional numerical model using immersed boundary method was

firstly developed. In tethered swimming mode, the 2D swimmer was found to generate higher thrust

with increasing frequency of body deformation, whereas achieve an optimal propulsive efficiency

at certain frequency. Depending on the frequency there are three distinct wake patterns, which are

indicators of the swimming state of the swimmer. If the wake is dominated by the jet vortex pairs
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(exit-shed vortex pairs), the swimmer is in acceleration state. If the wake is filled with body vortex

pairs, the swimmer will be decelerated. Otherwise the two types of vortex pair coexist in the wake,

indicating the force balance of thrust and drag such that the swimmer is in quasi-steady state.

But none of the three wakes could sustain longer than six inflation-deflation cycles in our

simulations because symmetry-breaking instability will occur very soon. This effect compromises

the propulsive performance by reducing the thrust force and inducing a lateral force as well. A

straightforward solution of this problem is to stop the body deformation when the instability occurs

and then restart it when the disturbances in the wake are dissipated away.

We then investigate the dynamics of the propulsive system in free swimming mode. Our

results show that in long-distance swimming with multiple inflation-deflation cycles, the swimmer

undergoes three different phases, acceleration, steady state and symmetry breaking, each with its

own distinctive wake signature. The acceleration stage is associated with wakes dominated by jet

vortices. When steady-state swimming is reached, this pattern is replaced by a transit wake, in

which the strengthes of the jet vortices and the body-shed ones are comparable. Finally, when

the symmetry-breaking instability dominates the wake becomes asymmetrical and the swimmer

deviates from its track. The increase of the deflation-inflation frequency enhances the swimming

speed at the expense of lower efficiency.

In the third chapter, we extended the 2D swimmer to an axisymmetric rendition. The

body is idealized as an ellipsoidal shell with a circular orifice(exit). Three swimming modes,

namely the escaping mode through body deflation, recovery mode through inflation and long-

distance locomotion via cyclic deformation are investigated. We found that the pulsed jetting in

low Reynolds number is a smooth vortex ring generation process and the vortex ring does not pinch

off, which is different from cases in high Reynolds numbers.

We developed a thrust-drag decoupling strategy based on control volume analysis to predict

the generated thrust. The jet-related thrust FT in our definition can be further decomposed into three
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distinct components, the jet flux force Fj , the exit over-pressure force Fp and the flow momentum

force inside the body Fm. The thrust-drag decoupling method enables the calculation of jet-related

thrust by using the flow field information. With the obtained thrust, we can define the propulsive

efficiency of the system in the traditional manner.

Through systematic simulations, we found that the whole-cycle propulsive performance

depended mostly on the incoming flow Reynolds number Re and the jet flow Reynolds number

Rej . For relatively low Rej (e.g. 20), the time-averaged thrust varies considerably within the

range of Re we consider. This variation mainly results from the exit pressure force Fp, which is

sensitive to wake characteristics. It is shown that at low Rej when the jet is relatively weak, the exit

pressure can be easily affected by the negative pressure region induced by the vorticity shed from

the outer side of the shell. However, for relatively high Rej in which high-speed jet is discharged,

the body-shed vortex ring becomes too weak to affect the jet flow or the exit pressure. In these

cases the effect of Re on thrust generation is negligible. Our results suggests that the time-averaged

thrust over a full cycle is linearly dependent on the jet speed when Rej > 100.

The propulsive efficiency at the steady-swimming state (i.e. the state when the time-

averaged net force on the body is zero) is then calculated at various values of Rej . The results

show that the efficiency increases as Rej goes up. Finally, the effect of the stroke ratio has also

been examined. It is demonstrated that within the current range of Rej , and with the prescribed

sinusoidal jet speed profile, the stroke ratio does not directly affect thrust generation.

By using the axisymmetric model, we investigate the pulsed jetting of the system with

different nozzles added. Though a sequence simulations, we found that the thrust generation of

the system (with nozzles) depends mostly on the nozzle exit size. For example, tubular nozzles

generate thrust close to the one by the system without nozzle. Converging and diverging nozzles

result in increased and declined thrust production, respectively. The propulsive efficiency of the

system was also examined. It is shown that the usage of nozzles makes the jet propulsion less
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efficient.

Finally the fluid dynamics of the squid-like jet propulsion is further studied by using a

three dimensional model based on potential flow so that high Reynolds number mechanism can

be involved. It was found that the pinch off of leading vortex ring happens at formation number

(stroke ratio) Γ = 12. A parametric study has been conducted to document the performance over

different formation number. The optimal performance in terms of speed is achieved at the critical

formation number Γ = 12.

5.2 Future directions

The topics considered in this thesis are far from being thoroughly explored. For examples,

our viscous axisymmetric numerical model is only applicable within the low Reynolds number

regime. Several high Reynolds number mechanisms are not considered, including, e.g. the non-

axisymmetric vortex shedding from the body, the pinch-off of the leading vortex ring, and evolution

of secondary vortex rings in the wake. To address these issues, three-dimensional modeling

with turbulence rendition is necessary. Moreover, the simplified propulsion system and its body

kinematics exclude many other important mechanisms. For instance, aside from the jetting mode,

real squids are also equipped with fins which are able to generate thrust and maneuvering force

through undulating and flapping motions. The interaction mechanisms of the flapping mode and

jetting mode, particularly how wakes produced in the two modes interact with each other, are

unaddressed.
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Appendix A

Determination of an ellipse with given

contour length and exit size

As shown in Fig. A.1, we aim at finding a two-dimensional curve which is part of an ellipse

with an open end (i.e. the exit). The contour length of the curve is L, the eccentricity is e, and the

size of the nozzle is D. In the coordinate system (X, Y ) the exit lies on the X−axis with point A

at (D/2, 0). Let a to be the (unknown) long axis, and b to be the distance from the center of the

(complete) ellipse to the X−axis. We have

X2

1− e2
+ (Y − b)2 = a2. (A.1)

By apply Eq. (A.1) at point A we get

b =

√
a2 − D2

4(1− e2)
. (A.2)
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In parametric form, the right half of the curve is expressed in terms of the angle θ (θA ≤ θ ≤ π/2)

as

X = a
√

1− e2 cos θ, (A.3)

Y = a sin θ +

√
a2 − D2

4(1− e2)
. (A.4)

Then

dX = −a
√

1− e2 sin θdθ, (A.5)

dY = a cos θdθ. (A.6)

The unknown parameter a is determined by numerically solving the integral equation∫ π/2
θA

√
dX2 + dY 2 = L/2, where θA = cos−1

[
D

2a
√

1−e2

]
.
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Figure A.1: An ellipse with an open end.

139



Appendix B

Thrust-drag decoupling and thrust

decomposition

As shown in Figure B.1, a uniform flow with constant speed u0 passes around the deformable

ellipsoidal propeller. We consider a cylindrical control volume, which is bounded by the lateral

surface δΩside, the flow inlet δΩin, and the exit plane δΩout (which includes the exit plane A). The

control volume is separated into two parts (ΩI and ΩII) by the body, whose inner surface and outer

surface are Γin and Γout, respectively. The conservation of momentum equation in the longitudinal

direction is

ρ
∂

∂t

∫∫∫
ΩI+ΩII

uxdV − ρ
∫∫

δΩin

u2
0dS + ρ

∫∫
δΩout

u2
xdS

−
∫∫

δΩin

p∞dS +

∫∫
δΩout

(−σ)dS = Fn,

(B.1)

where Fn represents the axial hydrodynamic force (net force) acting on the body, which includes

jet-related thrust FT ,drag Fd, and the added-mass-related force Fa [19]. p∞ denotes the background

pressure. σ is the normal fluid stress, i.e. −p+ τ , in which τ is the viscous normal stress. Equation
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Figure B.1: Definition of the control volume and its boundaries.

(B.1) can be rewritten as

ρ
∂

∂t

∫∫∫
ΩI

uxdV + ρ
∂

∂t

∫∫∫
ΩII

uxdV − ρ
∫∫

δΩin

u2
0dS+

ρ

∫∫
δΩout−A

u2
xdS + ρ

∫∫
A

u2
xdS +

∫∫
A

(−σ − p∞)dS+∫∫
δΩout−A

(−σ − p∞)dS = FT + Fd + Fa.

(B.2)

In these expressions the positive directions of the forces (Fn, FT , Fd and Fa) are the −x

direction.

On the left-hand side of Eqn. (D.1), the first, fifth, and sixth terms are associated with the

internal flow and the generation of the jet flow, whereas the rest of the terms are associated with

the outside flow attributed mostly to the incoming flow u0. Based on the physical insight that the

drag force Fd and added-mass-related force Fa are related to the incoming flow and the thrust FT is

related to the jet, we categorize these terms into FT or Fd + Fa according to their physical origins.
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Thus we have

FT = ρ
∂

∂t

∫∫∫
ΩI

uxdV + ρ

∫∫
A

u2
xdS +

∫∫
A

(−σ − p∞)dS, (B.3)

and

Fd + Fa =ρ
∂

∂t

∫∫∫
ΩII

uxdV − ρ
∫∫

δΩin

u2
0dS + ρ

∫∫
δΩout−A

u2
xdS

+

∫∫
δΩout−A

(−σ − p∞)dS.

(B.4)

By doing so, we are able to extract the jet-generated thrust FT from the net force Fn. Meanwhile,

FT is further decomposed into three components with different physical meaning. The first term on

the right-hand side of Eqn. (B.3) represents the change rate of the fluid momentum inside the body

(hereafter referred to as Fm), the second term is the jet flux (referred to as Fj), and the third term is

the fluid stress term at the nozzle (Fσ).

Indeed, the jet-generated thrust defined in Eqn. (B.3) can be alternatively interpreted as the

axial hydrodynamic force acting on the inner surface of the body. Towards this end, we perform

control volume analysis on the deformable control volume ΩI . According to the conservation of

momentum in axial direction, we have

ρ
∂

∂t

∫∫∫
ΩI

uxdV + ρ

∫∫
Γin

(Vr · n)uxdS + ρ

∫∫
A

u2
xdS +

∫∫
A

− σdS = Fin,

(B.5)

where n is the unit normal vector on the control volume boundaries pointing outwards. Vr is the

relative velocity of fluid crossing the control surface Γin, whose value is zero in this case because

Γin is a non-penetrable boundary. Fin denotes the axial hydrodynamic force on the inner surface
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with −x as its positive direction. A comparison between Eqn. (B.3) and Eqn. (B.5) leads to

Fin = FT +

∫∫
A

p∞dS. (B.6)

It is clear that Fin and FT are the same except for a hydrostatic term related to the back-

ground pressure p∞. Similar analysis on the deformable control volume ΩII can also be conducted.

It indicates that Fd + Fa is the hydrodynamic force acting on the outside of the body. This is

physically reasonable since the jet-generated force acts primarily on the inside surface, and the

outer surface is directly in contact with the incoming flow.

In our formulation Fσ is a linear combination of a pressure term Fp =
∫∫

A
(p − p∞)dS

and normal axial stress term Fτ =
∫∫

A
−τdS. At relatively high Reynolds number, Fτ becomes

negligibly small so that Fσ is mostly equal to Fp. Our results show that even in the low Reynolds

number regime we consider in this study, Fτ is small in comparison with Fp. For example, when

jet -related Reynolds number Rej = 150 and free-stream related Reynolds number Re = 0, Fτ

accounts for less than 2% of Fσ, as shown in Fig. B.2. Its effect is further reduced when Re is none

zero because Fp is amplified at the presence of incoming flow.
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Appendix C

Validation of the numerical method of

chapter 3

To validate the accuracy of the axisymmetric fluid solver and the feedback algorithm, they

are used to simulate the canonical problem of a uniform flow around a stationary sphere. The

numerical results are then compared with benchmark results from previous studies. There are

different types of wake patterns behind the sphere depending on the Reynolds number Re (based

on upcoming flow velocity u0 and sphere diameter d). The flow remains unseparated when Re

is smaller than 25. As Re increases the flow starts to separate from the surface of the sphere,

forming an axisymmetric wake with a closed recirculating vortex ring behind. The axisymmetry

and stability of the flow will then be disturbed as Re rises beyond 210. We perform simulations

within the range of Reynolds number between 25 and 210, within which the axisymmetric flow

pattern dominates. Simulations are performed using uniform grid ∆x = ∆r = ∆s = 0.02d and

time step ∆t = 0.001d/u0. The feedback parameters α and β are chosen to be −400
ρu20
d

and

−20ρu0,respectively.

Figure C.1 shows comparisons between the present results and the data from previous
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Figure C.1: Numerical simulations of flow past a sphere with diameter d and
comparisons with previous results: (a) flow pattern (visualized via streamlines) at
Re = 100, (b) the drag coefficient, (c) the separation angle, and (d) length of the
standing eddy.

studies [77–81] in terms of the drag coefficient Cd, the separation angle θ, and the length of the

standing eddy Le. The drag coefficient is obtained by Cd = Fd/(0.5ρu
2
0Ad), where Fd is the drag

force on the body, and Ad = πd2/4 is the projected area. The definitions of θ and Le are provided

in the insets in Figs. C.1c and d. It is clearly seen that the results of the current model are in good

agreement with the previous data.
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Appendix D

Impulse of an isolated vortex ring

Considering the wake region behind the exit plane as a control volume Ω′ as illustrated in

Fig. D.1, the axial momentum conservation of the control volume yields

∂

∂t

∫∫∫
Ω′
ρuxdV ≈

∫∫
A′
ρu2

xdS +

∫∫
A′

(p− p∞ − τ)dS = F j
T + F σ

T , (D.1)

in which the flow flux and fluid stress term on the control volume boundaries except A′ are ignored.

For an isolated vortex ring, the momentum can be approximated by (m + me + ma)W , where

W is the translating speed of the vortex ring centroid in the axial direction, m is the ejected fluid

mass (note that dm/dt = ρA′Vj
′), ma is the added mass from the ambient fluid, me represents

the ambient fluid entrained by the shear layer from the exit boundary layer as it rolls up into the

ring [4,82]. Assuming that the majority of the momentum inside the control volume is stored in the

vortex ring bubble (this is reasonable at the initial stage when only a vortex ring is shed and there is

no trailing flow following behind the ring), Eqn. (D.1) can be rewritten as

∂(m+me +ma)W

∂t
≈ F j

T + F σ
T , (D.2)
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Figure D.1: Illustration of the control volume and vortex bubble. This figure is
modified from Fig. 10 in reference [4].

Therefore

ρA′Vj
′W +

d(me +ma)

dt
W + (m+me +ma)

dW

dt
≈ F j

T + F σ
T . (D.3)

Given the fact that the translating speed W is roughly proportional to the jet speed Vj ′ [83], it is

reasonable that the first term of above equation is closely related to the jet flux F j
T and the second

and third terms can be regarded as the source of F σ
T ,

F σ
T ∼

d(me +ma)

dt
W + (m+me +ma)

dW

dt
. (D.4)
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