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Abstract

Cirrhosis is complicated by a high rate of nosocomial infections (NIs), which result in poor 

outcomes and are challenging to predict using clinical variables alone. Our aim was to determine 

predictors of NI using admission serum metabolomics and gut microbiota in inpatients with 
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cirrhosis. In this multicenter inpatient cirrhosis study, serum was collected on admission for liquid 

chromatography–mass spectrometry metabolomics, and a subset provided stool for 16SrRNA 

analysis. Hospital course, including NI development and death, were analyzed. Metabolomic 

analysis using analysis of covariance (ANCOVA) (demographics, Model for End-Stage Liver 

Disease [MELD] admission score, white blood count [WBC], rifaximin, and infection status 

adjusted) and random forest analyses for NI development were performed. Additional values 

of serum metabolites over clinical variables toward NI were evaluated using logistic regression. 

Stool microbiota and metabolomic correlations were compared in patients with and without 

NI development. A total of 602 patients (231 infection admissions) were included; 101 (17%) 

developed NIs, which resulted in worse inpatient outcomes, including intensive care unit transfer, 

organ failure, and death. A total of 127 patients also gave stool samples, and 20 of these 

patients developed NIs. The most common NIs were spontaneous bacterial peritonitis followed 

by urinary tract infection, Clostridioides difficile, and pneumonia. A total of 247 metabolites were 

significantly altered on ANCOVA. Higher MELD scores (odds ratio, 1.05; p < 0.0001), admission 

infection (odds ratio, 3.54; p < 0.0001), and admission WBC (odds ratio, 1.05; p = 0.04) predicted 

NI (area under the curve, 0.74), which increased to 0.77 (p = 0.05) with lower 1-linolenoyl-

glycerolphosphoch oline (GPC) and 1-stearoyl-GPC and higher N-acetyltryptophan and N-acetyl 

isoputreanine. Commensal microbiota were lower and pathobionts were higher in those who 

developed NIs. Microbial–metabolite correlation networks were complex and dense in patients 

with NIs, especially sub-networks centered on Ruminococcaceae and Pseudomonadaceae. NIs are 

common and associated with poor outcomes in cirrhosis. Admission gut microbiota in patients 

with NIs showed higher pathobionts and lower commensal microbiota. Microbial–metabolomic 

correlations were more complex, dense, and homogeneous among those who developed NIs, 

indicating greater linkage strength. Serum metabolites and gut microbiota on admission are 

associated with NI development in cirrhosis.

INTRODUCTION

Patients with cirrhosis admitted with infections have a higher rate of organ failures, 

acute-on-chronic liver failure (ACLF), and death.[1] An all too frequent precursor for 

these negative outcomes is the development of a nosocomial infection (NI).[2] However, 

the predictive capability of admission clinical criteria for NI occurrence is suboptimal.[3] 

Moreover, some NIs are potentially preventable, which increases the need to adequately 

stratify the risk in hospitalized patients with cirrhosis.[4] A major contributor to poor 

outcomes in cirrhosis is the altered systemic inflammatory milieu and metabolome, part of 

which can be attributed to gut microbial change.[5] These alterations can contribute toward 

nosocomial and antibiotic-resistant infection development.[6,7] Prior studies have shown that 

gut microbial composition modulates cirrhosis progression, is already altered on admission 

in those who will develop ACLF, renal failure, or death and is different between those who 

have reached these outcomes versus the rest.[8–10] However, the role of microbial interaction 

with the host through metabolites is unclear.[11] We hypothesized that serum metabolites in 

patients with cirrhosis modulate the risk of development of NI.
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PATIENTS AND METHODS

We enrolled hospitalized patients with cirrhosis from 11 centers in the North American 

Consortium for the Study of End-Stage Liver Disease (NACSELD) between 2014 to 

2017 who gave samples after informed consent. Patients with cirrhosis in the NACSELD 

included those nonelectively hospitalized, those without HIV infection, and patients with 

a prior transplant. Cirrhosis was diagnosed using liver biopsy, imaging, or endoscopic 

characteristics of varices in patients with chronic liver disease or those with evidence 

of decompensation. Serum was collected within 12 h of admission and a subset also 

provided stool samples before antibiotic therapy was instituted. Data were entered in 

the Research Electronic Data Capture database. Before study initiation, uniform sample 

collection practices were ensured at all sites. Samples were stored in −80°C freezers 

until analysis. Data pertaining to demographics, cirrhosis details, medications, reasons for 

admission, laboratory results, and hospital course were recorded as well as infections on 

admission and NI development. All infections were diagnosed per definitions used in prior 

publications and Infectious Diseases Society of America guidelines.[3]

Analyses were performed at Metabolon Inc. (Morrisville, NC) using validated ultrahigh 

performance liquid chromatography–tandem mass spectroscopy.[12] Analysis of covariance 

(ANCOVA) adjusting for age, sex, alcohol-associated etiology, Model for End-Stage Liver 

Disease (MELD) admission score, white blood count (WBC), infection, serum sodium, 

and serum albumin using false discovery rate (FDR) adjustment, represented by the q 
value, were performed to account for variability related to patient-level variables. After 

log transformation and imputation of missing values, if any, with the minimum observed 

value for each compound, analysis of variance contrasts and Welch’s two-sample t 
tests were used to determine metabolites that were different between groups. Then an 

ANCOVA was performed. An estimate of the FDR was calculated to take into account 

the multiple comparisons that normally occur in metabolomic-based studies.[7] Instrument 

variability was determined by calculating the median relative standard deviation (RSD) 

for the internal standards that were added to each sample prior to injection into the mass 

spectrometers. Overall process variability was determined by calculating the median RSD 

for all endogenous metabolites (i.e., noninstrument standards) present in 100% of the client 

matrix samples, which are technical replicates of pooled client samples. Overall process 

variability was determined by calculating the median RSD for all endogenous metabolites 

(i.e., noninstrument standards) present in the technical replicates.

Metabolites that were independently associated with the development of NI by ANCOVA 

were considered predictive of such outcomes. The ANCOVA tables were ranked according 

to p values, FDRs, and pathways found to be consistently involved in protection from or 

association with the outcomes and then were explored deeper for each outcome. Random 

forest analysis (RFA) was performed next and is a supervised classification technique 

based on an ensemble of decision trees.[13] To determine which metabolites make the 

largest contribution to the classification, a “variable importance” measure called the “mean 

decrease accuracy” (MDA) was computed. The MDA is determined by randomly permuting 

a variable, running the observed values through the trees, and then reassessing the prediction 

accuracy. If a variable is not important, then this procedure will result in little change 
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in the accuracy of the class prediction (permuting random noise will give random noise). 

By contrast, if a variable is important to the classification, the prediction accuracy will 

drop after such a permutation, which we record as the MDA. Thus, the RFAs provide an 

“importance” rank ordering of metabolites, and the first 30 for each outcome are displayed. 

Areas under the curve (AUCs) for all metabolites were calculated for the ANCOVA-adjusted 

models for each category, including those with/without admission infection. Finally, logistic 

regression models to predict NI development were created from admission clinical variables 

only (age, admission values of WBC, serum sodium, serum albumin, MELD-sodium score, 

and admission infection) and then clinical models plus metabolites significant on RFA. From 

these models, receiver operator characteristic (ROC) curves were calculated, and the AUCs 

with 95% confidence intervals (CIs) were calculated. Finally, the AUC values for the clinical 

variables only and combined models were compared using the nonparametric method of 

DeLong et al.[14] for ≥2 correlated ROC curves.

Microbiome analysis

Microbial DNA was extracted from stool using published techniques, and 16SrRNA 

sequencing was performed.[15] Comparisons between patients who developed NI versus 

those who did not were performed using Linear discriminant analysis effect size (LEfSe).[16] 

Correlation networks of serum metabolites with microbiota composition were performed 

using published R (R Foundation for Statistical Computing) techniques.[17] Correlation 

linkages with p < 0.05 and r > 0.6 or <−0.6 were included and visualized in Cytoscape 

(Cytoscape Consortium, San Diego, CA, USA).

Regulatory

The study was approved by institutional review boards at all sites, and all patients provided 

informed consent before study procedures were undertaken.

RESULTS

Patient details

We included 602 patients who provided serum on admission. Of these, 376 were men and 

38.4% (n = 231) had infections on admission. Of the 602 patients, 101 (17%) developed 

NIs at a median of 5 ± 2 days after admission. As shown in Table 1, NIs were associated 

with a higher rate of admission infection and higher MELD scores and WBCs. Patients who 

developed NIs had longer hospital lengths of stay and more frequently needed intensive care 

unit (ICU) transfer, experienced individual organ failures, developed ACLF, and died (Table 

1). A total of 127 patients also provided an admission stool sample, and 20 of these patients 

later developed NIs (Figure 1).

Infection details

Of 602 patients, 237 had infections on admission, of which 170 (71.2%) did not develop any 

further infection. This contrasts with 331 of the 365 (90.7%) patients without an admission 

infection who remained NI free. Therefore, 501 patients remained NI free (Table 2). Of the 

101 patients who developed NIs, 67 patients had one admission infection and then developed 

one or more additional infections after 48h (three patients developed two NIs and 64 patients 
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developed one NI for a total of 70 NIs; Table S1). The 34 patients without an admission 

infection developed one or more NIs after 48h (three patients developed two NIs and 34 

patients developed one NI for a total of 37 NIs). The most common initial admission 

infection was spontaneous bacterial peritonitis (SBP) followed by urinarytractinfection 

(UTI) and respiratory tract infections. All admission infections were bacterial in nature. 

NIs were more likely to be fungal (n = 39; p < 0.0001 vs. admission infections) with the 

remainder of NIs being caused by bacteria. The most common NIs were also SBP and UTIs 

but with higher rates of Clostridioides difficile and respiratory tract infections. Resistant 

organisms were more frequent causes of NI than admission infections: fluoroquinolone 

resistance, 14% versus 2% (p < 0.0001); vancomycin-resistant enterococci, 9% versus 3% (p 
= 0.01); and methicillin-resistant Staphylococcus aureus, 2% versus 5% (p = 0.08).

Metabolomics

We identified 1464 metabolites in total, of which 1196 were named. The majority were 

lipid-related metabolites (n = 459), then xenobiotics (n = 329) and amino acids (n = 223) 

followed by nucleotides (n = 43), peptides (n = 40), cofactors and vitamins (n = 36), 

partially characterized metabolites (n = 27), and carbohydrates (n = 26). A total of 247 

metabolites were significantly increased using ANCOVA. Specific metabolite fold changes 

that differed between those who developed NI versus not on ANCOVA are shown in Tables 

S1 and S1. The top 25 metabolites on RFA are shown in Table 3 and according to the MDA 

in Figure 2.

Logistic regression

Higher MELD score (odds ratio [OR], 1.05; 95% CI, 1.02–1.09; p < 0.0001), admission 

infection (OR, 3.54; 95% CI, 2.18–5.76; p < 0.0001), and admission WBC (OR, 1.05; 95% 

CI, 1.00–1.09; p = 0.04) were significant predictors of NI development with an AUC of 

0.74. Of the metabolites, a decrease in 1-linolenoyl-glycerolphosph ocholine (GPC) and 

1-stearoyl-GPC and an increase in N-acetyl-tryptophan and N-acetyl isoputreanine added 

significantly to the model (AUC, 0.77; p = 0.05).

Microbiota analysis

On LEFse, Fusobacteriace and Pseudomonadaceae at the family level and Fusobacterium, 

Hydrogenoaero-bacterium, and Ruminococcus at the genus level were associated with a 

lower risk of NI development, whereas Gammaproteobacteria, Corynebacteriaceae, and 

Alteromonadales at the family level and Corynebacterium, Hungatella, and Pluralibacter at 

the genus level were associated with NI development (Figure 3).

Correlation network analysis

The analysis of patients who developed NIs was more centralized, dense, and complex 

than the analysis of patients without NIs. The NI correlation network had 1138 nodes with 

an average of 41.16 neighbors, a centralization of 0.13 with a density of 0.036, and a 

heterogeneity of 0.96, whereas the non-NI network had 956 nodes, an average of 21.47 

neighbors, a density of 0.022, a heterogeneity of 1.33, and a centralization of 0.11 (Figure 

4).
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We then focused on bacterial taxa from admission stool samples that are important in 

cirrhosis prognostication. We found in those who developed an NI, Ruminococcaceae 

had a complex correlation network with negative correlations with metabolites that 

were associated independently with NI (5-hydroxylysine, 3[4-hydroxyphenyl]propionate), 

pyruvate; Figure 5A. In those who did not develop an NI, stool Ruminococcaceae 

was negatively associated with stool Enterococcaceae (Figure 5B). Similarly with the 

family Lachnospiraceae, which has also been associated with short-chain fatty acid 

production, there was a negative linkage with metabolites associated with (N(1) = N(8))-

acetylspermidine and N–acetyl-isoputreanine that were significantly linked with NI on 

RFA (Figure 5C). In addition, Lachnospiraceae in stool was negatively linked with other 

metabolites associated with NI (N,N,N-trimethyl-L-alanyl-L-proline betaine [TMAP], N-

acetyl valine, asymmetric dimethyl arginine [ADMA] + symmetric dimethyl arginine 

[SDMA]) and positively linked with arachidoylcholine that was lower in those who 

developed NIs. In those without NI, stool Lachnospiraceae, similar to Ruminococcaceae, 

was negatively associated with Enterococcaceae (Figure 5D). Stool Pseudomonadaceae was 

negatively associated with choline, myo-inositol, and taurine and positively linked with 

bilirubin, bilirubin degradation products, and citrate (Figure 5E). No significant correlations 

were found with stool Pseudomonadaceae in the non-NI group.

DISCUSSION

Patients with cirrhosis are prone to NIs that are associated with poor outcomes.[18] However, 

NIs are difficult to predict and often only diagnosed after antibiotic failures or organ failures 

have occurred.[19] Prior studies using clinical criteria alone to predict NI development 

in hospitalized patients with cirrhosis have been relatively inaccurate.[3] Therefore, other 

biomarkers are needed. In a large, prospectively collected, nonelectively hospitalized cohort 

of patients with cirrhosis, we found that admission serum metabolites, focusing on choline, 

polyamine, and bacterial metabolites, were uniquely associated with NI prediction and could 

potentially add to clinical biomarkers. We also found significant associations between gut 

microbial pathobionts and lower commensals and NIs that were differentially associated 

with serum metabolites.

As expected from prior studies, patients who developed NIs compared with those who did 

not had worse clinical profiles at admission and poor outcomes during admission.[20] Most 

NIs were in patients already admitted with an infection, and several patients had more 

than one NI. In addition, NIs were more likely to be caused by resistant organisms and 

fungi compared with index community-acquired or health care–associated infections.[1] As 

a result, we need to prevent or at least detect NIs earlier, which necessitates the study and 

implementation of tailored interventions that may also serve to prevent ACLF and death. 

This is necessary because prior studies in larger cohorts, including this study, had poor 

predictive capability for NI development when restricted only to clinical variables.[3]

The specific admission serum metabolites associated with protection from subsequent NI 

development were choline metabolites, including 1-stearoyl and lineloylcholine. These 

metabolites are precursors of the cell membrane required for cell membrane stability and 

are also markers of hepatic regeneration.[7] Their relative decrease in serum has been 
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associated with poor outcomes in prior studies of liver disease and cirrhosis.[7,21] Although 

lower levels of some of these metabolites were also associated with ACLF and death, their 

relative abundance may represent “healthier” liver function. In this study, high serum levels 

of these metabolites were associated with a lower NI development after controlling for 

clinical biomarkers such as MELD score and serum albumin. In contrast, the specific serum 

metabolites associated with NI development were N-acetylated amino acids, sex steroids and 

homologs, and dicarboxylic acids (suberate and pimelate). N-acetyltryptophan is a potential 

uremic toxin that could be associated with NI as an early marker of kidney dysfunction.[22] 

High levels of estrone and genistein, which are internal and external sources of female sex 

steroids, respectively, have been associated with poor prognosis in patients with cirrhosis in 

general.[12]

Although some of these metabolites were altered in patients in our cohort who went 

on to develop ACLF and died, there are some metabolites specific for NI. Choline 

and phosphocholine moieties, estrogenic metabolites, and N-acetyltryptophan and N-

acetyl isoputreanine were associated with the major negative outcomes. However, N-

acetyltryptophan, pimelate, lanthionine, 4-imidazoleacetate, and suberate were relatively 

specific for NI occurrence. N-acetylisoputreanine is a metabolite formed after spermidine 

is degraded and has been associated with kidney dysfunction and cognitive impairment.[23] 

Pimelate is important for the bacterial synthesis of biotin, a vitamin critical for fatty acid 

synthesis, branched-chain amino acid catabolism, and gluconeogenesis.[24] Lanthionine is an 

amino acid derivative important for bacterial cell wall and toxin synthesis and could be a 

marker of bacterial function and a uremic toxin.[25,26]

In addition to metabolites, gut microbiota can predict outcomes in cirrhosis, and in the 

relatively smaller subset who provided stool samples, there were higher commensals 

and lower pathobionts in patients who did not develop NI versus the rest. These were 

related to bacteria that produce short-chain fatty acids such as Ruminococcaceae and 

those that have pathogenic taxa such as Pseudomonadaceae.[27] However, the interaction 

between metabolites and bacteria could shed greater light into the pathogenesis of NIs 

as well as provide microbially based targets for the prevention of NIs in this population. 

This is important because several metabolites that differentiated NIs versus no NI are 

associated with bacterial metabolism as discussed previously. Specifically, these are related 

to the phylum Proteobacteria that are gram-negative rods responsible for a major share 

of infections in cirrhosis.[4] The overall bacterial–metabolite linkage was denser, more 

complex, and with a homogeneous network in those who developed NI compared with those 

who were protected, which could indicate a relatively closer relationship between bacteria 

and metabolites in this subset.

In those who developed NIs, stool commensals such as Ruminococcaceae and 

Lachnospiraceae were negatively linked with metabolites that were associated with 

NI development (5-hydroxylysine, 3[4-hydroxyphenyl] propionate, acetylspermidine, N-

acetylisoputreanine, TMAP, N-acetyl valine, and ADMA+SDMA). These serum metabolites 

are related to vascular and kidney dysfunction and could predispose to a milieu related to 

immune dysfunction and end-organ damage.[28,29] On the other hand, pathobiont-containing 
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families such as Pseudomonadaceae were negatively associated with serum levels of choline 

and myo-inositol, which usually indicate better liver health.[7]

The data here show that specific admission serum metabolites are over and above clinical 

biomarkers, and parameters could be developed as potential biomarkers for later NI 

development. These metabolites are distinct from metabolites that associate with other 

clinical complications, such as advanced hepatic encephalopathy (HE) and kidney failure, 

and there are several metabolites that are unique to NI that were analyzed in the same 

cohort.[12,30,31]

Although NIs vary in underlying microbiology and antibiotic use, we adjusted for these by 

using admission infection status and other clinical data available while ensuring that only 

baseline admission samples were analyzed. Therefore, although patients who developed NIs 

had higher antimicrobial metabolites in the serum, this was not significant in multivariable 

analysis. Despite our efforts, the AUCs for addition of serum metabolites to clinical 

information were modest but impactful on our understanding of the potential risk factors 

for NI development. We did not consider rectal swabs but used stools, which could have 

different results.[32] However, we focused on the entire microbiome rather than specific 

organisms for NI. The focus on gut microbial comparisons and linkages provides another 

target to prevent NI development and potentially ACLF and death.

In a large, prospective, multicenter cohort of non-electively admitted patients with cirrhosis, 

we found that a fifth of patients developed NIs. NIs were often caused by resistant bacteria 

or fungal organisms and resulted in a higher probability of ACLF and death. Specific 

admission serum metabolites significantly added to the predictive capability for development 

of NIs. These serum metabolites could serve as potential biomarkers to identify subgroups 

at greater risk for NIs, and the linkage with bacteria could increase our insight into the 

pathophysiology of NI development in cirrhosis.
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ADMA asymmetric dimethyl arginine

AKI acute kidney injury

ANCOVA analysis of covariance

AUC area under the curve

CI confidence interval

FDR false discovery rate

HCV hepatitis C virus

HE hepatic encephalopathy

ICU intensive care unit

LDA linear discriminant analysis

LEfSe linear discriminant analysis effect size

MDA mean decrease accuracy

MELD Model for End-Stage Liver Disease

NACSELD North American Consortium for the Study of End-Stage Liver 

Disease

NAFLD nonalcoholic fatty liver disease

NI nosocomial infection

OR odds ratio

RFA random forest analysis

ROC receiver operator characteristic

RSD relative standard deviation

SBP spontaneous bacterial peritonitis

SDMA symmetric dimethyl arginine

TMAP N,N,N-trimethyl-l-alanyl-l-proline betaine

UTI urinary tract infection

WBC white blood count
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FIGURE 1. 
Flowchart of patients.
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FIGURE 2. 
RFA analysis for NIs. Black dots indicate measurements were higher in those who 

developed NIs, and blue dots indicate measurements were lower in those who developed 

NIs. Metabolites with “X-” indicate unknown metabolites.
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FIGURE 3. 
Microbiota LEfSe on NIs. LEfSe with green indicates NIs developed, and red indicates NIs 

did not develop.
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FIGURE 4. 
Overall microbial–metabolite correlation network. Pink indicates bacteria, green indicates 

metabolites, red lines indicate positive linkage, and blue lines indicate negative linkage. (A) 

Those who developed NIs had a complex, dense, and homogeneous correlation network 

between microbiota and metabolites. (B) Those who did not develop NIs had a loose and 

heterogeneous correlation network between microbiota and metabolites.
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FIGURE 5. 
Correlation network analysis subnetworks. Pink indicates bacteria, green indicates 

metabolites, red lines indicate positive linkage, and blue lines indicate negative linkage. 

(A) Ruminococcaceae subnetwork in those who developed NIs. (B) Ruminococcaceae 

subnetwork in those who did not develop NIs. (C) Lachnospiraceae subnetwork in those 

who developed NIs. (D) Lachnospiraceae subnetwork in those who did not develop NIs. (E) 

Pseudomonadaceae subnetwork in those who developed NIs.
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TABLE 3

Named metabolites significant on random forest analysis

Lower in NIs Higher in NIs

1-Stearoyl-GPC Pimelate

1-Linoleoyl-GPC 4-Imidazoleacetate

1-Palmitoyl-GPC Lanthionine

Choline 6-Oxoperidine-2-carboxylate

1-Linolenoyl-GPC N-acetyltryptophan

1-Lignoceroyl-GPC Suberate

Octadecenedioylcarnitine (C18:-DC) 5-Alpha-prenan-3beta-20 alpha diol sulfate

N-acetyl isoputreanine

Estrone-3-sulfate

Genistein sulfate

(N(1) + N(8))-acetylspermidine

Abbreviation: DC, dioylcarninite; GPC, glycerolphosphocholine; NI, nosocomial infection.
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