
UC San Diego
Technical Reports

Title
Weak Leader Election in the receive-omission failure model

Permalink
https://escholarship.org/uc/item/1r75q8vw

Authors
Junqueira, Flavio
Marzullo, Keith

Publication Date
2005-06-01

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1r75q8vw
https://escholarship.org
http://www.cdlib.org/

Weak Leader Election in the receive-omission failure model

Flavio P. Junqueira

flavio@cs.ucsd.edu

Keith Marzullo

marzullo@cs.ucsd.edu

University of California, San Diego

Department of Computer Science and Engineering

9500 Gilman Drive

La Jolla, CA – USA

1 Introduction

Leader Election is an important primitive in fault-tolerant

distributed computing because it enables the solution of

problems broadly applicable in real systems such as Con-

sensus, as illustrated by the Paxos algorithm [1], and

Primary-Backup, as in [2].

The particular version of the Leader Election problem

we develop upon first appeared in the context of Primary-

Backup algorithms. In the Primary-Backup approach for

fault-tolerant services, clients issue requests that the pri-

mary is responsible for handling and replying to. When

the primary fails, one of the backup replicas takes over as

the new primary. Thus, a Primary-Backup algorithm em-

beds a Leader Election algorithm that can infinitely often

select a primary.

In [2], Budhiraja and Marzullo show a lower bound of

n > ⌊3t/2⌋ for such algorithms when processes can fail

to receive messages, where n is the number of processes

and t is the maximum number of process failures in an

execution. The basic idea of the lower bound proof is that

multiple primaries can be elected if fewer than ⌊3t/2⌋ +

1 processes compose the system. In a later section, we

repeat this result for exposition purposes.

Still on the early work by Budhiraja and Marzullo

on Primary-Backup algorithms, the degree of replica-

tion necessary for the algorithm they designed is higher

because they require that faulty processes cannot be

elected [2]. According to their statement of the prob-

lem, if a process does not crash but it commits receive-

omission failures, then it cannot be elected. This is due

to the assumption that responses to client requests are

bounded in time. Failure detection for receive-omission

failures, however, requires at least twofold replication.

When implementing a system based on the Primary-

Backup approach, servers are often connected by a local

area network to bound response time to client requests,

which implies bounded fail-over time. For such settings,

partitions are unlikely to occur if processors operate at a

reasonable speed. Messages, however, can be lost due

to, for example, buffer overflows at the receiver. One

can imagine using retransmissions to cope with such fail-

ures. A retransmission mechanism, however, only guar-

antees eventual delivery; bounded response is not possi-

ble with eventual delivery of messages. Because of the

requirements on bounded response and failure-over time,

Primary-Backup algorithms are usually synchronous.

In this paper, we describe a synchronous algorithm for

Leader Election under receive-omission process failures

and prove its correctness. The novelty in this algorithm

is fourfold: 1) it proves tight a lower bound that has been

known for over 10 years; 2) by permitting faulty (but not

crashed) processes to be elected, it requires fewer repli-

cas; 3) it is based on cores and survivor sets which are

abstractions that enables one to more expressively repre-

sent failure scenarios by considering failures that are not

independent or not identically distributed; 4) although it

allows for faulty processes to be elected, correct processes

are able to detect it, enabling the use of alarms to indi-

cate failures in the system. Relating to our discussion on

Primary-Backup protocols, by assuming that faulty pro-

cesses can be elected, we cannot bound response time for

a Primary-Backup algorithm. We can guarantee, however,

that there is at most one primary at any time, and that re-

sponse is bounded whenever a correct process emerges as

the primary. We further discuss this and other issues with

Primary-Backup protocols later in the paper.

1

The remainder of this paper is as follows. We detail

the system model in Section 2. We then introduce the

problem by stating the properties an algorithm must fulfill

(Section 3). Still in Section 3, we repeat the lower bound

proof for process replication, and generalize this bound to

our model of dependent failures. Section 4 describes our

FFS-WLE algorithm for Leader Election. As we shall

see, the algorithm depends on a primitive that we call RO

Consensus. The properties for RO Consensus resembles

the ones for the traditional Uniform Consensus primitive.

The differences, however, are significant enough for nam-

ing the problem differently. In Section 4, we also provide

an algorithm for RO Consensus. Sections 5 and 6 pro-

vide proofs of correctness for FFS-ROC and FFS-WLE,

respectively. In Section 7, we strengthen the definition of

Leader Election to disable executions in which different

leaders are elected infinitely often, and provide a simple

modification of the algorithm that enables it. Before con-

cluding, we provide a discussion on the implications of

the properties of our algorithm in a Primary-Backup pro-

tocol in Section 8. We finally conclude in Section 9.

2 System model

A system is a collection of processes Π = {p1, p2, . . . , pn}

that communicate through messages.1 For every pair of

processes pi, p j ∈ Π, there is a channel that pi uses to

send messages to p j.

In such a system, an algorithm alg is a collection of

state machines, one for each process. alg then proceeds

in steps of processes. In a step, a process pi executes

atomically the following:

∧

∨

receives a message from a process p j
∨

sends a message to a process p j
∨

executes a local operation
∧

undergoes a state transition

We define an execution φ of alg as a tuple

〈F, I, S ,T,T〉, where F is the set of processes that are

faulty in φ; I is the set of initial states, one for each

process; S is a set of steps; T is a set of real values;

T : S → T is a mapping from steps to real values.

The real values in T correspond to the global time in

which steps execute. T (s) therefore is the global time

in which step s ∈ S executes. We use global time in

1We use pi to denote a process and i to denote the identifier of this

process.

proofs, and we do not assume such a virtual clock that

produces global time is available to processes. We also

use Correct(φ) for the set of processes that are correct in

φ: Correct(φ) = Π \ F. Finally, Φ is the set of executions

of alg.

We assume that processes can fail by crashing or by

omitting to receive messages. If a process pi crashes in an

execution φ, then there is step s of pi such that pi executes

no further steps after T (s). We call this step a crash step.

A faulty process, however, does not necessarily crash: it

can selectively fail to receive messages. To characterize

failure scenarios, a threshold on the number of process

failures is often used. We refer to this characterization

using a threshold as the threshold model. We instead use

our model of dependent process failures based on the ab-

stractions of cores and survivor sets. We define cores and

survivor sets as follows:

Definition 2.1 A subset C ⊆ Π is a core if and only if:

1) ∀φ ∈ Φ, Correct(φ) ∩ C , ∅; 2) ∀pi ∈ C : ∃φ ∈ Φ :

C \ {pi} ∩ Correct(φ) = ∅.

Definition 2.2 A subset S ⊆ Π is a survivor set if and

only if: 1) ∃φ ∈ Φ, Correct(φ) = S ; 2) ∀φ ∈ Φ : ∀pi ∈

S : Correct(φ) 1 S \ {pi}.

We use the term system profile to denote a description

of the tolerated failure scenarios. In the threshold model,

a system profile is a pair 〈Π, t〉, which means that any sub-

set of t processes in Π can be faulty. In our dependent

failure model, the system profile is a triple 〈Π,CΠ,SΠ〉,

where CΠ is the set of cores and SΠ is the set of survivor

sets. We assume that each process is a member of at least

one survivor set (otherwise, that process can be faulty in

each execution, and ignored by the other processes), and

that no process is a member of every survivor set (other-

wise, that process is never faulty).

We assume that systems are synchronous: the steps of

every execution of some algorithm A can be split into

rounds. That is, there is a mapping Round : S → R

from steps of processes to round numbers, where R = Z
∗

and round numbers monotonically increase with time. We

then have the following properties for rounds:

P-Liveness : If a process executes all the steps of a round

r, then every process that does not crash by r exe-

cutes at least one step of r.

C-Liveness : If a process pi sends a message m to a cor-

rect process p j at round r and pi does not crash by

round r, then p j receives m at round r.

2

Integrity : If pi receives a message m from p j, then p j

sent m to pi.

No duplicates : No message m is received more than

once.

3 Problem specification

For the following description of the problem, we assume

that each process pi in Π has a boolean variable pi.elected

that is set to true if the process elects itself, and to false

otherwise. We then define the Weak Leader Election

problem with the following three properties:

Safety �|{pi ∈ Π : pi.elected}| < 2.

LE-Liveness �^(|{pi ∈ Π : pi.elected}| > 0).

FF-Stability In a failure-free execution, only one pro-

cess ever has elected set to true.

In words, infinitely often some process elects itself, and

no more than one process is elected at any time. The

third property eliminates the possibility of an algorithm

that, for example, elects processes in a round-robin fash-

ion (which can be implemented with no communications

given that the system is synchronous). It does not rule

out, however, executions in which two or more processes

are elected infinitely often when there is at least one pro-

cess failure in the execution. For this reason, we propose

another property called E-Stability stated as follows:

E-Stability ∃pi ∈ Π : ^�(∀p j ∈ Π : p j.elected ⇒

(j = i))

An algorithm satisfying this property eventually elects

the same process forever in every execution. Note that

with E-Stability only, failure-free executions are allowed

to have multiple leaders elected (at different times, to not

violate safety), and hence does not render FF-Stability un-

necessary.

In the following sections, we first derive an algorithm

that satisfies the first three properties. Later we modify

this algorithm to also satisfy E-Stability. First, we show a

lower bound for this problem.

3.1 Lower bound on process replication

In [2], the following lower bound was shown. The proof

was given in the context of showing a lower bound on

replication for Primary-Backup protocols.

Lemma 3.1 Weak Leader Election for receive-omission

failures requires n > ⌊3t/2⌋.

Proof:

Assume that Weak Leader Election for receive-omission

failures can be solved with n = ⌊3t/2⌋. Partition the

processes into three blocks A, B and C, where |A| =

|B| = ⌊t/2⌋ and |C| = ⌈t/2⌉. Consider an execution φA in

which the processes in B and C initially crash. From LE-

Liveness and E-Stability, eventually a process in A will

be elected infinitely often. Similarly, let φB be an execu-

tion in which the processes in A and C crash. From LE-

Liveness and E-Stability, eventually a process in B will be

elected infinitely often.

Finally, consider an execution φ in which the processes

in A fail to receive all messages except those sent by pro-

cesses in A, and the processes in B fail to receive all mes-

sages except those sent by processes in B. This execution

is indistinguishable from φA to the processes in A and is

indistinguishable from φB to the processes in B. Hence,

there will eventually be two processes, one in A and one

in B, elected infinitely often, violating either Safety or E-

Stability.

�

3.2 Replication predicate

To develop the protocol, we first generalize the replication

predicate for this problem for the core/survivor set model,

where a replication predicate is a predicate that estab-

lishes whether there is sufficient replication to enable the

solution of a particular problem. From the lower bound

proof of Lemma 3.1, we consider any partition of the pro-

cesses into three blocks. Then, one constructs three ex-

ecutions, where in each execution all of the processes in

two of the three subsets are faulty. If we can construct

such a partition, then we cannot solve the problem. Be-

fore we present the partition property, we introduce a few

definitions:

• Pk(Π) is the set of partitions of Π into k blocks;

• Gx(A) is the set of all the subsets of A of size x; if

|A| < x, then Gx(A) = ∅

The conclusion of the lower bound proof can be stated,

for k = 3, as follows:

Property 3.2 (k,k - 1)-Partition, k > 1, |Π| > 2: ∃k′ ∈

{2, . . . ,min(k, |Π|)} : ∀A ∈ Pk′ (Π) : ∃A′ ∈ Gk′−1(A) :

∃C ∈ CΠ : C ⊆ A′ �

3

The equivalent intersection property is then:

Property 3.3 (k,k-1)-Intersection, k > 1, |Π| > 2,

|SΠ| > 2: ∃k′ ∈ {2, . . . ,min(k, |Π|)} : ∀T ∈ Gk′ (SΠ) :

∃T ∈ G2(T) : (∩S∈T S) , ∅ �

Stated more simply, (k,k-1)-Intersection says that for

any set of k′ survivor sets, k′ ∈ {2, . . . ,min(k, |Π|)}, at

least two of them have a non-empty intersection. (k,k-

1)-Intersection and (k,k-1)-Partition generalize replica-

tion predicates in the threshold model of the form n >

⌊kt/(k − 1)⌋.

Consider now an example of a system that satisfies

(3,2)-Intersection. It is based on a simple two-cluster sys-

tem. A process can fail by crashing, and there is a thresh-

old t on the number of crash failures that can occur in a

cluster. A cluster can also suffer a catastrophic failure,

which causes all of the processes in that cluster to crash.

Such a catastrophic failure can result from the failure of a

cluster resource such as a disk array or a power supply, or

from an administrative fault. We assume that catastrophic

failures are rare enough that the probability of both clus-

ters suffering catastrophic failures is negligible. However,

processes can crash in one cluster at the same time that the

other cluster suffers a catastrophic failure.

Assuming that each cluster has three processes and t =

1, we have the following system profile, where processes

with identifier ai belong to one cluster and processes with

identifier bi belong to the other cluster:

Example 3.4 :

Π = {pa1
, pa2

, pa3
, pb1

, pb2
, pb3
}

CΠ = {{pi1 , pi2 , pi3 , pi4 } : (i1, i2 ∈ {a1, a2, a3})

∧(i3, i4 ∈ {b1, b2, b3} ∧ i1 , i2 ∧ i3 , i4)}

SΠ = {{pi1 , pi2 } : ((i1, i2 ∈ {a1, a2, a3})

∨(i1, i2 ∈ {b1, b2, b3})) ∧ i1 , i2};

To see why this profile satisfies (3,2)-Intersection, we

just have to observe that out of any three survivor sets, at

least two intersect.

We now show the equivalence of (k,k-1)-Partition and

(k,k-1)-Intersection with the following theorem.

Theorem 3.5 (k,k-1)-Partition ≡ (k,k-1)-Intersection

Proof:

⇒: Proof by contrapositive. Consider a sys-

tem profile 〈Π,CΠ, SΠ〉 such that, for every k′,

k′ ∈ {2, . . . ,min(k, |Π|)}, there is a subset S =

{S 1, S 2, . . . , S k′ } ⊆ SΠ such that no pair of survivor sets

S i, S j intersects. That is,
⋃

P∈G2(S)

⋂

P = ∅. We then

build a partitionA = {A1, A2, . . . , Ak′ } as follows:

A1 = Π \ (S 2 ∪ S 3 ∪ . . . ∪ S k′)

A2 = Π \ (S 1 ∪ S 3 ∪ . . . ∪ S k′ ∪ A1)

...

Ai = Π \ (S 1 ∪ S 2 ∪ . . . ∪ S i−1 ∪ S i+1 ∪ . . .

. . . ∪ S k′ ∪ A1 ∪ A2 . . . ∪ Ai−1)

...

Ak′ = Π \ (S 1 ∪ S 2 ∪ . . . S k′−1 ∪ A1 . . . ∪ Ak′−1)

It is clear that Ai, A j are disjoint, i , j. We now have

to show that: 1)
⋃

A = Π; 2) For every subset A′ =

{Ai1 , Ai2 , . . . , Aik′−1
} ⊂ A,

⋃

A ′ does not contain a core.

To show 1), let ψi = ∪(S j∈S\S i)S j, i ∈ {1, . . . , k′}. We then

have the following derivation:
⋃

A = (Π \ ψ1) ∪ (Π \ ψ2 ∪ A1) ∪ . . .

. . . ∪ (Π \ (ψk′ ∪ A1 ∪ A2 . . .

. . . ∪ Ak′−1)) (1)

= Π \ ((ψ1 ∩ (ψ2 ∪ A1)) ∩ . . .

. . . ∩ (ψk′ ∪ A1 ∪ A2 . . . ∪ Ak′−1)) (2)

= Π \ (ψ1 ∩ ψ2 ∩ . . .

. . . ∩ (ψk′ ∪ A1 ∪ A2 . . . ∪ Ak′−1)) (3)

...

= Π \ (∩iψi) (4)

= Π (5)

• Line 1 to Line 2 follows from the observation that for

any subsets A, B ofΠ, we have that (Π\A)∪(Π\B) =

Π \ (A ∩ B);

• Line 2 to Line 3: the intersection between ψ1 and

A1 has to be empty, since ψ1 contains exactly the

elements we removed from Π to form A1.

• Line 3 to Line 4: by repeating inductively the pro-

cess used to derive Line 3, we are able to remove

every term Ai present in the equation.

• Line 4 to Line 5: Transforming from a con-

junctive form to a disjunctive form, we have that
⋂

P∈Gk′−1(S)

⋃

P =
⋃

P∈G2(S)

⋂

P. To see why this is

true, note that for every pair S i, S j ∈ S, i , j, and

P ∈ Gk′−1(S), we have that (S i ∈ P) ∨ (S j ∈ P).

Finally, we have that
⋃

P∈G2(S)(∩S i∈PS i) = ∅ by as-

sumption.

4

By the construction of the partition and from the as-

sumption that for every S i, S j ∈ S, S i ∩ S j = ∅, we

have that for every i ∈ {1, . . . , k′}, there is S i ∈ S

such that S i ⊆ Ai. From this, we conclude that for any

A′ = {Ai1 , Ai2 , . . . , Aik′−1
} ⊂ A,

⋃

A′ does not contain el-

ements from some survivor set, and consequently it does

not contain a core.

⇐: Proof also by contrapositive. Suppose a

system profile 〈Π,CΠ, SΠ〉 such that for every k′,

k′ ∈ {2, . . . ,min(k, |Π|)}, there is a partition A =

{A1, A2, . . . , Ak′ } of Π in which no union of k′ − 1 blocks

of A contains a core. If a subset of processes does not

contain a core, then it contains no elements from some

survivor set. The complement of such a set of processes

consequently contains a survivor set. Because no union

of k′ − 1 blocks inA contains a core, for every Ai there is

an S i ∈ SΠ such that S i ⊆ Ai. Thus, for all Ai, A j ∈ A,

i , j, we have by construction that Ai ∩ A j = ∅, and

hence S i ∩ S j = ∅. We conclude that no pair S i, S j ∈

{S 1, S 2, . . . , S k′ } is such that S i ∩ S j , ∅.

�

4 The algorithm

In this Section, we describe an algorithm FFS-WLE that

satisfies Safety, LE-Liveness, and FF-Stability (Figure 2).

It assumes a system profile 〈Π,CΠ, SΠ〉 that satisfies

(3,2)-Intersection and uses as a building block an algo-

rithm FFS-ROC that implements a weak version of Uni-

form Consensus that we call RO Consensus. We call it

RO Consensus because its definition resembles the one

of Consensus. It is tailored, however, to fulfill the re-

quirements of FFS-WLE. Note that use the prefix “FFS-”

(FF-Stability) to distinguish the algorithms in this section

from the ones of Section 7. Recall that in Section 7 we

present an algorithm that also satisfies E-Stability.

We assume that each process pi has an initial value

pi.a ∈ V ∪ {⊥}, where V is the set of initial values, and

a decision value pi.d [1 . . . n], where pi.d[j] ∈ V ∪ {⊥}.

We use v ∈ pi.d to denote that there is some pℓ ∈ Π such

that pi.d[ℓ] = v. If a process pi crashes, then we assume

that its decision value pi.d is N , where N stands for the

n element list [⊥, . . . ,⊥]. To avoid repetition throughout

the discussion of our algorithm, we say that a process p

decides in an execution φ if p.d is different than N .

As we describe later, we execute FFS-ROC multiple

times in electing a leader. We then have that processes

may crash before starting an execution φ of FFS-ROC.

Such processes consequently have initial value undefined

in φ. We therefore use ⊥ to denote the initial value

of crashed processes. That is, if pi.a =⊥, then pi has

crashed.

Let the relation x ⊆ y for x and y lists of n elements be

that, for all i : 1 ≤ i ≤ n, (x[i] ,⊥)⇒ (x[i] = y[i]).

The specification of RO Consensus is given by four

properties as follows:

Termination: Every process that does not crash eventu-

ally decides on some value.

Agreement: If pi.d[ℓ] ,⊥, then for every non-faulty pc,

pi.d[ℓ] = pc.d[ℓ];

RO Uniformity: Let vals be {d : ∃pi ∈ Π s.t. (pi.d =

d)} \ N . Then,
∧

1 ≤ |vals| ≤ 2
∧

∀d, d′ ∈ vals : d ⊆ d′ ∨ d′ ⊆ d
∧

∀d f , dc ∈ vals, d f ⊆ dc : ∃S f , S c ∈ SΠ :

∧ ∀p ∈ S f : ∨ p crashes

∨ p.d = d f

∧ ∀p ∈ S c : ∧ p.d = dc

∧ p is not faulty

That is, there can be no more than two non-N deci-

sion values, and if there are two then one is a subset

of the other. Furthermore, if there are two different

decision values, then these are the values that pro-

cesses in two disjoint survivor sets decide upon, one

for the processes of each survivor set.

Validity:
∧

If p j ∈ Π does not crash, then for all non-faulty

pi, pi.d[j] = p j.a
∧

If p j ∈ Π does crash, then exists v ∈ {⊥, p j.a}

such that for all non-faulty pi, pi.d[j] = v;
∧

If there are survivor sets S f , S c ∈ SΠ

and values v f , vc ∈ V , v f , vc, such that

∧ ∀p ∈ S f :p.a ∈ {v f ,⊥}

∧ ∀p ∈ S c :∧ p.a = vc

∧ p is not faulty

∧ ∃pi, pℓ ∈ Π : pi.d[ℓ] = v f

then for all p j that does not crash, v f ∈ p j.d

That is, if a process pi is not faulty and pi.d[j] ,⊥,

then the value of pi.d[j] must be p j.a. The value of

pi.d[j] can be ⊥ only if p j crashes. The third case

exists because we use the decision values of an ex-

ecution as the initial values for another execution.

From RO Uniformity, there can be two different non-

N values d f and dc. If this is the case, then there is

5

a survivor set S c containing only correct processes

such that all processes in S c decide upon dc, and

another survivor set S f containing only faulty pro-

cesses such that all the processes in S f either crash

or decide upon d f . Let d f be v f and dc be vc. By

the third case, if some process that decides includes

v f in its decision value, then every process that does

not crash also includes v f in its decision value.

We now describe our algorithm FFS-ROC for RO Con-

sensus. Figure 1 shows the pseudocode for a single pro-

cess. A TLA+ specification of the algorithm appears in

the Appendix. From the figure, the algorithm FFS-ROC

executes exactly in t+1 rounds, where t = mins{s = |S i|∧

S i ∈ SΠ} or alternatively t+1 = maxc{c = |Ci|∧Ci ∈ CΠ}.
2

For the proof of correctness we present in the next section,

we assume that the value of t is at least one (t ≥ 1). Note

that for t = 0 there is a trivial, much simpler algorithm.

In every round r of FFS-ROC, a process pi sends its

list pi.A of values to a subset of the processes Π′ in Π. If

process pi does not crash or stop3 in round r, then Π =

Π′. Otherwise, this subset is arbitrary. Before the end of

round r, every process pi that does not execute a crash

step at r receives all the messages sent to it at round r.

Note that if a process pi crashes at round r, but sends a

message mi to process p j, then p j does not necessarily

receives mi by C-Liveness. We then use the following,

where 0 ≤ r ≤ t:

• pi.M(r) denotes the set of messages of round r that

pi receives;

• pi.s(r) denotes the set of processes from which pro-

cess pi receives messages of round r. That is,

pi.s(r) = {p : m ∈ pi.M(r) ∧ m.from = p};

• pi.sr(r) denotes the set pi.s(r) removed the processes

pi detects to be faulty at round r.

Processes send no messages at the last round. Note

that, by the algorithm, messages received by the end of

round r are available for processing at the beginning of

round r + 1.

2The first and the last rounds in the algorithms are actually half

rounds, and we then consider that both together constitute a single

round. Put it another way, we can easily rearrange the order of send-

ing and receiving messages to make it fit into t + 1. We have chosen the

former for expositional convenience.
3A stop instruction is equivalent to a crash in that a process does not

execute any further steps after executing a stop instruction. A process,

however, executes a stop instruction according to its own state machine,

and hence it is not in any arbitrary step.

If a process detects that it has failed to receive mes-

sages, then it stops by deciding on N . In the discussion

that follows, we treat processes that crash and processes

that stop in the same manner. If a distinction is neces-

sary, then we clearly state it. There are two ways a pro-

cesses pi can determine that it is faulty: 1) By receiv-

ing messages from a set of processes at round r such that

pi.s(r) 1 pi.s(r − 1), r > 1; 2) By determining that in its

set of messages of round r, there is no survivor set pos-

sibly containing only correct processes. The second form

of detection relies on the set of values pi receives from

another process p j. If pi notices that p j did not receive a

previous message from pi, then pi declares p j faulty. By

removing the obviously faulty processes and looking at

the remaining set, if there is no survivor set in the remain-

ing set, then pi must be faulty as well. More specifically,

pi checks at round r > 1 whether pi.sr(r) contains a sur-

vivor set. To decide upon membership for pi.sr(r), pi uses

the value of pi.A from round r− 2. We use pi.Ap(r) as the

value of pi.A at round r after pi updates pi.A with the val-

ues received in the messages from round r. Note that the

value of pi.Ap(r), 0 ≤ r ≤ t−1, is used only at round r+2.

Figure 2 shows the pseudocode for an algorithm that

implements Safety, LE-Liveness, and FF-Stability. It pro-

ceeds in iterations of an infinite repeat loop. In each iter-

ation, a process executes FFS-ROC twice, and decide if

it has to elect itself by the end of the second phase.

In the following sections, we prove the correctness of

both FFS-ROC and FFS-WLE.

5 Correctness of FFS-ROC

We provide a proof of correctness for the FFS-ROC algo-

rithm. We say that a process pi is alive at round r if either

one of the following happens:

• if pi sends at least one message mi to some process

p j at round r, 0 ≤ r ≤ t, and p j receives mi by the

end of round r;

• if pi decides at round r, r = t + 1.

We use Live(r) to denote the processes that are alive

at round r. For an execution φ = 〈F, I, S ,T,T〉 of FFS-

ROC we define the following to use in the proofs of this

section:

• T i
φ(i, r) ∈ T denotes the value of T (s f), where pi ∈

Live(r) and s f ∈ S is the first step pi executes of

round r, r ∈ {0, . . . , t + 1}. If pi executes no steps in

r, then T i
φ(i, r) is undefined;

6

Algorithm FFS-ROC on input pi.a

round 0:

pi.s(0)← Π; pi.sr(0)← pi.s(0)

pi.A [i]← pi.a

for all pk ∈ Π, pk , pi : pi.A [i]← ⊥

pi.Ap(0)← pi.A

send pi.A to all

round 1:

pi.sr(1)← pi.s(1)

if ∄S ∈ SΠ : S ⊆ pi.sr(1)

then decide [⊥, . . . ,⊥]

else for each message m j ∈ pi.M(1), pk ∈ Π:

if (pi.A [k] = ⊥) pi.A [k]← m j.A [k]

pi.Ap(1)← pi.A

send pi.A to all

round r: 2 ≤ r ≤ t:

pi.sr(r)← pi.s(r) \ {p j : ∃m ∈ pi.M(r) :

(m.from = p j) ∧ (pi.Ap(r − 2) * m.A)}

if ∨pi.s(r) * pi.s(r − 1)

∨∄S ∈ SΠ : S ⊆ pi.sr(r)

then decide [⊥, ...,⊥]

else for each message m ∈ pi.M(r), pk ∈ Π:

if (pi.A [k] = ⊥) pi.A [k]← m.A [k]

pi.Ap(r)← pi.A

send pi.A to all

round t + 1:

pi.sr(t + 1)← pi.s(t + 1) \ {p j : ∃m ∈ pi.M(t + 1) :

(m.from = p j) ∧ (pi.Ap(t − 1) * m.A)}

if ∨ pi.s(t + 1) * pi.s(t)

∨∄S ∈ SΠ : S ⊆ pi.sr(t + 1)

then decide [⊥, ...,⊥]

else for each message m ∈ pi.M(t + 1), pk ∈ Π:

if (pi.A [k] = ⊥) pi.A[k]← m.A[k]

pi.Ap(t + 1)← pi.A

decide pi.A

Figure 1: Algorithm run by process pi.

Algorithm FFS-WLE

repeat {

pi.elected← FALSE

Phase 1:

Run FFS-ROC with

pi.a← i.

if (pi.d = [⊥, . . . ,⊥]) then stop

Phase 2:

Run FFS-ROC with

pi.a← pi.d from Phase 1.

if (pi.d = [⊥, . . . ,⊥]) then stop

let x be a value of pi.d [1 . . . n]

such that pi.d [x] , [⊥, . . . ,⊥]

and it has the least number of non-⊥ values

if (pi is the first index of x such that x[i] , ⊥)

then pi.elected← TRUE

}

Figure 2: Algorithm run by process pi.

• T u
φ(i, r) ∈ T denotes the value of T (sm), where pi ∈

Live(r) and sm ∈ S is the first step of round r in

which pi sends a message, 0 ≤ r ≤ t. If pi < Live(r),

then T u
φ(i, r) is undefined;

• T u
φ(i, t+1) ∈ T denotes T (sd), where pi ∈ Live(t+1)

and sd ∈ S is the step in which pi decides at round

t + 1. If pi < Live(r), then T u
φ(i, t + 1) is undefined;

• Mr
i

is a list of n values, one for each process in Π

such that the following holds:

Mr
i [j]

{

p j.a, ∃m ∈ pi.M(r) : m.A[j] ,⊥

⊥, otherwise

Processes that are alive in a round r may send messages

to a strict subset of Π. Thus, in executions in which pro-

cesses fail, we have that processes may have a different

knowledge of the initial values. For example, if at round

zero, a process pℓ sends a message to a non-faulty pro-

cess pi, but it crashes before sending a message to a non-

faulty process p j, then pi.A[ℓ] = pℓ.a and p j.A[ℓ] =⊥.

For the purpose of analyzing these cases, we define a pro-

cess chain (or simply a chain) ωℓ = (i0 ◦ i1 ◦ . . . ◦ ik)ℓ,

k ≤ t + 1, to be a string over the set of process identi-

fiers. Let ωℓ[x] be the process identifier at position x of

the chain ωℓ. The following holds for a process chain ωℓ:

1. ωℓ[r] , ωℓ[r
′], if r , r′;

7

2. If ωℓ[r] = i, then (pi.Ap(r)[ℓ] ,⊥)∧ (∀r′ ∈ {x ∈ Z∗ :

x ≤ r − 1} : pi.Ap(r′)[ℓ] =⊥);

3. If ωℓ[r] = i, r > 0, then ∃m ∈ pi.M(r) :

(m.A[ℓ] ,⊥) ∧ ωℓ[r − 1] = j ∧ m.from = p j;

4. If ωℓ[0] = i, then i = ℓ.

We say that a process pi is in ωℓ (i ∈ ωℓ) if and only if

there exists an index r such that ωℓ[r] = i. We use process

chains in the proofs below to represent the propagation of

knowledge in executions with failures.

Proposition

5.1: {5.20, 5.21, 5.22, 5.23}

Theorems

5.20: {}

5.21: {5.16}

5.22: {5.5, 5.15, 5.17, 5.18}

5.23: {5.2, 5.5, 5.11, 5.16, 5.19}

Lemmas

5.2: {}

5.3: {5.2}

5.4: {5.2, 5.3}

5.5: {5.3, 5.4}

5.6: {5.5}

5.7: {5.4, 5.6}

5.8: {5.6}

5.9: {}

5.10: {5.9}

5.11: {5.2, 5.4, 5.5}

5.12: {5.6, 5.7, 5.10, 5.11}

5.13: {5.2, 5.4, 5.6, 5.7, 5.10, 5.11, 5.12}

5.14: {5.2, 5.4, 5.12}

5.15: {5.13}

5.16: {5.2, 5.4, 5.5, 5.11, 5.12}

5.17: {5.13, 5.16}

5.18: {5.5, 5.11, 5.13, 5.14, 5.15, 5.16, 5.17}

5.19: {5.3, 5.4, 5.13, 5.16}

Figure 3: FFS-ROC proof hierarchy.

We show the correctness of FFS-ROC with Proposi-

tion 5.1. We divide the proof of this proposition into sev-

eral statements (lemmas and theorems). Each of these

statements may depend upon others. Thus, we summarize

in Figure 5 the structure of the proof. For each statement,

we say the other statements it depends upon.

Proposition 5.1 FFS-ROC implements RO Consensus.

We prove Proposition 5.1 with the following lemmas.

Lemma 5.2 Let φ be an execution of FFS-ROC, r be a

round of φ, 0 ≤ r ≤ t+1, pi be a process in Live(r), and p j

be a process inΠ. If pi.Ap(r)[j] ,⊥, then pi.Ap(r) = p j.a.

Proof:

We show with an induction on the round numbers ρ, 0 ≤

ℓ ≤ r′, that for every round r′ ≤ r, if pℓ ∈ Live(r′) and

pℓ.Ap(r′)[j] ,⊥, then pℓ.Ap(r′)[j] = p j.a. The base case

is ρ = 0. From the algorithm, at round 0 a process pℓ has

pℓ.Ap(0)[j] =⊥, if ℓ , j, and pℓ.Ap(0)[ℓ] = pℓ.a. Thus,

pℓ.Ap(0)[j] ,⊥ only if ℓ = j, and pℓ.Ap(0)[ℓ] = pℓ.a.

Now suppose that for every pℓ ∈ Live(ρ) if

pℓ.Ap(ρ)[j] ,⊥, then pℓ.Ap(ρ)[j] = p j.a. We show that

for every pℓ ∈ Live(ρ + 1), if pℓ.Ap(ρ + 1)[j] ,⊥, then

pℓ.Ap(ρ + 1)[j] = p j.a. By the algorithm, if pℓ ∈ Live(ρ)

is such that pℓ.Ap(ρ)[j] = p j.a, then for every message m

it sends at round ρ, m.A[j] = p j.a. For pℓ′ ∈ Live(ρ + 1),

if pℓ′ .A[j] ,⊥ at T i
φ(ℓ′, ρ + 1), then pℓ′ .Ap(ρ)[j] ,⊥ and

must be equal to p j.a by the induction hypothesis and the

algorithm. Otherwise, for every message m it receives

such that m.A[j] ,⊥, m.A[j] = p j.a. Thus, by the algo-

rithm, if pℓ′ receives at least one such a message, it sets

pℓ′ .A[j] to p j.a, and we have that pℓ′ .Ap(ρ + 1)[j] = p j.a.

From the previous induction, we conclude that if

pi.Ap(r)[j] ,⊥, then pi.Ap(r)[j] = p j.a.

�

Lemma 5.3 Let φ be an execution of FFS-ROC, r be a

round of φ, 0 < r ≤ t + 1, and pi be a process in Live(r).

For every message m ∈ pi.M(r) such that m.A[ℓ] ,⊥, for

some pℓ ∈ Π, m.A[ℓ] = pℓ.a.

Proof:

By Lemma 5.2, for every p j ∈ Live(r − 1), if p j.Ap(r −

1)[ℓ] ,⊥, then p j.Ap(r − 1)[ℓ] = pℓ.a. If p j sends a mes-

sage m j to pi at round r − 1, then m.A[ℓ] = pℓ.a. We

conclude that for every m ∈ pi.M(r) such that m.A[ℓ] ,⊥,

m.A[ℓ] = pℓ.a.

�

Lemma 5.4 Let φ be an execution of FFS-ROC and r be

a round of φ, 0 < r ≤ t + 1. For every pi ∈ Live(r),

Mr
i
= pi.Ap(r).

Proof:

By the algorithm, if pi ∈ Live(r), then for every j ∈

[1 . . . n], such that pi.A[j] =⊥ at T i
φ(i, r), pi sets pi.A[j]

to a value v ∈ V = {v : v = m.A[j] ∧ m ∈ pi.M(r) ∧

m.A[j] ,⊥ }, j ∈ [1 . . . n] at t if V , ∅, where T i
φ(i, r) ≤

t ≤ T u
φ(i, r), t = T (s), and s is a step of pi that updates

8

pi.A[j] at round r. Otherwise, if pi.A[j] ,⊥ at T i
φ(i, r),

then no step of pi in round r modifies the value of pi.A[j],

and pi.Ap(r)[j] = pi.Ap(r − 1)[j].

Let p j be a process of Π. By Lemma 5.3, we have

that V = {v : v = m.A[j] ∧ m ∈ pi.M(r) ∧ m.A[j] ,⊥},

j ∈ [1 . . . n], is either empty or contains a single value. If

|V | = 1, then V = {p j.a}. There are two cases to consider:

1) pi.Ap(r − 1)[j] ,⊥; 2) pi.Ap(r − 1) =⊥.

If pi.Ap(r − 1)[j] ,⊥, then, by the algorithm, pi does

not modify the value of pi.A[j] in round r. By Lemma 5.2,

pi.Ap(r − 1)[j] = p j.a. By the algorithm, pi sends

pi.Ap(r − 1) to itself. Finally, by Lemma 5.3, every mes-

sage m ∈ pi.M(r), m.A[j] ,⊥, is such that m.A[j] = p j.a.

We then have that pi.Ap(r)[j] = Mr
i
[j].

If pi.Ap(r − 1) =⊥ and V = {p j.a}, then pi.Ap(r)[j] =

p j.a. If V = ∅, then pi.Ap(r)[j] =⊥. In both cases,

pi.Ap(r)[j] = Mr
i
[j].

We conclude that pi.Ap(r) must be equal to Mr
i
.

�

Lemma 5.5 Let φ be an execution of FFS-ROC. For ev-

ery r ∈ {z ∈ R : z ≤ t + 1}, Correct(φ) ⊆ Live(r).

Proof:

By definition, a process is alive at round t+1 of φ if it nei-

ther crashes nor stops before deciding in this round. We

show this claim by showing that for every pc ∈ Correct(φ)

and every r ∈ {x ∈ R : x ≤ t + 1}, pc ∈ Live(r). Let pc

be a process in Correct(φ). By definition, pc does not

crash in any round. It remains to show that, for every

pc ∈ Correct(φ) and every r ∈ {z ∈ R : z ≤ t + 1}, pc

does not stop in r. We show this with an induction on the

round numbers ρ, ρ ∈ {z ∈ R : z ≤ t + 1}.

By the algorithm, no process stops at round 0. At round

1, a process only stops if it does not receive messages

from a survivor set. Let pc be a process in Correct(φ). By

definition, there is a survivor set S c containing only cor-

rect processes, and every process pc′ ∈ S c sends a mes-

sage to pc at round 0. By C-Liveness, pc must have mes-

sages in pc.M(1) at least from the processes in S c. That

is, S c ⊆ pc.s(1). Consequently, pc does not stop at round

1.

Now suppose that the claim holds for every ρ, ρ ∈ {z ∈

R : 1 ≤ z ≤ t}, and we show for ρ + 1. Let pc be a

process in Correct(φ). By assumption, if pc does not re-

ceive a message from some process pi in round ρ, then pi

must have crashed by round ρ. This implies that all pro-

cesses in Π \ pc.s(ρ) crashed by round ρ, and pc.s(ρ + 1)

therefore cannot contain a process pi that is not in pc.s(ρ).

Consequently, pc.s(ρ + 1) ⊆ pc.s(ρ).

For the induction step, it remains to show that pc.sr(ρ+

1) contains some survivor set. From the algorithm, a

process pi is in pc.sr(ρ + 1) if there is a message mi ∈

pc.M(ρ + 1) and pc.Ap(ρ − 1) ⊆ mi.A. By assump-

tion, no correct process stops by round ρ. Thus, for ev-

ery pc′ ∈ Correct(φ), there is a message mc ∈ pc′ .M(ρ)

from pc. By Lemma 5.3, for every pℓ ∈ Π such that

mc.A[ℓ] ,⊥, we have that mc.A[ℓ] = pc.Ap(ρ − 1)[ℓ] =

pℓ.a and M
ρ

c′ [ℓ] = pℓ.a. By Lemma 5.4, we then have

that for every pc′ ∈ Correct(φ), pc.Ap(ρ − 1) ⊆ pc′ .Ap(ρ).

By the algorithm and by the assumption that no correct

process stops at round ρ, for every pc′ ∈ Correct(φ),

pc′ sends a message to pc. By the observation that

for every pc′ , pc.Ap(ρ − 1) ⊆ pc′ .Ap(ρ), we have that

Correct(φ) ⊆ pc.sr(ρ + 1). By assumption, there is a

survivor set S c ∈ SΠ such that S c ⊆ Correct(φ). We

conclude that S c ⊆ pc.sr(ρ + 1).

This concludes the proof of the lemma.

�

Lemma 5.6 Let φ be an execution of FFS-ROC such that

ωℓ is a chain in φ, 1 ≤ |ωℓ | ≤ t+1. If ωℓ[r] is the identifier

of a correct process for some r, then Mr+1
j

[ℓ] ,⊥ for every

process p j ∈ Correct(φ).

Proof:

Let r be an index such that ωℓ[r] is the identifier of a

correct process in φ and i be the process identifier in

ωℓ[r]. By the definition of a process chain, we have

that (pi.Ap(r)[ℓ] ,⊥) ∧ (∀r′ ∈ {x ∈ R : x ≤ r − 1} :

pi.Ap(r′)[ℓ] =⊥). By the algorithm, process pi sends

pi.Ap(r) to all the processes in Π. By Lemma 5.5, every

correct process decides in φ (Correct(φ) ⊆ Live(t + 1)).

By C-Liveness, for every p j ∈ Correct(φ), there is mi ∈

p j.M(r+1) such that mi.A[ℓ] ,⊥. Again by the algorithm,

Mr+1
j

[ℓ] must be different than⊥ for every correct process

p j in φ.

�

Lemma 5.7 Let φ be an execution of FFS-ROC such

that there is a chain ωℓ of length at least three in φ.

There are no three correct processes pc1
, pc2

, pc3
such that

c1, c2, c3 ∈ ωℓ.

Proof:

Proof by contradiction. Suppose that there are three pro-

cesses pc1
, pc2

, pc3
∈ Correct(φ) such that c1, c2, c3 ∈ ωℓ,

and that r is the smallest index such that ωℓ[r] is the iden-

tifier of a correct process. Observe that |ωℓ | must be at

least as large as r + 3 (|ωℓ | ≥ r + 3), otherwise the claim

is vacuously true.

9

Without loss of generality, let ωℓ[r] = c1. By

Lemma 5.6, for every correct process pc in Correct(φ)

we have that Mr+1
c [ℓ] different than ⊥ and by Lemma 5.4

pc.Ap(r + 1)[ℓ] = Mr+1
c [ℓ]. Consequently, we have that

pc2
.Ap(r + 1)[ℓ] ,⊥ and pc3

.Ap(r + 1)[ℓ] ,⊥. By the def-

inition of a process chain, c2 and c3 cannot be both in ωℓ,

a contradiction.

�

Lemma 5.8 Let φ be an execution of FFS-ROC such that

there is a chain ωℓ of length at least three. There is no

two correct processes pi, p j such that i, j ∈ ωℓ and ωℓ =

(ω′ ◦ i ◦ω ◦ j ◦ω′′)ℓ, where ω,ω′, ω′′ are substrings of ωℓ

and ω is not the empty string.

Proof:

Proof by contradiction. Suppose that there are two correct

processes pi and p j in φ such that ωℓ[r] = i and ωℓ[r
′] =

j, r + 1 < r′. By Lemma 5.6 and by the definition of a

process chain, for every correct process p j in Correct(φ),

Mr+1
j

[ℓ] ,⊥. We hence have that r′ must be equal to r+1,

and ωmust be empty, contradicting out initial assumption

that r + 1 < r′.

�

Lemma 5.9 Let φ be an execution of FFS-ROC and pi

be a process in Live(r), r ≥ 2, such that pi.Ap(r)[ℓ] ,⊥

and for all r′ ∈ {x ∈ R : x ≤ r − 1}, pi.Ap(r′)[ℓ] =⊥. For

every round ρ ∈ {x ∈ R : 1 ≤ x ≤ r}, there are processes

p j1 ∈ Live(ρ) and p j2 ∈ Live(ρ−1) such that the following

holds:

1. p j1 .Ap(ρ)[ℓ] ,⊥, and for all ρ′ ∈ {x ∈ R : x ≤ ρ−1},

p j1 .Ap(ρ′)[ℓ] =⊥;

2. p j2 .Ap(ρ − 1)[ℓ] ,⊥, and for all ρ′ ∈ {x ∈ R : x ≤

ρ − 2}, p j2 .Ap(ρ′)[ℓ] =⊥;

3. ∃m j2 ∈ p j1 .M(ρ) : (m j2 .A[ℓ] ,⊥).

Proof:

We now show with an induction on the values of ψ, 0 ≤

ψ ≤ r − 1, that for every round ρ = r −ψ, the claim holds.

The base case is ψ = 0, ρ = r. By assumption, pi is

such that pi.Ap(r)[ℓ] ,⊥ and for all r′ ∈ {x ∈ R : x ≤ r −

1}, pi.Ap(r′)[ℓ] =⊥. This is implies that Mr
i
[ℓ] ,⊥. From

the algorithm, we have that pi.s(ρ) ⊆ pi.s(ρ − 1) ⊆ . . . ⊆

pi.s(0). Consequently, there must be some process p j ∈

Live(ρ−1) such that the following holds: A) p j.Ap(r−1) ,

⊥; B) p j.Ap(ρ′) = ⊥ for all ρ′ ∈ {x ∈ R : x ≤ r − 2};

C) ∃m ∈ pi.M(r) : (m.A[ℓ] ,⊥) ∧ (m.from = p j). If

there is no such a process p j that satisfies both A) and C),

then pi.Ap(r) =⊥, contradicting our initial assumption.

By the algorithm, once p j sets the value of p j.A[ℓ] to a

value different than ⊥, then the value of p j.A[ℓ] does not

change in subsequent rounds. This implies that for all ρ′,

0 ≤ ρ′ < r − 1, p j.Ap(ρ′) must be equal to ⊥, because

by the algorithm pi receives a message from p j in every

round (pi.s(̺) ⊆ pi.s(̺ − 1), r ≥ ̺ > 0) and pi.Ap(ρ′′) is

different than ⊥ otherwise, for some ρ′′ < r.

Suppose the claim is true for ψ < r − 1. We show for

ψ+ 1. If it is true for ψ, then there is a process p j1 alive in

ρ = r− (ψ+ 1) such that p j1 .Ap(ρ)[ℓ] , ⊥, and for all ρ′ ∈

{x ∈ R : x ≤ ρ−1}, p j1 .Ap(ρ′)[ℓ] =⊥. From the algorithm,

we have that p j1 .s(ρ) ⊆ p j1 .s(ρ − 1) ⊆ . . . ⊆ p j1 .s(0).

Consequently, there must be some process p j2 ∈ Live(ρ −

1) such that the following holds: A) p j2 .Ap(ρ − 1) , ⊥;

B) p j2 .Ap(ρ′) = ⊥ for all ρ′ ∈ {x ∈ R : x ≤ ρ − 2};

C) ∃m ∈ p j1 .M(ρ) : (m.A[ℓ] ,⊥) ∧ (m.from = p j2). If

there is no such a process p j2 that satisfies both A) and

C), then p j1 .Ap(ρ) =⊥, contradicting our assumption that

the hypothesis hold for ψ. By the algorithm, once p j2 sets

the value of p j2 .A[ℓ] to a value different than ⊥, then the

value of p j2 .A[ℓ] does not change in subsequent rounds.

This implies that for all ρ′, 0 ≤ ρ′ < ρ − 1, p j2 .Ap(ρ′)

must be equal to ⊥, because by the algorithm p j1 receives

a message from p j2 at every round (p j1 .s(̺) ⊆ p j1 .s(̺−1),

ρ ≥ ̺ > 0) and pi.Ap(ρ′′) is different than ⊥ otherwise,

for some ρ′′ < ρ.

This concludes the proof of the lemma.

�

Lemma 5.10 Let φ be an execution of FFS-ROC and pi

be a process that is live at round r of φ, r ≥ 0, such that

pi.Ap(r)[ℓ] ,⊥ and for all r′ ∈ {x ∈ R : x ≤ r − 1},

pi.Ap(r′)[ℓ] =⊥. There is a chainωℓ such that |ωℓ | = r+1,

and ωℓ[r] = i.

Proof:

We have to build a chain ωℓ such that |ωℓ | = r + 1, and

ωℓ[r] = i.

We build such a chain ωℓ as follows:

ωℓ[0] = ℓ

ωℓ[ρ] = j , ∧(0 < ρ < r)

∧(p j.Ap(ρ) ,⊥)

∧(∀ρ′ ∈ {x ∈ R : x ≤ ρ − 1} : p j.Ap(ρ′) =⊥)

∧∃m j ∈ pωℓ[ρ+1].M(ρ + 1) from p j

ωℓ[r] = i

10

We can easily verify that ωℓ satisfies the properties of

a process chain. It remains to show that it is a valid con-

struction.

By the algorithm, we have that ωℓ[0] = ℓ. By

Lemma 5.9, we have that for every ρ, 0 < ρ < r, there is

a process p j that satisfies the properties we stated above.

Finally, by assumption, pi is such that pi.Ap(r)[ℓ] ,⊥ and

for all r′ ∈ {x ∈ R : x ≤ r − 1}, pi.Ap(r′)[ℓ] =⊥.

This concludes the proof of the lemma.

�

Lemma 5.11 Let φ be an execution of FFS-ROC. If

pi, p j ∈ Correct(φ), then pi.d = p j.d in φ.

Proof:

By Lemma 5.5, every correct process decides in φ (no

correct process stops). Now let r, 0 ≤ r ≤ t, be a round

in which no process crashes. Such a round exists in φ

by assumption (no more than t processes can fail in an

execution, where t is |Π| subtracted the size of the smallest

survivor set).

We first show by induction on the values of ρ, r + 1 ≤

ρ ≤ t + 1, the following proposition:

∧

∀pc1
, pc2

∈ Correct(φ) : pc1
.Ap(ρ) = pc2

.Ap(ρ)
∧

∀pℓ ∈ Live(ρ), pc ∈ Correct(φ) : pℓ.Ap(ρ) ⊆ pc.Ap(ρ)

The base case is ρ = r + 1. According to the algorithm,

every process pi that is live at round r sends a message

containing pi.Ap(r) to every other process. According to

C-Liveness and the assumption that no process crashes in

round r, for every process pc ∈ Correct(φ), pc.s(r + 1) =

Live(r). This implies that for every pc1
, pc2

∈ Correct(φ),

Mr+1
c1
= Mr+1

c2
. By Lemma 5.4, Mr+1

c = pc.Ap(r + 1)

for every pc ∈ Correct(φ). This implies that for every

pc1
, pc2

∈ Correct(φ), pc1
.Ap(r + 1) = pc2

.Ap(r + 1).

It remains to show the second part of the proposition for

the base case. Let pℓ be a process in Live(r + 1) and pc be

a process in Correct(φ). By the failure assumptions, we

have that pℓ.s(r + 1) ⊆ Live(r). This implies that pℓ.s(r +

1) ⊆ pc.s(r + 1). If pℓ.s(r + 1) ⊆ pc.s(r + 1), then Mr+1
ℓ
⊆

Mr+1
c . By Lemma 5.4, Mr+1

ℓ
= pℓ.Ap(r + 1) and Mr+1

c =

pc.Ap(r+1), which implies that pℓ.Ap(r+1) ⊆ pc.Ap(r+1).

This concludes the proof of the base case.

Suppose that the proposition holds for every ρ < t + 1.

We show for ρ+ 1. By the induction hypothesis, the algo-

rithm, and Lemma 5.2, for every process pc ∈ Correct(φ),

pc.Ap(ρ) = M
ρ+1
c . By Lemma 5.4, for every pc ∈

Correct(φ), pc.Ap(ρ + 1) = M
ρ+1
c . We conclude that for

every pc1
, pc2

∈ Correct(φ), pc1
.Ap(ρ+1) = pc2

.Ap(ρ+1).

By our failure assumptions, a faulty process may re-

ceive an arbitrary subset of the messages sent to it in a

round. Let pℓ be a process in Live(ρ + 1) and pc be a pro-

cess in Correct(φ). By the induction hypothesis, the al-

gorithm, and Lemma 5.2, M
ρ+1

ℓ
⊆ M

ρ+1
c . By Lemma 5.4,

pℓ.Ap(ρ + 1) = M
ρ+1

ℓ
and pc.Ap(ρ + 1) = M

ρ+1
c . We con-

clude that pℓ.Ap(ρ+1) ⊆ pc.Ap(ρ+1), This concludes the

proof of the induction step.

From the previous proposition, we have that pi.Ap(t +

1) = p j.Ap(t + 1). By the algorithm, pi decides upon

pi.Ap(t + 1) and p j decides upon p j.Ap(t + 1). Conse-

quently, pi.d = p j.d. This concludes the proof of the

lemma.

�

Lemma 5.12 Let φ be an execution of FFS-ROC and

pi, p j be two processes in Live(t+ 1), and pℓ be a process

inΠ. If (pi.Ap(t+1)[ℓ] ,⊥) and for all r ∈ {x ∈ R : x ≤ t},

(pi.Ap(r)[ℓ] =⊥), then p j.d[ℓ] ,⊥.

Proof:

By the algorithm, once p j sets the value of p j.A[ℓ] to a

value different than⊥, p j does not change it in subsequent

rounds. Thus, we only need to show that there is some

round r in which p j sets p j[ℓ] to a value different than ⊥.

Suppose that ((pi.Ap(t + 1)[ℓ] ,⊥) ∧ (∀r ∈ {z ∈ R :

z ≤ t} : pi.Ap(r)[ℓ] =⊥)). Assuming that pi and p j can be

either correct or faulty, there are four possible cases, and

we analyze each case separately as follows:

• pi and p j are correct in φ. By Lemma 5.11, we have

that pi.d = p j.d;

• pi is faulty and p j is correct in φ. If pi decides in φ,

then pi is in Live(t + 1). By Lemma 5.10, there is a

chainωℓ such that |ωℓ | = t+2, andωℓ[t+1] = i. Since

there are at most t failures by assumption, there is

at least one correct process in ωℓ. Moreover, such

correct process must be in a position r of the chain

such that 0 ≤ r ≤ t. Thus, p j.Ap(t + 1)[ℓ] must be

different than ⊥, by Lemma 5.6 and the algorithm;

• pi is correct and p j is faulty in φ. If pi is correct,

then, by Lemma 5.10, there is a chain ωℓ such that

|ωℓ | = t + 2, and ωℓ[t + 1] = i. Because pi is cor-

rect, one of the following two must happen: 1) for

every r, 0 ≤ r ≤ t − 1 and x = ωℓ[r], px crashes at

round r of φ; 2) pi.Ap(r)[ℓ] ,⊥ for some r < t+1 by

Lemma 5.6 (there is a correct process in the chain).

Case 1 cannot happen because p j ∈ Live(t + 1) by

11

assumption, and there are at least t + 1 faulty pro-

cesses, violating our assumptions for survivor sets.

In case 2, pi learns the initial value of pℓ in an ear-

lier round, contradicting our initial assumption. We

conclude that this case is hence not possible;

• pi and p j are faulty in φ. By Lemma 5.10, there is a

chain ωℓ such that |ωℓ | = t + 2, and ωℓ[t + 1] = i. By

Lemma 5.7, there are at most two correct processes

in any chain. Thus, ωℓ contains t faulty processes.

Consequently, there must be an r, 0 ≤ r ≤ t, such

that j = ωℓ[r], and p j.Ap(r) ,⊥.

From the previous analysis, we have that either pi.d =

p j.d or p j.Ap(t + 1) ,⊥. By the algorithm, we have p j

decides upon p j.Ap(t + 1), and in both cases p j.d[ℓ] ,⊥.

This concludes the proof of the lemma.

�

Lemma 5.13 Let φ be an execution of FFS-ROC, pi, p j

be two processes in Live(t+1), and S i, S j be two survivor

sets in SΠ such that for all r ∈ {z ∈ R : z ≤ t + 1},

S i ⊆ pi.sr(r), S j ⊆ p j.sr(r), and S i ∩ S j , ∅. pi.d = p j.d

in φ.

Proof:

By the algorithm, once a process pi sets the value of

pi.A[ℓ] at round r ∈ {z ∈ R : z ≤ t} to a value differ-

ent than ⊥, it does not change it in subsequent rounds.

We then have to show that if pi learns about the ini-

tial value of pℓ at round r (that is, pi.Ap(r)[ℓ] ,⊥ and

for all r′ ∈ {z ∈ R : z ≤ r − 1}, pi.Ap(r′)[ℓ] ,⊥),

then there is a round r′ such that p j learns the initial

value of pℓ at round r′ (that is, p j.Ap(r′)[ℓ] ,⊥ and for

all r′′ ∈ {z ∈ R : z ≤ r′ − 1}, p j.Ap(r′′)[ℓ] ,⊥).

By Lemma 5.2, if pi.Ap(r)[ℓ] = p j.Ap(r′)[ℓ] ,⊥, then

pi.Ap(r)[ℓ] = p j.Ap(r′)[ℓ] = pℓ.Ap(0)[ℓ]. We now ana-

lyze each case separately.

First, suppose that ((pi.Ap(t + 1)[ℓ] ,⊥) ∧ (∀r ∈ {z ∈

R : z ≤ t} : pi.Ap(r)[ℓ] =⊥)). This follows directly from

Lemma 5.12.

Now, suppose that (pi.Ap(t)[ℓ] ,⊥) ∧ (∀r ∈ {z ∈ R :

z ≤ t − 1} : pi.Ap(r)[ℓ] =⊥):

• pi and p j are correct in φ. By Lemma 5.11, we have

that pi.d = p j.d.

• pi is faulty and p j is correct in φ. From Lemma 5.10,

there is a chain ωℓ such that |ωℓ | = t + 1, and

ωℓ[t] = i. Because there are at most t faulty pro-

cesses by assumption, there must be a correct pro-

cess in ωℓ. That is, there must be some r, 0 ≤ r ≤

t − 1, such that ωℓ[r] is the identifier of a correct

process in φ. It follows that p j.Ap(r + 1) must be

different than ⊥, by Lemma 5.6.

• pi is correct and p j is faulty in φ. From Lemma 5.10,

there is a chainωℓ such that |ωℓ | = t+1, andωℓ[t] = i.

Because p j is faulty, either there is some r such that

ωℓ[r] = j or there are at most t − 1 faulty processes

in ωℓ. If the former holds, then we are done. If

the latter holds, then ωℓ[t − 1] must be the identi-

fier of a correct process, and there is no r < t − 1

such that ωℓ[r] is the identifier of a correct process.

Otherwise there is some r ∈ {z ∈ R : z ≤ t − 1}

such that pi.Ap(r)[ℓ] ,⊥ (by Lemma 5.6). In addi-

tion, because ωℓ contains t − 1 faulty processes and

p j is faulty, any px ∈ (S i ∩ S j) is either correct or

is in the chain ωℓ. Thus, px.Ap(t) ,⊥, for every

px ∈ (S i ∩ S j). Since by assumption S j ⊆ p j.sr(r)

for every r ∈ {z ∈ R : z ≤ t + 1}, we have that

p j.Ap(t + 1) ,⊥, by the algorithm and Lemma 5.4;

• pi and p j are faulty in φ. From Lemma 5.10, there is

a chain ωℓ such that |ωℓ | = t + 1, and ωℓ[t] = i. Be-

cause ωℓ contains exactly t + 1 process identifiers, at

least one must be correct, and by Lemma 5.7, at most

two correct processes. We then have that either there

is some r such that ωℓ[r] = j or ωℓ[r] , j for every

r. In the former case, we have that p j.Ap(r)[ℓ] ,⊥

for some r < t. In the latter, ωℓ must contain t − 1

faulty processes (at most two correct processes and

p j is not in ωℓ). Let px be a process in S i ∩ S j.

px is either correct or faulty. Suppose px is correct.

Because there is some correct process in ωℓ[r], for

r ∈ {z ∈ R : z ≤ t − 1}, by Lemma 5.6, it must be

the case that px.Ap(t − 1)[ℓ] ,⊥ and consequently

p j.Ap(t)[ℓ] ,⊥, by the algorithm and Lemma 5.4.

Now suppose that px is faulty. In this case, either

there is r ∈ {z ∈ R : z ≤ t} such that ωℓ[r] = x or

x = j. The case that ωℓ[r] = x is straightforward. If

x = j, then either {p j} = S j or {p j} ⊂ S j. Suppose

the former. If S j is a singleton set, then t = |Π| − 1

and t + 1 = |Π|. In this case, all the processes in Π

must be in the chain ωℓ, and hence it is must be the

case that p j ∈ ωℓ. Thus, S j must contain at least

two processes. Let p j′ be a process in S j such that

j , j′. We then have that either j′ ∈ ωℓ or p j′ ∈

Correct(φ). In either case, there must be some round

r ∈ {z ∈ R : z ≤ t} such that p j.Ap(r)[ℓ] ,⊥, and

p j.Ap(t + 1)[ℓ] ,⊥ by the algorithm.

12

Finally, suppose that ∃r ∈ {z ∈ R : z ≤ t − 1} :

(pi.Ap(r)[ℓ] ,⊥) ∧ (∀r′ ∈ {z ∈ R : z ≤ r − 1} :

pi.Ap(r′)[ℓ] =⊥). By assumption S i ⊆ pi.sr(ρ) for all

ρ ∈ {z ∈ R : z ≤ t + 1}. This implies by the algo-

rithm that px.Ap(r + 1) ⊆ pi.Ap(r + 2), px ∈ S i ∩ S j.

Because S j ⊆ p j.sr(ρ), for all ρ ∈ {z ∈ R : z ≤ t + 1}, and

px ∈ S j, we then have by the algorithm and Lemma 5.4

that p j.Ap(r + 2)[ℓ] must be different than ⊥, and equal to

pi.Ap(r)[ℓ] by Lemma 5.2.

From the previous argument, we conclude that pi.Ap(t+

1) = p j.Ap(t + 1). By the algorithm, we have that pi

decides upon pi.Ap(t+1) and p j decides upon p j.Ap(t+1).

Again by the algorithm, we have that pi.d = p j.d.

�

Lemma 5.14 Let φ be an execution of FFS-ROC and

pi, p j be two processes in Live(t + 1) such that p j ∈

pi.sr(r) for every r ∈ {z ∈ R : z ≤ t + 1}. p j.d ⊆ pi.d

in φ.

Proof:

By the algorithm, once a process p j sets the value of

p j.A[ℓ] to a value different than ⊥ in a round r, for

some pℓ ∈ Π and some 0 ≤ r ≤ t + 1, it does not

change it in subsequent rounds. If p j.Ap(t + 1)[ℓ] ,⊥,

then there is some round ρ, 0 ≤ ρ ≤ t + 1, such that

p j.Ap(ρ)[ℓ] ,⊥ and for all ρ′ ∈ {z ∈ R : z ≤ ρ − 1},

p j.Ap(ρ′)[ℓ] =⊥. We then have to show that for every

pℓ ∈ Π such that p j.Ap(t + 1)[ℓ] ,⊥, there is some ̺ such

that pi.Ap(̺)[ℓ] ,⊥, ̺ ∈ {z ∈ R : z ≤ t + 1}.

Let pℓ be a process such that p j.Ap(ρ)[ℓ] ,⊥ and for

all ρ′ ∈ {x : 0 ≤ x < ρ}, p j.Ap(ρ′)[ℓ] =⊥. Sup-

pose that ρ = t + 1. This case follows directly from

Lemma 5.12. Now suppose that ρ ≤ t. Because p j sends

a message to pi in every round by assumption, M
ρ+1

i
[ℓ]

must be different than ⊥, and pi.Ap(ρ + 1)[ℓ] = M
ρ+1

i
[ℓ]

by Lemma 5.4. We conclude that if p j.Ap(t + 1)[ℓ] ,⊥,

for some pℓ ∈ Π, then pi.Ap(t+1)[ℓ] ,⊥. By Lemma 5.2,

pi.Ap(t + 1)[ℓ] = p j.Ap(t + 1)[ℓ] = pℓ.a. By the algo-

rithm, pi decides upon pi.Ap(t + 1) and p j decides upon

p j.Ap(t + 1). Consequently, p j.d ⊆ pi.d.

�

Lemma 5.15 Let φ be an execution of FFS-ROC. If pi,

p j, and pℓ decide in φ, then either pi.d = p j.d, pi.d =

pℓ.d, or p j.d = pℓ.d.

Proof:

If pi, p j, and pℓ decide in φ, then there are survivor sets

S i, S j, and S ℓ such that S i ⊆ pi.sr(r), S j ⊆ p j.sr(r), and

S ℓ ⊆ pℓ.sr(r), for all r, 0 ≤ r ≤ t + 1. By the (3,2)-

Intersection property, either S i ∩ S j , ∅, S i ∩ S ℓ , ∅, or

S j ∩ S ℓ , ∅. By Lemma 5.13, we then have that either

pi.d = p j.d, pi.d = pℓ.d, or p j.d = pℓ.d.

�

Lemma 5.16 Let φ be an execution of FFS-ROC and pi

be a correct process in φ. If p j decides in φ, then p j.d ⊆

pi.d.

Proof:

By Lemma 5.5, pi ∈ Live(t + 1) (pi decides in φ). If p j is

correct, then the lemma follows from Lemma 5.11. Now

suppose that p j commits at least one receive-omission

fault in φ. By assumption, both pi and p j decide in φ.

By the algorithm, p j ∈ pi.s(r) for every r, 0 ≤ r ≤ t + 1.

Because pi is correct, we have that there is m from p j

in pi.M(r) for every r, 0 ≤ r ≤ t + 1. By Lemma 5.4

and the algorithm, we then have that if p j.Ap(r)[ℓ] ,⊥,

for some pℓ ∈ Π and 0 ≤ r ≤ t, then pi.Ap(r + 1)[ℓ] =

p j.Ap(r)[ℓ]. It remains to show that if p j.Ap(t + 1)[ℓ] ,⊥,

and p j.Ap(r)[ℓ] =⊥, pℓ ∈ Π, for every r ∈ {z ∈ R : z ≤ t},

then pi.Ap(t+1)[ℓ] = p j.Ap(t+1)[ℓ]. By Lemma 5.12, we

have that if p j.Ap(t + 1)[ℓ] ,⊥, then pi.Ap(t + 1)[ℓ] ,⊥.

By Lemma 5.2, pi.Ap(t + 1)[ℓ] = p j.Ap(t + 1)[ℓ] = pℓ.a.

We conclude that p j.d ⊆ pi.d.

�

Lemma 5.17 Let φ be an execution of FFS-ROC. If there

are two processes pi and p j, pi, p j ∈ Live(t + 1), then

either pi.d ⊆ p j.d or p j.d ⊆ pi.d.

Proof:

If at least one of pi and p j is correct, then the proof

follows from Lemma 5.16. Now suppose both pi and

p j are faulty. Because both pi and p j decide in φ by

assumption, there are survivor sets S i and S j such that

(S i ⊆ pi.sr(r))∧ (S j ⊆ p j.sr(r)) for every r, 0 ≤ r ≤ t+ 1.

If S i∩S j , ∅, then the lemma follows because pi.d = p j.d

by Lemma 5.13. Suppose now the contrary: S i ∩ S j = ∅.

By assumption, there must be a survivor set S c containing

only correct processes. By the (3,2)-Intersection property,

either S i ∩ S c , ∅ or S j ∩ S c , ∅. Let pc be a process

in S c. We then have by Lemma 5.13 that either pi and

pc decide upon the same value or p j and pc decide upon

the same value. Suppose without loss of generality that pi

and pc decide upon the same value. We hence have from

Lemma 5.16 that p j.d ⊆ pi.d. This concludes the proof

of the lemma.

�

13

Lemma 5.18 Let φ be an execution and vals be {d : ∃pi ∈

Π s.t. (pi.d = d)} \ N . For every d f , dc ∈ vals, d f ⊆ dc,

there are survivor sets S f , S c ∈ SΠ such that the follow-

ing properties hold:

∧

∀p ∈ S f : ∨ p crashes

∨ p.d = d f
∧

∀p ∈ S c : ∧ p.d = dc

∧ p is not faulty

Proof:

By Lemma 5.5, Correct(φ) ⊆ Live(t + 1). By the algo-

rithm, every non-faulty process pc is such that pc.d[c] =

pc.a. We then have that vals contains at least one value.

By Lemma 5.15, there cannot be three different decision

values, and if there are two values d and d′, then either

d ⊆ d′ or d′ ⊆ d by Lemma 5.17. We analyze these two

cases separately.

First, suppose that vals contains a single value, say d,

and d f = dc = d. By assumption, there is a survivor set

S i such that S i contains only non-faulty processes. By

Lemma 5.11, every process pi ∈ S i is such that pi.d = d.

If we make S c = S f = S i, then our claim holds.

Now suppose that vals contains two distinct values d f

and dc, d f ⊆ dc. Let pi be a process such that pi ∈ Live(t+

1) and pi.d = d f . By the algorithm, there is survivor set

S i such that S i ⊆ pi.sr(r), for every r ∈ {z ∈ R : z ≤

t + 1}. Let p j be a process in S i. If p j ∈ Live(t + 1), then

there is an S j ∈ SΠ such that S j ⊆ p j.sr(r), for every

r ∈ {z ∈ R : z ≤ t + 1}. Now let S ′c be a survivor set such

that S ′c ⊆ Correct(φ). By the (3,2)-Intersection property,

either S j ∩ S ′c , ∅ or S j ∩ S i , ∅. Note that S i ∩ S ′c must

be empty, otherwise pi.d = dc according to Lemma 5.13,

contradicting our initial assumption.

If S j ∩ S ′c , ∅, then by Lemma 5.13 we have that

p j.d = dc because p j.d = pc.d for every pc ∈ S ′c
(Lemma 5.13) and pc.d, pc ∈ S ′c, must be equal to dc

(Lemma 5.16). By Lemma 5.14, however, we have that

p j.d ⊆ pi.d. This implies that pi.d = dc, again contradict-

ing our initial assumption. It therefore must be the case

that S i ∩ S j is not empty. By Lemma 5.13, we have that

pi.d = p j.d = d f .

Now suppose that p j < Live(t + 1). We then have that

p j crashes in φ, and p j.d = N . We therefore have have

that p j ∈ S i either decides upon d f or crashes in φ.

It remains to show the second part of the properties in

the statement of the lemma. By Lemma 5.16, every cor-

rect process must decide upon dc. Thus, every process pc

in S is such that pc.d = dc in φ.

To conclude, if we make S f = S i and S c = S ′c, then

our claim holds.

�

Lemma 5.19 Let φ be an execution of FFS-ROC such

that there are survivor sets S f , S c ∈ SΠ and values

v f , vc ∈ V, v f , vc, such that the following holds:

∧

∀p ∈ S f : p.a ∈ {v f ,⊥}
∧

∀p ∈ S c : p.a = vc
∧

∀p ∈ S c : p is not faulty

If exists pi, pℓ ∈ Π such that pi.d[ℓ] = v f , then for all

p j ∈ Live(t + 1), v f ∈ p j.d.

Proof:

Suppose that pi.d[ℓ] = v f , for some pi, pℓ ∈ Π. By the

algorithm, if a process p j does not crash or stop in an

execution of FFS-ROC, then there is some survivor set

S j such that S j ⊆ p j.sr(r) for every r ∈ {z ∈ R : z ≤

t+1}. S f and S c must be disjoint, otherwise there is some

process with two different initial values. By the (3,2)-

Intersection property, either S j ∩ S f , ∅ or S j ∩ S c , ∅.

If S j ∩ S f , ∅, then p j.Ap(r)[ℓ] = Mr
j
[ℓ] = pℓ.a = v f

(Lemma 5.4, Lemma 5.3, and the algorithm). We then

have by the algorithm that p j.Ap(t + 1)[ℓ] = p j.d[ℓ] =

pℓ.a = v f .

If S j ∩ S c , ∅, then p j.d = pc.d by Lemma 5.13, for

every pc ∈ S c. By Lemma 5.16, pi.d ⊆ pc.d for every

non-faulty pc. That is, we have that pc.d[ℓ] = pi.d[ℓ] =

v f . We then have that p j.d[ℓ] = pc.d[ℓ] = pℓ.a = v f . This

concludes the proof of the lemma.

�

Theorem 5.20 Algorithm FFS-ROC satisfies Termina-

tion.

Proof:

This is straightforward from the algorithm: every process

that does not crash in an execution of FFS-ROC decides

at round t + 1.

�

Theorem 5.21 Algorithm FFS-ROC satisfies Agree-

ment.

Proof:

By Lemma 5.16, if a process pi decides in φ, then pi.d ⊆

14

pc.d for every non-faulty pc. This implies that for every

pℓ such that pi.d[ℓ] ,⊥, we have that pc.d[ℓ] = pi.d[ℓ]

for every non-faulty pc.

�

Theorem 5.22 Algorithm FFS-ROC satisfies RO Unifor-

mity.

Proof:

By Lemma 5.5, every correct process decides in φ. By

the algorithm, for every non-faulty process pc, pc.d[c] =

pc.a. Thus, there must be at least one non-N decision

value. By Lemma 5.15, there cannot be three processes in

an execution of FFS-ROC such that each process decides

upon a different value. This shows the first statement of

the property: 1 ≤ |vals| ≤ 2, where vals = {d : ∃pi ∈

Π s.t. (pi.d = d)} \ N in any execution of FFS-ROC. The

second statement follows directly from Lemma 5.17. The

third statement follows directly from Lemma 5.18.

�

Theorem 5.23 Algorithm FFS-ROC satisfies Validity.

Proof:

If pi ∈ Live(t + 1) in some execution φ of FFS-ROC,

then by Lemmas 5.5 and 5.16 pi.d ⊆ pc.d, for every pc ∈

Correct(φ). By the algorithm, pi.d[i] must be equal to

pi.a. We consequently have that pc.d[i] must be equal to

pi.a. This proves the first statement in the specification of

Validity.

If pi crashes in an execution φ of FFS-ROC, then by

Lemmas 5.2 and 5.11 either pc.d[i] =⊥ or pc.d[i] = pi.a,

for every pc ∈ Correct(φ). This shows the second state-

ment in the definition of validity. The third statement fol-

lows directly from Lemma 5.19.

�

With Theorems 5.20, 5.21, 5.22, and 5.23, we show

that FFS-ROC implements the four RO Consensus prop-

erties, thereby showing Proposition 5.1.

6 Correctness of FFS-WLE

Algorithm FFS-WLE proceeds in iterations of an infi-

nite repeat loop. In each iteration, processes execute two

phases, and in each phase a process participates in the ex-

ecution of an algorithm that implements RO Consensus.

For the following description, we assume that such an al-

gorithm is FFS-ROC. As shown in Figure 2, a process

that does not crash in an execution of FFS-WLE executes

infinitely many iterations of the repeat loop. According

to our system model, we split an execution of an algo-

rithm into rounds. We further number the iterations of

an execution of FFS-WLE and assume that round num-

bers map to iteration numbers. That is, there is a mapping

Iteration : R → I, where R is the set of round numbers as

before, and I = Z
∗ is the set of iteration numbers. In ad-

dition, we assume that iteration numbers increase mono-

tonically with round numbers, and the number of rounds

executed in an iteration is fixed, being a function of the

number of rounds in an execution of FFS-ROC.4 For the

purpose of the proofs that follow, we only need to assume

that each phase executes at least two rounds. Note that

FFS-ROC requires t + 1 rounds, and t + 1 ≥ 2 if t ≥ 1.

We therefore have that each phase must have at least two

rounds, assuming systems in which processes can fail. In

fact, because processes can fail by crashing and we as-

sume cores and survivor sets to characterize valid sets

of faulty processes, we can use the same argument as in

[3] to show that t + 1 is a lower bound on the number of

rounds.

According to the discussion in the previous paragraph,

we associate an iteration number with each iteration of

the algorithm in an execution. In the following, we use

iteration numbers to refer to iterations of the repeat loop.

In proving the correctness of FFS-WLE, we also use the

following definitions:

• valsi, i ∈ {1, 2} is the set {d : pi.d = d ∧ pi ∈ Π} \ N

after executing FFS-ROC at phase i of some itera-

tion ζ, ζ ∈ I;

• a process pi finishes a phase ρ ∈ {1, 2} of some itera-

tion ζ in an execution φ if it neither stops nor crashes

before executing the last step of that phase;

• A process pi starts phase ρ ∈ {1, 2} of an iteration ζ

at time τ if pi executes at least one step of phase x of

ζ and the first step s of pi at phase x of ζ is such that

T (s) = τ.

As in Section 4, we assume that FFS-WLE uses a sys-

tem profile 〈Π,CΠ, SΠ〉 and that this profile satisfies (3,2)-

Intersection.

Now we prove the following proposition.

Proposition 6.1 FFS-WLE implements Safety, LE-

Liveness, and FF-Stability.

4Because there are infinitely many executions of FFS-ROC in an

execution of FFS-WLE and round numbers monotonically increase with

time, the round numbers in the pseudocode for FFS-ROC are relative to

the first round in which an execution of FFS-ROC starts.

15

We show proposition 6.1 with the following set of the-

orems, each one proving a property of Weak Leader Elec-

tion.

Theorem 6.2 Algorithm FFS-WLE satisfies Safety.

Proof:

Let φ = 〈F, I, S ,T,T〉 be an execution of FFS-WLE. We

have to show that |{pi ∈ Π : pi.elected}| < 2 for every

τ ∈ T . First, we show that in an iteration of φ, at most

one process is elected. By the RO Uniformity property of

RO Consensus, there is at least one decision value and at

most two different decision values as a result of phase 1.

That is, 1 ≤ |vals1| ≤ 2. Suppose |vals1| = 1. By the

algorithm, every process pi that finishes phase 2 uses a

list x in its decision value pi.d, where x has the minimum

number of non-⊥ values among all lists in pi.d. x must

be the initial value of some processes by Validity. By

assumption, there is a single initial value in phase 2, and

consequently pi.d[j] ∈ {x,⊥}, for every p j ∈ Π, implying

that no two distinct processes that finish phase 2 can be

elected.

Now suppose that |vals1| = 2. From RO Uniformity, we

have that there are values d1, d2 ∈ vals1 and S 1, S 2 ∈ SΠ

such that:

∧ ∀p ∈ S 1 : ∨ p crashes

∨ p.d = d1

∧ ∀p ∈ S 2 : ∧ p.d = d2

∧ p is not faulty

By the algorithm, a process that finishes phase 1 of an

iteration executes FFS-ROC once more in phase 2 with

its decision value of the previous phase as its initial value.

If the above properties hold, then the only processes in

S 1 that do not have d1 as initial value are the ones that

crash before phase 2 starts. Let’s call this set Crash1. By

Validity, if some process pi decides upon a value pi.d such

that d1 ∈ pi.d, then every process p j that finishes phase 2

is such that d1 ∈ p j.d. We then again have that there is a

single process that can be elected because every process

that finishes phase 2 has d1 in its decision value and d1 ⊆

d2 by Agreement.

It remains to show that if pi is elected in iteration ζ,

and p j is elected in iteration ζ′, and ζ > ζ′, then there

is no τ ∈ T such that both pi.elected and p j.elected are

true at time τ. By the algorithm, every process that starts

the execution of phase 1 in an iteration, first sets its flag

elected to false. If the iteration is the first of φ, then p j

cannot be elected in a previous iteration, and the hypoth-

esis is vacuously true. Now suppose an iteration ζ > 0.

By assumption, every process that executes a phase of an

iteration ζ executes at least two rounds. By P-Liveness,

no process can start a new round r + 1, r ≥ 0, without

having every other live process executing at least one step

of r. If a process pi starts phase 2 of an iteration at time

τ, then every process that has not crashed by τ must have

executed at least one step of round zero of FFS-ROC at

phase 1 of ζ. Otherwise, there is a non-crashed process

p j such that pi executes the first step of a round r + 1 of

FFS-ROC whereas p j has not executed any steps of r.

This implies that no process can finish phase 2 of an it-

eration without having all non-crashed processes setting

elected to false.

This concludes the proof of the theorem.

�

Theorem 6.3 Algorithm FFS-WLE satisfies LE-

Liveness.

Proof:

We have to show that for every execution φ =

〈F, I, S ,T,T〉 of FFS-WLE and for every τ ∈ T , there is

some iteration after τ such that |{pi ∈ Π : pi.elected}| > 1.

Proof by contradiction. Suppose an execution φ =

〈F, I, S ,T,T〉 of FFS-WLE and a time τ ∈ T such that

pi.elected is false forever after τ for every pi. By Valid-

ity and RO Uniformity, in every iteration ζ of φ, ζ ∈ I,

there is a value v ∈ vals1 such that v is the list with the

least number of non-⊥ values, and for every process pi

that finishes phase 2 of iteration ζ, v ∈ pi.d. Every pro-

cess that finishes phase 2 of iteration ζ selects the same

value i as the first index of v mapping to a value in v

with a non-⊥ value. If process pi evaluates the last “if”

statement of phase 2, then it sets pi.elected to true. If

pi crashes, however, then it does not set pi.elected to true,

and no process is elected in iteration ζ. By the assumption

that all failures are benign, crashing (or stopping which is

equivalent to crashing in our model) is the only possibil-

ity for having no process elected in an iteration ζ. By the

assumption that t (|Π| subtracted the size of the smallest

survivor set) is the largest number of processes that can

crash in φ, there can be at most t iterations after τ such

that |{pi ∈ Π : pi.elected}| = 0.

�

Theorem 6.4 Algorithm FFS-WLE satisfies FF-

Stability.

16

Proof:

Suppose φ is a failure-free execution and ζ is an itera-

tion of φ. By Agreement, every process decides upon the

same value in both phases of iteration ζ. We then have

that every process pi uses the same value x to determine

whether it sets pi.elected to true in φ. Moreover, we have

that x[i] = pi for every i, by Validity. Assuming that

Π = {p1, p2, . . . , pn}, we have by the algorithm that p1

sets p1.elected to true at phase 2 of ζ.

�

7 Adding E-Stability

FFS-WLE allows for executions in which two or more

processes are elected infinitely often. Such behavior,

however, is not desirable. As leadership moves to one

process to another, the responsibility of accomplishing the

tasks of a leader also moves. Recall that the original moti-

vation is to embed such a Leader Election algorithm into

a Primary-Backup protocol. This oscillation causes un-

necessary overhead such as requests being forwarded to

the correct Primary or even system instabilities if changes

occur too frequently.

We now show how to modify FFS-WLE (and FFS-

ROC) to also satisfy E-Stability. We call WLE the modi-

fied version of FFS-WLE, and ROC the modified version

of FFS-ROC to distinguish between the previous versions

and the modified versions.

First, instead of initializing pi.s(0) to Π, as in FFS-

ROC , pi.s(0) is initialized to a parameter pi.Procs. We

also roll forward the value of pi.s(t + 1) in FFS-WLE in-

stead of having pi.s(0) constant as in FFS-ROC. That is,

in an iteration ζ > 0, pi.s(0) in Phase 1 is pi.s(t + 1) in

Phase 2 of iteration ζ − 1. If ζ = 0, then pi.s(0) in Phase

1 is Π. For the initial value of pi.s(0) in Phase 2, we use

pi.s(t + 1) of Phase 1 of the same iteration. For clarity,

we repeat the pseudocode for these algorithms with the

respective modifications in Figures 4 and 5. Note that

the main modifications in ROC are: 1) ROC has two pa-

rameters instead of one; 2) in round 1, pi checks whether

pi.s(1) ⊆ pi.s(0). WLE is different from FFS-WLE by ini-

tializing pi.Procs to Π and by rolling pi.s(t + 1) forward.

It is straightforward to see that the proof of Section 5 is

valid for ROC if the following constraint holds for every

execution φ = 〈F, I, S ,T,T〉 of ROC: if pc ∈ Correct(φ)

and pi ∈ Π is a process in pc.s(1), then pi ∈ pc.Procs.

That is, pc.Procs must contain all the processes that send

messages to pc at round zero if pc is not faulty. Other-

Algorithm ROC on input pi.a, pi.Procs

round 0:

pi.s(0)← pi.Procs; pi.sr(0)← pi.s(0)

pi.A [i]← pi.a

for all pk ∈ Π, pk , pi : pi.A [i]← ⊥

pi.Ap(0)← pi.A

send pi.A to all

round 1:

pi.sr(1)← pi.s(1)

if ∨pi.s(1) * pi.s(0)

∨∄S ∈ SΠ : S ⊆ pi.sr(1)

then decide [⊥, . . . ,⊥]

else for each message m j ∈ pi.M(1), pk ∈ Π:

if (pi.A [k] = ⊥) pi.A [k]← m j.A [k]

pi.Ap(1)← pi.A

send pi.A to all

round r: 2 ≤ r ≤ t:

pi.sr(r)← pi.s(r) \ {p j : ∃m ∈ pi.M(r) :

pi.Ap(r − 2) * m.A ∧ m.from = p j}

if ∨pi.s(r) * pi.s(r − 1)

∨∄S ∈ SΠ : S ⊆ pi.sr(r)

then decide [⊥, ...,⊥]

else for each message m ∈ pi.M(r), pk ∈ Π:

if (pi.A [k] = ⊥) pi.A [k]← m.A [k]

pi.Ap(r)← pi.A

send pi.A to all

round t + 1:

pi.sr(t + 1)← pi.s(t + 1) \ {p j : ∃m ∈ pi.M(t + 1) :

pi.Ap(t − 1) * m.A ∧ m.from = p j}

if ∨ pi.s(t + 1) * pi.s(t)

∨∄S ∈ SΠ : S ⊆ pi.sr(t + 1)

then decide [⊥, ...,⊥]

else for each message m ∈ pi.M(t + 1), pk ∈ Π:

if (pi.A [k] = ⊥) pi.A[k]← m.A[k]

pi.Ap(t + 1)← pi.A

decide pi.A

Figure 4: Algorithm run by process pi.

17

Algorithm WLE

P← Π

repeat {

pi.elected← FALSE

Phase 1:

Run ROC with

pi.a← i; pi.Procs← P.

P← pi.s(t + 1)

if (pi.d = [⊥, . . . ,⊥]) then stop

Phase 2:

Run ROC with

pi.a← pi.d from Phase 1; pi.Procs← P.

P← pi.s(t + 1)

if (pi.d = [⊥, . . . ,⊥]) then stop

let x be a value of pi.d [1 . . . n]

such that pi.d [x] , [⊥, . . . ,⊥]

and it has the least number of non-⊥ values

if (pi is the first index of x such that x[i] , ⊥)

then pi.elected← TRUE

}

Figure 5: Algorithm run by process pi.

wise, pc can falsely detect that it is faulty, and stop, vi-

olating Validity. Lemma 5.5 states that correct processes

do not stop, and hence the proof changes with the modifi-

cation to the algorithm. The change is small, however. It

consists in modifying the base case of the inductive argu-

ment to show that no correct process pc stops in round 1

if pc.s(0) contains all the processes that send messages to

pc in round zero (0).

If p f is faulty, then there are no restrictions on the in-

put p f .Procs. Intuitively, a faulty process p f .Procs can

receive any subset of processes sent to it. Consequently,

it is not possible to impose a similar constraint as we did

for correct processes. Different from correct processes, if

a faulty process stops, it does not violate any of the RO

Consensus properties.

According to the modifications described previously,

pi.Procs is the set of processes from which pi receives

a message in the last round of the previous execution of

ROC (Π if it is the execution of ROC in Phase 1 of it-

eration 0). By assumption and by the algorithm, once a

process crashes (or stops) it never sends messages again

in an execution of WLE. Thus, if pc is a correct process,

then pc.Procs must contain all the processes that pc re-

ceives messages from in an execution of ROC, satisfying

our constraint on pc.Procs for correct processes.

Because the proofs of Theorems 6.2 and 6.3 rely solely

on the properties of RO Consensus, we also have that

these proofs hold for WLE. It remains to show that WLE

satisfies E-Stability. First, we present a few definitions

to be used in the proof of E-Stability. By Theorem 6.2,

in every iteration ζ of an execution φ of WLE it is the

case that either one process pi is such that pi.elected eval-

uates to true at the end of ζ or no process pi is such that

pi.elected evaluates to true at the end of ζ. We then use

Leader(ζ, φ) to denote the process pi, pi.elected evaluates

to true at the end of iteration ζ of φ, or ⊥ if no such pro-

cess exists. Finally, we need some terminology to refer to

values that processes decide across iterations and in the

two different phases of an iteration. We then useD
ρ

ζ
(i) to

denote pi.d at the end of phase ρ ∈ {1, 2} of iteration ζ.

Proposition 7.1 WLE implements Weak Leader Elec-

tion.

With Theorems 6.2, 6.3, and 6.4, we showed that WLE

satisfies Stability, LE-Liveness, and FF-Stability. It re-

mains to show E-Stability. Before we show our main re-

sult of this section, we state and prove a few preliminary

lemmas.

Lemma 7.2 Let φ be an execution of WLE. For every it-

eration ζ of WLE, if pi finishes phase 1 of both ζ and ζ+1,

thenD1
ζ+1

(i) ⊆ D1
ζ
(i).

Proof:

Proof by contradiction. Suppose that there is an itera-

tion ζ such that the assertion D1
ζ+1

(i) ⊆ D1
ζ
(i) is false.

This implies that there is some process pℓ, ℓ , i, for

which D1
ζ+1

(i)[ℓ] ,⊥ and D1
ζ
(i)[ℓ] =⊥. By Lemma 5.10,

in the execution of ROC in phase 1 of iteration ζ + 1,

there is a chain ωℓ such that ωℓ[r] = i, r > 0. By

assumption, for every process p j such that ωℓ[ρ] = j,

ρ ∈ {z ∈ R : 1 ≤ z ≤ r}, p j′ must be in p j.Procs, where

ωℓ[ρ−1] = j′, otherwise the process with identifier ωℓ[ρ],

ρ ≤ r, stops at round ρ.

Now suppose thatωℓ[1] = j. By the algorithm, p j.sr(r)

contains some survivor set S j, for every round r ∈ {z ∈

R : z ≤ t + 1} of the execution of ROC in iteration ζ.

Also, there is such a survivor set S i for pi, and there

is some survivor set S c such that S c ⊆ Correct(φ). By

(3,2)-Intersection, S i either intersects S j or intersects S c.

If S i intersects S j, then by Lemma 5.13, D1
ζ
(i)[ℓ] ,⊥,

contradicting our initial assumption. If S i intersects S c,

then by Lemma 5.14 D2
ζ
(c) ⊆ D2

ζ
(i), for some non-faulty

18

pc ∈ Correct(φ). By Agreement, D2
ζ
(c)[ℓ] ,⊥, and con-

sequently D1
ζ
(i)[ℓ] ,⊥, again contradicting our initial as-

sumption.

This completes the proof of the lemma.

�

Lemma 7.3 Let φ be an execution of WLE and ζ be an

iteration of φ . No process is elected in ζ only if some

process crashes or stops in ζ.

Proof:

By RO Uniformity, we have that 1 ≤ valsi ≤ 2, i ∈ {1, 2}.

By Validity and RO Uniformity, there is some value d in

vals1 such that d ∈ pi.d for every process pi that finishes

phase 2 of iteration ζ, and d contains the least number

of non-⊥ values. Because d , N , there must be a pro-

cess pe such that e is the smallest index of d such that

d[e] ,⊥. We then have that pe sets pe.elected to true un-

less pe crashes. Thus, if Leader(ζ, φ) =⊥, then pe must

crash or stop in ζ.

�

Lemma 7.4 Let φ be an execution of WLE, ζ and ζ′ be

iterations of φ, ζ + 1 < ζ′, such that Leader(ζ, φ) =

Leader(ζ′, φ) = pe. If Leader(ζ + 1, φ) = pe′ , e , e′,

then there is a process pi that crashes or stops in some

iteration ζ′′, ζ ≤ ζ′′ ≤ ζ′.

Proof:

If pe is elected in iteration ζ of φ, then there is a value d

in vals1 of ζ such that e is the smallest index of d with

a non-⊥ value, and d ∈ D2
ζ
(e). Now if pe′ is elected in

iteration ζ + 1, then there is a value d′ in vals1 of ζ + 1

such that e′ is the smallest index of d′ with a non-⊥ value,

and d′ ∈ D2
ζ
(e′). By assumption, pe is elected again in

iteration ζ′. As before, there must be a value d′′ in vals1

of ζ′ such that e is the smallest index of d′′ with a non-⊥

value.

There are two possibilities regarding the identifiers e

and e′: 1) e′ < e; 2) e < e′. If e′ < e, then there must be a

second value dc in vals1 of ζ such that d ⊆ dc (by assump-

tion, pe has not crashed by iteration ζ′ > ζ + 1; by Valid-

ity, every non-faulty process pc is such that pe.a ∈ pc.d).

Let pi be a process such that D1
ζ
(i) = d. Suppose by

way of contradiction that pi finishes phase 2 of ζ + 1.

By Lemma 7.2, D1
ζ+1

(i) ⊆ D1
ζ
(i), and D1

ζ+1
(i)[e′] =⊥.

By Validity, there is some pc ∈ Correct(φ) such that

D1
ζ+1

(c)[e′] ,⊥. Note that pe′ does not crash or stop in it-

eration ζ+1 or in a previous iteration. By RO Uniformity,

D1
ζ+1

(i) ⊆ D1
ζ+1

(c) = d′. By RO Uniformity and Valid-

ity, D1
ζ+1

(i) must be the value used by every process that

completes phase 2 of iteration ζ + 1 to determine whether

it elects itself or not. Since e′ is not the smallest index of

D1
ζ+1

(i) that evaluates to a non-⊥ value, pe′ is not elected

in ζ+1. This contradicts our initial assumption. We hence

have that pi must crash or stop by iteration ζ + 1.

Now if e < e′, then d′[e] =⊥ by assumption (e′ is the

smallest index in d′ with a non-⊥ value). We use a similar

argument as in the first case. Suppose by way of contra-

diction that pe′ finishes phase 2 of ζ′. By Lemma 7.2,

D1
ζ′

(e′) ⊆ D1
ζ+1

(e′), andD1
ζ′

(e′)[e] =⊥. By Validity, there

is some pc ∈ Correct(φ) such that D1
ζ′

(c)[e] ,⊥. Note

that pe does not crash or stop in iteration ζ′ or in a previ-

ous iteration. By RO Uniformity, D1
ζ′

(e′) ⊆ D1
ζ′

(c) = d′′.

By RO Uniformity and Validity,D1
ζ′

(e′) must be the value

used by every process that completes phase 2 of iteration

ζ′ to determine whether it elects itself or not. Since e is

not the smallest index of D1
ζ′

(i) that evaluates to a non-⊥

value, pe is not elected in ζ′. This contradicts our ini-

tial assumption. We conclude that pe is not elected in ζ′

unless pe′ crashes or stops by iteration ζ′.

Finally, we have that either pe′ crashes or stops by it-

eration ζ′ or some faulty process pi crashes or stops by

iteration ζ + 1. This concludes the proof of the lemma.

�

Theorem 7.5 WLE satisfies E-Stability.

Proof:

Let φ be an execution of WLE. By LE-Liveness, infinitely

often some process is elected in φ. By Lemma 7.3, an it-

eration ζ has no leader elected only if some some process

crashes in ζ, and by assumption there is a finite number

of processes that crash or stop. Thus, there is a bounded

number of iterations that have no leader elected.

Let t be a time such that every iteration that starts after

t has a leader elected. Such a t exists by the previous ar-

gument. We then have that every iteration that starts after

t has a leader elected, and it remains to show that there is

some t′ ≥ t and some process pe such that for every itera-

tion ζ that starts after t′, pe is elected in both ζ and ζ + 1.

Suppose by way of contradiction that there is no such t′ in

φ. Let pe be a process that is elected infinitely often after

t′. Such a process must exist because the set of processes

is finite. By assumption, there is an infinite sequence of

iterations ζ1 < ζ2 < ζ3 . . ., which are not necessarily con-

secutive, such that pe is elected in ζi but not in ζi + 1.

By Lemma 7.4, for every i ∈ Z
+, there is an iteration ζ,

ζi ≤ ζ ≤ ζi+1, such that some process crashes or stops in ζ.

By assumption, the number of processes crashing or stop-

ping is bounded. Consequently, there cannot be such an

19

infinite sequence. We conclude that there must be some

t′ ≥ t and some process pe such that for every iteration ζ

that starts after t′, pe is elected in both ζ and ζ + 1.

�

8 Discussion

Developing a Primary-Backup protocol that uses WLE is

future work. We can, however, make a few observations

regarding the use of an algorithm as WLE to elect pri-

maries in a Primary-Backup protocol. As mentioned pre-

viously, WLE enables faulty processes to be elected. In a

Primary-Backup system, this feature impacts on liveness,

although not on correctness. Often, there is a time bound

in the replies to client requests, and it is impossible to

meet such bounds if the primary can be faulty. An imme-

diate consequence of electing faulty processes is that ser-

vice time is not bounded during the period of time a faulty

process remains as the primary. As discussed before, pro-

cesses that commit failures (but do not stop or crash) are

detected. In practice, we rely on an off-line mechanism to

detect these anomalies and take the appropriate measures

that can be, for example, to remove faulty processes from

the system.

It is possible, however, that faulty processes go through

an iteration of WLE undetected as such, and fail to re-

ply to client requests due to receive-omission failures. To

solve this problem, we can require clients to broadcast

requests to all the replicas and the primary to broadcast

replies to all the backup replicas as well. Correct pro-

cesses are also capable of detecting failures in such cases,

although they may not be able to ”warn” the faulty pri-

mary that it is actually faulty. Recall that failure detection

for omission failures requires twofold replication.

Finally, the iterations of the repeat loop of WLE are

consecutive without any delay in between for expositional

purposes. In practice, iterations should be delayed until

failures are detected, they are manually triggered, or if

none of these are desirable or possible, some time thresh-

old is reached.

9 Conclusions

We described in this paper a weaker version of the Leader

Election problem and an algorithm that solves this prob-

lem. This version of the problem, unlike the traditional

definition of Leader Election, enables faulty processes to

be elected. The main advantage of enabling it is requiring

a lower degree of replication.

There are other interesting features of the WLE algo-

rithm. First, it is uses cores and survivor sets instead of

a threshold. This enables more flexible characterizations

of systems with an heterogeneous set of processes. Sec-

ond, it uses an unusual type of Intersection property, i.e.,

(3,2)-Intersection. This property generalizes a degree of

replication of the form n > ⌊3t/2⌋, where t is the thresh-

old on the number of failures in any execution. Finally,

correct processes are able to detect faulty processes. By

Lemma 5.16, non-crashed faulty processes decide upon

lists with fewer values, and one can build an alarm system

by collecting decision values by the end of every iteration.

Although we have not thoroughly investigated using

WLE to implement Primary-Backup protocols, we believe

our algorithm provides practical benefits compared to pre-

vious solutions.

References

[1] L. Lamport, “The Part-Time Parliament,” ACM

Transactions on Computer Systems, vol. 16, pp. 133–

169, May 1998.

[2] N. Budhiraja, K. Marzullo, F. Schneider, and

S. Toueg, “Optimal primary-backup protocols,” in 6th

International Workshop on Distributed Algorithms

(WDAG), pp. 362–378, Nov 1992.

[3] F. Junqueira and K. Marzullo, “Lower Bound on the

Number of Rounds for Synchronous Consensus with

Dependent Process Failures,” Tech. Rep. CS2003-

0734, UCSD, 2001.

20

A Specification of ROC in TLA+

 ROConsensus

 Naturals , FiniteSets , TLC

 P , Set of processes

Vals , Domain of d values

NULL, A null value

SurvivorSet , All survivor sets

I Initial values

 A, Accumulated values of a process

Aprime , Accumulated values of a process (previous round)

d , Decision value of a process

messages , Sent messages

crashed , Crashed processes

faulty , R-O faulty processes

round , Current round

pRound , Round that p is in

MyTurn ,

recdFrom recdFrom[p][r] is the set of processes

p received a message from in round r .

N
∆

= Cardinality(P)

 P ⊆ Nat

SurvivorSet satisfies (3, 2)-Intersection

 ∧ ∀ s ∈ SurvivorSet : s ⊆ P

∧ ∀ s1, s2, s3 ∈ SurvivorSet :

∨ s1 ∩ s2 , {}

∨ s2 ∩ s3 , {}

∨ s1 ∩ s3 , {}

∧ ∀ p ∈ P : ∃ s ∈ SurvivorSet : p ∈ s

 I ∈ [P → Vals]

Used for number of rounds

t
∆

=  x
∆

=  s ∈ SurvivorSet :

∀ s2 ∈ SurvivorSet :

Cardinality(s) ≤ Cardinality(s2)

 N − Cardinality(x)

ROETypeOK
∆

= ∧A ∈ [P → [P → Vals ∪ {NULL}]]

∧Aprime ∈ [P → [P → Vals ∪ {NULL}]]

∧ d ∈ [P → [P → Vals ∪ {NULL}] ∪ {NULL}]

∧messages ⊆ [

from : P ,

to : P ,

round : 0 . . t ,

21

val : [P → Vals ∪ {NULL}]]

∧ faulty ⊆ P

∧ crashed ⊆ P

∧ round ∈ 0 . . (t + 1)

∧ pRound ∈ [P → 0 . . (t + 1)]

∧ Cardinality(faulty) + Cardinality(crashed) ≤ t

∧ faulty ∩ crashed = {}

∧MyTurn ∈ P

∧A ∈ [P → [P → Vals ∪ {NULL}]]

∧ ∀ p, q ∈ P :  p = q  A[p][q] = I [p]

 A[p][q] = NULL

ROEInit
∆

= ∧A = [p ∈ P 7→ [q ∈ P 7→  p = q  I [p]  NULL]]

∧Aprime = A

∧ d = [p ∈ P 7→ NULL]

∧messages = {}

∧ faulty = {}

∧ crashed = {}

∧ round = 0

∧ pRound = [p ∈ P 7→ 0]

∧ recdFrom = [p ∈ P 7→ [r ∈ 0 . . (t + 1) 7→

 r = 0  P  {}]]

∧MyTurn =  p ∈ P : 1 = 1

Send message v in round r

Send (from , to, r , v)
∆

=

∧ from < crashed

∧messages ′ = messages ∪

{[from 7→ from , to 7→ to, round 7→ r , val 7→ v]}

Process p has decided

Decided (p)
∆

= d [p] , NULL

Consensus has terminated

Terminated
∆

= ∀ p ∈ P \ crashed : Decided (p)

Sources of messages

From(msgs)
∆

= {p ∈ P : ∃m ∈ msgs : m .from = p}

LastStep(p)
∆

= ∧ p < crashed

∧ round = t + 1

∧ pRound [p] = t + 1

∧ ¬Decided (p)

∧ d ′ = [d  ![p] = A[p]]

∧  〈A, Aprime , messages , crashed ,

faulty , round , pRound , recdFrom ,

MyTurn〉

Fail (p)
∆

= ∧ ∃ s ∈ SurvivorSet : s ⊆ (P \ (faulty ∪ crashed ∪ {p}))

∧ ∨ ∧ p < crashed ∪ faulty

22

∧ faulty ′ = faulty ∪ {p}

∧  crashed

∨ ∧ p < crashed

∧ crashed ′ = crashed ∪ {p}

∧ faulty ′ = faulty \ {p}

∧  〈A, Aprime , d , messages , round , pRound ,

recdFrom , MyTurn〉

Each round (except round 0) starts by receiving messages sent in the previous round

and terminates (except round t + 1) by sending A[p] to all processes.

RoundDone(r)
∆

= ∧ round = r

∧ ∀ p ∈ P \ crashed :

∨Decided (p)

∨ ∀ q ∈ P :

∃m ∈ messages : ∧m .from = p

∧m .to = q

∧m .round = r

∧ round ′ = round + 1

∧  〈A, Aprime , d , messages , crashed , faulty ,

pRound , recdFrom , MyTurn〉

RecvRound1(p)
∆

=  msgsSentToMe
∆

= {m ∈ messages : (m .to = p ∧m .round = 0)}

Am faulty if didn’t receive messages from a survivor set

IMustBeFaulty(mset)
∆

=

∨ ¬(From(mset) ⊆ recdFrom[p][0])

∨ ¬(∃ s ∈ SurvivorSet : s ⊆ From(mset))



∧MyTurn = p

∧ round = 1

∧ p < crashed

∧ pRound [p] = 0

∧ ¬Decided (p)

∧ pRound ′ = [pRound  ![p] = 1]

∧ ∃msgsRecd ∈  msgsSentToMe :

∧ (p ∈ faulty ∨ msgsRecd = msgsSentToMe)

∧ p ∈ From(msgsRecd)

∧ recdFrom ′ = [recdFrom  ![p][1] = From(msgsRecd)]

∧  IMustBeFaulty(msgsRecd)

 ∧ d ′ = [d  ![p] = [q ∈ P 7→ NULL]]

∧  A

 ∧A′ = [A  ![p] = [q ∈ P 7→

 A[p][q] , NULL→ A[p][q]

� ∧ (A[p][q] = NULL)

∧ (∀m ∈ msgsRecd : m .val [q] = NULL)

→ A[p][q]

� ∧ (A[p][q] = NULL)

∧ (∃m ∈ msgsRecd : m .val [q] , NULL)

→  v ∈ Vals : (∃m ∈ msgsRecd :

m .val [q] = v)

23

]]

∧  d

∧  〈Aprime , messages , crashed , faulty , round , MyTurn〉

RecvRoundR(p, r)
∆

=  msgsSentToMe
∆

= {m ∈ messages :

(m .to = p ∧m .round = r − 1)}

Am faulty if received a message from a process in this round

not in last round OR

Removing messages from obviously faulty processes, did not receive

messages from a survivor set.

IMustBeFaulty(mset)
∆

=

∨ ¬(From(mset) ⊆ recdFrom[p][r − 1])

∨ ¬(∃ s ∈ SurvivorSet : s ⊆

From({m ∈ mset :

∀ i ∈ P : (∨ (Aprime[p][i] = NULL)

∨ (m .val [i] = Aprime[p][i]))}))



∧MyTurn = p

∧ round = r

∧ p < crashed

∧ pRound [p] = r − 1

∧ ¬Decided (p)

∧ pRound ′ = [pRound  ![p] = r]

∧Aprime ′ = [Aprime  ![p] = A[p]]

∧ ∃msgsRecd ∈  msgsSentToMe :

∧ (p ∈ faulty ∨ msgsRecd = msgsSentToMe)

∧ p ∈ From(msgsRecd)

∧ recdFrom ′ = [recdFrom  ![p][r] = From(msgsRecd)]

∧  IMustBeFaulty(msgsRecd)

 ∧ d ′ = [d  ![p] = [q ∈ P 7→ NULL]]

∧  A

 ∧A′ = [A  ![p] = [q ∈ P 7→

 A[p][q] , NULL→ A[p][q]

� ∧ (A[p][q] = NULL)

∧ (∀m ∈ msgsRecd : m .val [q] = NULL)

→ A[p][q]

� ∧ (A[p][q] = NULL)

∧ (∃m ∈ msgsRecd : m .val [q] , NULL)

→  v ∈ Vals : (∃m ∈ msgsRecd :

m .val [q] = v)

]]

∧  d

∧  〈messages , crashed , faulty , round , MyTurn〉

SendRound (p, r)
∆

=  sentTo
∆

= {q ∈ P : ∃m ∈ messages :

(m .from = p ∧m .to = q ∧m .round = r)}



∧MyTurn = p

∧ p < crashed

∧ ¬Decided (p)

24

∧ round = r

∧ pRound [p] = r

∧ ∃ q ∈ P : ∧ q < sentTo

∧ Send (p, q , r , A[p])

∧  〈A, Aprime , d , crashed , faulty , round , pRound ,

recdFrom , MyTurn〉

NextP (r)
∆

=  sentTo
∆

= {q ∈ P : ∃m ∈ messages :

(m .from = MyTurn ∧m .to = q ∧m .round = r)}



∧ ∨ ∀ q ∈ P : q ∈ sentTo

∨MyTurn ∈ crashed

∧MyTurn ′ =  p ∈ P : p , MyTurn ∧ p < crashed

∧  〈A, Aprime , d , messages , crashed , faulty , round ,

pRound , recdFrom〉

ROENext
∆

= ∨ ∃ p ∈ P : Fail (p)

∨ ∃ p ∈ P : ∨ RecvRound1(p)

∨ LastStep(p)

∨ ∃ r ∈ 0 . . t : ∨ RoundDone(r)

∨ SendRound (p, r)

∨ ∃ r ∈ 2 . . (t + 1) : RecvRoundR(p, r)

∨ ∃ r ∈ 0 . . (t + 1) : NextP (r)

vars
∆

= 〈A, Aprime , d , messages , crashed , faulty , round , pRound ,

recdFrom , MyTurn〉

Since behaviors are finite ignoring stuttering, ignore liveness

ROESpec
∆

= ROEInit ∧ �[ROENext]vars

Some sets of processes

NotCrashed
∆

= P \ crashed

NotFaulty
∆

= (P \ crashed) \ faulty

DecidedSomething
∆

= {p ∈ P : Decided (p)}

DecidedSomethingInteresting
∆

= {p ∈ DecidedSomething :

∃ q ∈ P : d [p][q] , NULL}

Relations on decisions

dvSubsetEq(d1, d2)
∆

= ∀ r ∈ P : (d1[r] , NULL)⇒ (d1[r] = d2[r])

dSubsetEq(p, q)
∆

= dvSubsetEq(d [p], d [q])

dSubset(p, q)
∆

= dSubsetEq(p, q) ∧ (d [p] , d [q])

RO-Consensus safety properties

GoodDecision
∆

= ∧ ∀ p ∈ NotFaulty , q ∈ P :

 q ∈ NotCrashed  d [p][q] = I [q]

25

 d [p][q] ∈ {NULL, I [q]}

∧ ∀ v1, v2 ∈ Vals :

∀S1, S2 ∈ SurvivorSet :

(∨ ∃ p ∈ S1 : I [p] , v1

∨ ∃ p ∈ S2 : (∨ I [p] , v2

∨ p ∈ faulty)

∨ ∀ p1, p2 ∈ P : (∨ d [p1] = NULL

∨ d [p1][p2] , v1)

∨ ∀ p ∈ NotCrashed : ∃ q ∈ P : d [p][q] = v1)

∧ ∀ p ∈ NotCrashed : ∀ q ∈ P : (∨ d [p][q] = NULL

∨ ∀ c ∈ NotFaulty :

d [c][q] = d [p][q])

∧  vals
∆

= {d [p] : p ∈ DecidedSomethingInteresting}

 ∧ Cardinality(vals) ≤ 2

∧ Cardinality(vals) ≥ 1

∧ ∀ d1, d2 ∈ vals : dvSubsetEq(d1, d2) ∨ dvSubsetEq(d2, d1)

∧ ∀ d1, d2 ∈ vals :

∨ d1 = d2

∨ ∃S1, S2 ∈ SurvivorSet :

(∧ ∀ p ∈ S1 : (∨ p ∈ crashed

∨ d [p] = d1)

∧ ∀ p ∈ S2 : (∧ d [p] = d2

∧ p ∈ NotFaulty))

OnlyGoodDecisions
∆

= Terminated ⇒ GoodDecision

 ROESpec ⇒ �ROETypeOK

 ROESpec ⇒ �OnlyGoodDecisions

26

