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Abstract

b-defensins are a family of important peptides of innate immunity, involved in host defense, immunomodulation, reproduction, and

pigmentation. Genes encoding b-defensins show evidence of birth-and-death evolution, adaptation by amino acid sequence

changes, and extensive copy number variation (CNV) within humans and other species. The role of CNV in the adaptation of

b-defensins to new functions remains unclear, as does the adaptive role of CNV in general. Here, we fine-map CNV of a cluster

of b-defensins in humans and rhesus macaques. Remarkably, we found that the structure of the CNV is different between primates,

with distinct mutational origins and CNV boundaries defined by retroviral long terminal repeat elements. Although the human b-

defensin CNV region is 322 kb and encompasses several genes, including b-defensins, a long noncoding RNA gene, and testes-

specificzinc-finger transcription factors, theorthologous region in the rhesusmacaqueshowsCNVofa20-kb region, containingonly

a single gene, the ortholog of the human b-defensin-2 gene. Despite its independent origins, the range of gene copy numbers in the

rhesus macaque is similar to humans. In addition, the rhesus macaque gene has been subject to divergent positive selection at the

amino acid level following its initial duplication event between 3 and 9.5 Ma, suggesting adaptation of this gene as the macaque

successfully colonized novel environments outside Africa. Therefore, the molecular phenotype of b-defensin-2 CNV has undergone

convergent evolution, and this gene shows evidence of adaptation at the amino acid level in rhesus macaques.

Key words: defensin, copy number variation, macaque, genome structure, evolution.

Introduction

Despite multiallelic copy number variation (CNV) being an

established and important aspect of genetic variation, little is

known about its evolution and population genetics, particu-

larly when compared with the extensive experimental and

theoretical body of work concerning single nucleotide varia-

tion (Schrider and Hahn 2010). In principle, multiallelic CNV is

subject to the same population genetic forces as other varia-

tion, being generated by mutation, maintained by balancing

selection or removed by directional selection or genetic drift.

Because of genetic drift, most polymorphisms are transient

and are very unlikely to be maintained during speciation and

subsequent divergence. However, there is extensive evidence

that CNVs can be shared across species boundaries (Bailey and

Eichler 2006). In perhaps the best established example, CNV

of b-defensin genes has been observed not only in humans

and other great apes (Hollox et al. 2003; Hardwick et al. 2011;

Sudmant et al. 2013) but also in dogs (Leonard et al. 2012),
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cattle (Bickhart et al. 2012), and pigs (Chen et al. 2012; Wang

et al. 2013). Furthermore, the structurally similar crotamine

gene shows CNV in Crotalus durissus rattlesnakes (Oguiura

et al. 2009; Yount et al. 2009).

An explanation for the prevalence of b-defensin CNV

across mammals might be that certain aspects of genome

structure, such as regions rich in segmental duplications and

high-copy number repeats (such as retroviral elements), oc-

curred in an ancestor, were maintained across species bound-

aries, and sponsor recurrent CNV in different species lineages

(Marques-Bonet, Girirajan, et al. 2009; Marques-Bonet, Kidd,

et al. 2009; Gokcumen et al. 2013). Indeed, a notable case is

the observation of CNV hotspots in great apes (Marques-

Bonet, Kidd, et al. 2009). These are caused by inheritance of

segmental-duplication-rich regions generated in a great ape

ancestor along different lineages to different great ape species

and therefore sponsoring likely recurrent CNVs in the same

region in different species. These CNVs may or may not have a

selective advantage, and given that complex genomic archi-

tecture generating CNV can be maintained by drift, the null

hypothesis must be that CNV is selectively neutral (Lynch

2007; Young et al. 2008). However, in Drosophila melanoga-

ster there is evidence for natural selection affecting CNV gen-

omewide (Emerson et al. 2008) and CNV hotspots shared

between humans, chimpanzees, and macaques are enriched

for regions predicted to be functionally relevant, which has

been interpreted as evidence for positive selection of these

CNV hotspots (Gokcumen et al. 2011).

We reasoned that if the same genes were CNV in different

species as a result of different distinct genomic events, of dif-

ferent sizes and sponsored by very distinct mutational events,

then this would suggest convergent evolution and a possible

adaptive explanation for the recurrent observation of CNV.

Indeed, such convergent evolution of single nucleotide varia-

tion, where different mutations have resulted in a similar mo-

lecular or physiological phenotype, has supported well-

defined cases of positive natural selection in humans

(Ingram et al. 2009; Huerta-Sanchez et al. 2013).

Detailed characterization of CNV in different species is

hampered by low resolution array comparative genomic hybri-

dization (aCGH) data and poorly assembled genomes, parti-

cularly in regions that show CNV (Eichler et al. 2007). Here, we

use tiling-resolution aCGH together with physical mapping

and two complementary CNV typing methods to compare

the nature and extent of b-defensin CNV in the macaque

with that in humans. As well as being a model locus for com-

plex multiallelic CNV, the evolution of b-defensins is interest-

ing and important because of their function. b-defensins are

small cationic peptides with a canonical six-cysteine motif that

forms three disulphide bridges in a characteristic arrangement.

They are potent antimicrobial peptides (Lehrer and Ganz

2002; Ganz 2003), and also have an immunomodulatory

role, involved in signaling to cells mediating immune responses

(Klotman and Chang 2006; Semple and Dorin 2012). In

addition, some b-defensins have evolved to have a role in

reproduction (Tollner et al. 2008; Zhou et al. 2013), pigmen-

tation (Candille et al. 2007), and venom toxicity (Torres et al.

2000; Whittington et al. 2008).

It is likely that b-defensins have evolved in vertebrates

through a birth-and-death process, with some b-defensins

having clear orthologs across mammals yet others unique to

particular clades, having been generated by recent duplication

events (Maxwell et al. 2003). In humans, a cluster of seven

very distinct b-defensins is within two repeat-rich regions on

chromosome 8p23.1 termed REPP (for repeat-proximal) and

REPD (for repeat-distal) (Giglio et al. 2001; Hollox et al. 2008).

The cluster of b-defensins varies as a block, that is, it is one

contiguous CNV not a region where several overlapping CNVs

are observed. The b-defensin cluster shows both copy number

polymorphism, commonly between two and seven copies per

diploid genome, and positional polymorphism, whereby the

cluster of b-defensins maps to REPD and polymorphically to

REPP as well (Hollox et al. 2003; Abu Bakar et al. 2009). Clear

orthologs for these seven genes can be identified across pri-

mates and show no evidence of positive selection on amino

acid sequence within primates (Hollox and Armour 2008).

However, in more distantly related mammals, for example

rodents, their orthologs can be more difficult to define.

Here, we compare the human b-defensin CNV region with

the orthologous rhesus macaque (Macaca mulatta) region on

chromosome 8p23.1. The rhesus macaque lineage diverged

from the human lineage around 25 Ma, and the rhesus ma-

caque is a biomedical model organism with a sequenced

genome (Rhesus Macaque Genome Sequencing Analysis

Consortium et al. 2007). It is a successful species, having the

widest geographical range of any nonhuman primate

(Southwick et al. 1996). Macaque b-defensins are understu-

died, with the notable exception of DEFB126 which is a major

component of the sperm glycocalyx (Tollner et al. 2008). Only

one study has tested the antimicrobial effect of macaque

b-defensins, focusing just on the human b-defensin 2

(hBD2) ortholog in Macaca fascicularis, and showing that

the macaque ortholog has very different antimicrobial activity

to the human hBD2 (Antcheva et al. 2004).

Materials and Methods

Ethics Statement

Macaques were housed at the California National Primate

Research Center (CNPRC), which is accredited by the

Association for the Assessment and Accreditation of the

Laboratory Animal Care, International. All animal procedures

were approved by the Research Advisory Committee of the

CNPRC and the Institutional Animal Care and Use Committee

at the University of California (Protocol number 177160). All

possible efforts were made to minimize suffering in accor-

dance with the recommendations of the National Research
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Council (Institute for Laboratory Animal Research 2010).

Animals were cohoused in suspended stainless steel cages in

an environment-controlled facility with an ambient tempera-

ture of 21–25 �C, a relative humidity of 40–60%, and a 12-h

light/dark cycle. Water and commercial monkey chow were

provided ad libitum and fresh fruit was provided twice weekly,

with forage enrichment provided daily. Venesection was per-

formed under ketamine anesthesia followed by the adminis-

tration of analgesics to minimize discomfort. No animals were

euthanized.

DNA Samples

For macaques, DNA was isolated using standard techniques

from peripheral whole blood, collected by venesection.

Human DNA samples derived from immortalized lymphoblas-

toid cell lines were purchased from Coriell Cell Repositories

(for the HapMap Collection) or from the European Collection

of Cell Cultures hosted by Public Health England, Porton,

Wiltshire (for HRC-1 human random control panel).

Human Array

A custom NimbleGen tiling oligonucleotide array (NimbleGen

Systems Inc.) was designed with 190,240 probes covering the

defensin region (chr8:6185000-84681910; hg18). Probe

design, array fabrication, and array CGH experiments, includ-

ing DNA labeling, hybridization, array scanning, data normal-

ization, and log2 copy-number ratio calculation were

performed by NimbleGen Systems Inc. Array CGH was carried

out on 68 cell line DNA samples with cell line AF0105 (Hollox

et al. 2005) used as reference DNA for all hybridizations. Array

data were analyzed using the SignalMap Software

(NimbleGen Systems Inc.).

Macaque Array

DNA was hybridized to Agilent Custom CGH 8�15 K oligo

microarrays using Agilent Oligo aCGH Hybridization Kit, ac-

cording to the manufacturer’s protocol. 155 probes corre-

sponding to the rhesus macaque TP53 region (chr16:

7398881–7417940; rheMac2) and NFKB1 region

(chr5:95515208–95571818) were included on the array as

negative control probes targeting non-CNV regions, and

312 probes were included targeting chromosome X, as posi-

tive control probes. Arrays were washed and scanned on an

Agilent Microarray Scanner, and images processed using

Agilent Feature Extraction Software v9.5.3. As each probe

was repeated five times on the array, analysis was performed

on the averaged log signal intensity ratio value for each data

point. After normalization, each data set was analyzed for

CNV boundary detection using BreakPtr, a computational ap-

proach for fine-mapping CNVs based on high-resolution CGH

data (Korbel et al. 2007). A discrete-valued, bivariate hidden

Markov model was generated using a provided training tem-

plate based on results from human known large deletions and

duplications, with a conservative transition probability of

1� 10�6.

Real-Time Quantitative Polymerase Chain Reaction

Real-time quantitative polymerase chain reaction (PCR) was

carried out as previously described (Hornsby 2011). Briefly,

we designed test primer pairs of matched product size ampli-

fying DEFB103 (50-TATTATTGCAGAGTCAGAGGTGGCCG-30

and 50-GTGTCGAGCACTTGCCAATCTGTT-30) and DEFB2L

(50-TACTGCTGCAGACACTCTGCCC-30 and 50-TGAACCTGC

GGTGGCCTCGT-30). A primer pair for b-globin, to act as a

diploid copy number control, was also designed (50-AAGTG

GTGGCTGGTGTGGCTAATG-30 and 50-GGAACCTTTGGTAGA

AATTGGACAGC-30). Genomic DNA (10 ng) was amplified in

1� SYBR green PCR Master Mix (Applied Biosystems) with

0.2mM each of primer. Reactions were cycled for 5 min at

95 �C followed by 2 s at 95 �C, 5 s at 58 �C, and 20 s at

72 �C for 35 cycles. A standard curve was generated for

each amplification using plasmids containing the concate-

nated test sequence and the reference sequence, and esti-

mates of diploid copy number were made by comparing

test and reference amplification dCT values during real-time

PCR amplification, monitored by SYBR Green intercalating

dye.

Paralog Ratio Test

We designed six candidate primer pairs for paralog ratio test

(PRT) to measure CNV of DEFB2L (Veal et al. 2013). Of the six,

one pair of primers (50-[FAM]GCCCTTTGAGCTGAGGCT-30

and 50-GGCCTAGGAGGAAAGAATGG-30) amplified two spe-

cific correctly sized PCR products corresponding to the test

locus (chr8:8075316–8075502) and the reference locus

(chr14:70588986–70589098). The reference locus was not

within a region of common CNV, according to previously pub-

lished aCGH data (Lee et al. 2008). Genomic DNA (10 ng) was

amplified in 10ml of 45 mM Tris–HCI (pH 8.8), 11 mM NH2SO4

4.5 mM MgCl2, 8.7 mM 2-mercaptoethanol, 4.5mM ethyl-

enediaminetetraacetic acid (EDTA), 1 mM of each dNTP,

110mg/ml bovine serum albumin (Ambion), plus 0.5mM

each of primer, and 0.63 U of Taq DNA polymerase (Kapa

Biosciences). Reactions were cycled for 2 min at 95 �C fol-

lowed by 30 s at 95 �C, 30 s at 62 �C, and 30 s at 68 �C for

25 cycles followed by 1 min at 56 �C and 20 min at 68 �C.

Following capillary electrophoresis and quantification using

Genescan software (Applied Biosystems), the ratio of the

area under the test peak to the reference peak was taken as

an estimate of relative copy number. Each reaction was per-

formed five times with the average of the five ratios taken to

represent the relative copy number.

Droplet Digital PCR

We used TaqMan chemistry to distinguish emulsion droplets

positive for the DEFB2L amplicon and droplets positive for the

Ottolini et al. GBE
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PAX9 gene. Primers specific for DEFB2L gene were designed

using rhesus macaque rheMac2 reference sequence: Forward

primer 50-TGATATAAGGAATCCTGTTACCTGC-30, reverse

primer 50-ATGGCTTTTTGCAGCATTTT-30, and probe 50-[FAM]

GCCATATGTCATCCAGGCTT-[MGB]-30. Primer sequences

and fluorescent probe sequence for the macaque reference

diploid gene PAX9 on chromosome 7 were taken from pub-

lished data (Lee et al. 2008). For the droplet digital PCR

(ddPCR), each reaction was prepared in a final volume of

22ml, containing 900 nM of each primer, 250 nM of each

probe, 11ml of 2� ddPCR Supermix (Biorad), and 10 ng of

DNA and emulsion prepared according to the manufacturer’s

instructions. Forty microliters of the emulsion obtained per

each sample was amplified to end point using the following

cycling conditions: 95 �C for 10 min followed by 40 cycles of

30 s at 94 �C, 60 s at 56 �C, and finally 10 min at 98 �C. Reads

with more than 10,000 droplets generated were considered

acceptable. Each reaction was performed four times with the

average of the four ratios taken to represent the relative copy

number.

Identification and Characterization of LINE and SINE
Insertions

We identified repeat elements from rhesus macaque bacterial

artificial chromosome (BAC) sequence data initially using

Repeatmasker Web Server, categorizing the sequence as

human. The repeat sequences distinguishing the paralogous

copies of the defensin duplication were assigned to macaque

repeat families by alignment using ClustalW2 (Larkin et al.

2007) and manual comparison of the sequence with pub-

lished consensus sequences (Liu et al. 2009).

Copy Number Calling

Using the information on CNV boundaries generated by

BreakPtr, we took all aCGH probe values between those

boundaries and, for each of the 16 rhesus macaque samples,

generated a value for the first principal component of the

intensity data. These values were plotted against ddPCR and

PRT values for the same 16 samples, and r2 values calculated

(supplementary fig. S4a, Supplementary Material online). All

the methods were correlated, strongly suggesting that they

were all measuring copy number, with the highest correlation

coefficient between PRT and the first principal component of

the aCGH data. The first principal component of the ddPCR,

PRT, and aCGH values was then calculated to generate a

single figure, reflecting copy number, for each sample. In

the absence of known “gold standard” reference samples,

integer copy number calls were manually estimated by com-

paring this value to ddPCR (supplementary fig. S4b,

Supplementary Material online). ddPCR, although less precise

than PRT based on repeat measurements, appears to be more

accurate and results seem to cluster about integer copy num-

bers, at least for copy numbers 3, 4, and 5. This increased

accuracy may be because it is a digital PCR approach, which

calculates absolute number of molecules of a given sequence

in DNA sample rather than relying on relative amplification

(Hindson et al. 2011; Pinheiro et al. 2011).

BAC Identification and Analysis

Two probes specific for the DEFB2L region spanning

chr8:8068951–8069850 and chr8:8072076–8073004 were

generated by PCR from rhesus macaque genomic DNA and

used to probe Segment 1 CHORI-250 BAC library filters

(BACPAC Resources Center). In total, 21 positive clones

were identified, of which six were selected for further analysis.

BAC DNA was extracted from growing Escherichia coli cul-

tures using cesium chloride ultracentrifugation, and end se-

quences generated using T7 and SP6 sequencing primers.

Fluorescent in situ hybridization (FISH) with BAC 47B11

shows the main site on the distal end of the short arm of

chromosome 8 (fig. 2C and D) with secondary and some dis-

persed signal due to repetitive elements contained within the

BAC, whereas the probe for DEFB2L showed a signal only on

chromosome 8. At interphase, one or two variably condensed

domains are visible with chromosome 8 paint with the DEFB2L

probe at the outside of the domain orientated to the interior

of the nucleus (fig. 2F and G).

Fluorescent In Situ Hybridization

Somatic chromosome preparations were obtained from

rhesus macaque lymphoblastoid cell lines 2BX, r00068, and

2BZ (gift from Dr Gaby Doxiadis) after colcemid arrest, hypo-

tonic treatment with 0.075 M KCl and fixation in 100% meth-

anol:glacial acetic acid (3:1) followed standard procedures

(Schwarzacher and Heslop-Harrison 2000).

Probes used were human paint chromosome 8 red (PH8RD;

Chrombios GmbH, Raubling, Germany), BAC 201P10, BAC

47B11, and four PCR products that together span 4.9 kb of

the DEFB2L duplication (without encompassing repeated ele-

ments) amplified using BAC 47B11 as template. Probes were

labeled with biotin dUTP using BioPrime DNA Labelling System

(Invitrogen, 18094-011) or with digoxigenin-11dUTP (alkali

stable; Roche Applied Sciences) using BioPrime CGH

Genomic Labelling System (Invitrogen, 18095-011) following

the manufacturer’s instructions.

FISH was performed as previously described (Schwarzacher

and Heslop-Harrison 2000). Briefly, slides were pretreated

with RNAse (100mg/ml) and fixed in 4% saline-buffered para-

formaldehyde solution before dehydration in an ethanol

series. The hybridization mixture contained 40–100 ng probe

DNA, optionally 1mg human Cot-1 DNA (Invitrogen); 25 ng

salmon sperm DNA, 40% (v/v) formamide, 1� SSC, 1.25 mM

EDTA and 10% (w/v) SDS and 20ml was applied to the centre

of each slide and covered with a small plastic coverslip.

Following denaturation, hybridization overnight at 37 �C,

and stringent washing, hybridization sites were detected
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with Fluorescein (FITC)-conjugated antidigoxigenin (2mg/ml;

Roche Applied Sciences) and Alexa Fluor 546 streptavidin

(1mg/ml; Life Technologies) before staining with DAPI (40,6-

diamidino-2-phenylindole) and mounting in antifade solution

(R1320, Agar Scientific). Preparations were analyzed with a

Nikon ECLIPSE N80i fluorescent microscope equipped with a

DS-QiMc monochromatic camera. Each metaphase or inter-

phase was captured in three different filter sets and then

overlaid and analyzed using Adobe Photoshop CS3 or NIS-

Elements BR3.1 software (Nikon).

Results

The Human b-Defensin CNV Region Is 322 kb in Size and
Includes Several Other Genes

At the start of this study, it was known that the b-defensin

CNV varied as a continuous block in humans, although the

size of the contiguous block was not clear. Previous estimates

of the size of the contiguous block were based on concor-

dance of copy number assay results spanning 85 kb from

DEFB107 to DEFB4 (Groth et al. 2008), although a recent

study extended this to 157 kb (Taudien et al. 2014)

and pulsed-field gel electrophoresis data suggest that

the repeat unit is at least 250 kb (Hollox et al. 2003). To

address this, we designed a tiling oligonucleotide array

with 190,240 probes covering the region between chr8:

6185000 and chr8:84681910 (hg18, supplementary fig. S1,

Supplementary Material online) and performed aCGH on a

series of 68 DNA samples with known copy number (supple-

mentary table S1, Supplementary Material online). Initial in-

spection confirmed the CNV of the b-defensin region,

together with the more complex CNV of the REPD region

flanking the b-defensin region (supplementary fig. S1,

Supplementary Material online). Consistent with previous re-

sults, we saw no convincing copy number heterogeneity

across the region, with the exception of a loss of signal ob-

served in the intron of DEFB107 in 12 of the 68 individuals.

This was confirmed by PCR to represent an absence of the

HERVK-115 element, a known polymorphic retrotransposon

position in humans (Turner et al. 2001). This element has a

frameshift substitution which results in disruption of the pro

and pol coding regions, although it encodes a potentially full-

length env protein (Turner et al. 2001).

Because the human b-defensin CNV block is embedded

within repeat-rich regions REPP and REPD, methods that iden-

tify CNV regions based on the transition from normal diploid

copy number to variable copy number are unlikely to be ef-

fective. Instead, in order to test the extent of the human

b-defensin CNV contiguous block, we calculated the squared

correlation coefficient (r2) pairwise between the log2ratio for

each aCGH probe and the b-defensin copy number deter-

mined by triplex PRT, across all 68 samples. PRT is a form of

quantitative PCR where test and reference loci are amplified

using the same pair of primers designed on a dispersed, diver-

gent, repeat (Aldhous et al. 2010). The rationale behind this

approach is that intensity values from aCGH probes that are

measuring the same CNV as the PRT will, on average, be

strongly correlated with copy number measured by PRT,

across a large number of samples. Conversely, those intensity

values from aCGH probes outside the CNV region measured

by PRT will not be strongly correlated with copy number mea-

sured by PRT. Importantly, this last tenet holds whether the

aCGH probes map to a diploid non-CNV region or a more

complex CNV unrelated to the CNV measured by the PRT.

These r2 values were plotted against the two assembled

b-defensin repeats present in the human reference genome

and showed a contiguous region of 322 kb where the log2ra-

tio of the aCGH probes is correlated with the b-defensin copy

number (fig. 1a). This region includes the defensin genes

DEFB4, DEFB103, DEFB104, DEFB105, DEFB106, and

DEFB107 as expected, as well the sperm-associated glycopro-

tein SPAG11 and the proline rich 23 domain containing one

gene (PRR23D1). SPAG11 is related to the b-defensin genes,

and is both antimicrobial and necessary for the initiation of

sperm maturation (Horsten et al. 2004; Zhou et al. 2004).

PRR23D1 is transcribed and predicted to encode a protein,

as yet of unknown function. Other human PRR23 family

members (PRR23A, PRR23B, and PRR23C) are testis-specific

genes, according to the RNA sequencing (RNA-Seq) data pro-

vided by Illumina BodyMap 2, strongly suggesting that this

family has a role in the male reproductive system.

Within the 322 kb contiguous region is a small section

which shows a lower level of correlation, due to it being com-

prised of a low copy repeat that also maps to chromosome

4p16.1, 11q13.4, and 12p13.31. This small section contains

DEFB109, FAM90A10 (Bosch et al. 2007), and FAM66B gene

families, as well as a ZNF705 gene, members of the KRAB-

associated zinc-finger family of transcription factors (Huntley

et al. 2006), and members of the USP17L family of deubiqui-

tinating enzymes (Burrows et al. 2005). This is consistent with

it being a core duplicon at the center of other distinct CNV

regions in the genome (Marques-Bonet and Eichler 2009).

According to RNA-Seq data, DEFB109 is strongly expressed

in not only the testis but also the colon and adrenal gland,

FAM66B in a noncoding RNA fairly ubiquitously expressed but

particularly in brain, prostate and breast, and the ZNF705

genes are expressed in the testis. FAM90A10 is annotated

as a pseudogene, but variants predicted to be active exist,

and have been shown to be ubiquitously expressed (Bosch

et al. 2007), USP17L4 is expressed predominantly in the

brain and USP17L8 in the brain and testis. Together with

the fact that the DEFB104, DEFB105, DEFB106, DEFB107,

and DEFB108 show strong expression in the testis (Garcı́a

et al. 2001; Yamaguchi et al. 2002; Semple et al. 2003) and

a mouse knockout of DEFB105, DEFB106, and DEFB107

shows male infertility (Zhou et al. 2013), our data strongly

point to a role of this gene cluster in male reproduction.
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This raises the question of the role of this CNV in modulating

normal male fertility.

The Rhesus Macaque b-Defensin CNV Consists of a 20-
kb Tandemly Repeated Unit Containing Only DEFB2L

We designed an array to investigate the nature and extent of

CNV of the b-defensin locus in rhesus macaques. Using the

region defined previously as being CNV (Lee et al. 2008;

Gokcumen et al. 2011), we designed 875 probes spanning

a region of 982 kb on the rheMac2 genome assembly, and

performed aCGH on 16 unrelated rhesus macaque samples. It

should be noted that this assembly contained a substantial

number of gaps, complicating probe design and resulting in

areas with no coverage, but with a coverage density of ap-

proximately 1.5 probes per kb in assembled regions. We also

identified and mapped the b-defensin genes orthologous to

those in the human b-defensin repeat and confirmed con-

served order and orientation of the genes from DEFB107 to

DEFB2L (the ortholog of human DEFB4) in the macaque ge-

nome (supplementary table S2, Supplementary Material

online). We used a hidden Markov Model approach,

implemented in the software BreakPtr (Korbel et al. 2007),

to search for a potential CNV boundary between the two

genes in our aCGH data, and identified a CNV boundary be-

tween chr8:8069931 and chr8:8071942 reflecting normal

copy number distally but loss of DNA proximally.

In parallel, we isolated BAC clones from a rhesus macaque

genomic library using two sequences as probes

(chr8:8068951–8069850; chr8:8072076–8073004) both in

vitro by probing arrayed-BAC filters and in silico by database

searching. We characterized six BACs containing the DEFB2L

region using a combination of BAC end sequencing, PCR anal-

ysis, and FISH (supplementary table S3, Supplementary

Material online), confirming that DEFB107–DEFB2L were ar-

ranged as predicted in the rheMac2 genome assembly (sup-

plementary table S2, Supplementary Material online), and that

DEFB2L mapped uniquely to distal 8p (fig. 2). FISH also con-

firmed that the BACs mapping to this region contain many

dispersed repeats, and that at interphase DEFB2L is at the

edge of the chromosome 8 domain. The full Sanger sequence

of two further BACs from the same library (CHORI-250) was

available (BAC 243E20 accession AC191454.4, BAC 65I2 ac-

cession AC193549.4) and analysis of these sequences showed

FIG. 1.—Analysis of CNV of b-defensin regions in humans and rhesus macaque. (A) Human. The correlation of each individual arrayCGH probe with the

copy number of 68 samples estimated by PRT is shown as the track r2cn. Also shown are b-defensin genes mapping to the region, segmental duplications as

defined by Bailey et al. (2001), and genomic position. The red arrows indicate the copy number variable repeat (322 kb). (B) Rhesus macaque. The correlation

of each individual arrayCGH probe with the copy number of 16 samples estimated by PRT and ddPCR is shown as the track r2cn. Also shown are Ref-Seq

genes in the region, including the DEFB4 ortholog DEFB2L. Location of the putative ortholog of the other human b-defensins mapping to this region is shown

in supplementary table S2, Supplementary Material online.
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FIG. 2.—Localization of DEFB2L in rhesus macaque by FISH analysis. Double target FISH of BACs 201P10 and 47B11 together with chromosome 8 paint

from human and the gene of interest probe DEFB2L to somatic rhesus macaque metaphase and interphase chromosomes stained blue with DAPI. (For probe

description, see Materials and Methods.) (A, B) BAC 201P10 shows strong signal (digoxigenin-FITC, green, arrow) on the short arm of macaque chromosome
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two copies of the DEFB2L gene on a 20-kb tandem duplication

(supplementary fig. S2, Supplementary Material online), with

a distal boundary of the duplication consistent with the CNV

boundary identified from aCGH data. The proximal boundary

of the duplication, identified in 243E20, is not assembled on

chromosome 8 in the rheMac2 assembly, illustrating the lim-

itations of using a whole-genome shotgun assembly for array

CGH design and the importance of BAC sequencing in assem-

bling complex genomes. The two full-length copies on

243E20 share 91.3% identity at the nucleotide level, and

we can estimate that the duplication event occurred around

a similar time to divergence of the macaque lineage from

baboon (Elango et al. 2009), about 10 Ma (Raaum et al.

2005). However, directly dating the origin of the duplication

is hampered by the lack of convincing orthologous sequences

for the entire 20-kb repeat from other Old World monkeys,

and the sequence homogenizing influence of gene conver-

sion. Fortuitously, in BAC 243E20, the two full-length paralogs

are distinguished by an AluYRa1 SINE insertion on the proxi-

mal copy and an L1PA5 LINE insertion on the distal copy. The

AluYRa1 subfamily has been estimated to be approximately

9.5 Ma old (Han et al. 2007; Liu et al. 2009), putting the ear-

liest origin of the duplication at that point. By designing pri-

mers matching the sequence flanking these insertions, we can

identify the presence of the duplication using PCR (fig. 3).

Analysis of other Old World monkeys with known divergence

times strongly suggests that two paralogous copies distin-

guished by the LINE and SINE insertions arose after the diver-

gence of the lineage leading to Macaca sylvanus (~4 Ma), but

before the divergence of the lineage leading to M. fascicularis

(~3 Ma). This suggests that the duplication could be as recent

as 3 Ma (fig. 3). In M. mulatta, paralogs without the integra-

tion of the LINE or SINE are seen in some individuals, confirm-

ing that the integrations occurred after the initial increase in

copy number.

Initial studies using real-time quantitative PCR approaches

had suggested that, in rhesus macaques, DEFB103 showed a

constant diploid copy number of 2 per diploid genome,

whereas DEFB2L showed CNV (supplementary fig. S3,

Supplementary Material online). With a working hypothesis

that the 20-kb tandem duplication reflected the unit of

CNV, we designed two PCR-based assays to measure the

copy number of this duplication. The first assay is a PRT

(Armour et al. 2007; Veal et al. 2013). The second assay,

based on ddPCR, uses an emulsion PCR approach to create

many thousands of microvolume PCR reactions, with droplets

counted at endpoint for presence or absence of the test and

reference PCR products. Using a combination of the two PCR

assays, together with the first principal component of the

aCGH intensity data spanning the DEFB2L duplication, we

estimated the likely diploid copy number for the DEFB2L

gene in the rhesus macaque samples, which ranges between

three and six copies per diploid genome (supplementary fig.

S4, Supplementary Material online). The multiallelic nature of

the rhesus macaque DEFB2L CNV strongly suggests that du-

plication of DEFB2L has been a recurrent event within the

macaque lineage.

Using this information on the copy number of the 16 sam-

ples, we plotted the square of the correlation coefficient (r2)

pairwise between the log2ratio for each aCGH probe and the

b-defensin copy number across the 16 macaque samples.

Despite a higher background noise, partly due to fewer

probes and smaller sample size, a boundary corresponding

to the distal end of the DEFB2L duplication can be seen, in

agreement with the BreakPtr analysis (fig. 1b). This analysis

confirms that the CNV region does not include the other

b-defensin genes, only DEFB2L, and is very likely to correspond

to the size of the duplication (20 kb).

Different Endogenous Retroviral Long Terminal Repeat
Sequences Were Involved in the Initial Mutational Event
Creating the CNV in Humans and Rhesus Macaques

Analyzing the b-defensin CNV boundary in both macaques

and humans is of interest because it might give insights into

the mutational history of the locus. Using the high-resolution

aCGH data, we inspected the b-defensin CNV boundaries,

defined by an abrupt change in the r2 value of the log2ratio

for each aCGH probe and the b-defensin copy number deter-

mined by the PRT. In this study, the abrupt changes in the r2

value were identifiable by visual inspection (figs. 1a and 4) but

in future studies such changes could be identified automati-

cally using hidden-Markov model type approaches.

In humans, analysis of both assembled regions shows that

at the boundary between the b-defensin CNV and more com-

plex flanking regions is a section of a long terminal repeat

(LTR) (LTR5A) of the ape-specific endogenous retrovirus

FIG. 2.—Continued

8 (Mml8) that is characterized by the human chromosome 8 paint (red). Many chromosomes also show dispersed signal (A) that is consistent with the BAC

containing retroelements and other repeats that are not observed under stringent image analysis (B). The strong sites on Mml8 and some secondary sites on

other chromosomes are clearly visible. (C, D) BAC 47B11 (digoxigenin-FITC, green, C) shows few dispersed sites and the main locus on the distal end of the

short arm of chromosome 8 (arrows); a few stronger secondary sites are also visible. DEFB2L shows pairs of dots (Biotin Alexa 546, red; arrows in D) in the

same region of chromosome Mml8 as the BAC 47B11 probe. (E) Metaphase chromosome Mml8 identified by red fluorescence of the human chromosome 8

paint (red) shows a single pair of dots from DEFB2L (digoxigenin-FITC yellow green, arrow) at the distal end of the short arm. (F, G) Interphase nuclei probed

with human chromosome 8 paint (red) and DEFB2L (digoxigenin-FITC green). One (F) or two (G) domains of various compactions are visible with the defensin

gene at the edge of the domains orientated toward the interior of the nucleus. Bar 10mm in (A)–(G) and 5mm in (E).
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family ERVK (Repeatmasker database [Smit et al. 2010], http://

www.repeatmasker.org, last accessed October 29, 2014), or-

ganized antiparallel to each side of the CNV region (fig. 4). The

antiparallel arrangement of the LTR reflects the antiparallel

arrangement of the complex segmental duplication-rich

region flanking the CNV boundaries, a region which contains

olfactory receptor genes. This arrangement suggests that this

region is closely tied to the polymorphic recurrent inversion of

8p23.1, which is known to involve the REPP and REPD regions

(Giglio et al. 2001; Salm et al. 2012).

In rhesus macaques, the ends of the tandem repeat can be

defined more precisely since, at least for the distal boundary,

the transition is to single copy sequence (rather than more

complex CNV regions as observed in human). By analyzing

BAC 243E20 and 65I2 sequences, and aCGH data (supple-

mentary fig. S5, Supplementary Material online), the bound-

ary can be defined as part of a tandemly organized LTR

(LTR65) of the endogenous retrovirus family ERV1, found in

all eutherian mammals.

Paralogous and Allelic Variants of DEFB2L Are Expressed
in the Gut and Have Undergone Natural Selection

DEFB2L is expressed in the rhesus macaque gastrointestinal

tract, and previous sequencing of cDNA derived from gastric

biopsies has revealed new transcripts with nonsynonymous

substitutions (DEFB2L1–L5 [Hornsby et al. 2008], table 1).

Here we report two new variants identified from further tran-

script sequencing (DEFB2L6 and DEFB2L8), defined by varia-

tion at nonsynonymous sites. The advantage of sequencing

transcripts is that it shows that the variants are actively tran-

scribed and are not likely to be pseudogenes. However, such

analysis does not establish whether the variation observed is

due to sequence differences between closely related paralogs

(paralogous sequence variant), between alleles (single

FIG. 3.—Estimation of the most recent possible date of DEFB2L duplication by analysis of retroelements insertions. PCR analysis of the

presence or absence of an Alu insertion and an L1 insertion in the 20-kb b-defensin repeat. Using primers designed on rhesus macaque sequence,

amplicons from Old World monkeys with increasing divergence dates from rhesus macaque are shown. Estimated divergence dates are from Perelman

et al. (2011). The numbers on the left indicate sizes of DNA molecular weight markers, in base pairs.
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FIG. 4.—Analysis of human CNV boundary regions. The four panels show the hg18 reference genome (UCSC genome browser) at the distal and

proximal boundaries of the distal and proximal assembled b-defensin repeat regions (see fig. 1). In all four cases, the boundary of the b-defensin CNV, as

measured by the correlation with copy number measured by PRT (track “Gen_PRT correlation 2”), is at the LTR65 element.
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nucleotide polymorphism), or between paralogs and alleles

(multisite variant). Because each individual BAC is derived

from one of the two chromosome 8 homologs, identification

of variants between DEFB2L copies in a BAC shows that these

variants occur in cis, that is, between true paralogs. In silico

analysis of the two BAC DNA sequences from the database

(BAC 243E20 and BAC 65I2) confirmed the existence of two

variants (DEFB2L7 and DEFB2L6; table 1). In addition, we

could identify DEFB2L6 and DEFB2L7 (BAC 243E20), together

with DEFB2L1 and DEFB2L7 (BAC 65I2) as true paralogs.

The identification of true paralogs from BAC sequences

allows a McDonald–Kreitman test to be constructed compar-

ing the diversity between allelic copies with distance between

paralogous copies (fig. 5). Analysis of the four BAC DEFB2L

coding sequences, with a Jukes–Cantor correction, suggests

that positive selection has acted on the two paralogs following

duplication (P = 0.015), further supporting an adaptive role for

amino acid substitutions differing between DEFB2L variants.

Discussion

Previous work has identified the b-defensin region on chro-

mosome 8 as a CNV hotspot in primates. However, because

of uncertainties in the assembly or limitations of aCGH reso-

lution, these studies could not distinguish whether the recur-

rent CNV is mediated by a shared genomic structure in the

hotspot region, characterized by a similar pattern of segmen-

tal duplications, or by truly independent events derived from a

distinct genomic structure. Our work clearly shows an inde-

pendent origin of b-defensin CNV in humans and macaques,

with the macaque CNV spanning DEFB2L (the ortholog of

human DEFB4), but not the orthologs of other b-defensin

genes that show CNV in humans. Moreover, LTRs of different

endogenous retroviruses have mediated the initial CNV-form-

ing event, and the allelic extent of CNV in macaques is similar

to humans (Hollox et al. 2003; Hardwick et al. 2011) and

chimpanzees (Hardwick et al. 2011), which range from three

to six copies per diploid genome. Taken together, this provides

strong evidence of convergent evolution of DEFB4 CNV as a

molecular phenotype, and argues for selection for variability

per se. Yet arguments for the selection of variation are con-

troversial, because it is difficult to envisage how the trait of

variability can confer an immediate reproductive advantage.

Nevertheless, it can be reconciled if CNV is regarded as a locus

with a higher mutation rate generating novel b-defensin copy

Table 1

Rhesus Macaque DEFB2L Variants

Variant Unambiguously

Observed in

Number of

Amino Acid

Changes

Amino Acid

Changed

Previously

Reported?

DEFB2L7 Transcript, 65I2a, 243E20a,

246K23, 47B11, 201P10

0 0 Reference genome rheMac2

DEFB2L1 Transcript, 65I2a 4 G45R, V52I, P56S, L57A Hornsby et al. (2008)

DEFB2L6 Transcript, 243E20a 3 G45R, P56S, L57A Novel

DEFB2L2 Transcript only 1 L32I Hornsby et al. (2008)

DEFB2L3 Transcript only 4 F22S, G45R, P56S, L57A Hornsby et al. (2008)

DEFB2L4 Transcript only 4 F12L, G45R, P56S, L57A Hornsby et al. (2008)

DEFB2L5 Transcript only 4 G45R, P56S, L57A, K63N Hornsby et al. (2008)

DEFB2L8 Transcript only 6 F12L, R26G, S34G, G45R, P56S, L57A Novel

aBACs informative for the discrimination of paralogous and allelic DEFB2L variants.

FIG. 5.—Using the McDonald Kreitman test to detect selection between rhesus macaque DEFB2L paralogs. The two fully sequenced BACs, each with

two tandem 20-kb DEFB2L repeats, are shown. BAC 65I2 has DEFB2L1 and DEFB2L7 in tandem, whereas BAC 243E20 has DEFB2L6 and DEFB2L7 in

tandem. The number of nonsynonymous and synonymous nucleotide changes between paralogs (divergence) and between alleles (diversity) is shown next

to the double-headed arrows. Positions of exon-start and -end bases, numbered according to the BAC sequence position, are also shown.
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number alleles favored by frequency dependent selection, for

example. Although the mutation rate of the rhesus macaque

CNV is not known, family studies have suggested a mutation

rate of the human locus of around 0.7% per generation (Abu

Bakar et al. 2009). Alleles of different copy number, while

clearly inherited in a Mendelian manner, combine to give a

diploid copy number genotype which can vary substantially

between parent and child, and between siblings, due to

normal segregation of homologous chromosomes. It is tempt-

ing to speculate that this may be advantageous in animals that

are organized in social kinship groups sharing the same envi-

ronmental exposure to pathogens.

Because gene conversion between segmental duplications

maintains sequence identity, it has recently been suggested

that this is an explanation of why CNV hotspots, such as the b-

defensin CNV hotspot, appear to persist throughout evolution

during the divergence of different species (Fawcett and Innan

2013). This model would also argue against an adaptive role

for CNV hotspots, which, in such a model, could be a neutral

consequence of sequence homogenization of segmental du-

plications. Our work argues against this model, at least for the

persistence of the b-defensin CNV hotspot since the diver-

gence of macaque and human lineages, because the genomic

structure sponsoring the CNV is different in macaques and

humans. The b-defensin hotspot might be an exception,

where truly recurrent CNV formation across different lineages

is favored by selection for new functional roles for b-defensins,

or modification of existing roles in fertility, signaling and anti-

microbial activity. Further high-resolution mapping of other

CNV hotspots across mammals is needed to determine

whether Fawcett and Innan’s model holds for most CNV

hotspots.

The identification of the CNV boundary in humans has two

important consequences. First, identification of the boundary

within an LTR as part of a large antiparallel segmentally dupli-

cated region suggests a link to the frequent polymorphic in-

version at 8p23.1, where the 5-Mb region between REPP and

REPD is inverted. This is because inversions are sponsored by

recurrent nonallelic homologous recombination between an-

tiparallel repeats. Analysis of potentially recombinant BAC se-

quences from this region has previously suggested multiple

inversion breakpoints, particularly centered on the olfactory

repeat region, but the closest is at least 50 kb away from

the b-defensin CNV boundaries (Salm et al. 2012). So al-

though it looks very likely that the entire b-defensin copy

number region was repeatedly carried between REPP and

REPD by inversion formation (Abu Bakar et al. 2009; Salm

et al. 2012), the relationship between the inversion and

CNV remains unclear, and is worthy of further study.

The second important consequence of the identification of

the CNV boundary in humans is that nondefensin genes

within the repeat unit that are confirmed as copy number

variable may show alteration of expression levels concomitant

with the CNV. Several of these genes are either exclusively

expressed or most strongly expressed in the testis.

Unfortunately, robustly testing the dependence of copy

number with expression levels will be challenging because

of limitations of tissue sampling. Despite that challenge, de-

termining the function of these genes, as well as the associa-

tion of male fertility phenotypes with both copy number and

sequence variation, should be a research priority.

We also observed evidence of positive selection on DEFB2L-

coding sequences after duplication in macaques. This is not

observed in humans, where common coding variation has not

been found at DEFB4 (and indeed at most other defensin

genes in the repeat unit). Instead, in humans, it seems that

some of the sequence variants between copies affect the level

and pattern of gene expression in both DEFB4 (Groth et al.

2008) and DEFB103 (Hardwick et al. 2011); for DEFB103,

population diversity data provide modest support for selection

on such noncoding elements (Hardwick et al. 2011). We pro-

vide evidence that selection in macaques has favored DEFB2L-

coding sequence divergence after duplication 3–9.5 Ma. The

functional basis for this selection is not yet clear; the functions

of the DEFB2L proteins are not known, although because of

their homology with human hBD2, they are likely to be anti-

microbial and immunomodulatory, although perhaps with al-

tered specificities such as has been found in an ortholog of

hBD2 from M. fascicularis (Antcheva et al. 2004). By compar-

ison with the human hBD2, the mature peptide is encoded by

amino acids 28–64. Therefore, all except two of the predicted

amino acid changes in the DEFB2L variants are in the mature

protein and have the potential to affect function. A prelimi-

nary analysis shows that most of these variants lie within a

predicted loop connecting two-antiparallel b strands, a region

that has been shown by comparative analyses between pri-

mates and rodents to be under positive selection (Semple et al.

2005). Also of note is that the L32I change in DEFB2L2 is

within a six-amino acid motif that is responsible for hBD2

binding to the chemokine receptor CCR6 (Taylor et al. 2007).

The extensive sequence variation of DEFB2L is worthy of

further study in wild rhesus macaques and other macaque

species, as it may not only provide information on selection

but also yield a structure–function analysis of important amino

acids in b-defensin 2, which may lead to new therapeutics that

could retain, for example, antimicrobial function, but not in-

flammatory properties.

Supplementary Material

Supplementary figures S1–S5 and tables S1–S3 are available

at Genome Biology and Evolution online (http://www.gbe.

oxfordjournals.org/).
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