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Automated unsupervised multi-parametric classification of
adipose tissue depots in skeletal muscle

Alexander Valentinitsch, MS1,2, Dimitrios C. Karampinos, PhD1, Hamza Alizai, MD1,
Karupppasamy Subburaj, PhD1, Deepak Kumar, PhD1, Thomas M. Link, PhD1, and
Sharmila Majumdar, PhD1

1Department of Radiology and Biomedical Imaging, University of California, San Francisco, San
Francisco, CA, USA
2Computational Image Analysis and Radiology Lab, Department of Radiology, Medical University
of Vienna, Vienna, AUSTRIA

Abstract
Purpose—To introduce and validate an automated unsupervised multi-parametric method for
segmentation of the subcutaneous fat and muscle regions in order to determine subcutaneous
adipose tissue (SAT) and intermuscular adipose tissue (IMAT) areas based on data from a
quantitative chemical shift-based water-fat separation approach.

Materials and Methods—Unsupervised standard k-means clustering was employed to define
sets of similar features (k = 2) within the whole multi-modal image after the water-fat separation.
The automated image processing chain was composed of three primary stages including tissue,
muscle and bone region segmentation. The algorithm was applied on calf and thigh datasets to
compute SAT and IMAT areas and was compared to a manual segmentation.

Results—The IMAT area using the automatic segmentation had excellent agreement with the
IMAT area using the manual segmentation for all the cases in the thigh (R2: 0.96) and for cases
with up to moderate IMAT area in the calf (R2: 0.92). The group with the highest grade of muscle
fat infiltration in the calf had the highest error in the inner SAT contour calculation.

Conclusion—The proposed multi-parametric segmentation approach combined with quantitative
water-fat imaging provides an accurate and reliable method for an automated calculation of the
SAT and IMAT areas reducing considerably the total post-processing time.

Keywords
magnetic resonance imaging (MRI); water-fat imaging; subcutaneous adipose tissue (SAT);
intermuscular adipose tissue (IMAT); fat quantification; multi-parametric clustering

INTRODUCTION
Metabolic abnormalities including obesity and type 2-diabetes have been associated with
alterations in the volume and the regional distribution of adipose tissue in different body
parts, including abdominal and skeletal muscle regions (1,2). Specifically, metabolic
diseases have been linked with an increase in the volume of the visceral adipose tissue
(VAT) (3), which constitutes the fat between abdominal organs, and with an increase in the
volume of the intermuscular adipose tissue (IMAT) (4–6), which is composed of the fat
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located between the muscle fiber bundles and beneath the muscle fascia. The subcutaneous
adipose tissue (SAT) compartment, consisting of fat located directly beneath the skin, is
usually considered as a metabolically-different fat depot than the VAT and IMAT
compartments, especially in the context of type 2 diabetes (5).

Magnetic Resonance Imaging (MRI) constitutes a powerful non-invasive imaging tool for
determining adipose tissue volume and regional distribution in both cross-sectional and
longitudinal studies (7–9). An MRI-based characterization of the body fat depots, in general,
requires: (a) a robust fat quantification, and (b) a reproducible extraction of subcutaneous
fat, abdominal and skeletal muscle regions, in order to determine the volume of SAT, VAT
and IMAT respectively. The extraction of the volume of the different fat depots has been
traditionally accomplished using T1-weighted imaging. Although sensitive to coil profile
effects, T1-weighted imaging is a simple and reliable technique for investigating large fat
depots (7,8). However, it needs to be combined with effective segmentation approaches in
order to separate adipose tissue from non-adipose tissue, especially in the presence of strong
partial volume effects while investigating small fat depots like the VAT and IMAT
compartments (10,11). More recently T1-weighted imaging has been combined with water
suppression (12,13) and with dual acquisitions using water suppression and fat suppression
(14) for the development of clustering image-processing approaches to automatically
segment the adipose tissue into different compartments.

Chemical shift-based water-fat separation approaches, like multi-point Dixon methods
(15,16) and the iterative decomposition of water and fat with echo asymmetry and least-
squares estimation (IDEAL) method (17,18), have been recently applied to measure a
quantitative proton density fat fraction map in different body parts. These techniques have
two important advantages compared to T1-weighted imaging. First, chemical shift-based
water-fat separation techniques can inherently differentiate adipose tissue from non-adipose
tissue by computing fat area based on fat fraction maps that are inherently insensitive to coil
profile effects. Therefore, chemical shift-based water-fat separation techniques are ideal for
measuring the area of small fat depots in the presence of strong partial volume effects (19).
Second, the inherent multi-modal imaging (MMI) property of chemical shift-based water-fat
separation makes it an ideal candidate for multi-parametric segmentation of the different
adipose tissue compartments, as has been previously proposed in dual T1-weighted
acquisitions using water suppression and fat suppression (14).

Recent studies employing water-fat imaging techniques have suggested approaches for
automated classification of adipose tissue depots in the abdominal regions for differentiating
between SAT and VAT (20,21). To the best of our knowledge, there has been no previous
study employing a multi-parametric segmentation technique on data acquired using a
quantitative chemical shift-based water-fat separation approach for differentiating between
SAT and IMAT. Defining tissue depots (i.e. manually and semi-automatically) is usually
time consuming and there is need for a faster automated algorithm. An automated, accurate
and reproducible segmentation technique for identifying the SAT and the muscle region can
be technically challenging due to severe muscle fatty infiltration and strong increase of
intermuscular fat in numerous pathologic conditions (22).

The purpose of the present study is (a) to develop an automated unsupervised multi-
parametric segmentation method of the SAT and muscle region to determine SAT and
IMAT areas based on the images from a quantitative chemical shift-based water-fat
separation approach and (b) to validate the developed methodology in two different subject
groups, one including the calf muscles of postmenopausal female subjects with and without
diabetes and one including the thigh muscles of older subjects with and without knee
osteoarthritis.
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MATERIALS AND METHODS
Subjects

The present study included data from the MR images of calf muscles of 28 female subjects
(age: 65.0 ± 5.8, BMI: 27.5 ± 4.2) and the thigh muscle of 20 subjects (age: 56.5 ± 8.5,
BMI: 23.8 ± 5.6). The subjects included in the present study are derived from two separate
patient studies. The calf muscle images were obtained from subjects enrolled in a study
aiming to investigate differences in the regional distribution of skeletal muscle adipose
tissue in postmenopausal women with type-2 diabetes compared to healthy controls (19).
Inclusion criteria were defined as postmenopausal status, age between 50–75 years, body
mass index (BMI) 18–37 kg/m2, and the ability to walk without assistance. The thigh muscle
dataset is from a cohort of older subjects (> 35 years), with (Kellgren-Lawrence grade = 2, 3
or 4, symptomatic) and without (Kellgren-Lawrence grade = 0 or 1, no knee pain) knee
osteoarthritis to investigate the relationship between the longitudinal changes in the
morphology and composition of knee articular and meniscal cartilage, trabecular bone and
thigh muscles (23–26). Subjects were excluded from either study if they had contra-
indications to MR scanning. Both studies were approved by the local Institutional Review
Board and conducted in accordance with the Committee for Human Research. All subjects
gave written informed consent prior to participation in the two studies.

16 subjects with type-2 diabetes and 12 without were included for the evaluation of the
performance of the developed method in the calf. Additionally, 7 subjects with knee
osteoarthritis and 17 without were used for the evaluation of the method performance in the
thigh.

MRI measurements
The right middle-calf muscle region of the first group (elderly postmenopausal women) and
the distal thigh muscle region (area 14 cms proximal to superior pole of patella) of the
second patient group (adults with and without knee osteoarthritis) were scanned on a 3.0 T
Signa HDx scanner (General Electric Healthcare, Waukesha, WI) using an 8-channel low
extremity coil with an investigational version of a 3D six-echo spoiled gradient echo
(SPGR) sequence with a mono-polar gradient readout. The SPGR sequence acquired six
echoes in three repetitions (with two echoes per repetition time) with two fly-back readouts,
and echo spacing selected to avoid water-fat phase shifts of 0 or 2π. The parameters of the
calf acquisition included: TR/TE/ΔTE=12/1.4/0.7 ms, flip angle=3°, bandwidth=83.33 kHz,
180×180 matrix size, FOV=18 cm, 30 slices with 4 mm thickness. The parameters of the
thigh acquisition included: TR/TE/ΔTE=10.8/1.3/0.7 ms, flip angle=3°, bandwidth=83.33
kHz, 180×180 matrix size, FOV=20 cm, 28 slices with 5 mm thickness. The acquisition time
was 3 min and 45 s for the calf scan and 3 min and 7 s for the thigh scan.

The multi-echo SPGR images were reconstructed using an online version of the IDEAL
technique employing a region growing algorithm for the fieldmap estimation to avoid water-
fat swaps (27). The separation of water and fat signal was based on the IDEAL algorithm
(18) with a multi-peak fat spectrum model and single T2* correction (28), using the
precalibrated fat spectrum as in (29). A six-echo acquisition was employed as
reconstructions of six-echo data have been previously frequently used in single T2*-
corrected water-fat separation and have been shown to be not affected by the susceptibility-
induced fat resonance shift effect in skeletal muscle (30). In-phase images were calculated
by taking the sum of the separated water and fat images. Out-of-phase images were also
calculated by taking the absolute value of the difference of the separated water and fat
images. Fat fraction images were generated by computing the ratio of the separated fat
signal over the sum of the separated water and fat signals. A 3° flip angle was used to
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minimize the bias on the fat fraction induced by the large T1 difference between water and
fat in skeletal muscle (31–33). A hybrid approach combining magnitude and complex fitting
was used to compensate for eddy current effects, as proposed by Yu et al. (34).

Automatic segmentation algorithm
The algorithm developed for the segmentation of the muscle and fat depot compartments in
order to quantify SAT and IMAT areas was based on the same multi-parametric clustering
approach for both calf and thigh datasets, using the multi-modal images derived after the
water-fat separation step. Unsupervised standard k-means clustering was employed to define
sets of similar features (k = 2) within the whole multi-modal image. Water, fat and in-phase
images composed the multi-modal volume, provided as input to the algorithm. All the
images (e.g. water, fat, and in-phase images) were first preprocessed by applying a Gaussian
smoothing operator (sigma = 0.3, Gaussian kernel = 1.2). Additionally, a median filter
(which is a nonlinear filter) was applied on the in-phase images. The automated image
processing chain was composed of three primary stages. The different steps of the three
segmentation stages are schematically shown in Figure 1 and described in detail below.
Every stage resulted in a different binarization step of the image. In the first stage (tissue
region segmentation), the whole tissue was segmented by clustering the distribution of three
different diagnostic images (in-phase, water and fat images) to extract the outer contour of
the SAT region. In the second stage (muscle region segmentation), the muscle region was
determined by clustering on the tissue region (masked from stage 1) using water and fat
images to extract the inner contour of the SAT region. In the third stage (bone region
segmentation), the bones were identified and distinguished from the muscle region. The
bone identification stage was split into two substages. In order to stabilize the performance
of the algorithm in cases with thin cortical bone, the bone marrow was first extracted, using
the same features as the ones used for clustering on the masked compartment in stage 1. The
cortical bone was next identified, using a threshold, defined as local minimum between the
smallest and highest peak of the histogram. In the thigh segmentation process, the cortical
bone of the femur has in general high thickness and the first step of the bone segmentation
stage was therefore not necessary. The combination of all stages resulted in the extraction of
SAT and muscle regions, which could be used to compute SAT and IMAT areas
respectively.

Stage 1: Tissue region segmentation—At first the tissue and the background phase in
the image were discretized using a multi-parametric clustering method based on three
different intensity values (in-phase, water and fat) (step 1a). To identify the outer contour of
the SAT region 2D morphological closing (3 pixels, equivalent to 2.1 mm) was performed
on the binary image to close all perforations (i.e. vessels and small bones) in the muscle
(step 1b). The residual void (i.e femoral or tibial bone) in the muscle was removed using 2D
connectivity criterion to select the single largest mutually connected object to fill the tissue
(step 1c). The result of stage 1 was a mask of the specific tissue (i.e. calf or thigh) (mask A
in Fig. 1).

Stage 2: Muscle region segmentation—The boundary between the SAT and the
muscle region for IMAT calculation was identified by first clustering only in the masked
tissue region with two different intensity values (fat and water) (step 2a). Then a 2D
morphological opening (2 pixels, equivalent to 1.4 mm) was performed to remove primarily
the skin tissue (i.e. dermis and epidermis combined) (step 2b). A 2D morphological closing
was then performed with scaling depending on the selected tissue (calf: 5 pixels, equivalent
to 3.5 mm; thigh: 20 pixels, equivalent to 14 mm) (step 2c). Again the residual void (i.e.
fibula) was filled by using a set of background pixels that cannot be reached by filling in the
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background from the boundary of the muscle (step 2d). The result of stage 2 was a mask of
the muscle region (mask B in Fig. 1).

Stage 3: Bone region segmentation—Given the underlying anatomy in the calf, the
extraction of two bones was necessary (fibula and tibia). In order to improve the
performance of the method in slices with thin cortical bone, the bone segmentation process
had to be split into two substages. In the first substage, the bone marrow of either the fibula
or tibia was classified using multi-parametric clustering of three different intensity values
(in-phase, water and fat) (step 3a). After imposing the mask of the muscle region, 2D
morphological opening was performed to remove small voids (2 pixels, equivalent to 1.4
mm), so that only the bone marrow remained in the binary image (step 3b). In the second
substage, the cortical bone was removed by thresholding the in-phase image (step 3a*). The
threshold was calculated by finding the local minimum between the first peak (assumed to
be the black appearance in the image) and the proximate high peak (assumed to be the dark
gray area in the image) in the histogram. The thresholded image was then inverted and the
inverted image was masked with the specific tissue volume of interest (i.e. calf) to leave
only the cortical bone voxels (step 3b*). The image resulting from the bone marrow
segmentation substage was subtracted from the image resulting from the cortical bone
segmentation substage (step 3c). The residual void (i.e bone marrow) in the muscle was
removed using 2D connectivity criterion to select the single largest mutually connected
object to fill the bone tissue (step 3d). Remaining areas, which were smaller than the
identified bones (i.e. tibia, fibula, femur) were removed. Given the underlying anatomy in
the thigh, the extraction of only one bone was necessary (femur). Given the relative high
thickness of cortical bone in the femur, the bone segmentation was accomplished using the
threshold-based approach. The result of stage 3 was a mask of the bone (mask C in Fig. 1).

Figure 2 shows the definition of SAT and IMAT regions based on the combination of the
masks from the three segmentation stages (masks A, B and C).

Comparison with manual segmentation
A single slice for each subject from the calf and thigh group was selected and the automatic
segmentation algorithm, implemented in MATLAB (Mathworks, Natick, MA, USA) was
run to define the aforementioned masks (masks A, B and C). To test the performance of the
proposed automated multi-parametric classification, a trained operator was also asked to
generate the three masks using manual contouring. The operator manually contoured the
outer contour of the SAT area and the bone contour on the in-phase images. The fat-only
images were used for manually contouring the inner contour of the SAT area. The result of
the manual contouring was considered as the gold standard and used as ground truth (GT)
for the validation of the automatic segmentation.

Agreement in contours—The agreement between the masks derived using the automatic
and the manual segmentation was assessed using the Dice coefficient (35) for the SAT mask
and the muscle masks (mask B) without including the bones (mask C). In general a DC
value of 0 would indicate no overlap, whereas a value of 1 would indicate perfect
agreement. As a complementary local measure the local contouring error (LCE) for SAT
outer contour, SAT inner contour and bone contour was evaluated. The LCE was defined as
the mean distance between the closest corresponding pairs of contouring points of the
manual contours and contours resulting from the multi-parametric segmentation.

Agreement in fat depots areas (SAT and IMAT)—The SAT area was determined by
computing the area of SAT mask derived using both the automatic and manual
segmentation. The IMAT area was determined by multiplying the mean fat fraction in the
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muscle region mask (excluding cortical bone and bone marrow regions) with the area of the
muscle region mask (excluding cortical bone and bone marrow regions), using both the
automatic and manual segmentation.

For the calf dataset, the performance of the automatic segmentation compared to the manual
segmentation in terms of computing SAT and IMAT areas was evaluated for different
degrees of muscle fat infiltration. Specifically, the calf muscle data were grouped according
to the presence of fatty infiltration in the medial gastrocnemius muscle (MG) based on a 5-
point semi quantitative scale described by Goutallier (36): G0 (normal), G1 (some fatty
streaks), G2 (less fat than muscle), G3 (as much fat as muscle), G4 (more fat than muscle).
The grading was performed by a trained radiologist (with two years of experience in
musculoskeletal radiology) and was based on visual assessment of muscle fat infiltration on
T1-weighted fast-spin echo images (acquired on the same volume as the SPGR calf images)
(22). For the thigh dataset, the performance of the automatic segmentation compared to the
manual segmentation in terms of computing SAT and IMAT areas was evaluated for all
subjects independent of gender or age.

Statistical analysis
A regression analysis was performed in order to study the agreement in SAT and IMAT area
using the proposed automatic approach with the SAT and IMAT area using the automatic
approach for both datasets (in the calf and the thigh). A two-tailed Student’s t-test
(significance level p = 0.05) was used to detect differences in slopes and intercepts in the
study of the relationship for the determined fat depot areas using the automatic and manual
approach. In addition, Bland-Altman plots for the fat depot areas using the automatic and
manual approach were generated. The PASWStatistics 18.0 software (SPSS, Inc., Chicago,
IL, USA) was used for the entire statistical analysis.

RESULTS
Figure 3 highlights the performance of the proposed multi-parametric segmentation
algorithm in the calf by showing representative results for the SAT mask (i.e. contours are
superimposed on the fat and water image) and the muscle region mask (i.e. contours are
superimposed on the water image) in the calf of subjects with different grades of muscle
infiltration in the medial gastrocnemius (MG), characterized by the Goutallier grade. Figure
4 highlights the performance of the proposed multi-parametric segmentation algorithm in the
thigh by showing representative results for the SAT mask (i.e. contours are superimposed on
the fat and water image) and the muscle region mask (i.e. contours are superimposed on the
water image) in the thigh of two male and two female subjects with different ages (one
younger and one older subject).

In the calf, the group data analysis showed an overall agreement of the SAT and muscle
region without including the bone between the proposed automatic method and the ground
truth (GT), as expressed by the Dice coefficient (DC), equal to 0.968 ± 0.014 and 0.971 ±
0.016 respectively. Moreover, the accuracy of the SAT region extraction was stable across
muscle infiltration patterns up to grade G3, with Dice coefficients 0.968 ± 0.009, 0.970 ±
0.005, 0.972 ± 0.005 and 0.968 ± 0.005 for grades G0, G1, G2 and G3 respectively. Similar
accuracy was observed for the extraction of the muscle regions with Dice coefficients 0.974
± 0.006, 0.975 ± 0.004, 0.977 ± 0.005 and 0.967 ± 0.011 for grades G0, G1, G2 and G3
respectively. The lowest overlap between automatic and manual segmentation was observed,
as expected, for the group with the highest muscle infiltration grade in the medial
gastrocnemius (MG): the Dice coefficient for the SAT region was 0.956 ± 0.034 and the
Dice coefficient for the muscle region without the bones was 0.948 ± 0.036. The calf Dice
coefficient results were also consistent with the local contouring error (LCE) results, shown
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in Figure 5. The group with the highest grade of fat infiltration in the medial gastrocnemius
muscle (G4) had the highest local contouring error for the SAT inner contour, which was
equal to 1.4 ± 1.1 pixels. However, all other contours performed below the 1-pixel error
mark (Fig. 5).

In the thigh, the group data analysis resulted in an overall Dice coefficient for the
segmentation of the SAT region and the muscle region without the bone equal to 0.972 ±
0.008 and 0.979 ± 0.008 respectively. There was no significant difference in the
segmentation performance between female and male subjects. The thigh Dice coefficient
results were also consistent with the local contouring error (LCE) results, shown in Figure 5.
The LCE for the SAT inner contour was 1.1 ± 0.3 pixels (female: 1.2 ± 0.3 pixels, male: 1.1
± 0.2 pixels). The bone and the SAT outer contour had an LCE below 0.4 pixels (Fig. 5).

Table 1 summarizes linear regression results on the agreement of SAT and IMAT area
estimates between the automatic segmentation approach and manual contouring (in the calf
and the thigh). Figure 6 shows the regression analysis relationships between the IMAT area
computed with the automatic segmentation and the IMAT area computed with the manual
segmentation in the calf and the thigh. Figure 7 shows the Bland Altman plots for the
assessment of both SAT and IMAT areas by the automatic and manual segmentation in the
calf and the thigh.

The slope of the relationship between the SAT area determined with the automatic and the
SAT area determined manual segmentation was not statistically significant from unity in
both the calf and the thigh (Table 1). The intercept of the relation between the SAT area
determined with the automatic and SAT area determined with the manual segmentation was
also not statistically significant from zero in both the calf and the thigh (Table 1).

In the calf, the extraction of the IMAT area using the automatic approach had higher
agreement with the IMAT area using the manual approach in areas with low and moderate
area of IMAT (e.g. IMAT area below 6 cm2) (Fig. 6). The slope of the relation between the
IMAT area determined using the automatic approach and the IMAT area determined using
the manual approach differed significantly from the unity (Table 1) due to underestimation
of IMAT area using the automatic segmentation in the cases of muscles with severe fat
infiltration or high area of IMAT (Fig. 6). By excluding the cases with IMAT area above 6
cm2 in the regression analysis, the performance increased significantly (R2: 0.92: slope:
0.924 ± 0.069, intercept: 0.002 ± 0.028) and the slope and intercept were not significantly
different from unity and zero respectively. In the thigh, only the intercept of the relationship
between the IMAT area determined using the automatic approach and the IMAT area
determined using the manual approach differed significantly from zero (Table 1) due to a
slight overestimation of IMAT area using the automatic approach and including a small part
of subfascial fat into IMAT (Fig. 6).

Figure 8 shows two different extreme cases from the calf dataset where the automatic
segmentation overestimated or underestimated the IMAT area (i.e. visible outliers in
regression plots in Figure 6). The automatic segmentation in the first subject of Fig. 8 did
not perform as expected due to the complete fat infiltration of the medial gastrocnemius
muscle. The automatic segmentation in the second subject of Fig. 8 did not perform as
expected due to the very thin cortical bone in the tibia.

The manual segmentation of the SAT and muscle regions in a single slice of the calf or the
thigh took up to 4 minutes, whereas the automatic segmentation of the SAT and muscle
regions of a single slice using the proposed automatic segmentation approach took up to
0.25 seconds (in the present implementation on a MAC Pro: 2 * 2.66 GHz 6-Core with 32
GB memory).
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DISCUSSION
A three-stage segmentation method using unsupervised multi-parametric k-means clustering
on skeletal muscle data acquired using a chemical-shift based water-fat separation approach
was developed in order to compute SAT and IMAT areas. The technique was validated in a
range of cases in the calf and thigh muscles of both young and elderly subjects, including
fatty degenerated muscles of patients with type 2 diabetes or knee osteoarthritis. The
proposed method can achieve a robust and consistent separation of the SAT and muscle
region across different degrees of muscle fat infiltration in the calf. Even in the thigh the
accuracy of the automatic segmentation in the definition of the contours of SAT and muscle
regions was high. From a practical standpoint the proposed multi-parametric segmentation
algorithm can be easily reproduced and implemented using standard image analysis tools.
Additionally, the calculation of the area of fat depots based on the proton density fat fraction
map of the chemical shift-based water-fat separation minimizes the sensitivity of the fat
depot extraction (especially for the IMAT) to partial volume effects.

The computation of the volume of the different fat depots involves, in general, two main
steps. The first step is related to the extraction of the SAT and muscle regions and the
second step is related to the distinction between adipose tissue and non-adipose tissue in
voxels with partial volume effects, where both water and fat are present. Different
techniques have been proposed in order to accomplish the above two steps, but both steps
can, in general, benefit from the application of a chemical shift-based water-fat separation
approach.

From an MR acquisition point of view, different techniques have been applied in the
segmentation of the SAT and non-SAT regions both in the abdomen and the skeletal muscle.
Water-fat imaging using a chemical shift-based approach is advantageous over water-fat
imaging using a frequency selective excitation approach (12,14), as a chemical shift-based
approach is insensitive to main magnetic field inhomogeneity effects. A chemical-shift
based approach incorporating a multi-peak fat spectrum model (28,31) can also achieve a
higher contrast between the water signal on the water image and the fat signal in the fat
image than an approach based on water-fat selective excitation.

From an image analysis point of view, different techniques have been applied in the
segmentation of the SAT and non-SAT regions. Specifically, previous studies have
suggested the determination of the inner contour of the SAT region based on active contour
models (10,14) and on the thresholding of the fat fraction map (21,37). The techniques
employing active contours modeling require the empirical determination of additional
parameters provided as input to the deformable model algorithm. The techniques employing
thresholding of the fat fraction map are usually combined with operations imposing a
convex shape for the SAT inner contour, as it would be necessary for example in fatty-
degenerated thigh muscles with large regions of intermuscular fat between different muscles
and next to the subcutaneous fat ring (i.e. thigh of female subject older than 50 years in Fig.
4). A determination of the SAT inner contour based on unsupervised clustering of water, fat
and in-phase images and simple morphological operations, as proposed here, requires a
minimum number of additional parameters (size of morphological operations) and can
handle cases where there is a large intermuscular fat region next to the SAT inner contour.

Partial volume effects have been shown to have a strong impact on VAT measurements of
lean subjects (11). Different techniques have been applied in distinguishing between adipose
tissue and non-adipose tissue in voxels with partial volume effects, including applying a
Gaussian mixture model on T1-weighted images (10), k-means clustering on T1-weighted
water-suppressed and fat-suppressed images (14) and fuzzy clustering on T1-weighted
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images (13). Instead the measurement of fat volume in the proposed approach is based on
the proton-density weighted fat fraction map from a chemical shift-based water-fat
separation approach after the correction of multiple confounding factors (28,31–33).
Computing the fat volumes based on the fat fraction map can considerably reduce partial
volume effects especially when investigating small fat depots as the IMAT (19) and when
investigating small fat volume changes in longitudinal studies.

An automatic segmentation approach for the calculation of SAT and muscle regions with
low sensitivity to partial volume effects has also the tremendous advantage of reducing the
total postprocessing time. The processing time of the automatic segmentation in comparison
with the manual segmentation can be reduced enormously (i.e. 1000 times speed-up in the
present implementation). This reduction of the post-processing time can be extremely
beneficial in large-scale patient studies investigating changes in skeletal muscle fat volume
and distribution.

The present study has some limitations. First, the computation of SAT and IMAT area (in
single slice data) or volume (in multi-slice data) using the proton density fat fraction of the
chemical shift-based water-fat separation neglects the proton contributions from other non-
free-water and non-fat moieties with fast T2 decay (i.e. macromolecules) (38–40).
Computation of absolute fat area/volume would require an appropriate reference fat signal
(41,42). Second, the automatic segmentation methodology was applied on single slice data.
A single slice was selected per subject such that the derived group dataset spans the entire
range of different degrees of fat infiltration, in order to test the performance of the proposed
segmentation approach. A thorough comparison of the effect of single slice versus multi-
slice processing on SAT and IMAT area calculation was outside the scope of the present
study. However, the methodology could be easily applied to multi-slice data on a slice-by-
slice fashion. Third, manual correction of the SAT and muscle region masks might be
needed in certain extreme cases (as it is also shown in Fig. 8). The first case of Fig. 8 shows
a slice of a subject with extreme fat infiltration of the MG muscle, where the automatic
segmentation results in an underestimation in the IMAT area, as part of the IMAT was
included in the SAT mask. The group calf data also showed that the accuracy in the subjects
with high grade of fatty infiltration or high IMAT area was reduced relative to those with
lower fatty infiltration grades or lower IMAT area in the calf. This occurs due to lack of
image information in the definition of the SAT inner contour when an entire muscle next to
the SAT region is completely fatty infiltrated or surrounded by a substantial amount of
subfascial fat. Such cases would be also a problem for most of the other algorithms relying
simply on signal intensity values. The second case of Fig. 8 shows a slice with very thin
cortical bone, where the automatic segmentation results in an overestimation in the IMAT
area, as the bone marrow within the tibia was included in the muscle region mask. The
detection of very thin cortical bone has been also reported as a problem in automatic
segmentation by Positano et al. (10) and could be potentially avoided by increasing the
spatial resolution of the image acquisition. Another extreme case where manual correction
of the SAT and muscle region masks might be necessary would be in subjects with very
little SAT (i.e. patients with lipodystrophies).

The presented automatic segmentation approach could be further extended to address some
of the above limitations. First, the morphological operations of the algorithm could be
extended from 2D to 3D, after the incorporation of a coil correction step (i.e. N3 algorithm
(43)) to address signal inhomogeneities due to coil profile effects in the slice direction.
Second, texture features and edge information could be additionally extracted from the water
and fat separated images to overcome the issue of misclassification in the SAT inner contour
extraction for cases of completely fatty infiltrated muscles next to the subcutaneous fat ring.
Third, the automated segmentation algorithm could be further improved by extending it
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from an unsupervised classification model to a supervised method. Finally, the calf and
thigh datasets used in the present study have been acquired using a phased-array knee coil
and therefore show moderate in-plane signal intensity inhomogeneity due to coil profile
effects. The observed moderate in-plane signal intensity inhomogeneity does not affect the
performance of the employed k-means clustering approach. More severe in-plane signal
intensity inhomogeneity should be expected in datasets acquired using phased-array surface
coils, where application of the presented automatic segmentation approach should be
preceded by an appropriate coil correction step (43).

The performance of the proposed automatic segmentation approach has been examined in
the skeletal muscles of the lower extremities. Extensions of the proposed method to the
skeletal muscles of the upper extremities should be straightforward. However, it would be
necessary to combine the proposed method with additional processing steps for the
extraction of bone marrow regions with intermediate fat fractions (i.e. vertebral bodies) (37)
in order to extend the proposed technique to the abdomen.

In conclusion, the proposed multi-parametric segmentation method combined with a
chemical shift-based water-fat separation approach accounting for multiple confounding
factors in the quantification of fat fraction can provide an accurate and reliable automated
calculation of the SAT and IMAT areas. The technique was validated in a range of cases in
the calf and thigh muscle of young and elderly subjects, considerably reducing the total post-
processing that a manual contouring approach would require for the extraction of SAT and
IMAT areas.
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Figure 1.
Diagram of the segmentation algorithm for extracting the muscle and fat depot
compartments via unsupervised clustering in order to quantify SAT and IMAT regions. In
the first stage (stage 1), the tissues (calf or muscle) outer surface was determined (mask A).
In the next stage (stage 2), the muscle region was detected, which defines the boundary
between the SAT and IMAT regions (mask B). In the final stage (stage 3), the bones were
detected (mask C).
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Figure 2.
Diagram of the definition of SAT and muscle regions based on the combination of the masks
from the three segmentation stages (masks A, B and C).
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Figure 3.
Representative results of the multi-parametric segmentation for the SAT region mask
(superimposed on the fat and water image) and muscle region mask (superimposed on the
water image) in the calf of subjects with different grades of muscle infiltration in the medial
gastrocnemius (MG). The grading is based on the semi-quantitative Goutallier scoring
method.

Valentinitsch et al. Page 15

J Magn Reson Imaging. Author manuscript; available in PMC 2014 April 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 4.
Representative results of the multi-parametric segmentation for the SAT region
(superimposed on the fat and water image) and muscle region (superimposed on the water
image) in the thigh of two male and two female subjects with different ages.

Valentinitsch et al. Page 16

J Magn Reson Imaging. Author manuscript; available in PMC 2014 April 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 5.
The local contouring error (LCE) in pixels for the SAT outer and inner contour, and bone
contour compared to the GT for both tissues (thigh and calf); (a) the LCE in the calf for all
contours are shown for female and male (b) different muscle infiltration grades (G0 – G4)
are used for validation the automatic approach in the calf (e.g. LCE).
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Figure 6.
Regression analysis results for the agreement in IMAT areas between manual segmentation
(ground truth-GT) and automatic segmentation in the calf and thigh data. Solid line
represents the identity line and dashed line represents the derived regression line.
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Figure 7.
Bland-Altman plots comparing SAT and IMAT areas calculated using the automatic
segmentation versus the ground truth (GT) in the calf and the thigh. The plots provide
estimates of systematic and random errors. Dotted lines on the Bland-Altman plots represent
95% confidence intervals for agreement between the automatic approach and the manual
contouring as GT.
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Figure 8.
Extreme cases where automatic segmentation leads to IMAT area underestimation or
overestimation compared to the manual segmentation. The inability to accurately detect the
SAT inner contour next to highly fatty infiltrated muscles can lead to an underestimation of
IMAT area. The inability to entirely detect bones (i.e. fibula and tibia) due to thin cortical
bones can lead to an overestimation of the IMAT area.
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