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Purpose: This study examined the relationship between voice quality and glottal
geometry dynamics in patients with adductor spasmodic dysphonia (ADSD).
Method: An objective computer vision and machine learning system was devel-
oped to extract glottal geometry dynamics from nasolaryngoscopic video
recordings for 78 patients with ADSD. General regression models were used to
examine the relationship between overall voice quality and 15 variables that
capture glottal geometry dynamics derived from the computer vision system.
Two experts in ADSD independently rated voice quality for two separate voice
tasks for every patient, yielding four different voice quality rating models.
Results: All four of the regression models exhibited positive correlations with
clinical assessments of voice quality (R2s = .30–.34, Spearman rho = .55–.61,
all with p < .001). Seven to 10 variables were included in each model. There
was high overlap in the variables included between the four models, and the
sign of the correlation with voice quality was consistent for each variable across
all four regression models.
Conclusion: We found specific glottal geometry dynamics that correspond to
voice quality in ADSD.
Adductor spasmodic dysphonia (ADSD) is the most
common subtype of laryngeal dystonia. ADSD is charac-
terized by task-specific phonatory breaks that vary accord-
ing to speaking context (Hintze et al., 2017). One of the
goals of spasmodic dysphonia (SD) treatment is to
improve patients’ overall voice quality (A. Hu et al.,
2016). The standard of care for SD is botulinum neuro-
toxin (Botox) injections into the intrinsic muscles of the
larynx. The effectiveness of Botox treatment in alleviating
ADSD symptoms and improving voice quality is com-
monly tracked and measured by various subjective assess-
ments of severity. These subjective techniques include
il.com. Disclosure:
ial or nonfinancial
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clinical auditory assessments (Cannito et al., 2004), clinical
visual assessments, and patient self-reports. The clinical
auditory assessments are the most common but are multi-
dimensional and exhibit high interrater variability attrib-
uted to difficulties isolating individual attributes in voice
patterns and instability of raters’ internal standards for
different voice qualities (Kreiman et al., 2007). Assessing
ADSD is also multidisciplinary, involving ear-nose-throat
(ENT) physicians, speech-language pathologists, and neu-
rologists. The subjective, multidimensional, and multidisci-
plinary aspects of severity assessment decrease intra- and
interrater reliability (Ludlow et al., 2018). An increase in
the reliability of ADSD severity ratings is imperative to
understanding ADSD pathophysiology and for assessing
treatments intended to improve voice quality.

To improve the reliability of severity ratings, com-
putational analyses can be used to objectively quantify
022 • Copyright © 2022 American Speech-Language-Hearing Association 3695
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voice quality. Prior studies have done automated acoustic
analysis to measure dysphonia severity in, for example,
connected speech and sustained vowels (Roy et al., 2014).
Although the automated acoustic approach is objective,
there are mixed results regarding its relationship to subjec-
tive assessments. The automated acoustic approach has
been found to have poor correlation with patient self-
reports (Fujiki & Thibeault, 2021; Gillespie et al., 2014)
and expert perceptual evaluation (Fujiki & Thibeault,
2021; Rabinov et al., 1995). Conversely, it has also been
found to have a strong correlation with auditory percep-
tual ratings of overall ADSD severity (Buckley et al.,
2020) and to be significantly correlated with listener rat-
ings (Roy et al., 2014). Regardless, these approaches do
not directly evaluate one of the primary structures respon-
sible for voice quality: the larynx.

Furthermore, many studies have applied machine
learning methods to patients with SD. These methods
include using machine learning on brain imaging to pre-
dict the risk of SD development (Khosravani et al., 2021),
using an artificial neural network on a high-dimensional
features space from audio recordings to rate SD voice
severity (Suppa et al., 2020), using a support vector
machine, a Gaussian mixture model, and a deep neural
network on high-dimensional acoustic features to distin-
guish between normal voice and several voice disorders
including SD (Fang et al., 2019), and using a convolu-
tional neural network on spectrograms from voice record-
ings to distinguish between normal voice and several voice
disorders including SD (Reid et al., 2022). None of these
approaches use images of the larynx.

ENT physicians regularly view the larynx using
nasolaryngoscopy. In laryngeal video recordings, several
computer vision and machine learning methods have been
used to locate and identify the boundaries of the glottis
and/or vocal folds, a process known as segmentation.
Once segmented, various geometric measures that charac-
terize the shape can be easily computed. These segmenta-
tion methods have included edge detection and region
growing algorithms (Alku et al., 2019; Chen et al., 2013),
pixel thresholding (Wurzbacher et al., 2006), a watershed
transform and a linear predictor (Osma-Ruiz et al., 2008),
a convolutional neural network–based semantic segmenta-
tion (Laves et al., 2019), and a deep convolutional long
short-term memory network (Fehling et al., 2020). Many
of these studies use high-speed video (HSV) recordings of
the larynx. Because these HSV recordings typically have
frame rates between 1000 and 10000 Hz (Gómez et al.,
2020), which are well above the Nyquist rate for speech
fundamental frequencies in the range of 50–300 Hz
(Osma-Ruiz et al., 2008), they can register the whole
vibratory cycle of the larynx. However, because of the
higher frame rate, studies that use HSV can produce large
quantities of data. This may be why they tend to analyze
3696 Journal of Speech, Language, and Hearing Research • Vol. 65 •
less than a second of video data per patient. These short
time periods capture many vibratory cycles of the larynx
but are not long enough to capture phonation of several
syllables or a sentence. As a result, many studies that use
HSV of the larynx focus solely on the segmentation per-
formance of their computational method and not data
analyses relevant to voice disorders (Fehling et al., 2020;
Laves et al., 2019).

Although several methods exist to segment the glottis
and/or vocal folds, an emphasis on the glottis is critical to
study the voice. Although the voice is complex and there
are many factors that influence it, the dominant factor that
determines voice quality is the shape of the glottis. This is
because the pressure wave produced by the larynx is a
function of the glottal opening during vibration, and there-
fore, sound characteristics are more closely related to
dynamics of the glottal opening than to dynamics of the
vocal folds or other surrounding structures. Also, for many
years, voice scientists have used characteristics of the glottal
opening to describe resultant sound characteristics, such as
the open quotient, the speed quotient, and the Liljencrants–
Fant model, which consists entirely of measurements of
changes in the glottis. An additional reason to focus solely
on the glottis and not also the vocal folds is that computa-
tional segmentation of the glottis is much easier than the
vocal folds. This is because the vocal folds, relative to the
glottis, are more frequently occluded, have less color gradi-
ent along their edges, and have more variability in many
attributes such as size, shape, and color (Fehling et al.,
2020). Also, the false vocal folds often obscure the true
vocal folds in patients with ADSD.

In this study, we analyzed clinically relevant tasks in
laryngoscope videos previously recorded at 30 Hz from 78
patients with ADSD across multiple sites affiliated with
the Dystonia Coalition (Kilic-Berkmen et al., 2021;
Ludlow et al., 2018). The goals of this study were (a) to
develop a computer vision/machine learning system that
automatically provides an objective visual assessment by
segmenting the glottis and calculating associated glottal
geometries and their dynamics, (b) to evaluate the sys-
tem’s correlation with subjective voice quality ratings
(VQRs), and (c) to identify dynamics of glottal geometries
associated with pathological voice quality.
Materials and Method

Patients

Patients with SD were recruited and evaluated at four
sites affiliated with the Dystonia Coalition (Kilic-Berkmen
et al., 2021; Ludlow et al., 2018): James Madison Univer-
sity, Emory University, Washington University in St.
Louis, and Medical College of Wisconsin. All patients
3695–3708 • October 2022



Figure 1. Correlations between raters’ (GB and LF) voice quality
ratings for the two different time steps. Each data point represents
a patient. rho = Spearman rho.
provided written informed consent prior to participating in
the original study conducted in accordance with the Decla-
ration of Helsinki. The patients were assessed at least
2 months after their last Botox injections, by which time
much of the effect would have worn off. The selection cri-
teria were as follows: age of 18 years and older; no medical
condition precluding nasolaryngoscopy; no known cause for
the voice disorder; no lesions; no surgery for SD; and diagno-
sis of ADSD, abductor spasmodic dysphonia, voice tremor,
muscle tension dysphonia (MTD), vocal fold paralysis, or
other voice disorders. The data in this study included a subset
of 91 patients who were diagnosed with ADSD by the clini-
cians at the respective sites. Every patient was asked to do a
sequence of speech tasks during their laryngoscope video
recording (Yan et al., 2015).

The voice manifestations of ADSD have been shown to
be different for task-oriented phonation versus meaningful
propositional speech (Somanath & Mau, 2016). Therefore, we
analyzed two steps in the video procedure specifically
designed to evoke symptoms of ADSD, the sustained vowel /i/
(longE), and a sentence with glottal stops, “we eat eels every-
day” (sentA). One trial of each step was obtained per patient.

Of the 91 patients, four were missing video record-
ings, four were missing both the longE and sentA step, and
five were excluded because of comorbid voice tremor (per
Berke and Froeschke), leaving 78 final patients (see
Table 1). This is a suitable set, given that prior studies that
use machine learning on patients with SD have included a
subset of 17 patients with SD (Fang et al., 2019), a subset
of 30 patients with ADSD (H.-C. Hu et al., 2021), and a
total set of 60 patients with ADSD (Suppa et al., 2020).
We created subsets from these 78 patients based on whether
the videos contained certain procedural steps. There were
73 videos that contain a longE, 70 videos that contain a
sentA, and 65 that contain both a longE and a sentA.

Annotations and VQRs

An individual (Sy) blinded to the algorithm and the
VQRs labeled the time periods of the longE and sentA
steps in patients’ videos with ELAN linguistic software
(ELAN, Version 4.9.4, Max Planck Institute for Psycho-
linguistics, 2016). Some patients have multiple occurrences
of a given step. For example, a patient might pronounce
sentA twice instead of just once. For each patient, Sy
annotated all occurrences of the longE and sentA steps.
Table 1. Patient demographics.

Variable Range M SD

Age (years) 27–77 60.78 10.33
Disease duration (years) 0–42 15.11 10.11
Sex (female/male) 56/17

Peters
Two nationally recognized physician experts in the
field of SD (Berke [Rater 1] and Froeschke [Rater 2])
independently rated voice quality for the first occurrence
of each patient’s longE and sentA steps. Figure 1 shows
the correlation between the raters for each step. Whereas
the interrater reliability is strong, no intrarater reliability
was assessed. This is suitable given the focus of this
study, which is concerned with relating clinical ratings to
objective computer measures rather than evaluating reli-
ability of clinical rating assessments themselves. The
raters were blinded to the video channel of the recording
and only heard the audio channel. They were allowed to
listen to each step multiple times and were subject to no
particular order for rating the two steps. They rated the
voice quality on a scale of 0–100, where 0 is a minimally
usable voice (worst voicing) and 100 is normal voice
(best voicing). The scale is based on and similar in multi-
ple regards to the Consensus Auditory Perceptual Evalu-
ation of Voice (CAPE-V), which has been used in assess-
ment of ADSD (A. Hu et al., 2016). The CAPE-V scale
on et al.: Voice Quality and Computer Vision of the Larynx 3697



uses a range from 0 to 100. Also, the scale is based on
assessment of the following well-defined set of perceptual
attributes: overall severity, roughness, breathiness, strain,
pitch, and loudness. Similarly, the two raters performed
auditory-perceptual evaluation of the voice by listening
for overall voice quality, as a gestalt, encompassing
roughness, breathiness, strain, pitch, loudness, voice
breaks, and other characteristics. It should be noted that
these individual characteristics are likely not indepen-
dent; they are substantially overlapped in SD in terms of
both their presence and their response to treatment. Also,
steady-state long vowel phonations do not normally elicit
voice breaks but rather can be best assessed from loud-
ness, hoarseness, roughness, strain, and so forth. Mean-
while, sentences with many vowels, such as sentA, tend
to include voiceless fricatives and plosives, which induce
voice breaks. Thus, although both steps were graded by
a gestalt of voice quality, the raters focused more on per-
ception of patient strain and voice harshness in the longE
step and focused more on a composite multifactorial
impression of impaired fluency associated with either
spasmodic voice breaks or voice quality that is strained,
strangled, and/or stressed in the sentA step.

We obtained frame annotations of the glottis. For a
frame where the glottis is visible, its glottis mask is a
labeled region of its glottal opening. Although one might
expect the glottis to always be visible during certain pho-
natory steps, the glottis is frequently out of view in many
videos. The glottis visibility is often affected by camera
orientation changes and/or obstructions from surrounding
structures such as the epiglottis or false vocal folds. An
individual (T.F.), blinded to the algorithm and the VQRs,
annotated the videos by labeling each frame with the
MATLAB R2020b (MathWorks) Video Labeler. We used
a three-phase approach to maximize reliability of these
annotations. In the training phase, Q.A.P. trained T.F. on
the glottis mask annotations, checking the accuracy of the
annotations and critiquing errors on random subsets of
training data. Once confident in T.F.’s ability to accu-
rately perform the annotations, in the subsequent phase
with the data ultimately used in our system, validation
was performed by Q.A.P. in which random frames were
selected and inspected for accuracy. If any frame was
inaccurate, Q.A.P. reviewed how to accurately annotate
the frame with T.F., and the patient’s step was redone
and rechecked. Finally, we used MATLAB to reassemble
the phonatory step videos, with each frame’s glottis mask
annotation overlaid. This was done for all patients and
for all annotated frames and facilitated a quick visual
assessment of the accuracy of all the glottis annotations.
There were three classes of annotations for each frame: (a)
glottis visible: Label one point at each of the top left of
the visible glottis, at the bottom of the visible glottis, and
at the top right of the visible glottis to define the glottis
3698 Journal of Speech, Language, and Hearing Research • Vol. 65 •
mask (this triangle mask is used as opposed to a more pre-
cise outline for annotation efficiency; in cases of a very nar-
row glottal opening, the triangle approximates a line seg-
ment subtending the major axis of the glottis); (b) unsure:
Label 2 points at the top right corner of the frame; and (c)
glottis not visible: Label 2 points at the top left corner of
the frame. Glottis masks were only annotated within the
first instance of a given step for patients that had several
occurrences of the given step. The approximate range of
duration for the sentA step is 1–3 s, and that for the longE
step is 3–10 s. Given that the nasolaryngoscopic recordings
are at 30 Hz, this yields an approximate range of 2,340–
7,020 and 7,020–23,400 frames annotated for the sentA and
longE steps, respectively.

Computer Vision/Machine Learning System
for Deriving Glottal Geometry

We developed a computer vision/machine learning
system to calculate glottal geometries (for more detail, see
the Appendix). As shown in Figure 2, the system’s input
is a nasolaryngoscopic image, and its output is a seg-
mented glottis and glottal geometries. Within the system is
a sequence of steps. First, the system uses a shallow neural
network to predict a luminance threshold for the given
frame. For further clarification, a shallow neural network is
a computer neural network with a single layer of nodes or,
essentially, a single layer of artificial neurons. Like most
artificial neural networks, during its training, it learns a
mapping from inputs to outputs. Once trained, the network
outputs predictions for a given input, based on the map-
ping it learned during training (again, for more detail, see
the Appendix). Second, the system uses this luminance
threshold to segment dark regions from within the frame.
Essentially, the threshold bifurcates pixels within the frame
into those with value greater than the threshold and those
with value less than the threshold. Third, the system uses
another shallow neural network to score the segmented
regions and identify the glottis. We used the glottis mask
annotations to train both of the shallow neural networks.
Finally, the system calculates geometries from the seg-
mented glottis region such as area and axis lengths.

Validation of the system’s accuracy was not per-
formed at the precise pixel level outline of the glottis
because obtaining these for each frame would be
extremely tedious. However, our system was validated
against our glottis masks, which provided ground truth
for the neural networks used in the system to identify the
presence, location, and orientation of the glottis.

It should be acknowledged that variation in the dis-
tance between the scope and the glottis during recording
has a direct effect on measures such as area of the glottis.
However, within a recording’s step, any variation in the
scope–glottis distance is largely accounted for because our
3695–3708 • October 2022



Figure 2. An example input and output of the computer vision/
machine learning (CV/ML) system. The input is a frame from a
nasolaryngoscopic video, and the output is a segmentation of the
glottis with calculated geometries. (For a more detailed visualiza-
tion of the system, see Figure A1 in the Appendix.)
metrics are normalized (see the Metrics and Models sec-
tion below) both spatially and temporally.

Metrics and Models

We derived two types of metrics from a single
frame. The first is the confidence that the frame contains
the glottis (glottis_conf). The second type are geometric
features of the glottis, what we refer to as glottal geome-
tries: area, minor and major axis lengths, and shape (for
more detail, see the Appendix). In total, this yields five
metrics for each frame. For each of these metrics, we
computed nonparametric statistics that characterize aver-
age values and temporal variability across a patient’s
frames: median, median absolute deviation (mad), and
median absolute deviation normalized by the median
(madm). Table 2 shows that crossing the glottal metrics
with the statistics yields 15 total variables (hereafter
Peters
referred to in bold) that are calculated separately for each
patient’s longE and sentA steps. Collectively, because
these variables encapsulate information about changes in
glottal attributes over time, they represent what we refer
to as “glottal geometry dynamics.”

To assess which variables are related to ADSD voice
quality, we used JMP Pro Version 16 statistical software from
SAS to build general regression models using adaptive elastic
nets with Akaike information criterion stopping criterion.
These models aimed to predict the VQRs using the glottal
variables. We created four models for our four VQRs, which
will be referred to as the GB longE model, LF longE model,
GB sentA model, and LF sentA model. For clarity, each
model name refers to both the rater and the step from which
the ratings were done. For example, the GB longE model is
the model that correlates with the ratings done by G.S.B. for
the longE step. We kept the models independent for the two
raters and for the two steps to see which models best pre-
dicted the scores based on the glottal geometry dynamics.
Results

Figure 3 shows the linear regressions of the four pre-
dictor models. The R2s ranged between .30 and .34, and
the Spearman rho ranged between .55 and .61, all with
p < .001.

Table 3 shows which variables were included in each
of the four models and whether their coefficients were pos-
itive or negative, as well as their corresponding p values.
Of the 15 total variables entered into each of the four
models, the number of variables that were selected in each
of the four models were seven in GB longE, eight in LF
longE, eight in GB sentA, and nine in LF sentA. The
majority of each models’ subset of chosen variables were
similar across models. All of the variables included in the
GB longE model were also included in the LF longE
model, and only one variable was unique to the LF longE
model between the two models: madm_minor. Similarly,
most of the variables included in the GB sentA model and
the LF sentA model were similar, where median_minor
was the only variable unique to the GB sentA model and
mad_glottis_conf and median_area were the only variables
unique to the LF sentA model.

The top 6 rows of Table 3 represent the six variables
that were included in all four predictor models. The coeffi-
cient sign for each variable was consistent across all four
models. For the five variables that had consistently signifi-
cant p values, as the quality of the voice decreased:

• madm_glottis_conf, the normalized variability in the
glottis visibility, decreased, that is, less variability
when the glottis is visible correlates with a worse
voice quality.
on et al.: Voice Quality and Computer Vision of the Larynx 3699



Table 2. Model variables.

Variable Median
Median absolute deviation

(mad)
Median absolute deviation from

the median (madm)

glottis_conf
(glottis confidence)

median_glottis_conf:
the median visibility of the glottis

mad_glottis_conf:
the variability in the visibility of

the glottis

madm_glottis_conf:
the normalized variability in the visibility

of the glottis
shape
(minor/major)

median_shape:
the median shape of the glottis

mad_shape:
the variability in the shape of

the glottis

madm_shape:
the normalized variability in the shape

of the glottis
major median_major:

the median major axis length of
the glottis

mad_major:
the variability in the major axis

length of the glottis

madm_major:
the normalized variability in the major

axis length of the glottis
minor median_minor:

the median minor axis length of
the glottis

mad_minor:
the variability in the minor axis

length of the glottis

madm_minor:
the normalized variability in the minor

axis length of the glottis
area median_area:

the median area of the glottis
mad_area:
the variability in the area of

the glottis

madm_area:
the normalized variability in the area

of the glottis
• median_shape, the median value of the shape,
increased. Because shape is defined as the minor axis
length over the major axis length, this means that as
shape increases, the minor axis length must be com-
ing relatively closer to the major axis length; the
glottis object is becoming more circular and less
elongated, that is, a more circular and less elongated
glottis correlates with a worse voice quality.

• mad_shape, the variability in the general shape of the
glottis, decreased, that is, less variability in the shape
of the glottis correlates with a worse voice quality.

• mad_minor, the variability in the minor axis length of
the glottis, decreased, that is, less variability in the
approximate glottis width correlates with a worse
voice quality.

• madm_area, the normalized variability in area,
increased, that is, more variability in glottis area cor-
relates with a worse voice quality.
Discussion

We developed a computer vision/machine learning
system that automatically provides an objective visual
assessment of ADSD severity by calculating glottal geome-
try dynamics. We found reasonable correlation between
these metrics and expert clinical assessments. Finally, as
described below, analyses of these models are informative
of potential relationships between glottal geometry dynam-
ics and pathological voice quality.

Relevance for Rating Voice Quality in ADSD

The system’s agreement with expert clinical percep-
tions suggests that, once further validated, the system
could be combined with acoustic analyses in an overall
objective system to rate ADSD severity. These objective
3700 Journal of Speech, Language, and Hearing Research • Vol. 65 •
measurements of severity could be used to compare treat-
ments across centers, which would otherwise suffer from
interrater variability associated with subjective perceptual
ratings. Furthermore, the system could act as a supplement
to patient self-perceptual ratings in quantifying patient
response to Botox over time. Indeed, in our post hoc analy-
sis, glottal geometry dynamics did not correlate with
patient self-reports, suggesting that our system provides
information that’s complementary to rather than redundant
with patient impressions of their severity. Ultimately, the
system could also be implemented as a network-based soft-
ware service accessible through either a web- or app-based
interface. The interface could accommodate simultaneous
uploads of clinical and/or patient perceptual assessments
and provide a consolidated report back to the clinician.

The computer vision/machine learning system is effi-
cient and flexible. It is computationally efficient as it can
process an approximately 500-kB image in an average of
0.186 s (with a MacBook M1 with 16-GB RAM). It is
flexible as it only requires a single RGB image as input.
This means that the system can be used to analyze laryn-
geal images from almost any type of recording equipment,
regular speed, or HSV. Furthermore, the exact size of the
image and the phonatory step within the laryngoscope
video do not matter. On the contrary, many computer
vision/machine learning algorithms that aim to segment
the glottis or vocal folds have several requirements, such
as a specific image resolution (usually around 256 × 256
pixels; Alku et al., 2019; Fehling et al., 2020; Wurzbacher
et al., 2008), the high frame rates associated with HSV,
and sometimes manual intervention to handpick frames
that depict the glottis or certain laryngeal characteristics.
Our system is not limited by strict specifications regarding
video quality or time within a nasolaryngoscopic video.
The flexibility of the system differentiates it from other
computer vision/machine learning systems that have been
developed for the glottis and/or vocal folds. Also, this
3695–3708 • October 2022



Figure 3. Relationship between model predictions and clinical rat-
ings of voice quality. Each scatter plot represents a different model
(a model built to predict the given rating). For example, the bottom
scatter plot represents the model built to predict LF’s sentA voice
quality ratings. Each data point represents a patient. VQR = voice
quality rating; rho = Spearman rho.

Table 3. Metrics and their p values.

Metrics

longE sentA

GB LF GB LF

Madm_glottis_conf < .001 < .001 < .001 .004
Mad_shape < .001 .011 .012 .032
Madm_major .122 .294 .189 .086
Mad_minor < .001 < .001 < .001 < .001
Median_shape < .001 .004 .004 012
Madm_area .001 .070 .012 .008
Mad_glottis_conf / / / .402
Median_minor / / .017 /
Madm_minor / .434 .328 .211
Median_area .028 .206 / .012

Note. Each column is one of the four models. bold = positive
correlations; italic = negative correlations; / = variable not in the
model.

Peters
flexibility better facilities study of the voice with respect to
the glottis, as the system can be applied at any level of tem-
poral granularity and at virtually any decent level of video
quality. Furthermore, as referenced in the introduction,
many studies that use machine learning with respect to SD
analyze audio data rather than videos, and many studies
that use machine learning with respect to the larynx focus
solely on segmentation performance and not also on voice
disorders. Thus, our system is unique, as it bridges the gap
between the development of computer vision/machine learn-
ing of the larynx and the study of ADSD.

Identifying Glottal Geometry Dynamics
Associated With Voice Quality in ADSD

The models’ R2s, which are around .3, are reason-
able given variable laryngoscope frame borders, variable
focus quality, obstructions of the glottis or vocal folds,
saliva on the lens, and so forth. Image segmentation of
the larynx is challenging due to many factors, such as
camera rotation, movement of the laryngoscope, move-
ment of the patient, and variable illumination (Osma-Ruiz
et al., 2008).

Table 3 shows that each included variable had a
consistent correlation sign across all four models. This
consistency across models lends support to each variable’s
implied relationship with voice quality, whether it be a
positive or negative correlation. Four of the five variables
that played a significant role across all four of the models
had meaningful relationships with voice quality. Gener-
ally, these relationships are consistent with the possibility
that a persistently tight configuration of the glottis corre-
lates with poorer voice quality. As voice quality decreases:

• There is less variability in when the glottis is visible.
In more severe patients, this may reflect reduced abil-
ity of the true folds to transiently open the glottis.
on et al.: Voice Quality and Computer Vision of the Larynx 3701



This may also reflect reduced activity in superglottal
structures, such as the false vocal folds and the epi-
glottis, which could otherwise provide compensatory
mechanisms that ameliorate pathological voice.

• The glottis is more circular and less elongated. This
suggests that patients’ with a tight configuration in
both dimensions tend to have poorer voice.

• There is less variability in the shape of the glottis.
This suggests that patients with a persistently tight
or dysphonic larynx have less change in the shape of
the glottis. On the contrary, patients with a better
voice may be better able to go between normal and
tight configurations.

• There is less variability in the width of the glottis.
This suggests that less variability in the glottal width
dynamics is associated with poorer voice.

The one consistently significant variable whose results
contradict the trends found above is the normalized vari-
ability of the glottal area (madm_area), for which an
increase in variability in the glottal area correlates with
poorer voice. This contradictory trend can be partially
explained by the fact that the glottal area measure is not
directly correlated with the glottal axis length or shape
measures. For example, the area of an object could change,
whereas the axis lengths and the shape of the object both
remain fixed. Furthermore, this contradictory trend might
be better understood by investigating temporal glottal met-
rics, such as the glottal area waveform or the open quotient
(Chen et al., 2013; Fehling et al., 2020; Wurzbacher et al.,
2008). Relating these temporal glottal metrics to voice qual-
ity could give more insight into how dynamics of the glot-
tal configuration correlate with voice quality.

The high overlap among variables chosen for each
model across the two steps (longE and sentA) suggests
some similarity in the glottal dynamics associated with
ADSD severity between the two steps. The expert raters
aimed to rate a patient’s two steps independently, but sub-
conscious bias from rating a longE step could have affected
the rating of the same patient’s subsequent sentA step. This
step rating procedure could have increased the similarity
between the steps’ VQRs and therefore could help explain
the similarity between the different steps’ predictor models.
Although the potential for rating bias from one step to the
next is noted, the perceptual assessment process used in this
study is consistent with standard clinical procedures, which
incorporate a set of non–speech-based and speech-based
tasks that a patient performs in the same evaluation session
and are evaluated by the same examiners.

ADSD is classified as a task-specific focal dystonia
(Hintze et al., 2017; Ludlow, 2011; Roy et al., 2005). Vari-
ous vocal tasks may have different likelihoods of eliciting
spasmodic overclosure of the vocal folds (Roy et al.,
2005). Anecdotal reports suggest that sustained vowels
3702 Journal of Speech, Language, and Hearing Research • Vol. 65 •
evoke less symptoms than contextual speech (Ludlow &
Connor, 1987). Given this, one might expect a large differ-
ence between the predictor models for each of the two
steps: the sustained vowel /i/ (longE) and the contextual
phrase “we eat eels every day” (sentA). Contrary to this,
the similarities found between the models that predict the
VQRs for the separate steps suggest that the ADSD symp-
toms, which are task specific, may only partially contrib-
ute to an overall assessment of severity. It should be fur-
ther noted that the speaking condition of oral sentence
repetition (“we eat eels everyday”), though a type of
running speech, does not simulate the same type of task
demands associated with spontaneous, meaningful, speaker-
composed speech in daily life. As both the longE and sentA
tasks are phonatory tasks that are dissociated from pur-
poseful and propositional communication, speech condi-
tions and types may help further explain model similarity
in the current study.

Glottal geometry dynamics and the associated pat-
tern activations of the laryngeal muscles are the final out-
puts of speech-related networks in the central nervous sys-
tem. ADSD and other laryngeal dystonias are character-
ized by broad changes in those structural and functional
neural networks, including inferior/middle frontal gyri,
superior/middle temporal gyri, and parietal operculum
(Kostic et al., 2016; Simonyan et al., 2021; Simonyan &
Ludlow, 2012). These cortical and many subcortical areas
of interest reflect the complex interaction among speech-
related brain regions and laryngeal motor pathways in
ADSD.

Limitations

The computer vision/machine learning system does
not perform perfectly on all nasolaryngoscopic images.
One such case is when the glottis region is overillumi-
nated. This phenomenon limits the performance of the
system because the glottis segmentation is contingent upon
the assumption that the glottis region is relatively dark
within the frame. From a cursory review, this is the case
in about 8% of patients. Another limitation of this study
is the focus on glottal dynamics and not also vocal fold
dynamics. Some laryngeal computer vision/machine learn-
ing studies have segmented and analyzed data from both
the glottis and vocal folds (Fehling et al., 2020; Kist et al.,
2020). However, segmentation of the vocal folds is more
difficult than the glottis because of frequent occlusion by
other structures and high variability in shape, size, and
color (Fehling et al., 2020).

For any computer vision system applied to assessing
voice quality in ADSD, evaluating its convergent validity
with clinical ratings is sensitive to the reliability of those
ratings. In this study, the raters represented the disciplines
of ENT and speech-language pathology but not neurology.
3695–3708 • October 2022



It is possible that even neurologists who manage many
patients with ADSD may have a different approach to
quantifying voice quality. Nevertheless, this study’s raters
from ENT and speech-language pathology, who con-
ducted ratings independently and without any prior con-
sensus training, had highly correlated ratings (see Figure 1).

Future Work

This study lays the foundation for evaluating this
computer vision system in the context of measuring the
effect of treatment by comparing the system’s measured
change in voice quality to clinicians and patients’ assess-
ments of changes in voice quality. Analyses could also be
done to identify specific vocal fold features associated with
voice quality. The computer vision/machine learning sys-
tem could be retrained, using vocal fold masks and/or a
glottis mask that more accurately outlines the glottal
opening than the 3-point masks used in this study. This
would further validate the system and likely improve
investigation of glottal-specific dynamics that correlate
with voice quality. Regarding glottis segmentation, the
glottis features found in this study could be compared to
clinical ratings of other disorders that are sometimes also
present in ADSD, such as MTD. One can expect that
because MTD patients do not exhibit voice breaks but
share some of the strained characteristics of ADSD that
there would be both differences and similarities in the role
of the glottal geometry variables in models that predict
severity in the two disorders. In order to make this com-
parison, the analyses with other disorders, including
MTD, could use the same set of glottal geometry dynam-
ics entered into the models of this study. Then, compari-
son between the glottal geometry dynamics included in
other models and those consistent to the models in this
study could inform on similarities and differences between
different voice characteristics and/or different voice disor-
ders. Though the age range of our cohort is representative
of patients with ADSD, analyses could also be carried
out in patients with ADSD of advanced age (> 65 years
old), who may present with comorbid presbyphonia, a
condition that, though distinct from ADSD, may co-
occur and therefore exert influence on glottal geometry
dynamics. Some patients with ADSD also have comorbid
voice tremor. With videos recorded at sufficiently high
frame rates, the computer vision system developed in
this study may be able to detect voice tremor that would
otherwise be undersampled at 30 Hz. Future studies could
also use the system developed in this study to observe
glottal configurations across a variety of speech and pho-
nation tasks that approximate natural, spontaneous
speech behaviors and simulate the interaction between
cognitive–linguistic processing and laryngeal motor
pathways.
Peters
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Appendix (p. 1 of 2)

Computer Vision/Machine Learning System for Deriving Glottal Geometry

We developed a custom computer vision/machine learning system to derive glottal geometries. The details of the system
are provided in three sections. First is a description of how the overall system works (see Figure A1). Then, we describe how
we trained the two primary components of the system, each a single hidden layer neural network.
Figure A1. Flowchart of the computer vision/machine learning system. Given an RGB image, the system generates a predicted glottis object
and the object’s subsequent glottal metrics: area, major and minor axis lengths, and shape. Two neural networks are used in the system. The
YT NN (luminance threshold neural network) predicts a luminance threshold to segment the glottis from the image. The OSM NN (object
score mapping neural network) gives each of the binary objects a measure of confidence that it is the glottis (pred_IOU). The object with the
maximum pred_IOU is considered the glottis object. RGB = red, green, blue; YCbCr = luma blue-difference red-difference; Y = luminance;
BW = black and white binary image; YT = luminance threshold; IOU = intersection over union.
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Appendix (p. 2 of 2)

Computer Vision/Machine Learning System for Deriving Glottal Geometry
Overall Computer Vision/Machine Learning System
Given a nasolaryngoscopic image, the system seeks to automatically segment the glottis. More specifically, the system con-
verts an RGB image from a nasolaryngoscopic video to the YCbCr color space. Then, it extracts the luminance channel from
the YCbCr image and calculates the following properties from the pixels’ distribution of luminance values: mean, standard
deviation, mode, skewness (γ), kurtosis (κ), and Sarle’s bimodality coefficient (β), defined as:

β ¼ γ2 þ 1
κ

(A1)

The system inputs these luminance distribution properties into the luminance threshold neural network (YT NN): a single hid-
den layer neural network that, given a vector of luminance properties, predicts a luminance threshold (YT). The goal of the
YT NN is to predict a YT to successfully segment the glottis. The system can segment the glottis object from the image
using a pixel threshold because the glottis is often darker than its surrounding region. The system is not contingent on the
assumption that the glottis is the darkest region in the image but rather that the glottis is a locally dark region. The system
uses YT to perform thresholding to transform the grayscale image (Y) into a binary image (BW). This thresholding works on
every pixel value in the image (Y): If the pixel is less than YT, the system sets the pixel’s value to 1; otherwise, it sets the
pixel’s value to 0. After thresholding, the resulting binary image (BW) contains binary objects, which are defined as contigu-
ous regions of pixels for which the luminance values in Y were less than YT (contiguous regions of pixels with value 1). In
general, the thresholding procedure yields objects that include not only the glottis but also nonglottal objects. These objects
are referred to as shadow objects. Then, the system calculates the following properties for each object to distinguish the
glottis object from the shadow objects:
- A (area): the object’s number of pixels
- θ (orientation): the angle between the x-axis and the major axis of the ellipse that has the same second-moments as the object
- xCOM: the object’s center of mass x-coordinate
- yCOM: the object’s center of mass y-coordinate
- Pboundary: the proportion of the object’s perimeter pixels that lay on the image boundary
- PAGM (perimeter average gradient magnitude): the average gradient magnitude across the object’s perimeter pixels
- Y : the average luminance values of the object’s pixels
- Cb: the average blue difference values of the object’s pixels
- Cr: the average red difference values of the object’s pixels

These properties are designed to distinguish the glottis object from the shadow objects, based on the assumptions that
a typical glottis object is oriented vertically (θ), unlikely to be near the image boundary (xCOM, yCOM, and Pboundary), a dark
region surrounded by relatively lighter pixels (PAGM), and a dark color (Y , Cb, and Cr ). For each object, the system inputs
the object’s properties into the object score mapping neural network (OSM NN): a single hidden layer neural network that,

given a vector of object properties, predicts the object’s intersection over union (IOU) (dIOU). The object with the maximum
dIOU is considered to be the glottis object. The system calculates glottal geometries from the glottis object: Area (A), minor
and major axis lengths which are derived from the ellipse that has the same second-moments as the object, and a loosely
defined measure of shape, calculated as the ratio between the minor and major axis lengths.

Training the YT NN
We used the labeled glottis annotations to create training data for the YT NN. In general, training neural networks requires
many samples. The network attempts to learn a mapping between a sample’s training data and the sample’s training target.
For training the YT NN, a sample represents a single frame. A sample’s training data are its luminance distribution properties
and its training target is its optimal luminance threshold (opt(YT)). Thus, the YT NN attempts to learn how to map a vector of
luminance distribution properties (a vector of numbers) to an optimal luminance threshold (a single number).

We used our glottis annotations to create the samples’ training targets. For a given frame, we defined its opt(YT) as the
YT within the set of natural numbers S : {YT | 16 ≤ YT ≤ 235} that maximizes the IOU between the true glottis mask and the
binary image segmented by that YT:

opt YTð Þ ¼ argmaxf YTð Þ
YT∈S

∶¼ YT ∈ S : f YTð Þ ¼ IOU glottis mask;BWjYTð Þf g (A2)
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Computer Vision/Machine Learning System for Deriving Glottal Geometry
The set S is used because this is the range of values that the luminance channel Y has in the YCbCr color representa-
tion of an image. To find the opt(YT) for all frames with a 3-point glottis mask annotation (glottis visible), we tested all possi-
ble luminance thresholds in the set S. We used each threshold (YT) in S to segment the grayscale image (Y) to create an
object mask BW. The frame’s opt(YT) is the YT in S, which returns the maximum IOU between the segmented object mask
BW and the frame’s labeled glottis mask. We stored this as the sample’s training target and stored the frame’s luminance
distribution properties as the sample’s training data.

For training the YT NN, we used leave-one-out cross-validation, where one patient is left out for testing and the rest are
used for training. For each cross-validation training partition, we calculated the performance of the trained network as the
mean absolute error between all the test frames’ predicted luminance thresholds and the test frames’ optimal luminance
thresholds:

YT performance ¼ bYTf � opt YTfð Þ
���

��� f : all test frames (A3)

Along with the cross-validation training loop, we searched the network’s number of hidden neurons parameter. To find
the optimal number of hidden neurons, we chose the value that returned the minimum mean in test performance across the
validation folds. Then, to choose a single trained YT NN to use in the system, we found the mean performance of the YT
NNs trained with the optimal number of hidden neurons. Finally, we chose the YT NN whose performance value was closest
to the mean performance value.

Training the OSM NN
Similar to the YT NN, we used the glottis annotations to create the training data for the OSM NN. However, here, a sample

represents a binary object instead of a single frame. Thus, several OSM samples can be created from a single frame.
To ensure that the image was thresholded in an optimal manner for the glottis object, we created the OSM NN data in

conjunction with the YT NN data. Once a frame’s opt(YT) was found, we used it to threshold the image and get a set of
binary objects, one of which was the glottis object.

For each object, we stored its object properties as its training data, and its IOU with the frame’s glottis mask as its training
target. Thus, the glottis object received a nonzero target value and the shadow objects received a target value of 0.

Also, similar to the training of the YT NN, we used leave-one-out patient cross-validation to train the OSM NN. To choose
a single OSM NN to use in the system, we used the same process as that to choose a YT NN described above, where the only
difference is the testing performance metric. For each training partition of the OSM NN, the performance was calculated as the

mean absolute error between all the test objects’ predicted IOUs (dIOU) and the test objects’ actual IOUs:

OSM performance ¼ dIOUj � IOUj

���
��� j : all test objects (A4)

To aid generalizability of the system, we trained the YT and OSM nets with the greatest amount of data—frames aggregated
from both the longE and sentA steps.
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