
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Disaggregated Data Structures: Sharing and contention with RDMA and Programmable
Networks

Permalink
https://escholarship.org/uc/item/1r93h2br

Author
Grant, Stewart

Publication Date
2024

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1r93h2br
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA SAN DIEGO

Disaggregated Data Structures: Sharing and Contention
with RDMA and Programmable Networks

A dissertation submitted in partial satisfaction of the
requirements for the degree Doctor of Philosopy

in

Computer Science

by

Stewart Steven Grant

Committee in charge:

Professor Alex C. Snoeren, Chair
Professor Amy Ousterhout
Professor George Papen
Professor Yiying Zhang

2024

Copyright

Stewart Steven Grant, 2024

All rights reserved.

The Dissertation of Stewart Steven Grant is approved, and it is acceptable in

quality and form for publication on microfilm and electronically.

University of California San Diego

2024

iii

DEDICATION

To my inner circle – Family, Loved ones and Friends. And to every belayer that caught me.
Thanks for the proverbial and literal support.

iv

EPIGRAPH

”If this is the best of possible worlds, what then are the others?”

-Voltaire Candide

“It must be considered that there is nothing more difficult to carry out, nor more doubtful of
success, nor more dangerous to handle, than to initiate a new order of things.”

-Niccolo Machiavelli The Prince

”If every porkchop were perfect we wouldn’t have hotdogs”

-Greg Universe, Steven Universe

v

TABLE OF CONTENTS

Dissertation Approval Page . iii

Dedication . iv

Epigraph . v

Table of Contents . vi

List of Figures . viii

List of Tables . xi

Acknowledgements . xii

Vita . xiii

Abstract of the Dissertation . xiv

Introduction . 1

Chapter 1 Background . 6
1.1 Disaggregation . 6
1.2 RDMA . 8

1.2.1 RDMA Connections . 9
1.2.2 RDMA Verbs on Mellanox NICs . 11
1.2.3 RDMA Limitations . 12

1.3 Programable Networks . 13
1.4 Disaggregated Systems and Data Structures . 14

1.4.1 Sparse vs Dense Data Structures . 15
1.4.2 Hash Tables . 18
1.4.3 Locks vs Optimistic Concurrency . 20

Chapter 2 Swordbox: Accelerated Sharing of Disaggregated Memory 22
2.1 Serialization . 25

2.1.1 Switch-Enforced Ordering . 26
2.1.2 Atomic RDMA Operations . 27
2.1.3 Implications . 29

2.2 SwordBox’s Design . 30
2.2.1 Connection Multiplexing . 31
2.2.2 State Caching . 34
2.2.3 Atomic Replacement . 34
2.2.4 Applying SwordBox to Disaggregated Memory . 35
2.2.5 Failure Handling . 38

2.3 Implementation . 40

vi

2.3.1 Connection Steering . 40
2.3.2 Connection Multiplexing . 41

2.4 Evaluation . 42
2.4.1 Testbed . 42
2.4.2 Atomic Replacement . 43
2.4.3 Steering in Clover . 45

2.5 The Cost of Programmable Switches . 49
2.6 Acknowledgement to SwordBox Contributors . 50

Chapter 3 Disaggregated Data Structure Design . 51
3.1 A Case for Fully Disaggregated Cuckoo Hashing . 51
3.2 Design . 53

3.2.1 Datastructures . 54
3.2.2 Operations . 55
3.2.3 Locality . 60
3.2.4 Locking . 62

3.3 Fault Tolerance . 65
3.3.1 Failure detection . 66
3.3.2 Repair Leases . 66
3.3.3 Table repair . 67
3.3.4 Preventing Stale Writes . 69

3.4 Evaluation . 70
3.4.1 Testbed . 70
3.4.2 Performance . 74
3.4.3 Fault Tolerance Performance . 78
3.4.4 Microbenchmarks . 78

3.5 The Advantage of Locality . 81
3.6 Acknowledgement to RCuckoo Contributors . 81

Chapter 4 Conclusion . 83
4.1 Contributions . 84
4.2 Future Work . 84

Bibliography . 87

vii

LIST OF FIGURES

Figure 1.1. Achieved throughput of RDMA verbs across twenty queue pairs on data-
independent addresses as a function of request concurrency. When using
atomic requests, ConnectX-5 NICs can support approximately 2.7 MOPS
per queue pair, up to about 55 MOPS in aggregate. 10

Figure 1.2. Compare-and-swap performance on device and main memory 11

Figure 2.1. Max throughput as a function of the number of RoCEv2 RC connections.
Each queue pair is managed by a separate core and issues in-lined writes. . 25

Figure 2.2. PDF of request reorderings. Retransmitted requests lead to reordering
values of zero. 97% of requests retain their order (delta=1), however
reorderings of up to 13 requests can occur. (Note logarithmic y axis.) 26

Figure 2.3. Throughput comparison of serialized RDMA operations in NIC-mapped
device and main memory. Writes obtain 6.2× higher throughput than CAS
in host memory and 2.5× higher in NIC memory. CAS values here are the
same values as (Single Address) in Figure 1.2. 29

Figure 2.4. Percentage of successful operations in a 50:50 read-write workload spread
across 1,024 keys according to a Zipf(0.99) distribution as a function of
thread count. At 240 threads less than 4% of operations succeed. 30

Figure 2.5. RoCEv2 packets consist of an Ethernet, IP, and UDP header. The RoCE
BTH header stores QP data, sequence numbers, flags, and operations. The
BTH+ header contains operation specific data: virtual addresses, DMA
size, and atomic payloads. 31

Figure 2.7. SwordBox’s DPDK processing pipeline. 40

Figure 2.8. Breakdown of switch resource utilization by SwordBox component. 41

Figure 2.9. Throughput of conflicting CAS and rewritten CAS requests as a function
of client threads/QPs. 42

Figure 2.10. Swordbox workload performance on a read only workload. SwordBox’s
performance adds no observable overhead to clover. 43

Figure 2.11. Swordbox workload performance on 5% write workload. Due to cache
misses and contention SwordBoxgains nearly a 3x performance boost over
Clover . 44

Figure 2.12. Swordbox workload performance 50% write workload (YCSB-A) 45

viii

Figure 2.13. Swordbox workload performance on a write only workload 46

Figure 2.14. Average number of bytes required per Clover operation on 128-byte objects
using each of the three techniques at various write intensities. 47

Figure 2.15. 99th-percentile tail latencies of read (solid) and write (striped) Clover
operations at various write intensities. (Note logarithmic y axis.) 48

Figure 2.16. Per-client throughput as a function of the number of Clover keys SwordBox
steers. 50:50 workload averaged across 6 hosts each running 56 threads. . 49

Figure 3.1. RDMA operation latency as a function of message size [3] 52

Figure 3.2. RCuckoo’s datastructures showing insertion of key K as it displaces C,
whose value is stored in an extent. 54

Figure 3.3. RCuckoo’s protocol for reads, inserts, deletes and updates. Blue lines are
index accesses, and red lines are extent accesses. Solid lines are reads,
dotted lines are CAS, and curved dashed lines are writes. 56

Figure 3.4. CDF of distances between cuckoo locations for different locality settings
using RCuckoo’s dependent hashing. 59

Figure 3.5. Achieved maximum fill percentage for different locality settings. 90% fill
indicated by dashed red line. 60

Figure 3.6. CDF of cuckoo spans for dependent and independent hashing. A cuckoo
span is the distance between the smallest and largest index in a cuckoo path 61

Figure 3.7. 99th-percentile round trips required per insert in a 512-row table when
filling to 95%. 512 buckets per lock corresponds to a single global lock. . . 63

Figure 3.8. Format of a repair lease table entry . 67

Figure 3.9. Throughput as a function of the number of clients for a read only workload
(YCSB-C) (Zipf θ=0.99) . 70

Figure 3.10. Throughput as a function of the number of clients for a read mostly work-
load (5% write) workload (YCSB-B) (Zipf θ=0.99) 71

Figure 3.11. Throughput as a function of the number of clients for a write heavy work-
load (50% writes) (YCSB-A) (Zipf θ=0.99) . 72

Figure 3.12. RCuckoo performance as a function of fill factor on each YCSB workload.
Here updates are replaced with inserts. As the table fills inserts become
more difficult thus reducing throughput. 73

ix

Figure 3.13. Read and insert latency as a function of fill factor. RCuckoo’s read latency
remains constant. Insert latency is proportional to the fill factor 73

Figure 3.14. Bytes per operation as a function of fill factor. As the table fills inserts
consume more bytes per operation due to additional round trips. 74

Figure 3.15. Messages per operation as a function of fill factor. 75

Figure 3.16. YCSB-A throughput vs. client failure rate . 76

Figure 3.17. Round trip times required to acquire locks on insert 77

Figure 3.18. Insert second-search success rate as a function of lock granularity 78

Figure 3.19. Throughput vs. key/value-entry size for YCSB-A (insert) and YCSB-C
(read-only) workloads . 79

Figure 3.20. Extent performance value sizes up to 1KB. Dashed line marks the inline
performance on 16 Byte entries. Overheads marked in black. 80

x

LIST OF TABLES

Table 1.1. Cross section of systems and techniques. Full circles imply that a system
uses the category, denotes when a system meets the qualification in spirit
but not explicitly, and when the technique is absent. Columns OC and
CC stand for Optimistic Concurrency and Compute Coalescing respectively. 16

xi

ACKNOWLEDGEMENTS

Chapter 2 is a partial reprint of work submitted to multiple USENIX and ACM confer-

ences under the title ”SwordBox: Accelerating Shared Access in RDMA-based Disaggregated

Memory. Stewart Grant, Alex C. Snoeren. This dissertations author was the primary investigator

and author of this paper. Chapter 3 is a partial reprint of work submitted to multiple USENIX

conferences under the title ”Cuckoo for Clients: Disaggregated Cuckoo Hashing. Stewart Grant,

Alex C. Snoeren. This dissertations author was the primary investigator and author of this paper.

I would like to acknowledge my advisor Alex C. Snoeren for his dedication to his craft

and guidance over the past 6 years. No piece of work within this dissertation would be possible

without your collaboration. I would also like to thank my committee members Amy Ousterhout,

Yiying Zhang, and George Papen for their feedback and guidance, and Srikanth Kandula for his

mentorship during my time at MSR.

This dissertation has been extraordinarily influenced by Anil Yelam, my closest col-

laborator. Thank you for all the time you spent working on our collaborations, and the hours

spent discussing and debating system designs and performance results. I’m forever grateful. To

Maxwell Bland, your research energy is unmatched and without your help we would never have

have acquired any SmartNICs. And Alex (Enze) Liu for his superior knowledge of Python and

unmatched focus on research. Thank you to all of the members of the Systems and Networking

group at UCSD, especially the optical networking group for your feedback and guidance during

the first years of my PhD.

Thank you to Meta for funding my research and providing me with the opportunity to

work on resource disaggregation, Cavium for the generous donation of two SmartNICs, and to

ARPAe for funding my first years of research.

I’d like to thank all of the members of 3140 for their collaboration and friendship over

the years. It’s truly the best office, Chez bob volunteers for keeping me fed, and to my friends

for the support. Camille Rubel thanks for having the best climbing schedule in the world, Phillip

Arndt for pushing my limits, and Camille Moore for keeping me on my toes.

xii

VITA

2012-2016 Bachelor of Science, Computer Science University of British Columbia

2016-2018 Master of Science, Computer Science University of British Columbia

2018-2024 Doctor of Philosophy, Computer Science University of California San Diego

PUBLICATIONS

Deepak Bansal, Gerald DeGrace, Rishabh Tewari, Michal Zygmunt, and James Grantham,
Silvano Gai, Mario Baldi, Krishna Doddapaneni, Arun Selvarajan, Arunkumar Arumugam,
Balakrishnan Raman, Avijit Gupta, Sachin Jain, Deven Jagasia, Evan Langlais, Pranjal Srivas-
tava, Rishiraj Hazarika, Neeraj Motwani, Soumya Tiwari, Stewart Grant, Ranveer Chandra, and
Srikanth Kandula . 2023. Disaggregating Stateful Network Functions. In proceedings of 20th
USENIX Symposium on Networked Systems Design and Implementation (NSDI ’23). Usenix
Association, Boston MA, USA, April 2018, 1469–1487.

Stewart Grant, Anil Yelam, Maxwell Bland, and Alex C. Snoeren. 2020. SmartNIC Performance
Isolation with FairNIC: Programmable Networking for the Cloud. In Proceedings of the Annual
conference of the ACM Special Interest Group on Data Communication on the applications,
technologies, architectures, and protocols for computer communication (SIGCOMM ’20). Asso-
ciation for Computing Machinery, Virtual Event, August 2020, 681–693.

Stewart Grant, Hendrik Cech, and Ivan Beschastnikh. 2018. Inferring and asserting distributed
system invariants. In Proceedings of the 40th International Conference on Software Engineering
(ICSE ’18). Association for Computing Machinery, Gothenberg, Sweden, July 2018, 1149–1159.

xiii

ABSTRACT OF THE DISSERTATION

Disaggregated Data Structures: Sharing and Contention
with RDMA and Programmable Networks

by

Stewart Steven Grant

Doctor of Philosopy in Computer Science

University of California San Diego, 2024

Professor Alex C. Snoeren, Chair

Resource disaggregation proposes a next-generation architecture for data center resources.

System components like compute, memory, storage, and accelerators are separated from one

another by a fast network and composed dynamically into virtual servers when required. This

paradigm promises to dramatically improved resource utilization, scalability, and flexibility,

but introduces substantial challenges in terms of performance and fault tolerance. Memory is

among the most difficult resources to disaggregate. CPUs currently expect DRAM to have ultra

low latency, high bandwidth, and to share it’s failure domain. In particular increased latency

from network round trips dramatically shifts the performance of existing shared data structures

xiv

designed for local DRAM.

In this dissertation I demonstrate the challenges of sharing disaggregated memory and

show that programmable network devices can be used to significantly improved system perfor-

mance. I present two systems: First SwordBox which utilizes a centralized programmable switch

to cache data structure state and dramatically improve key-value workload performance. Second

I present a new key-value store RCuckoo which is designed to leverage RDMA and reduce round

trips when accessed by CPUs over a network. Both systems demonstrate significant performance

improvements over the existing state of the art.

xv

Introduction

What should a data center server look like? Twenty years ago, a data center operator may

have argued for the simplicity of homogeneity over optimal performance, reasoning that carefully

picked commodity hardware at a given price point would yield the best cost-performance

tradeoffs and that the performance gains of next-generation hardware would quickly erase any

benefits made by specializing servers due to Dennard scaling [83].

Since then, both Moore’s law and Dennard scaling have slowed down dramatically. CPU

clock speeds and memory density improvements have stagnated, leaving operators to fight tooth

and claw to enjoy the efficiency gains of prior decades. The effect is that new technologies are

being introduced to achieve scaling. CPUs are now monstrously parallel. Custom accelerators are

common for specialized workloads like video coding and machine learning. Indeed, the modern

data center is a hodgepodge of heterogeneous hardware (GPUs, TPUs, DPUs, SmartNICs, and

FPGAs) [12, 26, 43, 5], and various new memory offerings and tiers like NVMe [71]. Today, the

number of server types in a data center, conservatively, is in the dozens. At the time of writing,

EC2 has 84 listed instance types [4] for their customers to design their services. The trend is

clear: in search of efficiency, data center and server design is increasingly heterogeneous, with

servers being designed for specific applications and workloads.

Resource disaggregation is a new architectural paradigm for data center resources aimed

at improving efficiency and managing increased heterogeneity. In the disaggregated model, a

server’s resources do not monolithically reside in a 1U, 2U, or 4U server form factor. Instead,

each resource (i.e., compute, memory, storage) is deployed separately to a dedicated machine and

interconnected via a fast network. Servers are composed dynamically from these resources, which

1

enables them to be provisioned for their exact purpose [10, 32, 58, 71, 84]. This model enables

resource pooling and sharing, which in turn leads to higher efficiency [8, 9, 12, 81, 85, 86].

DRAM, in particular, has become a precious resource in data centers and is a focused

target for resource pooling [66]. The benefits of pooling are clear when examining a simple bin

packing problem. Consider two servers, each provisioned with 4GB of DRAM, and three jobs,

each requiring 2.5GB of memory. In a monolithic design, a scheduler can only place one job

per machine or risk swapping to disk. In a disaggregated model, the 4GB of memory could be

placed in an 8GB pool, which could be easily subdivided into three 2.5GB partitions. In the

monolithic case, the unused memory is stranded, while pooling reclaims stranded memory. More

concretely, at data center levels, practitioners have to provision their servers for the sum of peak

demand; when resources are pooled, they can be provisioned for the peak of the sum of demand,

which can be significantly lower [12, 85].

Disaggregation, in general, is only possible because of new fast networks. Commodity

NICs now offer 400Gbps with expectations for continued growth to 800Gbps and above [7].

Network and memory bandwidths are quickly approaching the same order of magnitude. At

the same time, network stacks are becoming lighter-weight through kernel bypass and CPU

bypass technologies like DPDK [27] and RDMA [38], enabling applications to more easily

take advantage of the additional bandwidth. Network devices themselves are becoming increas-

ingly programmable, with multiple vendors offering programmable SmartNICs, DPUs, and

switches [40, 1, 76]. These two trends have led to intra-rack latencies of 1-2µs, with the ability

to inspect, cache, and modify packets in flight at line rate.

Despite fast networks, memory disaggregation has remained elusive while storage, such

as spinning disks and solid-state drives, has seen widespread disaggregation. The reason for this

contrast is that storage device access latency is far higher than a network round trip. In the case

of memory, the opposite is true. Memory access latency is approximately 20 times lower than

a network round trip (50-100ns), effectively making it a separate tier of memory when placed

across a network. While there is ongoing research demonstrating the advantages of tracking

2

cache lines over pages for remote memory [14], the cost of fully disaggregating all memory is

deemed too high [84]. A common proposal for disaggregated memory is to have CPUs with a

reasonably sized cache (e.g., 4GB) of DRAM attached to them, along with software to manage

and reduce the cost of remote accesses [84].

A large body of literature exists on disaggregated memory systems with a significant

local cache. Many of these systems intervene in the virtual memory system to decrease the

cost of accessing remote memory by employing prefetching and eviction strategies aimed at

minimizing blocking remote accesses [32, 9, 64, 51]. Similarly, object-based disaggregated

systems utilize remotable objects with per-object tracking to mitigate the frequency of remote

accesses [81, 100]. Additionally, compiler-based systems leverage static and dynamic analysis

to identify large, small, and hot objects for cache optimization [33, 90]. These systems primarily

focus on analyzing memory access patterns and reducing the number of remote accesses with

decreasing volumes of local cache. However, they often overlook a critical aspect of memory

access: sharing. When memory is shared, access patterns alone are insufficient to minimize

round trips. Some degree of coherence must be maintained between remote caches, which is the

primary focus of this dissertation.

At its core, the challenge of sharing in disaggregated memory is serialization. When a

data structure is shared by multiple accessors, some mechanism must ensure the consistency of

the data structure. In a monolithic system, this is often achieved with locks or atomic operations.

Across machines, serialization is typically accomplished by either a centralized sequencer or a

distributed protocol. As a point of comparison, consider the differences between serialization

in a traditional RPC system and disaggregated memory. In an RPC system, requests arrive on

a NIC and are delivered to one or more CPU cores for processing [56, 67, 45, 24, 65]. If all

requests are routed through a single CPU core, it implicitly serializes operations by enqueueing

the RPC requests and servicing them one at a time. If the RPC service has multiple cores, any

shared structure can be protected via a lock or other synchronization mechanism in the RPC

server’s local memory. In contrast, in a disaggregated system, no such server-side CPU exists.

3

Or, if one does, it is assumed to be low power and incapable of handling significant traffic. In the

absence of such a CPU, clients must enforce serialization amongst themselves.

In the absence of a serialization mechanism close to memory, clients must rely on the

only mechanism available in commodity systems: RDMA atomics. Throughout this dissertation,

RDMA atomics will be used as the backbone of all shared disaggregated data structures. They

take the form of two operations: compare-and-swap (CAS) and fetch-and-add (FAA), which

execute with the same semantics as their local counterparts but on the memory of a remote

machine. While their semantics remain the same, their performance is dramatically different. As

noted before, the cost of executing a remote operation is 20 times that of local memory. This

latency inflates the size of critical sections built with remote locks and leads to stale caches and

poor performance for optimistic data structures under contention [91, 93, 87, 102, 55].

Data structures can be optimized for disaggregated memory by leveraging network

programmability.

This thesis statement is the core of the work presented in this dissertation. The challenges

listed above, while fundamental to the problem domain can be practically alleviated in a variety

of ways by exploiting modern network hardware. We provide evidence for the thesis statement

above by addressing the following two questions. Where and how should serialization occur?

The default answer to these questions is ”on the NIC” and ”with RDMA atomic verbs.” However,

given the landscape of programmable in-network hardware, our options are flexible. At rack-scale,

both TORs and NICs offer serialization points. The interface and mechanism for serialization

can be customized using programmable hardware. For instance, a switch could be programmed

to maintain locks [97], provide sequencing [78], or directly implement contended functions [50].

Simultaneously, NICs, though lower bandwidth and less centralized than TORs, have the

potential to offer extended RDMA interfaces [22] and implement OS functionality for remote

clients [34, 85]. What data structures should be used? Few data structures are currently designed

for remote memory [91, 87, 102, 93, 55, 86]. While these systems resemble RDMA [67, 45, 68]

4

and NUMA [35, 36, 15] systems of the past, disaggregation requires special consideration for

the network hardware it runs on. How can round trips and access latencies be reduced? What

data structures are easy to build, and which are hard? These questions are a key focus of this

dissertation.

This dissertation explores the design of shared data structures in disaggregated memory

systems. I introduce two systems, SwordBox and RCuckoo, which address the challenges of

sharing and contending access to remote memory. SwordBox (Chapter 2) adopts a middlebox

approach to alleviate contention in shared data structures. Its key insight leverages the serialized

view of traffic at rack-scale TORs, caching data structure state on a programmable switch.

Additionally, I present RCuckoo (Chapter 3), a fully disaggregated key-value store specifically

designed to enhance key-value locality. RCuckoo utilizes locality-sensitive hashing to improve

performance in reads, writes, locking, and fault recovery by minimizing round trips. SwordBox

demonstrates significant improvements in both throughput (up to 30x) and tail latency (up to

300x), while RCuckoo meets or surpasses the performance of all state-of-the-art disaggregated

key-value stores on small key-value pairs and outperforms other systems on the most common

data-center workloads [20, 73].

5

Chapter 1

Background

Disaggregated systems rely on a variety of state-of-the-art technologies. We begin this

Chapter by describing disaggregation generally and technologies that enable it (Section 1.1). The

disaggregated networks described in this dissertation are fast (100Gbps+) and rely heavily on

one-sided RDMA operations. In Section 1.2, we describe RDMA, the connections which enable

one-sided operations, their consistency guarantees, and the atomic operations which serialize

operations across connections. In-network computation enables new serialization points for

shared data structures – Section 1.3 describes the current landscape of programmable hardware,

its strengths and limitations. Section 1.4 introduces the concepts behind and challenges of

building shared data structures in disaggregated memory and how traditional structures can be

adapted to remote memory.

1.1 Disaggregation

Disaggregation stems from shifting hardware trends, marking a paradigm shift within

the systems community. Over decades, per-core access to memory bandwidth and capacity

has steadily declined [58]. While CPU core counts have seen consistent increases, memory

speeds and capacities have improved at a slower rate [66]. Consequently, CPU cores now have

diminished access to memory bandwidth and capacity compared to a decade ago. With memory

becoming an increasingly scarce resource, data center operators are exploring novel approaches

6

to enhance memory utilization. Disaggregation emerges as one such option. Monolithic servers

typically allocate a fixed amount of RAM per machine, resulting in an uneven distribution of

memory utilization across the data center. Some servers suffer from memory shortages, while

others have surplus gigabytes. Disaggregation targets this spare, stranded memory, aiming

to provide each server access to a shared pool of RAM. In essence, disaggregated resources,

whether memory, FPGAs, or the network itself, can be provisioned for the peak-of-sums rather

than the sum-of-peaks [34, 85, 12].

The primary challenge in disaggregation is network latency [28]. The difficulty of dis-

aggregating a resource is directly related to its access latency relative to the network latency.

Disaggregated storage has become commonplace, with academia and industry pooling SSDs

and HDDs into shared storage pools for increased capacity and cost efficiency. This process

is comparatively straightforward compared to memory disaggregation, given the higher access

costs of storage relative to the network. For instance, intra-rack RDMA ping latencies typically

range from 1-2 microseconds, whereas HDD latencies are 10-20 milliseconds and SSDs are often

hundreds of microseconds. In these scenarios, the network overhead is usually a single-digit

percentage or less [71]. In contrast, DRAM latencies are in the range of 50-100 nanoseconds.

DRAM over RDMA incurs nearly a 20x overhead compared to local access. Despite this

overhead, RDMA remains a prominent candidate for disaggregated transport. CXL, an emerg-

ing technology, promises NUMA-like latencies (200-300 nanoseconds) for remote memory

access [21]. However, CXL’s availability and performance scalability are not well-established at

present [29, 52, 89]. Regardless of the interconnect used, the fundamental challenge of access

latency persists. This dissertation primarily focuses on RDMA, although the algorithms and data

structures presented herein are largely agnostic to interconnect specifics.

7

1.2 RDMA

Remote Direct Memory Access (RDMA) serves as the fundamental technology enabling

disaggregation. This section delineates RDMA’s attributes in facilitating disaggregated architec-

tures via its one-sided verbs, alongside the intricacies of constructing shared data structures atop

RDMA, particularly concerning serialization.

RDMA stands as a low-latency, high-bandwidth network protocol. It achieves superior

performance by circumventing multiple overheads inherent in traditional networking stacks,

such as Linux Sockets. Firstly, RDMA operates as a kernel-bypass technology, empowering

user-space applications to directly engage with the network interface card (NIC), leveraging NIC-

specific features like on-NIC caches [93], and sidestepping context switch overheads. Secondly,

RDMA’s foremost feature lies in offloading a significant portion of the network stack to NIC

hardware, effectively bypassing the CPU entirely for data transfer. CPU bypass on the receiver

end distinguishes RDMA as the pivotal technology for disaggregation. A receiver can expose its

resources like memory without necessitating CPU intervention in managing the transfer.

To illustrate the contrast between traditional Unix API-based communication and RDMA,

consider the following scenario: In a conventional networking stack, when a process sends a

UDP message on an existing socket, the user initially marshals the data and submits it to the

kernel through a send operation. Subsequently, the kernel copies the data from user-space,

configures the packet header, and dispatches the packet to the NIC. Conversely, with RDMA, the

user-space application pre-registers a memory region with the NIC before sending data. When an

application intends to transmit data from this region to a remote machine, it furnishes a pointer

to the data, the data’s size, the remote machine’s address, and the NIC’s intended action (verbs).

The application initiates transmission by invoking a dedicated RDMA send operation. This

operation, non-blocking in nature, signals the NIC to perform a direct memory access (DMA)

operation, extracting the memory from the process’s address space, assembling a packet on the

NIC (inclusive of managing transport state), and transmitting directly to another machine. In

8

the case of a write, the receiving NIC issues DMA to the remote machine’s memory without

engaging its CPU.

While the aforementioned example provides a high-level portrayal of CPU bypass for

RDMA writes, it is imperative to recognize that the RDMA protocol is inherently complex,

featuring various connection types and verbs. The extant InfiniBand RDMA specification spans

over 1,700 pages [38]. Within this section, I briefly highlight the salient aspects of RDMA

pertinent to this dissertation’s objectives.

1.2.1 RDMA Connections

When run over Ethernet using the RoCEv2 (RDMA over Converged Ethernet) standard,

RDMA NICs located on client and server can cooperate to implement congestion [57, 101] and

flow control, reliable delivery, and at-most-once delivery semantics. Before exchanging data,

RDMA endpoints establish a queue pair (QP) which defines the region(s) of memory each is

able to access. Like Internet transport protocols, RDMA queue pairs provide a configurable set

of semantics depending on the transport mode selected: UDP-like semantics are provided by

unreliable datagram (UD) and unreliable connections (UC), while reliable connections (RC)

are similar to TCP, ensuring reliable, in-order delivery. Moreover, reliable connections support

so-called 1-sided verbs (e.g., read, write, and compare-and-swap) that are executed autonomously

by the remote NIC without any remote CPU involvement.

The benefits of the various transport modes and 1-vs-2-sided verbs have been a topic of

intense debate. While reliable connections provide enhanced guarantees, their implementation

requires on-NIC memory, a precious resource, and researchers have observed scalability bottle-

necks due to memory and cache limitations in the Mellanox ConnectX family of RDMA NICs

[23, 47, 44, 92, 46]. Recent work has shown how to overcome limits in terms of the number of

connections [74, 69], but the ordering guarantees provided by RC remain restricted to individual

queue pairs. While unreliable transport modes can deliver superior performance and scalability

[47], they require the use of 2-sided verbs—i.e., involvement of a CPU at the memory server—to

9

50 100 150 200 250 300 350
Concurrent Requests

25

50

75

100
M

OP
S

Writes
Reads
CAS

Figure 1.1. Achieved throughput of RDMA verbs across twenty queue pairs on data-independent
addresses as a function of request concurrency. When using atomic requests, ConnectX-5 NICs
can support approximately 2.7 MOPS per queue pair, up to about 55 MOPS in aggregate.

ensure ordering, a non-starter for passive disaggregated settings. Unless hardware support for

more sophisticated 1-sided verbs [96, 88, 94] becomes available, another approach is required.

The memory semantics of one-sided RDMA are complex. While RC provides in-order

delivery of messages, different verbs have their own ordering semantics. For instance, issuing

a read prior to a write may see the results of the write. Across QPs, no ordering is guaranteed

by default. The effect of these semantics is that system designers must be very careful with

how they use RDMA. If a read is issued on the same address as a write before waiting for the

write to complete, the user must specify a fence flag in the read operation. Across QPs, the

lack of ordering means that partially written data is visible to other QPs; a common tactic is to

accompany writes with CRCs to enable the readers to verify the data’s integrity [67, 68, 91, 102].

When serialization is required across QPs, the only available mechanism are RDMA atomic

operations.

10

Single Address Independent Address
0

20

40

60

80
M

OP
S

3.1x 1.8x

Device Memory
Main Memory

Figure 1.2. Compare-and-swap performance on device and main memory

1.2.2 RDMA Verbs on Mellanox NICs

While RDMA is a generic protocol, the Network Interface Cards (NICs) utilized through-

out this dissertation are Mellanox ConnectX-5. These NICs implement the base specification of

RDMA and also provide additional features outside the InfiniBand specification, which can be

exploited for performance gains. In this section, I describe RDMA verbs and their performance

characteristics on Mellanox NICs, with a specific focus on atomic operations.

Atomic verbs such as compare-and-swap (CAS) and fetch-and-add (FAA) are essential for

implementing locks or opportunistic concurrency. Atomics are limited to 64-bit operations and

bottleneck at lower rates than reads and writes because they block requests on data-dependent

addresses while waiting on Peripheral Component Interconnect Express (PCIe) round trips

[46, 93]. Figure 1.1 shows that the NICs in our testbed (100-Gbps NVIDIA Mellanox ConnectX-

5s) are capable of serving many tens of millions of RDMA operations per second (limited only

by link speed), but CAS operations to remote server memory top out around 50 MOPS.

While atomic operations are limited to 64 bits, read and write message sizes are bounded

only by the link Maximum Transmission Unit (MTU). Figure 1.1 shows that on our testbed, NIC-

11

to-NIC round-trip times are similar for all message sizes less than about 128 bytes, and messages

must exceed 1 KB before the latency of a single large operation exceeds two round-trip times of

smaller ones. We leverage this observation in Chapter 3 by collapsing multiple small reads into a

single larger one when appropriate. The optimal threshold trades off latency reduction against

the amplified bandwidth cost of performing larger reads (read amplification).

Mellanox NICs include a small amount (256 KB in our case) of on-NIC memory that

can be addressed by remote clients using RDMA operations [6]. Accesses to NIC memory

avoid the need to cross the server’s PCIe bus, decreasing latency and increasing throughput.

The performance gain is particularly significant for atomic operations. Figure 1.2 shows the

maximum aggregate throughput of concurrent CAS operations targeting the same single (i.e.,

contended) address or distinct, independent addresses in both main server memory (shown in

orange) and on-NIC device memory (blue). CAS operations perform between 1.8 and 3.1 times

faster on NIC memory. Chapter 3 illustrates the profound effect that utilizing NIC memory can

have on data structure performance in a disaggregated setting by using NIC memory specifically

for high contention locking operations.

1.2.3 RDMA Limitations

RDMA is a powerful technology; however, it has well-documented drawbacks that can

make system design difficult and limit performance. One significant debate revolves around the

limitations of the RDMA API. Certain operations are challenging with RDMA; for instance, allo-

cating memory requires calls into the control path, and data indirection like pointers necessitates

a round trip back to the sender to resolve [22]. As detailed in prior sections, atomic operations

are slow and lead to performance bottlenecks [46].

Of particular note is the difficulty in achieving global ordering across queue pairs (QP).

Even using fast NIC memory for RDMA operations yields only a few million operations

per second (around 10M). Using this technique to implement a global sequencer is orders of

magnitude slower than a global sequencer implemented with two-sided verbs and an efficient

12

RPC system (around 120M) [46]. In the next section, I overview the rise of programmable

network devices and provide some background on how they can alleviate some of the limitations

of RDMA.

1.3 Programable Networks

The past decade has seen the rise of programmable network devices. These devices are

capable of executing users’ code often at line rate. A huge variety of devices exist: SmartNICs [30,

61, 60, 77], DPUs [12], FPGAs [26, 34, 79, 85], and programmable switches [19, 41, 42, 97]

from a wide variety of vendors. Often these devices provide thin operating systems which allow

users to develop and deploy code written either in C or P4. These programmable devices are

powerful and transformational tools for designing network systems as they can offer orders-

of-magnitude performance improvements when deployed in the right context [78], such as

sequencing where it has shown to offer huge benefits for consensus [53, 54]. In this dissertation,

we leverage the power of programmable switches to exactly this benefit to get fast in-network

serialization for RDMA based data structures (Chapter 2).

Most prior proposals for disaggregation consider rack-scale deployments where servers

are partitioned into roles: compute, memory, and storage, all of which are interconnected by a

top-of-rack switch [10, 25, 39, 48, 84]. The central role of the ToR in this architecture has not

gone unnoticed, and researchers have observed that a programmable switch can offload a wide

variety of traditional operating system services [10, 41, 42, 50, 97, 99]. The constraints in each

case are similar: programmable switches have limited memory and processing capabilities. If

the computational task is too large packets must be recirculated adding additional latency and

reducing aggregate bandwidth. Ideal applications for programmable switches use little memory,

require minimal processing and deliver outsized performance benefit.

Specifically, prior work has shown that programmable switches are able to provide

rack-scale serialization at low cost [53, 54, 78], manage locks [97], and track the state required

13

to maintain an RDMA reliable connection [49]. Researchers have even used a programmable

switch to implement a centralized memory controller including a unified TLB and cache for

passive remote memory [50]. Their approach is limited, however, by the resource constraints

of the switch. Inspired by performance-enhancing TCP proxies of old [11, 31], we consider

a slightly different design point where the authoritative state and control logic remain at the

endpoints.

In Chapter 2, we will show that a programmable switch can be used to great effect

in accelerating a shared RDMA based data structure by caching a small amount of data and

modifying operations in flight to reduce (or entirely remove) contention. In the following section

we describe data structures in disaggregated systems and prior work on NUMA based data

structures.

1.4 Disaggregated Systems and Data Structures

The aforementioned trends and technologies have enabled disaggregated systems to

become a reality. A common model for disaggregated memory is that the remote memory of

another machine can be used as a swap space or as a remote cache rather than disk. In this model,

applications are apportioned a partition of remote memory for their pages [9, 32, 51, 58, 64, 84],

objects [81, 100], or cache lines [14]. These systems focus on improving performance by

reducing the number of remote memory accesses that an application has to make. In general,

this is done by identifying hot and cold memory, then prefetching and evicting data to reduce

the number of faults to remote memory. Additionally, these systems focus on fault-tolerance by

replicating or erasure coding memory across replicated memory servers [51].

A commonality between each of these memory systems is the lack of sharing. Operations

common to non-disaggregated systems like mmapping a shared page are not supported by these

systems. In cases where shared access is supported using POSIX interfaces, performance is not

considered to be a concern [8]. Disaggregated systems that share efficiently, at the time of writing,

14

are entirely custom-built data structures, the majority of which are key-value stores, transaction

processors, or caches [55, 87, 86, 91, 93, 98, 102] . Each of these systems takes on a significant

burden in terms of development. Most designers develop their own fault tolerance, replication,

recovering, allocation, and serialization protocols. In nearly every case, the performance of

these systems is determined by the techniques used to serialize writes on the index of the data

structure.

In this section I describe the challenges of building a shared data structure in disaggregated

memory. Pointers and pointer chasing are expensive in disaggregated memory. I describe the

tradeoffs of using pointer-based structures (e.g. linked lists) vs dense structures (e.g. arrays)

in Section 1.4.1, finally we describe these same tradeoffs in the context of hash tables, and

opportunistic vs lock based concurrency schemes.

1.4.1 Sparse vs Dense Data Structures

Data structures in disaggregated systems can be broadly categorized as either sparse

or dense. Sparse data structures are pointer-based, such as linked lists and trees. Dense data

structures reside in a linear block of memory, such as an array or heap. These two categories

form a spectrum as some structures, like hash tables, may have a dense index and a sparse

data region formed by linked lists. The choice of data structure has a profound impact on the

number of memory accesses required to perform operations. Sparse data structures typically

require pointer chasing, which involves traversing some number of pointers to reach the data,

for example, searching through a linked list or down a binary tree. Dense data structures are

typically easy to index into but tend to require more data movement, such as inserting into a

sorted array. Moreover, when designed for concurrency, sparse data structures are typically more

amenable to optimistic approaches, where operations can be done out of place and committed

via an atomic operation, while dense data structures typically use locks to implement a critical

section while data is updated.

In the context of disaggregated memory, the choice of data structure is critical as each

15

Table 1.1. Cross section of systems and techniques. Full circles imply that a system uses
the category, denotes when a system meets the qualification in spirit but not explicitly, and

when the technique is absent. Columns OC and CC stand for Optimistic Concurrency and
Compute Coalescing respectively.

project
read

inflation
relaxed
layout

pre-
compute OC*

metadata
caching CC*

self
verifing

M
ul

tic
or

e
N

U
M

A

Flat
Combining [35]
Hopscotch

Hash [36]
Blackbox
NUMA [15]

R
D

M
A

K
ey

-V
al

ue pilaf [67]
farm [23]
herd [45]
cell [68]

D
is

ag
gr

eg
at

ed
D

at
as

tr
uc

tu
re

s Clover [91]
RACE [102]

Sherman
[93]

Mind [50]

pointer resolution or data move requires an RDMA round trip. Lock-based data structures can

bottleneck quickly if locks are too coarse-grained, and client failure while holding a lock can

lead to distributed deadlock. Optimistic approaches can lead to high amounts of wasted work if

operations fail, although their failure cases may be easier to reason about as the effects of the

operation are not visible until the operation is committed.

Disaggregated data structures are not the first to face these challenges. NUMA data

structures, RDMA key-value stores, and preliminary work on disaggregated data structures each

have their own combination of techniques for managing this tradeoff space.

Table 1.1 is the result of a literature review on the state-of-the-art for shared data structures.

We noted a variety of techniques that cross-cut the systems we reviewed. Read inflation is a

technique which takes advantage of data structure locality. Simply put, if a rough location of

data is known, a big read can be issued to fetch a region containing the data. This reduces search

time for data in terms of memory access (or round trips) and trades off bandwidth for latency.

16

Hopscotch hashing [36], detailed more in the next section, defines a range h in which data can

be placed in its hash index. This technique goes hand in hand with relaxed data structure layout

(e.g., associativity) which allows for data to be placed in any order within pre-defined bounds.

RACE [102], a recent disaggregated key-value store, uses 8-way associative storage in its index

and uses read inflation to grab each bucket in a single read. Sherman [93], a write-optimized

B+Tree, uses associative, rather than sorted, leaves to reduce contention on writes.

Due to the high cost of reading far memory, a common trait among these systems is to

push complexity to the client. We classify the act of pushing complexity to clients into three

categories: pre-compute, metadata caching, and self-verifying. Pre-compute is the idea that

additional work on the client can reduce the number of reads required in remote memory. As

noted in the introduction, Clio [34] uses a flat precomputed page-table, RACE uses a local

power-of-two choices decision to reduce contention, and Sherman uses a local lock table to

reduce remote contention. Each disaggregated system makes use of some degree of metadata

caching, where a component of the data structure’s index is cached locally on the client to reduce

the number of reads required to synchronize with the remote state. In nearly all cases, data

structures are self-verifying, meaning that the data structure’s integrity can be determined by a

local calculation on the client. These are commonly CRC64s [67, 68, 87, 102].

The techniques used by these systems are largely the same as those used to design RDMA

key-value stores for non-disaggregated memory over the past decade [23, 45, 67, 68]. The

primary difference is that disaggregated systems use exclusively one-sided RDMA operations,

while RDMA key-value stores typically route write operations through a CPU to serialize

requests.

Despite the similarities between the two classes of systems, there is no agreement

on whether data structures should be optimistic or lock-based as each have distinct benefits.

For instance some data structures require large critical sections which are more amenable to

locks [36], while others (such as linked lists) can have their critical sections reduced to a single

pointer update with relative ease [91]. In Chapter 3, we design a lock-based hash table which

17

merges the qualities of Cuckoo and Hopscotch hashing to improve locality and enable efficient

precomputation. In Section 1.4.3, we describe how different disaggregated systems have used

locks and optimistic concurrency, and in Section 1.4.2, we describe the properties of Cuckoo

and Hopscotch hashing. Our stance in Chapter 2 is that both locks and optimistic concurrency

have their place in disaggregated systems, and that a middlebox can be used to accelerate both

lock-based and optimistic approaches.

1.4.2 Hash Tables

Fully disaggregated key-value stores are essentially concurrent hash tables whose conflict-

resolution strategy is implemented entirely by individual clients [55, 87, 102]. Like any hash

table, the underlying hashing algorithm must have an approach to managing collisions. Cuckoo

and hopscotch hashing are particularly attractive in this context because they both provide the

property that the potential locations of an entry in the table, regardless of contention or collision,

can be deterministically computed by clients based only upon the key itself [23, 24, 36, 56, 67, 75].

Moreover, the set of locations is limited. Hence, at least in theory, systems built around either

cuckoo or hopscotch hashing hold the potential for single-round-trip reads.

Cuckoo hashing uses independent hash functions to compute two (or more) potential

table locations for a key, a primary and a secondary, where each location corresponds to an

associative row of entries. A key is always inserted into its primary location. If that row is full,

an existing key is evicted (or “cuckooed”) to its secondary row to make space. If the cuckooed

entry’s secondary row is also full, the process iterates (by selecting yet another entry in the

secondary row to cuckoo) until an open location is found. The path of evictions is known as a

cuckoo path. While insertions can be involved, reads can always be executed in a single round

trip by reading the rows corresponding to both of a key’s locations simultaneously [67].

Hopscotch hashing works in a similar fashion but provides a slightly different guarantee,

namely that keys will be located within a bounded neighborhood. (While cuckoo hashing limits

the number of locations in which a key may be stored, it does not provide any locality guarantees

18

regarding those locations.) It does so by finding the physically closest empty entry to the desired

location and then, if that location is not within the neighborhood, iteratively moving other entries

out of the way to make room for the new key. The hopscotch process is facilitated by maintaining

a per-entry bitmask of nearby collisions. The entries are stored directly in the index at the

location the entry hashes to, when updates are made during insertions or deletions the bitmask is

updated to show that the collied entry has been inserted or removed. As with cuckoo hashing,

clients can index entries in a hopscotch hash in a single round trip by reading a key’s entire

neighborhood at once.

The insert operation is expensive for both approaches, and prior systems have taken

steps to mitigate its cost. In associative hashes like cuckoo hash tables, multiple entries can be

chosen as eviction candidates, and breadth-first search (BFS) has been shown to minimize both

cuckoo-path length and critical section time [24, 56]. Farm [23] and Reno [37], two systems

based on hopscotch hashing, completely avoid executing long hopscotch chains due to their

execution time and complexity. Moreover, under either approach, the insert operation can fail

despite vacant entries in the table—they are just too far away to be reached by either the cuckoo

path or hopscotch’s neighborhood-bounded linear probing. The point at which inserts begin to

fail, known as the maximum fill factor, is a function of the number of hash locations and row

associativity in cuckoo hashing and desired neighborhood size for hopscotch hashing.

RCuckoo (Chapter 3) uses cuckoo rather than hopscotch hashing due to locking concerns.

First, each step of a cuckoo insert process requires one update—to the entry being moved to

its secondary location—rather than two. When an entry is relocated in a hopscotch table, the

collision bitmask must also be updated. (Reno [37] uses one-sided atomics to sloppily update the

bitmask but requires a server-side CPU to fix the bitmasks whenever concurrent inserts execute.)

Second, keys exist in one of two locations in cuckoo hashing, so updates and deletes require

locking only two rows, while hopscotch entries inhabit a range of locations, so a conservative

locking strategy must lock the entire range. Yet, RCuckoo takes inspiration from hopscotch

neighborhoods and employs dependent hashing to increase the spatial locality of key locations,

19

enabling clients to use local caches to speculatively compute cuckoo paths.

1.4.3 Locks vs Optimistic Concurrency

Locks and optimistic approaches both provide mechanisms for managing concurrent

access to shared data structures. Locks provide a critical section which is executed atomically

by a single thread, while optimistic approaches allow multiple threads to execute concurrently

and resolve conflicts at the end of the operation. Both have their own tradeoffs which lead to

different performance and fault-tolerance characteristics in disaggregated memory.

Sherman’s B+ Tree [93] is augmented using entirely one-sided RDMA operations. Sher-

man improves performance under contention in two ways. First, it places locks for each node in

the B+ Tree in a special region of NIC memory exposed by ConnectX-5 NICs. Second, Sher-

man’s clients employ a hierarchical locking scheme to reduce the contention for server-hosted

locks. This client-local optimization significantly improves performance in cases where clients

are collocated; SwordBox seeks to achieve similar efficiencies at the rack scale.

Clover [91], RACE [102], and a successor to RACE called FUSEE [87] all use op-

timistic concurrency. They each support remote key-value stores through optimistic use of

one-sided RDMA atomic operations and client-driven resolution protocols. In Clover, reads

and writes for a given key are made to an append-only linked list stored in (persistent) remote

memory [91]; clients race to update the tail of the list. In FUSEE, persistence is implemented

through client-driven replication, so clients race to update a majority of replicas in an instance

of distributed consensus [87]. In both cases, writes are guarded by CAS operations so clients

can independently determine the outcome of the race. Because we are interested in the funda-

mental costs of contention—as opposed to the additional challenge of replication—we focus

specifically on Clover in this paper, but SwordBox could equally well apply to a (degenerate)

non-replicated instantiation of FUSEE. Indeed, we provide a performance comparison in the

evaluation (Section 2.4).

In Clover, all RDMA requests are targeted at the (presumed) tail of the list and writes

20

are guarded by CAS operations. A client may not know the location of the tail as other writers

concurrently push it forward. When an operation fails to land at the tail of the list, Clover

traverses the structure until the tail is found. While this provides no liveness guarantees, in

the common read-heavy case concurrent clients eventually reach the end of the list. To speed

up operations, clients keep caches of the end of each key’s linked list to avoid traversals. By

implementing a shared cache at the ToR, SwordBox decreases the likelihood of stale accesses.

21

Chapter 2

Swordbox: Accelerated Sharing of Disag-
gregated Memory

Proposals for disaggregated memory systems often forgo sharing entirely in favor of

partitioned regions [9, 32, 64, 84]. Each of these proposals cuts at a fundamental goal of remote

memory, which is to increase capacity via pooling and reduce the need to increase CPU pin

counts for increased memory bandwidth. The unfortunate result is that these systems do not

meet the same expectations as local memory systems. For instance, any system requiring mmap

with Shared semantics is not natively supported, and for those that do, the performance penalty

is extreme with no tools to mitigate the cost. The issue with this approach is that it may have

unforeseen consequences in terms of memory utilization that may actually be worse than those

on monolithic servers.

One strategy to deal with the cost of synchronization is to simply have applications

duplicate resources rather than share them. On a large system hosting hundreds of VMs, the cost

of duplicating shared libraries is known to be high, and deduplication among VMs is already

common. Further, on monolithic servers, the explicit nature of message passing systems has

been studied extensively, and extremely high performance can be achieved by using explicit

remote accesses [44, 45]. Given these two factors, monolithic servers with well-designed RPC

systems could potentially share more effectively and achieve better resource utilization than a

naive disaggregated system which exposes a transparent but slow interface to remote memory or

22

blindly replicates rather than sharing.

The key motivation behind SwordBox is to demonstrate that a centralized in-network

device can effectively remove contention and enable line-rate performance for disaggregated

shared memory. We noticed while investigating shared remote memory that the fastest RDMA

key-value stores used mostly one-sided RDMA but still required a CPU to serialize writes. The

moment that the CPU was removed entirely, the 99th percentile tail latency jumped dramat-

ically [91]. One option we considered was to use a smartNIC to serialize writes rather than

a CPU. Prior projects like Clio [34], SuperNIC [85], and Prism [22] suggested that network

functions were a good fit for smartNICs and that the could be used to implement close to memory

operations like pointer chasing. While we agreed, individual NICs could not provide rack-scale

coherence—in order to provide a rack-scale uniform memory machine, we would need to think

about a mechanism which could provide a global total order to all operations. A programmable

switch is an ideal candidate for this role as it sees all of the traffic in a rack and can enforce

global ordering. Our goal in this project was to design a system that could provide a full upper

bound on the performance achievable by a disaggregated shared memory system as a benchmark

for future systems to compare to.

The reason why sharing remote memory is hard is easy to identify: sharing remote

memory requires coordinating access across multiple clients, yet the RDMA protocol—like

TCP—provides a connection-based abstraction; while connection-less operation is possible,

much like UDP it provides essentially no semantic guarantees. Fundamentally, remote memory

operations must be ordered to provide coherent access, and the RDMA protocol provides two

basic mechanisms to do so remotely (i.e., in a 1-sided fashion): reliable connections that ensure

ordering and atomic operations that deliver mutual exclusion. While the performance of RDMA

connection handling has received considerable attention [23, 74, 17], connections remain an

end-to-end abstraction, and do not provide any guarantees regarding operations from distinct

clients. For that, systems must rely on atomic operations like compare-and-swap (CAS), but

their enhanced semantics dictate expensive implementation choices on the NIC, dramatically

23

restricting their performance compared to simple verbs like read and write [46]. Moreover,

atomic operations are available only over reliable connections.

As a result, most existing systems that deliver scalable, high-performance shared re-

mote access depend on the presence of computational resources collocated with the remote

data [45, 68, 23, 67, 74]. In particular, a memory-local CPU can employ 2-sided RDMA opera-

tions to orchestrate operations between multiple clients [45, 47], avoiding the need for atomic

operations. Unfortunately, such RPC-like approaches are infeasible in the passive memory

setting. Alternatively, organizations with significant resources have considered redesigning the

RDMA protocol itself to better support the needs of the disaggregated usage case—by, e.g.,

removing the connection abstraction and providing more powerful verbs [96, 88, 94]—but such

hardware is not yet available.

In this chapter, we explore an alternative dimension: rather than relying exclusively on

end-to-end solutions, we consider leveraging in-network resources—specifically programmable

switches that are located between clients and the remote memory servers—to accelerate systems

based on existing 1-sided RDMA verbs. Concretely, we observe that in rack-scale disaggregated

settings, the top-of-rack (ToR) switch serves as a single serialization point for all RDMA requests.

As a result, it is possible to transparently rewrite RDMA operations in flight to orchestrate requests

from multiple clients to passive memory servers, sidestepping the fundamental bottlenecks

present in the current connection-based RDMA protocol.

We present SwordBox, a top-of-rack switch that implements two separate yet compli-

mentary approaches to accelerating RDMA-based passive memory. Client-driven schemes must

rely either on mutual exclusion (i.e., locks) or optimistic concurrency control (which require

multiple round trips to resolve conflicts). SwordBox removes the performance bottlenecks of

both by 1) multiplexing multiple clients’ RDMA operations onto shared connections to leverage

the ordering semantics delivered by reliable connections [69], and 2) caching small amounts

of metadata to dynamically steer in-flight RDMA updates to serialize concurrent operations to

remote-memory indexing structures.

24

1 2 3 4 5 6 7 8
QP

0

25

50

75

100
M

OP
S

Figure 2.1. Max throughput as a function of the number of RoCEv2 RC connections. Each
queue pair is managed by a separate core and issues in-lined writes.

We apply SwordBox to two remote memory systems that natively support sharing:

Sherman [93], which uses locking, and Clover [91] that relies on optimistic concurrency. We

show that both systems natively collapse under contention due to RDMA’s limitations, but

SwordBox can remove their bottlenecks. Concretely, by multiplexing all acquire and release

operations for a shared lock in Sherman onto a single reliable connection, SwordBox can replace

the client-issued compare-and-swap operations with a lightweight writes, delivering a potential

10× throughput gain. Performance gains are even higher in the case of Clover, where we resolve

update conflicts to Clover’s internal, append-only metadata index structure by steering requests

to an advancing set of locations, as if they had been issued by a single serialized client. Our

evaluation shows that under a 50:50 read-write workload, throughput rises by almost 35× while

bandwidth usage and tail latency drop by 16 and 300×.

2.1 Serialization

The fundamental challenge faced by passive remote memory systems is ensuring con-

sistency [70] by ordering accesses to any given location. RDMA reliable connections provide

per-connection ordering, enabling clients to issue multiple outstanding requests; the NIC ensures

25

1 3 5 7 9 11 13
sequence number delta

10 4

10 3

10 2

10 1

100
pr

ob
ab

ilit
y

Figure 2.2. PDF of request reorderings. Retransmitted requests lead to reordering values of zero.
97% of requests retain their order (delta=1), however reorderings of up to 13 requests can occur.
(Note logarithmic y axis.)

in-order delivery despite packet reordering and drops with sequence numbers and go-back-n

retransmission. When clients are collocated, queue pairs can be shared by multiple cores through

techniques such as flat combining [69, 93]. Unfortunately Figure 2.1 shows that the performance

of individual queue pairs fall far short of line rate on our NICs; we do not observe full per-

formance until at least seven queue pairs are used simultaneously. Moreover, as traditionally

conceived, a QP is intended to be established between a single client and server—limiting its

utility in a disaggregated setting. In the following subsections we experimentally illustrate the

challenges to ordering across such clients.

2.1.1 Switch-Enforced Ordering

Packets processed by a programmable switch pipeline are sequenced in order: updates

to switch registers are atomic as each state of a pipeline is occupied by exactly one packet at a

time. Moreover, all packets destined to a given port must traverse the same egress pipeline. As a

result, the ToR places packets from all flows destined to the same (single-homed) destination

in a total order—not only with respect to their own flow, but others as well. In the context of

26

RDMA, however, switch-enforced packet ordering is insufficient. Even if packets (from various

reliable connections) arrive at a server NIC in a given order, they may (appear to) be processed

in arbitrary order due to contention at the NIC or PCIe bus [72].

Figure 2.2 shows that NIC and PCIe reordering is not merely an academic concern, but

occurs with some frequency. In this example, we issue RDMA read, write and CAS requests

at a rate of one million requests per second to 1,024 different memory locations according to a

Zipf distribution and spread these requests across 32 different reliable connections. Each request

is routed through a programmable switch that keeps a global request counter for each RDMA

request (i.e., ground truth regarding request ordering). We track the order of responses relative

to the order the corresponding request was issued from the middlebox. The plot shows the

distribution of sequence-number gaps between responses. As expected, the vast majority differ

by one (i.e., the same order they were dispatched from the switch), but a non-trivial number are

out of order by one to five requests, and some by up to 15. Moreover, this experiment neglects

the reality that some fames may be corrupted and/or lost by the link, necessitating retransmission

and further cross-flow reordering.

2.1.2 Atomic RDMA Operations

In a remote-locking scheme, clients use an atomic RDMA operation to attempt to acquire

a lock: because the operations are totally ordered at most one client will succeed at a time.

Unfortunately, atomics are famously expensive [46], fundamentally because they require mutual

exclusion across all RDMA queue pairs—concurrent read and write operations with a data

dependency on the atomic address must stall until the atomic completes. Figure 1.1 considers the

best-case scenario where clients attempt to access unique locks (i.e., each instruction is issued

to an isolated cache line) in remote memory using an atomic operation in comparison to reads

and writes. We confirm that the findings of prior studies [46, Fig. 14] with older hardware

(i.e., ConnectX-3) remain true on our ConnectX-5 NICs, namely that atomic requests scale with

27

non-atomics only to a point.1 CAS operations have a hard performance ceiling, while standard

verbs (e.g., read and write) continue to scale with increased request concurrency. The situation is

even worse when operations target the same address (i.e., lock contention; not shown).

One of the difficulties RDMA NICs face when implementing atomic operation is ensuring

that there are no other conflicting memory operations at the server—even ones issued locally.

More generally, any main-memory operation issued by the NIC must cross the PCIe bus and

face potential contention. Modern nVIDIA Mellanox NICs like the ConnectX-5 provide a small

region of on-NIC memory that can be mapped into the address space of RDMA applications,

removing the remote PCIe overhead for frequently accessed data. (Indeed, Sherman employs

this memory region to store its B+Tree locks.) Figure 2.3 compares the performance of serialized

CAS and write operations to addresses in main vs. NIC-hosted device memory. CAS operations

are issued across many queue pairs to achieve maximum throughput while the write operations

are issued on a single queue pair to enforce serialization. While the use of NIC-hosted memory

boosts CAS throughput from approximately 3 to around 9 MOPS, write operations remain

dramatically more efficient in either case.

One way to avoid the overhead of remote lock acquisition in low-load situations is

to attempt to directly modify the data (using an atomic RDMA operation) and recover if the

operation fails due to a race; such schemes are known as optimistic concurrency control. While

far more performant than lock-based approaches in the un-contended case, optimistic approaches

can be prohibitively expensive when contention is common. As a concrete example we consider

the chances of success in Clover. Figure 2.4 shows the percentage of requests which succeed in a

50:50 read-write workload as a function of the number of concurrent client threads. Success rate

drops dramatically with concurrency.

At present RDMA has no support for addressing failed operations at the server, such as

pointer chasing or operation retryi—although some have proposed such extensions [88, 63, 22].

Rather, clients resolve failures themselves at significant cost. In some systems, the retry is a

1Experiments with a ConnectX-6 exhibit similar behavior.

28

CAS Write0

5

10

15

20
M

OP
S

6.2x 2.5x

Device Memory
Main Memory

Figure 2.3. Throughput comparison of serialized RDMA operations in NIC-mapped device and
main memory. Writes obtain 6.2× higher throughput than CAS in host memory and 2.5× higher
in NIC memory. CAS values here are the same values as (Single Address) in Figure 1.2.

heavyweight, pessimistic operation, leading to a substantial—but fixed—overhead. In others,

like Clover and FUSEE, subsequent attempts remain optimistic, resulting in a linear (per-retry)

increase in costs. In the latter case, high rates of contention lead to congestion collapse, where

retries are essentially doomed to fail, dramatically decreasing goodput.

Concretely, our measurements show that under contention the average bandwidth cost of

Clover read and write operations can inflate by 16× (Figure 2.14) when compared to an optimal

scenario in which all operations succeed on their first try. Perhaps even more significant than

the overheads associated with the expected number of retries is the cost at the tail—namely the

latency associated with those particularly “unlucky” requests that fail repeatedly. Note that these

operations are precisely those for hot memory locations, so likely to be ones that matter. Under

contention Clover’s p99 tail latency increases by over 300× (Figure 2.15).

2.1.3 Implications

Systems that leverage RDMA atomics have hard performance limits because the afore-

mentioned constraints. Locks located at a single address which use traditional lock, unlock

29

1 6 12 24 48 96 144 192 240
client threads

0

25

50

75

100
su

cc
es

s r
at

e

Figure 2.4. Percentage of successful operations in a 50:50 read-write workload spread across
1,024 keys according to a Zipf(0.99) distribution as a function of thread count. At 240 threads
less than 4% of operations succeed.

operations are limited to around 500k accesses per second. This assumes perfectly coordinated

requests, under contention requests which fail to acquire or release a lock still consume operation

bandwidth. Under contention RDMA has poor support for traditional locking. In contrast

optimistic data structures with locks scattered throughout, such as a linked list, are not rate

limited by this single address restriction. However, they are fundamentally limited by the fact

that any atomics have half the throughput of reads and writes. More critically, under contention

optimistic data structures have no liveness guarantees.

2.2 SwordBox’s Design

SwordBox is our general-purpose approach to accelerating RDMA-based applications

like shared disaggregated memory that require operation ordering across clients. In this section

we explain the functionality SwordBox provides and then apply it to two separate remote memory

systems. At a high level, SwordBox is capable of 1) tracking on-going reliable connections, 2)

parsing and caching their contents, and 3) modifying operations in flight. Because it defines a

total order on outgoing RDMA requests, SwordBox can safely remap them between different

30

E
T

H

IP

U
D

P

Q
P

 ID
S

e
q

O
p

V
a

d
d

r
R

ke
y

BTH BTH+

size paloadwrite
read
CAS

size
compare swap

 O
p

 S
p

e
c

ifi
c

 BTH+
Headers

Figure 2.5. RoCEv2 packets consist of an Ethernet, IP, and UDP header. The RoCE BTH header
stores QP data, sequence numbers, flags, and operations. The BTH+ header contains operation
specific data: virtual addresses, DMA size, and atomic payloads.

connections as well as transform atomics into lightweight verbs. As we show in the context of

Clover, by tracking a small bit of application-specific state, SwordBox can also use its knowledge

of operation order to modify the target address or value of conflicting operations to resolve

write/write conflicts before they occur.

2.2.1 Connection Multiplexing

RoCEv2 tunnels the original Infiniband-based RDMA protocol on top of UDP, using

destination port 4791. RoCEv2 packets have two headers, BTH,and BTH+, shown in Figure 2.5,

both of which SwordBox needs to parse. The BTH header indicates the operation, while the

BTH+ headers contains the target virtual address and the operation payload. In cases where

SwordBox wishes to enforce ordering across operations from different clients, it multiplexes them

onto the same reliable connection. SwordBox does not establish or terminate connections itself—

setup and teardown are handled end-to-end as usual by the RDMA NICs. Rather, SwordBox

simply moves operations between existing connections.

31

1) (QPs,ips,ports)

2) (QPs,ips,ports)

3) (QPs,ips,ports)

Connection In Out
2

2 1

3 2

4 1

34

2

Original
 QP

Atomic
Swaped

 Atomic
Response

openOriginal
 Seq

24 24 1 64 1

Map Entry

1
1 3

1
2

2

1

34

2

2
2

Map Entry Ring Bu�er

bits bits bitsbit bit

Figure 2.6. RC multiplexing in SwordBox. Per connection in and out sequence numbers
are tracked to decouple sending and receiving QP. Map entries are stored in their outgoing
connection’s ring buffer; the ring diagram shows only the original QP row and sequence number.

Connection tracking

To facilitate connection multiplexing, SwordBox maintains a table of reliable connections

transiting the switch, shown in Figure 2.6. Connections are uniquely identified by their source

and destination IP address, source UDP port (the destination port is fixed for all RoCEv2 traffic),

and queue pair ID. Entries are added to the table upon queue pair establishment and removed

at teardown (or after a timeout). Each row in the table is associated with a ring buffer of map

entries that track outstanding operations. As RDMA packets arrive and are placed into a total

order at the switch, the row corresponding to the packet’s incoming queue pair is updated with

the current sequence number. Retransmissions (i.e., packets whose sequence numbers are no

greater than the value already in the table) do not update the table. The table also records the

highest sequence number used by an outgoing packet on each connection, which may not be the

same as the incoming sequence number due to remapping.

Remapping

In general, RDMA packets will be forwarded using the same connection on which they

arrived. In application-specific cases, however, SwordBox may wish to move them to a different

32

queue pair, i.e., to multiplex them onto a shared connection. In that case, the packet needs to be

rewritten to use the new connection’s source and destination addresses (both IP and Ethernet),

UDP port, and an appropriate sequence number—which is computed to be one higher than the

last packet transmitted on the outgoing connection. (Incoming retransmissions—detected due to

their non-advancing sequence number—are always mapped to the same outgoing connection and

sequence number as the original.) To facilitate ACK and retransmission handling, every packet

creates a map entry in the ring buffer of its outgoing connection.

For efficiency, our DPDK implementation maintains the ring buffers as fixed-size arrays

and use the packet’s outgoing sequence number (modulo the buffer size) as an index. Each entry

contains a reference to the packet’s incoming queue pair, its original sequence number, and, in

the case of atomics, space to record whether the operation was replaced by a write (Section 2.2.3)

and, if so, the prior value of the target address—which is tracked using application-specific

logic discussed below. If the packet was remapped, both the invariant CRC (ICRC) and the IP

checksum must be updated.

ACK coalescing

Demultiplexing ACKs for remapped operations is non-trivial due to optimizations in the

RDMA protocol. Specifically, an RDMA NIC may coalesce ACKs to reduce the number of

packets transmitted and save bandwidth: like TCP, ACKs are cumulative. Coalescing presents a

challenge when operations from multiple incoming connections are multiplexed onto another,

as an ACK may correspond to operations issued by more than one client. Forwarding the ACK

back to only the client who issued the (last) operation referenced in the ACK will cause the other

clients whose operations were implicitly acknowledged by the server to timeout and retransmit.

Conversely, forwarding ACKs to clients without outstanding operations could lead to unspecified

behavior. Upon receipt of an ACK, SwordBox consults the map entries in the ring buffer for the

relevant connection. SwordBox generates a separate ACK for each incoming connection with

outstanding packets acknowledged by this ACK, setting the sequence number (and address and

33

queue pair information) according to their map entries.

2.2.2 State Caching

In addition to connection information, SwordBox can also parse RDMA operations to

track the current state of memory locations of interest. The particular addresses are obviously

application specific, but the mechanism is generic: SwordBox simply needs to apply the op-

erations to its local cache in the same order it transmits the operations to the destination. We

find that despite the large amounts of data transferred by passive memory systems, contention is

typically localized to a few key addresses, such as those that are used to store locks, indexing

datastructures, and other metadata. Moreover, these locations are typically accessed using atomic

operations, limiting the data size to eight bytes a piece.

2.2.3 Atomic Replacement

When SwordBox tracks the state of address locations of interest, it necessarily determines

outcome of atomic operations. Hence, SwordBox can be configured to multiplex all operations

targeting specific addresses to the same connection and replace atomic operations with writes

that simply store the outcome of the atomic, whether it be a compare-and-swap or fetch-and-add.

Here we describe how SwordBox handles the former without loss of generality.

Replacing a CAS operation with a write is straightforward as the RoCEv2 headers differ

by only a few fields (Figure 2.5). SwordBox transforms CAS requests to writes by swapping the

BTH OP code, setting the BTH+ size field of the write to eight (recall all CAS operations are 64-

bits long), and copying the appropriate value—either the “swap” value from the CAS operation

on success or the current (cached) value on failure—into the payload. SwordBox indicates the

operation has been transformed in its map entry (Section 2.2.1) as well as recording the prior

value. Because a write’s size field is only four-bytes long (as compared to the second 64-bit

compare field in a CAS operation), the length of the packet shrinks by four bytes; SwordBox

updates the IP length field accordingly.

34

After processing the write operation the destination NIC will respond with a regular,

write ACK. As part of its ACK processing, SwordBox applies an inverse transformation to

convert write ACKs to Atomic ACKs when necessary. RDMA Atomic ACK headers are very

similar to regular ACKs with the only difference being that the atomic ACK contains the value

that was overwritten, which SwordBox retrieves from the corresponding map entry.

2.2.4 Applying SwordBox to Disaggregated Memory

We now describe how we use SwordBox’s techniques to accelerate the contention

management techniques used by Sherman and Clover. In the case of Sherman, SwordBox

multiplexes all operations (encoded as CAS operations) for a given lock on a single connection,

caches lock state at the switch, and replaces acquisition attempts with writes. SwordBox’s

acceleration of Clover is more lightweight—in fact, entirely soft-state—but even more impactful.

By caching a small amount of server state that clients manage through CAS operations, SwordBox

is able to adjust these requests to ensure they succeed at the server, thereby avoiding expensive

application-level retries for concurrent updates.

Shared locks

Sherman uses CAS operations to implement its node locks. Sherman’s locks are simply

specific (NIC-hosted) memory locations that store either a one (locked) or zero (free). Hence,

lock requests are expressed as CAS(0,1), which fail if the lock is unavailable (i.e., the stored

value is currently not 0) or atomically set the value to 1—acquiring the lock—if successful.

Unlock operations are the inverse. Presuming communication between the ToR and the memory

server is reliable and in-order (as provided by an RDMA reliable connection), it is conceptually

straightforward for SwordBox to cache the current value of the lock at the ToR.

In our design, SwordBox multiplexes all operations for a given address (i.e., lock) over

the same connection to maintain ordering between the ToR and destination server. It can then

use its local cache to determine whether an arriving CAS operation will succeed or fail. (If it

35

does not have the current value at the target address cached, it allows the atomic to pass through

unmodified and populates its cache with the response.) Knowing the outcome, SwordBox is free

to replace the CAS operation with a lightweight write in flight. When a CAS operation arrives

for a lock address, SwordBox replaces it with a write for the specified value. (Releases will

always succeed, setting the value to 0, while lock acquisition attempts always leave the value as

1; their success or failure is dictated by the prior state.) When the ACK comes back, SwordBox

converts the ACK to an Atomic ACK before forwarding it back over the original connection

to the client. Because lock values are always zero or one, it suffices to store a single bit—as

opposed to eight bytes—to record the prior value in a lock operation’s SwordBox map entry.

Even in the case when the lock is already held (and the acquire attempt is doomed to fail),

SwordBox still forwards a write request to the memory server to ensure the client and server

agree regarding the total number of RDMA verbs communicated between them. The ACK is

replaced with a CAS “failure” so that the sender knows the lock acquisition failed. This is in

keeping with SwordBox’s performance-enhancing-proxy philosophy: it accelerates, but does not

replace, the application’s end-to-end semantics. Indeed, one could implement the lock server at

the ToR itself [97], but that would require a redesign of the underlying system; our goal is to

support selective deployment where SwordBox may not be on-path for all servers, dictating that

we do not make any changes to the existing system. Moreover, our approach does not require

terminating RDMA connections at the switch, which would require extensive buffering.

In general, the determination of which operations share state is application specific

and requires inspecting each packet to extract the relevant pieces of metadata. In the case of

Sherman, lock locations can be identified by inspecting CAS requests. Each CAS virtual address

corresponds to a node lock in the Sherman B+Tree. While SwordBox must interpose on the full

set of queue pairs terminated by a given (set of) server(s), this seems reasonable as the ToR is

usually on-path for all servers in disaggregated rack settings.

SwordBox is designed for closed-loop clients. Connection remapping would require

large amounts of buffering if clients had many in-flight requests spread across multiple QP.

36

Out-of-order requests would need to be buffered prior to delivering them as out-of-order packet

delivery triggers RoCE’s go-back-n retransmission protocol. Our aim is to enable rack-scale

disaggregation where the total number of cores (clients) is less than O(1k) where the few MB of

available switch memory is more than sufficient.

Steering

Unlike Sherman, Clover does not implement locks. Instead, Clover attempts to append

to a per-key linked list using atomic operations. Clover detects concurrent updates by breaking

writes (i.e., list appends) into two RDMA operations: one write to create a new node, and a CAS

operation to update the next pointer of the node at the tail of the list—the latter fails when another

node was added concurrently. Concretely, it uses CAS operations to attempt to replace a NULL

pointer (indicating the end of the list) with a pointer to a new element. To prevent such stale

CAS requests from failing, SwordBox maintains a cache of the location of the (next pointer of

the) node at the tail of each key’s linked list. If a CAS request arrives at SwordBox destined for a

stale virtual address (i.e., an address other than the one currently cached for that key), SwordBox

steers the CAS operation by replacing its target address in the BTH+ header with the cached

address. While SwordBox could multiplex these operations on a shared connection to enforce

ordering (and replace them with writes), our evaluation shows the probability of reordering with

a contending operation on a separate connection after departing the ToR is sufficiently low that

the remaining cost of (clients) resolving such failures is minimal.

We implement steering by maintaining a cache of Clover’s linked-list datastructures

for popular keys. When a Clover packet arrives at the switch, it is parsed and passed to

application-specific cache management code that extracts the salient information from the

payload. Unfortunately, Clover RDMA CAS requests do not explicitly specify the write operation

to which they correspond; SwordBox infers the operation by checking the size of the RDMA

request and then extracts the Clover key from the appropriate the location in the packet. The key

is used as an index into a lookup table to find the virtual address of the current tail node for that

37

key. Our strategy requires 64 bytes of data per key—the size of an RDMA virtual address.

While write steering suffices to avoid write/write conflicts, concurrent reads face a similar

dilemma: Clover reads seek to access the current tail of the linked list, but the address may be

stale if they “lose” a race with a concurrent write. To improve performance, SwordBox similarly

steers reads to the correct tail address. Unfortunately, unlike writes (which are easy to identify

by their use of the CAS operation), Clover reads are simply RDMA read operations for a virtual

address and a length. As reads can be for arbitrarily old virtual addresses a naive solution that

stored the lineage of each key would effectively require caching the entire contents of Clover’s

metadata server. Instead, SwordBox hashes the address of each write into an array somewhat

larger than the size of the key space and stores the key along with the address. Collisions are

resolved by replacing the old entry; keys with higher update rates maintain longer histories.

When reads arrive SwordBox looks up their destination address in the table; if the address

has a hit the associated key is used to look up the current tail in the write cache and the RDMA

read is steered to the cached location. Should a miss occur—either because the hash bucket was

overwritten by another key, or because the tail address is not cached—the read is left unmodified.

If it fails to arrive at the current tail, Clover’s end-to-end recovery mechanism kicks in.

2.2.5 Failure Handling

SwordBox collocates functionality—and therefore shares fate—with the top-of-rack

switch: if SwordBox fails, connectivity was already disrupted (i.e., the ToR is down). Hence,

the fact that a SwordBox failure will reset all remapped RDMA queue pairs to the attached

servers seems of little additional consequence. In the case of steering, however, we note that

SwordBox does not maintain any hard state: failure simply results in a performance hiccup if

packet-level connectivity can be maintained. The upshot is that a complete SwordBox failure

does not introduce safety concerns in any event.

However, there are other failure scenarios to consider. In particular, we presume that

the ToR sees the exact stream of packets that will be received—and processed—by attached

38

servers. Unfortunately, this may not be true due to packet loss (e.g., due to CRC failures or

queue overflow) or even bugs on the server. Of course, these failure cases exist even without

SwordBox, and Sherman and Clover both provide their own error handling. The key distinction,

however, is that SwordBox maintains a cache that may become inconsistent with an attached

server, which was previously the single authority of both application and connection state.

With respect to connection mapping, if a packet is dropped between SwordBox and a

server and SwordBox maps a subsequent request from a different client onto the same QP, the

server will generate a go-back-n response and any other in-flight requests on that QP will become

invalidated. Hence, when SwordBox sees a go-back-n ACK, it triggers the same mechanism used

for ACK coalescing but in reverse: it broadcasts a go-back-n ACK to all clients with outstanding

messages. While this approach amplifies the performance impact of a lost packet, we expect such

scenarios to be unlikely in practice. Indeed, no packet drops ever occurred between SwordBox

and a server during our experiments because our clients issue only closed-loop operations.

While we do not employ connection mapping in Clover, SwordBox must still manage

potential inconsistency between its cache and server state. Concretely, it is possible for a linked

list to become “broken”. If SwordBox sees a client issue a CAS(A,B) request (attempting

to append node B to the list at A) before another issues CAS(A,C) (appending node C to the

same—stale—tail), SwordBox will steer CAS(A,C) to CAS(B,C). If the CAS(A,B) operation is

lost between SwordBox and the server, CAS(B,C) will still succeed, causing a broken chain: the

pointer A→ B does not exist but B→C does, and SwordBox believes C to be the tail.

In the normal case, the client will timeout and retransmit CAS(A,B), which SwordBox

will identify as a retransmission and not steer to the “new” tail, thereby repairing the list. (In

the mean time, the missing link is immaterial because subsequent requests are being steered by

SwordBox.) If, however, the client were to fail prior to retransmitting the CAS the chain will

remain broken. Here we use an out-of-band mechanism to repair the chain: on occasion our

control plane queries the switch to check for outstanding CAS requests and simply retransmits

them (spurious retransmissions are handled gracefully by the server). The trickiest case is if

39

Packet
Parsing 4.1

Map QP CAS-> Write

Coalese Ack ->Atomic

NO

Parse
Roce

Track
 QP
Track
State Yes

Lock
Table

Write Steering

4.4

Read Steering

Key
Table

Connection Multiplexing

Steering

RX
U

p
d
a
te

 Pa
cke

t

Sherman

Clover

Figure 2.7. SwordBox’s DPDK processing pipeline.

SwordBox itself also fails in the mean time: we defer protecting against this double-failure

scenario to future work.

2.3 Implementation

We implement SwordBox in DPDK and P4. Our DPDK SwordBox implementation

(shown in Figure 2.7) consists of 3,392 lines of C and includes all of the features described in the

previous section—including ICRC recalculation—but is limited by single-core CPU performance.

Our P4 prototype has more limited functionality, but operates at 100-Gbps line rate.

2.3.1 Connection Steering

Our P4 prototype implements connection steering (§2.2.4) by using registers to store

connection state, virtual addresses, and outstanding requests. Switch registers are constrained to

32, 16 and 8-bit blocks, and are bound to specific switch pipeline stages [42]. Packets visit each

stage exactly once, so register reads and writes must be pipelined correctly so that the same stage

which stores a virtual address on a write, is the same that produces the address for CAS and

read. Because registers are fixed width, some lookups take multiple stages. We use two-stage

lookups for (64-bit) virtual addresses with two 32-bit registers, and a single stage for queue pairs,

sequence numbers, and connection IDs. Prior work has demonstrated that RDMA ICRC’s can

40

16-bit A
S

32-bit A
S
8-bit A

S
TCAM

TMInputxbar

ADBusBytes

StatsA
LU

Stash

VLIW
Instr

HashBit

EMInputXbar

Tin
dResultBus

EMResultBus

EMSearch
Bus

SRAM
Gateway

HashDistU
nit

LogicalTID
MapRAM

MeterALU
0

10

20

30

40

50
%

 To
ta

l R
es

ou
rc

es
SimpleSwitch
Read Steering
Write Steering
Connection Tracking
Parsing and Forwarding

Figure 2.8. Breakdown of switch resource utilization by SwordBox component.

be implemented in a P4 switch, but are redundant with the Ethernet CRC [13, 95]. Hence, like

previous authors [82], we disable ICRC checks at sender and receiver NICs and do not update

them at the switch.

Figure 2.8 provides a breakdown of the resource consumption of our P4 SwordBox

implementation as reported by the Barefoot SDE version 9.7.0. Each percentage is the average

value across the total 16 switch pipeline stages. SwordBox fits into 8 stages, and is run entirely

on the ingress pipeline. We use the header parser from the P4 simple switch to parse up to the

UDP header and create our own header parser for RoCEv2 and Clover headers. SwordBox uses

RoCEv2 header, write, and CAS payload information to identify traffic for steering. When new

Clover traffic is identified the connection is added to the connection tracker.

2.3.2 Connection Multiplexing

While straightforward to implement in DPDK, our P4 prototype currently does not

support connection multiplexing (and, hence, atomic replacement) due to the challenge of

supporting ACK coalescing. In order to determine to which clients to return an ACK, a variable

number—up to the number of clients—of entries must be matched against every packet. Yet,

each stage of a P4 pipeline holds unique data and supports only a single lookup. Replicating

entries across stages would allow for multiple lookups per packet but a server can coalesce an

41

0 5 10 15 20
Queue Pairs (QP)

1.0

1.5

2.0

2.5

3.0
M

OP
S

CAS
CAS->Write

Figure 2.9. Throughput of conflicting CAS and rewritten CAS requests as a function of client
threads/QPs.

arbitrary number of ACKs so no fixed number of duplications suffice (and we frequently observe

coalescing of 10 or more requests). Recirculation is another alternative, but inflates bandwidth

usage in the common case and causes responses to be delivered in reverse order. One obvious

alternative is to disabling ACK coalescing at the server NIC, but we are unaware of a way to do

so on Mellanox NICs.

2.4 Evaluation

We use our DPDK implementation to perform a micro-benchmark where we explicitly

manage RDMA connections to remove the atomic operations used by Sherman’s locking mecha-

nism. We use the P4 implementation installed on a programmable switch to show the impact of

in-flight conflict resolution at rack scale in Clover.

2.4.1 Testbed

Our testbed consists of a rack of nine identical machines equipped with two Intel Xeon

E5-2640 CPUs and 256 GB of main memory evenly spread across the NUMA domains. Each

42

0 100 200 300 400
Threads

0

10

20

30

40

M
OP

S
1.0x

0% Writes

Clover
Write
Write + Read
FUSEE

Figure 2.10. Swordbox workload performance on a read only workload. SwordBox’s perfor-
mance adds no observable overhead to clover.

server is equipped with an NVIDIA Mellanox ConnectX-5 100-Gbps NIC installed in a 16x

PCIe slot and connected to a 100-Gbps ToR. Our DPDK-based micro-benchmarks use only three

machines: a load generator, a memory server, and a machine hosting our DPDK implementation

of SwordBox. The load generator is configured with default routing settings—it sends traffic

directly to the memory server. We install OpenFlow rules on a Mellanox Onyx switch to redirect

the traffic to the DPDK box. For the P4-based Clover experiments, we replace the Onyx switch

with an Edgecore Wedge-100 programmable switch running SwordBox. We configure one server

as a Clover memory server, one as a metadata server, and the remaining seven as Clover clients.

2.4.2 Atomic Replacement

We show that SwordBox is able to overcome the NIC hardware bottleneck by replacing

CAS operations with writes serialized on a given RC by running a micro-benchmark that focuses

exclusively on CAS performance. Specifically, we extract the CAS request from Sherman’s lock

operation and repeatedly generate it from one client to a single memory server (while routing it

through SwordBox using OpenFlow rules). Each client thread is bound to its own queue pair,

43

0 100 200 300 400
Threads

0

10

20

30

M
OP

S
2.85x

5% Writes

Clover
Write
Write + Read
FUSEE

Figure 2.11. Swordbox workload performance on 5% write workload. Due to cache misses and
contention SwordBoxgains nearly a 3x performance boost over Clover

and all client threads issue CAS requests to the same shared virtual address. We set the number

of cores on the SwordBox middlebox to 24 so that in our maximal test case each client thread

flows through exactly one middlebox core for the lowest degree of interference between QP.

Figure 2.9 shows the results when all requests are directed at the same address in the

remote server’s main memory. In the default case (labeled CAS in blue), SwordBox lets CAS

requests flow through without modification, each on their own queue pair. In the CAS→Write

(green) configuration SwordBox maps all client requests to the same QP at the server to ensure

serialization and replaces the CAS operation with a simple write.

We see a significant increase in performance when SwordBox converts CAS-guarded

requests to QP-serialized writes. Each configuration hits a distinct hardware limit: CAS requests

bottleneck at the server NIC due to being applied to a single key (c.f. Figure 1.1). When

converting CAS to serialized write operations, the bottleneck moves to the DPDK middlebox.

Specifically, DPDK requires all TX for a destination QP to be done by the same core; hence, all

requests must flow through a single core, capping the performance of our DPDK implementation

to the maximum per-core throughput of our middlebox server: 2.8 MOPS.

44

0 100 200 300 400
Threads

0

10

20
M

OP
S 32.3x

50% Writes

Clover
Write
Write + Read
FUSEE

Figure 2.12. Swordbox workload performance 50% write workload (YCSB-A)

2.4.3 Steering in Clover

While atomic replacement is feasible, it requires SwordBox to explicitly manage and

remap all the RDMA connections to a given (set of) server(s)—a resource-intensive task. Here,

we consider the more general and lightweight case where SwordBox serves as a performance-

enhancing proxy and attempts to avoid failed operations by steering requests in flight. We use

workloads from the YCSB benchmark [20] to access 1,024 128-byte objects stored in Clover.

Throughput

Figures [2.10, 2.11, 2.12, 2.13] shows the impact of SwordBox’s techniques at various

levels of contention. A read-only workload exhibits no contention, so SwordBox simply passes

through all operations unmodified achieving a maximum throughput of approximately 40 million

operations per second in our testbed. As a point of comparison, we also plot (in green) the

performance of a non-replicated instance of FUSEE, in which case their SNAPSHOT consensus

algorithm degenerates to a lock-based approach. While FUSEE’s absolute read throughput on

our testbed is considerably higher than reported by the original authors on their own hardware,

45

0 100 200 300 400
Threads

0

5

10

15

M
OP

S 46.19x

100% Writes

Clover
Write
Write + Read
FUSEE

Figure 2.13. Swordbox workload performance on a write only workload

it is less than half that of Clover on this workload. While Clover clients can safely cache the

linked-list location for popular keys (because any updates will cause the next pointer of the

returned element to be non-NULL), FUSEE clients must always issue two seperate, dependant

RDMA reads: one to obtain the current location for the desired key, and then one to read the

value.2

Clover (shown in blue) performance decreases markedly with even 5% writes, nearly

matching FUSEE; write steering alone (orange) provides minimal performance improvement as

the vast majority of writes succeed on their first try—it is the reads that are failing. Steering both

reads and writes (red) restores performance, although to a slightly lower overall throughput as

even successful Clover writes require two RDMA operations instead of one. At 50% writes, over

half of all write requests fail so applying write steering almost doubles performance. The steered

writes, however, then out-pace reads causing the majority of reads to fail unless SwordBox also

applies read steering. (The impact on tail latency is clearly shown in Figure 2.15.) Of course,

in a 100% write workload write steering alone is sufficient. While FUSEE suffers less from

2While the results in the FUSEE paper suggest it outperforms Clover [87, Figs. 13–15], Clover’s client cache is
disabled in those experiments, forcing all reads to go through the metadata server. Moreover, in our experiments,
FUSEE fails to scale beyond 256 clients—published results only go to 128 [87].

46

5 50 100
Write Ratio

0

500

1000

1500

By
te

s P
er

 O
pe

ra
tio

n Clover
Write
Write+Read

Figure 2.14. Average number of bytes required per Clover operation on 128-byte objects using
each of the three techniques at various write intensities.

increased contention, its writes require three or more RDMA operations; as a result SwordBox

pushes Clover to achieve 1.9–2.5× higher throughput than FUSEE.

Bandwidth reduction

Under contention, Clover’s remote operations can require additional packet exchanges

which inflate the bandwidth necessary to service the same number of memory accesses. Sword-

Box’s steering algorithms remove the need for requests to retry, eliminating the overhead.

Figure 2.14 plots the average bytes per operation for each strategy across the three workloads

with writes. (The read-only workload, not shown, never needs to retry.) We calculate the value

for each technique by summing the total bandwidth across a run and dividing by the number

of operations. Clover’s bandwidth usage increases with contention, growing by 2.5× at 5%

and 16× at 50% writes—all of which is recovered by applying read and write steering. Write

steering alone causes significant inflation in the cost of operations at 50% writes because many

read requests fail as discussed above.

47

0 5 50 100
Write Ratio

101

102

103

104
99

th
 p

er
ce

nt
ile

 la
te

nc
y

(u
s) Clover

Write
Write+Read
read latency
write latency

Figure 2.15. 99th-percentile tail latencies of read (solid) and write (striped) Clover operations at
various write intensities. (Note logarithmic y axis.)

Tail latency

Optimistic concurrency is well known to exhibit poor tail latency under contention,

and Clover is no exception. SwordBox significantly reduces latency as steering ensures that

nearly all requests succeed on the first try. Figure 2.15 shows the 99th-percentile tail latencies

associated with SwordBox’s read and write steering in comparison to default Clover at varying

write intensities. Clover’s p99 read latency (solid blue) at 5% writes is 70 µs, around 10× its

baseline our our testbed. With read and write steering (solid red) the read tail latency drops to

8 µs—a 8× improvement over Clover even in this low-contention regime. At 50% writes the

performance increase from steering increases dramatically: p99 read latency drops by over 300×.

Writes (hashed) have slightly more than double the latency of reads as they require two round

trips and atomics are slower to execute than other operations. Combined write and read steering

provides a 17, 189, and 252× improvement in write tail latency, respectively, across 5, 50, and

100% write workloads. As one might expect, performing write steering alone privileges writes

over reads, dropping their tail latencies slightly further—at the cost of a dramatic spike in read

tail latency.

48

0 16 32 48 64 80 96 112 128
Keys

0

1

2

3
M

OP
S

Write+Read

Figure 2.16. Per-client throughput as a function of the number of Clover keys SwordBox steers.
50:50 workload averaged across 6 hosts each running 56 threads.

Partial steering

One of most appealing aspects of SwordBox’s steering is the fact that it need not be

applied to all servers, or even memory regions (i.e., Clover keys) of a given server. Figure 2.16

shows per-client throughput as a function of the number of keys steered by SwordBox. To

accentuate the impact, we use a Zipf parameter of 1.5—as opposed to 0.99 in prior experiments—

to enhance the locality of requests. Steering requests for only the hottest-8 keys provides a 9.5×

improvement while tracking the hottest 64 delivers 27×.

2.5 The Cost of Programmable Switches

As shown throughout its evaluation, SwordBox offers significant performance improve-

ments over existing end-host solutions. The key insight behind SwordBox is that a small amount

of programmability in the network combined with a massive amount of bandwidth can offer

order-of-magnitude performance improvements for existing data structures, both lock-based

and optimistic. However, SwordBox comes at a non-trivial cost. Programmable switches are

49

expensive, complex, and difficult to program. While SwordBox offers a solution to the problem

of contention, it is likely that only the most performance-critical applications would be likely

to qualify for the care and attention required for crafting a SwordBox-like solution. Further

complicating the matter is the fact that the Tofino series of switches has been discontinued by

Intel [59].

At a data structure level, the memory limitations of a switch pose a significant challenge

for generalization. In the case of append operations made to a linked list, only the final value

of the list needs to be cached to ensure the data structure’s integrity. However, inserting into

an arbitrary location in the list would require the entire list to be stored in cache. Given these

operational complexities, high cost of development, and data structure limitations, we ask the

question: What other techniques can be used to improve the performance of disaggregated data

structures?

2.6 Acknowledgement to SwordBox Contributors

Chapter 2 is a partial reprint of work submitted to multiple USENIX and ACM confer-

ences under the title ”SwordBox: Accelerating Shared Access in RDMA-based Disaggregated

Memory. Stewart Grant, Alex C. Snoeren. This dissertations author was the primary investigator

and author of this paper.

Thank you to Alex C. Snoeren for his guidance and support throughout this project.

Thank you to Rajdeep Das for his expertise in P4 and for supplying the initial P4 code and

compiler configuration for our switch. Thank you to Anil Yelam for reviewing the figures and

providing feedback on the initial draft of this work. Thank you to the reviewers at the Workshop

on Resource Disaggregation and Serverless (WORDS ’21) for your feedback and revision notes

on this work early in its development. Thank you to Geoffrey M. Voelker and Yiying Zhang for

your feedback on this project.

50

Chapter 3

Disaggregated Data Structure Design

SwordBox takes the stance that an additional piece of in-network equipment can be used

to accelerate an existing data structure. But what if we could just make the data structure itself

faster? In this chapter, we explore the design of a disaggregated key-value store, RCuckoo, which

aims to answer exactly this question. Instead of adding a new piece of equipment to accelerate a

data structure, with RCuckoo we aim to get better performance by co-designing itself with the

network.

There are a variety of data structure-specific optimizations that have been leveraged to

improve the performance of disaggregated data structures. Our position in this work is that

locality-based optimizations can provide significant benefit due to the high cost of round trips to

remote memory and the fact that network capacity continues to grow at an astonishing rate. In

this chapter, we make the case for locality-optimized cuckoo hashing and show how it can be

used to improve performance, reduce contention, and make use of the latest trends in network

hardware.

3.1 A Case for Fully Disaggregated Cuckoo Hashing

In general, key-value stores rely upon a high-performance index structure to localize key

operations and maintain values separately, necessitating multiple RDMA operations and network

round trips even in the absence of contention. Moreover, given the dominance of read-heavy

51

2 4 8 16 32 64 128 256 512 1K
Message Size (bytes)

0.00
0.25
0.50
0.75
1.00
1.25
1.50

La
te

nc
y

(u
s)

Figure 3.1. RDMA operation latency as a function of message size [3]

workloads [16, 73], most systems eschew locks in favor of optimistic update approaches that

can lead to poor performance under contention. In this work we design an index datastructure

tailored for the constraints of current RDMA hardware. Specifically, we facilitate lock-based

updates by decreasing the number of round trips required to acquire locks and perform mutating

operations.

We introduce RCuckoo, a fully disaggregated key/value store based on cuckoo hash-

ing [75] that uses only one-sided RDMA operations. RCuckoo builds around a dependent

hashing algorithm that makes spatial locality a tunable parameter. RCuckoo employs a set of

complimentary techniques that leverage this enhanced locality to deliver higher performance

than any prior disaggregated key/value store while gracefully handling client failures:

• Deterministic lock-free reads. Cuckoo hashing ensures an entry is always located in one

of two locations which can be read in parallel.

• Space-efficient locks frequently allow clients to acquire necessary locks in a single RDMA

operation.

52

• Client-side caching enables accurate cuckoo-path speculation to improve insert perfor-

mance.

• Leased lock acquisitions allow clients to detect and recover from client failures using

timeouts.

Combined with a datastructure design that facilitates aggressive batching of RDMA

operations, these techniques enable RCuckoo to limit the number of round trips required for

all table operations. In the common case, reads execute in one or two (for large values) round

trips, uncontested updates and deletes require two round trips, and the median insert operation

involves only two round trips—although the expected number increases as the table fills. On

our testbed, RCuckoo delivers comparable or higher performance on small values across the

standard set of YCSB benchmarks than all of the existing disaggregated key/value stores we

consider. Concretely, with 320 clients RCuckoo delivers up to a 2.5× throughput improvement

on read-intensive (YCSB-B) workloads and up to 7.1× their throughput on write-intensive

(YCSB-A) workloads. Moreover, RCuckoo’s performance remains high despite 100s of clients

failing per second.

3.2 Design

In this section we describe the design of RCuckoo, a fully disaggregated lock-based

cuckoo hash table in which clients communicate with passive memory servers over reliable

RDMA connections using exclusively 1-sided operations. We first describe our table design and

protocol to read and modify the contents of the table. In the common case, reads complete in

one (for small values) or two (for large values) round trips while update and delete operations

require two. Then we introduce a locality-enhanced hashing algorithm and show how it enables

our protocol to perform inserts in a small number of round trips. Finally, we discuss lock-table

practicalities. For simplicity, we describe our design in the context of a single memory server,

53

covering read
L (K)1

L ()2 D

NIC Memory Main Memory
Lock Table Index

A B C crc

Inline KV Extent KV

ex
te

nt

bi
t Key ex
te

nt

bi
t

user defined 48bits 23bitsuser defined

key val Ptr Size

rows per
lock=2

Extent Memory

Dependent
Hash

Locations

1b
it

Figure 3.2. RCuckoo’s datastructures showing insertion of key K as it displaces C, whose value
is stored in an extent.

but it is straightforward to shard a large hash table across multiple servers (with a minor tweak,

see Section 3.2.3).

3.2.1 Datastructures

Figure 3.2 shows RCuckoo’s index and lock table (both maintained at the remote memory

server) during an insertion of key K. The index table (right) is a single region of RDMA-registered

main memory divided into rows of fixed-width entries. Each row contains n associative entries (3

in this figure; we use 8 in practice) and terminates with an 8-bit version number (not shown) and

64-bit CRC (that is computed over the entire row including version number). Clients access the

index table using 1-sided RDMA reads and writes; CRCs facilitate lock-free reads as each row

can be self-verified while version numbers enable clients to detect if a row has been modified.

Table entries contain either inlined key/value pairs or a key and 48-bit pointer to an extent

to store larger values. The least-significant bit of an entry signifies its type; values are inlined

by default. Extent entries use 23 bits to encode the value size (which can range from 23 to 226

54

bytes). Extents are located in separate, pre-allocated, per-client, RDMA-registered regions of

server memory to avoid contention on inserts. Entry and key sizes are configuration parameters,

but must be fixed at table creation.

Locks (stored in a bit vector in NIC memory, shown on the left) each protect a tunable

number (here, two; 16 in our experiments) of index rows. Clients perform lock acquisition and

release with RDMA compare-and-swap (CAS) operations. Specifically, RCuckoo leverages

masked CAS (MCAS) operations [2, 93] to obtain multiple locks simultaneously while avoiding

false sharing.

3.2.2 Operations

We detail the operations supported by RCuckoo below; Figure 3.3 visualizes the corre-

sponding message exchanges.

Reads

RCuckoo is designed to facilitate lock-free, single round-trip reads for small values as

they are the dominant operation for key/value stores in many data centers [16, 73]. To read the

value associated with a given key clients calculate the potential table locations for the key’s entry

(using the hash functions described in the next subsection) and issue RDMA reads for both rows

simultaneously. Because all operations between a client and a given server travel over a reliable

connection, they are intrinsically ordered, but in our description we will only call out when a

particular ordering among a batch of messages is required.

Moreover, as we discuss below, if the rows are located sufficiently close together, it

can be beneficial for the client to issue a single covering read that returns the contents of both

rows—as well as intervening and potentially surrounding ones—in a single request. In our

experiments RCuckoo clients issue a single, large read rather than two small reads if the locations

are within 148 bytes of each other (i.e., adjacent rows) as our parameter sweeps show it has a

negligible increase in latency over smaller RDMA requests (Figure 3.1) and provides substantial

55

client

(a)Read

memory

read
index if extent

read
extent

client

memory

second
search

cache
search

get locks
and read

update cuckoo path
& unlock

 lextent write
(if needed)

extent write
(if needed)

client

(b)Update & Delete

memory

get lock
and read update & unlock

(c)Insert
Figure 3.3. RCuckoo’s protocol for reads, inserts, deletes and updates. Blue lines are index
accesses, and red lines are extent accesses. Solid lines are reads, dotted lines are CAS, and
curved dashed lines are writes.

improvement for insert operations. (If bandwidth is not a concern, we find that a 2-KB threshold

can deliver a further 3% boost to insert performance, but the resulting read amplification is

significant.)

A read is successful if either row contains an entry with the desired key and the row’s

CRC is valid. An invalid CRC indicates a torn write or rare failure case, in which case the

operation is retried (see Section 3.3.1). As shown in Figure 3.3(a) inlined reads are complete

after one round trip, while reads for large values require a second round trip to retrieve the extent.

Updates and deletes

Updates and deletes, like reads, access only two locations in the index table, but require

a client to acquire the associated locks. Due to RCuckoo’s locality enhancement, it is usually

possible to attempt to acquire both locks in a single MCAS operation (Section 3.2.4). If so, the

client issues read(s) for the corresponding rows of the index table immediately afterwards but in

56

the same batch of operations.1 In the rare case that the locks must be acquired independently—

necessitating an additional round trip—the reads are batched with the second lock request.

Assuming successful lock acquisition and valid reads, the operation can proceed if the

key is present in either location. In a single (ordered) batch of operations, the client first writes

the updated/freed entry and recomputed row version and CRC before releasing the locks. When

updating values stored in extents, clients store the value to a new extent via an RDMA write that

is sent in parallel with lock requests. On lock release clients write the first bit of the old extent to

free it. Deletes operate identically save writing a new extent. Clients garbage collect their own

extents by occasionally scanning their allocated region for freed extents. Figure 3.3(b) shows

that most uncontested operations complete in two round trips; clients retry acquisitions until they

succeed or detect a failed client.

Insert

Inserts are challenging because concurrent operations might result in cuckoo paths that

collide. Rather than face the prospect of having to unravel a partially completed insert upon

collision, RCuckoo clients compute a complete cuckoo path ahead of time and then acquire locks

on all the relevant rows to ensure its success. Moreover, to facilitate recovery from client failures,

an insert is performed by cuckooing elements one at a time, starting by moving the last entry in

the path to the empty location, and then replacing it with the previous entry in the path, and so

on until the new entry is inserted in its primary location.

To speed up cuckoo-path searches, RCuckoo clients keep a local, RDMA-registered

cache of (relevant portions2 of) the index table. Clients validate—and, if necessary, update—their

cache at each step of the insert operation as explained below, so stale cache entries do not impact

correctness, only performance.

At a high level an insert operation proceeds in three (or four) phases. For extent entries,
1Because the lock table is located in NIC memory, RCuckoo clients can employ SEND FENCE on reads batched

with lock acquisitions to ensure consistency without incurring a performance penalty.
2A small cache suffices; we use 64 KB in our experiments. Caching the entire index yields negligible additional

benefit.

57

clients first write the value to a free extent—in parallel with the remaining three phases. Clients

maintain a local slab allocator that manages their private extent region, so there is no contention.

Regardless of whether the entry contains an inlined value or a pointer to an extent, RCuckoo

clients start by identifying a potential cuckoo path using only the contents of their local table

cache. Clients then simultaneously attempt to acquire the locks for and update their cache of

the rows that comprise the candidate path. Using only the contents of their newly updated local

cache, clients conduct a second search to confirm that a candidate path—either the initial guess

or an alternative that similarly consists only of currently locked rows—exists. If so, the insert is

performed; if not, the client releases its locks and retries.

Speculative local search: Identifying a viable cuckoo path for insertions requires mul-

tiple dependent reads. RCuckoo attempts to limit the number of remote operations by first

conducting a speculative local search. Prior to contacting the server, RCuckoo clients search the

contents of their local table cache to build a speculative cuckoo path. As with prior work, we

use breadth-first search (BFS) to identify short paths in an attempt to minimize bandwidth and

locking overhead [56]. If the client cache is empty the degenerate path is presumed, i.e., that the

key will be inserted into its primary location without the need for any cuckooing. Obviously,

speculative cuckoo paths are most useful when client caches are fresh—often due to a failed

prior attempt to insert the same key.

Cache synchronization: Armed with a potential cuckoo path, clients identify the set of

locks necessary to protect the relevant rows. Approximately 99% of paths can be locked with

a single MCAS operation (Figure 3.6); longer paths acquire locks in groups (Section 3.2.4).

Immediately after, but in the same batch of RDMA operations as each attempt to acquire (a

subset of) the locks, clients synchronize their local cache by issuing reads for (at least) all of

the rows covered by that set of locks. In general, locks cover multiple rows, so this will be a

superset of the rows necessary for the identified path. Note that if lock acquisition is successful,

the values returned by the read of the corresponding rows—and, thus, the client’s local cache of

those rows—will remain synchronized until the lock is released.

58

1 4 16 64 256 1024
distance (table rows)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

f=2.1
f=2.3
f=2.5

Figure 3.4. CDF of distances between cuckoo locations for different locality settings using
RCuckoo’s dependent hashing.

Figure 3.2 shows an example insert operation where the client updated its cache of the

section of the index table outlined by the dashed red line using a single covering read. Here,

the primary row for K is full and the entry for key C is being evicted to its secondary location.

Hence, the client has acquired locks corresponding to the row where it hopes to insert the entry

for key K as well as the row into which it plans to cuckoo the existing entry for key C. The

rows shaded in gray are synchronized because they are covered by the acquired locks, while the

intervening two (unshaded) rows are updated in the client’s cache, but their contents cannot be

depended upon without additional validation. Rather, they may increase the likelihood that a

subsequent speculative search yields a valid result.

Second search: If all the lock acquisitions are successful, the client validates that the

initial path remains valid. Under an insert-heavy workload, however, speculative cuckoo paths

are frequently stale. Yet, a valid cuckoo path may still exist within the locked rows. Hence, if the

initial path is no longer viable, clients perform a second search restricted to only the synchronized

part of its cache, i.e., rows for which they currently hold the lock. In either case, if a valid path

is found the series of swaps and version/CRC updates are calculated and issued as a batch of

59

1.7 1.9 2.1 2.3 2.5
locality parameter

0

20

40

60

80

100

m
ax

 fi
ll

Figure 3.5. Achieved maximum fill percentage for different locality settings. 90% fill indicated
by dashed red line.

RDMA writes, one row at a time, followed by (an ordered set of) lock releases. If no valid path

exists the client releases its locks and tries again, conducting another speculative search on the

updated cache contents.

This entire process repeats until success, a client determines there is no viable cuckoo

path (at which point the insert operation returns an error indicating the table is full), or a failed

client is detected. Given the fully-disaggregated context we assume the index table will be

initially provisioned at its maximum size; we defer resizing to future work. If cuckoo paths were

to randomly span the table it is unlikely that an alternate valid path would exist within the locked

rows when speculation fails. In the next subsection, however, we describe how RCuckoo uses

dependent hashing to dramatically increase the likelihood that an alternate path exists using rows

surrounding those identified by the speculative search.

3.2.3 Locality

In a traditional cuckoo hash, the two locations for a given key are deliberately independent

which allows the table to be filled quite full before inserts begin to fail. In RCuckoo the distance

60

22 25 28 211 214

Insertion Span (rows)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

independent
dependent
95% dependent
99% dependent

Figure 3.6. CDF of cuckoo spans for dependent and independent hashing. A cuckoo span is the
distance between the smallest and largest index in a cuckoo path

between keys’ two cuckoo hash locations is a tunable parameter. We show experimentally that an

optimal locality setting can dramatically decrease the number of round trips required to perform

inserts in RCuckoo while maintaining high (90%+) fill maximum factors.

Increased locality has two direct benefits: it increases the probability that both of a keys’

locations can be read with a single covering read—which updates more of a client’s local cache,

improving the likelihood that failed insert operations will succeed upon retry—and decreases the

number of MCAS operations necessary to acquire the relevant locks. It also reduces the region

of the index table likely to be spanned by cuckoo paths, which speeds up inserts, but leads to hot

spots that limit the table’s expected maximum fill factor.

In RCuckoo, the primary location for a key is chosen uniformly at random, while the

second is offset from the first by uniformly random value drawn from a probabilistically bounded

range, where the range is likely to be relatively small. We start with a base hash3, h(), and use it

to implement three independent hash functions h1(), h2(), and h3(). (In our implementation we

use a different salt for each of the three functions.) We compute the two locations L1 and L2 for

3We use xxHash [18] in our implementation.

61

a key K as

L1(K) = h1(K) mod T,

L2(K) = L1 +(h2(K) mod f f+Z (h3(K))) mod T,

where T is the size of the index table in rows, Z (x) is the number of trailing zeros in x, and f is

a parameter that controls the expected distance between the two hash locations. (In a sharded

deployment, the second location is restricted to the same shard by “wrapping around” the offset

accordingly.) The particular formulation is not important, but the upshot is exponentially fewer

keys have secondary locations at increasing distances from their primary. The latter aspect is

crucial, as any fixed bound on the distance between hash locations leads to low maximum fill

factors (on the order of 10–15% in our experiments).

Figure 3.4 shows the distance between hash locations as a CDF for different values of

f , while Figure 3.5 shows that larger values of f enable practical fill factors for tables with

100 M entries. In our evaluation we set f = 2.3. As shown in the figures, for index tables with

eight entries per row, RCuckoo delivers an expected max fill of greater than 95% with a 68%

probability that a key’s locations are located five or fewer rows apart.

Decreased distances between hash locations naturally lead to shorter cuckoo paths when

combined with our breadth-first search approach. Using f = 2.3 and a table size of 100-K rows,

Figure 3.6 shows that when filling the table to 95% full, slightly more than half of insertions do

not require any cuckooing, and 95% of insertions require cuckoo paths that span 32 or fewer

rows while nearly 99% span 256 or fewer. Conversely, with independent hashing, insertions that

require any cuckooing at all almost always result in spans of 2 K rows or more.

3.2.4 Locking

While RCuckoo reads are lock free, updates and especially inserts depend critically on

locking performance.

62

1 2 4 8 16 32 64 128 256 512
Rows per lock

1

2

4

8

16

32

64

Lo
ck

s p
er

 m
es

sa
ge

55 44 30 13 13 11 17 22 36 49

13 13 10 7 8 9 12 19 37 51

8 5 5 5 6 7 11 18 37 49

8 6 5 6 6 7 11 20 38 50

6 6 5 5 6 7 12 18 36 51

7 5 5 5 6 8 12 19 37 51

6 6 5 5 6 8 11 19 38 48 10

20

30

40

50
Lock Aquire RTT

Figure 3.7. 99th-percentile round trips required per insert in a 512-row table when filling to
95%. 512 buckets per lock corresponds to a single global lock.

Lock granularity

Increased locality decreases the number of round trips required for lock acquisition.

Recall the lock table is a linear array of lock bits and each bit locks one or more table rows.

As mentioned previously, RCuckoo implements lock acquire and release using RDMA masked

compare-and-swap (MCAS) operations that can update 64 bits at a time. To avoid deadlock

RCuckoo acquires locks in increasing order. For any given operation, clients group the necessary

locks into the smallest number of sets as possible (where each set is an attempt to acquire one

or more locks within a single 64-bit span) and issue MCAS operations one at a time in order

of their target address. Clients continuously spin on lock acquisitions and only move to the

next MCAS operation after the current one succeeds. Due to this one-MCAS-per-round-trip

acquisition procedure, lock granularity is critical to performance.

If, as in Figure 3.6, almost 99% of cuckoo spans are 256 rows or less, and each lock

protects four rows, nearly 99% of insertions can have their locks acquired with a single MCAS. Of

63

course, increasing the number of rows covered by a single lock can lead to false sharing, forcing

additional retries to acquire the necessary locks. Figure 3.7 shows the results of a representative

experiment where 8 clients are concurrently filling a 512-row table to 95% full. We report the

99th-percentile (i.e., the most expensive inserts when the table is nearly full) number of round

trips required to acquire the locks necessary to perform an insertion as a function of both lock

granularity (i.e., number of rows per lock, on the x-axis) and lock size (i.e., the number of locks

that can be accessed with a single MCAS operation, on the y-axis—RCuckoo’s single-bit locks

correspond to 64 locks per message).

While there is some noise due to experimental variance, the far-right column shows that

a single global lock results in high contention (as there is only one lock in the system, it does

not matter how many locks can be acquired per message). Conversely, the top left corner shows

that, despite the lack of false sharing when a lock corresponds to exactly one row, the inability

to acquire more than one lock at a time leads to a large number of round trips. Under these

conditions, the sweet spot falls in the range of 2–16 rows per lock. In our experiments we use

16 rows per lock as, when combined with our choice of f , a single MCAS suffices for the vast

majority of insertions.

Clients may fail while holding locks, preventing other clients from making progress. As

described in the next section, clients independently detect such failures by setting a time out for

lock acquisition. To avoid false alarms, i.e., clients timing out due to a slow-moving client (who

might, for example need to acquire a long list of contended locks), RCuckoo clients are given

a bounded time to acquire all their locks. If a client takes longer than this time to acquire all

of its locks it releases all held locks and restarts the (timer and) acquisition process, hopefully

allowing other clients to complete their own acquisitions.

Virtual locks

While Figure 3.7 suggests that RCuckoo could employ larger locks (e.g., 8–16-bits per)

without increasing the number of round trip times required to acquire them, there is an additional

64

design constraint that drives our choice of single-bit locks. Specifically, to improve locking

performance, RCuckoo locates the lock table in NIC device memory which delivers 3× higher

throughout on contented addresses than host memory (see Figure 3.1). It is also lower latency as

operations to device memory avoid a PCIe round trip. Unfortunately, NIC memory is limited

(to 256 KB on our ConnectX-5s), so this choice bounds the size of the lock table and drives our

single-bit design.

Moreover, to allow RCuckoo to support tables with more than 64 M rows, we implement

a virtual lock table where multiple logical locks map to a single physical lock. Concretely,

we map a logical lock l drawn from a table of size L to a physical location p in a bit-array of

size P by computing p = l mod P. Mapping multiple virtual locks to a single physical lock

introduces yet another source of false sharing, but allows us to support arbitrarily large tables.

When employing virtual locking, clients performing an insert first map rows to virtual locks,

then to physical locks, then sort them into groups.

3.3 Fault Tolerance

In keeping with the rest of its design, RCuckoo handles failures in a fully disaggregated

manner as well. We depend upon the RDMA hardware to handle network failures and focus

exclusively on fail-stop client behavior. Server failure can be addressed by employing client-

driven replication on top of RCuckoo. While there may be opportunities to integrate replication

into RCuckoo itself, we defer such an exploration to future work. In RCuckoo, client failure is

only of concern if the failure occurs in the middle of a mutating operation (i.e., update, delete,

or insert); hence, RCuckoo detects client failures by noticing that a pending mutation does not

complete in a timely fashion. Any client that encounters such a situation endeavors to recover the

stranded lock and repair the impacted portion of the index table. The remainder of this section

describes how RCuckoo clients detect faults, reclaim stranded locks, and, if necessary, repair the

index table. Finally, we discuss additional measures that can be employed to prevent stale writes

65

if desired.

3.3.1 Failure detection

Clients detect failures by setting a timeout when attempting repeated lock acquisition or

read requests. Because RCuckoo operations are designed to require only a few round trip times,

a client performing a successful mutating operation will complete and release its locks extremely

rapidly. Conversely, a client that is unable to acquire all the locks required for an insert operation

releases those they do hold before trying again. Hence, it is extremely unlikely that repeated

attempts to acquire a lock or perform an untorn read will fail continuously.

Of course, there is a possibility that a given row is highly popular, leading to high lock

contention and/or repeatedly torn reads. Clients distinguish this case by consulting the CRC for

the row they are unable to successfully read or lock. Because each mutation increases the version

number, even updates that replace an entry with the same value will result in a different CRC.

Clients declare a false positive and restart their failure timer if a CRC changes between attempts.

We expect client failures to be relatively rare, so set our fault timeout conservatively.

Failure timers must allow for worst-case locking time, second-search time, and RDMA message

transmission time. We bound locking time; search and message propagation are both measured in

single-digit microseconds on our testbed. To guard against the possibility that network conditions

lead to high rates of RDMA retries we set the maximum RDMA operation retry number to three.

In this context, we set the failure timeout to 100 ms in our experiments, orders of magnitude

above the 99th-percentile insert time of 50 µs.

3.3.2 Repair Leases

RCuckoo recovers stranded locks one lock at a time; if a client fails holding multiple

locks recovery may be conducted by multiple clients at different times depending on their access

patterns. RCuckoo’s lock table does not maintain records of ownership, so there is no way to

“transfer” lock ownership from the failed node to a recovery node in the table itself. Instead,

66

Lock QPs Counter8bits 48bits 8bits
Figure 3.8. Format of a repair lease table entry

clients acquire a repair lease that grants exclusive permission to reclaim locks on a region of the

index table. The index table is broken into n regions so repairs can be executed in parallel.

Figure 3.8 shows the format for entries in RCuckoo’s lease table, maintained in RDMA-

registered main memory on the server. Lease entries contain the lease holder’s queue pair ID

(which RDMA ensures is unique for a given server), a set bit, and a counter (incremented on

each acquisition). A lease is considered free if the set bit of the current entry in the lease table

is zero. Clients attempt to acquire the lease using RDMA CAS operations to ensure mutual

exclusion. Upon successful acquisition, a client completes the repair (described below) and then

relinquishes the lease by clearing the set bit. Leases are revoked (to handle the case of a failed

recovery node) using a timeout mechanism similar to normal locks. If a client times out while

attempting lease acquisition it claims it for itself (again, using CAS to resolve any races) and

marks the lease holder as failed (see Section 3.3.4).

3.3.3 Table repair

All modification operations write new entries as a cuckoo path; updates and deletes have

a path of length one. Cuckoo paths are executed by first claiming an open entry at the end of the

path and proceeding backward along the path, cuckooing entries forward one-by-one until the

new entry is written at the beginning of the path. Client failures can occur at any point along an

insertion path; a failed client can leave the table in one of four distinct states based on how far

along it was:

1. A duplicate entry exists and one has a bad CRC,

2. A duplicate entry exists and both have correct CRCs,

3. No duplicate exists but one row has a bad CRC, or

67

4. No duplicate exists and no rows have a bad CRC.

The last case can occur if a client fails prior to issuing any updates to the table or if it fails after

updating all the rows but before releasing the locks. In either case recovery is trivial: a client

with the repair lease can simply unlock the stranded lock. Recovery from the other three cases

requires modification to the index table.

To repair the table a client first detects in which state the table is and then transitions

the table forward through the states with a deterministic sequence of operations so that failures

during recovery can be repaired by a subsequent client. A client determines the state by issuing

reads to all rows protected by the stranded lock. It then proceeds one-by-one through each entry

within the rows, checking both hash locations for the corresponding key (one of which may not

be in the locked rows) for duplicates or a bad CRC. Because RCuckoo updates one row per

RDMA write, there can be at most one duplicate or bad CRC.

Clients repair the table by moving though the states one step at a time. To move from

state 1 to 2, the client writes a new CRC for the bad duplicate. The table can be transitioned

from state 2 to 4 by clearing the duplicate entry in the second (i.e., pointed to by L2(K)) location.

Finally, the table can be transitioned from state 3 to 4 by recalculating and writing a new CRC to

the impacted row. After a client has issued its repair sequence it unlocks the reclaimed lock and

returns its lease.

From a correctness perspective, once all rows have a valid CRC and there are no dupli-

cates, the table is usable again. Clearly the new value being inserted into the table by the failed

client is lost, but this is indistinguishable from the case that the client failed before attempting

the insert. If the client was in the middle of cuckooing values up the path, a subset of the values

were moved from their primary cuckoo location to their secondary location, but reads check both

locations in any case, so the entry will still be located. Finally, because duplicate entries are

freed, no space in the table is lost.

68

3.3.4 Preventing Stale Writes

The one remaining concern is that a supposed-failed client could just be slow, and may

yet attempt to complete its cuckoo path despite the fact that its locks were reclaimed. Our

failure timeout is deliberately set many orders of magnitude larger than the expected operation

completion time, but we cannot completely rule out the possibility. Ideally, RCuckoo could

ensure that clients deemed to have failed by the failure detector are prevented from issuing further

operations to the table without manual intervention (e.g. a reboot).

While clients that fail holding a recovery lease are easy to identify, our current imple-

mentation has no way to identify which client failed holding a stranded lock. There are two

straightforward extensions to provide that functionality: increase the size of lock entries to

include the queue pair of the client, or have a separate liveness datastructure that each client

must update with some frequency so failed (or unreasonably slow) clients can be identified by

their failure to update their entry in a timely manner. Our design supports the latter, but we have

not found the need to implement it in our testbed—we have never seen a stale write that was

delivered with a delay anywhere close to approaching our timeout value.

Once a failed client is identified, real-world deployments have many ways to ensure

the client ceases operation, but it is interesting to consider providing such functionality within

RCuckoo itself. Unfortunately, at the time of writing the Infiniband specification does not allow

clients to modify each other’s RDMA permissions.4 To the best of our knowledge, the only

current alternative is to reset a failed client’s queue pair by crafting an invalid packet and sending

it to their queue pair at the server [80, Attack 2]. For this attack to work the packet sequence

number of the invalid packet must match expected sequence number at the receiver so 224 packets

must be sent to ensure the connection is corrupted successfully.

4Type-II memory windows enable clients to remove their own permissions using SEND WITH INV, but not
another client’s.

69

0 50 100 150 200 250 300 350
clients

0

10

20

30

40

M
OP

S

RCuckoo
FUSEE
Clover
Sherman

Figure 3.9. Throughput as a function of the number of clients for a read only workload (YCSB-C)
(Zipf θ=0.99)

3.4 Evaluation

We evaluate RCuckoo by directly comparing its performance in terms of throughput and

latency against representative state-of-the-art disaggregated key/value stores. When accessing

large values, aggregate throughput is limited by link rate, so we focus on small key/value pairs

where the table management overhead is most significant. When values are small enough to be

stored inline, RCuckoo outperforms existing systems while delivering competitive insert laten-

cies. Using fault injection, we show that our distributed approach to client failure detection and

recovery enables RCuckoo to sustain high throughput even though 100s of clients are failing per

second. Finally, we justify our design decisions through a series of micro-benchmarks. Specifi-

cally, we quantify the benefit RCuckoo extracts from its locality enhancement and speculative

search strategy before measuring the impact of index-table entry size.

3.4.1 Testbed

We conduct our evaluation on an 9-node cluster of dual-socket Intel machines. Each

CPU is an Intel Xeon E5-2650 clocked at 2.20 GHz. Each machine has 256 GB of RAM with

128 GB per NUMA node. All machines have a single dual-socket ConnectX-5 attached to a

70

0 50 100 150 200 250 300 350
clients

0

10

20

30

40

M
OP

S
RCuckoo
FUSEE
Clover
Sherman

Figure 3.10. Throughput as a function of the number of clients for a read mostly workload (5%
write) workload (YCSB-B) (Zipf θ=0.99)

100-Gbps Mellanox Onyx switch. In our RCuckoo experiments we use one sever as the memory

server and the rest a client machines spreading threads evenly across machines.

We compare RCuckoo against three recent RDMA key/value stores with different designs,

FUSEE [87], Clover [91], and Sherman [93]. While none have the exact same assumptions or

feature set as RCuckoo, each represents an apt comparison point for different aspects. To avoid

biasing our evaluation, we consider the same workloads (YCSB) as the authors of the previous

systems.

FUSEE is a fully disaggregated key/value store that represents the closest available

comparison point to RCuckoo. While both employ only 1-sided RDMA operations, FUSEE

eschews locking in favor of optimistic insertions. FUSEE clients use CAS operations to manage

fixed, 64-bit index table entries that contain pointers to values stored in extents. Due to its

reliance on CAS operations, FUSEE is unable to support inlined storage of small values like

RCuckoo, forcing all reads to require two round trips. Unlike RCuckoo, FUSEE is designed

to support replication. To remove the overhead of replication, we deploy FUSEE with a single

memory node.

71

0 50 100 150 200 250 300 350
clients

0

2

4

6

8

10

12

M
OP

S
RCuckoo
FUSEE
Clover
Sherman

Figure 3.11. Throughput as a function of the number of clients for a write heavy workload (50%
writes) (YCSB-A) (Zipf θ=0.99)

Clover is only partially disaggregated—it requires a metadata server to manage its index

structure—but can deliver higher read performance than FUSEE on read-only workloads. Clover

is designed to leverage remote persistent memory and implements both reads and updates using

one-sided RDMA operations. Moreover, unlike FUSEE—and similar to RCuckoo—Clover reads

are self verifying. In contrast to prior comparisons [87] that force clients to consult the metadata

server on each read, we allow Clover to take advantage of its client caching to achieve maximum

performance on read-heavy workloads.

Sherman is the highest-throughput distributed key/value storage system of which we are

aware that employs locks. Sherman maintains a B-tree that spans multiple servers and supports

range queries, a feature none of the other systems—RCuckoo included—provide. On the other

hand, Sherman clusters are not fully disaggregated: each node in a cluster is a peer with many

CPU cores and a single memory core that is responsible for servicing allocation RPC calls from

clients. As such, Sherman does not encounter the same bandwidth bottlenecks as the other

systems because requests are partitioned across machines.

72

10 20 30 40 50 60 70 80 90
fill factor

0

10

20

30

40

50

M
OP

S

C B A W

Figure 3.12. RCuckoo performance as a function of fill factor on each YCSB workload. Here
updates are replaced with inserts. As the table fills inserts become more difficult thus reducing
throughput.

10 20 30 40 50 60 70 80 90
fill factor

0

10

20

30

40

us

Read
Insert
FUSEE

Sherman
Clover
RCuckoo

Figure 3.13. Read and insert latency as a function of fill factor. RCuckoo’s read latency remains
constant. Insert latency is proportional to the fill factor

73

10 20 30 40 50 60 70 80 90
fill factor

0

1000

2000

3000

by
te

s/
op

insert
read

Figure 3.14. Bytes per operation as a function of fill factor. As the table fills inserts consume
more bytes per operation due to additional round trips.

3.4.2 Performance

We start by considering throughput and latency on the classical YCSB workloads which

employ varying mixes of read and update operations before turning to the more complex insert

operation. RCuckoo delivers the highest performance on reads and updates across all settings,

while insert performance varies as a function of table fill factor. Even in the worst case, however,

RCuckoo limits I/O amplification to around 2×.

Throughput. [3.9, 3.10, 3.11] shows YCSB throughput for RCuckoo, FUSEE, Clover,

and Sherman on three different YCSB workloads. For each system, we allocate a 100-M-entry

table and pre-populate it with 90 M entries that each consist of a 32-bit key and 32-bit value (we

consider larger sizes in Section 3.4.4). We plot the aggregate throughput of a variable number of

clients concurrently accessing entries according to a Zipf(0.99) distribution.

In a read-only (YCSB-C) workload, FUSEE suffers from its extent-based value storage.

RCuckoo, Clover, and Sherman perform similarly at low-to-moderate levels of concurrency, but

they separate at scale. Sherman’s read algorithm is more complex than RCuckoo’s leading to

74

10 20 30 40 50 60 70 80 90
fill factor

0
1
2
3
4
5
6

m
es

sa
ge

s/
op

insert
read

Figure 3.15. Messages per operation as a function of fill factor.

lower top-end performance. Clover’s client-side caching shines under this skewed workload,

where almost all reads hit in a client’s index cache, requiring only a single read for the value; its

performance degrades under a more uniform workload (not shown). RCuckoo, on the other hand,

reads inlined values in a single round trip regardless of the distribution, leading to the highest

performance.

Increased update rate slows all systems. Even with only 5% updates (YCSB-B), the

picture changes dramatically. Sherman performs well at low levels of concurrency due to its

single-round-trip reads, but hits a severe bottleneck due to lock contention on the skewed access

pattern. (Sherman improves—but does not surpass RCuckoo—for uniform workloads, not

shown, where lock contention is less of an issue.) Caching is less effective with updates, bringing

Clover’s throughput in line with FUSEE.

On the 50/50-mixed YCSB-A workload RCuckoo and FUSEE perform similarly, al-

though we are unable to scale FUSEE past 250 clients in our testbed while RCuckoo continues to

scale. Sherman begins to suffer from lock contention even earlier, topping out around 5 MOPS

before collapsing. Clover performs worst under write-heavy workloads due to its inability to

75

0 500 1000
Failures per second (# locks)

0

5

10

15

M
OP

S 1
2
4
8
16

Figure 3.16. YCSB-A throughput vs. client failure rate

effectively leverage caching with a constantly changing index structure.

Inserts. Despite its complexity, RCuckoo’s insert operation remains highly perfor-

mant. To evaluate insert performance we run workloads with a mix of reads and inserts. Fig-

ures[3.12, 3.13, 3.14, 3.15] considers RCuckoo’s performance on workloads that exclusively

use inserts (rather than updates); as with YCSB nomenclature A is 50% insert and 50% read; W

is insert only. Inserts become more expensive as the table fills, so we pre-populate the table with

a varying number of entries and report insert performance as a function of the table’s initial fill

factor.

Figure 3.12 shows the aggregate throughput of 320 clients across four different workloads

as a function of the table’s fill factor. As the index table fills, cuckoo paths become longer leading

to increased contention and additional bandwidth consumption from larger covering reads. In

each case (except read-only C) RCuckoo’s performance declines with fill factor. In the insert-

only W case RCuckoo’s performance drops from a high of 11.5 MOPS in a nearly empty table

to 4.5 MOPS at a 90% fill factor. As a point of comparison, FUSEE’s maximum insert-only

76

1 2 4 8 16 32 64
Locks per message

2
8

32
128
512

2048
Ro

un
d

Tr
ip

s

dfs (independent)
dfs (dependent)
bfs (independent)

bfs (dependent)
99th percentile
50th percentile

Figure 3.17. Round trip times required to acquire locks on insert

performance is 9.1 MOPS on our testbed, although it is independent of fill factor. While FUSEE

out-performs RCuckoo at high fill factors, we observe that insert-only workloads are rare in

practice [73].

Latency and overhead. We plot the latency of insert and read operations in Fig-

ures[3.13, 3.14, 3.15]. For comparison systems we report the best-case (lightly loaded) perfor-

mance on our testbed. Read latency is nearly identical for all systems save FUSEE, as it requires

an additional round trip. Insert times vary: Clover and Sherman use two-sided RDMA operations

for insert and both need to perform allocations and set up metadata for the requesting client.

FUSEE is slightly slower, roughly the same as RCuckoo’s best case. As the table fills, however,

cuckoo paths grow in length causing RCuckoo insert operations to require additional round trips

to find valid cuckoo paths. At maximum fill, insert operations take roughly twice as long as in an

empty table. This I/O amplification is reflected by the increase in both bytes (Figure 3.14) and

messages (Figure 3.15) per operation. The cost and performance of reads, on the other hand, is

insensitive to fill factor.

77

1 2 4 8 16 32 64 128
rows per lock

0

20

40

60

80

100

su
cc

es
s r

at
e

(%
)

Figure 3.18. Insert second-search success rate as a function of lock granularity

3.4.3 Fault Tolerance Performance

RCuckoo runs at nearly full throughput during realistic failure scenarios and remains

functional in the face of hundreds of failures per second. We emulate client failures by performing

a partial insert operation that randomly truncates the batch of RDMA operations including lock

releases, leaving the table in one of the states listed in Section 3.3.3. Figure 3.16 shows that

throughput remains high until about 500 client failures per second, at which point lock granularity

begins to play a significant role; finer-grained locks are easier to recover leading to less throughput

degradation. As a point of reference, we observe that RDMA itself struggles to handle churn

of this magnitude: a server can only establish approximately 1.4 K RDMA connections per

second [62].

3.4.4 Microbenchmarks

Having established RCuckoo’s superiority over prior systems and demonstrated its

robustness to client failure, we now evaluate the impact of particular design choices.

78

YCSB-A (insert) read only
0

10

20

30

40

50

M
OP

S

8 KV
16 KV
32 KV
64 KV

Figure 3.19. Throughput vs. key/value-entry size for YCSB-A (insert) and YCSB-C (read-only)
workloads

Locality enhancement. Figure 3.17 illustrates the dramatic benefit RCuckoo extracts

from its dependent hashing combined with a BFS cuckoo-path search strategy. To focus on

longer cuckoo paths, we pre-populate a 100-M entry table to 85% and then report both the

median and 99th percentile round trips per insert key/value pairs until the table is 95% full as a

function of lock granularity. While median performance is on the same order, the 99th-percentile

insert takes an order of magnitude fewer round trips with dependent hashing and BFS as opposed

to independent hashing and DFS as used in prior cuckoo hash systems [56, 67, 75]. As before

(c.f. Figure 3.7), performance is similar with four or more locks per message.

Secondary search. We measure second search success rate as a function of lock gran-

ularity under high contention. A table is filled up to 85% and then 320 clients concurrently

run an insert-only workload. For this experiment only, we flush the client’s cache before every

insert, ensuring the initial speculative path will fail unless the entry does not require cuckooing

(unlikely at this fill factor). Figure 3.18 plots the success rate of the second search as a function

79

8 16 32 64 128 256 512 1K
value size (bytes)

0

5

10

15

20

25

M
OP

S

4.7%

21.1%

37.2%

inline
ycsb-c

ycsb-b
ycsb-a

Figure 3.20. Extent performance value sizes up to 1KB. Dashed line marks the inline perfor-
mance on 16 Byte entries. Overheads marked in black.

of lock granularity. Recall that if a second search fails, RCuckoo clients release their locks and

retry the insert operation using the contents of their cache, so multiple speculative and secondary

searches may be performed. At one row per lock, secondary search has limited effectiveness

(as the only alternative is to cuckoo a different set of entries among the same rows), leading to

multiple retries (approaching 4 in the 99th percentile, not shown). As locks cover additional

rows, however, the second search becomes much more useful. At 64 rows per lock the second

search succeeds 95% of the time.

Entry/value sizes. Inlined key/value entries enable single-round-trip reads. However

large entries increase bandwidth consumption for inserts. Figure 3.19 shows the effect of entry

size on throughput under 50% insert and read-only (YCSB-C) workloads. Insert is a bandwidth-

limited operation, while reads (and update/delete, not shown) are largely unaffected by entry

size. Extent entries are slightly slower.

Figure 3.20 shows YCSB throughput as a function of value size from 8 to 1024 B on 6

80

client machines with 120 cores using a Zipf(0.99) distribution. For comparison, we show the

performance for 8-B inlined values on the same testbed and compute the difference. Inlined

entries have two sources of performance gain: they avoid the overhead of reading and writing to

extents which increases with value size, but, more importantly they avoid additional rounds trips

on cache misses. YCSB-B sees a 21% performance improvement from inlining while YCSB-A

gains 37% (YCSB-C has misses).

3.5 The Advantage of Locality

The key insight behind RCuckoo is that locality can be used to improve it’s performance.

Each aspect of it’s design relies on it. Without locality spanning reads would span arbitrary

ranges and consume unacceptable amounts of bandwidth. Lock acquisition, without locality,

would involve random iterative reads throughout the table leading to many round trips and

potential deadlock. Without locality the lock table may not easily fit into a linear block of

NIC memory. And finally without locality the number of locks required for insertions would

increase dramatically as the probability of a single lock spanning multiple relevant entries

would significantly decrease. Locality enables us to take advantage of the fact that the network

bandwidth is high and RDMA operations on linear regions of memory.

In general RCuckoo is a demonstration of the power of locality in disaggregated systems,

but it is far from the final word. While many aspects of it’s design are specific to Cuckoo hashing

the concept of reducing the number of round trips to perform an operation by increasing the

likelihood that all relevant information lies within a given range is general property we expect

would provide benefit many data structures.

3.6 Acknowledgement to RCuckoo Contributors

Chapter 3 is a partial reprint of work submitted to multiple USENIX conferences under

the title ”Cuckoo for Clients: Disaggregated Cuckoo Hashing. Stewart Grant, Alex C. Snoeren.

81

This dissertations author was the primary investigator and author of this paper.

Thank you to Alex C. Snoeren for your tireless guidance and support throughout this work.

Thank you to Dave Andersen for supplying an open source implementation of MemC3 [24],

which was used as a reference for the search algorithm for RCuckoo. Thank you to Jiacheng

Shen for our conversations at SOSP ’23; without your confirmation that acquiring locks for

a cuckoo hash was indeed hard and that the progress we had made on the problem seemed

promising, this work would not have been possible. Again, thank you to Anil Yelam for always

providing feedback on the technical aspects of this project. Finally, thank you to Geoffrey M.

Voelker for providing feedback on the initial draft of this work.

82

Chapter 4

Conclusion

This dissertation explores the problems and solutions for sharing disaggregated memory.

The high access latency and extreme cost of contention in far-memory over RDMA cause

many data structures, which would otherwise be efficient, to experience performance collapse.

Stale caches cause opportunistic data structures to fail under contention, and pointer-based data

structures incur additional round trips when far-memory pointers need to be resolved. Using

existing techniques, applications can be made to work, but they simply have to incur the penalties

of sharing when under contention.

We have presented two systems, SwordBox and RCuckoo, that present two different

strategies for improving the performance of disaggregated data structures. SwordBox uses a

programmable switch as a centralized cache to remove contention from shared data structures

and to accelerate the use of locks on lock-based structures. RCuckoo uses locality within a hash

table to improve the performance of reads and greatly reduce the cost of acquiring locks stored

on a NIC. Together these works provide strong evidence that:

Data structures can be optimized for disaggregated memory by leveraging network

programmability

In this chapter we begin by summarizing the contributions of this dissertation and their

relationship to our thesis claim, and we conclude with a discussion of this works limitations

paired with future work directions in this area of research.

83

4.1 Contributions

In this dissertation, we have contributed to the state of the art in disaggregated memory

systems by:

• Demonstrating the significant performance gains achievable by using a programmable

switch to cache the contended state of a data structure and resolve the conflicts in the

network.

• Showing that a programmable switch can reduce the instruction-level bottlenecks of

RDMA atomic operations.

• Demonstrating that through locality optimizations locks can be fit into a small amount of

NIC memory.

• Showing that RDMA-verbs are well suited for locality optimized data structures.

We believe that these contributions are significant stepping stones towards the design

of future efficient disaggregated systems. In the case of SwordBox, which demonstrated accel-

eration on list appends, it could be adapted to other data structures with similar properties, for

example, log-structured systems. We believe that the insight behind RCuckoo’s locality-based

optimizations is general and that many data structures could benefit from localizing their data in

a similar fashion.

4.2 Future Work

Each of the works presented in this dissertation is a step towards more efficient disaggre-

gated systems. In this section, we speculate on future directions for this area of research based

on the limitations of the work presented here.

Many off-the-shelf ARM-based or FPGA-based SmartNICs could be used to implement

SwordBox as well as more complex data structures. While SmartNICs lack a global view

84

of a rack, they have a global view of the machine they are attached to and could be used to

implement similar caching strategies. SmartNICs typically have much more available memory

than programmable switches and could likely handle much larger data structures than SwordBox.

For example, inserting into a linked list (because the entire linked list needs to be stored in

memory) is a difficult data structure for SwordBox to handle. This is unlikely to be the same

on a SmartNIC with a few GB of memory. SmartNICs could be used to cache index structures

for large structures like B-Trees and use their limited compute power to steer read and write

requests similar to SwordBox. More generically, they could be used for simple functions that are

difficult to implement in remote memory, such as an allocator or scheduler that needs to maintain

centralized state.

A further and more generic option for NIC designers is to extend the interface for RDMA

to better accommodate complex one-sided data structures. While calls for pointer chasing

are common, calls for more complex atomic operations are less so [22, 34]. The algorithms

community has designed many wait-free and lockless data structures such as binary trees and

heaps that make use of multi-CAS. The ability to CAS multiple addresses simultaneously could

open up disaggregation to many pointer-based data structures that would currently be difficult

to implement with a single CAS, such as any structure which requires multiple pointers to be

updated atomically, like a doubly linked list. Simultaneously CAS and FAA are of limited width.

Extensions for larger CAS sizes would enable more efficient data structures, such as in the case

of RACE and FUSEE, which must limit the size of their key-value pairs due to the lack of space

in the 64-bit RDMA CAS.

Network-data structure co-design is a powerful but underexplored area. In the case of

SwordBox, Clover was a good fit for the system as only the tail pointer of linked lists needed to

be stored on the switch. Other data structures do not always exhibit this property. Log-based or

append-only data structures have promise here, as the point of contention (the end of the log) can

be managed with relatively little state. Future work could enable append-mostly data structures.

Sherman, for instance, enjoys a degree of associativity at its leaf nodes by having associative

85

leaves. Other data structures may be able to take advantage of similar properties, like appending

updates to a shared log and eventually combining them into a consolidated data structure.

Most proposals for disaggregated systems are focused on rack-scale deployments. As

intra-rack latencies get lower and lower, and disaggregated technology gets better, intra-rack

solutions will become more tenable. An early example is Disaggregating Stateful Network

Functions [12] and SuperNIC [85], which take the stance that a large pool of dedicated accel-

erators can provide a significant portion of the network functions for a data center. In this line

of work, routing is paramount and underexplored. SwordBox assumes a centralized model as

it needs to track an entire data structure. However, a future distributed model could potentially

scale to multiple racks if the data-dependent operations were routed through the correct network

components.

The future for disaggregated systems is bright. This work has demonstrated that shared

remote memory can be made efficient with programmable networking hardware and that, through

careful design, data structures can be adapted to disaggregated memory. Hopefully, future work

will build on these techniques and enable a shift towards mainstream disaggregated computing.

86

Bibliography

[1] NVIDIA BlueField-2 DPU. https://www.nvidia.com/en-us/networking/products/bluefield-
2/, July 2020.

[2] Advanced transport (NVIDIA RDMA documentation). https://docs.nvidia.com/
networking/display/MLNXOFEDv494170/Advanced+Transport, August 2022.

[3] RoCE vs. iWARP competitive analysis. https://network.nvidia.com/pdf/whitepapers/
WP RoCE vs iWARP.pdf, June 2023.

[4] Amazon EC2 instances. https://aws.amazon.com/ec2/instance-types/, April 2024.

[5] AWS Nitro system. https://aws.amazon.com/ec2/nitro/, July 2024.

[6] Device memory programming (NVIDIA RDMA documentation).
https://docs.nvidia.com/networking/display/ OFEDv502180/Programming#Programming-
DeviceMemoryProgramming, January 2024.

[7] Nvidia quantum-x800 infiniband platform. https://nvdam.widen.net/s/hbp8zz7fvt/solution-
overview-gtcspring24-quantum-x800-3175164, March 2024.

[8] Marcos K. Aguilera, Nadav Amit, Irina Calciu, Xavier Deguillard, Jayneel Gandhi, Stanko
Novaković, Arun Ramanathan, Pratap Subrahmanyam, Lalith Suresh, Kiran Tati, Rajesh
Venkatasubramanian, and Michael Wei. Remote regions: a simple abstraction for remote
memory. In 2018 USENIX Annual Technical Conference (USENIX ATC 18), pages
775–787, Boston, MA, July 2018. USENIX Association.

[9] Emmanuel Amaro, Christopher Branner-Augmon, Zhihong Luo, Amy Ousterhout, Mar-
cos K. Aguilera, Aurojit Panda, Sylvia Ratnasamy, and Scott Shenker. Can far memory
improve job throughput? In Proceedings of the Fifteenth European Conference on Com-
puter Systems, EuroSys ’20, New York, NY, USA, 2020. Association for Computing
Machinery.

[10] Sebastian Angel, Mihir Nanavati, and Siddhartha Sen. Disaggregation and the application.
In 12th USENIX Workshop on Hot Topics in Cloud Computing (HotCloud 20), held
virtually online, July 2020. USENIX Association.

87

https://docs.nvidia.com/networking/display/MLNXOFEDv494170/Advanced+Transport
https://docs.nvidia.com/networking/display/MLNXOFEDv494170/Advanced+Transport
https://network.nvidia.com/pdf/whitepapers/WP_RoCE_vs_iWARP.pdf
https://network.nvidia.com/pdf/whitepapers/WP_RoCE_vs_iWARP.pdf

[11] Hari Balakrishnan, Srinivasan Seshan, Elan Amir, and Randy H. Katz. Improving TCP/IP
performance over wireless networks. In Proceedings of the 1st Annual International
Conference on Mobile Computing and Networking, MobiCom ’95, page 2–11, New York,
NY, USA, 1995. Association for Computing Machinery.

[12] Deepak Bansal, Gerald DeGrace, Rishabh Tewari, Michal Zygmunt, James Grantham,
Silvano Gai, Mario Baldi, Krishna Doddapaneni, Arun Selvarajan, Arunkumar Arumugam,
Balakrishnan Raman, Avijit Gupta, Sachin Jain, Deven Jagasia, Evan Langlais, Pranjal
Srivastava, Rishiraj Hazarika, Neeraj Motwani, Soumya Tiwari, Stewart Grant, Ranveer
Chandra, and Srikanth Kandula. Disaggregating stateful network functions. In 20th
USENIX Symposium on Networked Systems Design and Implementation (NSDI 23), pages
1469–1487, Boston, MA, April 2023. USENIX Association.

[13] Rutger Beltman, Silke Knossen, Joseph Hill, and Paola Grosso. Using P4 and RDMA
to collect telemetry data. 2020 IEEE/ACM Innovating the Network for Data-Intensive
Science (INDIS), pages 1–9, Nov 2020.

[14] Irina Calciu, M. Talha Imran, Ivan Puddu, Sanidhya Kashyap, Hasan Al Maruf, Onur
Mutlu, and Aasheesh Kolli. Rethinking software runtimes for disaggregated memory.
In Proceedings of the 26th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, (ASPLOS ’21), page 79–92, New York,
NY, USA, April 2021. Association for Computing Machinery.

[15] Irina Calciu, Siddhartha Sen, Mahesh Balakrishnan, and Marcos K. Aguilera. Black-box
concurrent data structures for NUMA architectures. In Proceedings of the Twenty-Second
International Conference on Architectural Support for Programming Languages and
Operating Systems, (ASPLOS ’17), page 207–221, New York, NY, USA, April 2017.
Association for Computing Machinery.

[16] Zhichao Cao, Siying Dong, Sagar Vemuri, and David H.C. Du. Characterizing, modeling,
and benchmarking RocksDB Key-Value workloads at facebook. In 18th USENIX Con-
ference on File and Storage Technologies (FAST 20), pages 209–223, Santa Clara, CA,
February 2020. USENIX Association.

[17] Youmin Chen, Youyou Lu, and Jiwu Shu. Scalable RDMA RPC on reliable connection
with efficient resource sharing. In Proceedings of the Fourteenth EuroSys Conference
2019, (EuroSys ’19), Dresden, Germany, 2019. Association for Computing Machinery.

[18] Yann Collet. xxhash extremely fast hash algorithm, Dec 2023.

[19] P4 Language Consortium. P4 language specification. https://p4.org/p4-spec/docs/
P4-16-v1.1.0-spec.html, Feb 2017.

[20] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell Sears.
Benchmarking cloud serving systems with YCSB. In Proceedings of the 1st ACM
Symposium on Cloud Computing, (SoCC ’10), page 143–154, Indianapolis, Indiana, USA,
June 2010. Association for Computing Machinery.

88

https://p4.org/p4-spec/docs/P4-16-v1.1.0-spec.html
https://p4.org/p4-spec/docs/P4-16-v1.1.0-spec.html

[21] CXL Consortium. CXL 3.0 specification. https://www.computeexpresslink.org/download-
the-specification.

[22] Sowmya Dharanipragada, Shannon Joyner, Matthew Burke, Adriana Szekeres, Jacob
Nelson, Irene Zhang, and Dan R. K. Ports. Prism: Rethinking the RDMA interface for
distributed systems. In Proceedings of the ACM SIGOPS 28th Symposium on Operating
Systems Principles (SOSP ’21), Virtual Event, Germany, October 2021. Association for
Computing Machinery.

[23] Aleksandar Dragojević, Dushyanth Narayanan, Miguel Castro, and Orion Hodson. FaRM:
Fast remote memory. In 11th USENIX Symposium on Networked Systems Design and Im-
plementation (NSDI 14), pages 401–414, Seattle, WA, April 2014. USENIX Association.

[24] Bin Fan, David G. Andersen, and Michael Kaminsky. MemC3: Compact and concurrent
memcache with dumber caching and smarter hashing. In 10th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 13), pages 371–384, Lombard, IL,
April 2013. USENIX Association.

[25] Paolo Faraboschi, Kimberly Keeton, Tim Marsland, and Dejan Milojicic. Beyond
processor-centric operating systems. In 15th Workshop on Hot Topics in Operating
Systems (HotOS XV), Kartause Ittingen, Switzerland, March 2015. USENIX Association.

[26] Daniel Firestone, Andrew Putnam, Sambhrama Mundkur, Derek Chiou, Alireza Dabagh,
Mike Andrewartha, Hari Angepat, Vivek Bhanu, Adrian Caulfield, Eric Chung, Har-
ish Kumar Chandrappa, Somesh Chaturmohta, Matt Humphrey, Jack Lavier, Norman
Lam, Fengfen Liu, Kalin Ovtcharov, Jitu Padhye, Gautham Popuri, Shachar Raindel, Tejas
Sapre, Mark Shaw, Gabriel Silva, Madhan Sivakumar, Nisheeth Srivastava, Anshuman
Verma, Qasim Zuhair, Deepak Bansal, Doug Burger, Kushagra Vaid, David A. Maltz, and
Albert Greenberg. Azure accelerated networking: SmartNICs in the public cloud. In 15th
USENIX Symposium on Networked Systems Design and Implementation (NSDI 18), pages
51–66, Renton, WA, April 2018. USENIX Association.

[27] Linux Foundation. Data plane development kit (DPDK). http://www.dpdk.org, June 2024.

[28] Peter X. Gao, Akshay Narayan, Sagar Karandikar, Joao Carreira, Sangjin Han, Rachit
Agarwal, Sylvia Ratnasamy, and Scott Shenker. Network requirements for resource disag-
gregation. In 12th USENIX Symposium on Operating Systems Design and Implementation
(OSDI ’16), pages 249–264, Savannah, GA, November 2016. USENIX Association.

[29] Donghyun Gouk, Sangwon Lee, Miryeong Kwon, and Myoungsoo Jung. Direct access,
High-Performance memory disaggregation with DirectCXL. In 2022 USENIX Annual
Technical Conference (ATC ’22), pages 287–294, Carlsbad, CA, July 2022. USENIX
Association.

[30] Stewart Grant, Anil Yelam, Maxwell Bland, and Alex C. Snoeren. SmartNIC performance
isolation with FairNIC: Programmable networking for the cloud. In Proceedings of the
Annual Conference of the ACM Special Interest Group on Data Communication on the

89

Applications, Technologies, Architectures, and Protocols for Computer Communication,
(SIGCOMM ’20), page 681–693, Virtual Event, USA, 2020. Association for Computing
Machinery.

[31] Jim Griner, John Border, Markku Kojo, Zach D. Shelby, and Gabriel Montenegro. Perfor-
mance Enhancing Proxies Intended to Mitigate Link-Related Degradations. RFC 3135,
June 2001.

[32] Juncheng Gu, Youngmoon Lee, Yiwen Zhang, Mosharaf Chowdhury, and Kang G. Shin.
Efficient memory disaggregation with Infiniswap. In 14th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 17), pages 649–667, Boston, MA,
March 2017. USENIX Association.

[33] Zhiyuan Guo, Zijian He, and Yiying Zhang. Mira: A program-behavior-guided far
memory system. In Proceedings of the 29th Symposium on Operating Systems Principles,
(SOSP ’23), page 692–708, Koblenz, Germany, October 2023. Association for Computing
Machinery.

[34] Zhiyuan Guo, Yizhou Shan, Xuhao Luo, Yutong Huang, and Yiying Zhang. Clio: A
hardware-software co-designed disaggregated memory system. In Proceedings of the 27th
ACM International Conference on Architectural Support for Programming Languages
and Operating Systems, (ASPLOS ’22), page 417–433, Lausanne, Switzerland, Feburary
2022. Association for Computing Machinery.

[35] Danny Hendler, Itai Incze, Nir Shavit, and Moran Tzafrir. Flat combining and the
synchronization-parallelism tradeoff. In Proceedings of the Twenty-Second Annual ACM
Symposium on Parallelism in Algorithms and Architectures, (SPAA ’10), page 355–364,
Thira, Santorini, Greece, June 2010. Association for Computing Machinery.

[36] Maurice Herlihy, Nir Shavit, and Moran Tzafrir. Hopscotch hashing. In Proceedings of
the 22nd International Symposium on Distributed Computing, (DISC ’08), page 350–364,
Berlin, Heidelberg, September 2008. Springer-Verlag.

[37] Rulin Huang, Kaixin Huang, Jingyu Wang, and Yuting Chen. Reno: An RDMA-enabled,
non-volatile memory-optimized key-value store. In 2021 IEEE 27th International Con-
ference on Parallel and Distributed Systems (ICPADS ’21), pages 466–473, December
2021.

[38] Infiniband Trade Association. Infiniband specification. https://www.afs.enea.it/asantoro/,
December 2007.

[39] Intel. Intel rack scale architecture: Faster service delivery and lower
TCO. https://www.intel.com/content/www/us/en/architecture-and-technology/rack-scale-
design-overview.html, July 2018.

[40] Intel. Intel Tofino 2 P4 programmability with more bandwidth. https://www.intel.com/
content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-2-series/
tofino-2.html, August 2020.

90

https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-2-series/tofino-2.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-2-series/tofino-2.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-2-series/tofino-2.html

[41] Xin Jin, Xiaozhou Li, Haoyu Zhang, Nate Foster, Jeongkeun Lee, Robert Soulé,
Changhoon Kim, and Ion Stoica. NetChain: Scale-Free Sub-RTT coordination. In
15th USENIX Symposium on Networked Systems Design and Implementation (NSDI 18),
pages 35–49, Renton, WA, April 2018. USENIX Association.

[42] Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soulé, Jeongkeun Lee, Nate Foster,
Changhoon Kim, and Ion Stoica. Netcache: Balancing key-value stores with fast in-
network caching. In Proceedings of the 26th Symposium on Operating Systems Principles,
SOSP ’17, page 121–136, New York, NY, USA, 2017. Association for Computing Ma-
chinery.

[43] Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal, Raminder
Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, Rick Boyle, Pierre luc
Cantin, Clifford Chao, Chris Clark, Jeremy Coriell, Mike Daley, Matt Dau, Jeffrey Dean,
Ben Gelb, Tara Vazir Ghaemmaghami, Rajendra Gottipati, William Gulland, Robert
Hagmann, C. Richard Ho, Doug Hogberg, John Hu, Robert Hundt, Dan Hurt, Julian Ibarz,
Aaron Jaffey, Alek Jaworski, Alexander Kaplan, Harshit Khaitan, Andy Koch, Naveen
Kumar, Steve Lacy, James Laudon, James Law, Diemthu Le, Chris Leary, Zhuyuan Liu,
Kyle Lucke, Alan Lundin, Gordon MacKean, Adriana Maggiore, Maire Mahony, Kieran
Miller, Rahul Nagarajan, Ravi Narayanaswami, Ray Ni, Kathy Nix, Thomas Norrie,
Mark Omernick, Narayana Penukonda, Andy Phelps, and Jonathan Ross. In-datacenter
performance analysis of a tensor processing unit. In Arxiv, April 2017.

[44] Anuj Kalia, Michael Kaminsky, and David Andersen. Datacenter RPCs can be general
and fast. In 16th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 19), pages 1–16, Boston, MA, February 2019. USENIX Association.

[45] Anuj Kalia, Michael Kaminsky, and David G. Andersen. Using RDMA efficiently for
key-value services. SIGCOMM Comput. Commun. Rev., 44(4):295–306, August 2014.

[46] Anuj Kalia, Michael Kaminsky, and David G. Andersen. Design guidelines for high
performance RDMA systems. In 2016 USENIX Annual Technical Conference (USENIX
ATC 16), pages 437–450, Denver, CO, June 2016. USENIX Association.

[47] Anuj Kalia, Michael Kaminsky, and David G. Andersen. FaSST: Fast, scalable and
simple distributed transactions with two-sided (RDMA) datagram RPCs. In 12th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 16), pages 185–201,
Savannah, GA, November 2016. USENIX Association.

[48] Sagar Karandikar, Albert Ou, Alon Amid, Howard Mao, Randy Katz, Borivoje Nikolić,
and Krste Asanović. FirePerf: FPGA-accelerated full-system hardware/software per-
formance profiling and co-design. In Proceedings of the Twenty-Fifth International
Conference on Architectural Support for Programming Languages and Operating Systems,
(ASPLOS ’20), page 715–731, Lausanne, Switzerland, March 2020. Association for
Computing Machinery.

91

[49] Daehyeok Kim, Zaoxing Liu, Yibo Zhu, Changhoon Kim, Jeongkeun Lee, Vyas Sekar,
and Srinivasan Seshan. TEA: Enabling state-intensive network functions on programmable
switches. In Proceedings of the Annual Conference of the ACM Special Interest Group
on Data Communication on the Applications, Technologies, Architectures, and Protocols
for Computer Communication, (SIGCOMM ’20), page 90–106, Virtual Event, USA,
September 2020. Association for Computing Machinery.

[50] Seung-seob Lee, Yanpeng Yu, Yupeng Tang, Anurag Khandelwal, Lin Zhong, and Ab-
hishek Bhattacharjee. MIND: In-network memory management for disaggregated data
centers. In Proceedings of the ACM SIGOPS 28th Symposium on Operating Systems Prin-
ciples, (SOSP ’21), page 488–504, Virtual Event, Germany, October 2021. Association
for Computing Machinery.

[51] Youngmoon Lee, Hasan Al Maruf, Mosharaf Chowdhury, Asaf Cidon, and Kang G. Shin.
Hydra : Resilient and highly available remote memory. In 20th USENIX Conference on
File and Storage Technologies (FAST 22), pages 181–198, Santa Clara, CA, February
2022. USENIX Association.

[52] Huaicheng Li, Daniel S. Berger, Stanko Novakovic, Lisa Hsu, Dan Ernst, Pantea Zardoshti,
Monish Shah, Samir Rajadnya, Scott Lee, Ishwar Agarwal, Mark D. Hill, Marcus Fontoura,
and Ricardo Bianchini. Pond: CXL-based memory pooling systems for cloud platforms.
In Proceedings of the International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS ’23). Association for Computing Machinery,
March 2023.

[53] Jialin Li, Ellis Michael, and Dan R. K. Ports. Eris: Coordination-free consistent trans-
actions using in-network concurrency control. In Proceedings of the 26th Symposium
on Operating Systems Principles, (SOSP ’17), page 104–120, Shanghai, China, October
2017. Association for Computing Machinery.

[54] Jialin Li, Ellis Michael, Naveen Kr. Sharma, Adriana Szekeres, and Dan R. K. Ports.
Just say NO to Paxos overhead: Replacing consensus with network ordering. In 12th
USENIX Symposium on Operating Systems Design and Implementation (OSDI ’16), pages
467–483, Savannah, GA, November 2016. USENIX Association.

[55] Pengfei Li, Yu Hua, Pengfei Zuo, Zhangyu Chen, and Jiajie Sheng. ROLEX: A scalable
RDMA-oriented learned Key-Value store for disaggregated memory systems. In 21st
USENIX Conference on File and Storage Technologies (FAST 23), pages 99–114, Santa
Clara, CA, February 2023. USENIX Association.

[56] Xiaozhou Li, David G. Andersen, Michael Kaminsky, and Michael J. Freedman. Algo-
rithmic improvements for fast concurrent cuckoo hashing. In Proceedings of the Ninth
European Conference on Computer Systems, (EuroSys ’14), Amsterdam, The Netherlands,
April 2014. Association for Computing Machinery.

[57] Yuliang Li, Rui Miao, Hongqiang Harry Liu, Yan Zhuang, Fei Feng, Lingbo Tang, Zheng
Cao, Ming Zhang, Frank Kelly, Mohammad Alizadeh, and Minlan Yu. HPCC: High

92

precision congestion control. In Proceedings of the ACM Special Interest Group on Data
Communication, (SIGCOMM ’19), page 44–58, Beijing, China, August 2019. Association
for Computing Machinery.

[58] Kevin Lim, Jichuan Chang, Trevor Mudge, Parthasarathy Ranganathan, Steven K. Rein-
hardt, and Thomas F. Wenisch. Disaggregated memory for expansion and sharing in
blade servers. In Proceedings of the 36th Annual International Symposium on Computer
Architecture, (ISCA ’09), page 267–278, Austin, TX, USA, June 2009. Association for
Computing Machinery.

[59] Hugo Lin. Impacts of Intel’s decision to stop Tofino development on
P4. https://forum.p4.org/t/impacts-of-intels-decision-to-stop-tofino-development-on-
p4/669/2, March 2023.

[60] Ming Liu, Tianyi Cui, Henry Schuh, Arvind Krishnamurthy, Simon Peter, and Karan
Gupta. Offloading distributed applications onto smartnics using ipipe. In Proceedings
of the ACM Special Interest Group on Data Communication, (SIGCOMM ’19), page
318–333, Beijing, China, August 2019. Association for Computing Machinery.

[61] Ming Liu, Simon Peter, Arvind Krishnamurthy, and Phitchaya Mangpo Phothilimthana.
E3: Energy-Efficient microservices on SmartNIC-Accelerated servers. In 2019 USENIX
Annual Technical Conference (ATC ’19), pages 363–378, Renton, WA, July 2019. USENIX
Association.

[62] Teng Ma, Tao Ma, Zhuo Song, Jingxuan Li, Huaixin Chang, Kang Chen, Hai Jiang,
and Yongwei Wu. X-rdma: Effective RDMA middleware in large-scale production
environments. In 2019 IEEE International Conference on Cluster Computing (CLUSTER

’ 19), pages 1–12, September 2019.

[63] Michael Marty, Marc de Kruijf, Jacob Adriaens, Christopher Alfeld, Sean Bauer, Carlo
Contavalli, Mike Dalton, Nandita Dukkipati, William C. Evans, Steve Gribble, Nicholas
Kidd, Roman Kononov, Gautam Kumar, Carl Mauer, Emily Musick, Lena Olson, Mike
Ryan, Erik Rubow, Kevin Springborn, Paul Turner, Valas Valancius, Xi Wang, and Amin
Vahdat. Snap: a microkernel approach to host networking. In In ACM SIGOPS 27th
Symposium on Operating Systems Principles (SOSP ’19), Huntsville, Ontario, Canada,
2019. Association for Computing Machinery.

[64] Hasan Al Maruf and Mosharaf Chowdhury. Effectively prefetching remote memory with
Leap. In 2020 USENIX Annual Technical Conference (ATC ’20), pages 843–857. USENIX
Association, July 2020.

[65] Memcached. Memcached: a Distributed Memory Object Caching System. http://www.
memcached.org/, March 2024.

[66] Micron. Micron’s perspective on impact of CXL on DRAM bit growth rate.
https://www.micron.com/content/dam/micron/global/public/products/white-paper/cxl-
impact-dram-bit-growth-white-paper.pdf, August 2023.

93

http://www.memcached.org/
http://www.memcached.org/

[67] Christopher Mitchell, Yifeng Geng, and Jinyang Li. Using one-sided RDMA reads to
build a fast, CPU-efficient key-value store. In 2013 USENIX Annual Technical Conference
(ATC ’13), pages 103–114, San Jose, CA, June 2013. USENIX Association.

[68] Christopher Mitchell, Kate Montgomery, Lamont Nelson, Siddhartha Sen, and Jinyang Li.
Balancing CPU and network in the Cell distributed B-Tree store. In 2016 USENIX Annual
Technical Conference (ATC ’16), pages 451–464, Denver, CO, June 2016. USENIX
Association.

[69] Sumit Kumar Monga, Sanidhya Kashyap, and Changwoo Min. Birds of a feather flock
together: Scaling RDMA RPCs with flock. In Proceedings of the ACM SIGOPS 28th
Symposium on Operating Systems Principles, (SOSP ’21), page 212–227, Virtual Event,
Germany, October 2021. Association for Computing Machinery.

[70] Athicha Muthitacharoen, Robert Morris, Thomer M. Gil, and Benjie Chen. Ivy: A
Read/Write Peer-to-Peer file system. In 5th Symposium on Operating Systems Design
and Implementation (OSDI ’02), pages 911–929, Boston, MA, December 2002. USENIX
Association.

[71] Mihir Nanavati, Jake Wires, and Andrew Warfield. Decibel: Isolation and sharing in
disaggregated rack-scale storage. In 14th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 17), pages 17–33, Boston, MA, March 2017. USENIX
Association.

[72] Rolf Neugebauer, Gianni Antichi, José Fernando Zazo, Yury Audzevich, Sergio López-
Buedo, and Andrew W. Moore. Understanding PCIe performance for end host networking.
In Proceedings of the 2018 Conference of the ACM Special Interest Group on Data
Communication, (SIGCOMM ’18), page 327–341, Budapest, Hungary, August 2018.
Association for Computing Machinery.

[73] Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc Kwiatkowski, Herman Lee, Harry C.
Li, Ryan McElroy, Mike Paleczny, Daniel Peek, Paul Saab, David Stafford, Tony Tung,
and Venkateshwaran Venkataramani. Scaling memcache at facebook. In 10th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 13), pages 385–398,
Lombard, IL, April 2013. USENIX Association.

[74] Stanko Novakovic, Yizhou Shan, Aasheesh Kolli, Michael Cui, Yiying Zhang, Haggai
Eran, Boris Pismenny, Liran Liss, Michael Wei, Dan Tsafrir, and Marcos Aguilera. Storm:
A fast transactional dataplane for remote data structures. In Proceedings of the 12th ACM
International Conference on Systems and Storage, (SYSTOR ’19), page 97–108, Haifa,
Israel, June 2019. Association for Computing Machinery.

[75] Rasmus Pagh and Flemming Friche Rodler. Cuckoo hashing. Journal of Algorithms,
51(2):122–144, April 2004.

[76] Pensando. Pensando infrastructure accelerators, 2020.

94

[77] Phitchaya Mangpo Phothilimthana, Ming Liu, Antoine Kaufmann, Simon Peter, Rastislav
Bodik, and Thomas Anderson. Floem: A programming system for NIC-Accelerated
network applications. In 13th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 18), pages 663–679, Carlsbad, CA, October 2018. USENIX
Association.

[78] Dan R. K. Ports and Jacob Nelson. When should the network be the computer? In
Proceedings of the Workshop on Hot Topics in Operating Systems, (HotOS ’19), page
209–215, Bertinoro, Italy, May 2019. Association for Computing Machinery.

[79] Andrew Putnam, Adrian Caulfield, Eric Chung, Derek Chiou, Kypros Constantinides, John
Demme, Hadi Esmaeilzadeh, Jeremy Fowers, Jan Gray, Michael Haselman, Scott Hauck,
Stephen Heil, Amir Hormati, Joo-Young Kim, Sitaram Lanka, Eric Peterson, Aaron
Smith, Jason Thong, Phillip Yi Xiao, Doug Burger, Jim Larus, Gopi Prashanth Gopal,
and Simon Pope. A reconfigurable fabric for accelerating large-scale datacenter services.
In Proceeding of the 41st Annual International Symposium on Computer Architecuture
(ISCA ’14), pages 13–24. IEEE Press, June 2014.

[80] Benjamin Rothenberger, Konstantin Taranov, Adrian Perrig, and Torsten Hoefler. ReD-
MArk: Bypassing RDMA security mechanisms. In 30th USENIX Security Symposium
(USENIX Security 21), pages 4277–4292. USENIX Association, August 2021.

[81] Zhenyuan Ruan, Malte Schwarzkopf, Marcos K. Aguilera, and Adam Belay. AIFM:
High-performance, application-integrated far memory. In 14th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 20), pages 315–332. USENIX
Association, November 2020.

[82] Amedeo Sapio, Marco Canini, Chen-Yu Ho, Jacob Nelson, Panos Kalnis, Changhoon
Kim, Arvind Krishnamurthy, Masoud Moshref, Dan Ports, and Peter Richtarik. Scaling
distributed machine learning with In-Network aggregation. In 18th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 21), pages 785–808. USENIX
Association, April 2021.

[83] Richard Schaller. Moore’s law: past, present and future. IEEE Spectrum, 34(6):52–59,
1997.

[84] Yizhou Shan, Yutong Huang, Yilun Chen, and Yiying Zhang. LegoOS: A disseminated,
distributed OS for hardware resource disaggregation. In 13th USENIX Symposium on
Operating Systems Design and Implementation (OSDI ’18), pages 69–87, Carlsbad, CA,
October 2018. USENIX Association.

[85] Yizhou Shan, Will Lin, Ryan Kosta, Arvind Krishnamurthy, and Yiying Zhang. Disag-
gregating and consolidating network functionalities. https://arxiv.org/abs/2109.07744,
September 2021.

[86] Jiacheng Shen, Pengfei Zuo, Xuchuan Luo, Yuxin Su, Jiazhen Gu, Hao Feng, Yang-
fan Zhou, and Michael R. Lyu. Ditto: An elastic and adaptive memory-disaggregated

95

caching system. In Proceedings of the 29th Symposium on Operating Systems Principles,
(SOSP ’23), page 675–691, Koblenz, Germany, October 2023. Association for Computing
Machinery.

[87] Jiacheng Shen, Pengfei Zuo, Xuchuan Luo, Tianyi Yang, Yuxin Su, Yangfan Zhou, and
Michael R. Lyu. FUSEE: A fully Memory-Disaggregated Key-Value store. In 21st
USENIX Conference on File and Storage Technologies (FAST 23), pages 81–98, Santa
Clara, CA, February 2023. USENIX Association.

[88] Arjun Singhvi, Aditya Akella, Dan Gibson, Thomas F. Wenisch, Monica Wong-Chan, Sean
Clark, Milo M. K. Martin, Moray McLaren, Prashant Chandra, Rob Cauble, Hassan M. G.
Wassel, Behnam Montazeri, Simon L. Sabato, Joel Scherpelz, and Amin Vahdat. 1RMA:
Re-envisioning remote memory access for multi-tenant datacenters. In Proceedings of the
Annual Conference of the ACM Special Interest Group on Data Communication on the
Applications, Technologies, Architectures, and Protocols for Computer Communication,
(SIGCOMM ’20), page 708–721, Virtual Event, USA, 2020. Association for Computing
Machinery.

[89] Yan Sun, Yifan Yuan, Zeduo Yu, Reese Kuper, Chihun Song, Jinghan Huang, Houxiang Ji,
Siddharth Agarwal, Jiaqi Lou, Ipoom Jeong, Ren Wang, Jung Ho Ahn, Tianyin Xu, and
Nam Sung Kim. Demystifying CXL memory with genuine cxl-ready systems and devices.
In 56th Annual IEEE/ACM International Symposium on Microarchitecture, MICRO ’23.
ACM, October 2023.

[90] Brian R. Tauro, Brian Suchy, Simone Campanoni, Peter Dinda, and Kyle C. Hale.
TrackFM: Far-out compiler support for a far memory world. In Proceedings of the
29th ACM International Conference on Architectural Support for Programming Lan-
guages and Operating Systems, Volume 1, (ASPLOS ’24), page 401–419, La Jolla, CA,
USA,, April 2024. Association for Computing Machinery.

[91] Shin-Yeh Tsai, Yizhou Shan, and Yiying Zhang. Disaggregating persistent memory and
controlling them remotely: An exploration of passive disaggregated key-value stores. In
(ATC ’20), pages 33–48, July 2020.

[92] Shin-Yeh Tsai and Yiying Zhang. LITE kernel RDMA support for datacenter applications.
In Proceedings of the 26th Symposium on Operating Systems Principles (SOSP ’17), page
306–324, Shanghai, China, October 2017. Association for Computing Machinery.

[93] Qing Wang, Youyou Lu, and Jiwu Shu. Sherman: A write-optimized distributed B+Tree
index on disaggregated memory. In Proceedings of the 2022 International Conference
on Management of Data (SIGMOD ’ 22), page 1033–1048, Philadelphia, PA, June 2022.
Association for Computing Machinery.

[94] Xizheng Wang, Guo Chen, Xijin Yin, Huichen Dai, Bojie Li, Binzhang Fu, and Kun
Tan. StaR: Breaking the scalability limit for RDMA. In Proceedings of the 29th IEEE
International Conference on Network Protocols (ICNP ’21), November 2021.

96

[95] Jiarong Xing, Kuo-Feng Hsu, Yiming Qiu, Ziyang Yang, Hongyi Liu, and Ang Chen.
Bedrock: Programmable network support for secure RDMA systems. In 31st USENIX
Security Symposium (USENIX Security 22), pages 2585–2600, Boston, MA, August 2022.
USENIX Association.

[96] Jian Yang, Joseph Izraelevitz, and Steven Swanson. FileMR: Rethinking RDMA network-
ing for scalable persistent memory. In 17th USENIX Symposium on Networked Systems
Design and Implementation (NSDI ’20), pages 111–125, Santa Clara, CA, Feburary 2020.
USENIX Association.

[97] Zhuolong Yu, Yiwen Zhang, Vladimir Braverman, Mosharaf Chowdhury, and Xin Jin.
NetLock: Fast, centralized lock management using programmable switches. In Proceed-
ings of the 2020 ACM SIGCOMM 2020 Conference, (SIGCOMM ’20), page 126–138,
Virtual Event, USA, August 2020. Association for Computing Machinery.

[98] Ming Zhang, Yu Hua, Pengfei Zuo, and Lurong Liu. FORD: Fast one-sided RDMA-based
distributed transactions for disaggregated persistent memory. In 20th USENIX Conference
on File and Storage Technologies (FAST 22), pages 51–68, Santa Clara, CA, February
2022. USENIX Association.

[99] Wei Zhang, Timothy Wood, and Jinho Hwang. NetKV: Scalable, self-managing, load
balancing as a network function. In 2016 IEEE International Conference on Autonomic
Computing (ICAC ’16), pages 5–14, January 2016.

[100] Yang Zhou, Hassan M. G. Wassel, Sihang Liu, Jiaqi Gao, James Mickens, Minlan Yu,
Chris Kennelly, Paul Turner, David E. Culler, Henry M. Levy, and Amin Vahdat. Carbink:
Fault-Tolerant far memory. In 16th USENIX Symposium on Operating Systems Design and
Implementation (OSDI ’22), pages 55–71, Carlsbad, CA, July 2022. USENIX Association.

[101] Yibo Zhu, Haggai Eran, Daniel Firestone, Chuanxiong Guo, Marina Lipshteyn, Yehonatan
Liron, Jitendra Padhye, Shachar Raindel, Mohamad Haj Yahia, and Ming Zhang. Con-
gestion control for large-scale RDMA deployments. SIGCOMM Comput. Commun. Rev.,
45(4):523–536, August 2015.

[102] Pengfei Zuo, Jiazhao Sun, Liu Yang, Shuangwu Zhang, and Yu Hua. One-sided RDMA-
Conscious extendible hashing for disaggregated memory. In 2021 USENIX Annual
Technical Conference (ATC ’21), pages 15–29. USENIX Association, July 2021.

97

	Dissertation Approval Page
	Dedication
	Epigraph
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Vita
	Abstract of the Dissertation
	Introduction
	Background
	Disaggregation
	RDMA
	RDMA Connections
	RDMA Verbs on Mellanox NICs
	RDMA Limitations

	Programable Networks
	Disaggregated Systems and Data Structures
	Sparse vs Dense Data Structures
	Hash Tables
	Locks vs Optimistic Concurrency

	Swordbox: Accelerated Sharing of Disaggregated Memory
	Serialization
	Switch-Enforced Ordering
	Atomic RDMA Operations
	Implications

	SwordBox's Design
	Connection Multiplexing
	State Caching
	Atomic Replacement
	Applying SwordBox to Disaggregated Memory
	Failure Handling

	Implementation
	Connection Steering
	Connection Multiplexing

	Evaluation
	Testbed
	Atomic Replacement
	Steering in Clover

	The Cost of Programmable Switches
	Acknowledgement to SwordBox Contributors

	Disaggregated Data Structure Design
	A Case for Fully Disaggregated Cuckoo Hashing
	Design
	Datastructures
	Operations
	Locality
	Locking

	Fault Tolerance
	Failure detection
	Repair Leases
	Table repair
	Preventing Stale Writes

	Evaluation
	Testbed
	Performance
	Fault Tolerance Performance
	Microbenchmarks

	The Advantage of Locality
	Acknowledgement to RCuckoo Contributors

	Conclusion
	Contributions
	Future Work

	Bibliography

