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Abstract

Linear Stability of a Wake Vortex and its Transient Growth:
Numerical Analysis in Light of Critical-Layer Eigenmodes and Spectra

by

Sangjoon Lee

Doctor of Philosophy in Engineering - Mechanical Engineering

and the Designated Emphasis in

Computational and Data Science and Engineering

University of California, Berkeley

Professor Philip S. Marcus, Chair

The early-time growth of an individual vortex in a wake vortex pair is explored, focusing on
its linear stability and transient growth, which are meaningful for understanding the lifespan
of vortices and mitigating hazards from wake turbulence. This study synthesises two parts:
linear stability analysis and transient growth analysis. The linear stability of wake vor-
tices is examined in both inviscid and viscous contexts, using the Batchelor or Lamb-Oseen
vortex as a base vortex model. Linear stability analysis determines the growth rates of in-
finitesimal perturbations in the vortex flow by linearising the incompressible Navier-Stokes
or Euler equations around the base vortex, leading to an eigenvalue problem that discloses
the vortex’s stability properties. Inviscid analysis, with zero viscosity, successfully reveals
a continuous spectrum associated with critical-layer singularities, causing discontinuity in
perturbation velocity in the inviscid limit and requiring careful numerical parameter tun-
ing to avoid under-resolved, or so-called spurious, solutions. Non-zero viscosity alters both
the discrete and continuous spectra, necessitating numerical resolution conforming to the
Reynolds number to the one-third power scaling law to resolve the newly discovered viscous
critical-layer eigenmode family. The transient growth phenomenon is then explored through
non-modal analysis to understand how initial perturbations, as combinations of numerous
eigenmodes, can experience significant transient growth even in linearly stable vortices. The
transient growth formalism is applied to the linearised Navier-Stokes equations. Optimal
perturbations that maximise energy amplification over finite time intervals are found, to
which the viscous critical-layer eigenmode family serves as the main contributor. Numeri-
cal simulations quantify the growth of perturbations considering nonlinearity, showing that
while nonlinearity may slightly alter transient dynamics, overall trends align with formalism
predictions. Lastly, motivated by contrails around wake vortices, the research investigates
particle-initiated transient growth, where perturbations evolve through particle-vortex inter-
actions. Two-way coupled particle-vortex simulations demonstrate continual perturbation
development, presenting primary growth patterns as captured in the transient growth for-
malism. This investigation implies the practicability of the transient growth phenomenon.
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Chapter 1

Introduction

1.1 Overview of wake vortices

With the progressive growth of commercial air traffic over the past decades, it has become
increasingly common to spot and track fixed-wing aircraft flying in the sky. According to the
Federal Aviation Administration (FAA), there were over 5,400 flights en route every minute
during peak operational times on one day in 2023 in United States airspace (Matsunaga,
2024). As the statistics only took into account flights under instrumental flight rules (IFR),
the actual number of flights, considering those under visual flight rules (VFR), should be
higher. In the vicinity of busy airports on a clear day, it is not difficult to detect multiple
airplanes flying through different routes at the same time, often leaving long visible traces
along their pathways.

Among general aviation aircraft, the vast majority are classified as fixed-wing, and their
long traces are necessary by-products of the lift force generated by the wings to counter-
balance the aircraft’s weight. Under typical flight conditions with high flow speeds, inertial
effects generally dominate over viscous effects. Accordingly, if we put aside boundary layer
effects, it can be said that wing lift is attributed to the circulation added to the potential
flow region around the wing, which causes a pressure difference between the two sides of the
wing that results in an upward net force. This wing-bound circulation must be shed down-
stream at every wing section according to Helmholtz’s theorems, leading to a thin vortex
sheet across the two ends of the wing (i.e., wingtips). The vortex sheet typically undergoes
a roll-up process, where the vorticity concentrates into two discrete counter-rotating wake
vortices in the extended downstream. Ultimately, this pair of wake vortices is the true nature
of the long trace behind aircraft, extending far away from the originating aircraft.

The visibility of wake vortices, however, is not intrinsic. The disturbing motion caused
by wake vortices is fundamentally invisible but we can observe its visible trace due to sur-
rounding ice crystals from water vapor condensation around the vortices. The water vapor
in the air and the aircraft jet exhaust condenses into ice crystals under proper temperature
and humidity conditions, with ambient or jet exhaust soot particles aiding nucleation (see
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Figure 1.1: Early-stage wake vortices behind cruising aircraft (see left) represented by a pair of long straight-
line vortices. The structures are visible far downstream due to surrounding ice crystals from nearby water
vapor condensation, also known as contrails. The scale bar in this photo is solely to offer a general sense of
the wake vortices’ length scale and is not based on precise quantification.

Kärcher, 2018). A considerable portion of these ice crystals may interact with the wake vor-
tices and rotate around them. As a result, as far as these condensation trails (or contrails)
are discernible, we can indirectly recognise the wake vortex structures (see figure 1.1). As
one might already be aware, the important lesson behind here is that the actual streamwise
span of wake vortices can remain much longer than the visible part. As a matter of fact,
wake vortices are strongly persistent beyond their visible region, which can cause several
practical problems in aircraft traffic control and airport runway operation, referred to as the
wake vortex hazard (see Matalanis, 2007; Breitsamter, 2011).

Nonetheless, under certain atmospheric conditions where contrails do not quickly van-
ish, the later stages of wake vortices, after they lose their original straight-line shapes, can
be observed. In figure 1.2, a structural change of two counter-rotating vortices through si-
nusoidal perturbation growth into a series of vortex rings is shown. This is one possible
case representing the later wake vortex development undergoing destabilisation excited by
surrounding factors, such as atmospheric turbulence. This instability mechanism was first
identified by Crow (1970), who analyzed long-wavelength linear instabilities of the inviscid
counter-rotating line vortex pair system. Subsequent researchers named this phenomenon
the Crow instability. Crow (1970) described the “long” wavelength scale of excitatory per-
turbations in comparison to the separation distance between the vortex lines. Later, Moore
and Saffman (1975) and Tsai and Widnall (1976) described “short” wavelength linear insta-
bilities where the wavelength scale is comparable to the vortex core size. In this context,
an individual vortex filament of non-zero (i.e., non-singular) core radius is considered, while
the influence of the other vortex is interpreted as an external elliptic strain field. Long-
wavelength and short-wavelength instabilities may occur simultaneously (see Leweke et al.,
2016), although the latter is not easily captured in real trailing vortices due to their existence
at high altitude, as exemplified in figure 1.2.

In other cases, the wake vortex pair does not show clear signs of destabilisation and
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Figure 1.2: Representative example of wake vortex destabilisation caused by the long-wavelength instability
mechanism found by Crow (1970) under the inviscid counter-rotating line vortex pair configuration, which
forms a series of vortex rings (see right) as a result of perturbation growth. The scale bar in this photo is
solely to offer a general sense of the wake vortices’ length scale and is not based on precise quantification.

Figure 1.3: (Top) young persistent contrails under proper temperature and humidity atmospheric conditions.
These aircraft-induced clouds, forming two parallel lines along the interacting wake vortices with no clear
indication of destabilisation, remained visible for a long while, gradually diffusing to (bottom) spreading
contrails with extended sky coverage. The scale bar in this photo is solely to offer a general sense of the
wake vortices’ length scale and is not based on precise quantification.
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gradually spreads through viscous diffusion. An illustrative case is given in figure 1.3. This
natural decay process is relatively slow but inevitable, as viscosity dissipates energy over
time. The enlarged vortices exhibit slower velocities, thus posing reduced risks. However, for
those who are interested in reducing the wake vortex hazard, relying upon viscous spreading
would be impractical due to its excessively slow pace. Despite the fundamental question
regarding the validity of assuming a steady base vortex when it comes to non-zero viscosity
(see Mayer & Powell, 1992, pp. 105-106), several previous studies dealing with early-time
linear instabilities of wake vortices, even at finite Reynolds numbers, neglected the viscous
diffusion that expands the vortex core over time, yet obtained physically meaningful results
for linear instabilities (e.g., Lessen et al., 1974; Fabre & Jacquin, 2004; Lacaze et al., 2007).
This implies the marginal role of viscous diffusion in early-time vortex growth; nevertheless,
one should not underestimate the importance of viscosity itself in vortex studies, as it is
necessary to address singularities that are physically impossible to interpret, potentially
disclosing new flow characteristics concealed in the inviscid limit.

For wake vortex alleviation, several strategies have been considered, including the exci-
tation of vortex destabilisation. Some proposed passive means utilising time-independent
wing modifications, while others suggested active means relying on time-dependent forcing
actions (see Matalanis, 2007, pp. 7-17). On the other hand, Breitsamter (2011), by revisiting
Gerz et al. (2002), described another categorisation based on essential design objectives. In
one category, the objective is a low vorticity vortex (LVV) design, aiming to generate more
dispersed vorticity over space right after roll-up. In the other category, a quickly decaying
vortex (QDV) is primarily desired. Under this categorisation, the destabilisation approach
aligns more closely with the latter as it attempts to understand and apply the most suscep-
tible form of perturbation to invoke instabilities.

The stability or longevity of wake vortices (or any generic columnar vortices with or
without axial momentum) has been a fascinating subject of research for a long time, gar-
nering increasing attention since the late 20th century in the context of alleviating aircraft
wake vortices (e.g., Dunham, 1977). Despite extensive research, this subject still holds many
interesting riddles, both fundamentally and practically. There are numerous in-depth pub-
lished studies worth exploring, which will be referenced throughout the main body of this
study. The current research is built upon the foundation of their discoveries. For readers
particularly interested in a more extensive overview of wake vortices, the review papers by
Spalart (1998) and Widnall (1975) are recommended. Additionally, the relatively recent
work by Hallock and Holzäpfel (2018) is suggested for those who view wake vortex problems
from a slightly more practical perspective of air traffic issues.

1.2 Scope of research

We tackle the following questions. The persistence of wake vortices observable in the real
world naturally raises the following fundamental questions:

• Why can wake vortices last so long?
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• Under what conditions can wake vortices be destabilised?

These are questions worth considering, not only mathematically intriguing but also physically
expandable, as the longevity of vortices is a general phenomenon occurring at various scales,
from hurricanes on a meteorological scale to Jupiter’s Great Red Spot on an extraterrestrial
planetary scale. On the other hand, there is an additional question worth addressing from a
practical point of view:

• By what means can we initiate (or control) the destabilisation of wake vortices?

This question aligns with the consideration of effective surrounding factors, devices, or strate-
gies to promote rapid wake vortex destabilisation.

The primary inspiration for the current research comes from the fundamental aspects
of vortex stability. Among the many theoretical configurations historically chosen for ana-
lyzing wake vortices, including single line vortices, vortex pairs, and multiple vortex pairs,
we focus on the instabilities of a single vortex with different initial perturbations to explore
the early-time growth of an individual vortex in a pair of wake vortices. Revisiting several
previous findings, we search for an important but missing piece of information and attempt
to unearth it. Specifically, what the current research aims to overcome are the limitations
in computational approaches when it comes to dealing with singularities. Handling mathe-
matical singularities via regularisation, usually referred to as critical layers in the context of
this study, will be a recurrently emphasised concept over the study in efforts to distinguish
physically meaningful outcomes from computational artifacts.

In the first part of the study (Part I), we go through a spectral method using associ-
ated Legendre functions with algebraic mapping for linear stability analysis of wake vortices.
We then see that the developed computational approach successfully resolves critical-layer
eigenmodes associated with the continuous spectrum in the inviscid limit, minimising false
solutions that fail to properly resolve the singularities and potentially lead to incorrect conclu-
sions on vortex instabilities. With viscosity, the analysis reveals newly discovered continuous
curves in the spectra, termed the viscous critical-layer spectrum, which previous numerical
studies might have been unable to spot within the larger continuum of the spectra.

In the second part of the study (Part II), we pay attention to the transient dynamics of
a wake vortex. We confirm that the primary contribution to initial perturbations leading
to optimal transient growth comes from the viscous critical-layer eigenmodes. The results
obtained from the linearised analyses considered so far are validated in nonlinear simulations
where perturbation energy is no longer restricted to a specific set of axial and azimuthal
wavenumbers. Also, we investigate the initiation process of transient growth, considering
the influence of weakly inertial particles on vortex dynamics. This exploration may reflect
the interaction of contrails with wake vortices in real-world scenarios. Two-way coupled
vortex-particle simulations are conducted, demonstrating the possibility of particle-initiated
transient growth despite the system’s linearly stable nature.

It is noted that this doctoral dissertation is essentially composed in a compilation style,
meaning that the two parts (Parts I and II) presented hereafter may be considered as separate
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works. Readers may choose to refer to each part individually based on their specific needs.
Nonetheless, these parts are closely interrelated and they may be read as a sequential series.
For readers who decide to explore the entire study from beginning to end like a monograph
style, this work will provide comprehensive information on early-time wake vortex growth,
equipped with appropriate computational analyses and approaches.
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Part I

Linear Stability Analysis
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Chapter 2

Linear stability of a wake vortex

Nota bene
The majority of this part of study has been previously published as an open-access article in
the Journal of Fluid Mechanics (see S. Lee & Marcus, 2023). It is primarily remarked that
this previously published material is incorporated into this dissertation with reformatting in
order to contribute to the larger, overarching theme: the early-time growth of a wake vortex.

2.1 Background

After the introduction of heavy commercial aircraft in the late 1960s, wake vortex motion has
been a major subject of flow research, which has been reviewed in several studies (Widnall,
1975; Spalart, 1998; Breitsamter, 2011). The focus has often been on the destabilisation
of wake vortices to alleviate wake hazards (see Hallock & Holzäpfel, 2018). The demise of
wake vortices typically starts with vortex distortion, which causes either long-wavelength
instability, well known as the Crow instability (Crow, 1970; Crow & Bate, 1976), or short-
wavelength instability, known as the elliptical instability (Moore & Saffman, 1975; Tsai &
Widnall, 1976). Both mechanisms are affected by vortex perturbation induced by the strain
from the other vortex. The internal deformation of vortex cores, often interpreted as a
combination of linear perturbation modes, plays a key role in the unstable vortex evolution
process (Leweke et al., 2016).

Since Lord Kelvin (1880) studied the linear perturbation modes of an isolated vortex
using the Rankine vortex, analyses have been extended to other models that better describe
a realistic vortex and account for viscosity with continual vorticity in space. The Lamb-
Oseen vortex model can be considered as an exact solution to the Navier-Stokes equations,
while assuming no axial current in vortex motion. Batchelor (1964), however, claimed the
necessity of significant axial currents near and inside the vortex core for wake vortices and
deduced vortex solutions with axial flows that are asymptotically accurate in the far field.
The intermediate region between the vortex roll-up and the far field may be better described
by the model proposed by Moore and Saffman (1973), where Feys and Maslowe (2014)
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performed a linear stability study. However, the Batchelor model has frequently been taken
as a base flow for linear instability studies (Mayer & Powell, 1992; Fabre & Jacquin, 2004;
Le Dizès & Lacaze, 2005; Heaton, 2007a; Qiu et al., 2021), with the support of experimental
observations (Leibovich, 1978; Maxworthy et al., 1985). As for the Lamb-Oseen vortex, an
exhaustive study on its linear perturbation was performed by Fabre et al. (2006). Bölle et al.
(2021) conducted comprehensive linear analyses of all these vortex models and concluded
that linear vortex dynamics is insensitive to changes in the base flow for singular modes.

In the numerical literature, a study by Lessen et al. (1974) used a shooting method to
find eigensolutions of swirling flows, where the eigenmode represents the spatial profile of
the linear perturbation, and the eigenvalue corresponds to its complex growth rate in time.
Mayer and Powell (1992), on the other hand, utilised a spectral collocation method with
Chebyshev polynomials to generate a global matrix eigenvalue problem in the generalised
form (Ax = λBx). Although a shooting method may be accurate and less likely to yield
spurious modes due to numerical discretisation (Boyd, 2001, pp. 139-142), a spectral collo-
cation method should be preferred, especially when there is no initial guess, and the overall
comprehension of the whole eigenmodes and eigenvalues is required. Heaton (2007a, pp. 335-
339) compared these two numerical methods while investigating the asymptotic behaviour
of inviscid unstable modes due to the presence of a core axial flow. Several recent studies
(Fabre et al., 2006; Mao & Sherwin, 2011) reported the use of spectral collocation meth-
ods to obtain a bulk of the eigensolutions at once to investigate and classify their common
properties.

Given no viscosity (ν ≡ 0), there are regular eigenmodes (Kelvin modes) in association
with discretely distributed eigenvalues, and non-regular eigenmodes with critical layer sin-
gularities (critical-layer eigenmodes), which occur at radial locations where the perturbation
phase velocity is equal to the advection of the base flow (Ash & Khorrami, 1995; Drazin &
Reid, 2004), or equivalently, where the coefficients of the highest derivatives of the governing
equations go to zero (Marcus et al., 2015). The critical-layer eigenmodes arise from the non-
normality of the governing equations (i.e., non-commutativity with the Hermitian adjoint)
and are associated with continuously distributed eigenvalues in the complex plane, which
are known to be significant in transient growth (Mao & Sherwin, 2011; Mao & Sherwin,
2012; Bölle et al., 2021). Throughout this part, we refer to the region where critical-layer
eigenvalues exist as a non-normal region. Note that this is in line with the quantitative
definition of non-normality using the resolvent formalism by Bölle et al. (2021), who referred
to non-normality as the region where the resolvent norm of the operator representing the
governing equations does not meet its lower bound. The inviscid critical-layer eigenvalues
are distributed on the imaginary axis, exhibiting their neutral stability pertaining to the
time symmetry in the problem (see Gallay & Smets, 2020).

However, adding even a small amount of viscosity (ν → 0+) breaks this symmetry and
leads to the viscous damping of eigenmodes in time (Khorrami, 1991). Spatially, non-zero
viscosity regularises the critical-layer singularities but simultaneously triggers new singulari-
ties at radial infinity as a result of the total spatial order increase of the governing equations
(see Fabre et al., 2006, p. 268). The impact of viscosity on the formation of viscous eigen-
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modes is an active research area, especially in the non-normal region. As viscosity is close to
zero, the discrete spectrum becomes less prevalent in the complex plane while the non-normal
region expands (see Bölle et al., 2021, p. 11).

2.2 Research goals

Our primary goal is to develop an efficient numerical method for linear stability analysis of
a wake vortex using eigenmode-eigenvalue theory (or spectral theory). We carefully investi-
gate the mathematical foundation of the method to ensure accurate and correct resolving of
eigenmodes and eigenvalues. We then apply our numerical method to linear stability analysis
of the Lamb-Oseen or Batchelor vortex model to classify eigenmodes in terms of physical
relevance, which is an additional goal for the rest of this part. Our work demonstrates the
numerical efficiency of our method, which is essential as we plan to extend the application
of the method to handle hundreds of eigenmodes for the examination of triad-resonant in-
teractions among the eigenmodes in a follow-up paper, and encompasses the linear stability
analyses under either inviscid or viscous conditions.

Our numerical work is based on a spectral collocation method. It follows the typical global
eigenvalue problem-solving procedure like that of Boyd (2001, pp. 127-133) and Fabre et al.
(2006, p. 241). However, our method is distinguished because of its use of algebraically
mapped associated Legendre functions as Galerkin basis functions, which were introduced
by Matsushima and Marcus (1997) and utilised in several vortex stability studies (Bristol
et al., 2004; Feys & Maslowe, 2016). These functions are defined as

Pm
Ln
(r) ≡ Pm

n (ζ(r, L)) = Pm
n

(
r2 − L2

r2 + L2

)
(L > 0), (2.2.1)

where Pm
n is the associated Legendre function with order m and degree n (see Press et al.,

2007, pp. 292-295), ζ is a variable in the interval −1 ≤ ζ < 1 to which the radial coordinate r
is mapped by the map parameter L. Note that

{
Pm
Ln
(r)
∣∣ n = |m|, |m|+ 1, · · ·

}
is a complete

Galerkin basis set, and a regular function approximated by their truncated sum converges
exponentially with respect to the truncated degree nmax.

Radial domain truncation is not required in our numerical method as it is designed for an
unbounded radial domain. Other methods that require a radially bounded domain typically
use a large truncation point to mimic unboundedness and impose arbitrary boundary con-
ditions (Khorrami, 1991; Mayer & Powell, 1992; Mao & Sherwin, 2011; Bölle et al., 2021).
Moreover, our use of Galerkin basis functions eliminates the need for such explicit boundary
conditions, reducing numerical error and eliminating further treatments for boundary con-
ditions (see Zebib, 1987; McFadden et al., 1990; Hagan & Priede, 2013). The distribution
of numerical eigenvalues (numerical spectra) is necessarily discrete due to numerical dis-
cretisation, even if the analytic spectra are partially continuous. To deal with this seeming
paradox, we investigate how the numerical spectra change with respect to the numerical
parameters, including the map parameter L, the number of radial basis elements M , and
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the number of radial collocation points N . To complement the numerical spectra’s inability
to portray analytically continuous regions, we also briefly consider pseudospectral analysis
(see Trefethen & Embree, 2005).

We are particularly focused on eigenmodes with a critical layer that has received little
attention in previous numerical studies due to the difficulty of resolving them. Under the
inviscid condition, the critical layers are mathematical point singularities. The critical-layer
eigenmodes are associated with a continuous spectrum on the imaginary axis in the non-
normal region. However, numerical discretisation often produces incorrect eigenvalues that
appear as symmetric pairs around the imaginary axis (see Mayer & Powell, 1992). We show
that our spectral collocation method can correct these results by properly adjusting the
numerical parameters to reveal the inviscid critical-layer spectrum. With non-zero viscosity,
there are areal spectra that emerge in the non-normal region (see Mao & Sherwin, 2011).
These spectra have yet to be fully explained and may contain an unforeseen continuous
spectrum. We demonstrate that our method is capable of resolving the eigenmodes associated
with this unexplored spectrum, which results from the regularisation of critical layers, from
the other eigenmodes in the non-normal region.

2.3 Preliminary remarks

To classify our numerically computed eigenmodes and eigenvalues, we frequently use the
following terms in the rest of the paper. Note that some of our definitions may deviate from
those used by other authors.

1. By “physical,” we mean that a “spatially resolved” eigenmode (as defined below) is a
non-singular solution to the linearised governing equations in an unbounded domain
when computed with non-zero viscosity. An eigenmode computed with zero viscosity
(i.e., with ν ≡ 0) is not the target of consideration but may have physical significance
if the eigenmode and eigenvalue correspond clearly to a “physical” eigenmode and
eigenvalue computed with small but finite viscosity (i.e., in the limit of ν → 0+).
This condition is important because we are ultimately concerned with eigenmodes
that can exist in the real world, such as those that would destabilise an aircraft wake
vortex. Viscous eigenmodes are generally non-singular because viscosity can regularise
them; numerically computed inviscid eigenmodes that would otherwise be singular are
regularised by numerical discretisation. Our numerical method aims to resolve small-
scale radial structures (e.g., the viscous remnants of inviscid critical layer singularities)
purely resulting from physical (not numerical) regularisation, and we are interested in
identifying such “physical” eigenmodes.

2. By “non-physical,” we mean that a “spatially resolved” eigenmode does not meet the
conditions described above for being considered “physical.” Any numerically computed
eigenmode must first be “spatially resolved” to be considered “physical.” In addition,
the eigenmode must satisfy the following requirements. First, if the eigenmode is
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numerically computed in a truncated computational domain with a finite but large
radius r∞, there must be no bound at r = r∞ to ensure unboundedness. Second,
the eigenmode’s velocity and vorticity must approach zero at radial infinity, as we are
interested in eigenmodes that develop in finite time from a wake vortex with vorticity
localised in radius and not extending to infinity. Accordingly, eigenmodes that other
authors have classified as part of the freestream family (Mao & Sherwin, 2011) are not
in the scope of this part.

3. By “spatially resolved,” we mean that the numerically computed eigenmode contains
at least two collocation points in its smallest spatial structure (i.e., the radial width
of the smallest wiggle). Additionally, the computed eigenvalue must either agree with
its known value or converge to a fixed point. For an eigenvalue that belongs to the
discrete spectrum, its eigenvalue must approach a fixed point as the number of ra-
dial basis elements M increases, and its corresponding eigenmode must converge to
a fixed functional form. However, when dealing with an eigenvalue that belongs to
the analytically continuous spectrum (where the spectrum lies along a curve, e.g.,
critical-layer spectrum; or where the spectrum fills an area in the complex plane, e.g.,
potential spectrum), there is ambiguity in numerically identifying a fixed point. This
is because a finite matrix has only discrete eigenmodes. As M increases, the num-
ber of computed eigenmodes typically increases, and it is unclear whether a specific
eigenvalue/eigenmode computed with M basis elements will correspond to any eigen-
value/eigenmode computed withM+1 basis elements. This is because the eigenvalues
and eigenvectors of a matrix can be sensitive to the distances between the locations
of the collocation points (which depend on M) and the radial structures of the eigen-
modes. For discrete spectra, this sensitivity generally does not prevent us from tracking
the evolution of as specific eigenvalue/eigenmode as M increases, but for continuous
spectra, it does because eigenvalues are infinitesimally close to their neighbors. There-
fore, in such cases, we determine whether the eigenvalue can be found within the
expected range based on analytic results or reliable literature. In particular, for an
inviscid eigenmode with a critical-layer singularity, its numerical solution will often
suffer from the slow decay of spectral coefficients or the Gibbs phenomenon, especially
around the singularity. Nonetheless, since our interest lies in identifying “physical”
eigenmodes, we do not present a numerical method that exactly handles singularities.
Our objective in analysing inviscid critical-layer eigenmodes is only to resolve their spa-
tial characteristics outside the singularity neighbourhood by using a sufficiently large
value of M .

4. By “spurious,” we mean that a numerically computed eigenmode is not “spatially
resolved,” regardless of the value of M used in the computation. This definition of
“spurious” originates from its historical usage (cf. Mayer & Powell, 1992). We can
confirm that an eigenmode is “non-spurious” by increasingM until it becomes evident
that the eigenmode is “spatially resolved.” However, in practice, we cannot prove that
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an eigenmode is “spurious.” It is always possible that, after increasing M to a large
value and observing no evidence that the solution is approaching a fixed point, we
abandon the increase in M due to computational budget constraints, and the solution
would have converged with a further increase in M . Therefore, if we discuss whether
some viscous eigenmode families are “spurious,” the discussion will be suggestive rather
than definitive.

The remainder of this part of study, from §3 to §8, is structured as follows. In §3,
the governing equations for wake vortex motion are formulated and linearised . In §4, the
spectral collocation method using mapped Legendre functions is presented. In §5, the Lamb-
Oseen and Batchelor vortex eigenmode spectra and pseudospectra are described. In §6, the
eigenmodes and eigenvalues of the inviscid problems are compared to the analytic results. In
§7, the eigenmodes and eigenvalues in consideration of viscosity are presented, including a
new family of eigenmodes in the continuous spectra that evolved from the family of critical-
layer eigenmodes associated with the inviscid continuous spectrum. In §8, our findings are
summarised.
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Chapter 3

Problem formulation

3.1 Governing equations

In this research, we investigate the linear perturbation eigenmodes and eigenvalues of a
swirling flow in an unbounded domain R3. We express the velocity and pressure eigenmodes
in cylindrical coordinates (r, ϕ, z), as

u′ = ũ(r;m,κ)ei(mϕ+κz)+σt, p′ = p̃(r;m,κ)ei(mϕ+κz)+σt, (3.1.1)

where m and κ represent the azimuthal and axial wavenumbers of the eigenmode, respec-
tively, and σ denotes the complex growth (or decay) rate of the eigenmode. Here, m ∈ Z
since the fields must be periodic in ϕ with a period of 2π, while κ ∈ R \ 0 since there are no
restrictions on the axial wavelength 2π/κ. The real part of σ represents the growth/decay
rate, while the imaginary part represents its wave frequency in time. Although Khorrami
et al. (1989) formulated a more general problem, we employ a more specialised form of the
steady, equilibrium, swirling flow U , i.e.,

U(r) = Uϕ(r)êϕ + U z(r)êz, (3.1.2)

which is only r-dependent and has no radial velocity component U r. The unperturbed base
flow profile we consider for a wake vortex model is Batchelor’s similarity solution adapted
by Lessen et al. (1974) with

Uϕ

U0

=
1− e−r2/R2

0

r/R0

,
U z

U0

=
1

q
e−r2/R2

0 , (3.1.3)

where R0 and U0 are the length and velocity scales defined in Lessen et al. (1974, p. 755),
and q ̸= 0 is a dimensionless swirl parameter. This flow is often called the q-vortex, which is
steady, axisymmetric, and analytically tractable as the far-field asymptotic solution under
the viscous light-loading condition (see Saffman, 1993, pp. 257-260). When the axial flow
component vanishes, i.e., 1/q → 0, this flow is equivalent to the Lamb-Oseen vortex. A



3.1. GOVERNING EQUATIONS 16

Figure 3.1: Vortex with circulation Γ of length scale R0 and coordinate systems.

schematic of the geometry is shown in figure 3.1. The unperturbed vortex is oriented along
the z-direction with a circulation over the entire plane Γ ≡ 2πR0U0. R0 is referred to as
the characteristic radius of the vortex. As for the vortex profile, we consider the azimuthal
velocity Uϕ, which is maximised at r = 1.122R0 (Lessen et al., 1974).

To establish governing equations, we assume the fluid has constant density ρ and constant
kinematic viscosity ν. The total velocity u ≡ urêr + uϕêϕ + uzêz obeys

∇ · u = 0, (3.1.4)

∂u

∂t
= − (u ·∇)u− 1

ρ
∇p+ ν∇2u = −∇φ+ u× ω + ν∇2u, (3.1.5)

where the total pressure is p, the vorticity is ω ≡ ∇ × u and the total specific energy is
φ ≡ u2/2+ p/ρ where u2 ≡ u ·u. We non-dimensionalise the equations using R0 as the unit
of length and R0/U0 as the unit of time. After non-dimensionalising and linearising (3.1.4)–
(3.1.5) about the unperturbed flow (indicated with overbars ∗), we obtain the following
equation for the perturbations (indicated with primes ∗′):

∇ · u′ = 0, (3.1.6)

∂u′

∂t
= −∇φ′ +U(r)× ω′ − ω(r)× u′ +

1

Re
∇2u′, (3.1.7)

where the Reynolds number, denoted Re, is defined to be U0R0/ν. Note that the non-
dimensionalised q-vortex is

U (r) =

(
1− e−r2

r

)
êϕ +

(
1

q
e−r2

)
êz. (3.1.8)

The established governing equations are essentially the incompressible, linearised Navier-
Stokes equations, which, in combination with the q-vortex, were also used in recent vortex



3.2. BOUNDARY AND ANALYTICITY CONDITIONS 17

stability analyses, such as Qiu et al. (2021). By putting (3.1.1) to (3.1.6)–(3.1.7), we obtain
the equations that govern the perturbations:

∇mκ · ũ = 0, (3.1.9)

σũ = −∇mκφ̃+U × ω̃ − ω × ũ+
1

Re
∇2

mκũ, (3.1.10)

where σ is a function of m and κ (i.e., it obeys the dispersion relationship), ω̃ ≡ ∇mκ × ũ,
and φ̃ ≡ U · ũ + p̃. In the equations above, the subscript (∗)mκ attached to the operators
means that they act on modes of fixed azimuthal and axial wavenumbersm and κ. Therefore,
the differential operators ∂/∂ϕ and ∂/∂z inside these operators are replaced with the simple
multiplication operators im and iκ, respectively (see Appendix A).

3.2 Boundary and analyticity conditions

We require both the velocity and pressure fields to be analytic at r = 0 and to decay rapidly
to 0 as r → ∞. The conversion of these conditions to numerical boundary conditions can be
found in previous works such as Batchelor and Gill (1962), Mayer and Powell (1992), and
Ash and Khorrami (1995). In this section, we briefly discuss these conditions and how they
will be treated in our method, where functions are treated as a truncated sum of the mapped
Legendre functions.

The analyticity at the origin is equivalent to the pole condition that correctly removes the
coordinate singularity (see Canuto et al., 1988; Matsushima & Marcus, 1995; Lopez et al.,
2002). The pole condition for a scalar function f(r, ϕ, z) to be analytic at r = 0 is that it
asymptotically behaves as a polynomial in r, with the degree dependent on the azimuthal
wavenumber m (see Matsushima & Marcus, 1997, p. 323), that is,

f(r, ϕ, z) =
∞∑

m=−∞

eimϕr|m|

(
∞∑
n=0

Cn(z;m)r2n

)
as r → 0, (3.2.1)

for some set of functions, analytic in z, Cn(z;m). Although the pole condition for veloc-
ity fields in polar or cylindrical coordinates is rather complicated because of the velocity
coupling of r and ϕ at the origin (see Matsushima & Marcus, 1997, pp. 328-330), we use
toroidal and poloidal streamfunctions, given in (3.3.1), instead of the primitive velocity com-
ponents so that the analyticity can be determined by making these streamfunctions obey
the requirements of scalars (see Appendix B).

On the other hand, the rapid decay condition as r → ∞ is relevant to the feasibility
of linear perturbations. Since a perturbation lasting even at radial infinity would require
infinite kinetic energy, decay should be necessary to consider it physical (see our definition
in §2.3). The simplest description is ũ, p̃ → 0 as r → ∞ (Batchelor & Gill, 1962). Several
numerical methods that require the domain truncation at large r mimic this condition by
imposing the homogeneous Dirichlet boundary condition for ũ and p̃ at the outer boundary
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of the radially truncated domain r = r∞. In other words, ũr = ũϕ = ũz = p̃ = 0 at
r = r∞ (see Khorrami et al., 1989; Khorrami, 1991). However, this approach involves two
problems. First, it cannot preclude non-physical eigenmode solutions that do not decay
properly but incidentally end up being zero at r = r∞ (i.e., wall-bounded modes). Such
non-physical solutions may also appear with non-zero viscosity, triggering non-normalisable
singularities at radial infinity, where more information can be found in Fabre et al. (2006,
p. 268) or Mao and Sherwin (2011, pp. 17-21). Second, it does not explicitly take into
account how rapidly the perturbation decays. Considering the velocity field, it must decay
faster than algebraic decay rates of O(r−1) for kinetic energy to be finite as r → ∞ (cf. Bölle
et al., 2021). Mathematically, the restriction is even more strict, requiring exponential or
super-exponential decay rates (Ash & Khorrami, 1995). Our method is free from domain
truncation and explicitly forces solutions to decay harmonically, i.e., O(r−|m|eimϕ) as r → ∞,
due to the decaying nature of the basis functions.

By utilising the current method, it can be ensured that any scalar functions, represented
by the sum of mapped Legendre functions that serve as Galerkin basis functions, comply with
the aforementioned conditions. This is precisely how each basis function behaves as the radial
distance approaches zero and approaches infinity. Therefore, an advantage of employing the
mapped associated Legendre functions is that there is no need for additional treatment for
numerical boundary conditions. For further information regarding the properties of the
mapped Legendre functions, please refer to §4.

3.3 Poloidal-toroidal decomposition

The governing equations (3.1.9) - (3.1.10), along with the correct boundary conditions and
given values ofm and κ, formally constitute a set of four equations that make up a generalised
eigenvalue problem in terms of p̃ (or φ̃) and the three components of ũ ≡ ũrêr+ ũϕêϕ+ ũzêz,
which are often referred to as primitive variables, with σ as the eigenvalue. The formal
expression of the eigenvalue problem can be found in Bölle et al. (2021, p. 7). Some previous
studies have taken additional steps to eliminate p̃ from the momentum equations or even
reduce the problem in terms of, for example, only ũϕ and ũz, resulting in the generalised
eigenvalue problem form Ax = λBx (Mayer & Powell, 1992; Heaton & Peake, 2007; Mao &
Sherwin, 2011). However, such variable reduction inevitably increases the spatial order of the
system and, consequently, requires a higher resolution for computation, which undermines
the advantage of having a smaller number of state variables (Mayer & Powell, 1992). To
avoid this issue, we use a poloidal-toroidal decomposition of the velocity field to formulate
the matrix eigenvalue problem while preserving the spatial order of the governing equations.
Moreover, the use of the poloidal and toroidal streamfunctions is advantageous because the
formulation results in the standard eigenvalue problem of the form Ax = λx.

To begin with, we apply the poloidal-toroidal decomposition to the governing equations
of wake vortices that are linearised about the q-vortex. The basic formulation was performed
by Matsushima and Marcus (1997, p. 339), and we provide more details of its mathematical
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foundation in this section. Although the poloidal-toroidal decomposition of solenoidal vector
fields is mainly discussed in spherical geometry (Chandrasekhar, 1981, pp. 622-626), it can
be employed in the cylindrical coordinate system while preserving some essential properties
of the decomposition (Ivers, 1989). When we select the unit vector in the z-direction êz

as a reference vector, a solenoidal vector field V (r, ϕ, z) = Vr(r, ϕ, z)êr + Vϕ(r, ϕ, z)êϕ +
Vz(r, ϕ, z)êz can be expressed as

V = ∇×
{
ψ(r, ϕ, z)êz

}
+∇×

[
∇×

{
χ(r, ϕ, z)êz

}]
, (3.3.1)

where ψ and χ are the toroidal and poloidal streamfunctions of V . Such a decomposition is
feasible if V has zero spatial mean components in the radial and azimuthal directions over
an infinite disk for all z (cf. Jones, 2008). This zero-mean condition is satisfied in our study
because our velocity fields are spatially periodic perturbations of the base flow. Ivers (1989)
concluded that the toroidal and poloidal fields are orthogonal over an infinite slab a < z < b
if ψ and χ decay sufficiently rapidly as r → ∞. The decay condition of ψ and χ requires V
to decay sufficiently rapidly to zero for large r.

In what follows, we find more rigorous statement for the decay condition of V as r → ∞
where ψ and χ are well-defined. The z-component of (3.3.1) is

1

r

∂

∂r

(
r
∂χ

∂r

)
+

1

r2
∂2χ

∂ϕ2
= −Vz. (3.3.2)

Taking the curl of (3.3.1), we obtain

∇× V = ∇×
{
(−∇2χ)êz

}
+∇×

{
∇× (ψêz)

}
, (3.3.3)

with its z-component equal to

1

r

∂

∂r

(
r
∂ψ

∂r

)
+

1

r2
∂2ψ

∂ϕ2
= − (∇× V )z . (3.3.4)

Solving (3.3.2) and (3.3.4), which are the two-dimensional Poisson equations, can yield the
solution to ψ and χ. By ignoring the gauge freedom with respect to z, we can determine the
solution using two-dimensional convolution as follows:

ψ = − (∇× V )z ∗ Φ, (3.3.5)

χ = −Vz ∗ Φ, (3.3.6)

where Φ is Green’s function for the entire plane R2 equivalent to

Φ(r, ϕ) =
1

2π
ln r. (3.3.7)
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In order for the convolutions in (3.3.5) and (3.3.6) to be meaningful everywhere, there exist
p1 > 0, p2 > 0 and p3 > 0 such that

Vr ∼ O (r−1−p1)

Vϕ ∼ O (r−1−p2)

Vz ∼ O (r−2−p3)

as r → ∞, (3.3.8)

given that V decays algebraically. Otherwise, V may decay exponentially or superexponen-
tially. If V is referred to as a velocity field, it has finite total kinetic energy over the entire
space since all components decay faster than O(r−1) as r → ∞. The finite kinetic energy
condition is physically reasonable, especially when dealing with velocity fields representing
small perturbations (cf. Bölle et al., 2021). On the other hand, Matsushima and Marcus
(1997) considered the case where ψ and χ could be unbounded by including additional loga-
rithmic terms in ψ and χ, providing a more comprehensive extension of the poloidal-toroidal
decomposition to more general vector fields, including the mean axial components. How-
ever, in the present study, we choose V as a linear perturbation of no bulk movement, and
therefore the logarithmic terms do not need to be considered.

Suppressing the gauge freedom by adding restrictions that are independent of z to ψ and
χ , e.g.,

lim
r→∞

ψ(r, ϕ, z) = lim
r→∞

χ(r, ϕ, z) = 0, (3.3.9)

we can define the following linear and invertible operator P : U → P as

P(V ) ≡
(
ψ(r, ϕ, z)
χ(r, ϕ, z)

)
, (3.3.10)

where U is the set of sufficiently rapidly decaying solenoidal vector fields from R3 to R3 (C3)
that satisfy (3.3.8) and P is the set of functions from R3 to R2 (C2) that satisfy (3.3.9). Using
Helmholtz’s theorem, we may extensively define P on more generalised vector fields which
are not solenoidal but their solenoidal portion can be decomposed toroidally and poloidally.
If we expand the domain of P, however, it should be kept in mind that the operator is
no longer injective because for any V ∈ U , P(V ) = P(V + ∇v) where v is an arbitrary
scalar potential for a non-zero irrotational vector field. On the other hand, it is noted that
P(∇2V ) = ∇2P(V ) ≡ (∇2ψ,∇2χ) for V ∈ U because

∇2

[
∇×

{
ψ(r, ϕ, z)êz

}
+∇×

[
∇×

{
χ(r, ϕ, z)êz

}]]
= ∇×

{
∇2ψ(r, ϕ, z)êz

}
+∇×

[
∇×

{
∇2χ(r, ϕ, z)êz

}]
.

(3.3.11)

Applying the operator P to both sides of (3.1.7), we obtain

∂P(u′)

∂t
= P

(
U(r)× ω′)− P (ω(r)× u′) +

1

Re
∇2P(u′), (3.3.12)
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because P(∇φ) = P(0 +∇φ) = P(0) = 0. Assuming u′ to be solenoidal, u′ automatically
satisfies the continuity equation and can be determined from P(u′) by taking the inverse of
it using (3.3.1).

Since we are interested in the perturbation velocity field as in (3.1.1), we define two
r-dependent scalar functions ψ̃(r;m,κ) and χ̃(r;m,κ) such that

P
(
ũ(r;m,κ)ei(mϕ+κz)+σt

)
=

(
ψ̃(r;m,κ)ei(mϕ+κz)+σt

χ̃(r;m,κ)ei(mϕ+κz)+σt

)
. (3.3.13)

The fact that the poloidal and toroidal components in (3.3.13) preserve the exponential part
can be verified by substituting the perturbation velocity field formula into V in (3.3.2) and
(3.3.4). For convenience, we simplify the expression in (3.3.13) to

Pmκ(ũ(r;m,κ)) ≡
(
ψ̃(r;m,κ)
χ̃(r;m,κ)

)
. (3.3.14)

Finally, putting (3.1.1) into (3.3.12) leads to the standard eigenvalue problem form in
terms of Pmκ(ũ(r;m,κ)):

σ
[
Pmκ(ũ(r;m,κ))

]
= Lν

mκ

[
Pmκ(ũ(r;m,κ))

]
, (3.3.15)

where the linear operator Lν
mκ is defined as

Lν
mκ

[
Pmκ(ũ)

]
≡ Pmκ

(
U(r)× ω̃

)
− Pmκ (ω(r)× ũ) +

1

Re
∇2

mκPmκ(ũ). (3.3.16)

Excluding the viscous diffusion term, we additionally define the inviscid operator L0
mκ as

L0
mκ

[
Pmκ(ũ)

]
≡ Pmκ

(
U(r)× ω̃

)
− Pmκ (ω(r)× ũ) , (3.3.17)

for the inviscid linear analysis solving

σ
[
Pmκ(ũ(r;m,κ))

]
= L0

mκ

[
Pmκ(ũ(r;m,κ))

]
. (3.3.18)



22

Chapter 4

Numerical method

4.1 Mapped Legendre functions

Associated Legendre functions with algebraic mapping are used as basis functions to expand
an arbitrary function over 0 ≤ r <∞, ultimately discretising the eigenvalue problems to be
solved numerically. The expansion was first introduced by Matsushima and Marcus (1997)
and applied to three-dimensional vortex instability studies by Bristol et al. (2004) and Feys
and Maslowe (2016). The algebraically mapped associated Legendre functions Pm

Ln
(r), or

simply mapped Legendre functions, are equivalent to the mapping of the associate Legendre
functions Pm

n (ζ) with order m and degree n defined on −1 ≤ ζ < 1 where

ζ ≡ r2 − L2

r2 + L2
⇐⇒ r = L

√
1 + ζ

1− ζ
. (4.1.1)

An additional parameter L > 0 is the map parameter, which can be arbitrarily set. However,
when it is used for a spectral collocation method, change in L affects the spatial resolution of
discretisation and the value should be carefully chosen to achieve fast convergence or elimi-
nate spurious results. Matsushima and Marcus (1997) showed that Pm

Ln
(r) ∼ O(r|m|) as r → 0

and Pm
Ln
(r) ∼ O(r−|m|) as r → ∞, which leads to the fact that any polar function Pm

Ln
(r)eimϕ

behaves analytically at the origin (see Eisen et al., 1991, pp. 243-244) and decays harmoni-
cally to zero at radial infinity. These asymptotic properties are suitable to apply the correct
boundary conditions for the present problem.

Next, we prove that a set of some mapped Legendre functions can constitute a complete
orthogonal basis of spectral space. Since the associate Legendre functions Pm

n (ζ) are the
solutions to the associate Legendre equation

d

dζ

[(
1− ζ2

) dPm
n

dζ

]
+

[
n(n+ 1)− m2

1− ζ2

]
Pm
n (ζ) = 0, (4.1.2)

the mapped Legendre functions satisfy the following second-order differential equation

d

dr

[
r
dPm

Ln

dr

]
− m2

r
Pm
Ln
(r) +

4n(n+ 1)L2r

(L2 + r2)2
Pm
Ln
(r) = 0. (4.1.3)
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As (4.1.3) is the Sturm-Liouville equation with the weight function

w(r) ≡ 4L2r

(L2 + r2)2
, (4.1.4)

the mapped Legendre functions Pm
L|m|

(r), Pm
L|m|+1

(r), Pm
L|m|+2

(r), · · · form an orthogonal basis

of the Hilbert space L2 (R+, w(r)dr). Thus, for two integers n and k larger than or equal to
|m|, 〈

Pm
Ln
, Pm

Lk

〉
=

∫ ∞

0

Pm
Ln
(r)Pm

Lk
(r)w(r)dr

=

∫ 1

−1

Pm
n (ζ)Pm

k (ζ)dζ =
2(n+ |m|)!

(2n+ 1)(n− |m|)!
δnk,

(4.1.5)

where δnk denotes the Kronecker delta with respect to n and k.
Considering a polar function fm(r)e

imϕ where fm ∈ L2 (R+, w(r)dr), it can be expanded
by the mapped Legendre functions as

fm(r)e
imϕ =

∞∑
n=|m|

fm
n P

m
Ln
(r)eimϕ, (4.1.6)

and the coefficient fm
n can be calculated based on the orthogonality of the basis functions:

fm
n =

〈
fm, P

m
Ln

〉〈
Pm
Ln
, Pm

Ln

〉 =
(2n+ 1)(n− |m|)!

2(n+ |m|)!

∫ ∞

0

fm(r)P
m
Ln
(r)w(r)dr

=
(2n+ 1)(n− |m|)!

2(n+ |m|)!

∫ 1

−1

fm

(
L

√
1 + ζ

1− ζ

)
Pm
n (ζ)dζ.

(4.1.7)

When we expand an analytic function on 0 ≤ r <∞ that vanishes at infinity, the expansion
in (4.1.6) is especially suitable because they are able to serve as Galerkin basis functions.
Even if we use the truncated series of (4.1.6), analyticity at the origin and vanishing be-
haviour at infinity remain valid.

4.2 Mapped Legendre spectral collocation method

In order to discretise the problem, we use a spectral collocation method using the mapped
Legendre functions as basis functions. Given the azimuthal and axial wavenumbers m and
κ, we take a truncated basis set of first M elements {Pm

L|m|
, · · · , Pm

L|m|+M−1
} and expand

fm(r)e
i(mϕ+κz) as

fm(r)e
i(mϕ+κz) =

|m|+M−1∑
n=|m|

fm
n P

m
Ln
(r)ei(mϕ+κz), (4.2.1)
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so that the function is represented by M discretised coefficients (fm
|m|, · · · , fm

|m|+M−1). The
coefficients are numerically obtained by applying the Gauss-Legendre quadrature rule to
(4.1.7). Let ζj and ϖj be the jth root of the Legendre polynomial PN of degree N in (−1, 1)
with its quadrature weight defined as

ϖj = 2(1− ζ2j )
−1

[
dPN

dζ

∣∣∣∣
ζ=ζj

]−2

, j = 1, · · · , N, (4.2.2)

and with radial collocation points rj determined from (4.1.1) as

rj ≡ L

√
1 + ζj
1− ζj

, j = 1, · · · , N, (4.2.3)

which means that half of the collocation points are distributed in the inner high-resolution
region 0 ≤ r < L whereas the other half are posed in the outer low-resolution region
r ≥ L (Matsushima & Marcus, 1997). In order to describe spatial resolution, we define the
characteristic resolution parameter ∆ as

∆(N,L) ≡ 2L

N
, (4.2.4)

which represents the mean spacing between the collocation points in 0 ≤ r < L.
A quadrature algorithm presented by Press et al. (2007, pp. 179-194) is implemented

and all abscissas and weights are computed with an absolute precision error less than 10−15.
The quadrature converts the integration formula to the weighted sum of the function values
evaluated at the collocation points and consequently the integral of (4.1.7) finally becomes
the discretised formula

fm
n ≃ (2n+ 1)(n− |m|)!

2(n+ |m|)!

N∑
j=1

ϖjfm(rj)P
m
n (ζj). (4.2.5)

It is convenient in practice to conceal the factorial coefficient term by defining the normalised
mapped Legendre functions and coefficients as follows:

P̂m
Ln
(r) ≡ Pm

Ln
(r)

√
(2n+ 1)(n− |m|)!

2(n+ |m|)!
, f̂m

n ≡ fm
n

√
2(n+ |m|)!

(2n+ 1)(n− |m|)!
. (4.2.6)

Using these normalised terms, (4.2.5) can be expressed as

f̂m
n ≃

N∑
j=1

ϖifm(rj)P̂
m
n (ζj), (4.2.7)
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and, moreover, (4.2.1) at r = rj maintains the identical form

fm(rj)e
i(mϕ+κz) =

|m|+M−1∑
n=|m|

f̂m
n P̂

m
Ln
(rj)e

i(mϕ+κz). (4.2.8)

As a preliminary step of the mapped Legendre spectral collocation method, we need to
compute (1) the Gauss-Legendre abscissas ζi, (2) weights ϖi, (3) radial collocation points ri
and (4) normalised mapped Legendre functions evaluated at the collocation points P̂m

Ln
(ri).

The normalisation procedure may require temporary multiple-precision arithmetic to handle
large function values and factorials if one uses N larger than about 170. There have been
several multi-precision arithmetic libraries available recently and we consider using the FM
multiple-precision package (Smith, 2003). All essential computations ahead, however, can
be performed under typical double-precision arithmetic.

It is noted that the number of the abscissas (or collocation points) N must be equal to
or larger than the number of the basis elements M for the sake of proper transform between
physical space (fm(r1), · · · , fm(rN)) and spectral space (f̂m

|m|, · · · , f̂m
|m|+M−1). On the other

hand, due to the even and odd parity of the associate Legendre functions, taking even N and
M can reduce the work by half in the transform procedure (Matsushima & Marcus, 1997).
Consequently, we set both N and M to be even and N = M + 2 in further analyses unless
otherwise specified.

Finally, we discuss how to apply the mapped Legendre spectral collocation method to
the present problem. Recalling (3.3.14) where Pmκ(ũ) = (ψ̃, χ̃), we write

ψ̃(r;m,κ)ei(mϕ+κz) =

|m|+M−1∑
n=|m|

ψ̃mκ
n P̂m

Ln
(r)ei(mϕ+κz), (4.2.9)

χ̃(r;m,κ)ei(mϕ+κz) =

|m|+M−1∑
n=|m|

χ̃mκ
n P̂m

Ln
(r)ei(mϕ+κz). (4.2.10)

We point out that when ψ̃ is expressed in the partial sums above, it obeys the boundary
conditions of an analytic scalar at the origin, i.e., as r → 0,

ψ̃(r;m,κ) → r|m|
∞∑
i=0

amκ
i r2i, (4.2.11)

where amκ
0 , amκ

1 , · · · are constants (see Eisen et al., 1991; Matsushima & Marcus, 1995). Sim-
ilar analyticity conditions are obeyed by χ̃(r;m,κ), and therefore the perturbation velocity
field ũ(r)ei(mϕ+κz) is also analytic at the origin (see Appendix B). Due to the properties of the
mapped Legendre functions, the perturbation vorticity also decays as r → ∞ (Matsushima
& Marcus, 1997). As a consequence, Pmκ(ũ) can be uniquely represented by 2M spectral
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coefficients of ψ̃mκ
|m| , · · · , ψ̃mκ

|m|+M−1 and χ̃
mκ
|m|, · · · , χ̃mκ

|m|+M−1. We may discretise the eigenvalue

problem for viscous cases in (3.3.15) as

σ



ψ̃mκ
|m|
...

ψ̃mκ
|m|+M−1

χ̃mκ
|m|
...

χ̃mκ
|m|+M−1


= Lν

mκ



ψ̃mκ
|m|
...

ψ̃mκ
|m|+M−1

χ̃mκ
|m|
...

χ̃mκ
|m|+M−1


, (4.2.12)

where Lν
mκ is a 2M × 2M complex matrix representing the linear operator Lν

mκ. In a similar
sense, we can define L0

mκ representing L0
mκ for the inviscid analysis and

Lν
mκ = L0

mκ + Re−1H. (4.2.13)

H is a matrix representation of the Laplacian ∇2
mκ acting on the spectral coefficients ψ̃mκ

|m| ,

· · · , ψ̃mκ
|m|+M−1 and χ̃mκ

|m|, · · · , χ̃mκ
|m|+M−1, respectively. For a scalar function expanded by

the mapped Legendre functions a(r) =
∑

n≥|m| a
m
n P

m
Ln
(r), if we expand its Laplacian as

∇2
mκa(r) =

∑
n≥|m| b

m
n P

m
Ln
(r), then the coefficients amn and bmn constitute the following rela-

tionship for all n ≥ |m|

bmn =−
[
(n− |m| − 1)(n− |m|)(n− 2)(n− 1)

(2n− 3)(2n− 1)L2

]
amn−2

+

[
2n(n− |m|)(n− 1)

(2n− 1)L2

]
amn−1

−
[
2n(n+ 1)(3n2 + 3n−m2 − 2)

(2n− 1)(2n+ 3)L2
+ κ2

]
amn

+

[
2(n+ 1)(n+ |m|+ 1)(n+ 2)

(2n+ 3)L2

]
amn+1

−
[
(n+ |m|+ 1)(n+ |m|+ 2)(n+ 2)(n+ 3)

(2n+ 3)(2n+ 5)L2

]
amn+2,

(4.2.14)

under the assumption that amn ≡ 0 if n is less than |m| (Matsushima & Marcus, 1997, p.
344). H can be formulated by (4.2.14).

The formulation of L0
mκ involves the vector products in physical space and is conducted

using a pseudospectral approach based on the Gauss-Legendre quadrature rule. Reconstruct-
ing ũ from Pmκ(ũ) via (3.3.1), we evaluate the vector products U × ω̃ and ω× ũ at N radial
collocation points and apply Pmκ again. As for the detailed algorithm including the numer-
ical implementation of Pmκ as well as its inverse, refer to (69) and (70) in Matsushima and
Marcus (1997), providing the spectral coefficients of Pmκ(U × ω̃) and Pmκ(ω × ũ). Inte-
gration in these equations can be performed numerically by the Gauss-Legendre quadrature
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rule, as given in (4.2.7). Following this procedure, we can compute the ith column vector of
L0
mκ by substituting the ith standard unit vector êi ∈ R2M for (ψ̃mκ

|m| , · · · , ψ̃mκ
|m|+M−1, χ̃

mκ
|m|,

· · · , χ̃mκ
|m|+M−1).

A global eigenvalue problem solver with the QR algorithm for non-Hermitian matrices,
based on the Lapack routine named Zgeev, is used to solve the discretised eigenvalue
problem. The procedure of constructing a global matrix and finding all eigenvalues has been
established in previous studies, such as Fabre et al. (2006, p. 241). However, as shown in
(4.2.12), our formulation directly results in the standard eigenvalue problem rather than the
generalised form. Thus, it is sufficient to construct only one matrix of dimension 2M × 2M ,
with a reduction in the number of state variables from 4 to 2.

4.3 Numerical parameters and their effects

The mapped Legendre spectral collocation method comprises of three adjustable numerical
parameters: M , N , and L. The first two parameters are commonly used in most spectral
collocation methods, while the last parameter is unique to our method. This section elabo-
rates on the impact of each parameter on the numerical method’s performance and provides
guidelines on their selection.

4.3.1 Number of spectral basis elements M

As shown in (4.2.1), M determines the number of basis elements in use and is the most
important parameter for the numerical method’s convergence. The larger the value ofM , the
closer the mapped Legendre series is to its ground-truth, as the full basis set assuming M →
∞ is complete. If the function of interest is analytic and decays properly, the convergence is
exponential with increasing M . Even if the function contains any singularity in the interior,
the convergence must occur at infinite M , albeit slowly, as long as the function belongs to
the Hilbert space L2 (R+, w(r)dr).

For achieving better accuracy, it is always preferable to select a larger value of M . How-
ever, a too large value of M may cause the resulting matrix eigenvalue problem to be ex-
cessively large, leading to an increase in the time complexity in (2M)3. In practice, the
availability of computing resources should limit the maximum value of M .

4.3.2 Number of radial collocation points N

N , the number of the radial collocation points defined as (4.2.3), depends on M because
N ≥ M needs to be satisfied. Increasing N nominally enhances the spatial resolution
in physical space, thereby reducing numerical errors in the evaluation of vector products.
However, this effect is rather marginal, as most of the major computations and errors occur
in spectral space. Moreover, if an increase in N does not accompany an increase in M by
the same or nearly the same amount, it may have no benefit at all. One may consider the
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extreme case where N → ∞ while M is kept constant at unity. Regardless of how perfect
the radial resolution is, none of the functions can be handled except for a scalar multiple of
the first basis element Pm

L|m|
(r).

Therefore, it is better to consider N dependent on M , and any change in N should
only be followed by a change in M . This justifies why we use N = M + 2. Similarly, an
improvement in the spatial resolution by N should imply the use of a larger M . Henceforth,
N is usually omitted when we state the numerical parameters, and M implicitly specifies N
asM+2. In this case, we note that the resolution parameter ∆ in (4.2.4) equals 2L/(M+2).

4.3.3 Map parameter for Legendre functions L

The map parameter L provides an additional level of computational freedom that distin-
guishes the present numerical method from others. We highlight three significant roles of
this parameter, two of which are related to spatial resolution in physical space and the other
to basis change in spectral space.

In physical space, whenM (and N) is fixed, a change in L results in two anticomplemen-
tary effects with respect to spatial resolution, as shown in figure 4.1. When L increases, the
high-resolution region 0 ≤ r < L, where half of the collocation points are clustered, expands,
which has a positive effect. However, it negatively impacts the resolution, especially in the
high-resolution region, where ∆ increases with L. Increasing N = M + 2 may compensate
for the loss in resolution. However, if M is already at a practical limit due to the computing
budget, expanding the high-resolution region by increasing L should stop when ∆ remains
satisfactorily small. The requirement for satisfaction should be specific to the eigenmodes
to be resolved, which will be discussed in each analysis section later. Similar discussions can
be made in the opposite direction when decreasing L.

In spectral space, changing L entirely replaces the complete basis function set. For
instance, when L = A and L = B, the spectral method can be constructed on either of
two different complete basis sets, i.e., {Pm

A|m|
, Pm

A|m|+1
· · · } or {Pm

B|m|
, Pm

B|m|+1
, · · · }. Since

orthogonality among the basis functions does not necessarily hold across the basis sets, an
eigenmode found with L = A can differ from that found with L = B. If B differs from A by
an infinitesimal amount, our method makes it possible to find eigenmodes that continuously
vary if they exist. This was thought to be hardly achievable via classic eigenvalue solvers due
to discretisation (cf. Mao & Sherwin, 2011, p. 11). Once the numerical method’s convergence
is secured by sufficiently large M and N , we explore such non-normal eigenmodes that vary
continuously by fine-tuning L.

4.4 Validation

To confirm the numerical validity of our method, we compared some eigenvalues from the
discrete branch of the spectra with those previously calculated by Mayer and Powell (1992).
They also used a spectral collocation method but with Chebyshev polynomials as radial basis
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Figure 4.1: Changes in distribution of the collocation points with respect to L givenN = 52. Some collocation
points at large radii are omitted. The high-resolution region is 0 ≤ r < L, where half of the collocation
points are clustered around the origin. As L increases, the high-resolution region is expanded. However, the
mean spacing ∆ grows simultaneously. L should be chosen carefully to balance these anti-complementary
effects.

functions over an artificially truncated radial domain, rather than the mapped Legendre basis
functions over an unbounded radial domain we use. For comparison, we linearly scaled the
eigenvalues reported in Mayer and Powell (1992) to match the q-vortex model used in our
study because the azimuthal velocity component is scaled by q in their study, whereas we
adjust the axial velocity component.

We compared the most unstable eigenvalue calculations for the inviscid case m = 1,
κ = 0.5, q = −0.5 (or equivalently m = 1, κ = −0.5, q = 0.5) and the viscous case m = 0,
κ = 0.5, q = 1, Re = 104 in table 4.1. We conducted the calculations using three different
numbers of basis elements M (20, 40, and 80) and three different map parameters L (8, 4,
and 2). Our results show that the trend towards convergence is apparent as M increases
and L decreases. As we discuss in terms of the characteristic resolution parameter ∆ defined
in (4.2.4), both parameters influence the numerical resolution. Increasing M leads to an
increase in the number of radial collocation points N , while decreasing L improves spatial
resolution by filling the inner high-resolution region (0 ≤ r < L) with more collocation
points (see figure 4.1). However, this comes at the expense of reducing the range of the
high-resolution region and effectively shrinking the radial domain by placing the collocation
point with the largest radius at rN = L

√
(1 + ζN)/(1− ζN), which can lead to inaccuracies

if any significant portion of the solution exists either in the outer low-resolution region or
outside the effective limit. The convergence test of σ†

viscous withM = 20 in table 4.1 partially
demonstrates this concern. When we compare the eigenvalues computed with L = 4 and
L = 2, the latter shows no clear improvement in convergence compared to the former, despite
having a smaller L. Even small L causes the eigenvalue’s real part to move further away
from the reference value of Mayer and Powell (1992). Therefore, we must keep in mind that
blindly pursuing small L does not guarantee better convergence, although using large M is
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M L σ†
inviscid σ†

viscous

Present study 20 8 0.37755989 + 0.112913723i 0.00011969 + 0.01679606i
20 4 0.40527381 + 0.099406043i 0.00018939 + 0.01658207i
20 2 0.40525621 + 0.099437298i 0.00014902 + 0.01656308i

40 8 0.40522876 + 0.099370546i 0.00017892 + 0.01632424i
40 4 0.40525620 + 0.099437300i 0.00018406 + 0.01640824i
40 2 0.40525620 + 0.099437300i 0.00018463 + 0.01640723i

80 8 0.40525620 + 0.099437300i 0.00018478 + 0.01640740i
80 4 0.40525620 + 0.099437300i 0.00018469 + 0.01640717i
80 2 0.40525620 + 0.099437300i 0.00018469 + 0.01640717i

M & P (1992) – – 0.40525620 + 0.099437300i 0.00018469 + 0.01640717i

Table 4.1: Comparison of the eigenvalues associated with the most unstable mode (indicated with a super-
script †) for the inviscid case with m = 1, κ = 0.5, q = −0.5 and for the viscous case with m = 0, κ = 0.5,
q = 1, Re = 104. The table illustrates how the values change when we alter the map parameter L and the
number of radial mapped Legendre basis functions M . The last row displays the values obtained by Mayer
and Powell (1992), who employed up to 200 radial Chebyshev basis functions. Their published eigenvalues
were appropriately rescaled to fit the q-vortex model employed in our study. Our numerically computed
eigenvalues tend towards a fixed point as we increase M beyond 40. It should be noted that the size of the
matrix eigenvalue problem system is 2M for our method and 3M for that of Mayer and Powell (1992). Thus,
even when using the same M , our method is expected to require (2/3)3 less work than theirs.

always favoured for numerical convergence.
The high-resolution range of the present method, represented by L, should not match

the domain truncation radius in the method of Mayer and Powell (1992). Adjusting the
high-resolution range through L has no impact on the unbounded nature of the domain
and can be customised essentially. However, altering the domain truncation radius fun-
damentally harms the unbounded nature of the domain and must be set to its maximum
computing limit. On the other hand, we achieve the same accuracy as Mayer and Powell
(1992) with roughly three times smaller M , which supports the numerical efficiency of our
method. Presumably, our method is around ten times more computationally efficient in
solving matrix eigenvalue problems that scale as O(M3). We believe this is mainly because
their simple algebraic mapping of Chebyshev collocation points (see Ash & Khorrami, 1995,
p. 357) clusters approximately one-third of the collocation points near the artificial outer
radial boundary, where vortex motion is near zero and not important by assumption. Such
collocation points do not significantly contribute to solving the problem, resulting in an
inefficient use of numerical resources.

Note that the eigenmodes shown here are regular and have no singularities, as depicted in
figure 4.2. Such regular eigenmodes are expanded by a finite number of radial basis elements
that are already regular, and as shown in table 4.1, their numerical results converge expo-
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Figure 4.2: A comparison of our numerical calculation with that of Mayer and Powell (1992). Shown is
the radial velocity component of the most unstable eigenmode for the validation cases (a) (m,κ, q,Re) =
(1, 0.5,−0.5,∞) and (b) (m,κ, q,Re) = (0, 0.5, 1, 104), where the maximum of Re(ũr) is normalised to unity.
Numerical parameters are M = 80 and L = 2. Note that Mayer and Powell (1992) only plotted the real
parts of the eigenmodes.

nentially with increasing M . However, singular eigenmodes can only be expressed exactly
when an infinite sum of mapped Legendre functions is taken (see Gottlieb & Orszag, 1977).
Nonetheless, as stated in the preliminary remarks, we are essentially interested in physical
eigenmodes, i.e., those without singularities and computed numerically with small spectral
residual error. The current validation is strong enough to underpin this objective. Later in
this research (see §7.1.4), we present some eigenmodes that have convincing signatures of
viscous remnants after regularising the inviscid critical-layer singularities. These singulari-
ties become regularised but still nearly singular regions of local rapid oscillations. We can
find the value of M at which these eigenmodes are spatially resolved, even if it typically
goes beyond 80. Also note that in this respect, we only peripherally examine their inviscid
counterparts with the critical-layer singularities using our numerical method (see §6.1.2).
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Chapter 5

Spectrum

Solving an eigenvalue problem λx = Lx is often equivalent to finding the spectrum of the
linear operator L, denoted σ(L). A number of previous studies that investigated a linearised
version of the Navier-Stokes equations, epitomised by the Orr-Sommerfeld equation, have
already adopted the term “spectra” (Grosch & Salwen, 1978; Jacobs & Durbin, 1998) to
account for eigenmodes of the linearised equations. In our study, we also employ this concept
to characterise eigenmode families found in the linear analysis of the q-vortex. We first state
the definition of the spectrum for the reader’s convenience.

Definition 1 Given that a bounded linear operator L operates on a Banach space X over
C, σ(L) consists of all scalars λ ∈ C such that the operator (L− λ) is not bijective and thus
(L − λ)−1 is not well-defined.

If a complex scalar λ is an eigenvalue of L, then it belongs to σ(L); however, the inverse
statement is generally not true. This is because, by definition, the spectrum of L includes
not only a type of λ that makes (L − λ) non-injective but also another type of λ by which
(L − λ) is injective but not surjective. The former ensures the presence of a non-trivial
eigenmode in X , which therefore comprises the set of ordinary eigenvalues, while the latter
does not. However, if (L− λ) has a dense range, λ can be an approximate eigenvalue in the
sense that there exists an infinite sequence (ej ∈ X \ {0}) for which

lim
j→∞

∥Lej − λej∥ = 0. (5.1)

In our method, ej and X can be taken as a mapped Legendre series of the first j basis
elements in (4.2.1) and the Hilbert space, respectively. Even if the sequence limit e∞ does
not belong to X , it can still be regarded as an eigenmode solution in a rigged manner, by
permitting discontinuities, singular derivatives, or non-normalisabilities (i.e., rigged Hilbert
space). In the literature related to fluid dynamics, both ordinary and approximate cases are
considered as eigenvalues. They are classified either as discrete in the complex σ-plane, or as
continuous in association with the eigenmodes possessing singularities. Despite their singular
behaviour, understanding eigenmodes associated with continuous spectra may be important
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Figure 5.1: Schematic diagrams of the spectra of the eigenvalues of a q-vortex of (a) L0
mκ for inviscid problems

where ν ≡ 0 (see Mayer & Powell, 1992; Heaton, 2007a; Gallay & Smets, 2020) and (b) Lν
mκ for viscous

problems with finite Re, including ν → 0+ (see Fabre et al., 2006; Mao & Sherwin, 2011). Each schematic
exhibits a set of eigenvalues where m and κ are fixed. The cases illustrated here assume m > 0. These
spectra are shown here because they are representative, but they do not embrace all of the different families
of spectra. The labels attached here are used throughout the main body of the text. Note that figures of the
true numerical spectra computed by us, rather than schematics, follow in §6 and §7, and that the viscous
critical-layer spectrum, consisting of two distinct curves in (b), were discovered via the present numerical
analysis and were not previously identified.

because they contribute to a complete basis for expressing an arbitrary perturbation (Case,
1960; Fabre et al., 2006; Roy & Subramanian, 2014).

In figure 5.1, schematic diagrams of the spectra in relation to the q-vortices are presented.
These illustrations assume that m is positive. The exact spectra differ depending on the
values of m, κ, q, Re, and the symmetries which are explained next. Some families of the
spectra are not displayed because they are not within the main scope of this study. For
instance, in the inviscid spectra, the unstable discrete spectrum and its symmetric stable
counterpart frequently appear for some m, κ, and q. However, they vanish as q becomes
sufficiently large (e.g., |q| > 2.31) (see Heaton, 2007a). For the Lamb-Oseen vortex where
q → ∞, it was analytically proven that all of the eigenvalues are located on the imaginary
axis, irrespective of m and κ, indicating that all eigenmodes must be neutrally stable (see
Gallay & Smets, 2020).

There are three notable space-time symmetries in this eigenvalue problem. First, because
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the linearised equations admit real solutions for the velocity/pressure eigenmodes, regard-
less of the values of q and the viscosity (including the case ν ≡ 0), if (ũr, ũϕ, ũz, p̃) and σ
are an eigenmode and eigenvalue with wavenumbers (m,κ), then (ũ∗r, ũ

∗
ϕ, ũ

∗
z, p̃

∗) is also an
eigenmode with eigenvalue σ∗ and with (−m,−κ). Next, for the inviscid case, with any
value of q, the linearised equations are time-reversible, and as a consequence if (ũr, ũϕ, ũz, p̃)
and σ are a velocity/pressure eigenmode and eigenvalue with wavenumbers (m,κ), then
(ũ∗r,−ũ∗ϕ,−ũ∗z,−p̃∗) is also an eigenmode with eigenvalue −σ∗ and with the same (m,κ).
This symmetry makes the spectra symmetric about the imaginary axis in the left panel of
figure 5.1 but not in the right panel. Third, for the inviscid case with any value of q, we could
combine the two symmetries above and obtain the fact that if (ũr, ũϕ, ũz, p̃) and σ are a ve-
locity/pressure eigenmode and eigenvalue with wavenumber (m,κ), then (ũr,−ũϕ,−ũz,−p̃)
is also an eigenmode with eigenvalue −σ with wavenumbers (−m,−κ).

In particular, for the inviscid case with q → ∞ (i.e., with Ūz = 0), the linearised equations
are also invariant under z → −z. In this case, if (ũr, ũϕ, ũz, p̃) and σ are a velocity/pressure
eigenmode and eigenvalue with wavenumbers (m,κ), then (ũr, ũϕ,−ũz, p̃) is also an eigen-
mode with eigenvalue σ and with wavenumbers (m,−κ). This symmetry can be combined
with either or both of the two earlier listed symmetries to produce additional, but not inde-
pendent symmetries; for example, if (ũr, ũϕ, ũz, p̃) and σ are a velocity/pressure eigenmode
and eigenvalue with wavenumbers (m,κ), then (ũ∗r,−ũ∗ϕ, ũ∗z,−p̃∗) is also an eigenmode with
eigenvalue −σ∗ and with (m,−κ).

Based on the two-dimensional Orr-Sommerfeld equation, Lin (1961) argued that the spec-
tra of eigenmodes of viscous flows are discrete. However, for unbounded viscous flows, Drazin
and Reid (2004, pp. 156-157) stated that this is incorrect, and there is a continuous spectrum
associated with eigenmodes that vary sinusoidally in the far field instead of vanishing. The
presence of continuous spectra associated with the q-vortices due to spatial unboundedness
was also discussed by Fabre et al. (2006) and Mao and Sherwin (2011). One example of
the continuous spectrum is the viscous freestream spectrum, named by Mao and Sherwin
(2011) and denoted σν

f here, which is located on the left half of the real axis in the complex
σ-plane in figure 5.1(b). However, the eigenmodes in this spectrum persist rather than go
to zero as r → ∞. As stated in §2.3, we are only interested in eigenmodes that we classify
as physical. We have defined eigenmodes in which the velocity and vorticity do not decay
harmonically at radial infinity as non-physical. Since our numerical method was specifically
designed not to deal with such non-physical eigenmodes, we do not discuss them further in
this research and clarify that our method is not the tool for those who wish to investigate σν

f .
We remark that Bölle et al. (2021) argued that the viscous freestream spectrum is rather an
“artefact” of the mathematical model of an unbounded domain. With the exception of the
viscous freestream eigenmodes, our numerical method is capable of computing the families
of eigenvalues and eigenmodes indicated in figure 5.1.

For the inviscid and viscous discrete spectra, denoted σ0
d and σν

d , respectively, the un-
stable eigenmodes of the q-vortices with finite q have been extensively studied (Leibovich
& Stewartson, 1983; Mayer & Powell, 1992), particularly for small q (Lessen et al., 1974;
Heaton, 2007a). However, it is unclear whether these instabilities would be significant for
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aeronautical applications that are known to have large q (≈ 4) (see Fabre & Jacquin, 2004,
pp. 258-259). As the discrete spectra and related instabilities, which have been well-studied,
are not the main focus of the present study, the unstable branches in σ0

d and σν
d , which may

be detectable for small q and large Re, are omitted in figure 5.1.
Instead, we pay attention to the eigenmodes associated with the inviscid critical-layer

spectrum, denoted σ0
c , which has been known to be related to further transient growth of

wake vortices (Heaton & Peake, 2007; Mao & Sherwin, 2012). For the inviscid q-vortex σ0
c

is determined as a subset of σ(L0
mκ), which is

σ0
c =

{
σc ∈ iR

∣∣∣∣ ∃rc ∈ (0,∞) − iσc +
m(1− e−r2c )

r2c
+
κe−r2c

q
= 0

}
⊂ σ

(
L0

mκ

)
. (5.2)

When q → ∞, (5.2) reduces to the expression given in Gallay and Smets (2020), which
applies to the Lamb-Oseen vortex case. Considering the fact that σ0

c is due to an inviscid
singularity (Le Dizès, 2004), we deduce the expression in (5.2) through the following steps.
The singularity can be straightforwardly identified by further reducing the governing equa-
tions, as shown in Mayer and Powell (1992, p. 94), originally done by Howard and Gupta
(1962). Breaking the eigenvalue problem form in (3.1.9) and (3.1.10) and performing further
reduction, we obtain the following second-order differential equation:

γ2
d

dr

(
r

κ2r2 +m2

d(rũr)

dr

)
−
(
γ2 + aγ + b

)
ũr = 0, (5.3)

where

γ ≡ −iσ +
mUϕ(r)

r
+ κU z(r), (5.4)

a ≡ r
d

dr

[
r

κ2r2 +m2

(
dγ

dr
+

2mUϕ(r)

r2

)]
, (5.5)

b ≡ 2κmUϕ(r)

κ2r2 +m2

(
dU z

dr
− κ

m

d(rUϕ)

dr

)
. (5.6)

The equation becomes singular when γ = 0, which is feasible when there exist σc ∈ iR and
rc ∈ (0,∞) such that

−iσc +
mUϕ(rc)

rc
+ κU z(rc) = 0, (5.7)

or equivalently,

Re(σc) = 0, Im(σc) = −mUϕ(rc)

rc
− κU z(rc). (5.8)

Substituting the q-vortex velocity profile into (5.7) shows the relationship between the imag-
inary eigenvalue σ0

c and the radial location rc of the critical layer:

σc = −i

[
m(1− e−r2c )

r2c
+
κe−r2c

q

]
, (5.9)
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Figure 5.2: Critical-layer singularity radial location rc versus critical layer eigenvalue σc with fixed m, κ and
q. See (5.9) and (5.10). The two illustrated cases where (m,κ, q) = (1, 1.0,∞) and (m,κ, q) = (2, 3.0, 4.0)
are investigated in later analyses.

and for the Lamb-Oseen vortex with 1/q ≡ 0

σc = −i

[
m(1− e−r2c )

r2c

]
. (5.10)

For every eigenmode associated with σc, it must contain at least one singularity at r = rc,
which is what we have been referring to as a critical-layer singularity. As a result, the
continuum of eigenvalues on the imaginary axis forms σ0

c , as depicted in figure 5.1(a). For
the q-vortices with positive m, κ, and q (including q → ∞), which we will consider in later
analyses, the supremum of −iσc is 0 (as rc → ∞) and the infimum of −iσc is −m − κ/q
(as rc → 0). Also in this case, there is a one-to-one correspondence between σc and rc as
m(1− e−r2)/r2 + (κ/q)e−r2 is monotonic with respect to r (see figure 5.2).

On the other hand, viscosity regularises the critical-layer singularities of the eigenmodes of
q-vortices. It is of physical importance to identify how viscosity transforms inviscid spectra,
such as σ0

c , into a subset of the viscous spectra σ(Lν
mκ) and to determine which branches

of σ0
c vanish and what new eigenmodes are created. According to Heaton (2007a), for non-

zero viscosity, σ0
c is replaced by a large number of closely packed discrete eigenmodes, but a

detailed explanation was not given. Numerical observations by Bölle et al. (2021) identified
randomly scattered eigenvalues in the shaded region in figure 5.1(b), suggesting that they
are the viscous remnants of σ0

c . Mao and Sherwin (2011), who earlier discovered this region,
named it the potential spectrum, denoted σν

p , and suggested that it could be continuous
based on the shape of the surrounding pseudospectra. The (ε-)pseudospectrum is defined as
follows (Trefethen & Embree, 2005).

Definition 2 Let R(z;L) ≡ (L− z)−1 be the resolvent of L at z ∈ C \ σ(L). For ε > 0, the
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ε-pseudospectrum, denoted σε(L), is the set

σε(L) ≡
{
z ∈ C

∣∣∣∣ ∥R(z;L)∥ > 1

ε

}
. (5.11)

Note that the lower bound of the resolvent norm is determined by the inequality

∥R(z;L)∥ ≥ sup
µ∈σ(L)

1

|z − µ|
, (5.12)

where equality holds if the resolvent is normal (Bölle et al., 2021, pp. 9-10). For discrete
eigenvalues, when ε is sufficiently small, the ε-pseudospectrum is formed by an open disk that
surrounds the eigenvalue. However, when it comes to continuous spectra, Mao and Sherwin
(2011) pointed out that as ε approaches zero, the ε-pseudospectrum tends to cover the
entire region in the complex σ-plane that is equivalent to σν

p , as shown in figure 5.1(b). They
proposed that this region comprises entirely of the viscous continuous spectra together with
σν
f , which is located on the negative real axis. Such an asymptotic topology of pseudospectra

implies the presence of continuous spectra in this region.
Although this argument appears reasonable, it requires careful examination for the fol-

lowing reasons. Firstly, as we numerically solve the eigenvalue problem, solutions that do not
exhibit convergence may result from spurious modes due to discretisation. While randomly
scattered eigenvalues may be true examples of eigenmodes within the continuous spectrum,
they can also be spurious eigenmodes created by the disretised approximation of Lν

mκ. Sec-
ondly, describing the pseudospectra of Lν

mκ as proximity to the spectrum is valid only if
R(z;Lmκ) is normal and the equality in (5.12) holds. According to Bölle et al. (2021), the
resolvent is selectively non-normal in a frequency band where σν

p is located, meaning that
R(z;Lmκ) can take a large value even if z is not actually close to σ(Lmκ). Lastly, for the sake
of rigour, the shape of the potential spectrum, as depicted in the schematic in figure 5.1(b),
should be considered suggestive. This is because, to the best of our knowledge, its presence
has only been numerically proposed in the discretised problem with increasingM (i.e., Lν

mκ),
but has not been analytically verified in the original problem (i.e., Lν

mκ). It should be noted
that in the present study, we premise the analytic presence of the potential spectrum as de-
picted in figure 5.1(b), so that numerical eigenvalues found on the ε-pseudospectrum of Lν

mκ

in the limit of ε → 0 with a sufficiently large value of M can be considered the discretised
representation of this analytic entity, and therefore non-spurious.

Although σν
p is known to be associated with stable eigenmodes that decay to zero as

r → ∞, their decay rates in r have been reported to be much slower than the exponential
decay rates of the discrete eigenmodes (Mao & Sherwin, 2011). In the following section, we
will show that the decay behaviours of the inviscid critical-layer eigenmodes are comparable
to those of the discrete eigenmodes. Therefore, we cast doubt on whether σν

p accurately
represents the viscous remnants of σ0

c that result from the viscous regularisation of the critical
layers. If there exist spectra associated with eigenmodes that possess not only regularised
critical-layer structures due to viscosity but also exhibit radial decay behaviours similar to
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those seen in the inviscid critical-layer eigenmodes, it would be accurate to refer to them as
the true viscous remnants of σ0

c . We propose to distinguish these spectra and call them the
“viscous critical-layer spectrum,” denoted σν

c . Using the present numerical method, we will
demonstrate that σν

c is formed by two distinct curves near the right end of σν
p , as depicted

in figure 5.1(b).
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Chapter 6

Inviscid linear analysis

The eigenvalue problem σ [Pmκ(ũ)] = L0
mκ [Pmκ(ũ)] is analysed by finding the spectra of the

discretised operator L0
mκ and their associated eigenmodes. Since the number of spatially

resolved discrete eigenmodes is typically far less than M due to the spatial resolution limit,
the majority of numerical eigenmodes should be associated with the continuous critical-
layer spectrum σ0

c . Although σ
0
c is associated with neutrally stable eigenmodes, its numerical

counterpart often creates a “cloud” of incorrect eigenvalues clustered around the true location
of σ0

c , as observed by Mayer and Powell (1992), Fabre and Jacquin (2004), and Heaton
(2007a). However, the previous studies that observed this incorrect spectrum paid less
attention to its correction, which is our major interest, as they were primarily interested in
discrete unstable modes that can be resolved out of (and thus are sufficiently far from) the
cloud. When discrete unstable eigenmodes are present for small q, the most unstable one
prevails in the linear instability of the q-vortex. Therefore, the presence of these incorrect
eigenmodes may not be problematic.

On the other hand, for large q (typically, |q| > 1.5 according to Lessen et al. (1974),
or |q| > 2.31 according to Heaton (2007a), depending on the parameter values of m and
κ) where the inviscid q-vortex is linearly neutrally stable and the eigenmodes are located
on iR of the complex σ-plane. Although the flow is analytically neutrally stable, incorrect
eigenmodes may appear in association with eigenvalues clustered around the imaginary axis,
leading to the incorrect conclusion that the flow is linearly unstable because some of the
eigenvalues lie in the right half of the complex σ-plane (Re(σ) > 0). We focus our attention
on the analysis of large or infinite q cases as any unstable eigenmodes occurring in the
analysis are incorrect. In what follows, we demonstrate that these incorrect eigenmodes
are under-resolved eigenmodes of the inviscid critical-layer eigenmodes and can be corrected
by adjusting the numerical parameters so that they correctly exhibit their neutrally stable
nature (Re(σ) = 0) in our numerical analysis.
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6.1 Numerical spectra and eigenmodes

In figure 6.1, we present the eigenvalues of two inviscid vortices: the Lamb-Oseen vortex with
(m,κ, q) = (1, 1.0,∞) and the strong swirling Batchelor vortex with (m,κ, q) = (2, 3.0, 4.0).
By comparing these two vortices, we demonstrate their common properties and extract
features that can be generalised to vortices with large q and moderate m and κ of order
unity, which are thought to be relevant for practical aeronautical applications (see Fabre
& Jacquin, 2004, pp. 258-259). To observe the effect of the numerical parameter M , we
computed each vortex in four ways: with M = 100, 200, 300, and 400. Analytically, every
eigenvalue is expected to lie on iR. The shaded area in each plot is the non-normal region
of the spectra, indicating the frequency band that includes the analytic range of σ0

c .
Clearly, all these numerical spectra contain some eigenvalues that are incorrect (i.e, not

on the imaginary axis). We can observe three families of numerical eigenvalues. A discrete
family (+) corresponds to σ0

d, where the eigenvalues are discrete and located outside the
shaded area. An inviscid critical-layer family (•) corresponds to σ0

c . Its eigenvalues lie
on the imaginary axis, are within the shaded area, and the number of them increases as M
increases. Finally, a family of under-resolved eigenvalues (×), which, had they been spatially
well-resolved, would have been eigenvalues belonging to σ0

c and lie on the imaginary axis.
Instead, these eigenvalues lie off the imaginary axis and within the shaded area. These under-
resolved eigenvalues are characterised by non-zero real parts with absolute values typically
greater than 10−10 as a result of numerical discretisation errors. The eigenvalues form clouds
of structures that are symmetric about the imaginary axis. The cloud structures are due
to insufficient spatial resolution, and the absolute values of the real parts of the eigenvalues
tend to increase as the value of q decreases. As M increases, the absolute values of the real
parts of the eigenvalues tend to decrease, and the cloud of eigenvalues gets “squeezed” to the
imaginary axis, which is similar to the “squeeze” observed by Mayer and Powell (1992) when
they increased the number of Chebyshev basis elements in their spectral method calculation.

6.1.1 Discrete eigenmodes

Although σ0
d and the discrete eigenmodes are not the main focus of this research, it is

worthwhile to confirm their convergence properties. Figure 6.1 shows that the discrete
eigenmodes associated with eigenvalues away from the accumulation points (see Gallay &
Smets, 2020, pp. 14-16) (i.e., intersections of the imaginary axis with the lower boundary
of the shaded regions in figure 6.1) are spatially resolved for M ≥ 100, L = 6, and N =
M + 2. For these values of L, M , and N , each eigenvalue approaches a fixed point as
M increases. The discrete eigenmodes are distinguishable from each other by their radial
structures and, in particular, by the number of “wiggles” (intervals between two neighboring
zeroes) as a function of radius. Typically, the eigenmodes with eigenvalues farthest from the
accumulation points have the fewest wiggles, as shown in figure 6.2. The discrete eigenmodes
have an increasing number of wiggles as the eigenvalue approaches the accumulation point,
forming a countably infinite, linearly independent set in the eigenspace of L0

mκ.
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Figure 6.1: Numerical spectra computed with zero viscosity (a) for the Lamb-Oseen vortex (q → ∞) in
(m,κ) = (1, 1.0) and (b) for the strong swirling Batchelor vortex (q = 4.0) in (m,κ) = (2, 3.0) with respect
to M = 100, 200, 300 and 400. L is fixed at 6.0 and N = M + 2. A shaded band in each plot indicates the
non-normal region where σ0

c appears. The larger M we use, the closer the numerical spectra is to their true
shape (see figure 5.1(a)). However, with sufficiently large values of M and with appropriately tuned values
of L, the under-resolved can be corrected, making all eigenvalues lie on the imaginary axis; see figure 6.5.
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Figure 6.2: Radial velocity profiles of the inviscid discrete eigenmodes associated with three largest |Im(σ)|
(a) for the Lamb-Oseen vortex (q → ∞) in (m,κ) = (1, 1.0) and (b) for the strong swirling Batchelor vortex
(q = 4.0) in (m,κ) = (2, 3.0). The maximum of Re(rũr) is normalised to unity. M = 400 and L = 6.0 are
used. The number of “wiggles” in and around the vortex core distinguishes each discrete eigenmode. Note
that, for the eigenmodes that are neutrally stable, the phase of the eigenmodes can be chosen such that the
radial velocity components are made to be either real or pure imaginary for all r.

The eigenmodes with discrete eigenvalues and Im(σ)/m > 0 in figure 6.1 were referred
to as “countergrade” by Fabre et al. (2006). They appear to exist only for eigenmodes with
specific values ofm, includingm = ±1 (see Gallay & Smets, 2020). However, we remark that
these eigenmodes are also legitimate solutions to the problem and can be spatially resolved
using our numerical method, just like those shown in figure 6.2. They are also expected to be
crucial for triad-resonant interactions among the eigenmodes and will be actively considered
in further instability studies.

The numerically computed eigenmodes correspond to the eigenvectors of the 2M × 2M
matrix L0

mκ, which implies that the maximum number of numerical eigenmodes that can
be obtained is 2M under double-precision arithmetic. The number of discrete eigenmodes
that our numerical solver can find increases with an increase in M . For instance, in the
case of a strong swirling Batchelor vortex illustrated in figure 6.1(b), the number of discrete
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Figure 6.3: Radial velocity profiles of three inviscid, critical-layer eigenmodes (a) for the Lamb-Oseen vortex
(q → ∞) in (m,κ) = (1, 1.0) and (b) for the strong swirling Batchelor vortex (q = 4.0) in (m,κ) = (2, 3.0).
The maximum of the real part of rũr is normalised to unity. M = 400, N = M + 2, and L = 6.0 are used.
For each eigenmode, the vertical dashed line indicates the critical layer location rc determined by (5.9). Note
that all of the radial components of the velocity can be made to be real-valued for all r by a proper choice
of phase as they are neutrally stable as well as discrete ones.

eigenmodes (i.e., in the σ0
d spectrum) is 4, 7, 9, and 11 with respect to M = 100, 200,

300, and 400, respectively. This behaviour is expected because a finer spatial resolution is
required to resolve more wiggles in the eigenmode structure. If n wiggles exist in the vortex
core region (r ≤ 1.122), whose non-dimensionalised scale is of order unity, the necessary
spatial resolution to resolve all the wiggles is O(1/n). As ∆ = 2L/(M + 2) ∼ O(1/M) in
our analysis, the proportionality of n to M is verified. The implication of this scaling is that
the number of discrete eigenmodes accounts for only a small portion of the total number of
numerical eigenmodes computed, and the vast majority are associated with the non-regular,
continuous part of the spectrum, σ0

c .
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6.1.2 Inviscid critical-layer eigenmodes

We emphasise that our essential interest lies in eigenmodes with small, but non-zero viscosity.
This ensures that the eigenmodes can be physical and do not have difficult-to-compute
singularities. Nevertheless, it is still intriguing to compute the eigenmodes with ν ≡ 0, which
are numerically (not physically) regularisable by the spatial discretisation. By selecting
a suitably large value of M and an appropriate value for the mapping parameter L (see
§6.2), we can resolve the spatial structure of the inviscid eigenmode outside the critical-layer
singularity neighbourhood well. In addition, the numerical error in the eigenvalue, caused
by the slow decay of spectral coefficients or the Gibbs phenomenon around the critical-layer
singularity, can be kept adequately small and the eigenvalues correctly lie on the imaginary
axis.

Figure 6.3 shows some critical-layer eigenmodes, which were numerically obtained with
M = 400. The real parts of the eigenvalues are zero, and the velocity components are either
real or purely imaginary for all r, with a suitable phase choice. Typically, rc increases as |σ|
decreases along the critical-layer spectrum. The singular behaviour of abrupt slope change
commonly occurs at the critical layer singularity, as predicted analytically by (5.9). As
stated in §2.3, we cannot claim that they are perfectly resolved due to the presence of the
singularity and the continuous nature of their associated spectrum. However, our focus is
not on their exact convergence but rather on their well-behaved spatial structure outside the
neighbourhood of the singularity, achieved by using a large M , along with purely imaginary
eigenvalues that conform to analytic expectations. We use this information later to study
the spatial correspondence of eigenmodes with non-zero viscosity to determine which viscous
eigenmodes are of physical relevance.

For r < rc, the radial velocity components of the inviscid critical-layer eigenmodes oscil-
late in r, and the number of oscillations decreases as the value of rc increases (or equivalently,
as |σ| decreases). Consequently, when rc > rcc for some value rcc, there is no longer one full
oscillation. In our numerical investigation, we found that for the Lamb-Oseen vortex with
(m,κ) = (1, 1.0), rcc equals 2.2, which corresponds to σ = −0.21i. We believe that our
numerically found value of rcc approximately coincides with the theoretical threshold of
r = 2.124, at which the analytic solutions obtained by the Frobenius method change form
regarding the roots of the indicial equation (see Gallay & Smets, 2020, p. 20 and p. 50). For
r > rc, the radial velocity components of the critical-layer eigenmodes are not oscillatory,
and the amplitudes of rũr achieve the local maximum or minimum values close to r = rc,
before decreasing monotonically as rapidly as those of the discrete eigenmodes, as shown in
figure 6.2.

6.1.3 Under-resolved eigenmodes

The under-resolved eigenmodes, which, if resolved, would be part of the spectrum with
σ0
c , have eigenvalues in the complex σ-plane on either side of the imaginary axis in the

shaded region in figure 6.1. The eigenvalues come in pairs, with one unstable and one stable
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eigenmode. The reflection symmetry with respect to the imaginary axis is due to the fact
that the analytic operator L0

mκ is time-reversible (cf. Bölle et al., 2021, p. 10). Therefore, the
eigenmode (ũr, ũϕ, ũz, p̃) with eigenvalue σs corresponds to the eigenmode (ũ∗r,−ũ∗ϕ,−ũ∗z,−p̃∗)
with eigenvalue −σ∗

s .
Some examples of under-resolved eigenmodes are shown in figure 6.4. These eigenmodes

are qualitatively incorrect because (1) unlike the eigenmodes in figure 6.2 and figure 6.3,
there is no choice of phase that makes their radial components real for all r, and more
importantly, because (2) we know that their eigenvalues should be purely imaginary when q
is sufficiently large, and they are not. However, these eigenmodes appear to exhibit no other
distinguishing properties, except for the two properties listed above, from the inviscid critical-
layer eigenmodes in figure 6.3. It should be noted that they have been called “spurious” in
previous numerical studies (see Mayer & Powell, 1992; Heaton, 2007a), of which the usage
was similar to our clarification given in §2.3. However, instead of following convention, we
propose naming these numerical eigenmodes “under-resolved” eigenmodes of the continuous
part of the inviscid spectrum. In this way, we put more emphasis on the fact that adjusting
the numerical parameters can “correct” these eigenmodes so that neither of the two key
properties listed above applies.

By examining the spatial structure of the under-resolved eigenmodes, we can detect
sudden changes in slope at the critical-layer singularity point at r = rc. The value of rc is
obtained by setting the imaginary part of either of the eigenvalues Im(σs) to σc in (5.9). The
break in slope confirms that the under-resolved eigenmodes originate from σ0

c and indicates
that they have lost their neutrally stable property due to numerical errors at the critical-layer
singularity.

Correcting the under-resolved eigenmodes is crucial, not only for correctly evaluating σ0
c

but also for the following reasons. Despite their invalid origin, half of the under-resolved
eigenmodes in Re(σ) > 0 erroneously suggest that the wake vortex is linearly unstable. In
the future, we plan to use the computed velocity eigenmodes from the present numerical
method to initialise an initial-value code that solves the full nonlinear equations of motion
given by (3.1.6) and (3.1.7). Inappropriately computed eigenmodes that grow erroneously,
rather than remain neutrally stable, are likely to corrupt these calculations.

6.2 Correction of the under-resolved eigenmodes

An intriguing question is whether the under-resolved eigenmodes tend towards something as
M increases. What is the potential outcome of such convergence? In the beginning of this
section, it was argued that the real part of eigenvalues remains at zero (i.e., all eigenmodes
are neutrally stable) when q is sufficiently large. In figure 6.1, this can be observed as
the “squeeze” of the eigenvalue cluster towards the imaginary axis. However, we have also
indicated that the imaginary part of eigenvalues may not converge to a fixed point, instead
continuing to evolve along the imaginary axis. Therefore, instead of concentrating on the
convergence of individual under-resolved eigenmodes to a fixed point, it is more pragmatic
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Figure 6.4: Radial velocity profiles of two inviscid under-resolved eigenmodes whose eigenvalues are sym-
metric about the imaginary axis (a) for the Lamb-Oseen vortex (q → ∞) in (m,κ) = (1, 1.0) and (b) for
the strong swirling Batchelor vortex (q = 4.0) in (m,κ) = (2, 3.0). The maximum of the real part of rũr is
normalised to unity. M = 400 and L = 6.0 are used. For each eigenmode, an abrupt slope change occurs at
the vertical dashed line at the critical layer location, r = rc (which is determined from (5.9) by ignoring the
real part of the eigenvalue), indicating that they will become correct critical-layer eigenmodes given more
resolution.

to aim to “correct” the set of eigenmodes as a whole, that is, to restore their neutrally stable
nature. The “correction” means that we comprehensively treat the entire set of eigenmodes
as a single entity, which complies with the usage of this term in this section up to this point.

To “correct” the under-resolved eigenmodes, We first consider increasingM to its largest
possible value within the available computing resources. However, increasing M is generally
undesirable because it always comes at a steep computational expense; the cost of finding the
eigenmodes is proportional to (2M)3. Instead, we may consider dealing with the mapping
parameter L, where the novelty and usefulness of our method come from. L controls the
spatial resolution locally as a function of r. As seen from the resolution parameter ∆ in
(4.2.4), L controls the spatial resolution by providing more resolution near the radial origin
(i.e., 0 ≤ r < L). It is important to note that changing or tuning L does not affect the cost
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of computation.
For a fixed M , with N = M + 2, figure 6.5 shows five numerical eigenvalue spectra for

two prescribed cases with different values of L, varying from 1.0 to 5.0. Overall, decreasing
L brings the numerical spectra closer to the imaginary axis. In particular, some values of
L enable complete resolution of σ0

c on the imaginary axis, which cannot be achieved by
increasing M within a modest computing budget. However, decreasing L does not always
shrink the clouds of eigenvalues closer to the imaginary axis. We separate the numerically
computed eigenvalues and eigenmodes into two categories: those with the critical layer
r = rc located in the high-resolution region 0 ≤ r < L, and those where rc is in the low-
resolution region r ≥ L. Figure 6.5 indicates this separation with horizontal dashed lines.
For the former, the cloud structures vanish as L decreases, and σ0

c is correctly resolved. In
contrast, for the latter, the cloud structures persist or even recur if L is too small, resulting
from excessive concentration of collocation points solely around the center. Once σ0

c is
satisfactorily resolved, adjusting L should stop to keep the portion of σ0

c resolved in the
high-resolution region as large as possible. For instance, in figure 6.5, we propose setting
L between 3.0 and 4.0 for the Lamb-Oseen vortex case and between 1.0 and 2.0 for the
Batchelor vortex case.

To provide a detailed explanation of what we have seen, we must revisit the differences
in the way M and L operate in the current numerical method, as stated in §4.3. One of the
roles of L is to serve as a tuning parameter for spatial resolution in physical space, whereas
M determines the number of basis elements used in spectral space. Increasing M allows us
to handle eigenmodes with more complex shapes, such as (nearly) singular functions, which
often have more wiggling and are thus more numerically sensitive. M has only an indirect
effect on spatial resolution through N , which is required to be greater than or equal to M .
On the other hand, the critical-layer singularity is essentially a phenomenon that occurs
in physical space. Although using more spectral basis elements relates to improving spatial
resolution because we set N =M+2, the main contribution to dealing with the critical-layer
singularity with minimal errors comes from the latter. Therefore, it can be more effective to
use L to directly control resolution and suppress the emergence of under-resolved eigenmodes,
rather than using M . It is worth noting that increasing N to very large values while keeping
M constant can also reduce the number of under-resolved eigenvalues to some extent. This
observation supports that high spatial resolution is crucial for suppressing under-resolved
eigenmodes.

If one aims to correct the under-resolved eigenmodes and obtain σ0
c using the present

numerical method, the following steps are suggested to properly set up the numerical pa-
rameters. Assuming that M is already at the practical maximum due to finite computing
budget, and N follows M + 2:

1. Start with an arbitrarily chosen value of L and gradually decrease it if under-resolved
eigenmodes exist, until they vanish in the high-resolution region 0 ≤ r < L. This step
improves spatial resolution, helping to identify the critical-layer singularity with less
numerical error despite the discretisation.
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Figure 6.5: Numerical spectra computed at zero viscosity (a) for the Lamb-Oseen vortex (q → ∞) in
(m,κ) = (1, 1.0) and (b) for the strong swirling Batchelor vortex (q = 4.0) in (m,κ) = (2, 3.0) with respect
to L = 5.0, 4.0, 3.0, 2.0 and 1.0. M is fixed at 400 and N = M + 2. n each plot, a shaded band indicates
the non-normal region in which σ0

c appears, and a horizontal dashed line represents the threshold used to
determine if the critical layer r = rc is located within the high-resolution region 0 ≤ r < L. It should be noted
that there is a one-to-one correspondence between a critical-layer eigenvalue σ and a critical-layer radius rc,
as seen in (5.9). Furthermore, rc approaches zero at the bottom of the shaded band, Im(σ) = m+ κ/q, and
monotonically increases towards infinity as |σ| becomes smaller. By tuning L, under-resolved eigenmodes
can be corrected without requiring additional computing resources.
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2. If there are no eigenvalue clouds around the imaginary axis, increase L as long as they
do not appear in the numerical spectra. This step expands the high-resolution region
where the critical-layer singularity can be accurately treated.

6.3 Pairing in the inviscid critical-layer spectrum

In the numerical spectrum of σ0
c , we observe that numerical eigenvalues tend to appear

in pairs. This pairing phenomenon is demonstrated in the left panel of figure 6.6, which
illustrates the Lamb-Oseen vortex case with (m,κ) = (1, 1.0) that we computed with M =
400 and L = 3.0 (see figure 6.5(a)). We argue that the pairing in our numerical results
arises from a degeneracy resulting from the critical-layer singularity. We refer to Gallay and
Smets (2020, pp. 19-21), who used the Frobenius method to construct analytic solutions
to the problem under the assumption of non-zero m and κ with q → ∞. They showed
that if a critical-layer singularity occurs at r = rc, there exists a unique solution with scalar
multiplication that is only non-zero on (0, rc) and another one that is only non-zero on
(rc,∞). Here we call them inner and outer solutions, respectively. For both the inner and
outer solutions, the radial velocity components can be made real-valued by an appropriate
choice of phase, since their degenerate eigenvalue is purely imaginary. These two solutions
are independent of each other, and their linear combination should be the general form of
an inviscid critical-layer eigenmode that is singular at r = rc.

We can observe these analytic characteristics in our numerically computed pairs. In the
right panel of figure 6.6, we present the rũr profiles of the critical-layer eigenmodes from
two neighboring pairs. In each pair, the velocity profiles have an abrupt change in slope
across an interval between two collocation points, whose location matches the critical-layer
singularity radius calculated by (5.9). The difference in rc among the neighboring pairs
corresponds to the collocation interval, indicating their continuous emergence. Furthermore,
by linearly combining these paired eigenmodes, we can construct the inner and outer solutions
as derived analytically, each of which is approximately zero on (0, rc) or (rc,∞). Although
their eigenvalues are slightly different, we believe that it is due to the numerical error resulting
from the spatial discretisation, which slightly breaks the degeneracy. This error decreases
with increasing M .

Strictly speaking, the discussion made here is limited to infinite q, because the analytic
results found in Gallay and Smets (2020) were verified in the Lamb-Oseen vortex case, and
we can only compare this case. Nonetheless, we remark that we have numerically observed
this same pairing phenomenon with finite q (e.g., q = 4.0). We conjecture that the pairing
phenomenon exists for values of q where the eigenmodes are all neutrally stable.
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Figure 6.6: (a) Numerical inviscid spectra with no under-resolved eigenmodes for the Lamb-Oseen vortex
(q → ∞) in (m,κ) = (1, 1.0) along with a magnified part exhibiting the pairing phenomenon, and (b) four
radial velocity profiles of the critical-layer eigenmodes from two neighboring pairs, labelled as A1/2 and
B1/2. Here, M = 400, L = 3.0, and N = M + 2. Note the similarity in structure within each pair, and
the change in the critical layer location (marked by vertical dashed lines) by one collocation point between
these neighboring pairs. This pairing phenomenon stems from the singular degeneracy in σ0

c . The linear
combination of the pair constructs two independent solutions that are singular at the same critical-layer
location and are nearly zero on either (0, rc) or (rc,∞).
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Chapter 7

Viscous linear analysis

We numerically examine the viscous eigenvalue problem σ [Pmκ(ũ)] = Lν
mκ [Pmκ(ũ)] by study-

ing the spectra of the discretised operator Lν
mκ and their associated eigenmodes. Due to

viscous regularisation, the viscous eigenmodes do not exhibit critical-layer singularities. In-
stead, at or near the locations where the inviscid critical layer would have been, the viscous
eigenmodes have thin layers characterised by large amplitudes and small-scale oscillations,
with widths proportional to Re−1/3 (Maslowe, 1986; Le Dizès, 2004). Note that the Re−1/3

law is a well-established analytic principle, similar to the Re−1/2 law for the laminar vis-
cous boundary layer thickness. Several classic textbooks have already provided an in-depth
description of this principle (see Lin, 1955; Drazin & Reid, 2004).

The families of viscous eigenmodes are not just small corrections to the inviscid eigen-
modes; the addition of the viscous term, despite being small for Re−1, serves as a singular
perturbation (Lin, 1961). This is because it increases the spatial order of the set of equations
that govern the eigenmodes. Therefore, the linear stability features of wake vortices from
vanishing viscosity can differ from the purely inviscid instability characteristics (see Fabre &
Jacquin, 2004, p. 258). It is well known that exactly inviscid flows where ν ≡ 0 often behave
quite differently from high Reynolds number flows where ν → 0+. In particular, not only
do the locations of the eigenvalues in the complex σ-plane change, but new families can also
be created. One example is the freestream spectrum σν

f shown in figure 5.1. This spectrum
consists of non-normalisable eigenmodes that do not vanish as r → ∞ and is mathemati-
cally derivable. However, its non-physical behaviour at radial infinity renders it unsuitable
for computation using our method. Otherwise, all other families that we depicted in figure
5.1 are in the scope of the analysis.

Mao and Sherwin (2011) and Bölle et al. (2021) reported that the inviscid critical-layer
spectrum σ0

c changes with viscosity and spreads to an area on the left half-plane of the com-
plex σ-plane, which they called the potential spectrum σν

p . In this section, we demonstrate
that our numerical method can produce randomly scattered eigenvalues, which represent σν

p

numerically as reported by previous authors, and investigate their spatial characteristics.
Also, we identify and describe the viscous critical-layer eigenmodes associated with the spec-
trum σν

c (see figure 5.1), which, to the best of our knowledge, have not been distinguished
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before.

7.1 Numerical spectra and eigenmodes

The Lamb-Oseen vortex with (m,κ, q) = (1, 1.0,∞) and the strong swirling Batchelor vortex
with (m,κ, q) = (2, 3.0, 4.0) are analysed at Re = 105. As with the prior inviscid analysis,
our aim is to identify common characteristics in the linear vortex dynamics with viscosity
for large q and moderate m and κ. In the current analysis, however, we have a specific
focus on the physical relevance of each eigensolution. To observe how the viscous numerical
spectra converge, we compute four numerical spectra for each case, with different values of
M ranging from 100 to 400. The spectra are presented in figure 7.1, or movie 1. Movies of
the spectrum animations are provided with the supplementary material available at S. Lee
and Marcus (2023). Based on these spectra, we classify the numerical eigenmodes into five
families: unresolved (−), discrete (+), spurious (×), potential (2), and viscous critical-layer
(•). Note that with increasing numerical resolution, an eigenmode in the unresolved family
will always evolve into an eigenmode in one of the other four families.

The eigenvalues in the discrete spectrum, σν
d , converge to fixed points with increasing

M . These eigenvalues populate two distinct discrete branches shown near the bottom of the
panels in figure 7.1, in addition to a few locations outside of these branches. The eigenmodes
in the discrete spectrum were known previously and were studied by other authors. For
example, according to Fabre et al. (2006), the lower branch was designated as the C-family,
while the upper one was labelled the V-family.

With viscosity, none of the eigenmodes have critical-layer singularities as they are regu-
larised, and no eigenvalues lie exactly along the imaginary axis. In the non-normal region,
the spectrum of eigenmodes, σν

p , that we have labelled as potential, occupies an area in the
complex σ-plane that stretches out towards Re(σ) → −∞ as M increases. However, unlike
the region shown in the schematic in figure 5.1, there is a gap between the upper bound of
this numerical spectrum and the real axis on which the freestream spectrum σν

f is located.
The reason is that we force solutions to vanish at radial infinity due to the decaying nature
of the spectral basis elements. Therefore, the gap should be considered a peculiar product of
our numerical method that excludes solutions with decay rates that are too slow in r, such
as those with velocity decaying slower than O(r−1) in r and ϕ, or O(r−2) in z in the far field;
see (3.3.8) in §3.3.

The fact that the numerically computed eigenvalues in σν
p shift towards the left side of

the complex σ-plane as M increases coincides with Mao and Sherwin (2011). Additionally,
the number of potential eigenmodes increases with increasing M . Up to the largest value
of M that we have explored, the numerical eigenvalues in σν

p tend to emerge randomly.
This random scattering can be understood as the spectrum’s extremely high sensitivity to
numerical errors even in the order of machine precision (see §7.4.1).

On the other hand, we observe a moving branch of numerical eigenvalues attached to the
left end of σν

p . They also never converge with respect to M , and the values of their |Re(σ)|
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Figure 7.1: Numerical viscous spectra at Re = 105 (a) for the Lamb-Oseen vortex (q → ∞) in (m,κ) =
(1, 1.0) and (b) for the strong swirling Batchelor vortex (q = 4.0) in (m,κ) = (2, 3.0) with respect to
M = 100, 200, 300 and 400. L is fixed at 2.0 and N = M + 2. Larger M enables more portion of the
spectra to be resolved. Near the right boundary of the potential spectrum there are two distinct branches
of the viscous critical-layer spectrum. See movie 1 (available at S. Lee & Marcus, 2023) for animation.
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increase rapidly. We explicitly label them as spurious because of their absolutely irregular
spatial characteristics, as shown later in §7.1.2. Although they are not removable, we can
pull them away by setting M to a large value.

Last but not least, we report the presence of two new distinct branches of viscous critical-
layer eigenvalues, which are seen on the right side of the area containing the potential eigen-
values. The two branches of these eigenvalues, σν

c , as depicted in figure 5.1, converge to
distinct loci. We distinguish σν

c from σν
p because of their unique bifurcating shape. Fur-

thermore, this is the only part of the spectra in the non-normal region that approach fixed
points at finite M , along with the discrete spectrum. As the name suggests, we argue that
their associated eigenmodes are not only non-spurious but also physical, since they are the
true viscous remnants of the inviscid critical-layer eigenmodes, as explained with details in
§7.1.4.

7.1.1 Discrete eigenmodes

Figure 7.2 presents three viscous discrete eigenmodes with respect to each base flow, whose
spatial structures are inherited from the inviscid discrete eigenmodes displayed in figure 6.2.
They remain non-singular throughout the whole radial domain. Viscosity only marginally
affects the spatial structures of these eigenmodes compared to their inviscid counterparts,
making the velocity components have slightly non-zero imaginary parts due to viscous per-
turbation. The number of wiggles in the eigenmodes still determines their spatial character-
istics. Moreover, those eigenmodes with more wiggles near r = 0 are more stable over time,
i.e., |Re(σ)| increases. This phenomenon is physically justifiable since the spatial gradient of
velocity components becomes steeper when the spacing between the wiggles is reduced, and
viscous diffusion should, therefore, be more intensive. These eigenmodes are physical as they
are regular, well-resolved solutions to the linearised Navier-Stokes equations on the q-vortex.
They are typically characterised by modest wiggles that are spatially resolved, have rapid
monotonous decay in r, and clearly correspond to the inviscid discrete eigenmodes associated
with σ0

d.

7.1.2 Spurious eigenmodes

Two numerically computed eigenmodes that represent the viscous spurious eigenmodes are
shown in figure 7.3. We have not observed any signs of convergence up to M = 400.
These eigenmodes are not spatially resolved, as evidenced by irregularly fast oscillations
that alternate at every collocation point. It is apparent that they are neither analytically
nor physically meaningful. Therefore, we will not perform an in-depth analysis of them.

7.1.3 Potential eigenmodes

Next, we examine the numerical eigenmodes associated with σν
p , or the potential eigenmodes.

If we look at the randomly scattered eigenvalues while increasing M , it is possible to ob-
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Figure 7.2: Radial velocity profiles of the viscous discrete eigenmodes associated with three smallest Im(σ)
(a) for the Lamb-Oseen vortex (q → ∞) in (m,κ) = (1, 1.0) and (b) for the strong swirling Batchelor vortex
(q = 4.0) in (m,κ) = (2, 3.0). The maximum of Re(rũr) is normalised to unity. M = 400 and L = 2.0 are
used. Compare with the inviscid counterparts in figure 6.2, and notice that viscosity only marginally affects
these eigenmodes.

serve common spatial characteristics of these eigenmodes that are spatially resolved with
a sufficiently large value of M , unlike the spurious family mentioned above. Figure 7.4
presents the three representative potential eigenmodes for each vortex case, using M = 400.
We note that we have selected eigenmodes whose smallest wiggle is captured with more
than two collocation points to ensure that we validly discuss their common spatial features.
These eigenmodes are characterised by excessive wiggles, resulting in slow radial decay rates
(cf. Mao & Sherwin, 2011). They exhibit generally faster decay rates in time (i.e., larger
|Re(σ)|) than the discrete ones, as more wiggles demand steeper spatial gradients vulnerable
to viscous diffusion.

The potential eigenmodes have wiggles that are usually concentrated roughly near the
inviscid critical-layer singularity locations, which is estimated by setting their Im(σ) to σc in
(5.9). In other words, as noted by Mao and Sherwin (2011), they take the form of “wavepack-
ets,” whose major oscillatory components are localised both in physical and spectral spaces.
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Figure 7.3: Radial velocity profiles of a representative viscous spurious eigenmode (a) for the Lamb-Oseen
vortex (q → ∞) in (m,κ) = (1, 1.0) and (b) for the strong swirling Batchelor vortex (q = 4.0) in (m,κ) =
(2, 3.0). The maximum of Re(rũr) is normalised to unity. M = 400 and L = 2.0 are used. Non-trivial
and irregularly fast oscillations with alternating sign at every collocation point, as shown in each inset for
magnification, manifest that they are spurious.

The correspondence between these “wavepackets” and the inviscid critical-layer singularity
locations leads us to posit that the potential eigenmodes originate from the viscous regulari-
sation of the critical layers. From a mathematical standpoint, the introduction of the viscous
term serves only to ensure their regularisation and does not impose any restrictions on their
appearance following regularisation, such as thickness and wave amplitude. This may explain
why potential eigenmodes exhibit various wavepacket widths at different locations.

In figure 7.4, the first and second eigenmodes have similar decay rates in time, i.e.,
Re(σ1) ≃ Re(σ2), which relates to the fact that they also have a similar number of wiggles at
their major oscillatory positions. On the other hand, the second and third eigenmodes have
similar wave frequencies, i.e., Im(σ2) ≃ Im(σ3), which means that their major oscillatory
locations are close. As the number of wiggles increases, |Re(σ)| becomes large, and the
major oscillatory structure extends to a wide range in r. This extension likely contributes
to the retardation of radial decay rates, as the wiggles remain at large radii in small scales
(see the insets in figure 7.4).

There are several noteworthy factors that should be pointed out regarding the spatial
characteristics of these eigenmodes. Although they appear physical, they make it difficult
to believe that they are the true viscous remnants of the inviscid critical-layer eigenmodes.
First, potential eigenmodes’ wavepackets can have varying widths even at the same Re,
indicating the absence of a clear scaling relationship between wavepacket widths and the im-
portant physical parameter Re. Second, it is challenging to identify a clear spatial similarity
to the inviscid critical-layer eigenmodes. The typical radial decaying behaviour of the viscous
eigenmodes appears slow and oscillatory, as shown in figure 7.4, in contrast to the inviscid
critical-layer eigenmodes that exhibit monotonically rapid radial decay (see figure 6.3). We
postulate that the rapid radial decaying behaviour in σ0

c must be sustained for its true vis-
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Figure 7.4: Radial velocity profiles of three viscous potential eigenmodes (a) for the Lamb-Oseen vortex
(q → ∞) in (m,κ) = (1, 1.0) and (b) for the strong swirling Batchelor vortex (q = 4.0) in (m,κ) = (2, 3.0).
The maximum of Re(rũr) is normalised to unity with the use of M = 400 and L = 2.0. The first and middle
two potential eigenmodes exhibit similar Re(σ), and their number of major oscillations is comparable. The
middle and last two eigenmodes have similar Im(σ), and their major oscillatory positions are similar. Each
vertical dashed line indicates the critical layer location rc, which is estimated by setting each Im(σ) to σc in
(5.9). Each inset within a dashed box reveals small-amplitude wiggles where rũr ∼ O(10−5) that persist at
large r even when the amplitude seems to be nearly zero, indicating their slow radial decay rates.
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cous remnants since the viscous regularisation effect should be highly localised around the
critical-layer singularity. Therefore, a subsequent question should arise as to which other
eigenmodes in the non-normal region can be considered the true viscous remnants of σ0

c . As
the name suggests, we claim that the viscous critical-layer eigenmodes associated with σν

c

offer the answer, which we set forth in the following.

7.1.4 Viscous critical-layer eigenmodes

Figure 7.5(a) shows two viscous critical-layer eigenmodes of a Lamb-Oseen vortex with values
of Im(σν

c ) that are within 6% of each other. Due to the closeness of their eigenvalues and
their similar appearances, we believe that they evolved from a pair of degenerate inviscid
critical layer eigenmodes. The eigenvalue of the eigenmode in the upper row of figure 7.5(a)
is in the left branch, while the lower row is in the right branch of σν

c in figure 5.1 and
figure 7.1. We believe that the regions of large amplitude oscillations shown in the middle
column of figure 7.5(a) are the true remnants of the inviscid critical layers.

The central locations of the critical layers in the middle column of figure 7.5(a), which we
define as the centroid of the magnitude of rũr, are nearly equal to the inviscid critical-layer
singularity locations rc, as estimated by setting Im(σν

c ) to σc in (5.9). An important qualita-
tive difference from the potential eigenmodes in figure 7.4 and the critical-layer eigenmodes
is that in the radial regions outside the large amplitude oscillations, the viscous critical-layer
eigenmodes decay monotonically, while the decay of the potential eigenmodes is highly os-
cillatory. Figure 7.5(b) shows two eigenmodes of the Batchelor vortex, which have similar
eigenvalues (differing by only 6%). Their properties are similar to those of the eigenmode of
the Lamb-Oseen vortex.

These numerical eigenmodes and eigenvalues exhibit good convergence with increasing
M and are spatially resolved. For physical relevance, it is worthwhile to investigate their
structures outside the remnant critical layers. By normalising the oscillation amplitude in the
remnant critical layer to be of order unity, we can identify small-scale perturbation structures
outside the critical layer of O(10−5) or less. We note the similarity in shape of these small-
scale perturbations to the inviscid critical-layer eigenmodes of similar Im(σ) (see the middle
column of panels in figure 6.3), where each part in (0, rc) and (rc,∞) appears to be a scalar
multiple of each side of the inviscid solutions (see §6.3). This is one indication that the viscous
critical-layer eigenmodes are truly inherited from the inviscid critical-layer eigenmodes. Note
that viscosity has a profound influence on the structure of the eigenmode at radial locations
inside the remnant critical layer, where it locally regularises the critical layer’s singularity, but
viscosity has only marginal impact on the eigenmode at radial locations outside the remnant
critical layer. Therefore, we expect the inviscid critical-layer eigenmodes (in figure 6.3) and
the viscous critical-layer eigenmodes (in figure 7.5) to look similar in the regions outside the
critical layer.

As can be seen in the viscous spectra, the decay rates in time of the viscous critical-layer
eigenmodes are comparable to those of the viscous discrete eigenmodes, indicating that they
can last for a relatively long time against viscous diffusion. Moreover, when comparing an
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Figure 7.5: Two viscous critical-layer eigenmodes with nearly identical Im(σ). (a) Radial component of the
velocity eigenmode of the Lamb-Oseen vortex (q → ∞) with (m,κ) = (1, 1.0) and (b) of the Batchelor vortex
(q = 4.0) with (m,κ) = (2, 3.0). The maximum of Re(rũr) is normalised to unity. M = 400 and L = 2.0 are
used. Each vertical dashed line indicates the location of the viscous critical layer estimated by setting Im(σ)
equal to σc in (5.9). Those locations are nearly equal to the centroid of the magnitude of rũr. Due to the
similarity of the shape of small-amplitude structures in the right and left columns, where rũr ∼ O(10−5), to
the inviscid critical-layer eigenmodes (compare them with the middle column panels in figure 6.3(a) and (b),
respectively), we hypothesise that these nearly degenerate viscous critical-layer eigenmodes are the viscous
analogues of the inviscid two-fold degenerate critical-layer eigenmodes.
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eigenmode in the left branch with another in the right branch of σν
c , no notable structural

difference is observed between them. This observation is further supported by the fact that
these eigenmodes lie in the non-normal region. A more detailed analysis of the viscous
critical-layer eigenmodes is presented later in this research, dealing with L and including
the viscous remnant critical layers conforming to the Re−1/3 scaling law (see §7.2) and the
continuity of the viscous critical-layer spectrum σν

c (see §7.4).
If σν

c is the truly regularised descendant of σ0
c with the correct critical layer thickness,

an important question that remains to be answered is how the spectrum of a single straight
line bifurcates into two distinct branches. This bifurcation is physically meaningful because
the separation of the branches, or equivalently the difference in Re(σ), is significantly larger
compared to the extent of purely numerical error at the same level of M , such as the eigen-
value difference found in the pairing phenomenon in σ0

c (see figure 6.6). Recall that there
exist numerous singular, degenerate eigenmodes associated with the same eigenvalue due
to the critical-layer singularities in σ0

c . We can infer that the viscous effect perturbs these
two-fold degenerate singular eigenmodes and splits them into two regularised eigenmodes
with marginally different eigenvalues. Hence, we expect that the emergence of σν

c in two
bifurcating curvy branches is not accidental but explicable by means of perturbation theory
dealing with two-fold degeneracy (Sakurai & Napolitano, 2021, pp. 300-305).

It is worth discussing why σν
c was not distinguished by previous researchers. When we

compare our numerical method with that of Mao and Sherwin (2011) or Bölle et al. (2021), we
see that they truncated the radial domain at a large but finite r and applied a homogeneous
boundary condition there. In contrast, our method essentially involves the entire radial
domain 0 ≤ r <∞, and each basis function P n

Lm
(r) obeys the boundary conditions that we

want to apply. As a result, our truncated spectral sums, expanded by P n
Lm

(r) as the basis
elements of the Galerkin method, implicitly and exactly impose the boundary conditions on
the solutions, regardless of the value ofM used. However, the boundary condition at r → ∞
is only approximately satisfied by the others. Considering the sensitivity of the numerical
spectra to numerical errors (see §7.4.1), the truncation is likely to impede the numerical
convergence of σν

c because an approximate far-field radial boundary condition introduces
errors. For instance, in the numerical spectrum plot provided by Mao and Sherwin (2011,
p. 8), we can see faint traces of the two bifurcating branches at the location of σν

c found in
our results. Nonetheless, the results were substantially disturbed with respect to the radial
truncation as well as the number of spectral elements, and the authors could not distinguish
them from σν

p .

7.2 Optimal choice of L to resolve the viscous critical

layers

One of our goals is to accurately compute the viscous critical-layer modes. Clearly, we
should use the largest M (with N ≡ M + 2) that our computational budget allows, which
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in this analysis is M = 400. We are interested in finding all of the viscous critical layer
eigenmodes and eigenvalues, not just one, nor are we interested in finding them one-at-
a-time. Unlike previous studies that looked at individual eigemmodes and stretched the
radial domain locally around the location of that eigenmode’s critical layer to maximise the
resolution there (e.g., Le Dizès & Lacaze, 2005), our numerical method is designed for a fixed
Re, m, and κ to compute the entire radial domain for all of the eigenmodes, regardless of
the locations of their critical layers, using the same radial collocation points.

Choosing a small value of L is advantageous because the spatial resolution of our method
is ∆ = L/(M+2) (see (4.2.4)), and we need to have ∆ smaller than the critical-layer thickness
to resolve it. However, only half of the collocation points lie in the vast range between L
and infinity, so eigenmodes with critical-layer radii with rc > L will have few collocation
points (if any) within their critical layers and therefore be spatially under-resolved. The
optimal value of L, denoted Lopt, must be a “Goldilocks” value: not too big or too small.
Figure 7.6 demonstrates another reason why Lopt is a “Goldilocks” value. The figure displays
the eigenvalues in the imaginary plane for Re = 105 with three different values of L. The
left column of the figure represents a scenario where L is small, and viscous critical-layer
eigenmodes with small rc (and therefore large |σν

c |; see (5.9) - (5.10)) are spatially well-
resolved. However, eigenmodes with small values of |σν

c | and large rc are not adequately
resolved. The right column of the figure shows the case with a large L. In this case, only
eigenmodes with small |σν

c | and large rc are well-resolved.
Nevertheless, figure 7.6 reveals another reason for the “Goldilocks” behaviour. The panels

in the left column exhibit a clear separation between the potential eigenvalues σν
p and the

two new branches of viscous critical-layer eigenvalues σν
c . As L increases, the potential

eigenvalues shift towards the right in the complex plane (middle column). When L becomes
sufficiently large, the potential eigenvalues become intertwined with those of the viscous
critical-layer eigenmodes (right column), and the latter set of eigenmodes are no longer
well-resolved spatially.

Upon detailed examination of the viscous critical-layer eigenmodes of the Lamb-Oseen
vortex with (m,κ) = (1, 1.0) and the Batchelor vortex with (q = 4.0) and (m,κ) = (2, 3.0),
with M = 400 and Re = 105, we found that ∆ = L/(M + 2) is just small enough to
resolve the viscous critical-layer thicknesses when L = 4.0 and 2.5, respectively. Figure 7.6
illustrates that these values of L also represent the maximum values where the eigenvalues of
the potential eigenmodes remain distinct from those of the viscous critical-layer eigenmodes.
Thus, we believe that these values of L are the “Goldilocks” values: large enough to maximise
the region 0 ≤ rc < L, providing a sufficient number of collocation points to resolve the
eigenmodes, and small enough that ∆ = L/(M + 2) adequately resolves the critical-layer
thicknesses. Our procedure for determining the optimal value Lopt is similar to how we found
the optimal L for resolving the inviscid critical-layer eigenvalues σ0

c in § 6.2:

1. Start with L of order unity (i.e., the core radius of the unperturbed aircraft wake
vortex), and increase L to expand the high-resolution region 0 ≤ rc < L.
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2. Stop increasing L just before the spatial resolution is so poor that the σν
p and σν

c

eigenvalues intertwine as shown in the middle panels of figure 7.6.

7.3 Use of Lopt to find the scaling behavior of the

critical layer thickness with Re

We hypothesise that the values of L at which the potential and viscous critical-layer eigen-
values intermingle in figure 7.6 and where L/(M + 2) just barely resolves the critical layer
thickness are the same for all Re. We believe that the loss of numerical spatial resolution
causes the two families of eigenvalues to become non-distinct from one another. To partially
test this hypothesis, we calculate Lopt using the two-step procedure mentioned above, using
the data in figure 7.6 and figure 7.7. We then assume that ∆opt ≡ Lopt/(M + 2) represents
the critical layer thickness. Plotting ∆opt as a function of Re in figure 7.8 demonstrates that
the critical layer thickness (if our hypothesis is correct) scales approximately as Re−1/3. This
scaling agrees with previous analyses using asymptotic expansions (Maslowe, 1986; Le Dizès,
2004).

7.4 Continuity in the viscous critical-layer spectrum

7.4.1 Pseudospectral analysis

Finding the pseudospectra of the viscous operator Lmκ, we can obtain evidence that the
spectra σν

p and σν
c fill the continuous region in the complex σ-plane, as depicted in the

schematic in figure 5.1. According to Mao and Sherwin (2011), the ε-pseudospectra around
the potential and critical-layer eigenvalues seem to enclose the entire area when ε is small,
as shown in figure 7.9. In addition, we present the ε-pseudospectrum with ε as small as
10−14, which is much smaller than the values used by Mao and Sherwin (2011) or Bölle et al.
(2021). Therefore, we believe that our observation provides strong empirical support for the
continuity of the non-normal region that we have numerically resolved.

Furthermore, based on the alternative statement of the pseudospectra given by Trefethen
and Embree (2005), any point in the ε-pseudospectra of Lmκ can be on the spectrum of
Lmκ+E for some small disturbance E where ∥E∥ < ε. Since ε = 10−14 is almost comparable to
the double-precision machine arithmetic used in modern computing, one possible explanation
for the random scattering of the numerical eigenvalues in the numerical representation of σν

p

is that they are perturbed by machine-dependent precision errors serving as E.
As an aside, we observe that the ε-pseudospectrum of ε = 10−2 protrudes into the right

half-plane of the complex σ-plane, as shown in figure 7.9. It is well-known that the supremum
of the real parts of σ ∈ σε(Lmκ), denoted αε and referred to as the ε-pseudospectral abscissa
(Trefethen & Embree, 2005), is relevant to the lower bound of the maximum transient growth
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Figure 7.6: Changes of numerical viscous spectra (a) for the Lamb-Oseen vortex (q → ∞) in (m,κ) = (1, 1.0)
and (b) for the strong swirling Batchelor vortex (q = 4.0) in (m,κ) = (2, 3.0) with respect to three different
L values. For animation, see movie 2. M is fixed at 400 and N = M + 2. If we aim to optimally resolve
the critical-layer spectrum, we should appropriately tune L to find a balance between (left) the expansion
of the high-resolution region 0 ≤ r < L, and (right) the deterioration of the overall resolution represented
by ∆ ∼ O(L). The middle one shows the optimal L, denoted Lopt, which minimises the emergence of the
numerical potential spectrum. Thus, most numerical eigenvalues in the non-normal region belong to the
viscous critical-layer eigenvalues. See movie 2 (available at S. Lee & Marcus, 2023) for animation.
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Figure 7.7: Numerical viscous spectra with Lopt at Re = 104 and 103 (a) for the Lamb-Oseen vortex (q → ∞)
in (m,κ) = (1, 1.0) and (b) for the strong swirling Batchelor vortex (q = 4.0) in (m,κ) = (2, 3.0). M is fixed
at 400 and N = M + 2.

Figure 7.8: The optimal numerical resolution ∆opt ≡ 2Lopt/(M + 2), at the fixed M = 400, to resolve the

critical-layer spectrum with respect to Re. The trend indicates ∆opt ∝ Re−1/3. The presented cases of
Re = 103, 104 and 105 for each vortex can be found in figure 7.6 and figure 7.7.
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Figure 7.9: ε-pseudospectrum bounds of ε = 10−14, 10−8 and 10−2 with respecto to Lmκ at Re = 104 (a)
for the Lamb-Oseen vortex (q → ∞) in (m,κ) = (1, 1.0) and (b) for the strong swirling Batchelor vortex
(q = 4.0) in (m,κ) = (2, 3.0). To construct the matrix, we use M = 400 and N = M + 2. L is optimally
chosen. We can infer from their formation which part of the spectra is continuous and how big the maximum
transient growth is.

of the stable system with an arbitrary initial state. of x = x0 where ∥x0∥ = 1,

∂x

∂t
= Lmκx. (7.4.1)

The supremum of αε/ε in ε > 0 determines the lower bound of the maximum transient
growth of the system (Apkarian & Noll, 2020), or

sup
t≥0

∥∥eLmκt
∥∥ ≥ sup

ε>0

αε(Lmκ)

ε
. (7.4.2)

The fact that the ε-pseudospectral abscissa of ε = 10−2 occurs in the frequency band coin-
ciding with the critical-layer spectrum implies the significance of this spectrum in regards to
the transient vortex growth, which needs more investigation in further studies.
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Figure 7.10: (a) Loci of the numerical spectra for the Lamb-Oseen vortex (q → ∞) in (m,κ) = (1, 1.0)
obtained by fine-tuning L from 8.3 to 8.7, where Re = 104, and (b) three viscous critical-layer eigenmodes
that marginally vary, all of which are obtained from different L. Unlike the discrete spectrum that does
not change with respect to L, the critical-layer spectrum is continuously filled by numerical eigenvalues
associated with valid critical-layer eigenmodes.
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7.4.2 Loci of the numerical spectra

One issue with pseudospectra is that they cannot provide non-normal eigenmodes corre-
sponding to each eigenvalue point in the continuum. Instead, pseudomodes can be con-
structed in association with pseudospectra as an approximation of the eigenmodes, which
were introduced and described by Trefethen and Embree (2005). Unfortunately, pseudo-
modes do not necessarily satisfy the exact governing equations and boundary conditions (see
Mao & Sherwin, 2011, p. 11).

In our numerical method, it is possible to find critical-layer eigenmodes whose spatial
structures continuously vary by fine-tuning L. Recalling the role of L (see §4), we know that
it changes the entire P n

Lm
(r) in the basis function set. If we replace L and solve the eigenvalue

problem again, we can expect the eigenmodes generated from a new L not necessarily to be
identical to the eigenmodes generated from an old L. Moreover, if this parametric change
occurs in parts of the spectra where numerical convergence with respect to M is ensured,
including σν

d and σν
c , the loci of them with respect to L should genuinely reflect the analytic

spectra.
Based on the idea described above, we create the loci of the numerical spectra with

respect to L for the Lamb-Oseen vortex case, where (m, κ, q) = (1, 1.0, ∞) at Re = 104

in figure 7.10(a). To draw the loci, the viscous eigenvalue problem is solved multiple times
with fine-tuning L from 8.3 to 8.7 with M = 400, where both σν

d and σν
c are found to be

well-resolved. The other parts of the spectra, including σν
p , are excluded due to no clear

convergence with respect to M . That being said, we note that the loci of σν
p with varying L

sweep over the shaded area depicted in the schematic in figure 5.1.
As for σν

d , its locus is completely invariant against changes in L. It makes sense because
there is no chance to find an intermediate form of two discrete eigenmodes. The locus of σν

d

remaining discrete rather strengthens our method’s robustness for any L. On the contrary,
the locus of σν

c is notably different from that of σν
d ; as L changes, the eigenvalue points on

two branches of σν
c also move and eventually fill in two distinct curves as in figure 5.1. In

figure 7.10(b), it can be confirmed that the critical-layer eigenmodes with slightly different
eigenvalues, having only a marginal difference in their spatial structures, are obtained from
varying L. By comparing the two loci of σν

d and σν
c , we can conclude the continuity of the

critical-layer spectrum.
For reference, we report the polynomial fitting results up to 6th order of some loci of σν

c

among what we have explored. In the case (m,κ, q) = (1, 1.0,∞) at Re = 104, the left and
right branches of σν

c in the complex σ-plane are fitted as

σr = − (1.905× 101) · σ6
i − (4.562× 101) · σ5

i − (4.138× 101) · σ4
i

− (1.741× 101) · σ3
i − (2.761× 100) · σ2

i + (5.348× 10−1) · σi,
(7.4.3)

and

σr = − (4.682× 100) · σ6
i − (8.233× 100) · σ5

i − (6.816× 100) · σ4
i

− (3.243× 100) · σ3
i − (2.636× 10−1) · σ2

i + (6.108× 10−1) · σi,
(7.4.4)
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where σr and σi indicate the real and imaginary parts of σ, respectively. In the case
(m,κ, q) = (2, 3.0, 4.0) at Re = 104, the left and right branches of σν

c are fitted as

σr = + (1.071× 10−2) · σ6
i + (2.553× 10−2) · σ5

i − (9.022× 10−2) · σ4
i

− (3.417× 10−1) · σ3
i − (1.906× 10−1) · σ2

i + (4.764× 10−1) · σi,
(7.4.5)

and

σr = + (7.098× 10−2) · σ6
i + (4.052× 10−1) · σ5

i + (8.111× 10−1) · σ4
i

+ (6.323× 10−1) · σ3
i + (2.508× 10−1) · σ2

i + (4.833× 10−1) · σi.
(7.4.6)

We will work on the analytic formulation of σν
c to better understand the bifurcation in future

studies. These fitting forms will be considered for comparison and validation.
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Chapter 8

Concluding remarks I

In this part of study, we proposed a numerical method that is capable of computing eigen-
modes and eigenvalues for linear stability analyses of aircraft wake vortices with high time-
efficiency and accuracy compared to previous studies. Also, we established a means of
unambiguously verifying whether the numerically computed eigenmodes and eigenvalues are
physical, spatially resolved, or spurious.

We developed a numerical method for the linear stability analysis of aircraft wake vor-
tices, and applied this method to the q-vortex model, which is a non-dimensional vortex
model that portrays the Lamb-Oseen or Batchelor vortices, used as the base vortex profile.
Our numerical method employs algebraically mapped associated Legendre functions P n

Lm
(r),

defined in (2.2.1), as Galerkin basis functions for the spectral expansion of functions in a
radially unbounded domain. We found these basis functions to be suitable as they capture
the correct boundary conditions, including analyticity at the origin and rapid decay in the
far field. By applying the poloidal-toroidal decomposition to the linearised governing equa-
tions, we reduced the problem size for computation while preserving the spatial order of
the equations. Furthermore, we believe that our numerical method is preferable for linear
analyses of vortex dynamics for the following reasons.

1. Our method, the mapped Legendre spectral collocation method, converts the original
vortex stability problem into a standard matrix eigenvalue problem of toroidal and
poloidal streamfunctions. In comparison to other methods that lead to a generalised
matrix eigenvalue problem of primitive variables, our method effectively reduces the
number of state variables of the problem from four to two, and the number of matrices
constructed for eigenvalue computation from two to one.

2. Our method does not require extra treatments for analyticity and boundary conditions
in a radially unbounded domain. The use of toroidal and poloidal streamfunctions
expanded by Pm

Ln
(r) guarantees that computed linear perturbation velocity fields are

analytic at r = 0 and decay to zero as r → ∞. This prevents artificial interference in the
problem, such as truncation of the radial domain and imposition of artificial boundary
conditions at the point of truncation, which likely cause unnecessary numerical errors.
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3. Our method allocates collocation points properly around the vortex core, ensuring
that half of them remain within the high-resolution region of 0 ≤ r < L while the
other half contribute to sustaining the domain’s unboundedness, where L is the map
parameter of associated Legendre functions. In comparison to the numerical method
proposed by Mayer and Powell (1992), our method requires about three times fewer
radial basis elements, which is expected to result in roughly ten times greater efficiency
in terms of computing time. Moreover, L offers an additional degree of computational
freedom, enabling us to adjust the spatial resolution without requiring extra computing
resources to match the smallest radial length scale to be resolved.

We numerically computed eigenmodes and eigenvalue spectra with azimuthal and axial
wavenumbers of order unity for strong swirling q-vortices, and classified these eigenmodes
and eigenvalue spectra into different families based on the criteria outlined in §2.3, which
determine whether they are physical, spatially resolved, or spurious. Some family, such as
the freestream family which do not decay at radial infinity, were beyond the scope of our
analysis as we considered such non-vanishing solutions to be non-physical. For this reason,
our method only calculates solutions that decay to zero. Our main focus was on physical
eigenmodes that exist in the real world, i.e., those that can destabilise an aircraft wake vortex,
with greater emphasis on critical layers. In this regard, we identified the following important
families of eigenmodes and eigenvalue spectra, some of which we believe we distinguished for
the first time.

1. Discrete family (see §6.1.1 and §7.1.1). They consist of entirely regular solutions to the
linearised governing equations. Each of their eigenvalues is discrete, and approaches
a fixed point as the number of spectral basis elements M increases. The eigenmodes
are characterised by “wiggles” around the vortex core, and monotonically rapid decay
in the r direction. All spatially resolved eigenmodes with small but finite viscosity are
found to have their respective inviscid counterparts, exhibiting only marginal changes
in their spatial structures. Without doubt, this family are physical.

2. Inviscid critical-layer family (see §6.1.2). The analytic presence of their spectrum
on the imaginary axis arises from mathematical point singularities, which are given
in (5.9). Although the eigenmodes possess a critical-layer singularity, our numerical
method yields well-behaved spatial structures outside the neighbourhood of the sin-
gularity when using a sufficiently large value of M . These structures are crucial for
identifying the remnants of this family after adding small viscosity. However, their sin-
gular nature often causes the eigenmodes to be under-resolved, i.e., to have incorrect
eigenvalues out of the imaginary axis, leading to a misjudgement of the wake vortex’s
linear instability. Adjusting the map parameter L can help correct these errors so that
the numerical spectrum reflects its analytic ground-truth (see §6.2). In the corrected
inviscid critical-layer spectrum, eigenvalues tend to emerge in pairs. This phenomenon
is understood as a marginal separation caused by numerical errors of two singular de-
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generate critical-layer eigensolutions, whose exact eigenvalues are supposed to be the
same (see §6.3).

3. Potential family (see §7.1.3), which were first proposed by Mao and Sherwin (2011).
Bölle et al. (2021, p. 17) suggested this family be the viscous remnants of the inviscid
critical-layer spectrum. The spectrum is supposed to fill continuously a portion of the
left half of the complex eigenvalue plane, as depicted in the schematic in figure 5.1. Its
discretised representation can be found in our method through an area with randomly
scattered numerical eigenvalues that keeps stretching out to the left asM increases. We
cannot establish the convergence of a particular eigenvalue to a fixed point due to the
continuous nature of the spectrum. The random scattering makes it impossible to find
a clear correspondence between the eigenvalue computed withM+1 basis elements and
another computed with M basis elements. Nevertheless, the eigenmodes are spatially
resolved enough to identify their common spatial characteristics. They are typified by
local rapid oscillations (“wavepackets”) around the corresponding critical-layer radius,
estimated by setting the imaginary part of their respective eigenvalues to (5.9). This
implies that they stem from the viscous regularisation of the inviscid critical layers.
Considering their uninteresting near-zero region outside the respective “wavepackets”
together, we deem these eigenmodes to be physical. Nonetheless, the fact that their
“wavepackets” can have varying widths even at the same Re raises concern about
the absence of a scaling relationship between wavepacket widths and Re. Moreover,
their slow and oscillatory decaying behaviour does not resemble the inviscid critical-
layer eigenmodes’ rapid and monotonous decaying behaviour (see §6.1.2). Unlike the
suggestion by Bölle et al. (2021), we argue that they do not represent the true viscous
remnants of the inviscid critical-layer family. The true viscous remnants mean that
they not only originate from the viscous regularisation but also exhibit spatial similarity
to the inviscid critical-layer eigenmodes, in compliance with the Re−1/3 scaling law for
critical layers.

4. Viscous critical-layer family (see §7.1.4), which are believed to be distinguished for the
first time. As the name suggests, we argue that this family is the true viscous remnants
of the inviscid critical-layer spectrum. The spectrum of this family is identified near
the right end of the potential spectrum as two distinct continuous curves. It shows
good numerical convergence with respect toM , and their continuous loci are confirmed
by fine-tuning L (see §7.4). When spatially resolved, these eigenmodes exhibit thin
and distinct local rapid oscillations at the inviscid critical-layer singularity radius as
estimated above. This implies their origination from the viscous regularisation of the
inviscid critical layers, as with the potential family. However, unlike the potential
family, they are not only considered physical but also thought of as the true viscous
remnants of the inviscid critical-layer spectrum for the following reasons. First, the
similarity in spatial structure to the corresponding inviscid critical-layer eigenmode
is noticeable in the regions outside the critical layer. Second, the optimal resolution
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required to numerically compute the viscous critical-layer eigenmodes as many as pos-
sible is defined (see §7.2), providing a measure of the numerical resolution necessary
to resolve the viscous critical-layer family overall. This optimal numerical resolution
is found to be scaled in the order of Re−1/3.

The bifurcation of the viscous critical-layer spectrum has remained an unanswered ques-
tion yet. This will be analytically examined based on our conjecture that viscosity breaks
the singular degeneracies, which are numerically shown as the pairing phenomenon in the
inviscid critical-layer spectrum.
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Part II

Transient Growth Analysis
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Chapter 9

Transient growth of a wake vortex

Nota bene
For those who are specifically interested in this part, a separate preprint is available online
as of this writing (see S. Lee & Marcus, 2024). As noted in the preceding part, the dis-
sertation synthesises various aspects of topics related to wake vortex motion for the sake of
comprehensively exploring the early-time growth of a wake vortex.

9.1 Background

Wake vortex following an aircraft is widely recognised for its long-lived presence over time,
which has made it a significant focus of aerodynamic research. It holds importance, partic-
ularly in comprehending the mechanisms behind its decay process. Rapid destruction of the
wake vortices is deemed beneficial in several aspects, including enhancing air traffic safety
by mitigating wake-related hazards and improving airport operation efficiency by reducing
intervals between aircraft during take-off and landing on the same runway (Spalart, 1998;
Hallock & Holzäpfel, 2018). Not only that, but wake vortices also contribute to the devel-
opment of condensation trails (or contrails), whose impact on climate change via radiative
forcing has been being actively assessed (e.g., Schumann, 2005; Naiman et al., 2011; D. S.
Lee et al., 2021), by capturing the jet exhaust particles around the low-pressure vortex core,
facilitating the formation of ice crystals. The early demise of wake vortices may impede early
contrail development and, as a result, potentially influence its subsequent climate impact.

There are several factors influencing the decay process of the wake vortex, such as strat-
ification (Sarpkaya, 1983), ground effect (Proctor et al., 2000), and various surrounding
factors (see Hallock & Holzäpfel, 2018, p. 30). Above all, the activation of wake vortex
instability typically provides the dominant route to effective vortex breakup. Classical wake
vortex instability mechanisms were investigated under the typical counter-rotating vortex
pair configuration for aircraft trailing vortices (Crow, 1970; Moore & Saffman, 1975; Tsai &
Widnall, 1976), where one vortex is ‘disturbed’ by the strain created by the other vortex.
If there exists an infinitesimal perturbation (or eigenmode) of the base vortex profile with a
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positive real growth rate (or eigenvalue), the perturbation may be activated by atmospheric
turbulence (e.g., Crow & Bate, 1976) and grow exponentially in time until nonlinear dynam-
ics govern, eventually resulting in the linkage of the two vortices. In this aspect, the growth
is evidenced by the presence of an unstable eigenmode that is a solution to the Navier-Stokes
or Euler equations linearised on the base vortex profile, which is often referred to as linear
instability analysis.

However, when it comes to an ‘undisturbed’ wake vortex (i.e., a vortex without the influ-
ence of nearby vortices), typically modelled as the Batchelor vortex (Batchelor, 1964), the
linear instability analysis usually ends up with stable configuration. In most of the inviscid
cases, the vortex is found to be linearly neutrally stable unless it accompanies a strong axial
velocity component (Leibovich & Stewartson, 1983; Stewartson & Brown, 1985; Heaton,
2007a). Several experiments have supported that the axial velocity of the wake vortex in
reality is not strong enough to match the prediction from the analysis (e.g., Leibovich, 1978;
Fabre & Jacquin, 2004). With viscosity, Fabre and Jacquin (2004) demonstrated the vis-
cous instability of centre-modes even with a non-strong axial velocity, whose major spatial
structure was concentrated at the vortex centre. However, this instability is weak (Heaton,
2007b, p. 496) and the authors also left cautions about the practicality of this instability
due to the lack of knowledge about the exact properties of the centre of real trailing vortices.
In many cases, the role of viscosity for the majority of eigenmodes has been believed to be
close to stabilisation rather than destabilisation (see Khorrami, 1991, p. 198).

To unravel the early development of a single vortex, various approaches have been suc-
cessfully employed to some extent. One approach is the analysis of resonant triad instability
(RTI), which focuses on instability resulting from the resonance of two secondary modes due
to the primary mode serving as a disturbance to the vortex (e.g., Mahalov, 1993; Wang et
al., 2024). In the context of vortex stability, the RTI mechanism is essentially a generalised
version of the elliptical instability (Moore & Saffman, 1975; Tsai & Widnall, 1976), where
the primary disturbance is the strain caused by the neighboring vortex. Another approach is
transient growth analysis, which explores an optimal initial perturbation (usually as a sum
of eigenmodes) that may exhibit large energy growth at finite times, even though it vanishes
asymptotically as time approaches infinity (e.g., Schmid & Henningson, 1994; Heaton, 2007b;
Mao & Sherwin, 2012; Navrose et al., 2018). This transient behaviour is expected due to
the non-normality of the linearised Euler or Navier-Stokes operator, which yields families of
continuously varying eigenmodes (Mao & Sherwin, 2011; S. Lee & Marcus, 2023). Several
studies have examined the application of transient growth in the context of vortices with
axial flows (Heaton & Peake, 2007; Mao & Sherwin, 2012) or, similarly, jets with swirling
flows (Muthiah & Samanta, 2018), emphasising the role of continuous eigenmodes.

9.2 Research Goals

In this research, we dig into more details of transient growth of wake vortices under regular
conditions, in addition to revisiting the previous discovery. In a non-zero viscosity regime
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with physical relevance, the continuous eigenmodes are further categorised into different
families. Therefore, an important question arises: Which family of continuous eigenmodes
makes the dominant contribution to optimal perturbations for transient growth – the poten-
tial family (Mao & Sherwin, 2011), the viscous critical-layer family (S. Lee & Marcus, 2023),
or both equally? The question, which we will primarily address in this research, provides
guidance on which continuous eigenmode family should be the specific focus, avoiding the
exploration of the entire region of possibilities.

Subsequently, another crucial aspect to consider is that the numerically resolvable portion
of continuous eigenmodes depends on the discretisation scheme of the method in use. Thus,
addressing the question above also offers insights into the proper methodology for addressing
the current type of problems. In the literature, Chebyshev spectral collocation methods have
been preferred for the wake vortex stability problem e.g., Ash and Khorrami, 1995, pp. 354-
357. On the other hand, S. Lee and Marcus (2023) suggested the mapped Legendre spectral
collocation method and successfully distinguished the viscous critical-layer family for the
first time, despite its similarity in appearance to the potential one. Here, we extend the use
of the mapped Legendre spectral collocation method to transient growth analysis of wake
vortices so as to demonstrate its competitiveness, especially in solving radially unbounded
swirling flow problems.

Finally, we consider ice particles as a source of initiating optimal perturbations at the
early stage of vortex development towards the transient growth process. Based on compu-
tational fluid dynamics (CFD), the interaction between the jet and the vortex during the
early stage of a trailing vortex has been studied in terms of contrail development, typically
associated with ice microphysics (Lewellen & Lewellen, 2001; Paoli & Garnier, 2005; Shir-
gaonkar, 2007; Naiman et al., 2011). However, to the best of the authors’ knowledge, the
backward impact of jet exhaust (or simply ice) particles on the short-term wake vortex de-
velopment has not been clearly established, despite its potential significance. Particle drag
may disturb the vortex out of the core in a short time if the particles are clustered during
jet entrainment around the vortex core, presumably leading to a temporarily large-growing
perturbation known to be structured at the periphery of the vortex core (Mao & Sherwin,
2012, p. 43). In jet exhaust, each particle’s size can grow only up to a few microns during
the early stage. However, the total particle number density is reported to be large (109 per
cubic metre to 1011 per cubic metre) (Paoli et al., 2004; Paoli & Garnier, 2005). This can
make their bulk effect with respect to momentum exchange non-negligible. This study is
the first step to investigate the role of the particle concentration nearby the vortex in the
initiation of transient growth.

The remainder of this part, from §10 to §13, is structured as follows. In §10, the essence
of the linear stability analysis of wake vortices is revisited (S. Lee & Marcus, 2023) and then
incorporated into a transient growth analysis. In §11, the optimal perturbation structures
acquired from the analysis are revealed, determining the continuous eigenmode family that
takes dominant contribution. In §12, we examine the initiation of the optimal perturbations
via inertial particles near the vortex. In §13, our overall findings are presented with a
conclusion.
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Chapter 10

Transient growth formalism

10.1 Formulation

We briefly revisit the gist of the linear stability analysis of wake vortices by S. Lee and Marcus
(2023), and then incorporate it into a transient growth analysis. Unless specified, we use the
cylindrical coordinate system (r, ϕ, z) and all variables are presented in a non-dimensional
form with respect to the characteristic length and velocity scales, R0 and U0, detailed by
Lessen et al. (1974, p. 755) and the fluid density ρ. The base flow velocity profile U is the
Batchelor vortex (Batchelor, 1964), or the q-vortex in the non-dimensional form, given by

U (r) =

(
1− e−r2

r

)
êϕ +

(
1

q
e−r2

)
êz, (10.1.1)

where q is a swirl parameter that determines the relative strength of swirling. The vortex
core region is defined by the radial location where the azimuthal velocity component is
maximised, which is r ≤ 1.12.

The governing equations of fluid motion assume Newtonian fluid with constant density
ρ and constant kinematic viscosity ν. In terms of the total velocity u ≡ urêr + uϕêϕ + uzêz

and the total specific energy φ ≡ (u ·u)/2 + p, where p denotes the total pressure (which is
non-dimensionalised by ρU2

0 ), they are written as

∂u

∂t
= −∇φ+ u× ω +

1

Re
∇2u with ∇ · u = 0, (10.1.2)

where ω ≡ ∇×u is the total vorticity, and Re ≡ U0R0/ν is the Reynolds number. We then
linearise the equations on the base flow profile by decomposing u and p into the base terms
(indicated with overbars ∗) and the perturbations (indicated with primes ∗′), and we apply
the toroidal-poloidal decomposition using êz as a reference vector to reach the following
form:

∂

∂t

(
ψ′

χ′

)
= P

(
U(r)× ω′)− P

(
ω(r)× u′)+ 1

Re
∇2

(
ψ′

χ′

)
, (10.1.3)



10.1. FORMULATION 78

where ψ′(r, ϕ, z, t) and χ′(r, ϕ, z, t) are the toroidal and poloidal streamfunctions of u′(r, ϕ, z, t),
respectively, and P indicates an operator that takes a smooth vector field as input and out-
puts its toroidal and poloidal scalar components. If the input vector field is solenoidal, then
P is invertible. That is to say, P(u′) = (ψ′, χ′) and u′ is uniquely reconstructed from (ψ′, χ′)
(for more details see S. Lee & Marcus, 2023, pp. 9-11). Thus, (10.1.3) only has two state
variables: ψ′ and χ′. These reduced linearised governing equations are beneficial to impos-
ing the analyticity constraint at r = 0 as each state variable is treated independently of one
another without coupling.

If we introduce the Fourier ansatz (indicated with tildes ∗̃) of the azimuthal and axial
wavenumbers m ∈ Z, κ ∈ R \ {0}, i.e.,(

ψ′

χ′

)
=

(
ψ̃(r, t)
χ̃(r, t)

)
ei(mϕ+κz), (10.1.4)

(10.1.3) further reduces to the spatially one-dimensional form expressed as

∂℘̃

∂t
= Lν

mκ(℘̃), (10.1.5)

where ℘̃(r, t) ≡ (ψ̃(r, t), χ̃(r, t)) is the toroidal-poloidal streamfunction set (equivalent to
its corresponding velocity Fourier ansatz ũ(r, t)ei(mϕ+κz)) and Lν

mκ is the linear operator
with respect to ℘̃ which represents the right-hand side of (10.1.3) with the incorporation of
(10.1.4). Note that the operator varies with the wavenumbers m and κ and the Reynolds
number Re, as indicated by the subscript and the superscript.

To obtain physically meaningful solutions to (10.1.5) in an unbounded domain (0 ≤ r <
∞), the analyticity at the origin and the rapid decay condition as r → ∞ are required. The
most prevalent discretisation schemes for computing the solutions have been Chebyshev spec-
tral collocation methods (e.g., Ash & Khorrami, 1995; Antkowiak & Brancher, 2004; Fontane
et al., 2008; Mao & Sherwin, 2011; Muthiah & Samanta, 2018) despite their bounded domain
of two closed ends, demanding the approximation of the above constraints. In contrast, the
mapped Legendre spectral collocation method, described by S. Lee and Marcus (2023), is
fundamentally designed for unbounded domains while accurately satisfying the constraints
without additional treatments. Given the problem is discretised by either method, we have

dϱ̃

dt
= Lν

mκϱ̃, (10.1.6)

where ϱ̃(t) is the discretised version of ℘̃(r, t) in spectral space, consisting of the spectral
coefficients of ψ̃ and χ̃ in order, and Lν

mκ is the matrix expression of Lν
mκ.

Similarly, we define the discretised version of ũ(r, t) as υ̃(t) in physical space, consisting of
the collocated values of ũr, ũϕ and ũz in order. The conversion between ϱ̃ and υ̃ is possible
through the matrix expression of P, denoted P, whose construction scheme based on the
mapped Legendre spectral collocation method can be found in Matsushima and Marcus
(1997, pp. 330-333). We use the following notations: ϱ̃ = P†υ̃ and υ̃ = Pϱ̃. Under the
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solenoidal velocity assumption, we may treat both P†P and PP† as an identity map. Now
we define the ‘energy’ E of a velocity Fourier ansatz ũ(r, t)ei(mϕ+κz) as

E(ũ) ≡
∫ ∞

0

(
ũ∗rũr + ũ∗ϕũϕ + ũ∗zũz

)
rdr. (10.1.7)

A similar usage can be found in Mao and Sherwin (2012). Using numerical integration, e.g.,
a quadrature rule, E(ũ) may be expressed as

E(ũ) = υ̃∗Mυ̃ = ϱ̃∗P∗MPϱ̃, (10.1.8)

where M represents the numerical integration form of (10.1.7). A specific example of M
using the Gauss-Legendre quadrature rule is given in Appendix C.

At last, we apply the transient growth formalism (Schmid & Henningson, 2001; Mao &
Sherwin, 2012; Muthiah & Samanta, 2018) in order to complete our formulation. Consider
a set (or subset) of eigenmodes of Lν

mκ containing p elements {ϱ̃1, ϱ̃2, · · · , ϱ̃p}, which cor-
respond to eigenvalues {σ1, σ2, · · · , σp} ⊂ C, respectively. Assuming that ϱ̃ belongs to the
eigenspace where all elements are spanned by these p eigenmodes, i.e.,

ϱ̃(t) =

p∑
k=1

ξ̃ke
σktϱ̃k, (10.1.9)

we use a new vector ξ̃0 ≡ (ξ̃1, ξ̃2, · · · , ξ̃p) ∈ Cp to represent ϱ̃. For instance, at time t = τ ,
ϱ̃(τ) corresponds to exp(τS)ξ̃0, where S ≡ diag(σ1, σ2, · · · , σp). In order to focus on the
transient growth process, the chosen eigenmodes are supposed to be asymptotically stable
in time (Re(σk) < 0), which mostly holds true for strong swirling q-vortices. By defining
V ≡

(
ϱ̃1 ϱ̃2 · · · ϱ̃p

)
, (10.1.9) at time t = τ becomes

ϱ̃(τ) = Vexp(τS)ξ̃0, (10.1.10)

and applying it to (10.1.8) yields the energy formula using the following ℓ2 norm:

E(ũ(τ)) = ξ̃∗0exp(τS
∗)V∗P∗MPVexp(τS)ξ̃0

=
∥∥F exp(τS)ξ̃0

∥∥2
2
,

(10.1.11)

where the matrix F is provided through F∗F = V∗P∗MPV. The maximum energy growth G,
determining the optimal perturbations under the transient growth formalism, at time t = τ
is then obtained as

G(τ) ≡ sup
ũ(0)̸=0

E(ũ(τ))

E(ũ(0))
= sup

ξ̃0 ̸=0

∥∥F exp(τS)ξ̃0
∥∥2
2∥∥Fξ̃0∥∥22

=
∥∥F exp(τS)F−1

∥∥2
2
.

(10.1.12)
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Using the fact that the L2 norm of an arbitrary matrix is the same as its largest singular
value, we finally have the following; for the largest singular value ς1 (assumed to be non-zero)
of F exp(τS)F−1 and its associated right and left singular vectors r1 and l1, i.e.,

F exp(τS)F−1r1 = ς1l1, (10.1.13)

which can result from the singular value decomposition (SVD), we get

G(τ) = ς21 , (10.1.14)

and the optimal perturbation velocity input and output at time t = τ are

υ̃opt(0) = PVF−1r1 and υ̃opt(τ) = ς1PVF
−1l1. (10.1.15)

10.2 Numerical parameters

Discretisation is necessary for the current problem formulation, and care should be taken
to avoid non-physical errors arising from numerical parameters. In this research, we take
advantage of the mapped Legendre spectral collocation method suitable for a rotating flow
in an unbounded domain. The key numerical parameters in this scheme are the number of
spectral basis elementsM , the number of radial collocation points N , and the map parameter
L. Detailed manipulation to well-resolve the eigenmodes is thoroughly explained in S. Lee
and Marcus (2023). Here, we setM+|m| = N to ensure N ≥M and use various L to explore
both potential and viscous critical-layer eigenmode families by adjusting the characteristic
resolution of the scheme.

For comparison purposes, we secondarily consider the Chebyshev spectral collocation
method with domain truncation at r = R∞. The domain of Chebyshev polynomials is lin-
early mapped from [−1, 1] to [0, R∞], as favoured in previous literature (e.g., Khorrami et al.,
1989; Mao & Sherwin, 2011), taking the primitive variables ũ and p̃ as state variables. The
usage of this scheme in this research, however, is solely limited to investigating how sensi-
tively the domain truncation affects the transient growth analysis outcome in comparison
to the mapped Legendre spectral collocation method, serving as one significant drawback
despite its constructional convenience for computation.

10.3 Physical parameters

There are five physical parameters affecting the nature of the problem: τ , q, Re, m and
κ. We here clarify what range or value of each parameter shall be considered the target of
analysis.

The maximum energy growth G is explicitly a function of the total time of growth τ ,
which indicates how much in time we permit linear transient dynamics of the wake vortex.
In the context of aircraft trailing vortices, the upper limit may be clear due to the dominance
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of the Crow instability mechanism after several hundred time units (= R0/U0). For instance,
Matsushima and Marcus (1997, pp. 341-343) reported the prevalence of the long wavelength
instability at around t = 200 from the initial counter-rotating vortex pair configuration.
Under proper rescaling of units, the trailing vortex simulation by Han et al. (2000, pp.
295-297, also see figure 10) exhibited the vortex linkage at t = 229.12 under a moderate
level of ambient turbulence. Based on this reasoning, we concentrate on investigating the
region where τ ≲ O(102). We typically focus on the transient growth in the time range
of 10 < τ ≤ 100, in which relatively fast transient growth is expected (Mao & Sherwin,
2012). However, we note that a further range may be explored in case we need to confirm
the asymptotic decay of this transient growth.

In addition, the outcomes of the analysis can be subject to the underlying physical pa-
rameters including the swirl parameter q, the Reynolds number Re and the azimuthal and
axial wavenumbers m and κ. We fix the first two parameters in this research and, unless
specified, we use q = 4 and Re = 105. We believe these values represent the cases where the
swirling motion is strong enough to exclude the significant linear instabilities (e.g., q ≥ 2.31,
see Heaton, 2007a) and the viscous diffusion is small enough to assume the base vortex pro-
file to be quasi-steady. It is remarked that, according to the experiment-based estimation
by Fabre and Jacquin (2004, p. 259), this setup may reflect the condition of actual trailing
vortices behind a large transport aircraft. As for the perturbation wavenumbers, we take
attention to the axisymmetric or helical cases (m = 0 or 1) with small axial wavenumbers of
order unity or less. This is not only because these cases have been the most prevalently ex-
amined in the vortex transient growth literature (e.g., Antkowiak & Brancher, 2004; Pradeep
& Hussain, 2006; Mao & Sherwin, 2012; Navrose et al., 2018), but also because these rel-
atively low-frequency perturbations are more likely to account for the principal portion of
perturbation structure we later desire to initiate via particles nearby the vortex.
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Chapter 11

Optimal perturbations

11.1 Numerical sensitivity and proper discretisation

We construct optimal perturbations by combining the eigenmodes of the wake vortex. To
obtain correct results, the computation scheme we choose should accurately represent ev-
ery physical eigenmode family in a well-resolved manner, and the results should remain
insensitive to changes in numerical parameters. We compare the numerical sensitivity of
the mapped Legendre spectral collocation method and the Chebyshev spectral collocation
method and determine which one is more suitable for the present analysis.

When considering the viscous eigenmodes that are regular throughout the entire radial
domain, including their asymptotic behaviours near the origin and as r approaches infinity,
there are three important eigenmode families: the discrete family, the potential family, and
the viscous critical-layer family (S. Lee & Marcus, 2023). The first family, as the name
suggests, is associated with discrete spectra (i.e., sets of eigenvalues), and each eigenmode’s
spatial structure is uniquely identified by the number of ‘wiggles’ clustered in or around the
vortex core. The other two families consist of continuous eigenmodes with spatial structures
that vary continuously, associated with continuous spectra.

Figure 11.1 shows numerically resolved spectra of the q-vortex with the following physical
parameters: (m, κ, q, Re) = (1, 1.0, 4.0, 105), envisioning the families of eigenmodes. We
employed both the Chebyshev spectral collocation method, whereM = 800, and the mapped
Legendre spectral collocation method, whereM = 400. To illustrate the continuous spectra,
we have gathered all numerical eigenvalues obtained through varying the values of the domain
truncation radius R∞, which falls within the range of [12, 13] for the Chebyshev spectral
method, and the map parameter L, which spans [3, 3.1] for the mapped Legendre spectral
method. Given perfect resolution, the free-stream and potential spectra are expected to
stretch out to Re(σ) → −∞. We note that the spectra are presented in two panels with
different aspect ratios. The left panel extends to large |Re(σ)| to showcase the free-stream
and spurious spectra. The eigenmodes associated with the free-stream spectrum and the
spurious spectrum exhibit non-regular characteristics. The former is singular as it does not
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Figure 11.1: Numerical spectra of the q-vortex with (m, κ, q, Re) = (1, 1.0, 4.0, 105) using the Chebyshev
spectral collocation method (grey squares), and the mapped Legendre spectral collocation method (black
dots). The consistency of the discrete spectrum attests the robustness of the two methods. The free-stream
and spurious spectra (in the left panel) are associated with either singular or non-physical eigenmodes, thus
superfluous for this study. Most of them are generated by the Chebyshev spectral method. The discrete,
potential and viscous critical-layer spectra (in the right panel) are associated with regular eigenmodes. Two
curves of the viscous critical-layer spectrum are more distinctive via the mapped Legendre spectral method.

decay to zero as r → ∞ (Mao & Sherwin, 2011), and the latter is non-physical, characterised
by irregular oscillations near the origin (S. Lee & Marcus, 2023). The right panel contains
the discrete, potential, and viscous critical-layer spectra. These are associated with the
respective regular eigenmode families mentioned above.

A couple of issues arise when we choose the Chebyshev spectral method over the mapped
Legendre spectral method to resolve the eigenmodes. First of all, as depicted in the left
panel of figure 11.1, a significant portion of the numerically resolved spectra account for the
eigenmode families either singular or non-physical, which are solely redundant for the present
problem. This issue is most likely to stem from approximating the asymptotic constraints
to the subordinate boundary conditions at both ends of the computational domain. In the
Chebyshev spectral method, as for m = 1, we have implemented the boundary conditions of

dũr
dr

=
dũϕ
dr

= ũz = p̃ = 0 at r = 0, (11.1.1)
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Figure 11.2: Schematic comparison between viscous critical-layer and potential eigenmodes. Both exhibit a
similar large-scale structure in the region where the viscosity effect is locally dominant, which corresponds
to a singularity at r = rc in the inviscid limit. The width of this large-scale structure scales as O(Re−1/3)
(see Lin, 1955) for the viscous critical-layer eigenmode. In contrast, for the potential eigenmode, the width
can vary even at the same Re. The potential eigenmode forms a ‘wave packet’ in compliance with the
pseudomode analysis (see Trefethen & Embree, 2005). Aside from the location r = rc, the viscous critical-
layer eigenmode inherits the structure of its inviscid counterpart, while the potential eigenmode just turns
into null.

and
ũr = ũϕ = ũz = p̃ = 0 at r = R∞, (11.1.2)

which are proxies for the analyticity at the origin and the rapid decay condition as r → ∞,
respectively (see Ash & Khorrami, 1995). Even though (11.1.1) and (11.1.2) may serve as
necessary conditions for what they are supposed to mimic, they can never be considered
formally equivalent. For instance, (11.1.2) does not prohibit solutions from oscillating in the
far field as long as the oscillation is momentarily zeroed out at r = R∞, which explains the
emergence of the free-stream spectrum.

The second issue comes with the unclear distinction between the viscous critical-layer
spectrum and the potential spectrum. As discussed in S. Lee and Marcus (2023, pp. 41-42),
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Figure 11.3: Numerical sensitivity test by evaluating G(τ = 10) from the entire eigenspace associated with
(m, κ, q, Re) = (1, 1.0, 4.0, 105) using (a) the mapped Legendre spectral collocation method with varying
L, and (b) the Chebyshev spectral collocation method with varying R∞, for M = 400, 600 and 800. The
test ranges are based on typical usage for each parameter. Setting a finite R∞ fundamentally damages the
unbounded nature of the problem, and therefore, a large R∞ should be preferred, while L can be arbitrarily
chosen without impacting the unboundedness of the domain. However, as R∞ increases, the evaluation is
undesirably numerically sensitive.

the Chebyshev spectral method produces scattered traces of the two curves of the viscous
critical-layer spectrum, making it less clear to distinguish the curves from the surrounding
continuous region. This scattering can be attributed to the high sensitivity of the continuous
spectra even to minor errors. In the Chebyshev spectral method, the domain truncation re-
moves any spatial information apart from the origin, which, albeit diminutive, holds physical
significance. Figure 11.2 illustrates the difference between the viscous critical-layer eigen-
modes and the potential ones. Despite their structural resemblance on a large scale, the
viscous critical-layer eigenmodes maintain the structure of their inviscid counterparts out-
side the region where viscosity effect dominates locally, scaled in the order of Re−1/3 (Lin,
1955). In contrast, the potential eigenmodes just turns into null outside this region, epitomis-
ing their ‘wave packet’ form (Mao & Sherwin, 2011) which conforms to the twist condition
presented by Trefethen and Embree (2005, pp. 98-114). More details of their comparison
are omitted here; they have been elucidated in S. Lee and Marcus (2023).

A numerical sensitivity test involving the evaluation of the maximum energy growth G at
τ = 10 from the entire eigenspace using the two methods is presented in figure 11.3. The other
physical parameters remain the same: (m, κ, q, Re) = (1, 1.0, 4.0, 105). Unsurprisingly,
increasing the number of spectral elements M enables both methods to be less sensitive to
changes in numerical parameters. At a fixed M , the map parameter L serves as a resolution
tuning parameter in the mapped Legendre spectral collocation method, and the domain
truncation radius R∞ in the Chebyshev spectral collocation method. Note that the test
ranges shown in figure 11.3 are based on the typical usage for each parameter as found
in S. Lee and Marcus (2023) and Mao and Sherwin (2011), respectively. Changes in L
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by and large do not affect G(τ = 10) in the test range of the mapped Legendre spectral
collocation method (1 ≤ L ≤ 10). Therefore, we may arbitrarily choose L within this
range. On the contrary, G(τ = 10) is affected by changes in R∞ in the test range of the
Chebyshev spectral collocation method (10 ≤ R∞ ≤ 20), particularly as R∞ increases. This
is problematic because using a large R∞ should be preferred to minimise its detrimental
influence on the unbounded nature of the radial domain. We observed that this problem is
mitigated by manually excluding the sub-eigenspace spanned by the free-stream eigenmodes,
which is, in fact, proactively removed in the mapped Legendre spectral collocation method.
We believe that the exclusion is reasonable from a physical standpoint because the non-
decaying behaviour of the free-stream eigenmodes implies that they analytically possess
infinite energy. This, in turn, renders them formally inapplicable in the current transient
growth context.

To recapitulate, when it comes to resolving the eigenmodes of the q-vortex in a radially
unbounded domain, the Chebyshev spectral method has a couple of issues resulting from
domain truncation, and they unfavourably affect the numerical sensitivity with respect to
transient growth evaluation. Instead, the mapped Legendre spectral method can be an
effective alternative to overcome these numerical limitations, making it more suitable for
the current problem. Consequently, we choose the mapped Legendre spectral collocation
method to analyse the transient growth of the wake vortex.

11.2 Maximum energy growth

Mao and Sherwin (2012) demonstrated that transient growth primarily results from the non-
normality of the continuous eigenmodes, while the discrete eigenmodes play a less significant
role. Here, they used the term ‘continuous eigenmodes’ as a compilation of the potential and
free-stream families. However, as we pointed out earlier, the free-stream eigenmodes may not
be appropriate for evaluating maximum energy growth because their energy reaches infinity.
Therefore, in their argument, ‘continuous eigenmodes’ should be more specifically referred
to as the potential ones. Not only that, but their argument also requires further refinement
because they overlooked the viscous critical-layer eigenmodes. In their classification, this
eigenmode family was not distinguished from the potential family, presumably due to the
overlap in the spectra of these two families (see Mao & Sherwin, 2011, p. 8), as well as their
structural similarity on a large scale (see figure 11.2).

Accordingly, the argument put forth by Mao and Sherwin (2012) still necessitates fur-
ther clarification regarding which continuous eigenmode family primarily contributes to the
optimal perturbation leading to maximum energy growth: the potential family or the vis-
cous critical-layer family. To that end, we first evaluate the values of G(τ) from the entire
eigenspace and then compare them with those from different sub-eigenspaces respectively
spanned by a distinct eigenmode family.

Figure 11.4 shows the plots of numerically evaluated values of G(τ) from the entire
eigenspace at various wavenumbers κ for the m = 0 and m = 1 cases, respectively. In the
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Figure 11.4: Maximum energy growth with respect to total growth time (a) at m = 0 (axisymmetric) and (b)
at m = 1 (helical). The values of G are evaluated from the entire eigenspace, whose basis elements involve
the whole discrete, potential and viscous critical-layer families. Here, q = 4 and Re = 105.

cases of m = 0, where the perturbations are essentially two-dimensional (i.e., subject only
to r and z), the dependence of the G curves on κ is clear and monotonous. In the short
run, the growth is strong with large κ, whereas in the long run, the largest G is obtained
with smaller values of κ. One may check in figure 11.4(a) that the upper envelope of all
curves sequentially corresponds to the curves with decreasing κ as τ increases. This trend
at m = 0 aligns with previous observations in the literature (Pradeep & Hussain, 2006; Mao
& Sherwin, 2012), supporting the validity of our evaluation. When it comes to m = 1, with
three-dimensional perturbations, the κ-dependence of the G curves is no longer monotonous,
as previously reported in Antkowiak and Brancher (2004). Focusing on a relatively short-
term growth, we can see that the largest G at m = 1 is generally greater than that at m = 0.
For example, at τ = 102, the largest G among the evaluated values is 7.5 × 102 for κ = 0.1
at m = 1, while it is 2.8× 102 for κ = 5.0 at m = 0.

The maximum energy growth curves evaluated from the entire eigenspace and the sub-
eigenspaces, each respectively spanned by the discrete family, the viscous critical-layer family
and the potential family, are compared in figure 11.5. It is clear that the curves from the
entire eigenspace are mainly reproduced by those evaluated from the sub-eigenspace spanned
by the viscous critical-layer family, indicating its dominant contribution. On the other hand,
the values of G(τ) from the rest of the continuous sub-eigenspace, for which the potential
eigenmodes account, exhibit a similar order of magnitude to those from the discrete sub-
eigenspace. The contribution of the potential family is, therefore, as minor as that of the



11.2. MAXIMUM ENERGY GROWTH 88

Figure 11.5: Comparison of the curves of G(τ) evaluated from different sub-eigenspaces, each respectively
spanned by a distinct eigenmode family: (a) (m, κ) = (0, 0.1), (b) (m, κ) = (0, 5.0), (c) (m, κ) = (1, 0.1),
and (d) (m, κ) = (1, 5.0). Here, q = 4 and Re = 105. The maximum energy growth curves from the entire
eigenspace are the same as those plotted in figure 11.4, which are mainly reproduced by those evaluated
from the sub-eigenspace spanned by the viscous critical-layer family.
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discrete family in transient growth.
There are two minor exceptions worth noting. At m = 0, the discrete family accounts

for short-term optimal growth as significantly as the viscous critical-layer family, especially
when κ is small. We believe that this is relevant to the fact that when m = 0, critical
layers vanish in the limit of κ→ 0, and so do the derived continuous eigenmodes, while the
discrete ones remain. Next, at m = 1, the contribution of the potential family to optimal
growth slightly supersedes that of the viscous critical-layer family for a brief period (τ < 10),
explaining the presence of a quirk in the G curves around τ = 5.6. However, the exception
clears quickly after this period, and the largest G attainable in this period never exceeds 10,
thus not overturning the general dominance of the viscous critical-layer family in terms of
transient growth.

Based on these observations, we revisit the demonstration provided by Mao and Sherwin
(2012) with the following clarification; the non-normality of the continuous eigenmodes in-
duces significant transient growth, and more precisely, it is the viscous critical-layer family
that predominantly contributes to this growth, instead of the potential family. The distinc-
tion is important as it addresses the ‘true’ origin of transient growth of the wake vortex as
critical layers. The potential eigenmodes have their theoretical foundation in the wave packet
pseudomode analysis (Trefethen & Embree, 2005). As showcased in figure 11.2, they omit
the asymptotic information of critical layers, making their birth irrelevant to those requiring
asymptotic matching or equivalently, the critical layer analysis (Lin, 1955; Le Dizès, 2004).
Although the wave packet pseudomode analysis is deemed to be a powerful tool to explore
all possible forms of continually varying eigensolutions, it may divert our attention too much
from the genuine gems more worthy of our focus. Furthermore, our clarification provides a
better alignment with the previous argument made by Heaton (2007b) that inviscid contin-
uous spectrum (CS) transients dominate the growth over short time intervals. The viscous
critical-layer family in our classfication corresponds to the viscous regularisation of the invis-
cid CS, which we have denoted the inviscid critical-layer spectrum (S. Lee & Marcus, 2023),
when Re <∞.

11.3 Perturbation structures

The impact of changes in m and κ on perturbation structures leading to optimal transient
growth has been widely investigated and is well-known in the context of linear vortex dynam-
ics (Antkowiak & Brancher, 2004; Pradeep & Hussain, 2006; Mao & Sherwin, 2012). In this
chapter, we examine whether our transient growth calculation complies with the established
findings and then compare and analyse the perturbation structures with respect to different
values of m and κ for further consideration.

Pradeep and Hussain (2006) reported that axisymmetric perturbation cases (m = 0)
generally exhibit the largest energy growth, as we showed in figure 11.4. However, as the
largest G increases, the total growth period of the perturbation is monotonously extended
(i.e., τ required to achieve G increases), as its spatial structure becomes increasingly distant
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from the vortex core, resulting in slower interactions. For helical perturbation cases (m = 1),
a common spatial structure emerges, with the primary motion localised around a certain
radius near the vortex core. In the case of m = 1 perturbations, it is noteworthy that their
growth may lead to the initiation of vortex core fluctuations, even though they initially
originate outside the core. This mechanism has occasionally been considered a trigger of
erratic long-wavelength displacements in experimental vortices (e.g., Edstrand et al., 2016;
Bölle et al., 2023), referred to as ‘vortex meandering’ (see Antkowiak & Brancher, 2004, p.
L4). Mao and Sherwin (2012) found that the vortex meandering phenomenon can be driven
by the transient response of the vortex to an out-of-core perturbation.

As mentioned in §10.3, our focus is on the relatively short time period of 10 < τ ≤ 100 to
study the transient growth process. In longer periods, classical linear instability mechanisms
like the Crow instability may predominate in real conditions. Within this time range, the
largest values of G attained from our considerations (see figure 11.4) occur at κ = 5.0 for the
m = 0 cases and at κ = 0.1 for the m = 1 cases. We consider these cases as representative.
In figure 11.6, we illustrate the optimal perturbation velocity inputs and outputs for τ =
31.6 and τ = 100, all of which are depicted by the absolute velocity components. For
more intuitive visualisation, we portray their corresponding three-dimensional structures
alongside, each of which is represented by the iso-surface of 50% of the maximum specific
energy in physical space, i.e., |(ũ(r)ei(mϕ+κz) + c.c.)/2|2, where c.c. stands for the complex
conjugate of the antecedent term. The dark and light surface colours respectively express
counterclockwise and clockwise swirling directions.

In all cases, the following characteristics are commonly observed. First, azimuthal veloc-
ity components are initially dominant for all optimal perturbations, while the other velocity
components evolve significantly towards the end of the growth period. This clearly indicates
that the azimuthal velocity component should be the primary focus if one intends to induce
these optimal perturbations from the unperturbed state. Second, the most energetic part of
the optimal perturbation inputs, coinciding with the peak of the absolute azimuthal velocity
component, tends to be distant from the vortex core as τ increases. One may see a con-
siderable difference particularly for cases (c) and (d), as the major perturbation structure
overlaps the core region when τ = 31.6 whereas it moves out of the core when τ = 100.

For cases (a) and (b), where (m, κ) = (0, 5.0), the input perturbations generally form
a ring structure owing to its azimuthal independence. As the perturbation develops, it is
evident that the radius of the ring does not change significantly. Taking into account other
cases with different wavenumbers (even besides the illustrated ones), we found this tendency
toward local confinement of optimal perturbation structures to take place in general with
increasing κ. This indicates that a perturbation with a shorter axial wavelength has a more
localised influence around the initially perturbed region.

For cases (c) and (d), where (m, κ) = (1, 0.1), a spiral structure emerges in the most
energetic region of the input perturbation due to the alternating layering of two oppositely
swirling fluid motions at the periphery of the vortex core. Unlike the axisymmetric cases,
the perturbation structure undergoes a drastic change when comparing its input and output
states. Specifically, the most energetic region of the perturbation, even if it was originally
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Figure 11.6: Optimal perturbation inputs of unit energy E defined in (10.1.7) and amplified outputs at t = τ ,
depicted by the absolute velocity components alongside their corresponding three-dimensional structures,
each represented by the isosurface of 50% of the maximum specific energy in space. The dark and light
colours respectively indicate counterclockwise and clockwise swirling of the flow at each position. Here, four
representative cases with the largest value of G in figure 11.4 are displayed: (a, b) the axisymmetric cases of
(m, κ) = (0, 5.0) for τ = 31.6 and τ = 100, respectively, and (c, d) the helical cases of (m, κ) = (1, 1.0) for
τ = 31.6 and τ = 100, respectively. The initial dominance of azimuthal velocity components is common to
all cases, and that for m = 1, energy is transferred into the core region r ≤ 1.12 (shaded in each plot).



11.4. NON-LINEAR IMPACTS ON AN OPTIMALLY PERTURBED VORTEX 92

located outside the vortex core, ultimately penetrates into the vortex core. As a consequence,
the transverse velocity (ũr and ũϕ) at the vortex centre becomes the greatest. In other words,
the principal response of the vortex to optimal perturbations withm = 1 is transverse motion
of the vortex core, which is likely to be connected with the vortex meandering phenomenon
(Edstrand et al., 2016; Bölle, 2021).

We want to clarify that the finding regarding the induction of vortex meandering by
optimal helical perturbations with an axially long wavelength was formerly given by Mao
and Sherwin (2012). They employed mesh-based direct numerical simulations instead of the
matrix-based analysis (corresponding to (10.1.6) - (10.1.15) in our formulation), even though
they used the matrix-based approach when m = 0. In a way, this choice seems to have been
made to overcome difficulties in dealing with analyticity at the origin, which depends on
the value of m (see S. Lee & Marcus, 2023, pp. 51-52). On the other hand, our approach,
based on the mapped Legendre spectral collocation method, is fundamentally designed to
remain robust for any value of m. Therefore, our contribution here lies in recognising the
same phenomenon linked with m = 1 perturbations based on the computationally fast and
formally consistent matrix-based transient growth analysis.

11.4 Non-linear impacts on an optimally perturbed

vortex

Given an optimally perturbed vortex, the linearised theory (see §10.1) predicts that the
perturbation is gradually amplified as time approaches t = τ and then decays as far as
there are no extrinsic factors to give rise to secondary instabilities starting from the most
perturbed state. We spare this chapter for verifying that such transient behaviour still takes
importance in the original non-linear system, complying with (10.1.2), in spite of energy
transfer across different wavenumbers or relevant non-linear effects.

Although the optimal perturbation structures vary with the selection of m, κ and τ , what
we aim to investigate here is their comprehensive and common trend of evolution in time
anticipated in the linearised theory. We pay attention to one specific optimal perturbation
case where (m, κ) = (1, 0.1) with the optimal growth time τ = 50, where the z-component
of the perturbation vorticity input ω′

z(t = 0) on the z = 0 plane is illustrated in figure 11.7.
This perturbation is chosen because the drastic transition of the most energetic portion of
the perturbation from the periphery to the vortex core, as shown in figure 11.6(c, d), may
be a good means to a plain illustration of the vortex growth. We emphasise that, however,
this specific behaviour at m = 1 (presumably related to vortex meandering) itself is not the
target of interest at this point. To those who are interested in the meandering of vortices,
we suggest referring to Edstrand et al. (2016) and Bölle (2021).

According to the linearised theory, the optimal perturbation velocity input, which can
be expressed as υ̃opt(0) = PVF−1r1 as in (10.1.15), evolves at t = η as

υ̃opt(η) = PV exp(ηS)F−1r1. (11.4.1)
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Figure 11.7: Axial perturbation vorticity contour on the z = 0 plane of the optimal input where (m, κ) =
(1, 0.1) with the optimal growth time τ = 50. The contour lines are solid for the positive levels (-67 %
and -33 % of the absolute maximum) and dashed for the negative levels (33 % and 67 % of the absolute
maximum).

One may check the consistency of the above equation when η = τ with υ̃opt(τ) given in
(10.1.15). We label this prediction from the linearised theory as ‘linear.’ The ‘linear’ pre-
diction, however, may be ideal as it strips off all higher-order interactions coming from the
non-linear convection term, i.e., u×ω in (10.1.2), which transfers energy from the perturba-
tion wavenumbers of (m, κ) to the multiples (e.g., (2m, 2κ), (3m, 3κ), · · · ) or vice versa. We
refer to the growth of the optimal perturbation in consideration of the influence of higher-
order interactions as ‘non-linear.’ The significance of this non-linearity substantially depends
on the initial perturbation’s energy level. If the perturbation energy approaches zero (or the
perturbation is infinitesimal), the ‘non-linear’ evolution should follow the ‘linear’ prediction.
We set aside the numerical details regarding our non-linear simulations in Appendix D.

In the non-linear simulations, the initial velocity field u(t = 0) is defined as follows:

u(r, ϕ, z, t = 0 ; ε) ≡ U(r) + εũopt(r)e
i(mϕ+κz) + c.c., (11.4.2)

where ε determines how intense the initial perturbation is, adjusting the perturbation energy
input. The base term representing the unperturbed q-vortex, U(r), has been assumed to be
unchanging in time in the linear analysis, as its radial diffusion due to viscosity is negligible
due to the high Re number in our problem setup. In contrast, the non-linear simulations take
this small viscous diffusion effect of the base q-vortex into account for accuracy purposes.
That is to say, even the unperturbed flow changes slowly with respect to time. This can be
calculated as the non-linear simulation with ε = 0. As a result, the perturbation velocity
field at t = η is assessed as the difference between two time-varying fields, i.e.,

u′(r, ϕ, z, η ; ε) ≡ u(r, ϕ, z, η ; ε)− u(r, η ; 0). (11.4.3)
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Figure 11.8: Comparison of the transient energy growth curves in the ‘linear’ evolution case, calculated via
(11.4.1), and in the ‘non-linear’ evolution cases with the initial perturbation energy of 10−8 and of 10−3,
calculated via three-dimensional non-linear simulations. The initial perturbation is illustrated in figure 11.7.

The perturbation energy at t = η, denoted E(η), is evaluated as the volume integration
of u′ · u′ divided by 2π times the axial wavelength (= 2π/κ), for the consistency with our
energy definition in (10.1.7).

In figure 11.8, three energy growth curves are plotted together for comparison. First,
the energy growth curve in the linear evolution case peaks at t = τ = 50. In this case, the
maximum energy growth G is 2.5×102. This curve serves as an index of the prevalence of the
linear process during early transient growth of vortices. Second, the energy growth curve in
the non-linear evolution case with E(0) = 10−8 is almost identical to the ‘linear’ index curve.
In this case, the non-linearity should be considered but only in an infinitesimal manner and
its influence appears to be marginal. The only notable exception is a debilitation of the max-
imum energy growth at t = τ = 50. However, it is unlikely that this debilitation is entirely
due to the introduction of non-linearity because, according to Mao and Sherwin (2012, p.
55), such a drop in energy growth at the peak appears to stem from the consideration of
viscous diffusion of the base flow in time. Lastly, the energy growth curve in the non-linear
evolution case with E(0) = 10−3 exhibits more debilitation at the peak even than the prior
non-linear case. Unlike the previous case, this demonstrates the clear intensification of the
non-linearity. Nevertheless, the overall trend of the curve does not drift away from that of
the ‘linear’ index curve. The coherence in trend holds particularly well until the maximum
vortex growth (t < τ = 50), which means that the linearised theory on transient growth is
still effective in the original non-linear system.

The prevalence of the linear process in the early-stage vortex growth is much clear when
we take a look at the evolution of the perturbation structure, which is shown in figure
11.9. Using the same contour style across the three different cases presented above, we
illustrate three snapshots of the axial vorticity perturbation contours on the z = 0 plane at
t = 25, t = 50 and t = 100 for each case. The structural coherence in vorticity perturbation
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between the linear and non-linear cases is evident at t = 25, representing the stage of rapid
perturbation growth. At t = 50, or the optimal growth time, the perturbation structures
are still comprehensively coherent. However, in the non-linear evolution case with E(0) =
10−3, it can be found that the m = 1 symmetry weakly breaks up, which means that the
other azimuthal wavenumbers rather than m = 1 begin to possess non-negligible energy via
the higher-order energy transfer across different wavenumbers. At t = 100, representing
the stage of asymptotic stabilisation, the perturbation structures no longer show strong
resemblance. This is another evidence of the non-linearity intensification particularly as a
result of prolonged vortex growth in time.

Last but not least, we note that the simulation with the initial perturbation energy of
10−3 results in the substantial displacement of the vortex core, as shown in figure 11.10,
notwithstanding the seemingly small level of energy. The λ2-isosurface where λ2 = −0.05
is used to detect the vortex core (see Jeong & Hussain, 1995). The largest displacement of
the vortex centre in the simulation is nearly equal to the core radius, coinciding with the
experimentally observed meandering amplitude in the order of the core radius (see Devenport
et al., 1997; Bölle, 2021). Based on the rough figures of a large transport aircraft given
in Fabre and Jacquin (2004, p. 259), the characteristic scales in our formulation become
U0 ≈ 27 m/s and R0 ≈ 0.5 m and using the density of air ρ ≈ 1 kg/m3, the ‘dimensionless’
energy of 10−3 corresponds to the ‘actual’ kinetic energy of (10−3)×2πρ(U2

0/2)R
2
0 ≈ 0.6 J/m

(‘per metre’ stands for the axial unit length), which appears to be not exorbitant in practice.
We believe this strengthens the practicability of the optimal transient growth process under
consideration, arguably owing to the radially concentrated nature of the optimal perturbation
structures (see figure 11.7).
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Figure 11.9: Axial vorticity perturbation contours of the optimally perturbed vortex (refer to figure 11.7 for
the illustration of the initial perturbation) on the z = 0 plane at t = 25, t = 50 and t = 100: (a) the ‘linear’
evolution case where the maximum energy growth is known to occur at t = τ = 50, (b) the ‘non-linear’
evolution case with the initial perturbation energy of 10−8, (c) the ‘non-linear’ evolution case with the initial
perturbation energy of 10−3. The same contour style as figure 11.7 is applied to all plots. Despite the
non-linearity and its intensification with an increase in perturbation energy or in time, the ‘linear’ process
still prevails the overall dynamics with respect to early vortex growth in the original non-linear system.
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Figure 11.10: Three-dimensional illustration of the q-vortex with the helical perturbation (see figure 11.7) of
the initial energy of 10−3: (a) the initial core (t = 0), and (b) the most excited core (t = τ = 50). To detect
the vortex core, the λ2-isosurface where λ2 = −0.05 is depicted (see Jeong & Hussain, 1995). The maximum
displacement of the vortex centre comes up to the order of the core radius, which is as substantial as the
experimental meandering amplitude (see Devenport et al., 1997; Bölle, 2021).
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Chapter 12

Initiation of optimal transient growth

12.1 On a means of initiating optimal transient

growth

The transient evolution of the optimally perturbed q-vortex that we have analysed in the
previous chapter unveils a promising way to significantly disturb the vortex even if the base
vortex is known to be linearly stable. For this growth process to be practically meaningful, an
important question remains: By what means is the perturbation initiated? In our analyses
and simulations thus far, perturbations have been presumed to be initially present along
with the vortex, which is supposed to be initially in an undisturbed state. However, from
a practical standpoint, there should be a means of causing such perturbations because they
cannot originate from the undisturbed flow — the q-vortex, which by itself is quasi-steady.
Without a plausible initiation process, the optimal transient vortex growth process may be
no more than hypothetical.

One may consider ambient turbulence as a compelling explanation for initiation, as often
addressed in the linear instability context (e.g., Crow & Bate, 1976; Han et al., 2000).
However, in contrast to linear instability mechanisms, where we anticipate that perturbations
are destined to be explosive in the limit of t → ∞ due to the most unstable eigenmode
growing in an exponential manner, a transient growth process typically necessitates a specific
(optimal) form of perturbation as input. The issue of whether such a specific perturbation
can spontaneously originate from ambient turbulence, which is fundamentally stochastic
and uncontrolled, has led to recurrent criticisms of optimal transient growth (see Fontane
et al., 2008, p. 235). In the work by Fontane et al. (2008), where the transient dynamics
of vortices with stochastic forcing was analysed, they confirmed the activation of optimal
perturbations by noise-like forcing that is random in both space and time. This mitigates the
aforementioned criticisms of optimal transient growth. Nonetheless, as the authors stated, it
remains questionable whether such random isotropic forcing effectively represents turbulence
in real conditions. The lack of clear universality in modeling turbulence is believed to be an
intractable challenge when incorporating ambient turbulence in the current problem.
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Instead, we take the initiative in considering a different means of initiating optimal
transient growth: ice crystals (or particles). Their presence in real life is ascertained through
the observation of contrails. The formation of contrails primarily begins with jet exhaust
plumes produced by aircraft engines, which contain particulate matter that sooner or later
serves as condensation nuclei (Kärcher, 2018). We clarify that our focus does not lie in this
very initial stage of contrails in the form of jet plumes. During this stage, the vortex roll-
up process is underway, and, according to the early experimental study by El-Ramly and
Rainbird (1977), there is no appreciable influence of the engine exhaust on the alteration of
the rolled-up structure. As a matter of course, our attention is directed towards the later
stage associated with a formed wake vortex, where the interaction between a vortex and ice
crystals is manifest.

During the stage of ice crystals interacting with a wake vortex, the size of an individual
particle reportedly comes up to a few microns (Kärcher et al., 1996; Paoli & Garnier, 2005;
Naiman et al., 2011; Voigt et al., 2011; Kärcher, 2018). Due to its relatively small length
scale compared to the vortex scale (in metres), the entire ice crystals are often treated as flow
tracers, i.e., particles with no backward influence on the carrier fluid (Paoli & Garnier, 2005;
Naiman et al., 2011). The assumption appears to be acceptable and efficiently simplifies the
dynamics of the flow with particles. However, when considering the large particle number
density, reportedly between 109 per cubic metre to 1011 per cubic metre (Paoli et al., 2004;
Paoli & Garnier, 2005), and the density ratio of ice to air (approximately 103), the bulk
effect of the ice crystals cannot be simply negligible. Under optimistic estimation based on
the given figures, the upper limit of the particle mass fraction may fall in the range between
10−2 and 10−1. This amount is appreciable enough to initiate a perturbation that ultimately
evolves into a substantial vortex disturbance via the transient growth process (recall §11.4).

When considering ice crystals in the development of contrails, the primary emphasis
has typically centred on their microphysical growth. Consequently, the analysis often takes
account of an ice microphysics model alongside a flow solver (e.g., Lewellen & Lewellen,
2001; Paoli et al., 2004; Paoli & Garnier, 2005; Naiman et al., 2011). However, this aspect
is excluded from our consideration. Instead, we direct our attention to two-way coupling,
specifically through drag momentum exchange. This approach aligns with our essential fo-
cus on examining the significance of the particles’ backward disturbance to the wake vortex.
Recalling that azimuthal perturbations commonly dominate during initial optimal transient
growth (see the left panels in figure 11.6), we speculate that momentum exchange via drag
provides an effective means of initiating optimal perturbations, complementing ambient tur-
bulence whose action is stochastic and, in an ideal sense, non-directional.

We note that, according to recent studies by Shuai and Kasbaoui (2022) and Shuai et
al. (2022), weakly inertial particles within a vortex under two-way coupled conditions are
found to be influential enough to trigger instabilities and expedite the vortex decay pro-
cess. Although the initial particle distributions considered in these studies, where particles
are loaded either over the entire domain or inside the vortex core region, are not directly
applicable to our case, where particles interact with the vortex along the periphery of the
vortex core, the studies support the underlying idea that even a dilute amount of particles
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meaningfully affects the surrounding vortex.

12.2 Two-way coupled equations for a vortex

interacting with particles

To simulate the initiation process leading to the transient growth of a vortex via particle drag,
we need to consider additional parameters and variables in order to establish an equation
for the motion of particles. Also, we should add a coupling term to the momentum equation
of fluid motion in (10.1.2) to complete a two-way coupled formulation. In our discussion,
the particles under consideration are dispersed ice crystals, with a density roughly 103 times
greater than that of the surrounding fluid (air). We define the ratio of particle density ρp to
fluid density ρ as a new dimensionless parameter, denoted by ϑ (≡ ρp/ρ). We typically set
ϑ to the constant value of 103 in later calculations.

In this study, we employ the Eulerian approach adopting the fast equilibrium approxi-
mation, proposed by Ferry and Balachandar (2001). In this method, the set of particles is
treated as continuum, allowing the flow-particle system to behave like a two-phase flow. Due
to the high particle number density, we refrain from the use of Lagrangian approaches track-
ing particles individually (e.g., Paoli et al., 2004; Naiman et al., 2011; Shuai et al., 2022).
Thanks to the relatively moderate computational cost, we believe the Eulerian approach is
favourable for scale-up simulations, such as two or more vortices, to account for secondary
vortex evolution in future studies. Also, our focus on the ‘bulk’ influence of particles on the
surrounding vortex, rather than individual particle statistics, fairly justifies the treatment of
particles as continuum.

The following two variables now represent the particles in the form of dispersed phase:
particle velocity field up(r, ϕ, z, t) and particle volume fraction c(r, ϕ, z, t). The fast equilib-
rium approximation allows up to be explicitly evaluated in terms of the fluid velocity field
u. Based on the Maxey-Riley equation with the added mass effect (Maxey & Riley, 1983;
Auton et al., 1988), up can be reduced in the resulting two-way coupled equations (see Ferry
& Balachandar, 2001, p. 1221). They are

∂u

∂t
= −∇φ+ u× ω +

1

Re
∇2u− (ϑ− 1)c

Du

Dt
with ∇ · u = 0, (12.2.1)

and
∂c

∂t
= −u · ∇c+ 2Stk(ϑ− 1)

2ϑ+ 1
∇ ·
(
c
Du

Dt

)
, (12.2.2)

where D/Dt is the material derivative with respect to the fluid phase and Stk is the Stokes
number, i.e., the dimensionless particle relaxation time normalised by R0/U0. In calculations,
we set Stk = 10−5 to comply with the fast equilibrium approximation as well as practical
conditions (Kärcher et al., 1996). The discretisation and time-integration procedures for
(12.2.1) and (12.2.2) are not different from the previous pure vortex cases, as detailed in
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Appendix D. Compared to (10.1.2), it can be seen that the last term in (12.2.1) represents
the particle drag, whose magnitude depends upon the order of c.

12.3 Initial particle distribution

As briefly discussed above with the recent studies on vortex-particle interactions (Shuai
& Kasbaoui, 2022; Shuai et al., 2022), the observable scope of vortex-particle interactions
varies based on the initial distribution of particles. Accordingly, in order to substantiate
that particle drag initiates optimal transient growth in the vortex, it is necessary to set up
an effective initial distribution of the particles. We first remark that the role of particles
here should be limited to small disturbance to the vortex system, which implies (ϑ − 1)c
significantly less than order unity in the following discussions.

To begin with, let’s comprehend how the particles induce perturbations in the carrier
fluid. Reorganising the coupled momentum equation in (12.2.1), we obtain

(1 + (ϑ− 1)c)
Du

Dt
= −∇p+

1

Re
∇2u, (12.3.1)

which is in fact the original form Ferry and Balachandar (2001) provided. In this form, it is
clearly demonstrated that the combined motion of the two phases behaves like a single-phase
flow with a slight density variation with a multiplication factor of (1+ (ϑ− 1)c). This effect
is understood as a consequence of the dispersed phase absorbing momentum from the fluid
phase. Loosely speaking, if the fluid accelerates, the presence of the particles retards the
fluid’s acceleration and therefore results in negative perturbation velocity, and vice versa.

Given that the perturbation velocity is induced by non-zero c, we can derive from the
velocity decomposition of (12.3.1) that

(ϑ− 1)c
Du

Dt
+
Du′

Dt
= −∇p′ +

1

Re
∇2u′. (12.3.2)

It can be confirmed that (12.3.2) becomes identical to the total equation in (12.3.1) if c = 0.
Recalling that the aim is to investigate the initial particle distribution c(t = 0), denoted
c0, that effectively perturbs the ‘undisturbed’ vortex towards optimal transient growth, we
assume zero perturbations at t = 0. This makes (12.3.2) reduce to

∂u′

∂t

∣∣
t=0

= −(ϑ− 1)c0
Du

Dt

∣∣
t=0
. (12.3.3)

Suppose that we aim to initiate a specific velocity perturbation ŭ′. If we find c0 such that
right-hand side of (12.3.3) coincides with (a positive constant multiple of) ŭ′, then we may
expect u′ after a brief advancement in time to exhibit the perturbation in the form of ŭ′.
The existence of such c0 is rare since (12.3.3) in fact comprises three component equations
whereas c0 is the only unknown. We inevitably concentrate on the most important one



12.4. PARTICLE-INITIATED TRANSIENT GROWTH 102

among those in order to circumvent this overdetermination issue. If we choose the azimuthal
component, the problem is converted into finding c0 such that

−(ϑ− 1)c0

(
Du

Dt

)
ϕ

∣∣
t=0

= Cŭ′ϕ, (12.3.4)

where C is an arbitrary positive constant, standing for scaling c0 later when solving (12.2.1)
and (12.2.2) with various levels of particle volumetric loading. Arranging the terms with the
fact that (Du/Dt)ϕ|t=0 = −4re−r2/Re for the ‘undisturbed’ q-vortex profile U , the relation
may be more simplified to c0 ∝ ŭ′ϕ/(re

−r2).
The suggested c0 involves two serious drawbacks, restricting its utility. Nonetheless, we

affirm that it is still useful enough to initiate optimal transient growth. First, the radial and
axial perturbation velocity components are excluded from consideration. This is justifiable
due to the fact that the azimuthal component of velocity perturbation in transient growth
is found to be commonly predominant at the beginning (see the left panels in figure 11.6).
Second, more importantly, particle volume fraction cannot be negative. The fluid continuity
might aid this issue; in a local sense, the deficiency (surplus) in speed in particle-laden
fluid must be counterbalanced by the speed gain (lose) of circumferential particle-free fluid.
Consequently, we set c0 to zero when its estimate from (12.3.4) is negative.

For comparison’s sake, we bring ourselves back to the optimal perturbation case consid-
ered in §11.4, where (m, κ) = (1, 0.1) with τ = 50. Figure 12.1 shows the initial particle
volume fraction calculated via the suggested estimation, and the axial vorticity after a brief
advancement in time (t = 0.01) as a result of the two-way interactions between the particles
and the vortex with the initial particle volumetric loading level cmax = 10−6. Computing
the perturbation velocity fields in two-way coupled vortex-particle simulations is essentially
the same as in (11.4.3), except that what determines the perturbation intensity now is the
particle volumetric loading level cmax. Despite the drawbacks addressed above, the resulting
perturbation satisfactorily resembles the desired perturbation input (see figure 11.7) towards
optimal transient growth.

12.4 Particle-initiated transient growth

Now that the evolution of perturbations of a vortex is governed by (12.3.2), where the term
(ϑ− 1)c(Du/Dt) serves as a non-zero external force, the overall perturbation dynamics are
not only explained by the transient growth process but are also affected by the continual
interaction between the particles and the vortex flow (n.b., simliar discussion can be found
in Fontane et al., 2008, p. 249). In what follows, we substantiate particle-initiated transient
growth by confirming some clear indications of transient growth over short time intervals in
the vortex-particle system with the initial particle distribution given in figure 12.1.

Temporal changes in perturbation energy are displayed in figure 12.2 with four different
levels of particle volumetric loading: cmax = 10−4, 10−5, 10−6, and 10−7. The case of cmax =
10−4 is considered to be the upper limit of having (ϑ − 1)c significantly less than order
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Figure 12.1: Initiation of optimal transient growth via inertial particles: (a) (left) the initial particle volume
fraction contour on the z = 0 plane, in the pursuit of initiating the perturbation studied in §11.4 (see figure
11.7), and (b) (right) the axial vorticity perturbation contour on the z = 0 plane after a brief advancement
in time (t = 0.01) in the two-way coupled vortex-particle simulation solving (12.2.1) and (12.2.2) with the
initial particle volumetric loading level of cmax = 10−6. In the right panel, the same contour style as figure
11.7 is used and |ω′

z(t = 0.01)|max = 5.80× 10−6.

unity (n.b., ϑ = 103). All energy curves follow an almost identical trend, indicating that
the same general dynamics take control of these cases. In the right panel of the figure, the
data are normalised by the perturbation energy at t = 10 for each case (note that E(0) is
zero and the energy growth we have used, E(t)/E(0), is undefined here) to compare energy
amplification between these cases. Overall, the energy amplification in the end appears to
be levelled at around 102 times E(10) due to the long-time response of the vortex to the
particles. Arguably, the amplification above this level should be attributed to the transient
growth process, especially including the energy amplification ‘hump’ up to t = 80. Also, the
peak of this hump at t = 50 coincides with the optimal transient growth period τ = 50 that
we intend to induce, which we believe strengthens our argument.

Another indication of the particle-initiated transient growth is observed in the evolution
of the perturbation structure. In figure 12.3, the axial vorticity perturbation contours on the
z = 0 plane at t = 25, t = 50 and t = 100 in the vortex-particle simulation with cmax = 10−4

are depicted. We compare these snapshots with those of the optimally perturbed non-
linear vortex growth in figure 11.9(c). The continual vortex-particle interactions produce the
structural discrepancy of the perturbation; this is clearly discernible at t = 100, where the
strong spiraling arms are formed at the periphery as a result of the long-term drag momentum
exchange. Nonetheless, in the light of the early-stage perturbation growth until t = 50, some
crucial features representing the optimal transient growth process can be identified, such as
the appearance of two weak spiraling arms at the periphery of the core at t = 25. Most
importantly, at the time of the maximum energy growth (t = 50), the perturbation energy
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Figure 12.2: (Left) temporal perturbation energy changes in the vortex-particle motion (see figure 12.1
for the initial setup) with various particle volumetric loading levels: cmax = 10−4, 10−5, 10−6 and 10−7

and (right) the same data but normalised by E(10) to compare energy amplification. Note that E(10) is
arbitrarily chosen as E(t)/E(0) is undefined in these cases because E(0) = 0.

Figure 12.3: Axial vorticity perturbation contours of the vortex interacting with the peripherially located
particles (refer to figure 12.1 for the illustration of the initial particle distribution) on the z = 0 plane at
t = 25, t = 50 and t = 100. Here, depicted is the case of cmax = 10−4.

transfer from the periphery to the core—the iconic feature of the optimal transient growth
process with respect to m = 1—is identifiable. We believe that this serves as the plausible
evidence that nearly optimal transient growth takes place via vortex-particle interactions.

Lastly, we report the transient development of the particle distribution in association
with the vortex transient growth. In figure 12.4, the vortex interacting with the particles
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Figure 12.4: Three-dimensional illustration of the q-vortex interacting with the peripherally located particles
(see figure 12.1) of the initial particle volumetric loading level of cmax = 10−4: (a) t = 0, and (b) t = 50. The
vortex core is detected using the λ2-isosurface where λ2 = −0.05, as with figure 11.10. The green isosurface
of c = 2× 10−5 (20 % of cmax) is drawn together to visualise the particle distribution at each time.

where cmax = 10−4 is visualised using the λ2-isosurface for the vortex core and the isosurface
of 20 % of cmax for the particles. While the vortex evolves into the most excited state
(t = 50) from the unperturbed state (t = 0), the particles tend to be less dispersed, forming
a coherent helical structure that encompasses the vortex core. However, the coherence
remains evanescent and dissolves quickly after the maximum perturbation growth at t = 50.
The physical implication of such a temporary increase in coherence, as well as whether it is
not just the special case for m = 1, should be investigated further. For now, we note that the
physical phenomenon relevant to the current exemplary case, vortex meandering, is known to
have a particular tendency of increasing the ‘orderliness’ of the system (i.e., reduction of the
number of dynamically active proper orthogonal decomposition (POD) modes), according
to Bölle (2021); the coherence of the particles during the vortex’s transient growth is likely
to be correlated with this tendency.
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Chapter 13

Concluding remarks II

In this part of study, we examined the transient dynamics of a wake vortex using a spectral
method tailored to a radially unbounded domain, leading us to confirm that the essential
contributor to optimal transient growth among continuous eigenmode families is the viscous
critical-layer eigenmode family, rather than the potential eigenmode family. In addition, we
explored inertial particles at the periphery of a vortex, motivated by ice crystals forming
contrails in the real world, as a significant means of initiating optimal transient growth
through drag momentum exchange that has often been neglected.

Using the spectral method for an unbounded domain, which we developed using the
mapped Legendre functions as basis functions (see S. Lee & Marcus, 2023), we numerically
analysed the transient growth process of the q-vortex slightly disturbed by a perturbation
in the form of a sum of well-resolved eigenmodes. In a numerical sense, our method is not
vulnerable to some critical issues that unfavorably affect the numerical sensitivity with regard
to transient growth analysis, usually found in the conventional spectral method involving
Chebyshev polynomials with domain truncation. These issues include the excessive spawning
of unnecessary (non-regular or spurious) eigenmode families and the unclear distinction of the
viscous critical-layer spectrum from the potential spectrum, due to the incomplete mimicking
of the unbounded domain setup. Our method was found to prevent these problems in a
proactive manner and, consequently, provide more tolerance for tuning numerical resolution
using the map parameter L.

Following the typical transient growth formalism, we treated perturbations as a sum of
eigenmodes. We then naturally investigated which family of eigenmodes contributes dom-
inantly to optimal perturbations for achieving optimal transient growth. The important
behaviour of short-term perturbation energy growth is known to be associated with continu-
ously varying eigenmodes, grounded upon the non-normality of the linearised Navier-Stokes
operator. Mao and Sherwin (2012) showed the predominance of continuous eigenmodes in
optimal perturbations for the transient growth of a wake vortex, while not providing further
categorisation of the continuous eigenmodes, especially for the viscous critical-layer eigen-
mode family. Through the exploration of the sub-eigenspaces, each respectively spanned by
a distinct eigenmode family, it was corroborated that optimal transient growth is principally
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attributed to the viscous critical-layer eigenmodes. We believe that this finding provides
a better alignment of the theoretical foundation of transient growth with the critical layer
analysis, rather than the wave packet pseudomode analysis, in compliance with the argu-
ment relating inviscid continuous spectrum (CS) transients to vortex growth over short time
intervals (Heaton, 2007b). Also, this helps us narrow down our focus when exploring the con-
tinuous spectra, as the viscous critical-layer spectrum solely accounts for continuous curves
neighbouring the discrete spectrum, whereas the remaining continuous spectrum (potential
spectrum) fills an extensive area in the left half of the complex eigenvalue plane.

The energy growth curves and the associated optimal perturbation structures acquired
in the present analysis, concerning the axisymmetric (m = 0) and helical (m = 1) cases with
axial wavenumbers κ of order unity or less, were found to be in agreement with previous
literature. Overall, we revealed the generic responses during the optimal transient growth
process: for m = 0, the transition of the azimuthal velocity to the other components in
consistent ring streaks, and for m = 1, the transition of the swirling velocity layers outside
the vortex core to the large transverse motion in the core. These processes are consistent with
those unraveled by previous vortex transient growth studies such as Pradeep and Hussain
(2006), Fontane et al. (2008), and Mao and Sherwin (2012). In the nonlinear simulations
of the q-vortex initially with an (m, κ) = (1, 0.1) optimal perturbation given the optimal
growth period of τ = 50, we were able to assert the prevalence of the dynamics of transient
growth, particularly until the expected time of maximum energy growth (t ≤ τ = 50),
concluding that these processes predicted by the linearised system are robust even in the
original nonlinear system over meaningful time intervals.

Lastly, we discussed the initiation process of transient growth (i.e., generating pertur-
bations from physical interactions, rather than naively assuming their presence at the be-
ginning) and studied the validity of our discussion. Instead of ambient turbulence, which
may provide a compelling path for initiation yet is difficult to model precisely due to its
fundamental intricacy, we considered vortex-particle interactions inspired by ice crystals, or
contrails, in association with aircraft wake vortices in practice. Despite the small size of
individual particles, often leading to the assumption that their backward influence on the
flow is negligible, their bulk inertial effect along with the large particle number density might
make them not simply neglected. Enabling the two-way coupling between the particles and
the vortex flow via drag momentum exchange, we ran the vortex-particle simulations with
the particles initially distributed at the periphery of the vortex core, in order to initiate
the optimal perturbation for (m, κ) = (1, 0.1) studied ahead. We successfully spotted clear
indications of optimal transient growth during the continual vortex-particle interactions, in-
cluding the large energy amplification hump that peaks at t = τ = 50 and the perturbation
energy transfer process from the periphery into the core.

The present study underscores the significance of the optimal transient growth process of
a single vortex over short time intervals, initially structured by the critical-layer eigenmodes.
The initiation of transient growth via particle drag not only demonstrates the practicability
of the transient growth process but also reaffirms the susceptibility of the vortex motion,
even against physical interactions that have often been neglected either for simplicity or
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due to superficial insignificance. As Fontane et al. (2008) suggested in their vortex transient
growth study with stochastic forcing, the transient growth process might be active regardless
of the details or dynamics of the perturbations; particle drag could be one of those activators.
Even though our motivation for considering particles was founded upon existing contrails,
particles as a means of perturbing a vortex can be more useful if we attempt to actively
control the wake vortex system to expedite its destabilisation, beyond understanding its
nature, through, for example, deliberate injection of inertial particles.
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Chapter 14

Summary and conclusions

In the first part of the research, a specialised numerical method was introduced for the
linear stability analysis of wake vortices, with a particular focus on the q-vortex model,
representing non-dimensional Lamb-Oseen or Batchelor vortices. Integral to this method
were algebraically mapped associated Legendre functions, denoted as Pm

Ln
(r) (m is order

and n is degree), chosen for their natural satisfaction of boundary conditions—analyticity
at r = 0 and appropriate decay as r approaches infinity – essential for modeling vortex
dynamics in a radially unbounded domain.

This numerical framework integrated a poloidal-toroidal decomposition technique aimed
at reducing computational efforts while preserving the restrictions posed by the original
governing equations, namely the incompressible Navier-Stokes or Euler equations. The
framework effectively converted the original vortex stability problem into a standard matrix
eigenvalue problem, significantly reducing the problem’s complexity by reducing the number
of state variables from four (i.e., the primitive variables of three velocity components and
pressure scalar) to two and decreasing the matrices used for eigenvalue computations from
two to one. This not only enhanced computational efficiency but also eliminated the need
for additional adjustments related to boundary conditions in radially unbounded domains,
thereby minimising unexpected numerical inaccuracies.

An important aspect of this method was its flexibility in the allocation of collocation
points around the vortex core, not only with the number of spectral basis elements and
collocation points, M and N , but also with the adjustable map parameter L. Half of the
points were allocated within 0 ≤ r < L, ensuring precise capture of vortex dynamics near
the core, while the remaining points extended into the outer domain of r ≥ L. This versatile
collocation point distribution enabled efficient and reliable computation of eigenmodes and
eigenvalue spectra across various base flow conditions and perturbation parameters.

Numerical computations conducted using this method focused on analyzing eigenmodes
and corresponding eigenvalue spectra for strong swirling q-vortices. Through the computa-
tions, eigenmodes were categorised into distinct families based on their physical characteris-
tics and the arrangement of their corresponding spectrum on the complex eigenvalue plane.
The discrete family, characterised by regular solutions to the linearised governing equations,
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exhibited localised oscillations (“wiggles”) around the vortex core and demonstrated rapid
decay in the radial direction. Importantly, these eigenmodes showed robust convergence
under viscosity adjustments, reinforcing their physical relevance in vortex stability analysis.

In contrast, the inviscid critical-layer family emerged from inherent mathematical singu-
larities in the linear vortex dynamics under consideration. This presented challenges related
to under-resolution (in a discretised sense) due to the singular nature of their eigenmodes.
Adjusting parameters, particularly the map parameter L, proved effective in rectifying nu-
merical errors associated with under-resolved eigenmodes, thereby aligning computed spectra
with expected analytical outcomes. Interestingly, the corrected inviscid critical-layer spec-
trum, through its numerically discretised proxy, revealed a characteristic eigenvalue pairing
phenomenon. The phenonenon was believed to come from slight degeneracy breaking due
to numerical approximations of originally singular degenerate eigen-solution pairs.

The potential family, previously identified as the viscous remnants of the inviscid critical-
layer spectrum under the influence of viscosity, occupied a distinct segment in the com-
plex eigenvalue plane characterised by scattered numerical values lacking clear convergence
patterns. These eigenmodes, typified by localised rapid oscillations in the form of “wave
packets,” indicated a viscous regularisation effect on critical layers, albeit with uncertainties
regarding their scaling behaviour with Re. Despite these concerns, their well-resolved spatial
eigenmode structures hinted their physical relevance.

Highlighting a new discovery, attention was drawn to the viscous critical-layer family
following the viscosity-induced alteration in the whole inviscid spectra. Although continu-
ous together with the potential family, their spectrum was distinctive at the right end of
the potential spectrum, exhibiting clear traces of two continuous curves. Despite structural
similarities to the potential family around viscously regularised critical layers, their identi-
fication as the true remnants was rooted in their non-trivial behaviour outside the critical
layer resembling inviscid counterparts and adherence to the Re−1/3 scaling law for numeri-
cally resolving this family, leading to our affirmation regarding the “true” viscous remnants
of the invsicid critical-layer spectrum.

In light of the findings demonstrated through the linear stability analysis part, the
mapped Legendre spectral collocation method served as a conclusively useful tool for eluci-
dating the linear stability of wake vortices for both the inviscid analysis and viscous analysis.
Its methodological advantages encompassed computational efficiency, flexibility through op-
timal collocation point distributions, and fidelity in resolving singular or nearly singular
eigenmodes across diverse vortex setups of varying perturbation wavenumbers. The system-
atic classification of eigenmodes made in the research not only deepened understanding of
linear vortex dynamics but also informed further needs of studying the importance of critical
layers and pertinent eigenmodes.

In the second part of the research, the developed spectral method, employing mapped
Legendre functions as basis functions, was utilised for the computational analysis of the
transient growth process of q-vortices under non-modal perturbations expressed as a sum
of physical or spatially well-resolved eigenmodes. Unlike conventionally preferred spectral
methods involving Chebyshev polynomials with domain truncation, this approach avoided
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problems such as the excessive spawning of contextually unnecessary (i.e., non-regular or
spurious) eigenmode families and the less clear distinction between the viscous critical-layer
spectrum and the potential spectrum. These issues are supposedly related to the incomplete
implementation of unboundedness in a finitely truncated radial domain; in contrast, the
presented method could avoid these issues as it was intended for unbounded vortical flows
and allowed more tolerance in tuning numerical resolution using the map parameter L.

Following the typical transient growth formalism, perturbations were treated as a sum of
eigenmodes to investigate which eigenmode family dominantly contributed to optimal pertur-
bations that achieve the greatest transient growth. Short-term perturbation energy growth
was found to be associated with continuously varying eigenmodes, grounded in the non-
normality of the linearised Navier-Stokes operator, which leads to the continuous spectra.
Previous studies demonstrated the predominance of continuous eigenmodes in the constitu-
tion of optimal perturbations for transient growth. However, with the further categorisation
of these continuous eigenmodes, especially concerning the viscous critical-layer eigenmode
family, it was corroborated that optimal transient growth was principally attributed to the
viscous critical-layer eigenmodes, while the potential eigenmodes’ contribution was not sig-
nificant.

Energy growth curves and associated optimal perturbation structures calculated from
the analysis of axisymmetric (m = 0) and helical (m = 1) cases with axial wavenumbers κ of
order unity or less were found to be consistent with previous literature. Generic responses
during the optimal transient growth process were revealed: for m = 0, the transition of
azimuthal velocity to other components in consistent ring structures, and for m = 1, the
transition of swirling velocity layers outside the vortex core to large transverse motion within
the core. These findings were in agreement with earlier results concerning vortex transient
growth studies.

Nonlinear simulations of the q-vortex with an initial optimal perturbation for (m, κ) =
(1, 0.1), given the optimal growth period τ = 50, exhibited the prevalence of transient growth
dynamics, particularly up to the expected time of maximum energy growth (t ≤ τ = 50).
This was believed to support the robustness of these processes predicted by the linearised
framework within the original nonlinear system over meaningful time intervals.

Next, the initiation process of transient growth was discussed, emphasising physical in-
teractions rather than assuming the presence of perturbations at the beginning. Based
on inspiration from contrails near real wake vortices, momentum effects of surrounding ice
crystals in association with wake vortex motion were considered. Despite the tiny size of
individual particles, their bulk inertial effect and high particle number density (compared
to the fluid) might render their influence on the flow non-negligible. Vortex-particle simu-
lations, with particles initially distributed at the vortex core periphery, demonstrated clear
indications of optimal transient growth during continual and nonlinear vortex-particle inter-
actions, including a significant energy amplification hump peaking at the expected optimal
growth time and the transfer of perturbation energy from the periphery into the core.

In conclusion, the transient growth analysis part reviewed and affirmed the significance
of optimal transient growth of a single vortex over short time intervals, anew highlighting
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that critical-layer eigenmodes are the crucial ingredients to structure optimal perturbations.
The initiation of transient growth via particle drag not only demonstrated the practicability
of the transient growth process but also reaffirmed the susceptibility of vortex motion to
physical interactions often neglected due to perceived insignificance. Considering particles
as a means of perturbing a vortex might be useful for actively controlling wake vortex systems
to expedite destabilisation through deliberate injection of inertial particles.
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Appendix A: Differential operators

For a r−dependent scalar function f(r), the gradient and the Laplacian are

∇mκf ≡ df

dr
êr +

im

r
f êϕ + iκf êz, (A1)

∇2
mκf ≡ 1

r

d

dr

(
r
df

dr

)
− m2

r2
f − κ2f. (A2)

For a r−dependent vector field F (r) ≡ Fr(r)êr+Fϕ(r)êϕ+Fz(r)êz, the divergence, the curl
and the vector Laplacian are

∇mκ · F ≡ dFr

dr
+
Fr

r
+

im

r
Fϕ + iκFz, (A3)

∇mκ × F ≡
(
im

r
Fz − iκFϕ

)
êr +

(
iκFr −

dFz

dr

)
êϕ

+

(
dFϕ

dr
+
Fϕ

r
− im

r
Fr

)
êz,

(A4)

∇2
mκF ≡

(
∇2

mκFr −
Fr

r2
− 2im

r2
Fϕ

)
êr +

(
∇2

mκFϕ −
Fϕ

r2
+

2im

r2
Fr

)
êϕ

+
(
∇2

mκFz

)
êz.

(A5)
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Appendix B: Analyticity at the origin

In literature studying swirling flows in a radially unbounded domain with respect to the
perturbation with azimuthal wavenumber m and axial wavenumber κ, i.e.,
u′ = ũ(r;m,κ)ei(mϕ+κz)+σt and p′ = p̃(r;m,κ)ei(mϕ+κz)+σt, the boundary conditions in terms
of primitive variables (ũr, ũϕ, ũz, p̃) have been typically expressed as

ũr = ũϕ = 0, ũz and p̃ finite for m = 0
dũr
dr

= ũr +mũϕ = ũz = p̃ = 0 for |m| = 1

ũr = ũϕ = ũz = p̃ = 0 for |m| > 1

at r = 0, ũ, p̃→ 0 as r → ∞. (B1)

These conditions were first suggested by Batchelor and Gill (1962) and the detailed derivation
can be found in Ash and Khorrami (1995, pp. 339-342). Our numerical method naturally
complies with the far-field condition as all spectral basis elements, Pm

Ln
(r), are designed to

vanish at radial infinity. Additionally, our method’s handling of velocity functions at the
origin not only meets the centerline condition given above, but also leads to a more accurate
function behaviour. This is verified in the following.

The derivation of the centerline condition begins with

lim
r→0

∂u′

∂ϕ
= 0, (B2)

to remove the coordinate singularity at r = 0, ensuring smoothness. As the pressure term is
implicit in our formulation, it is excluded from consideration. The term-by-term expression
of (B2) is

−imũr + ũϕ = −iũr +mũϕ = mũz = 0 as r → 0. (B3)

With the additional condition dũr/dr = dũϕ/dr = 0 for |m| = 1 (Mayer & Powell, 1992; Ash
& Khorrami, 1995; Bölle et al., 2021), which is independent of (B2) and from the regularity
of the governing equations around r = 0, the final formula is obtained.

In our numerical approach, the toroidal ψ̃(r;m,κ) and poloidal χ̃(r;m,κ) streamfunctions
are chosen as the state variables of the eigenvalue problem and are expanded by the mapped
Legendre functions, both of which behave O

(
r|m|+2s

)
for a non-negative integer s as r → 0

(see Matsushima & Marcus, 1995, 1997). That is, in our numerical method, it is guaranteed
that as r → 0, these streamfunctions are expressed in power series as

ψ̃(r;m,κ) = a0r
|m| + a1r

|m|+2 + · · · , χ̃(r;m,κ) = b0r
|m| + b1r

|m|+2 + · · · , (B4)
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where all coefficients are finite constants, as in (4.2.11). From the decomposition, it is known
that

ũr =
im

r
ψ̃ + iκ

∂χ̃

∂r
, ũϕ = −∂ψ̃

∂r
− κm

r
χ̃, ũz = −1

r

∂

∂r

(
r
∂ψ̃

∂r

)
+
m2

r2
ψ̃. (B5)

Therefore, our method ensures that as r → 0,

ũr =
(
ia0m+ ib0κ|m|

)
r|m|−1 +

(
ia1m+ ib1κ(|m|+ 2)

)
r|m|+1 + · · · ,

ũϕ =
(
−a0|m| − b0κm

)
r|m|−1 +

(
−a1(|m|+ 2)− b1κm

)
r|m|+1 + · · · ,

ũz = a1
(
−(|m|+ 2)2 +m2

)
r|m| + · · · .

(B6)

These power series satisfy (B3) for all m, which can be shown by simply putting (B6) into
(B3). This verifies that the mapped Legendre expansion of the poloidal and toroidal stream-
functions, as in (B4), meets the centerline condition of the primitive velocity components,
as in (B1).

The power series expansion in (B6) ultimately stands for the analyticity at the origin, pro-
viding more accurate constraints for smoothness on the coordinate singularity. The typical
centerline condition is not a sufficient condition for smoothness due to the lack of derivative
constraints, as seen in (B2), even requiring an additional condition for some cases. Correctly
removing coordinate singularities in spectral methods has been known to be crucial for the
accuracy of the spectral representation, which can be done by choosing appropriate basis
spectral elements with regards to what coordinate singularity is in consideration (Orszag,
1974; Bouaoudia & Marcus, 1991; Matsushima & Marcus, 1995, 1997). General Chebyshev
or Legendre spectral methods that do not implicitly take into account such analyticity issue,
thus necessitating an explicit boundary condition to mimic the analyticity, might not be the
suitable choice for systems with coordinate singularities to achieve fast spectral convergence
(see Gottlieb & Orszag, 1977; Boyd, 2001). We note two papers (Vasil et al., 2016, 2019)
that looked at a variety of spectral methods dealing with coordinate singularities and gave
evidence to support the use of the mapped associated Legendre functions for the cylindrical
coordinate singularity.
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Appendix C: Numerical integration
for energy calculation

Consider the following definite integral I of an arbitrary scalar f in terms of r:

I(f) ≡
∫ ∞

0

f ∗(r)f(r)rdr. (C1)

It is assumed that f decays sufficiently fast as r → ∞ so that I(f) is well-defined. Using
change of variables from r ∈ [0,∞) to a new variable ζ ∈ [−1, 1) via

ζ ≡ r2 − L2

r2 + L2
, (C2)

where L > 0 is the map parameter, we alter (C1) into a new form as follows:

I(f) =

∫ 1

−1

f ∗

(
L

√
1 + ζ

1− ζ

)
f

(
L

√
1 + ζ

1− ζ

)
L2

(1− ζ)2
dζ. (C3)

Applying the Gauss-Legendre quadrature rule as used by S. Lee and Marcus (2023, p. 13),
we obtain the numerical form of (C3) as

I(f) ≃
N∑
j=1

f ∗(rj)
L2ϖj

(1− ζj)2
f(rj), (C4)

where ζj and ϖj are the jth abscissa and the jth weight of the Gauss-Legendre quadrature
rule for degree N (j = 1, 2, · · · , N), and rj ≡ L

√
(1 + ζj)/(1− ζj) is the jth radial

collocation point. Note that (C4) can be expressed as f ∗M‡f if we define f as the discretised
version of f in physical space, i.e., f ≡ (f(r1), · · · , f(rN)) and M‡ as

M‡ ≡ diag

(
L2ϖ1

(1− ζ1)2
, · · · , L2ϖN

(1− ζN)2

)
. (C5)
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Finally, the energy in (10.1.7), which is equal to I(ũr)+I(ũϕ)+I(ũz), can be numerically
calculated as follows:

E(ũ) =
(
υ̃∗
r υ̃∗

ϕ υ̃∗
z

)︸ ︷︷ ︸
υ̃∗

 M‡ 0 0

0 M‡ 0

0 0 M‡


︸ ︷︷ ︸

M

 υ̃r

υ̃ϕ

υ̃z


︸ ︷︷ ︸

υ̃

. (C6)

This constitutes the formation ofM representing the matrix calculation for energy in (10.1.8).
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Appendix D: Numerical setup for
non-linear simulations

To discretise the radially unbounded domain considered in this study, especially in three
dimensions for non-linear simulations, we employ a pseudo-spectral method based on the
mapped Legendre spectral collocation method. The method assumes an arbitrary scalar
field (or a component of an arbitrary vector field) that decays fast and harmonically in r,
say, f , to be expanded as follows:

f(r, ϕ, z, t) =
∞∑

n=|m|

∞∑
m=−∞

∞∑
k=−∞

fnmk(t)P
m
Ln
(r)eimϕeik

2π
Z

z, (D1)

where Z is the computational domain length in the z direction, corresponding to the longest
axial wavelength under consideration. The expansion assumes periodicity with a period of
Z in z and ensures analyticity at r = 0 and harmonic decay at radial infinity, thanks to the
mapped Legendre basis functions Pm

Ln
(r). In this study, we chose Z = 20π, standing for the

smallest axial wavenumber of 0.1 to be considered. On the other hand, L, the map parameter,
defines the high-resolution region during pseudo-spectral calculations to be 0 ≤ r < L (see
S. Lee & Marcus, 2023, p. 13), and we chose L = 4 to secure resolution for the vortex motion
of the core and the near periphery.

Although special logarithmic terms may be required to account for the O(1/r) decay
at large r (see Matsushima & Marcus, 1997, p. 331), we omit them here for simplicity
in description. It is noted that the method was initially introduced by Matsushima and
Marcus (1997) with several validation examples involving the vorticity equations, where one
may look for additional details. Also, a more in-depth discussion of the implementation of
the method in vortex stability research can be found in S. Lee and Marcus (2023).

The set of the coefficients fnmk now represents f in a discrete manner. As practical
computations demand the set to be finite, we chose n ≤ 400, |m| ≤ 16, and |k| ≤ 16. The
reason the radial elements make use of an extra degree (i.e., large n) compared to the others
is to cope with the viscous critical layers of radially fine structures at high Re. Otherwise,
for the purpose of our computations, a high degree for the other elements (i.e., large m and
k) is not necessary, as our focus is principally on small wavenumbers.

In pure vortex simulations (without particles), we consider the toroidal and poloidal
streamfunctions ψ and χ as the state variables to be discretised in space (by applying the
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toroidal-poloidal decomposition, P, to the momentum equation) and then integrate them in
time to solve the vortex motion. With particles, the particle volume fraction c is additionally
considered, coupling the vortex and particle motions. When it comes to time integration,
the fractional step method is employed, utilising the Adams-Bashforth method for non-linear
terms (e.g., advection) and the Crank-Nicholson method for linear terms (e.g., dissipation)
with Richardson extrapolation for the first time step (see Matsushima & Marcus, 1997, p.
343). Throughout preliminary simulations with the q-vortex (q = 4) perturbed with a small-
amplitude eigenmode with a known frequency and decay rate, the time step was set to 10−3

as it yielded a tolerable error during the time integration between t = 0 and t = 100.
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