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ABSTRACT

A three-dimensional solid which has a constant two-dimensional
geometric shape with respect to an infinite third dimension is defined
as a prismatic solid. The typical two-dimensional cross section may have
arbitrary geometric shape, material properties, and boundary conditions.
The finite element technique, which utilizes an infinitely long element
of triangular cross section, it used as the basic method of analysis. The
three components of displacement within each element are expanded in terms
of trigonometric functions which permits the three-dimensional analysis to
be reduced to a series of two-dimensional analyses. The accuracy of the
method is illustrated by a comparison with the exact solution of a point
Toad on the half-space. A solution of the very important problem of the

point load on the quarter space is also given.
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INTRODUCTION

The determination of stresses and displacements within massive
underground structures is of considerable practical interest. Only
structures which can be idealized as plate strain or as the half space
have been attacked analytica]]y. Important problems such as arbitrary
loadings within long tunnels or arbitrary surface loads near the edge of
a cliff have not been solved. In the present paper, this general class
of three-dimensional problems is attacked by the finite element method,
and a digital computer program is developed for structures of arbitrary
geometry and loading.

Since the introduction of the finite element method for the
solution of plane stress structures [1], the technique has been success-
fully applied to plates [2], axisymmetric solids [3,4] and shells [5,6],
three-dimensional solids [7], torsional behavior of shafts [8], and other
nonstructural boundary value problems [9,10]. In the finite element
idealization of solids, the continuous body is replaced by a system of
elements (subregions) in which the displacement fields are approximate
and expressed in terms of the values of the displacements at the node
points. Since the node points are common to adjacent elements, a
continuous displacement field may be defined over the complete structure.
From energy considerations, a linear set of equilibrium equations in
terms of the displacements at the nodes (generalized coordinates) are
developed for the system. These equations always produce a symmetric,
positive-definite matrix and for most problems may be placed in band
form. Therefore, a solution may be found with a minimum of computer

storage and computational time. In general, the finite element method



has many practical advantages when compared with other methods.
Structures of nonhomogeneous, anisotropic materials and with arbitrary
geometric shapes and boundary conditions are easily represented.

The advantages of the prismatic space formulation as compared
to the arbitrary three-dimensional finite element are in respect to
accuracy and computational effort. Existing three-dimensional finite
element programs are not practical for the prismatic space class of
structures because of the tremendous number of unknown displacements
required to represent the system. For example, a direct application of
a three-dimensional finite element program may require several hours of
computer time; whereas, the use of the prismatic space formulation given

here may reduce the computational time to several minutes.



METHOD OF ANALYSIS

In the present investigation, the finite element method is
applied to the analysis of three-dimensional solids with one infinite
dimension and a typical two-dimensional cross-section. This "prismatic
space" is illustrated in Figure 1. In this paper, loading which is
symmetric with respect to the plane define by z = 0 is considered.
Other types of loading may be treated by translation of origin and
superposition. Approximate solutions to solids for which the loading
is not periodic may also be obtained. For periodic loading the length
is arbitrary and may be set to a very large value compared to the area
of interest near the load. Therefore, the displacements at a distance
£ from the load may be made to approximate the boundary conditions at

infinity.

A. Equilibrium of Complete System

The development of the nodal point equilibrium equations for
a prismatic solid is similar in many respects to the procedure used for
axisymmetric solids subjected to non-axisymmetric loading[4]. A con-
venient starting point for the development is the potential energy of the

system, which in the notation of Reference [11] is

- 1 - -
¢ = I > €5 Ty dv J u, Fi dv J u, Ti dA (n
Vol Vol Area

Or, if written in matrix form

@=f‘eTrdv-fuTF v - f u' T da (2)
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For a finite element system, which is composed of M arbitrary elements,
Equation (2) may be written as a sum of integrals over individual

elements.

M
. T T T
= I f €n T de - J u- Fm de - I u- T dA (3)
Vol Vol Area

th element

It is apparent that the surface integral exists only if the m
is on the boundary and is subjected to surface tractions Tm.
In order to convert the expression for potential energy to one
in terms of a finite number of generalized coordinates, it is necessary
to assume a solution for the displacement field within each element. If
the solution is to converge to the exact solution as the number of
elements is increased this assumed displacement field should satisfy
compatibility between elements of the system. If the generalized
coordinates are selected as the displacement at the node points of the
finite element system, then an expression for the displacements Un

within each element in terms of generalized coordinates U may be

developed and written in matrix form as

Up = 4y U (4)
or in transposed form

T _ T T

U, = U dm (5)

By the use of strain-displacement relations the strains may also by

expressed in terms of the generalized coordinates



Or in transposed form

(7)

Within each element an elastic stress-strain relationship must

be satisfied and may be written in matrix form as

If Eqs. (4) through (8) are substituted into Eq. (3) the potential

energy for the finite element system is

where k is the stiffness matrix for the complete system and is given

by the sum of the element stiffnesses

M
K= 2 K
m=1
_ T
.*Sm~f§m9m§mdv
Vol

The generalized forces matrix R is defined as

(9)

(13)



where I s the total number of unknown generalized coordinates. The
application of Eq. (13) yields the following set of linear equations

which govern the equilibrium of a finite element system.

KU =R (14)

For the prismatic space formulation given in this paper the
displacement field is composed or orthogonal functions and it may be

shown that Eq. (14) is of the following uncoupled form:

= N -
F_EO) r.¢0) R(0)
k(1) oD R
EB) Lj_(2) EQ)
(15)
- '.J .. ° - — -

Or the typical uncoupled equation for the nth harmonic function is

given by

() gl (16)

Therefore, the generalized coordinates are found by solving several small

sets of linear equations rather than solving one large set of equations.

B. Displacement Field Approximation

As shown in Figure 2, the geometry of a typical prismatic space
element is defined by three points in the x-y plane 1, j and k and

the common element length in the z-direction 2. The only assumption
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FIGURE 2 THE PRISMATIC SPACE FINITE ELEMENT



required in a finite element analysis is on the form of the displacement
field within each element. For a typical element the three components

of displacement are approximated by

N
uy (x,y,2) = & uin) (x,y) Cos nz

n=0

)
u (x,y,2) = L wu (x,y) Cos nz (17)
Y n=0 Y

N
i Guysz) = 1 ul™ () sin oz
z n=1 Z

where n = %g

The number of terms N required will depend on the specific problem
considered and, generally, is governed by the accuracy in which the load
can be expressed in a trigonometric series. It is of interest to note
that for n=0 the displacement field is equivalent to the plane strain
approximation. Within each element m the two-dimensional approximate

displacements functions are given by

(n) (n) (n)

Usm (Gy) = “m * “Dom X * O3 Y
_ aln) (n) (n)

Uum (xoy) = Byt + Byt x4 By , (18)
_ . (n) (n) (n)

u, (x,y) = Yim ¥ Yom Xt Y3y Y

Therefore, the three-dimensional displacement field approximation
involves linear functions in the x-y plane multiplied by trigonometric

functions in the z-direction.



The constants o, 8 and y may be expressed in terms of the

generalized displacements at the connecting nodal points i, j and k.

Or
n) {n) (n) (n) (n) (n)
% Bim Yim Ui Ui Uy
(n) (n) (n) - (n) (n) (n)
%m Bam  Yom = Dp Ui Yyt Uz
(n) (n) (n) (n) (n) (n)
%3m Bam Yam Uxk Usk Uzk
e . s st
where
r i
X5 7 X Yy XYy T X Y Xp Yt X5 Yy
p = 1 - - .
moX Y57 Yk Yk =Y Yi =Yy
Xk - Xj X1 - Xk Xj - X"l
- et
where A = x; (v = ¥5) + %, (yj -V ) Xy - yj)

The total strains within an element are expressed in terms of
a summation of the strains which are associated with each harmonic. The
strains associated with each harmonic are obtained by differentiation of

the assumed displacement field, Equation (17), and are given by

(n) _  (n)
€ x = a, Cos nz
(n) _ n)
Eyy = 83 Cos nz

10



(n) _

> n (s o x4 Y\ y) cos nz

€

(n) _ (agn) + gln)

Exy 5 ) Cos nz

(20)

aig) = [-n (a%n) + aén) X + agn) y) + yén)] Sin nz

(n)

vz [-n (B%n) + Bén) X + Bgn) y) + an)] Sin nz

C. Harmonic Element Stiffness

If the constants a, 8 and y are eliminated from Equation
(20) by a substitution of Equation (19) the following expression for the

harmonic strains in terms of the generalized displacements is developed:

~ =
[~ 7 (n)
Qm 0 0 Ux
(n) _ ()  (n) (n)
€n = g bm 0 Qm 0 Uy (21)
(n)
0 0 I-)m - Uz
\nsr e
Or in terms of the notation of Equation (6)
(n) _ _(n) (n) ‘
€n = & U . (22)

in which

11



r ™
Cos nz 0 0 0 0 0
0 Cos nz 0 0 0 0
0 0 Cos nz 0 0 0
PLLL (23)
0 0 0 Cos nz 0 0
0 0 0 0 Sin nz 0
_ 0 0 0 0 0 Sin nz g
’-' oty
0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
Dﬂn) - 0 0 0 0 0 0 n nx ny (24)
0 0 1 0 1 0 0 0 0
-n  -nX -ny 0 0 0 0 ] 0
0 0 0 -n =-nx =-ny O 0 1
L. -

From Equation (11) the element stiffness matrix associated with

harmonic "n" is given by

-m m
Vol

.
5&“) = f atn) C al" ax dy dz (25)

The substitution of Equation (22) into Equation (25) and the integration

with respect to z from -2 to 2 yields

e~ g " ==
o' D
(n) _ .(n) T (n) (n)
kg = = 8 . D . hm  Cq D - dx dy . D . |(26)
Area

12



where

é(n) = 28 for n=20

6(") £ for n>0

For an isotropic material the matrix to be integrated is

given on the following page.

where
e = E (1-v)
(1-2 v} (T+v)
- Ewv
H (T-2 v) (1+v)
E = Modulus of Elasticity
v = Poisson's Ratio

The integrals required in Equation (25) are easily evaluated in

closed form for a triangular area.

D. Harmonic Loads

The determination of the generalized forces which are associated
with each harmonic may be obtained by the evaluation of Equation (12).
Because of the arbitrary nature of the loading, the details of this
development will not be given, However, it is of interest to point
out that these generalized forces are essentially the same as the

coefficient of the expansion of the loading in a Fourier Series.

13



0 0 0 0 0 0 0 0

€ 0 0 0 u ny nUX nuy

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

+
u 0 0 0 € nu nuX nuy
nu 0 0 0 nu nze nzxe nzye
NUX 0 0 0 UX n2xa nzxze nzx_ye
nuy 0 0 0 nuy n2y€ nzxys n2y2€
nx  ndy 0 0 0 0 -n o |
2% n2xy 0 0 0 0 nx 0
1+

iy nd? o 1 0 0 oy 0

0 0 nz nzx nzy 0 0 -n

1+

0 1 n2x n‘zx2 nzxy 0 0 -NX (27)

0 0 nzy néxy n‘y? 0 0 -ny

0 0 0 0 0 0 0 0

=nX -ny 0 0 0 0 1 0

0 0 -n -nX -ny 0 0 0
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EXAMPLES

The accuracy of the prismatic space finite element approach is
checked by comparing it with the classical Baussinesg solutions for
surface loads on an elastic half space. The two solutions considered
here are:

1. Point load

2. Uniform pressure on a rectangular area

The finite element mesh used for both solutions is shown in
Figure 12. A period length of 200 inches is assumed while the elastic
coefficients used are indicated in Figure 12.

The point load is approximated by 19 harmonics. A comparison
of vertical stress distribution with depth is shown in Figure 3a. The
finite element solution differs from the Baussinesg solution only at
points near the load. This is an area of high strain rates which affect
the accuracy of the finite element approach.

Figure 3b indicates that the surface deflection is underestimated
by using finite elements. Fixed boundaries at a finite depth are used in
the finite element idealization, while the Baussinesg solution is for a
depth of infinite extent. Surface deflections would, therefore, always
be underestimated by finite elements (when compared with Baussinesg
solutions) unless the depth of the boundary is substantially increased.

A dimensionless plot of vertical stress distribution with depth
for a uniform pressure over a rectangular area is shown in Figure 3c. The
toad is approximated by 9 harmonics. The prismatic space finite element
solution again compares very favorably with the elastic solution, except

at points very close to the load.

15
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In Figure 4, the contribution of each harmonic to the total
maximum deflection is indicated for each of the examples considered. A
total number of 12 or 13 harmonics for the point load would have sufficed.
Because a complete finite element solution is obtained for each harmonic,
the program is very time consuming. It is therefore essential to limit
the number of harmonics to a minimum and still maintain accuracy.

Another appropriate check can be made by comparing an
axisymmetric" prismatic space solution with a solution obtained from the
axisymmetric finite element approach. Both there programs find wide
application in the field of highway pavement research at the moment. A
pavement consisting of a concrete (or soil-cement) base on a clay subgrade
is therefore selected for this purpose. The finite element mesh
representing the pavement is shown in Figure 13. Also indicated are
Young's module, Poisson's ration and the load. In the prismatic space
program, the load is approximated as a time pressure of 25 psi applied
over a 16" square area. The number of harmonics used is 16. A large
deflection basin is to be expected for the stiff base under consideration,
and a period length of 240 inches is used to isolate the influence of the
periodically applied load.

A comparison of the surface deflection profile is shown in
Figure 5. Very good agreement is achieved except that the prismatic space
solutions for the x-y and y-z planes differ slightly for points
further away from the load. This difference is due to the Fourier
expansion of the load in the y-z plane.

A comparison of vertical stress distributions with depth for
a vertical line slightly offset from the axis of symmetry is shown in

Figure 6. A slight difference in radial distribution of vertical stress

19
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exists near the surface due to the difference in shape of the loaded areas
(see Fig. 7). This accounts for the difference in vertical stress near
the surface as shown in Figure 6.

It can be concluded from the foregoing examples that the
prismatic space approach yields results of acceptable accuracy, provided
the necessary precautions regarding number of harmonics, period length,
etc., are taken.

An entire new field of problems can now be analyzed that were
previously unsolved or had solutions for limited boundary conditions only.

One such problem is the case of a point Toad on a quarter space.
This problem is analyzed using the same mesh as shown in Figure 12, with
the nodal point restraints in the y-z plane at x=0 removed. Nineteen
harmonics and a period length of 200 inches are used again.

Nodal point displacements in the x-y and y-z planes are
shown in Figures 8 and 9 respectively. Horizontal and vertical stress
contours are plotted in Figures 10 and 11.

As an example of the practical application of the prismatic
space program, reference is made to Figure 14. The surface displacement
of a pavement loaded near a vertical joint is shown. The program as
used here shows the high tensile stresses in the upper fibres of the
layers to the left of the joint are to be expected. The majority of the
displacement occurs in the soft subgrade. Because continuity between
layers is assumed in the finite element idealization, the layers to the
left of the joint are forced down with the subgrade, resulting in a high

curvature and stresses. In practice, the band between the clay subgrade
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FIG.© GRID DEFORMATION IN Y-Z PLANE FOR
A POINT LOAD ON QUARTER SPACE
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and the pavement will be too low to maintain continuity. A more
realistic prediction of stress distribution will be obtained by reducing
the stiffness of the pavement to the left of the Joint to a small valve

compared with the pavement stiffness.
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COMPUTER PROGRAM INPUT

The first step is to select a finite element representation of
the two-dimensional cross-section of the body. Elements and nodal points
are then numbered in two numerical sequences, each starting with one. .
The following group of punched cards numerically defines the two-

dimensional structure to be analyzed.

A. Identification Card - (12A6)

Columns 1 - 72  Of this card contain information to be
with resu]ts.

B.  Control Card - (415, F10.2)

~Columns 1 5 Number of nodal points (350 max.)

| 6 - 10 Number of elements (300 max.)

11 = 15 Number of different materials (12 max.)
16 - 20 Number of harmonics

21 - 30 ZL - length

The ZL 1length is half of the period length (length to next
load).

C. Material Property Information

The following group of cards for each material:
First Card: (215, 2F10.0)

Columns 1 - 5 Material identification - any number from
1-12 |

6 - 10 Number of different Y-ordinates for which
properties are given - 8 maximum

33



Second Card: (3F10.0) One card for each Y-ordinate

Columns 1 - 10 Y-ordinate of material for which property
is given
11 - 20 Young's Modulus

21 - 30 Poisson's Ratio

Nodal Point Data - (I5, F5.0, 5F10.0)

One card for each nodal point with the following information:

Columns 1 5 Nodal point number

)

6 - 10 Code number
11 - 20 X-ordinate
21 - 30 Y-ordinate
31 - 40 UX
41 - 50 UY

51 - 60 Loaded length in Z-direction
If the number of column 10 is

0, UX is specified X-load
UY is specified Y-load
1, UX is specified X-displacement
Uy is specified Y-load
2, UX is specified X-load
UY is specified Y-displacement
3, UX is specified X-displacement

UY is specified Y-displacement

34



ATl Toads are total forces acting on the nodal point. Loaded
fength is half the total loaded length in the Z-direction. Nodal point
cards must be in numerical sequence. If cards are omitted, the omitted
nodal points are generated at equal intervals along a straight line
between the defined nodal points. The boundary code (column 10), UX,

UY, and loaded length, are set equal to zero.

E. Element Properties: (615)

One card for each element

Columns 1 - 5 Element number
6 - 10 Nodal point I
1T - 15 Nodal point J
16 - 20 Nodal point K
21 - 25 Nodal point L

26 - 30 Material Identification

F.  Longitudinal Distance: (F10.0)

Column 1 - 10 ZZ - length

This distance defines the cross-sections in the lTongitudinal (Z)
direction where stresses and strains are to be printed. Nodal point
displacements and element stresses for the defined finite element mesh

are obtained.

35
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FORTRAN TV COMPUTER PROGRAM LISTING




PRUOGRAM MAIN(INPUT,OUTPUT»TAPE5=INPUT:TAPEéIOUTPUT:TAPﬁlﬁTAPEQf
1 TAPE4)
c ANALYSIS OF ARBITRARY PRISMATIC SULIDS

COMMON NUMNP,NUMEL;NUMMAT,NUMHAR:XHAR,ZL;P[;HED(IQ)»CE&:CIQ;G

1 »MBAND,NUMBLK,BC128)»AC1385,54)

COMMON /ELEARG/ IX(3@Q:5):E(8;3:iZ):NUMTC(}2):T(4@@);SIG(3@@:6)
COMMON /ORDARG/ X(35@):Y(35®):UX(35@):UY(35®):G%(SS@):COUR(S@@E

REWIND 4

BAD=@.0

PI=3.1415927
C*****************************************************************#%*#ﬁ#
c READ AND PRINT OF CUNTROL INFORMATIUN AND MATERIAL PROPERTIES
C**************************************************************g*g**@@**

S@ READ (5,1000) HED>NUMNP,NUMEL > NUMMAT S NUMHAR ZL
WRITE (652000) HEDsNUMNP,NUMEL s NUMMAT > NUMHAR ZL

56 DO 59 M=1,NUMMAT
READ (55106313 MTYPEsNUMTCCMTYPE)
WRITE (6,2011) MTYPEsNUMTCC(MTYPE)
NUM=NUMTC(MTYPE)
READ (5,1305) CCECLJsMTYPEY > J=153)5I=1sNU)
WRITE (6,281 (CECI>JoMTYPE) s J=153)5 1= 1 NUMD
59 CONTINUE
C
C*********************************************************“F*****’k**’*****
C READ AND PRINT OF NODAL POINT DATA
C************************************************************#*********iﬁ
WRITE (6,2004)
L=@
63 READ (5.1982) Ns CODECN) s XCNI s Y NI UXEND > UY (ND » TCND
NL=L+1
EZX=N-L
DX=CXINY-X(LY)I/EX
DY=C(Y(NY-YC(L)YI/2X
78 L=L+1
IF(N-L) 100,90530
83 CODEC(L)Y=Q.0
XCLIY=X(L-12+DX
YCLY=Y(L~1)+DY
UX(L)Y=0.3
UY(L>»=9.0
T(LY=@.0
GO TO 70
93 WRITE (6,2802)> (K:CODE(K):X(K):Y(K):UX(K);UY(K);T(K):KﬁNL;N)
IFCNUMNP=-NY 180,113 66
198 WRITE (6,2809) N
CALL EXIT
118 CONTINUE
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C***************************************************k**#**k******%****%*

C

READ AND PRINT OF ELEMENT PROPERTIES

Cote ok e ke ok sk oo ok o oK ok ok ok K K Rk kR K K K KO K oK oK K K A oK R K K K R R Kk K R R K KK Rk R o K ok R R

130
140

150

17@

180
190

WRITE (6,2001)

N=@

READ (5,1883) M (IX¢{MsI)51I=155)
N=N+1

IF (M-N)Y 1705170,153
IX(N>1)=IX(N=-151)+1
IX(Ns2)=IX(N=-1,2)+1
IXIN-3)=IX(N~-153)+1

IXINS 4)=TX(N=-154)+1

IX(N, SIY=IX(N~155)

WRITE (6520033 No(IXCNsI)sI=155)
IF (M-N) 180518051409

IF (NUMEL-N) 190,199: 139
CONTINUE

C****************************************************#***********ﬁk*****

c

DETERMINE BAND WIDTH

C***********************************************************************

310

315
320
325
344

J=0

DO 340 N=1,NUMEL

DO 340 I=154

DO 325 L=1,4
KK=TABSCIX(Ns [)-IX(Ns»LY)
IFCI18~-KK)Y 318531385315
WRITE (6,2068) N
BAD=1.0

IF (KK=-J) 325,325,320
J=KK

CONTINUE

CONTINUE

MBAND=3%J+3

C*****************************************************************$*****

c

DETERMINE DISPLACEMENTS AND STRESSES FUOR EACH HARMONIC

C******************************************************************#$$#*

C

350
345

o R eNe

[ ReNe

500

IF (BAD) 350,3455359

CaLL EXIT

NUMUK =3%xNUMNP

DO 500 NHAR=1,NUMHAR

XHAR=NHAR- i

FORM STIFFNESS MATRIX

CALL STIFF

SOLVE FOR HARMONIC DISPLACEMENTS
CALL BANSOL

WRITE (65,2306) (N>B(34xN=-2)sB(3kN=1)5B(3*%N)s =15 NUMNP)
WRITE (4) (B(N)sN=1,NUMUK)

CALL STRESS

CONTINUE
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C*****#***************************#***********#**********#***********%**

CALL OUTPUT

C*************************************************t****#***********k*#*k

1000
1991
1032
1983
1985
2000

2081
2003
2004

2832
2006
2007
23038
2009
2010
2011

STOP

FORMAT (12A6/741551F18.2)

FORMAT (2155,2F18.@)

FORMAT (I5:sF5.0s5F10.0)

FORMAT (6I5)

FORMAT (3F10@.2)

FORMAT (1H1 1246/

I 30HZ NUMBER OF NODAL PUOINTS====== I3 7
2 30H? NUMBER OF ELEMENTS-=~-m=====- i3 7/
3 30HQ NUMBER OF DIFF. MATERIALS--=- 13 /

4 30HO NUMBER OF HARMONICS---=====--=- I3 7/

5 30HO EZ-LENGTH=-=~---==--vcroeccen- F19. 35

FORMAT (49H1ELEMENT NO. I J K L MATERIAL 3
FORMAT (1I13-41651112)

FORMAT (48H1NUDAL POINT TYPE X-0ORDINATE Y-ORDINATE

118X 6HX-LOAD 18X 6HY-LOAD 2X 12HLOAD LENGTH )

FORMAT (I1125F12:252F12:352E24+75F12.3)

FORMAT C(12HIN.P. NUMBER 18X 2HUX 18X 2HUY 18X 2HUZ /(1112,3E20.7))
FORMAT (2165F12.3) ‘

FORMAT (30HON.P. DIFFs TOU LARGE EL.NOe= I4)

FORMAT (26HONODAL PUINT CARD ERRUOR N= 1I5)

FORMAT € 14X 1HY 14X 1HE 13X 2HNU / (F15:3,E15.7sF15.3))

FORMAT (17HOMATERIAL NUMBER= 13, 28H, NUYBER OF Y CARDS= I13)

END
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SUBROUTINE STIFF

COMMON NUMNPsNUMEL s NUMMATs NUMHAR» XHAR ZLs PILHEDC12Y5C11:C125 G
I »MBAND, NUMBLK,BC10OR)Y > AC1058, 54)
COMMON /ELEARG/ IX(300s5),E(8:3212),NUMTCCLI2), TCADG) s ST G300, 6
COMMON ZORDARG/ X(350)5,Y(358),UXK(350),UY (350, UAC3503,CIDEC3I50)
COMMON /QUADAR/ Ns» VOL,MTYPE» STC15515)5DDC353)50D0353)55(953)5
1 XXC3)YY(3)5 I1sJJsEECTIsLMCA)sDT(355), UC15), EPS(6)
c
Cote e e ok ok ok sk ok ok e o o o ok ok O K ok ko R R R R kK R OR R KR R KK K KK K K R ok R Kk sk R o K K kR
C INITIALIZATION
Otk e e ok ke o ok sk ok ok o ok ok R R Ok R KR KK RO R o ok ok ok ok ok o K ok oK oK R K R R ok K oK K K ok K K s ok ok ok ok ok R o ok R R o
REWIND 2
NB=18
ND=3%NB
ND2=2%ND
NUMBLK=@
DO 40 N=1,NUMEL
40 IX(N»5)=TABSCIX(N,5))

DO 50 N=1,ND2
B(N>=0@.0
DO 5@ M=1,ND
50 A(N»M)=@.0
Coote ke ok ok 8 e ok ok o Sk s o ok sk ok ok ok ok sk ok 3 oK oK oK R R R ok ok o ok K ok sk ok R R R R R K kK o ok ok ok ok o o sk ok ok K R K
cC FORM STIFFNESS MATRIX IN BLOCKS
O s s sk ke 3 ok ok ok ok o ke ke ok ok o sk ok o ke ok kR 3R R OK R KKk ke ok ok ok oK ok K R ok Rk o ok e o ok e o ok sk ok sk ok ok R K K
60 NUMBLK=NUMBLK+1
NH=NB* (NUMBLK+ 1)
NM=NH=-NB
NL=NM~-NB+ 1
KSHIFT=3%NL~-3

C
DO 210 N=1.NUMEL
C
IF CIX(N»53) 2103.2105 65
65 DO 8@ I=1s4
IF (IX(N,IDY-NL)Y 80,7076
TO IF CIX(N,IY=NM) 90590580
83 CONTINUE
GO TO 210
C
9@ CAlLL QUAD
IX{(N:S5)=-MTYPE
C
C ADD ELEMENT STIFFNESS TO TUTAL STIFFNESS
Cc
165 DO 166 I=1s4
166 LMCIY»=3%IXC(Ns1>-3
Cc

DO 200 I=1s4

DO 2008 K=1,3
II=LMCIY+K~KSHIFT
KK=3%]~-3+K

DO 2080 J=1s4

DO 208 L=1,3

40



JI=LMCIY+L-TI+1-KSHIFT
LL=3%J-3+L
IFCJJ) 208,200,195
195 ACII»JJ)=ACIIJJ)+STCKK,LL)D
2080 CONTINUE
210 CONTIWUE

ADD CONCENTRATED FJRCES WITHIN BLUCK

Q0

DO 258 N=NL»N#

IF (N-NUMNP)Y 240,249,310
240 K=3*%«N~-KSHIFT-1

IF (TC(N)EQe@B«3) TM=1.0

IF (XHAR.EQe@«0) Twi=l.5

IF (T(NI*XHAR«NEs P @) TM=ZL*kSINC(AXHARXPL*TIN) A ZL) /A CXHAR¥FPI*T(NY)
245 BUKI=BKI+UY (NI *T™
250 BK-13=B{(K~1)+UX(NI*TM

BOUNDARY CONDITIUNS

QO

318 DO 486 M=NLsNH

IF (M-NUMNPY 3155315, 400
315 U=UX{M)

N=3%M- 1 -KSHIFT~-1

IF (CODE(M)Y) 3909, 400-316
316 IF (CODE(MY-1+) 317,370,317
317 IF (CODE(MY-2.) 318-,390s318
318 IF (CODE(M)Y-3.) 390,380s390
379 CALL MODIFY(A:-B:ND2:MBANDs Ns )

GO TO 490
388 CALL MODIFY(A-BsNDZ2>MBANDs s W)
390 U=UuUYM

N=N+1

CALL MODIFY(A:B:ND2>MBAND,Ns )
40@ CONTINUE

WRITE BLOCK OF EQUATIONS ON TAPE AND SHIFT UP LOWER BLUCK

oo

WRITE (22 (B(N)»> CAMNMI)M=1,MBANDY»N=15ND)

DO 429 N=1,ND

K=N+ND

BINI=B(K)>

B(K)Y=0.0

DO 4232 M=1-ND

AN M) =ACKS M)
420 A{K-,MI=0.0

G CHECK FOR LAST BLOCK

IF (NM=-NUMNP) 6V, 480, 480
480 CONTINUE
ok o i e e ok o e ok o ok oot o o ok ke R A A e e AR KR R R KRR R R Ok ok R Rk R ok R R R
508 RETURN
C
END
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[oReRe]

100

i

I

SUBRJIUTINE TRISTF

CUMAIN NUANPs NUAEL s NHAMAT s NUAAARSs XHAR AL s PTHED( 12301150125 G
sMBAND: NUMBLK, 30103 ACTIRs 54)

COMMIN /ZELEARG/ IXC300s 952 ( 335 123 NUMTCCLI2Y s TCAUM s ST GO3UH, 6)

CUMMOIN /URDARG/ XC35I)5 Y (3585 UKC35) 5, UYC35U) s JZ2C350) CIDTC350)

ComMMaN ZQUADAR/ N VILsMTYPES STC155 15, DDC3, 33:D03530:509597
XXC3YYY(3) Il JJ-EECT)sLMC4)sDTC3s5)s 015, £PSC6)Y

1. INITIALIZATION

XKXKC1Y=XCI D
KXC2)=XCJ )
YYCir»=ycCI1in
YY(2)=yYcJJ

COoMM=XX(2)%(YY (32 =YY (I + XK1 (YY(2)~YYL I I+ XXLC3I%(YY (1) -YY(2))
AREA=CUMM/2.0

V=AREA*ZL

G=05%EEC1)/ (1. +EEC2))
CII=EECII/((Le+EEC2I)#(1e~20 %K (2)))
Cl2=EE(2)Y*C11

Citi1=C1i-Cc12

Ci13=Ci2

cz2=C1i

ca23=C12

C33=C11

CaM=PIx XHAR/ 2L

CoM2=COM**2

SUMX=XXC13+XX(2)+XX(3)

SUMY=YY(IX)+YY(23+YY(3)

XKI=SUMX/ 3.

YI=5UMY/ 3.

XZ2ZIZCXXCIY R CSUMX+HXXCII I+ XXC2) k (SUMX+ XX (2 )+ XX (3 (SUMX+XK(3))I) /12,
XYI=CYY O ® CSUMX+XXCII I +Y Y (2R CSUMXK+XXC2I I +YY(3) 4 (SUMX+XX(3))>)1 /12,
Y2I=CYY O R (SUMY+YY (I I +YY (2R (SUMY+YY(2) ) +YY(3) % (SUAY+YY(3)I)/ 12,

By 108 I=1,81
SCI»10=0.0

2e FIORM CUEFFICIENT-DISPLACEMENT TRANSFORMATION MATRIX

DDCTS 10 =(XX(2)%YY (3~ XX(3)%YY(2))/CIIM4
DDCL 2y =C(XXC3)%YY (1= XXCIY%xYY(3))/CIMA
DDC1-,33=CXXCI)RYY(2)-XX(2)kYY (1)) /(i1
DDC2, 13 =YY (2)-YY (333 /CIM
DDC2,2)=(YY(3)-YY(1))/CIMA
DDC2,32=(YY (1Y -YY(2))/COMM
DDC3, 12=(RXX{3)-XX(2))/CuMm
DDC3,2=CXX (1Y =-XX(3))/CuMH
DDC353)=(XX(2)~-XXC1))/CIM1
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[ *ReNe!

150

3. FJIORM INTEGRAL(GY T*(CY* (G

TM=G% VxCOM2
SCi,1)=THM
SC12) =Tk X1
SC1s3Y=TMxYI
S(2,2)=TM*xX21
S(253)=TMxXY1
S(3:3)=TM*xY2]

TH==-COMk Gk V
SC1:8)=T™

SC2,8)=TM*X]
S5C(3,8Y=TvkY1

TM=C33/G

DJ 150 I=1,3
SCI+3:593Y=5¢1,8)
DO 150 J=1,3
SCI+3,J+3)=SCI-0)
SCI+65J+6)=SC12J)%TH
TM=G* V
5(3539=5(353)+T™
S3C525)=5(5:5)+Tw
S(3553=TH
S5(8s8r=5(858)+Tw
5(959)=5(9s93+T™

TM=CUM*C13%V

502, 7y=TM
5(2:8)=58¢25s8)+TM*X]
S(2-9)=TM*xY]

TM=COM*C23% V
SC6s7)=TM
5(6:8)=TM* X1
SC6:93=50659)+THxY]

5C(2:,2)=5¢252)+C11%V
5(2,6)=C12%V
S5C(6s63=506s6)+C22%V

DO 200 I=1,9
DU 200 J=1s9

200 S(JsI)X=SCI-D
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3920

Se FURM ELEMENT STIFFNESS MATRIX (HYT*CDIY*(H)

DJ 500 1=1s3
DO 5929 J=1,3

DU 303 K=1,3

by 3009 L=1,3

PDCK>LY=0 3

DU 309 M=1,53

MM=3%kJ= 3+ 9

KK=3x%1=-3+K

DKL) =D(Ks LY +5CAKs M . DDCAs L)

DU 408 K=1,3

DI 420 L=1,3

KK=3%1-3+K

LL=3%.J-3+L

S(KKLLLY=@.0

DU 400 M=1,3

STAKSLLY=SCAKs LLY+DDCM KIAD (s L)

CIONTINUE
RETURN

END

SUBROUTINE MODIFYCAsBs NEQs MBANDSs N» (J)
DIMENSTION AC108554):.B(10%)

DO 250 M=2,MBaND
K=N=M+1

IFCK)Y 235,235,230
B(KI=B(KY~AC(Ks ™M) 1]
AlRKsMI=0 1

K=nN+M- 1

IFCNEQ-K) 25052405249
BK)=BCKY=ACN, A% 1)
AN MI=ZPe D
CONTINUE

A(Ns 1)=1.0

B(N) =y

RETURN

END
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GO

G

SUBRJIUTINE QUAD

COMMIN NUMNP, NUMEL » NUMMATs NUMHARS XHAR AL PIHED(12)5C11-C125 G

I 2 MBAND, NUMBLK BC138):AC1043, 54)

CuMMunN ZELEARGY IX(300s 525108535 12)5NUATCC12)5 TC4D3) 5> SIGC32W, &)
CUMMIN ZURDARG/ X{(353)5YC(350) s UX(358),UY (3540, UJ2(353),CIDECISD
COMMIN /QUADAR/ Ns VILsMTYPES STC155,15),DD0353),D(353)55(959)5

P XXC3)YY(3)s IIsJJsEECT) s LM 5 DTC3295,UC15) PSS 6)

DJ 50 I=1,515
50 DTC(I»1)=0.0

SELECT MATERTAL PRJUPERTIES

I=IX(Ns 1)
J=IX(Ns2)
K=TX(N:3)
L=IX(Ns 4>
MTYPE=IABSCIX(NS 5)))

DO 105 KK=1,2
185 EE(KKI=E(1s KK+ 1, ATYPED

CALCULATE CENTRAL PJOINT
AXC33=(XCI)+XCJI+X(AI+X(LI I/ 4.
YYC3)=(YCIdX+Y (Y +Y(KI+Y (L) DI/ 4.

FORM QUADRILATERAL STIFFNESS MATRIX (15X15)

DU 128 I1=1,15
DU 128 JJ=1,15
120 STCI1,JJ)=0.3

IX(N: SI=IX(Ns 1)
LM(3)=12
DU 1580 M=1,4
LM(1)=34«14-3
LM(2)=LMC13+3

IF (Me£Qe4) LM(2)=0
II=1IX{NsM)
JI=IX (N M+ 1)
CALL TRISTF
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ADD TRIANGULAR STIFFNESS TJ QUADRILATERAL STLFFNESS

DJ 140 I=1,3
DU 148 J=1s3
DU 1490 K=153
DI 140 L=1s3
IE=LMIKI+]
Jd=LMily+J
LL=3%J-3+L
KK=3%1-3+K
L4 STCII»JJI=STLIL»JI)+S(KKsLLD

FURM COEFFICIENT-DISPLACEMENT TRANSFURMATION MATRIX

DI oias J=1,3
JI=LMCId» /3 o+ |
DU 145 (=153
P45 DTCI-Jdy=DTC I J00+DDCI+d)

150 CUONTINUE
EXCN: 5y=MTYPE

ELIMINATE CENTRAL UNKNJWNS

DU 168 KK=1s53
TH=15-KK
ID=1H+1
DI 160 [I=1,1H
STCII->IDI»=STCIL-1DY/STCIDs 1D
Do 160 Jd=1,1IH
160 STCIT-JI)=STCII-J0)~STCIILIDY*STCID, I

RETURN
END

SUBRUUTINE QUTPUT

COMMON NUMNPs NUMEL > NUMAIATs NUMHAR s XHARS ZLs PI>HEDC12)5C1 10125 G
T s MBANDs NUMBLKSs BC13R)Y>ACI385 54)

CUMMON /ELEARG/ I1X(300:5)sE(8:3512):NUMTCC12Y TCABUISs STGERDY, 43
COMMIN FORDARG/ X(350),Y(35U) s UXC352) - UY (3513 U2(350) CIDECISE)

DU 50 N=1,NUMEL
CODE(NY=0. 3
TNY=0.08
DU 58 I=1s54
II=TX{Ns1)
TNI=TNI+X(I1)/7 4.

3@ CODENY=CIDECNI+Y(II)/ 4.

NUMST=6%NUMEL
NUMUK =3%NUMNP
100 REWIND 4
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c

£09

T84

B

READ (5,108083) £2

DU 558 N=1,NUMNP
UX{NY=0. U
UY(NDI=d.0
UZE(NI =00

DY 675 N=1,NUMEL
DO 675 I=1:26
SIGIN-1Y=0.08

DJ B8O NHAR=1,NUMHAR
XHAR=NHAR- 1
EX=PI*XHAR*ZZ/EL
SINZ=S5INCEXD
CuSZ=CUS5CEX)

READ (4 (BON)sN=1,NUMUK)
DO 6830 N=1,NUMNP

UX N =UXINI+B(3xN=-2)%CUS#
UY (N =UY(ND)+B(3%N-1)%CJUSZ
UZONI=UZCNI+BO3%NY*SINZ
READ (4) (B{N)-N=1,NUMST)

DO 786 N=1-NUMEL

SIG(N: 1Y=SIG(Ns 1)+B(6xN=-5)%CISE
SIGINs2)=SIG(Ns 2)+BC6%xN=-4)%xCISZ
SIG(N»3)Y=SIG(Ns»3)+B(6%kN=-3)I%CIS2Z
STGCN» 4)=SIGINs 4)+BCH6XN=-2)4CISZE
SIGENs SY=SIGINs 5)+BC6kN=-1)%xSINZ

SIGUN: 6)=531IGI(Ns 63 +B(6xNY%.SINZE

CUNTINUE

WRITE (62001 (NoX{NNIsYIN)I» Z2Z>UXCNY 2 UYC(N) » UR (NI N=1NUMNP)

WRITE (6520802) (NoT(N)sCUDE(N)»Z2Z,(SIGINsI)sI=156)N=1,NUMEL)

GO TO 100

1200 FORMAT (1F1@.3) ,
2331 FORMAT C(10H1 NePe NJs 9X 1HX 9X IHY 9X 1HZ 13X 2HUX 13X 2HUY 13X
1 2HUZ /C11053F10:253E15.7)) ‘
20G2 FORMAT (1@H1  ELe NOo 9X I1HX 9X 1HY 9X 1HZ 12X 3HSXX 12X 3HSYY 12X
1 3HSZZ 12X 3HSXY 12X 3HSXZ 12X 3HSYZ /CI10:53F10:256E150 7))

END



@}

CALCULATE STRESS avMPLITUDES

DJ 409 I=1:3
SIGNSIY=(CI11-C12¥*EPSC(IY + CIZ2%(EPSCI)+EPSC(2)+EPS5(33)
SIGUN:I+3)=G*EPS(I+3)

CONTINUE
WRITE (4) ((SIG(NsI)sI=126)snN=1,sNUMEL)

RETURN
END

SUBROUTINE BANSJL
COMMON /BANARG/Z Ml NUMBLK,BC1358),AC1058, 54

NN=54
NL=NN+1
NH=NN+ NN
REWIND 1
REWIND 2
NB=0©

GO TU 159

(4 A o o ok ok o R K ok ok ok ok k ok ok ok ki ek fe sk sk sk ok ok sl sk sl ok sk ok sk ok i ol ok R R R Kk R sk R R gk R R A R R R i R R R R ROk Rk ok

c

REDUCE EQUATIUNS BY BLOUCKS

I EETEEIETTIEEZIELEE LRSS ESEE LIS EEEE R RS EREREEEEEESEEEESESEESEEISEIEEEES RIS

c
C
G

QO

196

o
&h

i SHIFT BLOCK JF EQUATIUJNS

NB=NB+1

DU 125 N=1s0N
NM=NN+N

BN =B(NM)
BINM) =30

DJ 125 M=1-MH
ACNsMY=ACNM M)
ACNM, MI=0. D

2. READ NEXT BLUOCK JF EQUATIONS INTJ CURE
IF (NUMBLK=-NB)Y 159,208,150

READ (23 (BC(N)Ys CA(NsM)aM=151M) s N=NLs NHD
IF (NB)Y 200,100,209
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G

o Se REDUCE BLJCK JF EQUATIUNS

c0U DU 309 N=1sNN

IF (A(Ns1)Y)Y 2255340225

BCNY=BCNYZACNS 1)

DO 275 L=25MM

IF CA(NsLY) 230,275,230

C=ACNsLY/ACN 1)

JT=N+L-1

J=0

DO 250 K=o

J=J+ 1

50 ACIsJY=ACI»J)=CxA(NSK)
BCIY=BCI)-ACNsLYXB(N)
AN LY=C

275 CONTINUE

308 CONTINUE

P

[
o
I

o
o8]
o

o 4. WRITE BLOCK JUF REDUCED EQUATIUNS ON TAPE 1

IF (NUMBLK=-NBY 375,400,375
275 WRITE 1) (BONYs (AN MYsMN=25 M) s N=1508N)
Gu Ty 180
ﬁ‘%i)%{?%‘f’\&i‘:&?@******************‘k***************‘k****** ISEEEEREEEEEEEEEEREESEEEE]
c BACK-SUBSTITUTIUN
{3%***#*#***************************’k*************%*ﬁﬁi”k#ﬂ%ﬂﬁﬁﬁﬂé‘“@i‘fﬁ*«%’%**#**%*
49 DO 450 M=1s0NN
MN=NN+1T-M
DO 425 K=2,M

L=N+K=1
405 BINY=BINI-A(NsKI*B(L3}
NM=N+NN

B{NMI=B(N)
450 ACNM:NBI=B(N)
NB=NB-1
IF (NB)Y 4755500,475
475 BACKSPACE 1
READ (1) (BONI» (AN M) »M=2, M) s N=15 003
BACKSPACE 1
GO TJ 4049
(o ke o ok e ok o ok o o oK K K ok K A R oK R K Rk KR R R R AOK R Ok R KR R R A Ok R R R HOR R R OR Ok K
G ORDER UNKNOWNS IN B ARRAY
3ok ok o sk ke ok ok e Sk R oK ok R Rl R K K oKt sk ok o ke kR Ak K ok o ok ok ok R o ok R R R R Rk Rk bk Tk e RO R ek R K
52 K=4a
DO 608 NB=1,NUMBLK
DO 603 N=1,08N

MM =NA NN
K=K+ ]
A8 BOKY=ACNM NB)
G
REETHRN
o
N

50





