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Abstract
We study the convergence of several natural policy gradient (NPG)methods in infinite-
horizon discounted Markov decision processes with regular policy parametrizations.
For a variety of NPGs and reward functionswe show that the trajectories in state-action
space are solutions of gradient flows with respect to Hessian geometries, based on
which we obtain global convergence guarantees and convergence rates. In particular,
we show linear convergence for unregularized and regularized NPG flows with the
metrics proposed by Kakade and Morimura and co-authors by observing that these
arise from the Hessian geometries of conditional entropy and entropy respectively.
Further, we obtain sublinear convergence rates for Hessian geometries arising from
other convex functions like log-barriers. Finally, we interpret the discrete-time NPG
methods with regularized rewards as inexact Newton methods if the NPG is defined
with respect to the Hessian geometry of the regularizer. This yields local quadratic
convergence rates of these methods for step size equal to the inverse penalization
strength.
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1 Introduction

Markov decision processes (MDPs) are an important model for sequential decision
making in interaction with an environment and constitute a theoretical framework for
modern reinforcement learning (RL). This framework has been successfully applied
in recent years to solve increasingly complex tasks from robotics to board and video
games [1–5]. In MDPs the goal is to identify a policy π , i.e., a procedure to select
actions at every time step, which maximizes an expected time-aggregated reward
R(π). We will assume that the set of possible states S and the set of possible actions
A are finite, and model the policy πθ as a differentiably parametrized element in
the polytope �S

A of conditional probability distributions of actions given states, with
πθ (a|s) specifying the probability of selecting action a ∈ A when currently in state
s ∈ S, for the parameter value θ . We will study gradient-based policy optimization
methods and more specifically natural policy gradient (NPG) methods. Inspired by
the seminal works of Amari [6, 7], various NPG methods have been proposed [8–10].
In general, they take the form

θk+1 = θk + �t · G(θk)
+∇R(θk),

where �t > 0 denotes the step size, G(θ)+ denotes the Moore–Penrose pseudo
inverse and G(θ)i j = g(dPθei , dPθe j ) is a Grammatrix defined with respect to some
Riemannian metric g and some representation P(θ) of the parameter. Most of our
analysis does not actually depend on the specific choice of the pseudo inverse, but in
Sect. 6 we will use the Moore–Penrose pseudo inverse. The most traditional natural
gradient method is the special case where P(θ) is a probability distribution and g is the
Fisher information in the corresponding space of probability distributions. However,
the terminology may be used more generally to refer to a Riemannian gradient method
where the metric is in some sense natural. Kakade [8] proposed using P(θ) = πθ and
taking for g a product of Fisher metrics weighted by the state probabilities resulting
from running the Markov process with policy πθ . Although this is a natural choice
for P , the choice of a Riemannian metric on �S

A is a non trivial problem. Peters et al.
as well as Bagnell and Schneider [3, 11] offered an interpretation of Kakade’s metric
as the limit of Fisher metrics defined on the finite horizon path measures, but other
choices of the weights can be motivated by axiomatic approaches to define a Fisher
metric of conditional probabilities [12, 13]. From our perspective, a main difficulty
is that it is not clear how to choose a Riemannian metric on �S

A that interacts nicely
with the objective function R(π), which is a non-convex rational function of π ∈ �S

A.
An alternative choice for P(θ) is the vector of state-action frequencies ηθ , whose
components ηθ (s, a) are the probabilities of state-action pairs (s, a) ∈ S×A resulting
from running the Markov process with policy πθ . Morimura et al. [9] proposed using
P(θ) = ηθ and the Fisher information on the state-action probability simplex�S×A as
a Riemannian metric.Wewill study both approaches and variants from the perspective
of Hessian geometry.
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1.1 Contributions

We study the natural policy gradient dynamics inside the polytope N of state-action
frequencies, which provides a unified treatment of several existing NPG methods. We
focus on finite state and action spaces and the expected infinite-horizon discounted
reward optimized over the set of memoryless stochastic policies. Our main contri-
butions can be summarized as follows. For an overview of the convergence rates
established in this work see Table 1 in Sect. 7.

• Weshow that the dynamics ofKakade’sNPGandMorimura’sNPGsolve a gradient
flow in N with respect to the Hessian geometries of conditional entropic and
entropic regularization of the reward (Sects. 4.2 and 4.3 and Proposition 17).

• Leveraging results on gradient flows in Hessian geometries, we derive linear con-
vergence rates for Kakade’s and Morimura’s NPG flow for the unregularized
reward, which is a linear and hence not strictly concave function in state-action
space, and also for the regularized reward (Theorems 26 and 27 and Corollaries
31 and 32).

• Further, for a class of NPGmethods which correspond to β-divergences and which
generalizeMorimura’s NPG,we show sub-linear convergence in the unregularized
case and linear convergence in the regularized case (Theorem 27 and Corollary 32,
respectively).

• We complement our theoretical analysis with experimental evaluation, which indi-
cates that the established linear and sub-linear rates for unregularized problems
are essentially tight.

• For discrete-time gradient optimization, our ansatz in state-action space yields an
interpretation of the regularized NPG method as an inexact Newton iteration if
the step size is equal to the inverse regularization strength. This yields a relatively
short proof for the local quadratic convergence of regularized NPG methods with
Newton step sizes (Theorem 34). This recovers as a special case the local quadratic
convergence of Kakade’s NPG under state-wise entropy regularization previously
shown in [14].

1.2 Related work

The application of natural gradients to optimization in MDPs was first proposed by
Kakade [8], taking as ametric on�S

A = ∏
s∈S �A the product of Fishermetrics on the

individual components�s
A ∼= �A, s ∈ S,weightedby the stationary state distribution.

The relation of this metric to finite-horizon Fisher information matrices was studied
by Bagnell and Schneider [11] as well as by Peters et al. [3]. Later, Morimura et al. [9]
proposed a natural gradient using the Fisher metric on the state-action frequencies,
which are probability distributions over states and actions.

There has been a growing number of works studying the convergence properties
of policy gradient methods. It is well known that reward optimization in MDPs is
a challenging problem, where both the non-convexity of the objective function with
respect to the policy and the particular parametrization of the policies can lead to the
existence of suboptimal critical points [15]. Global convergence guarantees of gradient
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S488 J. Müller, G. Montúfar

methods require assumptions on the parametrization. Most of the existing results are
formulated for tabular softmax policies, but more general sufficient criteria have been
given in [15–17].

Vanilla PGs have been shown to converge sublinearly at rate O(t−1) for the unreg-
ularized reward and linearly for entropically regularized reward. For unregularized
problems, the convergence rate can be improved to a linear rate by normalization [18,
19]. For continuous state and action spaces, vanilla PG converges linearly for entropic
regularization and shallow policy networks in the mean-field regime [20].

For Kakade’s NPG, [21] established sublinear convergence rate O(t−1) for unreg-
ularized problems, and the result has been improved to a linear rate of convergence
for step sizes found by exact line search [22], constant step sizes [23–25], and for
geometrically increasing step sizes [26, 27]. For regularized problems, the method
converges linearly for small step sizes and locally quadratically for Newton-like step
size [14, 28]. These results have been extended to more general frameworks using
state-mixtures of Bregman divergences on the policy polytope [27–30], which how-
ever do not include NPG methods defined in state-action space such as Morimura’s
NPG. For projected PGs, [21] shows sublinear convergence at a rate O(t−1/2), and
the result has been improved to a sublinear rate O(t−1) [26], and to a linear rate for
step sizes chosen by exact line search [22]. Apart from the works on convergence rates
for policy gradient methods for standard MDPs, a primal-dual NPG method with sub-
linear global convergence guarantees has been proposed for constrained MDPs [31,
32]. For partially observable systems, a gradient domination property has been estab-
lished in [33]. NPGmethods with dimension-free global convergence guarantees have
been studied for multi-agent MDPs and potential games [34]. The sample complexity
of a Bregman policy gradient arising from a strongly convex function in parameter
space has been studied in [35]. For the linear quadratic regulator, global linear con-
vergence guarantees for vanilla, Gauss–Newton and Kakade’s natural policy gradient
methods are provided in [36]; this setting is different to reward optimization in MDPs,
where the objective at a fixed time is linear and not quadratic. A lower bound of

O(�t−1|S|2�((1−γ )−1)
) on the iteration complexity for softmax PG method with step

size �t has been established in [37].

1.3 Notation

We denote the simplex of probability distributions over a finite set X by �X . An
element μ ∈ �X is a vector with non-negative entries μx = μ(x), x ∈ X adding to
one,

∑
x μx = 1. We denote the set of Markov kernels from a finite set X to another

finite set Y by �X
Y . An element Q ∈ �X

Y is a |X | × |Y| row stochastic matrix with

entries Qxy = Q(y|x), x ∈ X , y ∈ Y . Given Q(1) ∈ �X
Y and Q(2) ∈ �Y

Z we denote

their composition into a kernel from X to Z by Q(2) ◦ Q(1) ∈ �X
Z . Given p ∈ �X

and Q ∈ �X
Y we denote their composition into a joint probability distribution by

p ∗ Q ∈ �X×Y , (p ∗ Q)(x, y) := p(x)Q(y|x). The support of a vector v ∈ R
X is

the set supp(v) = {x ∈ X : vx �= 0}.
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For a vector μ ∈ R
X≥0 we denote its Shannon entropy by

H(μ) := −
∑

x

μ(x) log(μ(x)),

with the usual convention that 0 log(0) := 0. Forμ ∈ R
X×Y
≥0 wedenote the X -marginal

by μX ∈ R
X≥0, where μX (x) := ∑

y μ(x, y). Further, we denote the conditional
entropy of μ conditioned on X by

H(μ|μX ) := −
∑

x,y

μ(x, y) log
μ(x, y)

μX (x)
= H(μ) − H(μX ). (1)

For any strictly convex function φ : � → R defined on a convex subset � ⊆ R
d , the

associated Bregman divergence Dφ : � × � → R is given by Dφ(x, y) := φ(x) −
φ(y) − 〈∇φ(y), x − y〉.

Given two smooth manifolds M and N and a smooth function f : M → N , we
denote the differential of f at p ∈ M by d f p : TpM → T f (p)N . In the Euclidean
case, we also write Df (p) for the Jacobian matrix with entries Df (p)i j = ∂ j fi (p).
We denote the gradient of a smooth function f : M → R defined on a Riemannian
manifold (M, g) by ∇g f : M → TM and denote the values of the vector field by
∇g f (p) ∈ TpM for p ∈ M. When the Riemannian metric is unambiguous we drop
the superscript.

For A ∈ R
n×m , we denote a pseudo inverse by A+ ∈ R

m×n . Note that for the
Moore-Penrose inverse AA+ is the orthogonal (Euclidean) projection onto range(A)

and A+A is the orthogonal (Euclidean) projection onto ker(A). We denote the set of
symmetric and positive definite matrices by Ssym>0 . Finally, for functions f , g we write
f (t) = O(g(t)) for t → t0 if there is a constant c > 0 such that f (t) ≤ cg(t) for
t → t0, where we allow t0 = +∞.

2 Markov decision processes

A Markov decision process or shortly MDP is a tuple (S,A, α, r). We assume that
S and A are finite sets which we call the state and action space respectively. We fix
a Markov kernel α ∈ �S×A

S which we call the transition mechanism. Further, we
consider an instantaneous reward vector r ∈ R

S×A. In the case of partially observ-
able MDPs (POMDPs) one also has a fixed kernel β ∈ �S

O called the observation
mechanism. The system is fully observable if β = id,1 in which case the POMDP
simplifies to an MDP.

As policies we consider elements π ∈ �S
A. More generally, in POMDPs we would

consider effective policies π = π ′ ◦ β ∈ �S
A with π ′ ∈ �O

A. We will focus on the

MDP case, however. A policy π ∈ �S
A induces transition kernels Pπ ∈ �S×A

S×A and

pπ ∈ �S
S by

1 More generally, the system is fully observable if the supports of {β(·|s)}s∈S are disjoint subsets ofO.
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S490 J. Müller, G. Montúfar

Pπ (s′, a′|s, a) := α(s′|s, a)π(a′|s′) and pπ (s′|s) :=
∑

a∈A
π(a|s)α(s′|s, a). (2)

For any initial state distribution μ ∈ �S , a policy π ∈ �S
A defines a Markov process

on S × A with transition kernel Pπ which we denote by P
π,μ. For a discount rate

γ ∈ (0, 1) we define

R(π) = Rμ
γ (π) := EPπ,μ

[

(1 − γ )

∞∑

t=0

γ t r(st , at )

]

,

called the expected discounted reward. The expected mean reward is obtained as the
limit with γ → 1 when this exists. We will focus on the discounted case, however.
The goal is to maximize R over the policy polytope �S

A. For a policy π we define the

value function V π = V π
γ ∈ R

S via V π (s) := Rδs
γ (π), s ∈ S, where δs is the Dirac

distribution concentrated at s.
A short calculation shows that R(π) = ∑

s,a r(s, a)ηπ (s, a) = 〈r , ηπ 〉S×A [38],
where

ηπ(s, a) := (1 − γ )

∞∑

t=0

γ t
P

π,μ(st = s, at = a). (3)

The vector ηπ is an element of�S×A called the expected (discounted) state-action fre-
quency [39], or (discounted) visitation/occupancy measure, or on-policy distribution
[40]. Denoting the statemarginal of ηπ by ρπ ∈ �S we have ηπ (s, a) = ρπ(s)π(a|s).
We denote the set of all state-action frequencies in the fully and in the partially observ-
able cases by

N :=
{
ηπ : π ∈ �S

A
}

⊆ �S×A and N β :=
{
ηπ : π ∈ �O

A
}

⊆ �S×A.

Note that the expected cumulative reward function R : �O
A → R factorizes according

to

�O
A → �S

A → N → R, π ′ �→ π ′ ◦ β = π �→ ηπ �→ 〈r , ηπ 〉S×A.

We recall the following well-known facts.

Proposition 1 (State-action polytope of MDPs, [39]) The set N of state-action fre-
quencies is a polytope given by N = �S×A ∩ L = R

S×A
≥0 ∩ L, where

L =
{
η ∈ R

S×A : �s(η) = 0 for all s ∈ S
}

, (4)

and �s(η) := ∑
a ηsa − γ

∑
s′,a′ ηs′a′α(s|s′, a′) − (1 − γ )μs .

The state-action polytope for a two-state MDP is shown in Fig. 3. We note that in
in the case of partially observable MDPs, the set of state-action frequenciesN β does
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not form a polytope, but rather a polynomially constrained set involving polynomials
of higher degree depending on the properties of the observation kernel [41].

The result above shows that a (fully observable) Markov decision process can be
solved bymeans of linear programming. Indeed, ifη∗ is a solution of the linear program
〈r , η〉S×A overN , one can compute the maximizing policy over�S

A by conditioning,
π∗(a|s) = η∗(s, a)/

∑
a′ η∗(s, a). We propose to study the evolution of natural policy

gradientmethods in state-action spaceN ⊆ �S×A. Indeed,we show that the evolution
of diverse natural policy gradient algorithms in the state-action polytope solves the
gradient flow of a (regularized) linear objective with respect to a Hessian geometry
in state-action space. This perspective facilitates relatively short proofs for the global
convergence of natural policy gradient methods and can also provide rates. In order
to relate Riemannian geometries in the policy space �S

A to Riemannian geometries in
the state-action polytope N we need the following assumption.

Assumption 2 (Positivity) For every s ∈ S and π ∈ �O
A, we assume that

∑
a ηπ

sa > 0.

Assumption 2 holds in particular if either α > 0 and γ > 0 or γ < 1 and μ > 0
entrywise [41]. This assumption is standard in linear programming approaches and
necessary for the convergence of policy gradient methods in MDPs [18, 42]. With this
assumption in place we have the following.

Proposition 3 (Inverse of state-action map, [41]) Under Assumption 2, the mapping
�S

A → N , π �→ η is rational and bijectivewith rational inverse given by conditioning

N → �S
A, η �→ π , where π(a|s) = ηsa∑

a′ ηsa′ .

This result shows that the (interior of the) set of policies and the (interior of the) state-
action polytope are diffeomorphic. Hence, we can port the Riemannian geometry on
any of the two sets to the other by using the pull back along π �→ η or the conditioning
map η �→ π .

3 Natural gradients

In this section we provide some background on the notion of natural gradients.

3.1 Definition and general properties of natural gradients

In many applications, one aims to optimize a model parameter θ with respect to an
objective function � that is defined on a model space M, as illustrated in Fig. 1.

This general setup, with an objective function that factorizes as L(θ) = �(P(θ)),
covers parameter estimation and supervised learning cases, and also problems such as
the numerical solution of PDEs with neural networks or policy optimization in MDPs
and reinforcement learning. Naively, the optimization problem can be approached
with first order methods, computing the gradients in parameter space with respect
to the Euclidean geometry. However, this neglects the geometry of the parametrized
model M� = P(�), which is often seen as a disadvantage since it may lead to
parametrization-dependent plateaus in the optimization landscape. At the same time,
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the biases that particular parametrizations can introduce into the optimization can be
favorable in some cases. This is an active topic of investigation particularly in deep
learning, where P is often a highly non-linear function of θ . At any rate, there is a good
motivation to study of the effects of the parametrization and the possible advantages
from incorporating the geometry of model space into the optimization procedure in
parameter space.

The natural gradient as introduced in [6] is a way to incorporate the geometry
of the model space into the optimization procedure and to formulate iterative update
directions that are invariant under reparametrizations. Although it has been most com-
monly applied in the context of parameter estimation under the maximum likelihood
criterion, the concept of natural gradient has been formulated for general parametric
optimization problems and in combination with arbitrary geometries. In particular,
natural gradients have been applied to neural network training [43–46], policy opti-
mization [3, 8, 9] and inverse problems [47]. Especially in the latter case, different
notions of natural gradients have been introduced. A version that incorporates the
geometry of the sample space are natural gradients based on an optimal transport
geometry in model space [48–50]. We shall discuss natural gradients in a way that
emphasizes that even for a specific problem theremay not be a unique natural gradient.
This is because both the factorization L(θ) = �(P(θ)) of the objective as well as what
should be considered a natural geometry in model space may not be unique.

Butwhat is it thatmakes a gradient or update direction natural? The general consen-
sus is that it should be invariant under reparametrization to prevent artificial plateaus
and provide consistent stopping criteria, and it should (approximately) correspond to
a gradient update with respect to the geometry in the model space. We now give the
formal definition of the natural gradient with respect to a given factorization and a
geometry in model space that we adopt in this work, which can be shown to satisfy
the desired properties.

Definition 4 (General natural gradient) Consider the problemof optimizing an objec-
tive L : � → R, where the parameter space � ⊆ R

p is an open subset. Further,
assume that the objective factorizes as L = � ◦ P , where P : � → M is a model
parametrization with M a Riemannian manifold with Riemannian metric g, and
� : M → R is a loss in model space, as shown in Fig. 1. For θ ∈ � we define
the Gram matrix G(θ)i j := gP(θ)(dPθei , dPθe j ) and call ∇N L(θ) := G(θ)+∇L(θ)

the natural gradient (NG) of L at θ with respect to the factorization L = � ◦ P and
the metric g.

Fig. 1 Schematic drawing of
parametric models with an
objective function � and
resulting parameter objective
function L; note that neither the
choice of geometry in the model
space nor the factorization or the
model space itself is uniquely
determined by the objective
function L

Parameter
space Θ ⊆ R

p
Model

space MP

Reals R

�
L
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Natural gradient as best improvement direction. Consider a parametrization
P : � → M with image M� = P(�), where M is a Riemannian manifold with
metric g. Let us fix a parameter θ ∈ � and set p := P(θ). Moving in the direction
v ∈ Tθ� in parameter space results in moving in the direction w = dPθ v ∈ TpM in
model space. The space of all directions that can result in this way is the generalized
tangent space TθM� := range(dθ P) ⊆ TpM. Hence, the best direction one can take
onM� by infinitesimally varying the parameter θ is given by

argmax
w∈TθM�,gp(w,w)=1

∂w�(p),

which is equal (up to normalization) to the projection �TθM�
(∇g�(p)) of the Rie-

mannian gradient∇g�(p) onto TθM�. Moving in the direction of the natural gradient
in parameter space results in the optimal update direction over the generalized tangent
space TθM� in model space.

Theorem 5 (Natural gradient leads to steepest descent in model space) Consider
the settings of Definition 4, where M is a Riemannian manifold with metric g. Let
∇N L(θ) := G(θ)+∇θ L(θ) denote the natural gradient with respect to this factoriza-
tion. Then it holds that

d Pθ (∇N L(θ)) = �TθM�
(∇g�(P(θ))).

For invertible Gram matrices G(θ) this result is well known [51, Sect. 12.1.2]; for
singular Gram matrices we refer to [52, Theorem 1].

3.2 Choice of a geometry in model space

Invariance axiomatic geometries. A celebrated theorem by Chentsov [53] char-
acterizes the Fisher metric of statistical manifolds with finite sample spaces as the
unique metric (up to multiplicative constants) that is invariant with respect to con-
gruent embeddings by Markov mappings. A generalization of Chentsov’s result for
arbitrary sample spaces was given by Ay et al. [54].

Given two Riemannian manifolds (E, g), (E ′, g′) and an embedding f : E → E ′,
the metric is said to be invariant if f is an isometry, meaning that

gp(u, v) = ( f ∗g′)p(u, v) := g′
f (p)( f∗u, f∗v), for all p ∈ E and u, v ∈ TpE,

where f∗ : TpE → T f (p)E ′ is the pushforward of f . A congruentMarkovmapping is in
simple terms a linearmap p �→ MT p,whereM is a rowstochastic partitionmatrix, i.e.,
a matrix of non-negative entries with a single non-zero entry per column and entries of
each row adding to one. Such a mapping has the natural interpretation of splitting each
elementary event into several possible outcomes with fixed conditional probabilities.
By Chentsov’s theorem, requiring invariance with respect to these mappings results
in a single possible choice for the metric (up to multiplicative constants). We recall
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that on the interior of the probability simplex �S the Fisher metric is given by

gp(u, v) =
∑

s∈S

usvs
ps

, for all u, v ∈ Tp�S .

Based on this approach, Campbell [55] characterized the set of invariant metrics on
the set of non-normalized positive measures with respect to congruent embeddings by
Markovmappings. This results in a family ofmetricswhich restrict to the Fishermetric
(up to a multiplicative constant) over the probability simplex. Following this line of
ideas, Lebanon [12] characterized a class of invariant metrics of positive matrices that
restrict to products of Fisher metrics over stochastic matrices.2 The maps considered
by Lebanon do not map stochastic matrices to stochastic matrices, which motivated
[13] to investigate a natural class of mappings between conditional probabilities. They
showed that requiring invariance with respect to their proposed mappings singles out
a family of metrics that correspond to products of Fisher metrics on the interior of the
conditional probability polytope,

gπ (u, v) =
∑

s∈S

1

|S|
∑

a∈A

usavsa
πsa

, for all u, v ∈ Tπ�S
A,

up tomultiplicative constants. Thiswork also offered a discussion ofmetrics on general
polytopes and weighted products of Fisher metrics, which correspond to the Fisher
metric when the conditional probability polytope is embedded in the joint probability
simplex by way of providing a marginal distribution.

Hessian geometries.
Instead of characterizing the geometry of model space M via an invariance

axiomatic, one can select a metric based on the optimization problem at hand. For
example, it is well known that the Fishermetric is the local Riemannianmetric induced
by the Hessian of the KL-divergence in the probability simplex. Hence, if the objective
function is a KL-divergence, choosing the Fisher metric yields preconditioners that
recover the inverse of the Hessian at the optimum, which can yield locally quadratic
convergence rates. More generally, if the objective � : M → R has a positive definite
Hessian at every point, it induces a Riemannian metric via

gp(v,w) = v�∇2�(p)w

in local coordinates, which we call theHessian geometry induced by � onM; see [56,
57].

Example 6 (Hessian geometries) The following Riemannian geometries are induced
by strictly convex functions.

1. Euclidean geometry: The Euclidean geometry on R
d is induced by the squared

Euclidean norm x �→ 1
2

∑
i x

2
i .

2 For Riemannian manifolds (M1, g1) and (M2, g2), the product metric on M1 × M2 is defined by
g(u1 + u2, v1 + v2) = g1(u1, v1) + g2(u2, v2).
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2. Fisher geometry: The Fisher metric on R
d
>0 is induced by the negative entropy

x �→ ∑
i xi log(xi ).

3. Itakura-Saito: The logarithmic barrier function x �→ −∑
i log(xi ) of the positive

cone Rd
>0 yields the Itakura-Saito metric (see the next item).

4. σ -geometries: All of the above examples can be interpreted as special cases of a
parametric family of Hessian metrics. More precisely, if we let

φσ (x) :=

⎧
⎪⎨

⎪⎩

∑
i xi log(xi ) if σ = 1

−∑
i log(xi ) if σ = 2
1

(2−σ)(1−σ)

∑
x2−σ
i otherwise,

(5)

then the resulting Riemannian metric on R
d for σ ∈ (−∞, 0] and on R

d
>0 for

σ ∈ (0,∞) is given by

gσ
x (v,w) =

∑

i

viwi

xσ
i

. (6)

This recovers the Euclidean geometry for σ = 0, the Fisher metric for σ = 1, and
the Itakura-Saito metric for σ = 2. Note that these geometries are closely related
to the so-called β-divergences [56], which are the Bregman divergences of the
functions φσ for β = 1 − σ . We use σ instead of β in order to avoid confusion
with our notation for the observation kernel β in a POMDP.

5. Conditional entropy: Given two finite sets X ,Y and a probability distribution
μ in �X×Y we can consider the conditional entropy φC (μ) := H(μ|μX ) =
H(μ) − H(μX ) from (1). This is a convex function on the simplex �X×Y [58].
The Hessian of the conditional entropy is given by

∂(x,y)∂(x ′,y′)φC (μ) = δxx ′
(
δyy′μ(x, y)−1 − μX (x)−1

)
, (7)

as can be verified by explicit computation or the chain rule for Hessian matri-
ces (see also proof of Theorem 12). This Hessian does not induce a Riemannian
geometry on the entire simplex since it is not positive definite on the tangent
space T�X×Y , as can be seen by considering the specific choice X = Y =
{1, 2}, μi j = 1/4 for all i, j = 1, 2 and the tangent vector v ∈ Tμ�X×Y given
by vi j = (−1)i . However, when fixing a marginal distribution ν ∈ �X , ν > 0,
then the conditional entropy φC induces a Riemannian metric on the interior of
P = {μ ∈ �X×Y : μX = ν}. To see this we consider the diffeomorphism given
by conditioning int(P) → int(�X

Y ), μ �→ μY |X . It can be shown by explicit com-

putation (analogous to the proof of Theorem 12) that the Hessian ∇2φC (μ) is the
metric tensor of the pull back of the Riemmanian metric

g : T�X
Y × T�X

Y → R, gμ(·|·)(v, w) :=
∑

x

ν(x)
∑

y

v(x, y)w(x, y)

μ(y|x) .

This argument can be adapted to sets {μ ∈ �X×X : μX = ν(μY |X )}, where
ν : int(�X

Y ) → int(�X ) depends smoothly on the conditional μY |X ∈ �X
Y .
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We note that the Bregman divergence induced by the conditional entropy is the
conditional relative entropy [58],

DφC (μ(1), μ(2)) = DKL(μ(1), μ(2)) − DKL(μ
(1)
X , μ

(2)
X )

=
∑

x

μ
(1)
X (x)DKL(μ(1)(·|x), μ(2)(·|x)).

Local Hessian of Bregman divergences. Let φ be a twice differentiable strictly
convex function and denote its Bregman divergence with Dφ(x, y) = φ(x) − φ(y) −
〈∇φ(y), x − y〉. Then it holds that

∇2
y Dφ(x, y)|y=x = ∇2

y Dφ(y, x)|y=x = ∇2φ(x). (8)

To see this, we set f (y) := Dφ(x, y). Then it is straight forward to see that∇2 f (y) =
∇2φ(y). Further, one can compute

∂y j f (y) = ∂y j

(

φ(x) − φ(y) −
∑

k

∂ykφ(y)(xk − yk)

)

= −∂y j φ(y) +
∑

k

∂y j ∂ykφ(y)(yk − xk) + ∂y j φ(y).

Hence, we obtain

∂yi ∂y j f (y) = −∂yi ∂y j φ(y) +
∑

k

∂yi ∂y j ∂ykφ(y)(yk − xk) + ∂yi ∂y j φ(y) + ∂yi ∂y j φ(y),

and hence ∇2 f (x) = ∇2φ(x).

Connection toGauss–Newtonmethod.Letφ be a twice differentiable strictly convex
function. Then the Gram matrix of the Hessian geometry is given by

G(θ) = DP(θ)�∇2φ(P(θ))DP(θ).

Hence G−1(θ) can be interpreted as a Gauss–Newton preconditioner of the objective
function φ ◦ P [59]. In particular, for the square loss we have φ(x) = ‖x‖22, in
which caseG(θ)−1 = (DP(θ)�DP(θ))−1 is the usual nonlinear least squaresGauss–
Newton preconditioner.

4 Natural policy gradient methods

In this section we give a brief overview of different notions of policy gradient meth-
ods that have been proposed in the literature and study their associated geometries in
state-action space. Policy gradient methods [60–64] offer a flexible approach to reward
optimization. They have been used in robotics [3] and have been combined with deep

123



Geometry and convergence of natural policy. . . S497

neural networks [1, 2, 5]. In the context of MDPs there are multiple notions of natural
policy gradients. For instance, one may choose to use an optimal transport geometry
in model space resulting in Wasserstein natural policy gradients [10]. Most impor-
tant to our discussion, there are different possible choices for the model space. One
obvious candidate is the policy space �S

A, which was used by Kakade [8]. However
the objective function R(π) is a rational non-convex function over this space an thus
requires a delicate analysis. A second candidate, which was proposed by Morimura et
al. [9], is the state-action spaceN ⊆ �S×A, for which the objective becomes a rather
simple, linear function. By Proposition 3 the two model spaces �S

A andN are diffeo-
morphic under mild assumptions, which allows us to study any NPG method defined
with respect to the policy space in state-action space. Because of the simplicity of the
objective function in state-action space, we propose to study the evolution of NPG
methods in this space. As we will see, this has the added benefit that it allows us to
interpret several of the existingNPGmethods as being induced byHessian geometries.
Based on this observation we can conduct a relatively simple convergence analysis
for these methods. Finally, we propose a class of policy gradients closely related to β-
divergences that interpolate between NPG arising from logarithmic barriers, entropic
regularization and the Euclidean geometry.

4.1 Policy gradients

Throughout the section, we consider parametric policy models P : � → �S
A and

write πθ = P(θ) ∈ �S
A for the policy arising from the parameter θ . We denote

the corresponding state-action and state frequencies by ηθ and ρθ . Finally, in slight
abuse of notation we write R(θ) for the expected infinite-horizon discounted reward
obtained by the policy πθ . The vanilla policy gradient (vanilla PG) method is given
by the iteration

θk+1 := θk + �t · ∇R(θk), (9)

where �t > 0 is the step size.
For γ ∈ (0, 1), the reward function π �→ R(π) is a rational function. Hence, in

principle it can be differentiated using any automatic differentiation method. One can
use the celebrated policy gradient theorem and use matrix inversion to compute the
parameter update.

Theorem 7 (Policygradient theorem, [21, 62, 63])Consider anMDP (S,A, α, r), γ ∈
[0, 1) and a parametrized policy class with differentiable parametrization. It holds that

∂θi R(θ) =
∑

s
ρθ (s)

∑

a
∂θi πθ (a|s)Qπθ (s, a) =

∑

s,a
ηθ (s, a)∂θi log(πθ (a|s))Qπθ (s, a),

where Qπ := (I − γ Pπ )−1r ∈ R
S×A is the state-action value function.

In a reinforcement learning setup, one does not have direct access to the transition α

and hence to Pπ (2) nor Qπ , and sometimes even S is not known a priori. In this case,
one has to estimate the gradient from interactions with the environment [40, 64–66].
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In this work, however, we study the planning problem in MDPs, i.e., we assume that
we have access to exact gradient evaluations.

Policy parametrizations.Many results on the convergence of policy gradientmethods
have been provided for tabular softmax policies. The tabular softmax parametrization
is given by

πθ (a|s) := eθsa

∑
a′ eθsa′ for all a ∈ A, s ∈ S, (10)

for θ ∈ R
S×A. One benefit of tabular softmax policies is that they parametrize the

interior of the policy polytope �S
A in a regular way, i.e., such that the Jacobian has

full rank everywhere, and the parameter is unconstrained in an affine space.

Definition 8 (Regular policy parametrization)We call a policy parametrizationRp →
int(�S

A), θ �→ πθ regular if it is differentiable, surjective and satisfies

span{∂θi πθ : i = 1, . . . , p} = Tπθ �
S
A for every θ ∈ R

p. (11)

Wewill focus on regular policy parametrizations, which cover softmax policies as well
as escort transformed policies [67]. Nonetheless, we observe that policy optimization
with constrained search variables can also be an attractive option and refer to [68] for
a discussion in context of POMDPs.

Remark 9 (Partially observable systems) Although we will only consider parametric
policies in fully observable MDPs, our discussion covers the case of POMDPs in the
following way. Any parametric family of observation-based policies {πθ : θ ∈ �} ⊆
�O

A induces a parametric family of state-based policies {πθ◦β : θ ∈ �} ⊆ �S
A.Hence,

the policy gradient theoremaswell as the definitions of natural policy gradients directly
extend to the case of partially observable systems. However, the global convergence
guarantees in Sects. 5 and 6 do not carry over to POMDPs since they assume regular
parametrization of the policies.

Regularization in MDPs. In practice, the reward function is often regularized as

Rλ = R − λψ.

This is often motivated to encourage exploration [60] and has also been shown to lead
to fast convergence for strictly convex regularizersψ [14, 18]. One popular regularizer
is the conditional entropy in state-action space, see [14, 18, 58],

ψC (θ) =
∑

s

ρθ (s)
∑

a

πθ (a|s) log(πθ (a|s)) = H(ηθ ) − H(ρθ ), (12)

which has also been used to successfully design trust region and proximal methods for
reward optimization [69, 70]. It is also possible to take the functions φσ defined in (5)
as regularizers. This includes the entropy function, which is studied in state-action
space in [58] and logarithmic barriers, which are studied in policy space in [21].
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Projectedpolicy gradients.Analternative to using parametrizationswith the property
that any unconstrained choice of the parameter leads to a policy, is to use constrained
parametrizations and projected gradient methods. For instance, one can parametrize
policies in �S

A by their constrained entries and use the iteration

πk+1 := ��S
A

(πk + �tG(πk)
+∇R(π)),

where ��S
A
is the (Euclidean) projection to �S

A. We will not study projected policy
gradient methods and refer to [21, 26] for convergence rates of these methods.

4.2 Kakade’s natural policy gradient

Kakade [8] proposed natural policy gradient based on a Riemannian geometry in the
policy polytope �S

A. We will see that Kakade’s NPG can be interpreted as the NPG
induced by theHessian geometry in state-action space arising fromconditional entropy
regularization of the linear program associated to MDPs. Kakade’s idea was to mix
the Fisher information matrices of the policy over the individual states according to
the state frequencies, i.e., to use the following Gram matrix:

GK (θ)i j =
∑

s

ρθ (s)
∑

a

πθ (a|s)∂θi log(πθ (a|s))∂θ j log(πθ (a|s))

=
∑

s,a

ηθ (s, a)∂θi log(πθ (a|s))∂θ j log(πθ (a|s))

=
∑

s

ρθ (s)
∑

a

∂θi πθ (a|s)∂θ j πθ (a|s)
πθ (a|s) .

(13)

Definition 10 (Kakade’s NPG and geometry in policy space) We refer to the natural
gradient∇K R(θ) := GK (θ)+∇θ R(πθ ) asKakade’s natural policy gradient (K-NPG),
where GK is defined in (13). Hence, Kakade’s NPG is the NPG induced by the fac-
torization θ �→ πθ �→ R(θ) and the Riemannian metric on int(�S

A) given by

gKπ (v,w) :=
∑

s

ρπ(s)
∑

a

v(s, a)w(s, a)

π(a|s) for all v,w ∈ Tπ�S
A. (14)

Due to its popularity, this method is often referred to simply as the natural policy
gradient. We will call it Kakade’s NPG in order to distinguish it from other NPGs.

Remark 11 In [8] the definition of GK was heuristically motivated by the fact that
the reward is also a mix of instantaneous rewards according to the state frequencies,
R(π) = ∑

s ρπ(s)
∑

a π(a|s)r(s, a). The invariance axiomatic approaches discussed
in [12, 13] also yield mixtures of Fisher metrics over individual states, which however
do not fully recover Kakade’s metric, since this would require a way to account for
the particular process that gives rise to the stationary state distribution ρπ . The works
[3, 11, 71] argued that the Gram matrix GK corresponds to the limit of the Fisher
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information matrices of finite-path probability measures as the path length tends to
infinity.

Interpration as Hessian geometry of conditional entropy. The metric gK on the
conditional probability polytope �S

A has been studied in terms of its invariances and
its connection to the Fisher metric on finite-horizon path space [3, 11, 13]. We offer
a different interpretation of Kakade’s geometry by studying its counterpart in state-
action space, which we show to be the Hessian geometry induced by the conditional
entropy.

Theorem 12 (Kakade’s geometry as conditional entropy Hessian geometry) Consider
an MDP (S,A, α) and fix μ ∈ �S and γ ∈ (0, 1) such that Assumption 2 holds.
Then, Kakade’s geometry on �S

A is the pull back of the Hessian geometry induced by
the conditional entropy on the state-action polytope N ⊆ �S×A along π �→ ηπ .

Proof We can pull back the Riemannian metric on the policy polytope proposed by
Kakade along the conditioningmap to define a corresponding geometry in state-action
space. The metric tensor in state-action space is given by

G(η)(s,a),(s′,a′) = gKπ (∂(s,a)η(·|·), ∂(s′,a′)η(·|·))
=

∑

s̃,ã

ρ(s̃)
∂(s,a)η(ã|s̃)∂(s′,a′)η(ã|s̃)

η(ã|s̃)

=
∑

s̃,ã

ρ(s̃)2
∂(s,a)η(ã|s̃)∂(s′,a′)η(ã|s̃)

η(s̃, ã)
.

(15)

Using ∂(s,a)η(ã|s̃) = ∂(s,a)(η(s̃, ã)ρ(s̃)−1) = δss̃(δaãρ(s̃)−1 − η(s̃, ã)ρ(s̃)−2) we
obtain

G(η)(s,a),(s′,a′) = δss′
(
δaa′η(s, a)−1 − ρ(s)−1

)
. (16)

We aim to show that G(η) = ∇2φC (η), where φC (η) = H(η)− H(ρ), where ρ(s) =∑
a η(s, a) denotes the state-marginal. Note that ∇2 H(η) = diag(η), which is the

first term appearing in (16). For linear maps gA(x) = Ax the chain rule yields the
expression

∂i∂ j ( f ◦ gA)(x) =
∑

k,l

Aki∂k∂l f (gA(x))Al j .

Noting that ρ is a linear function of η we obtain

∂(s,a)∂(s′,a′)H(ρ) =
∑

s̃,ŝ

δs̃,s∂s̃∂ŝ H(ρ)δŝ,s′ = δss′ρ(s)−1,

which is the second term in (16). Overall this implies G(η) = ∇2φC (η).
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The above theorem shows that Kakade’s natural policy gradient is the natural policy
gradient induced by the factorization θ �→ ηθ �→ R(θ) with respect to the conditional
entropy Hessian geometry, i.e.,

GK (θ)i j =
∑

s,a

∂θi ηθ (s, a)∂θ j ηθ (s, a)

ηθ (s, a)
−

∑

s

∂θi ρθ (s)∂θ j ρθ (s)

ρθ (s)

=
∑

s,a

∂θi log(ηθ (s, a))∂θ j log(ηθ (s, a))ηθ (s, a)

−
∑

s

∂θi log(ρθ (s))∂θ j log(ρθ (s))ρθ (s).

(17)

It is also worth noting that the Bregman divergence of the conditional entropy is
the conditional relative entropy and has been studied as a regularizer for the linear
program associated to MDPs in [58].

Remark 13 Kakade’s NPG is known to converge at a locally quadratic rate under
conditional entropy regularization [14], a regularizer which in policy space takes the
form

ψ(π) =
∑

s

ρπ(s)
∑

a

π(a|s) log(π(a|s)) =
∑

s

ρπ(s)H(π(·|s)).

Note however, bydirect calculation, thatKakade’s geometry in policy space gK defined
in (14) is not the Hessian geometry induced by ψ in policy space, which would take
the form

∇2ψ(π) =
∑

s

ρπ(s)∇2H(π(·|s)) +
∑

s

(∇H(·|s)�∇ρπ(s) + ∇H(·|s)∇ρπ(s)�)

+
∑

s

H(π(·|s))∇2ρπ(s).

Instead, the metric proposed by Kakade only considers the contribution of the first
term; see (14). As we will see in Sects. 5 and 6, the interpretation of Kakade’s NPG
as a Hessian natural gradient induced by the conditional entropic regularization in
state-action space allows for a great simplification of its convergence analysis. One
can show that Kakade’s metric is not a Hessian metric in policy space. By Schwarz’s
theorem the metric tensor of a Hessian Riemannian metric satisfies ∂i g jk = ∂ j gik .
However, we have

∂(s̃,ã)G(π)(s,a),(s′,a′) = δss′δaa′
(
−δss̃δaãρ

π(s)π(a|s)−2 + π(a|s)∂(s̃,ã)ρ
π (s)

)
,

which does not satisfy this symmetry property in general. This shows that the Rie-
mannian metric on the policy polytope �S

A proposed by Kakade does not arise from
a Hessian.
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4.3 Morimura’s natural policy gradient

In contrast to Kakade’s approach, who proposed a mixture of Fisher metrics to obtain
a metric on the conditional probability polytope �S

A, Morimura and co-authors [9]
proposed to work with the Fisher metric in state-action space�S×A to define a natural
gradient for reward optimization. The resulting Gram matrix is given by the Fisher
information matrix induced by the state-action distributions, that is P(θ) = ηθ and

GM (θ)i j =
∑

s,a

∂θi log(ηθ (s, a))∂θ j log(ηθ (s, a))ηθ (s, a). (18)

Definition 14 (Morimura’s NPG) We refer to the natural gradient ∇M R(θ) :=
GM (θ)+∇θ R(πθ ) as Morimura’s natural policy gradient (M-NPG), where GM is
defined in (18). Hence, Morimura’s NPG is the NPG induced by the factorization
θ �→ ηθ �→ R(θ) and the Fisher metric on int(�S×A).

By (17) the Gram matrix proposed by Morimura and co-authors and the Gram matrix
proposed by Kakade are related to each other by

GK (θ) = GM (θ) − Fρ(θ),

where Fρ(θ)i j = ∑
s ρθ (s)∂θi log(ρθ (s))∂θ j log(ρθ (s)) denotes the Fisher informa-

tion matrix of the state distributions. This relation is reminiscent of the chain rule for
the conditional entropy and can be verified by direct computation; see [9]. Where we
have seen that Kakade’s geometry in state-action space is the Hessian geometry of
conditional entropy, the Fisher metric is known to be the Hessian metric of the entropy
function [56]. Hence, we can interpret the Fisher metric as the Hessian geometry of
the entropy regularized reward η �→ 〈r , η〉 − H(η).

4.4 General Hessian natural policy gradient

Generalizing the above definitions, we define general state-action spaceHessianNPGs
as follows. Consider a twice differentiable function φ : RS×A

>0 → R such that∇2φ(η)

is positive definite on TηN = TL ⊆ R
S×A for every η ∈ int(N ). Then we set

Gφ(θ)i j :=
∑

s,s′,a,a′
∂θi ηθ (s, a)∂(s,a)∂(s′,a′)φ(ηθ )∂θ j ηθ (s

′, a′),

which is the Gram matrix with respect to the Hessian geometry in R
S×A
>0 .

Definition 15 (Hessian NPG) We refer to the natural gradient ∇φR(θ) :=
Gφ(θ)+∇θ R(πθ ) as Hessian natural policy gradient with respect to φ or shortly
φ-natural policy gradient (φ-NPG).

Leveraging results on gradient flows in Hessian geometries we will later provide
global convergence guarantees including convergence rates for a large class of Hessian

123



Geometry and convergence of natural policy. . . S503

NPG flows covering Kakade’s and Morimura’s natural gradients as special cases.
Further, we consider the family φσ of strictly convex functions defined in (5). With
Gσ (θ) we denote the Gram matrix associated with the Riemannian metric gσ , i.e.,

Gσ (θ)i j =
∑

s,a

∂θi ηθ (s, a)∂θ j ηθ (s, a)

ηθ (s, a)σ
.

Definition 16 (σ -NPG)We refer to the natural gradient∇σ R(θ) := Gσ (θ)+∇θ R(πθ )

as the σ -natural policy gradient (σ -NPG). Hence, the σ -NPG is the NPG induced by
the factorization θ �→ ηθ �→ R(θ) and the metric gσ on int(�S×A) defined in (6).

For σ = 1 we recover the Fisher geometry and hence Morimura’s NPG; for σ = 2
we obtain the Itakura-Saito metric; and for σ = 0 we recover the Euclidean geometry.
Later, we show that the Hessian gradient flows exist globally for σ ∈ [1,∞) and
provide convergence rates depending on σ .

5 Convergence of natural policy gradient flows

In this section we study the convergence properties of natural policy gradient flows
arising from Hessian geometries in state-action space for fully observable systems
and regular parametrizations of the interior of the policy polytope �S

A. Leveraging
tools from the theory of gradient flows in Hessian geometries established in [72] we
show O(t−1) convergence of the objective value for a large class of Hessian geome-
tries and unregularized reward. We strengthen this general result and establish linear
convergence for Kakade’s and Morimura’s NPG flows and O(t−1/(σ−1)) convergence
for σ -NPG flows for σ ∈ (1, 2). We provide empirical evidence that these rates are
tight and that the rate O(t−1/(σ−1)) also holds for σ ≥ 2. Under strongly convex
penalization, we obtain linear convergence for a large class of Hessian geometries.

Reduction to state-action space. For a solution θ(t) of the natural policy gradient
flow, the corresponding state-action frequencies η(t) solve the gradient flow with
respect to the Riemannian metric. This is made precise in the following result, which
shows that it suffices to study Riemannian gradient flows in state-action space in order
to study natural policy gradient flows for tabular softmax policies.

Proposition 17 (Evolution in state-action space) Consider an MDP (S,A, α), a Rie-
mannian metric g on int(N ) = R

S×A
>0 and an differentiable objective function

R : int(�S×A) → R. Consider a regular policy parametrization and the objective
R(θ) := R(ηθ ) and a solution θ : [0, T ] → � = R

S×A of the natural policy gradient
flow

∂tθ(t) = ∇N R(θ(t)) = G(θ(t))+∇R(θ(t)), (19)

where G(θ)i j = gη(∂θi ηθ , ∂θ j ηθ ) and G(θ)+ denotes some pseudo inverse of G(θ).
Then, setting η(t) := ηθ(t) we have that η : [0, T ] → �S×A is the gradient flow with
respect to the metric g and the objective R, i.e., solves

∂tη(t) = ∇gR(η(t)). (20)
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Proof This is a direct consequence of Theorem 5.

The preceding result covers the commonly studied tabular softmax parametriza-
tion. For general parametrizations, the result does not hold. However, if for any two
parameters θ, θ ′ with ηθ = ηθ ′ it holds that

span{∂θi πθ : i = 1, . . . , p} = span{∂θi πθ ′ : i = 1, . . . , p},

then a similar result can be established. An important special case of such parametriza-
tions occurs in partially observable problems with memoryless policies parametrized
in a regular way, e.g. through the softmax or escort transform; see also Remark 9.

By Proposition 17 it suffices to study solutions η : [0, T ] → N of the gradient flow
in state-action space. We have seen before that a large class of natural policy gradients
arise from Hessian geometries in state-action space. In particular, this covers the
natural policy gradients proposed by Kakade [8] andMorimura et al. [9]. We study the
evolution of these flows in state-action space and leverage results on Hessian gradient
flows of convex problems in [72, 73] to obtain global convergence rates for different
NPG methods.

5.1 Convergence of unregularized Hessian NPG flows

First, we study the case of unregularized reward, i.e., where the state-action objective
is linear and given by R(η) = 〈r , η〉. In this case we obtain global convergence
guarantees including rates. In particular, our general result covers the σ -NPGs and
thus Morimura’s NPGs as well as Kakade’s NPGs. For the remainder of this section
we work under the following assumptions.

Setting 18 Let (S,A, α) be an MDP, μ ∈ �S and r ∈ R
S×A and let the positivity

Assumption 2 hold. We denote the state-action polytope by N = R
S×A
≥0 ∩ L, see

Proposition 1, and its (relative) interior and boundary by int(N ) = R
S×A
>0 ∩ L and

∂N = ∂RS×A
≥0 ∩ L respectively. We consider an objective function R : RS×A →

R ∪ {−∞} that is finite, differentiable and concave on R
S×A
>0 and continuous on

its domain dom(R) = {η ∈ R
S×A : R(η) ∈ R}. Further, we consider a real-

valued function φ : RS×A → R ∪ {+∞}, which we assume to be finite and twice
continuously differentiable on R

S×A
>0 and such that ∇2φ(η) is positive definite on

TηN = TL ⊆ R
S×A for every η ∈ int(N ) and denote the induced Hessian metric

on int(N ) by g. Further, with η : [0, T ) → N we denote a solution of the Hessian
gradient flow

∂tη(t) = ∇gR(η(t)). (21)

We denote3 R∗ := supη∈N R(η) < ∞ and by η∗ ∈ N , we denote a maximizer – if
one exists – of R over N . We denote the policies corresponding to η0 and η∗ by π0
and π∗, see Proposition 3.

3 Note that R is bounded over the bounded set N as a concave function.
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We observe that the Hessian of the conditional entropy only defines a Riemannian
metric on int(N ), even if not over all of �S×A. Note that in general η∗ might lie on
the boundary and for linear R corresponding to unregularized reward it necessarily
lies on the boundary.

We will repeatedly make use of the following identity

〈∇2φ(η)∇gR(η), v〉 = gη(∇gR(η), v) = dR(η)v = 〈∇R(η), v〉, (22)

which holds for any v ∈ TL.
Sublinear rates for general case.

We begin by providing a sublinear rate of convergence for general NPG flows,
which we then specialize to Kakade and σ -NPGs.

Lemma 19 (Convergence of Hessian natural policy gradient flows) Consider Set-
ting 18 and assume that there exists a solution η : [0, T ) → int(N ) of the NPG
flow (21) with initial condition η(0) = η0. Then for any η′ ∈ N and t ∈ [0, T ) it
holds that

R(η′) − R(η(t)) ≤ Dφ(η′, η0)t−1, (23)

where Dφ denotes the Bregman divergence of φ. In particular it holds thatR(η(t)) →
R∗ as T → ∞. Further, this convergence happens at a rate O(t−1) if there is a
maximizer η∗ ∈ N of R with φ(η∗) < ∞.

Proof This is precisely the statement of Proposition 4.4 in [72]; note however, that
they assume a globally defined objectiveR : RS×A → R and hence for completeness
we provide a quick argument. It holds that

∂t Dφ(η, η(t)) = −∂tφ(η(t)) − ∂t 〈∇φ(η(t)), η − η(t)〉
= −〈∇φ(η(t))∂tη(t)〉 − 〈∇2φ(η(t))∂tη(t), η − η(t)〉

+ 〈∇φ(η(t)), ∂tη(t)〉
= −〈∇R(η(t)), η − η(t)〉,

where we used ∂tη(t) = ∇gR(η(t)) as well as (22). Using the concavity ofR we can
estimate

∂t Dφ(η, η(t)) = −〈∇R(η(t)), η − η(t)〉 ≤ R(η) − R(η(t)), (24)

which corresponds to Eq. (4.4) in [72], where it is proven under stronger assumption.
Integration and the monotonicity of t �→ R(η(t)) yields the claim.

The previous result is very general and reduces the problemof showing convergence
of the natural gradient flow to the problem ofwell posedness. However, well posedness
is not always given, such as for example in the case of an unregularized reward and the
Euclidean geometry in state-action space. In this case, the gradient flow in state-action
space will reach the boundary of the state-action polytope N in finite time at which
point the gradient is not classically defined anymore and the softmax parameters blow
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up; see Fig. 3. An important class of Hessian geometries that prevent a finite hitting
time of the boundary are induced by the class of Legendre-type functions, which curve
up towards the boundary.

Definition 20 (Legendre type functions) We call φ : RS×A → R∪ {+∞} a Legendre
type function if it satisfies the following properties:

1. Domain: It holds that RS×A
>0 ⊆ dom(φ) ⊆ R

S×A
≥0 , where dom(φ) = {η ∈

R
S×A : φ(η) < ∞}.

2. Smoothness and convexity: We assume φ to be continuous on dom(φ) and twice
continuously differentiable on RS×A

>0 and such that ∇2φ(η) is positive definite on
TηN = TL ⊆ R

S×A for every η ∈ int(N ).
3. Gradient blowup at boundary: For any (ηk) ⊆ int(N ) with ηk → η ∈ ∂N we

have ‖∇φ(ηk)‖ → ∞.

Wenote that the abovedefinition differs from [72],who considerLegendre functions
on arbitrary open sets but workwithmore restrictive assumptions.More precisely, they
require the gradient blowup on the boundary of the entire cone RS×A

≥0 and not only
on the boundary of the feasible set N of the optimization problem. However, this
relaxation is required to cover the case of the conditional entropy, which corresponds
to Kakade’s NPG, as we see now.

Example 21 The class of Legendre type functions covers the functions inducing
Kakade’s and Morimura’s NPG via their Hessian geometries. More precisely, the
following Legendre type functions will be of great interest in the remainder:

1. The functions φσ defined in (5) used to define the σ -NPG are Legendre type
functions for σ ∈ [1,∞). Note that this includes the Fisher geometry, correspond-
ing to Morimura’s NPG for σ = 1 but excludes the Euclidean geometry, which
corresponds to σ = 0.

2. The conditional entropy φC defined in (12) is a Legendre type function. The Hes-
sian geometry of this function induces Kakade’s NPG. Note that in this case the
gradient blowup holds on the boundary N but not on the boundary of �S×A or
even R

S×A
≥0 .

The definition of a Legendre function with the gradient blowing up at the boundary
of the feasible set prevents the gradient flow from reaching the boundary in finite time
and thus ensures the global existence of the gradient flow.

Let us now turn towards Kakade’s natural policy gradient, which is the Hessian
NPG induced by the conditional entropy φC defined in (1). The Bregman divergence
of the conditional entropy (see [74]) is given by

DφC (η1, η2) =
∑

s,a

η1(s, a) log

(
η1(s, a)

η2(s, a)

)

−
∑

s,a

η1(s, a) log

(∑
a′ η1(s, a′)

∑
a′ η2(s, a′)

)

= DKL(η1, η2) − DKL(ρ1, ρ2) =
∑

s

ρ1(s)DKL(η1(·|s), η2(·|s)),

which has been studied in the context of mirror descent algorithms of the linear pro-
gramming formulation of MDPs in [58].
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Theorem 22 (Convergence ofKakade’sNPGflow for unregularized reward)Consider
Setting 18 with φ = φC being the conditional entropy defined in (12) and letR(η) =
〈r , η〉 denote the unregularized reward and fix an element η0 ∈ int(N ). Then there
exists a unique global solution η : [0,∞) → int(N ) of Kakade’s NPG flowwith initial
condition η(0) = η0, i.e., of (21) with φ = φC , and it holds that

R∗ − R(η(t)) ≤ t−1DφC (η∗, η0) = t−1
∑

s

ρ∗(s)DKL(π∗(·|s), π0(·|s)),

where DφC denotes the conditional relative entropy. In particular,wehavedist(η(t), S) ∈
O(t−1), where S = {η ∈ N : 〈r , η〉 = R∗} denotes the solution set and dist denotes
the Euclidean distance.

Proof The well posedness follows by a similar reasoning as in [72, Theorem 4.1].
Now the result follows directly from Lemma 19.

Now we elaborate the consequences of the general convergence result Lemma 19
for the case of σ -NPG flows. Here, the study is more delicate since for σ > 2 we
typically have φσ (η∗) = ∞ since the maximizer η∗ lies at the boundary unless the
reward is constant.

Theorem 23 (Convergence of σ -NPG flow for unregularized reward) Consider Set-
ting 18 with φ = φσ for some σ ∈ [1,∞) being defined in (5). Denote the
unregularized reward by R(η) = 〈r , η〉 and fix an element η0 ∈ int(N ). Then there
exists a unique global solution η : [0,∞) → int(N ) of the Hessian NPG flow (21)
with inital condition η(0) = η0 and and there are constants cσ > 0 such that

R∗ − R(η(t)) ≤

⎧
⎪⎨

⎪⎩

t−1Dσ (η∗, η0) for σ ∈ [1, 2)
cσ log(t)t−1 for σ = 2

cσ tσ−3 for σ ∈ (2,∞).

In particular, we have

dist(η(t), S) ∈

⎧
⎪⎨

⎪⎩

O(t−1) for σ ∈ [1, 2)
O(log(t)t−1) for σ = 2

O(tσ−3) for σ ∈ (2,∞),

where S = {η ∈ N : 〈r , η〉 = R∗} denotes the solution set and dist denotes the
Euclidean distance. This result covers Morimura’s NPG flow as the special case with
σ = 1.

Proof By the preceding Lemma 19 it suffices to show the well posedness of the σ -
NPG flow. The result [72, Theorem 4.1] guarantees the well posedness for Hessian
gradient flows for smooth Legendre type functions. Note however that they work with
slightly stronger assumptions, which are that the gradient blowup of the Legendre type
functions occurs not only on the boundary of N but on the boundary of RS×A

≥0 and
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that the objective R is globally defined. Consolidating the proof in [72] reveals that
both of these relaxations do not change the validity or proof of the statement.

It is easy to see that for σ ≥ 1 the functions φσ are of Legendre type and smooth
and hence we can apply the preceding Lemma 19. Let η∗ be a maximizer, which
necessarily lies at the boundary of N (except for constant reward) and therefore has
at least one zero entry. For σ ∈ [1, 2) we have that φσ (η∗) < ∞ and hence we obtain
R∗ − R(η(t)) ≤ Dφσ (η∗, η0)t−1. Consider now the case σ = 2 and pick v ∈ R

S×A
such that ηδ := η∗ + δv ∈ int(N ) for small δ > 0. Then it holds that

R∗ − R(η(t)) = R∗ − 〈r , ηδ〉 + 〈r , ηδ〉 − R(η(t)) = O(δ) + Dφσ (ηδ, η0)t
−1

= O(δ) + (φσ (ηδ) − φσ (η0) − 〈∇φσ (η0), ηδ − η0〉) t−1

= O(δ) + O(log(δ) + 1)t−1.

Setting δ = t−1 we obtain R∗ − R(η(t)) = O(t−1) + O((log(t−1) + 1)t−1) =
O(log(t)t−1) for t → ∞. For σ ∈ (2,∞) the calculation follows in analogue fashion.
Noting that dist(η(t), S) ∼ R∗ − R(η(t)) finishes the proof.

Remark 24 Theorems 22 and 23 show global convergence of σ -NPG and Kakade’s
NPG flows to a maximizer of the unregularized problem. Note that the reason why
this is possible is that one does not work with a regularized objective but rather with
a geometry arising from a regularization but with the original linear objective. For
σ < 1 the flow may reach a face of the feasible set in finite time; see Fig. 3. For σ ≥ 3
Theorem 23 is uninformative sinceR(η(t)) is non increasing. However, by Lemma 19
the flows converge since they are well posed as the functions φσ are Legendre-type
functions for σ ≥ 1; see Example 21. It would be interesting to expand the theoretical
analysis to clarify the convergence rate in this particular case. For larger σ the plateau
problem becomes more pronounced, as can be seen in Fig. 3.

Furthermore, one can show that the trajectory converges towards the maximizer
that is closest to the initial point η0 with respect to the Bregman divergence [72].

Faster rates for σ ∈ [1, 2) and Kakade’s NPG.
Now we obtain improved and even linear convergence rates for Kakade’s and

Morimura’s NPG flow for unregularized problems. To this end, we first formulate
the following general result.

Lemma 25 (Convergence rates for gradient flow trajectories) Consider Setting 18 and
assume that there is a global solution η : [0,∞) → int(N ) of the Hessian gradi-
ent flow (21). Assume that there is η∗ ∈ N such that φ(η∗) < +∞ as well as a
neighborhood N of η∗ in N and ω ∈ (0,∞) and τ ∈ [1,∞) such that

R(η∗) − R(η) ≥ ωDφ(η∗, η)τ for all η ∈ N . (25)

Then there is a constant c > 0, possibly depending on η(0), such that

1. if τ = 1, then Dφ(η∗, η(t)) ≤ ce−ωt ,
2. if τ > 1, then Dφ(η∗, η(t)) ≤ ct−1/(τ−1).
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The lower bound (25) can be interpreted as a form of strong convexity under which the
objective value controls the Bregman divergence and hence convergence in objective
value implies convergence of the state-action trajectories in the sense of the Bregman
divergence.

Proof The statement of this result can be found in [72, Proposition 4.9], where however
stronger assumptions are made and hence we provide a short proof. First, note (25)
implies that η∗ is a strict local maximizer and by concavity of R the unique global
maximizer ofR overN . By (24) it holds that u(t) := Dφ(η∗, η(t)) is strictly decreas-
ing as long as η(t) �= η∗. Note that if η(t) = η∗ for some t ∈ [0,∞), we have
u(t ′) = 0 for all t ′ ≥ t and hence the statement becomes trivial. Therefore, we can
assume u(t) > 0 for all t > 0 and Lemma 19 implies R(η(t)) → R(η∗). Since N is
compact η(t) has at least one accumulation point for t → ∞ and by the continuity of
R every accumulation points is a maximizer and hence agrees with η∗, which shows
η(t) → η∗. Hence, η(t) ∈ N for t ≥ t0. For the statement about the asymptotic
behavior we may therefore assume without loss of generality that η(t) ∈ N for all
t ≥ 0. Combining (24) and (25) we obtain u′(t) ≤ −ωu(t)τ . Dividing by the right
hand side and integrating the inequality we obtain u(t) ≤ u(0)e−ωt for τ = 1 and
u(t) ≤ ω1/(1−τ)(τ − 1)1/(1−τ)t1/(1−τ).

Theorem 26 (Linear convergence of unregularized Kakade’s NPG flow) Consider
Setting 18, where φ = φC is the conditional entropy defined in (12) and assume that
there is a unique maximizer η∗ of the unregularized rewardR. Then R∗ −R(η(t)) ≤
c1(η0)e−c2t for some constants c1(η0), c2 > 0.

Proof Let φC denote the conditional entropy, so that DφC (η∗, η) = DKL(η∗, η) −
DKL(ρ∗, ρ) ≤ DKL(η∗, η). Hence, we obtain just like in the case of σ -NPG flows for
σ = 1 that DφC (η∗, η) = O(R(η∗) −R(η)) for η → η∗ and hence DφC (η∗, η(t)) =
O(e−ct ) for some c > 0 by Lemma 25. Hence, it remains to estimate R(η∗) −
R(η) = O(‖η∗ − η‖1) by the conditional relative entropy DφC (η∗, η). Note that π∗
is a deterministic policy and hence we can write π∗(a∗

s |s) = 1 and estimate

DφC (η∗, η) =
∑

s

ρ∗(s)DKL(π∗(·|s), π∗(·|s)) = −
∑

s

ρ∗(s) log(π(a∗
s |s))

≥
∑

s

ρ∗(s)(1 − π(a∗
s |s)) = 2−1

∑

s

ρ∗(s)‖π∗(·|s) − π(·|s)‖1

≥ 2−1
(
min
s

ρ∗(s)
)

· ‖π∗ − π‖1.

Here, we have used log(t) ≤ t − 1 as well as

‖π∗(·|s) − π(·|s)‖1 =
∑

a �=a∗
s

|π∗(a|s) − π(a|s)| + |π∗(a|s) − π(a|s)|

=
∑

a �=a∗
s

π(a|s) + (1 − π(a∗
s |s)) = 2(1 − π(a∗

s |s)).
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Now we observe that the mapping π �→ η is L-Lipschitz with constant L = O((1 −
γ )−1). The fact that L = O((1 − γ )−1) follows from the policy gradient theorem as
∂π(a|s)ηπ = ρπ(s)(I − γ P�

π )−1e(s,a), see also [41, Proposition 48]. In turn, it holds
that

‖η∗ − η(t)‖1 ≤ L‖π∗ − π(t)‖1 ≤ 2L

mins ρ∗(s)
· DφC (η∗, η(t)) = O(e−ct ).

Altogether this implies R∗ −R(η(t)) = O(e−ct ), which concludes the proof. The O
notation hides constants that scale with the norm of the instantaneous reward vector
r , inversely with the minimum state probability, and inversely with (1 − γ ) where γ

is the discount rate.

Theorem 27 (Improved convergence rates for σ -NPG flow) Consider Setting 18,
where φ = φσ for some σ ∈ [1, 2) as defined in (5), and assume that there is
a unique maximizer η∗ of the unregularized reward R. Then for suitable constants
c1(η0), c2, c3(η0) > 0 it holds

R∗ − R(η(t)) ≤
{
c1(η0)e−c2t if σ = 1

c3(η0)t−1/(σ−1) if σ ∈ (1, 2),

where η : [0,∞) → int(N ) denotes the solution of the σ -NPG flow.

Proof The key is to show that (25) holds for τ = (2 − σ)−1 ≥ 1. To see that this
holds, we first consider the case σ ∈ (1, 2), where we obtain

Dσ (η∗, η) =
∑

s,a

η∗(s, a)2−σ

(1 − σ)(2 − σ)
−

∑

s,a

η(s, a)2−σ

(1 − σ)(2 − σ)

−
∑

s,a

η(s, a)1−σ (η∗(s, a) − η(s, a))

1 − σ
.

We can bound every summand by O(|η∗(s, a) − η(s, a)|) if η∗(s, a) > 0 and
O(|η∗(s, a) − η(s, a)|2−σ ) if η∗(s, a) = 0 for η → η∗ respectively. Overall, this
shows that

Dσ (η∗, η) = O(‖η∗ − η‖2−σ ) = O((R(η∗) − R(η))2−σ ) for η → η∗,

where the last estimate holds since η∗ is the unique minimizer of the linear function
R over the polytope N . By Lemma 25 we obtain Dσ (η∗, η(t)) = O(t−1/(τ−1)) =
O(t−(2−σ)/(σ−1)). It remains to estimate the value of R by means of the Bregman
divergence Dσ . For this, we note that R(η∗) − R(η) = O(‖η∗ − η‖1) and estimate
the individual terms. First, note that for x → y (with x, y ≥ 0) it holds that

|x − y| = O

((
y2−σ

(1 − σ)(2 − σ)
− x2−σ

(1 − σ)(2 − σ)
− x1−σ (y − x)

1 − σ

)1/(2−σ)
)

.
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Fig. 2 Transition graph and
reward of the MDP example

s1 s2

a1

a1

r = +2, a2 a2, r = +1

For y = 0 this is immediate and for y > 0 the local strong convexity of x �→ x2−σ

around y implies

|x − y| = O

((
y2−σ − x2−σ − (2 − σ)x1−σ (y − x)

)1/2
)

= O

((
y2−σ − x2−σ − (2 − σ)x1−σ (y − x)

)1/(2−σ)
)

for x → y. Now, Jensen’s inequality yields

‖η∗ − η‖1 = O(Dσ (η∗, η)1/(2−σ)).

Overall, we obtain

R(η∗) − R(η(t)) = O(‖η∗ − η(t)‖1/(2−σ)
1 ) = O(t−1/(1−σ)).

The case σ = 1 can be treated similarly, where one obtains Dσ (η∗, η) = O(‖η∗ −
η‖) = O(R(η∗)−R(η)) forη → η∗. To relate the L1-norm to theBregmandivergence
one can employ Pinsker’s inequality ‖η∗ − η‖1 ≤ √

2DKL(η∗, η) = √
2Dσ (η∗, η).

Compared to Theorem 23 the above Theorem 27 improves the O(t−1) rates for
σ ∈ [1, 2). Later, we conduct numerical experiments that indicate that the rates
O(t−1/(σ−1)) also hold for σ ≥ 2 and are tight.

Numerical examples.
We use the following example proposed by Kakade [8] and which was also used

in [9, 11]. We consider an MDP with two states s1, s2 and two actions a1, a2, with the
transitions and instantaneous rewards shown in Fig. 2.

We adopt the initial distributionμ(s1) = 0.2, μ(s2) = 0.8 andworkwith a discount
factor of γ = 0.9, whereas Kakade studied the mean reward case. Note however that
the experiments can be performed for arbirtrarily large discount factor, where we
chose a smaller factor since the correspondence between the policy polytope and
the state-action polytope is clearer to see in the illustrations. We consider tabular
softmax policies and plot the trajectories of vanilla PG, Kakade’s NPG, and σ -NPG
for the values σ ∈ {−0.5, 0, 0.5, 1, 1.5, 2, 3, 4} for 30 random (but the same for every
method) initializations. We plot the trajectories in the state-action space (Fig. 3) and in
the policy polytope (Fig. 4). In order to put the convergence results from this section
into perspective, we plot the evolution of the optimality gap R∗ − R(θ(t)) (Fig. 5).
We use an adaptive step size �tk , which prevents the blowup of the parameters for
σ < 1, and hence we do not consider the number of iterations but rather the sum
of the step sizes as a measure for the time, tn = ∑n

k=1 �tk . For vanilla PG and
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Fig. 3 State-action trajectories for different PGmethods, which are vanilla PG, Kakade’s NPG and σ -NPG,
where Morimura’s NPG corresponds to σ = 1; the state-action polytope is shown in gray inside a three
dimensional projection of the the simplex �S×A; shown are trajectories with the same random 30 initial
values for every method; the maximizer η∗ is located at the upper left corner of the state-action polytope

σ ∈ (1, 2) we expect a decay at rate O(t−1) [18] and O(t−1/(σ−1)) by Theorem 27.
Therefore we use a logarithmic (on both scales) plot for vanilla PG and σ > 1 and
also indicate the predicted rate using a dashed gray line. For Kakade’s and Morimuras
NPG we expect linear convergence by Theorem 26 and 27 respectively and hence use
a semi-logarithmic plot.

First, we note that for σ ∈ {−0.5, 0, 0.5} the trajectories of σ -NPG flow hit the
boundary of the state-action polytopeN , which is depicted in gray inside the simplex
�S×A. This is consistent with our analysis, since the functions φσ are Legendre type
functions only for σ ∈ [1,∞) and hence only in this case is theNPGflow is guaranteed
to exhibit long time solutions. However, we observe finite-time convergence of the
trajectories towards the global optimum (see Fig. 5), which we suspect to be due to
the error of temporal discretization.

For the other methods, namely vanilla PG, Kakade’s NPG and σ -NPG with
σ ∈ [1,∞), Theorems 22 and 23 show the global convergence of the gradient flow
trajectories, which we also observe both in state-action space and in policy space (see
Figs. 3 and 4 respectively). When considering the convergence in objective value we
observe that both Kakade’s and Morimura’s NPG exhibit a linear rate of convergence
as asserted by Theorems 26 and 27, whereby Kakade’s NPG appears to have more
severe plateaus in some examples. For vanilla PG and σ > 1 we observe a sublin-
ear convergence rate of O(t−1) and O(t−1/(σ−1)) respectively, which are shown via
dashed gray lines in each case. This confirms the convergence rate O(t−1) for vanilla
PG [18] and indicates that the rate O(t−1/(σ−1)) shown for σ ∈ (1, 2) is also valid in
the regime σ > 2. Finally, we observe that larger σ appears to lead to more severe
plateaus, which is apparent in the convergence in objective and also from the evolution
in policy space and in state-action space.
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Fig. 4 Plots of the trajectories of the individual methods inside the policy polytope �S
A ∼= [0, 1]2; addi-

tionally, a heatmap of the reward function π �→ R(π) is shown; the maximizer π∗ is located at the upper
left corner of the policy polytope

R
∗

−
R

(θ
(t

))
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(t
))
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Fig. 5 Plot of the optimality gaps R∗ − R(θ(t)) during optimization; note that for vanilla PG and σ > 1
these are log-log plots since we expect a decay like t−1 and t−1/(σ−1) respectively, which are shown as
a dashed gray line; Kakade’s and Morimura’s NPG are at a log plot since we expect a linear convergence;
finally, for σ < 1 we observe finite time convergence

5.2 Linear convergence of regularized Hessian NPG flows

It is known both empirically and theoretically that strictly convex regularization in
state-action space yields linear convergence in reward optimization for vanilla and
Kakade’s natural policy gradients [14, 18]. Using Lemma 25 we generalize the result
for Kakade’s NPG and provide a result giving the linear convergence for general
Hessian NPG.

Theorem 28 (Linear convergence for regularized problems) Consider Setting 18 and
let φ be a Legendre type function and denote the regularized reward by Rλ(η) =
〈r , η〉 − λφ(η) for some λ > 0 and fix an η0 ∈ int(N ) and assume that the global
maximizer η∗

λ of Rλ over N lies in the interior int(N ). Assume that η : [0,∞) →
int(N ) solves the natural policy gradient flow with respect to the regularized reward
Rλ and the Hessian geometry induced by φ. For any c ∈ (0, λ) there exists a constant
K (η0) > 0 such that Dφ(η∗

λ, η(t)) ≤ K (η0)e−ct . In particular, for any κ ∈ (κc,∞)

this implies R∗
λ − Rλ(η(t)) ≤ κλK (η0)e−ct , where κc denotes the condition number

of ∇2φ(η∗
λ).
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Proof We first recall that by Lemma 19 it holds that R(η(t)) → R(η∗) and the
uniqueness of the maximizer η(t) → η∗ ∈ int(N ). By Lemma 25 it suffices to show
that for any ω ∈ (0, 1) it holdsRλ(η

∗
λ)−Rλ(η) ≥ ωDφ(η∗

λ, η) if η in a neighborhood
of η∗

λ. Note that

Dφ(η∗
λ, η) = λ−1Dλφ(η∗

λ, η) = D−Rλ
(η∗

λ, η).

By Lemma 29 it follows that

Rλ(η
∗
λ) − Rλ(η) ≥ ωD−Rλ

(η∗
λ, η) = λωDφ(η∗

λ, η), (26)

which shows the linear convergence of the trajectory in the Bregman divergence. For
arbitrary m, M > 0 such that mI ≺ ∇2φ(η∗

λ) ≺ MI we can estimate

R∗
λ − Rλ(η(t)) = Rλ(η

∗
λ) − Rλ(η(t)) ≤ λM

2
· ‖η∗

λ − η(t)‖2 ≤ λM

m
· Dφ(η∗

λ, η),

for η(t) close to η∗, where we used that φ is m strongly convex in a neighborhood of
η∗.

In the proof of the previous theorem we used the following lemma.

Lemma 29 Let φ be a strictly convex function defined on an open convex set � ⊆ R
d

with unique minimizer x∗. Then for any ω ∈ (0, 1) there is a neighborhood Nω of x∗
such that

φ(x) − φ(x∗) ≥ ωDφ(x∗, x) for all x ∈ Nω.

Proof Set f (x) := Dφ(x∗, x) and g(x) := Dφ(x, x∗). It holds that f (x∗) = g(x∗) =
0 and since both functions are non-negative ∇ f (x∗) = ∇g(x∗) = 0, which implies
g(x) = φ(x) − φ(x∗). By (8) we have ∇2 f (x∗) = ∇2 g(x∗) = ∇2φ(x∗) and Taylor
extension yields

f (x) = (x − x∗)�∇2φ(x∗)(x − x∗) + o(‖x − x∗‖2)
= g(x) + o(‖x − x∗‖2)
= φ(x) − φ(x∗) + o(‖x − x∗‖2).

Hence, for any ε > 0 there is δ > 0 such that for x ∈ Bδ(x∗) it holds that

f (x) ≤ φ(x) − φ(x∗) + ε‖x − x∗‖2 ≤
(

1 + 2ε

m

)

(φ(x) − φ(x∗))

for anym ∈ (0, λmin(∇2φ(x∗)) in a possible smaller neighborhood as φ ism-strongly
convex in a neighborhood around x∗. Setting ω := (1 + 2εm−1)−1 yields the claim.
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Remark 30 (Location of maximizers) The condition that η∗
λ ∈ int(N ) assumed in

Theorem 28 is satisfied if the gradient blow-up condition fromDefinition 20 is slightly
strengthened. Indeed, suppose that for any η ∈ ∂N there is a direction v such that
η + tv ∈ int(N ) for small t and such that ∂vφ(η + tv) = v�∇φ(η + tv) → −∞ for
t → 0. If φ(η) = ∞, surely η �= η∗. To argue in the case that φ(η) < +∞, we note
that ∂vRλ(η + tv) → +∞ and choose t0 > 0 such that ∂vRλ(η + t0v) > 0. Then by
the concavity of Rλ and continuity of Rλ we have

Rλ(η) ≤ Rλ(η + t0v) − t0∂vRλ(η + t0v) < Rλ(η + t0v),

and hence η �= η∗
λ.

Now we elaborate the consequences of this general convergence result given in
Theorem 28 for Kakade and σ -NPG flows.

Corollary 31 (Linear convergence of regularized Kakade’s NPG flow) Assume that
η : [0,∞) → int(N ) solves the natural policy gradient flow with respect to the
regularized reward Rλ = 〈r , η〉 − λφC (η) and the Hessian geometry induced by
φC where φC denotes the conditional entropy. Further, denote the maximizer of the
regularized reward by η∗

λ. For any ω ∈ (0, λ) there exists a constant K (η0) > 0
such that Dφ(η∗

λ, η(t)) ≤ K (η0)e−ct . In particular, for any κ ∈ (κc,∞) this implies
R∗

λ −Rλ(η(t)) ≤ κλK (η0)e−ct , where κc denotes the condition number of∇2φC (η∗
λ).

Proof We want to use Remark 30. Recall that

φC (η) = H(η) − H(ρ) =
∑

s,a

η(s, a) log(η(s, a)) −
∑

s

ρ(s) log(ρ(s)),

where ρ(s) = ∑
a η(s, a) is the state marginal. Note that by Assumption 2 it holds

that ρ(s) > 0. Hence, if η ∈ ∂N we can take any v ∈ R
S×A such that ηε := η+εv ∈

int(N ) for small ε > 0. Writing ρε for the associated state marginal, we obtain

∂vφC (ηε) =
∑

s,a

log(ηε(s, a)) + |S|(|A| − 1) −
∑

s

log(ρε(s)) → −∞

for ε → 0 since η(s′, a′) = 0 for some s′ ∈ S, a′ ∈ A and ρε(s) → ρ(s) > 0 for all
s ∈ S.
Corollary 32 (Linear convergence for regularized σ -NPG flow) Consider Setting 18
with φ = φσ for some σ ∈ [1,∞) and denote the regularized reward by Rλ(η) =
〈r , η〉−λφ(η) and denote the maximizer ofRλ by η∗

λ and fix an element η0 ∈ int(N ).
Assume that η : [0,∞) → int(N ) solves the natural policy gradient flow with respect
to the regularized reward Rλ and the Hessian geometry induced by φ. For any ω ∈
(0, λ) there exists a constant K (η0) > 0 such that Dφ(η∗

λ, η(t)) ≤ K (η0)e−ωt . In
particular, for any κ ∈ (κ(η∗

λ)
σ ,∞) this implies R∗

λ − Rλ(η(t)) ≤ κλK (η0)e−ωt ,

where κ(η∗
λ) = max η∗

λ

min η∗
λ
.
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Fig. 6 Shown are the estimated
exponents c > 0 when fitting an
exponential decay O(e−ct ) to
the suboptimality gap
R∗ − R(θ(t)) for different NPG
methods—Kakade, Morimura
and σ = 1.5—and for different
regularization strengths λ

Proof Again, we use Remark 30 it is straight forward to see that for the Legendre type
functions φσ the uniquemaximizer η∗

λ ofRλ lies in the interior ofN . Hence, it remains
to compute the condition number, for which we note that ∇2φσ (η∗

λ) = diag(η∗
λ)

−σ ,
which yields the result.

Remark 33 (Regularization error) Introducing a regularizer changes the optimization
problem and usually also the optimizer. The difference can be estimated in terms of the
regularization strength λ. For logarithmic barriers in state-action space, this follows
from standard estimates for interior point methods [21, 75]. For entropic regularization
in state-action space, this is elaborated in [76], and for the conditional entropy this is
done in [14, 18].

The results above do not cover arbitrary combinations of Hessian geometries and
regularizers. However, the proof of Theorem 28 can be adapted to this case, where the
only part that requires adjustments is (26) that couples the regularized reward to the
Bregman divergence. In principle, this can be extended to the case of regularizers that
are different from the function inducing the Hessian geometry.

Numerical examples: The λ → 0 regime. Theorem 28 and its corollaries yield a
linear convergence rate of order O(e−λt ), where the bound deteriorates when the reg-
ularization strength λ is sent to zero, λ → 0. The bound R∗

λ − Rk = O((1 − λ�t)k)
for entropy regularized NPG descent [14] exhibits a similar degradation for λ → 0.
It is natural to expect that the convergence behavior for λ → 0 is similar to the con-
vergence behavior for λ = 0, i.e., the unregularized case. Recall that Theorem 26 and
Theorem 27 establish linear rates without regularization for Kakade’s andMorimura’s
NPG and a sublinear rate O(t−1/(σ−1)) for σ ∈ (1, 2).

To evaluate the convergence behavior for λ → 0 for a specific NPG method we
apply it to a collection of small regularization strengths with 10 different random
initializations. Here, we revisit Kakade’s example that was already used in Sect. 5.1
for unregularized problems. For every individual run we estimate the exponent c
in the linear convergence rate R∗ − R(θ(t)) = O(e−ct ) via linear regression after
a logarithmic transformation. Here, we take the iterates where the optimality gap
R∗−R(θ) lies between 10−10 and 10−5. In Fig. 6 we present themean of the estimated
convergence rates forKakade’s andMorimura’sNPGaswell as forσ NPGforσ = 1.5.
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For both Kakade’s and Morimura’s NPG method we observe that the estimated
convergence rates converge to the linear convergence rate of the corresponding unreg-
ularized cases. This indicates that the guarantees in Corollary 31 and Corollary 32 for
these NPG methods are not tight. In contrast for the σ -NPG with σ = 1.5 we observe
that the convergence rates deteriorate for λ → 0 which conforms with the sublinear
convergence O(t−2) of the unregularized problem. Theorem 28 shows linear conver-
gence based on the strong convexity of the regularizer. The convergence rate of the
unregularized NPG methods however is determined by the behavior of the regularizer
and hence the metric at the boundary rather than the convexity of the loss. We believe
that a theoretical analysis combining these two effects could improve the linear rate
in Theorem 28 for small regularization strength.

6 Locally quadratic convergence for regularized problems

It is known that Kakade’s NPG method and more generally quasi-Newton policy
gradient methods with suitable regularization and step sizes converge at a locally
quadratic rate [14, 28]. Whereas these results regard the NPG method as an inexact
Newton method in the parameter space, we regard it as an inexact Newton method in
state-action space, which allows us to directly leverage results from the optimization
literature and thus formulate relatively short proofs. Our result extends the locally
quadratic convergence rate to general Hessian-NPGmethods, which include in partic-
ular Kakade’s and Morimura’s NPG. Note that the result holds when the step size is
equal to the inverse penalization strength, which is reminiscent of Newton’s method
converging for step size 1.

Theorem 34 (Locally quadratic convergence of regularized NPG methods) Consider
a real-valued function φ : RS×A → R ∪ {+∞}, which we assume to be finite and
twice continuously differentiable on R

S×A
>0 and such that ∇2φ(η) is positive definite

on TηN = TL ⊆ R
S×A for every η ∈ int(N ). Further, consider a regular policy

parametrization and the regularized reward Rλ(θ) := R(θ) − λφ(ηθ ) and assume
that η∗ ∈ int(N ), i.e., the maximizer lies in the interior of the state-action polytope.
Consider the NPG induced by the Hessian geometry of φ with step size �t = λ−1,
i.e.,

θk+1 = θk + �t · G(θk)
+∇Rλ(θk),

where G(θk)
+ denotes the Moore–Penrose inverse. Assume that Rλ(θk) → R∗

λ for
k → ∞. Then θk → θ∗ at a (locally) quadratic rate and hence Rλ(θk) → R∗

λ at a
(locally) quadratic rate.

Theproof of this result relies on the following convergence result for inexactNewton
methods.

Theorem 35 (Theorem 3.3 in [77]) Consider an objective function f ∈ C2(Rd) with
∇2 f (x) ∈ S

sym
>0 for any x ∈ R

d and assume that f admits a minimizer x∗. Let (xk)
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be inexact Newton iterates given by

xk+1 = xk − ∇2 f (xk)
−1∇ f (xk) + εk,

and assume that they converge towards the minimum x∗. If ‖εk‖ = O(‖∇ f (xk)‖ω),
then xk → x∗ at rate ω, i.e., ‖xk − x∗‖ = O(e−kω

).

We take this approach and show that the iterates of the regularized NPG method
can be interpreted as an inexact Newton method in state-action space. For this, we first
make the form of the Newton updates in state-action space explicit.

Lemma 36 (Newton iteration in state-action space) The iterates of Newton’s method
in state-action space are given by

ηk+1 = ηk + �E
TL(∇2Rλ(ηk))

−1�E
TL(∇Rλ(ηk)), (27)

where Rλ(η) = 〈r , η〉 + λφ(η) is the regularized reward and �E
TL the Euclidean

projection onto the tangent space of the affine space L defined in (4).

Proof The domain of the optimization problem is RS×A
≥0 ∩ L an hence, we perform

Newton’s method on the affine subspace L . Writing L = η0 + X for a linear subspace
X we can equivalently perform Newton’s method on X since the method is affine
invariant. We denote the canonical ι : X ↪→ L, x �→ x + η0 and set f (x) := Rλ(ιx).
Then, we obtain the Newton iterates xk and ηk = ιxk by

xk+1 = xk + ∇2 f (xk)
−1∇ f (xk).

Straight up computation yields ∇ f (x)ι�∇Rλ(ιx) and ∇2 f (x) = ι�∇2Rλ(ιx)ι.
Hence, we obtain

ηk+1 − ηk = ι∇2 f (xk)
−1∇ f (xk) = ιι+∇2Rλ(ηk)

−1(ι�)+ι�∇Rλ(ηk)

= �E
TL(∇2Rλ(ηk))

−1�E
TL(∇Rλ(ηk)),

where we used AA+ = �range(A) and (A�)+A� = �ker(A�) = �range(A).

Lemma 37 Let (θk) be the iterates of a Hessian NPG induced by a stricly convex
function φ and with step size �t , i.e,

θk+1 = θk + �t · G(θk)
+∇Rλ(θk),

where the Gram matrix is given by G(θ) = DP(θ)�∇2φ(ηθ )DP(θ). Then the state-
action iterates ηk := ηθk satisfy

ηk+1 = ηk + �t · �E
TL(∇2φ(ηk)

−1�E
TL(∇Rλ(ηk))) + O(�t2‖G(θk)

+∇Rλ(θk)‖2).
(28)
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Proof Writing P for the mapping θ �→ ηθ and an application of Taylor’s theorem
implies that

ηk+1 − ηk = �t · DP(θk)G(θk)
+∇Rλ(θk) + O(�t2‖G(θk)

+∇Rλ(θk)‖2).

The first term is equal to

�t · DP(θk)DP(θ)+∇2φ(ηk)
−1(DP(θk)

�)+∇DP(θk)
�∇Rλ(ηk),

which again is equal to

�t · �E
TL(∇2φ(ηk)

−1�E
TL(∇Rλ(ηk)))

since DP(θk)DP(θk)
+ = (DP(θk)

�)+DP(θk)
� = �range(DP(θk)) like before and

range(DP(θk)) = TL.
Proof of Theorem 34 In our case, by the preceding two lemmata, we have

‖εk‖ = O(�t2‖G(θk)
+∇Rλ(θk)‖2) = O(‖�TL∇Rλ(ηk)‖2) = O(‖∇ f (xk)‖2),

which proves the claim.

Remark 38 A benefit of regarding the iteration as an inexact Newton method in state-
action space is that the problem is strongly convex in state-action space. In contrast, in
policy space the problem is non-convex, which makes the analysis in that space more
delicate. Further, the corresponding Riemannian metric might not be the Hessian
metric of the regularizer in policy space (see also Remark 13). In the parameter θ , the
NPGalgorithm can be perceived as a generalizedGauss–Newtonmethod; however, the
reward function is non-convex in parameter space. Further, for overparametrized policy
models, i.e., when dim(�) ≥ dim(�S

A) = |S|(|A| − 1) the Hessian ∇2R(θ∗) can
not be positive definite, which makes the analysis in parameter space less immediate.
Note that the tabular softmax policies in (10) are overparametrized since in this case
dim(�) = |S||A|.
Remark 39 (Behavior for�t < λ−1) Typically, the locally quadratic convergence only
holds at exactly the step size �t = λ−1. Consider for example f (x) = x2/2, where
Newton’smethodwith step size�t ∈ (0, 1]will produce the iterates xk = (1−�t)k x0.
If �t �= 1, this will only converge linearly at a rate of 1 − �t that decreases to 0
for �t → 1. Hence, we expect that also for regularized NPG methods the locally
quadratic convergence is only achieved for the exact Newton step size �t = λ−1 and
linear convergence for �t < λ−1 with a rate decreasing towards 0 for �t → λ−1.

7 Discussion

We provide a study of a general class of natural policy gradient methods arising
from Hessian geometries in state-action space. This covers, in particular, the notions
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Table 1 Bold results are established in this work; for known results the initial works are referenced; results
showing locally quadratic convergence use �t = λ−1

Unregularized Regularized
Discr. time Cts. time Discr. time Cts. time

Vanilla O(t−1) [18] linear for
normalized
gradients [19]

– Linear –

Kakade Linear [23, 26] Linear Linear [14, 29, 30] Loc. quadratic [14] Linear

Morimura – Linear Loc. quadratic Linear

σ > 1 – O(t−
1

œ−1 ) Loc. quadratic Linear

of NPG due to Kakade and Morimura et al., which are induced by the conditional
entropy and entropy respectively. Leveraging results on gradient flows in Hessian
geometries we obtain global convergence guarantees of NPGflows for tabular softmax
policies and show that both Kakade’s and Morimura’s NPG converge linearly, and
obtain sublinear convergence rates forNPGassociatedwithβ-divergences.Weprovide
experimental evidence of the tightness of these rates. Finally, we perceive the NPG
with respect to the Hessian geometry induced by the regularizer, with step size equal to
the inverse regularization strength, as an inexact Newton method in state-action space,
which allows for a very compact argument of the locally quadratic convergence of this
method.Anoverviewof the established results in relation to existingworks is presented
in Table 1. Computer code is made available in https://github.com/muellerjohannes/
geometry-natural-policy-gradients.

Our convergence analysis currently does not cover the case of general parametric
policy classes nor the case of partially observableMDPs, which we consider important
future directions. Further, we study only the planning problem, i.e., assume to have
access to exact gradients, and hence a combination of our study of NPG methods in
state-action space with estimation problems would be a natural extension.
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