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Abstract

Refining the Design of Blockchain for Secure Distributed Systems

by

Xiaoxue Zhang

In our interconnected world, the need for robust distributed systems is undeniable. Such

systems must guarantee security and privacy while managing data across multiple users,

making them vital for industries like finance, the Internet of Things, and healthcare that

handle sensitive information. The challenge lies in building these systems to withstand

diverse threats and scale effectively. The advent of blockchain technology, which is a

decentralized ledger that collaboratively stores and manages transactions with consen-

sus in a distributed manner, has provided new solutions to these challenges. It offers

a way to securely and transparently handle data and transactions with its inherent se-

curity features and consensus-driven operations. Despite its promise, blockchain faces

scalability limitations that impede its widespread deployment in large-scale systems.

Interoperability is another challenge that hinders its application in heterogeneous net-

work environments. It requires the community to fundamentally rethink the current

design of blockchains. To tackle these issues, this thesis takes a deep look at reshaping

the landscape of the Blockchain and exploring the potential integration of Blockchain

with distributed systems in the following themes:

• Refining the design of layer-2 blockchain, off-chain networks, to avoid the imbal-

anced fund utilization problem restricted by the nature of the per-channel deposit.

ix



• Enabling interoperability in existing off-chain networks to support various cryp-

tocurrencies trading with flexibility.

• Integrating Blockchain with federated learning for decentralized model verification

and auditing.
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Chapter 1

Introduction

In this chapter, we will introduce the blockchain and its design deficiency. It

highlights the design challenges of adopting Blockchain techniques in real-world dis-

tributed applications. We will then give an overview of the research presented in this

thesis and summarize our contributions.

1.1 Background

Over the past decades, distributed systems have become increasingly crucial.

They are designed to achieve reliability, efficiency, and scalability, spreading the data

storage and processing to multiple heterogeneous devices. This structure allows for

high availability and fault tolerance, as the failure of one node does not affect the entire

system. Decentralized ledgers are distributed databases that collaboratively store and

manage transactions with consensus in a distributed system. Each transaction is an

event that happened in the system and involves one or more users of the system. A

1



typical transaction when decentralized ledgers are discussed is a payment from one

user to another. But transactions have many other more generalized instances, such

as a message sent from one user to another, an agreement among multiple users, and

data publishing [52]. Blockchain is a promising solution for decentralized digital ledgers.

Since Bitcoin was invented in 2008 [94], there have been many other decentralized ledgers

emerging based on blockchains, such as Ripple [47], Stellar [46], and Ethereum [45].

While blockchains have shown great success, its scalability on throughput remains a

huge problem with growing numbers of users and transactions [32, 102]. For instance,

Bitcoin can only support 10 transactions per second at peak in 2020 [7]. In contrast,

some widely used centralized payment hubs such as Visa and MasterCard can process

more than 65,000 transaction messages per second as of June 30, 2019 [4]. Also, it is not

suitable for micropayments owing to the high transaction cost. The reason for its low

throughput is that every node processes all transactions and the consensus is achieved

by Proof of Work (PoW), a time- and resource-consuming process. Whenever a new

block arrives, all nodes in the network have to process it and update the state of the

blockchain. Hence using blockchains as a global transaction system for massive users is

impractical at this moment.

There are some improvements for blockchain throughput, such as Bitcoin-

NG [41] and Monoxide [125]. However, their performance is limited by the processing

capacity of the nodes and network bandwidth, and thus, cannot be used as large-scale

transaction systems. The recently proposed concept of off-chain networks, also known

as payment channel networks (PCN) [50, 102], provides a high-throughput solution for

2



Blockchain
𝐵଴ 𝐵௠𝐵௠ିଵ

Open 
Channel

Close 
Channel

3 btc 7 btc
Payment Channel

5 btc 5 btc

1 btc

2 btc 8 btc
3 btc

(a) Users set up channels on the blockchain 

3 btc 7 btc
…

(b) Users and their channels form an offchain network

Alice Bob

Carlos

Alice

Bob

Multi-hop path

Figure 1.1: An example of users setting up channels on a blockchain and forming an
off-chain network.

blockchain-based decentralized ledgers. In off-chain networks, two users can conduct

transactions via a bi-directional channel. For this channel, only two transactions need

to be recorded on the blockchain: opening and shutting down the channel. Each user

commits a certain fund at the opening of this channel [6]. Then, they can make any

number of transactions that update the tentative distribution of the channel funds.

These transactions only need to be signed by the two users while not be broadcast to

the blockchain. Each user can establish channels with multiple other users. However,

the channel does not always exist between two arbitrary users. In such cases, a user can

make a transaction with another arbitrary user via a multi-hop path, where any two

consecutive users on the path share a channel. The off-chain network is a promising

solution to increase the scalability of blockchains because most transactions can be

achieved in an off-chain manner.

Figure 1.1 shows an example of an off-chain network. As shown in Fig. 1.1(a),

two users, Alice and Bob, can set their channels by each putting certain funds into

the channel and sending an “Open Channel” transaction to the blockchain. Then,

3



Alice and Bob can adjust the distribution of their channel funds without updating the

blockchain. When they want to close the channel, they will let the blockchain store a

“Close Channel” transaction with the signatures from both parties. For a network of

users, their channels can form an off-chain network or PCN, as shown in Fig. 1.1(b). If

Alice wants to make a payment to Carlos, to whom she does not have a channel, Alice

can first move some funds to Bob using their channel and then Bob moves the same

funds to Carlos using the channel between Bob and Carlos. These payments do not

need to be recorded in the blockchain, and hence, the throughput bottleneck is avoided.

Blockchains can be extended to applications other than financial payments,

including machine learning, the Internet of Things, and supply chain management. Ma-

chine learning, which requires secure and authentic model data sharing; IoT, needing

robust security for vast data generated by interconnected devices; and supply chain

management, which demands transparent and tamper-proof tracking, all stand to po-

tentially benefit from blockchain technology.

1.2 Research Challenges and Contributions

While using off-chain networks is a promising solution to the scalability prob-

lem of decentralized ledgers, we argue that existing solutions of off-chain networks have

several major limitations.

1. High throughput and secure utilization cannot be achieved si-

multaneously by the nature of per- channel deposit. To achieve high system

4



throughout, a core problem of an off-chain network is routing, i.e., finding a path be-

tween two arbitrary users. Centralized routing always assumes every user knows the

entire network topology, including all nodes, channels, and channel balances, which is

not a scalable solution since each user needs a large memory space and communication

cost to store, receive, and broadcast the network information including every change on

any link. Existing distributed routing methods for off-chain networks also have scalabil-

ity bottlenecks as well as a crucial limitation: they cannot effectively utilize the channel

resource in a network. Besides, off-chain networks require a separate deposit for every

channel and significant locked-in funds from users [86]. Moreover, funds are not equally

distributed among all the channels of one user. A situation might happen when a user

cannot support a transaction due to insufficient funds in a required channel, but the

node actually has sufficient unused funds in other channels. Redistributing funds among

channels immediately is not realistic here, because users need to react with blockchain

to set up new channels, which is time-consuming. Such inflexibility of fund utilization

results in significant resource under-utilization.

2. Current off-chain network designs do not support secure multi-

chain ledgers. Despite the growing number of different blockchains, cryptocurrencies

continue to operate in complete isolation from one another. Hence, an off-chain network

needs to support users from multiple blockchains, forming multi-chain ledgers. This

requirement is also called “interoperability”. Users in different blockchains may rely

on the relay hubs to perform token exchanges and forward their transactions. One

important security requirement is that we have to make sure every user, including

5



relay hubs and clients who followed the protocol, will not lose funds when malicious

participants exist.

3. Integration of blockchains with various real-world applications.

Blockchain, as a general-purpose architecture for decentralized computing, has far broader

applications than just cryptocurrencies. However, currently, the dominant application of

blockchain is still cryptocurrency, which is far below what the blockchain has promised.

In order to tailor the blockchain to satisfy the needs of real-world applications, there

are several significant issues to be considered. Firstly, identifying the specific problem

that blockchain is intended to solve, such as decentralization, security, or accountability.

Secondly, the type of blockchain to be used, public, private, or consortium, based on

the requirement of the application. Thirdly, what information is to be stored on the

blockchain. Finally, how to achieve security and privacy.

Taking the aforementioned issues into consideration, the major contributions

of this dissertation are outlined in the following contents.

Scalability. We propose WebFlow, a scalable and distributed routing solution

for off-chain networks, which only requires each user to maintain localized information

and can be used for massive-scale networks with high resource utilization. We further

propose Aggregated Payment Channel Networking (APCN), a novel design of payment

channel networks with shared funding that could improve the success ratio of multi-hop

payments and avoid locked-in funds in channels as well.

Interoperability. We propose XHub, a cross-chain off-chain network that

allows two arbitrary users in different blockchains to make transactions via a multi-hop
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path, without the need to track other blockchains.

Integration. We propose BDFL, a Blockchain-based Decentralized Federated

Learning, that leverages blockchain’s inherent decentralization, transparency, and secu-

rity. It eliminates the need for a centralized aggregator, thereby enhancing privacy and

robustness in Federated Learning.

1.3 Dissertation Organization

The rest of this dissertation is organized as follows. In Chapter 2, we present

WebFlow, a scalable and distributed routing solution for off-chain networks. In Chap-

ter 3, we provide APCN, a novel design of payment channel networks with shared

funding. In Chapter 4, we propose XHub, a cross-chain payment channel network. In

Chapter 5, we give an example of the integration of blockchain and real-world appli-

cation, a Blockchain-based Decentralized Federated Learning. Chapter 6 provides the

overall summary and conclusions of the dissertation.
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Chapter 2

WebFlow

2.1 Introduction

While blockchains have shown great success as decentralized digital ledgers,

scalability remains a huge problem with growing numbers of users and transactions [32,

102]. The recently proposed concept of off-chain networks, also known as payment chan-

nel networks (PCN) [50, 102, 140] provides a high-throughput solution for blockchain-

based payment systems. In PCNs, two users can conduct multiple transactions via a

bi-directional channel without the need to confirm every transaction on the blockchain.

A user can make a transaction with another arbitrary user via a multi-hop path, where

any two consecutive users on the path share a channel. Intermediate nodes typically

charge a fee for forwarding the transaction. The PCN is a promising solution to increase

the scalability of blockchains because most transactions can be achieved in an off-chain

manner.
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A core problem of PCNs is routing, i.e., finding a path between two arbitrary

users. Current routing solutions of PCNs can be classified into two types. 1) Centralized

routing that assumes every user knows the entire network topology, including all nodes,

channels, and channel balances. Each user runs a centralized algorithm to determine the

routing paths [118,126]. This approach is not a scalable solution because each user needs

a large memory space to store the network information and every change in channels

needs to be broadcast to all users. Besides, some users’ confidential information will be

exposed. 2) Distributed routing that each user only knows and interacts with a small
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subset of other users, independent of the entire network size [84, 110]. It is ideal for

large-scale PCNs.

Existing distributed routing methods for PCNs, however, have a crucial lim-

itation: they cannot effectively utilize the channel resource in a PCN. We show an

example of a PCN with 7 users and 9 channels as in Fig. 2.2(a). One typical distributed

routing for PCNs is landmark routing [84] as shown in Fig. 2.2(b). Every transaction

(such as the one from c to d) will be sent to the landmark first. The landmark knows the

whole network topology and will find the path to the destination d. This approach does

not utilize non-tree channels, and channel resources around the landmark could quickly

run out. One improvement is embedding-based routing, which is designed to avoid some

unnecessary hops in the landmark routing [110]. It learns a vector embedding for each

node. Each node relays each transaction to the neighbor whose embedding is closest

to the destination’s embedding. Hence, it is possible to utilize some non-tree links in a

subtree, as shown in Fig. 2.2(c). However, many transactions still need to pass through

the landmark and cause similar problems. Poor channel utilization means fewer

transactions can be successfully delivered in a PCN.

In this work, we introduce WebFlow, a scalable and distributed routing so-

lution for PCNs with small per-node overhead and high channel resource utilization.

WebFlow allows each node to explore the routing paths without relying on certain

“hot spots” such as landmarks. Hence, resource utilization is significantly improved.

Meanwhile, each node only stores the information of a few neighbors without knowing

the global topology. As shown in Fig. 2.1, WebFlow could provide significantly lower
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per-node overhead compared to centralized, landmark, and embedding routing while

achieving similar channel resource utilization as centralized routing. We consider semi-

honest attackers. WebFlow is aiming at preventing them from stealing users’ financial

situations.

WebFlow is a coordinate-based routing protocol for PCNs. It allows every

node to calculate a set of Euclidean coordinates and uses the coordinates to perform

coordinate-based greedy routing. We design a system that nodes maintain a multi-hop

Delaunay triangulation (MDT) [73] based on only the channels with several users to

achieve a high success ratio of pathfinding. To further protect the anonymity of senders

and recipients, our important innovation is to use the property of a distributed

Voronoi diagram to achieve the routing tasks. Different from traditional greedy routing,

it does not require the coordinate of the destination in a routing message. Instead,

it introduces a direction vector to help to determine the path that hides the actual

destination.

In summary, this work makes the following contributions:

• We design WebFlow, a new routing protocol for PCNs with low per-node overhead

and high resource utilization.

• We propose an enhanced version of WebFlow to protect user privacy, i.e., the

identities of source and destination of a transaction can be hidden.

• We implement WebFlow based on real-world PCN topologies and transactions and

build a prototype. The results show the claimed advantages of WebFlow compared
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to the state-of-the-art protocols.

The rest of this paper is organized as follows. Section 2.2 introduces the related

work. The system overview and model are presented in Section 2.3. We describe the

detail design of the WebFlow protocols in Section 2.4 and Section 2.5. Section 2.6

presents the evaluation results of WebFlow. Section 2.7 summarizes our conclusions.

2.2 Related work

PCNs provide a high-throughput solution for blockchains [50]. In PCNs, chan-

nels are not always existing between two arbitrary users, and two users can make trans-

actions via a multi-hop path. Hence, routing becomes a challenging problem in PCNs.

In the Lightning Network [102], each node locally maintains the network topology and

a global routing table. In current implementations, source routing is utilized such as

shortest path and max-flow routing algorithm. Max-flow routing always achieves a high

success ratio of transactions. However, it has three practical problems:1) high per-node

storage cost; 2) high per-transaction computation cost; 3) every update of any channel

will be broadcast to all nodes. Hence it leads to scalability problems.

Recent work such as Spider [118] and Flash [126] use centralized routing. Spi-

der actively accounts for the cost of channel imbalance by preferring routes that rebal-

ance channels, and it proposes a centralized offline routing algorithm to maximize the

success volume of payments. But the centralized scheme has high probing overhead.

Flash reduces the probing overhead by treating elephant and mice payments differently.
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It requires each user to maintain a routing table for mice payments, and periodically

refreshes it when the local network topology is updated. It applies a huge memory cost

for each user.

To reduce the per-node overhead in PCN, distributed routing has been pro-

posed. SilentWhispers [84] utilizes landmark routing. It performs a periodic breadth-

first search to find the shortest path from the landmarks to users. All paths need to go

through the landmarks, which makes the channels around the landmarks over-used while

other channels under-used, and some paths could be unnecessarily long. SpeedyMur-

murs [110] uses embedding-based routing. Computing and updating the coordinates

as the topology and channel balances change is a major challenge of this approach.

EPA-Route [134] uses decentralized design. It leverages MA ordering [93, 98] to create

a static routing table, and dynamically prunes useless paths when probing paths. But

it requires that all the nodes own the global network topology. And it cannot deal with

the dynamic changes of the payment networks, such as nodes joining in or going offline.

Other overlay network routing methods such as distributed hash tables (DHTs)

cannot be used for PCNs because one cannot be forced to build a channel with an

arbitrary user. In DHT, a node picks its neighbors according to a certain structure

and mapping rules. But these neighbors might not be its direct neighbors in the PCN,

and the paths to these neighbors might be long, resulting in a high routing stretch.

Kademlia [87] enforces a structured topology. However, in reality, as users can set up

and shuttle down channels anytime, the topology is unstructured and keeps changing.

There are many existing Ad-Hoc routing protocol such as DSR, AODV and
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Figure 2.3: A multi-hop payment in a PCN.

GPSR. However, GPSR only works for planar graphs. In DSR and AODV, route discov-

ery is based on flooding, which introduces considerable routing overhead, and can not

be applied to the large scale PCNs. Besides, the initial balance of a payment channel

is deposited by the users during the channel setup, and is kept updating during each

transaction. So the route maintenance mechanism in both DSR and AODV may not

work well in such dynamic networks.

Compared to existing work, WebFlow is the first solution that considers both

the scalability of user overhead and channel resource utilization in PCN routing.

2.3 Background and Overview

2.3.1 Payment Channel Networks

In PCNs, two users can conduct multiple transactions via a bi-directional chan-

nel. For this channel, only two transactions need to be recorded on the blockchain:

opening and shutting down the channel. Each user commits a certain fund at the

opening of this channel [6, 141]. Then they can make any number of transactions that

update the tentative distribution of the channel funds. These transactions only need to
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be signed by the two users while not be broadcast to the blockchain. For two arbitrary

users without a channel, they can make transactions via a multi-hop path, where any

two consecutive users on the path share a channel. For example, in Fig.2.3(a), user a

wants to pay user c without a direct channel. User b has direct channels to both a and

c. Hence they can use the multi-hop path a − b − c and adjust the fund distribution

on the channels ab and bc accordingly as in Fig.2.3(b), while b may charge a nominal

transaction fee.

2.3.2 Network Model

WebFlow is a distributed routing protocol for large-scale PCNs. We model a

PCN as a graph G = (V,E,Ψ), where the set V represents the PCN users, the set E of

weighted edges represents the payment channels. ψuv, ψvu ∈ Ψ represent the balances of

channel uv in two directions. The path of a transaction is accepted only if the amount

of this transaction is less than every channel’s funds along this path. Every node knows

the channels and their balances to its neighbors.

Problem definition. The routing problem of WebFlow is described as fol-

lows. Consider a transaction t initiated by sender s that should be received by the

recipient r. WebFlow needs to find a path from s to r, where two consecutive nodes

on the path should share a channel and each channel has enough balance to make the

payment to the next hop. The success of routing implies that s can make a transaction

with r by a sequence of transactions involving other nodes, even if s and r have no direct

channel. The atomicity and security of the transaction are guaranteed by Hash Time
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Locked Contract (HTLC) [2]. We have three objectives: 1) each node should have lim-

ited memory and communication overhead, which is independent of the network size; 2)

WebFlow should achieve a high success rate of transaction routing; 3) WebFlow should

achieve high channel resource utilization.

2.3.3 Attacker Model

Our primary attack scenario is the malicious users interested in others’ financial

situations. They are honest-but-curious users that passively observe the channels related

to them and try to infer the source and destination of the transactions. They tend to

follow the protocol to do the routing and get profits since misbehavior can be detected

by HTLC. We assume that the adversary controls a subset of users in the network, and

these users can collude to speculate other users’ information. It cannot choose the user

to collude arbitrarily, since some users are harder to undermine with higher security.

The attackers here aim to undermine the user’s privacy and profit from it rather than

perform a denial-of-service attack. They may also collude to choose a longer routing

path to earn more transaction fees.

Similar to SpeedyMurmurs [110], our goal is to hide values, and achieve anonymity

of sender and recipient when making transactions. We use the term value privacy,

sender/recipient anonymity respectively to refer to the following privacy goals.

Value privacy: We say that a PCN can achieve value privacy if it is impossible

for any adversary to know the total value of a transaction between two honest users.

Sender/recipient anonymity: We say that a PCN can achieve sender/recipient
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anonymity if the adversary cannot determine the original sender or the actual recipient

of a transaction.

We formally define a metric to evaluate the sender/recipient anonymity of

a network and its routing algorithm as follows. The anonymity measure follows the

anonymity definition that has been used for anonymous routing such as [35, 114, 145].

Anonymity is the state of being not identifiable within a set of subjects. Since it

is impossible that all nodes look equally likely to be the sender or recipient in real-

world systems, attackers can assign each node u a probability pu as being the sender or

recipient using knowledge of leaked information from the system. All the nodes in the

network are denoted as a finite set V . The anonymity of the system is measured as:

A =
−
∑

u∈V pulog2(pu)

log2(|V |)
(2.1)

2.3.4 Analysis methodology of this work

From our observation of real PCN topologies, they are not regular graphs such

as grids or trees. Hence, it is impossible to use theoretical formulation to analyze the

routing performance. In this paper, we use extensive simulations with both real

and synthetic network topologies to analyze the routing performance. We also use

a prototype implementation to demonstrate that WebFlow can work in practice.
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2.4 Baseline Design of WebFlow

To achieve distributed and scalable routing, WebFlow utilize the idea of coordinate-

based greedy routing that has been widely used for wireless networks [67,73]. The basic

idea is that in wireless networks, each node knows its geographic coordinates as well as

its neighbors’. Then without knowing the whole topology, each node can simply forward

a packet to a neighbor who is geographically closest to the destination. One problem is

a node could be a local minimum. This problem can be solved in various ways [67,73].

Another problem is that many users do not want to share their geographic locations in

PCNs which could be a threat to their privacy. In addition, the geographic distances

of PCNs do not reflect the routing cost, while in wireless networks distances can be an

estimate of routing difficulties. Hence, we propose to use virtual coordinates in a

Euclidean space that reflect the PCN topology features.

Every PCN has multiple webservers as its interface of registration and user

interactions. The webservers in WebFlow do not participate in routing and only support

coordinates computation. Hence it avoids the landmark limitations in landmark-based

routing [84,110]. We assume these webservers are honest.
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2.4.1 Coordinates computation

For a PCN G = (V,E,Ψ) in a Euclidean space S, each node will be assigned a

set of coordinates cS by the web-servers. The goal is to let nodes maintain coordinates

such that two neighbors are relatively close in the Euclidean space. For two arbitrary

nodes, their network distance (e.g. hopcount) would be proportional to their Euclidean

distance. In this way, coordinate-based greedy routing is more likely to succeed.

The webservers randomly select k nodes T = {T1, ..., Tk} called anchors where

k = d + 1 if we use a d-dimensional Euclidean space. 1 For each anchor, the servers

recursively visit its neighbors, resulting in a spanning tree. Then the servers have k

spanning trees and know the hopcounts between all pairs among the anchors. The

servers should find a set of coordinates cST1
,...,cSTk

, such that the Euclidean distance

can reflect the hopcounts with minimal errors. We apply multi-dimensional scaling

[20] to obtain the coordinates. Once the coordinates of anchors are determined, each

node contacts the webservers to get the coordinates of anchors and their hopcounts to

the anchors. Each node can determine its own coordinates by minimizing the overall

error between actual hops and computed distances to these anchors. Since each user

is responsible to compute its own coordinate, the system can be scaled to large sizes.

Actually, the most time-consuming part in coordinate computation is initialization when

the web-servers build a spanning tree for each anchor and compute the coordinates of

anchors. However, even for a real-world PCN topology generated from Ripple network

with 1,870 nodes, it only takes 5 seconds to initialize. And it takes less than 10 ms for

1For a d-dimensional Euclidean space, k needs to be at least d+ 1 [95].
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Figure 2.5: Original PCN graph, the graph after node positioning, and MDT graph.

each user to generate its own coordinate.

Fig. 2.5 is an example of a PCN in 2D space. Fig. 2.5(a) shows the network

topology with randomly assigned coordinates. Fig. 2.5(b) shows the network after the

WebFlow coordinate assignment. We find that the WebFlow coordinates show a better

correlation between the Euclidean distances and hopcounts.

Note that the webservers do not carry payment traffic. They only work when

new users join the system, providing users coordinates of anchors and users’ hopcounts to

anchors. Users and webservers send messages through a secure communication channel

(traditional communication networks). Information leakages between them are beyond

the scope of our discussion. The coordinates of users are determined by themselves. So

webservers do not know the coordinates of any no-anchor users. After users join in, the

routing protocol is executed in a decentralized manner.

Security of Webservers. We initially consider only passive, but still adap-

tive, corruption of a minority (less than half of the total set) of the webservers, which are

thus assumed to be honest-but-curious. We assume that the non-corrupted webservers

execute the coordinate computation according to our specifications and do not share
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private information among each user (i.e., they do not collude). Operations from the

webservers in the protocol are confined to the computation of anchors’ coordinates be-

fore the transaction protocol. The webservers could return wrong coordinates of anchors

or user hopcounts to anchors when the user requests. But this would be detected by the

user if he sends requests to multiple webservers and gets different values. If users notice

that the return values of some webservers are different from most of the webservers

they request, they could report this action and the reputation of those webservers will

drop. Users tend to choose webservers with higher reputations. Therefore, malicious

webservers would lose customers and (possibly) go out of business. We thus argue that

it is in the interest of the webservers to follow the protocol in order to maintain the

availability of their network.

Choice of dimensionality. One immediate question is how many dimensions

of the Euclidean space we shall use to characterize the network topologies of PCNs. We

use Principal Component Analysis (PCA) [131] to find an appropriate dimensionality.

PCA relies on Singular Value Decomposition (SVD) [124]. The input of SVD is an

n× n matrix M of the hopcounts between all nodes. SVD factors M into the product

of three matricesM = USV T , where S is a diagonal matrix with non-negative elements

si, and mij =
N∑
k=1

skuikvjk. If singular values s1, s2, ..., sd are much larger than the rest,

we may approximate mij ≈
d∑

k=1

skuikvjk, which means that we may approximate M

using d-dimensional Euclidean spaces with low errors. We analyze two real-world PCN

topologies: Ripple [13] and Lightning [102], whose details will be presented in Sec. 2.6.

Fig. 2.6 shows the singular values of the two PCNs. We find the first three singular
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values of Ripple and the first two of Lightning are significantly larger than the rest.

Hence, in WebFlow we use 3D space and show some comparison with 2D and 4D in

evaluation.

2.4.2 WebFlow Routing

WebFlow is based on a distributed data structure called Multi-hop Delaunay

triangulation (MDT) [73]. An important feature of MDT is that, each node only needs
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to maintain the link and path information to a few nodes, independent of the network

size. For a given set of nodes V in a Euclidean space, the Voronoi diagram [44] is a

partition of space into cells such that each cell contains one node and the node is closer

to any point in the cell than any other nodes. An example in Fig.2.4(a) shows the

Voronoi diagram with 6 nodes. For all points in the Voronoi cell of node u, u is closer

to them than any other node in V . A Delaunay triangulation, as shown in Fig.2.4(b),

is a dual graph of the Voronoi diagram, where two nodes in V are connected if their

Voronoi cells share an edge. Two nodes u and v are called DT neighbors if they are

connected in the Delaunay triangulation of V , DT (V ). An important proven feature is

that greedy routing on the DT edges (i.e., assuming all DT neighbors are connected)

always succeeds to find the destination without encountering a local minimum [73].

However, in reality, not every DT edge is connected. As shown in Fig. 2.4(c),

the DT edges uv and bc are not connected. An MDT is a distributed protocol to generate

a distributed data structure such that: 1) each node knows its DT neighbors; 2) for a

DT neighbor without a direct channel, MDT provides a multi-hop channel path to it.

Hence greedy routing with an MDT can guarantee to find a path for a pair of nodes.

This feature can be extended to d-dimension for d ≥ 2.

We denote MDT (V ) as a 3-tuple {< u,Nu, Fu > |u ∈ V }, where Nu is the

set of u’s DT neighbors. u determines Nu by calculating a local DT of its direct neigh-

bors. Fu is a soft-state forwarding table that stores the virtual link (multi-hop channel

path) to the DT neighbors without direct channels. Note that in WebFlow, no node

should maintain a global view of the MDT. Each node only maintains local informa-
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tion < u,Nu, Fu > that is independent of the network size. The routing decisions are

made locally. In addition, there are no supernodes that handle most payments such

as landmark routing. Hence WebFlow is highly scalable and decentralized. Given

the destination coordinates, WebFlow routing using the MDT graph always

finds a path to the destination based on the local decisions of the nodes on

the path.

The routing algorithms of WebFlow contain several MDT protocols includ-

ing the forwarding protocol, join protocol, and maintenance protocol. The forwarding

protocol determines how a node should locally decide the next-hop node when routing

to a recipient in a correct MDT. The other protocols are used to maintain a correct

MDT graph when nodes boot up or get offline dynamically. They are all decentralized

algorithms.

2.4.2.1 Forwarding Protocol

Consider a payment t initiated by node s that should be received by node r,

and the payment value is ω. For each node u received forwarding request, if u is not

the receiver, it first checks if there exists a direct neighbor v closest to the receiver and

checks if the channel uv has enough capacity to support the payment. If the channel

can support the payment, that is ψuv > ω, u sends the payment to v. Otherwise, u

finds the DT neighbor v′ that is closest to r among all u’s DT neighbors. Then, u needs

to probe the virtual link to check if the underlying multi-hop path of this virtual link

has enough capacity to support the payment. If yes, u sends the payment to v′ using
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the virtual link.

If both situations fail due to channel capacity limitation, u traverses all of its

direct neighbors to check if there exists a direct neighbor v closer to the receiver with

enough channel capacity to support the payment. If such a direct neighbor does not

exist, u selects 5 DT neighbors closer to the receiver. Note that u’s DT neighbors that

are closer to the receiver may be less than 5, in this case, u just selects all these satisfied

DT neighbors. Then u probes the virtual links to these selected DT neighbors until

it finds a DT neighbor with a virtual link that can support the payment. If all these

selected DT neighbors fail to fulfill the payment, we assume that this payment is failed.

Note that if u selects too many DT neighbors to probe, it will introduce large probing

overhead and communication costs. If u only probes a small number of DT neighbors,

it will lower the success ratio. We analyze the topology generated from Ripple network

and find that each user on average has 13 DT neighbors located in different directions.

Considering the trade-off between communication cost and success ratio, we choose 5

DT neighbors to probe in our design.

Since large payments could easily use up some specific links [40], if a payment t

exceeds a threshold, the sender randomly divides the large payment into several micro-

payments t1, t2, ...tk, and assigns each sub-payment a random unique index. The sender

treats these sub-payments as unrelated and independent payments. If the number of

sub-payments received by the receiver is less than the number informed by the sender,

we assume that this payment t is failed. To better preserve the value privacy, small

payments are also assigned a random index. Thus, a malicious node seeing a payment
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going through it cannot determine whether it is the total value or just part of the value

of a sub-payment. Since the index is randomly distributed, the adversary cannot esti-

mate the number of sub-payments or the total value of the payment from the index. To

mitigate the case that the adversary might deviate from the protocol to select a longer

path, senders will set an upper bound for the total transaction fee for each transaction.

If the transaction fee exceeds the pre-determined upper bound, the path is considered

to be failed, and the adversary gets no profit.

2.4.2.2 New node joins

When a new node w boots up and wants to join the network, it first discovers

its direct neighbors and assigns its coordinate. In order to get its coordinate, w needs to

get the coordinates of anchors from the webservers. Then it sends hop-count queries to

its direct neighbors and concludes its hop-count to each anchor. For example, assume the

hop-count information to an anchor w collects from its direct neighbors is {h1, h2, ...}. w

can deduce that its hop-count to this anchor ismin{h1, h2...}+1. With this information,

w can determine its own coordinate locally. Then it sends join requests to its neighbors,

and tries to find all of its DT neighbors. To begin its search, it must find at least one

neighbor working correctly in the system, say v. Node w includes its coordinate in the

join request and sends it to v. Now v can begin a greedy routing to get to node c which

is closest to w. By the property of DT, the closest node to w in the Euclidean space

must be a DT neighbor. So c is definitely w’s DT neighbor. Then c sends a JOIN rep

back to w along the reverse path. After receiving the JOIN rep, w begins an iterative
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Figure 2.8: Transaction dataset and channel size distribution used for real-world
evaluations.

search to find other DT neighbors. After finding the paths to these DT neighbors, w

locally stores the paths as virtual links. w also needs to locally maintain the direct

neighbor set Cu and DT neighbor set Nu. Since w boots up to be their new neighbor,

they also need to update their node sets Cu and Nu in the memory.

2.4.2.3 Node leaving and other changes

We now consider a maintenance protocol to deal with the situation when a node

gets offline, new channels emerge, or some channels shut down. This protocol is designed

to fix the structure of MDT. The MDT graph is correct only if every node knows all of

its DT neighbors. So in WebFlow, each node u queries some of its neighbors to see if

they know mutual neighbors that node u does not know, and then sends neighbor-set

requests to them. If u discovers a new neighbor from neighbor-set replies, it will send

a neighbor-set request to this new neighbor if they are vertexes in the same simplex in

DT (Cu). Every node runs this maintenance protocol locally, and every time when a

node finishes running it, it will wait for a time period Tm until running it again. This

helps to keep the MDT correct and guarantees that the forwarding protocol works well.
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Algorithm 1 WebFlow-PE Forwarding Protocol at node u

Input: The line with a direction l⃗ and demand ω
Output: Next hop v
1: // Case 1: u is the recipient r
2: if u = r then
3: return u
4: // Case 2: continue routing
5: for each edges ei of u’s Voronoi region do
6: Find ui whose Voronoi region sharing edge ei
7: if ui is not the last hop then
8: v = ui
9: Probe each channel of the virtual link from u to v to obtain their capacity ψp

10: Find the bottleneck capacity ωmin = min ψp

11: if ωmin ≥ ω then
12: return v
13: else
14: return False

2.4.3 Limitations

While MDT-based WebFlow routing protocol provides a high success ratio

and short forwarding paths for payment with low memory cost in the payment channel

network, it does not achieve all the privacy goals defined in Section 2.3. Since we use

Euclidean distance to choose the node closest to the receiver, the coordinate of the

receiver is exposed to all the nodes along the path as well as their DT neighbors and

direct neighbors. Once the adversary controls some of these nodes, it can speculate

what and where the sender and receiver are with some probability, although it is still

not sure about the payment value. Even if we apply onion routing in WebFlow as

Lightning network did [102], each intermediary still knows the coordinates of the imme-

diately preceding and following nodes. Transactions may still be tracked by malicious

intermediaries.
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2.5 WebFlow-PE Design

In this section, we present the routing protocol of WebFlow-PE, a privacy

enhancement version in WebFlow. The design of WebFlow-PE is consistent with MDT-

based WebFlow except the forwarding part. We first provide a high-level overview and

then provide a detailed protocol description.

2.5.1 WebFlow-PE Overview

Consider the aforementioned problem of the MDT routing in Section 2.4, we

extend the basic design of WebFlow to hide the coordinates of all the nodes along the

path and enhance user anonymity based on an innovation called distributed Voronoi

Diagram [21]. As introduced in Sec. 2.4, the Voronoi Diagram is the dual graph of the

DT. It is very easy for a node running WebFlow to know the boundaries of its Voronoi

cell: simply computing the bisectors of the line segments to all its DT neighbors. If every

node knows its Voronoi cell boundaries, a distributed Voronoi Diagram is maintained.

Instead of using the destination coordinates, we propose to only use a line with

a direction l⃗ as the routing target. The sender s generates l⃗ by making it intersect an

arbitrary point in the Voronoi cell of s and another arbitrary point in the Voronoi cell of

the receiver r, with a direction to the later as shown in Fig. 2.7(a). The routing algorithm

is that, at an intermediate node v, v always sends the payment to its DT neighbor whose

Voronoi cell is the next Voronoi cell intersecting with l⃗ along l⃗’s direction. To prove

that WebFlow-PE guarantees to find a path to r, we prove the following propositions.

Proposition 1. Suppose the Voronoi cell of v, V C(v), intersects with l⃗. The next
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Voronoi cell intersecting with l⃗ along l⃗’s direction is the Voronoi cell of v′, denoted by

V C(v′). Then v and v′ are DT neighbors.

Proof. Since V C(v′) is the Voronoi cell intersecting with l⃗ next to V C(v), V C(v) and

V C(v′) must share a Voronoi edge intersecting with l⃗. By definition, two nodes sharing

a Voronoi edge are DT neighbors.

Proposition 2. v knows a path to every DT neighbor of v.

Proof. This is very easy to prove: 1) if v has a direct channel to its DT neihgbor v′, it

can send the payment to v′ directly; otherwise 2) v′ is a multi-hop DT neighbor and v

can rely on MDT to get the path to v′.

Proposition 3. The routing of WebFlow-PE guarantees to reach the destination r.

Proof. Let the Voronoi cells intersecting with l⃗ in a sequence V C(s), V C(v1), V C(v2), ...,

V C(vk), V C(r).... Since l⃗ intersects with V C(s) and V C(r) by definition, V C(s) and

V C(r) must exist in the above sequence. WebFlow-PE routing using l⃗ will visit V C(s),

V C(v1), V C(v2), ..., until reaching V C(r) according to the routing algorithm.

How r confirms that it is the receiver of the payment. s and r need to

first exchange a common secret for this transaction such as a transaction key k, using

classic secure Internet communication such as TLS. In addition to l⃗, the sender will be

a hash value H(k) to the payment routing, where H is a cryptography hash function.

When r receives a payment, it will compare H(k) to the hash of its transaction key and
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confirm that l⃗ intersects with V C(s) and V C(r). After that, it can keep the payment

and stop forwarding.

For each node along the path, it does not know the coordinates of the sender

or the receiver. The only information it could obtain is l⃗. Each node can determine

which DT neighbor is the next hop according to the direction function. Besides, we

also need to consider the capacity of the channel. After a node determines the next hop

DT neighbor, it needs to check if the channel or multi-hop path has enough capacity

to support the payment. If not, the payment fails. We show the pseudo-code of the

forwarding protocol of WebFlow-PE at each node u along the path in Algorithm 1.

Different from MDT-based routing protocol, we first find a path for the pay-

ment and then probe the path to see if it has enough capacity to support the payment.

Since the path is pre-determined, and it is static routing, it is more likely to fail than

MDT-based routing protocol which is dynamic routing that combines the probing and

path finding process at the same time. Note that the only difference between MDT-

based WebFlow and WebFlow-PE is the forwarding protocol, and all the other designs

keep the same. So the users of WebFlow can easily switch between these two routing

protocols based on their demands, higher success ratio, or better privacy.

2.6 Performance Evaluation

We evaluate the performance of WebFlow comparing to the existing off-chain

routing algorithms, using both simulation and prototype implementation. The
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evaluation aims to answer the following research questions:

• How does the WebFlow routing perform with regard to success ratio, success

volume, and overhead under realistic PCN topologies and traces?

• How do network load affect WebFlow’s performance?

• How do these results compare to the performance of other approaches?

2.6.1 Methodology

We study WebFlow with two real-world PCNs: Ripple [13] and Lightning [102],

as well as synthesis topologies in simulation. For Ripple, we use the data from January

2013 to November 2016, and get the network topology with 1,870 nodes and 17,416 edges

in our simulation. For Lightning network, we get the network topology with 2,511 nodes

and 36,016 edges on one day of December 2018 [126]. Since Lightning network preserves

the privacy of link balances, we only get the range of the link balance and evenly assign

funds over both directions of a link.

We generate payments by randomly sampling the Ripple transactions for the

Ripple topology. Due to the lack of sender-receiver information in the trace of the Light-

ning network, we randomly sample the transaction volumes and sender-receiver pairs.

The distribution of transaction sizes is shown in Figure 2.8. 70% of the transactions

in Ripple is less than 100$, and 70% of the transactions in Lightning is less than 107

Satoshi. So we treat payments less than 100$ and 107 Satoshi as small payments in Rip-

ple and Lightning respectively. We assume that payments arrive at senders sequentially.
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Concurrent payments will be considered in the future work.

According to the observation of these two real-world topologies, we additionally

build two sets of synthesis PCN topologies based on Waxman topology generation [128]

and scale-free network model [34]. The link balances are assigned similar to those of

Ripple. The payments are also generated by mapping the Ripple transactions to the

simulated topologies.

Benchmarks. We compare both routing methods of WebFlow - MDT-based

WebFlow (WF) and WebFlow-PE (WF-PE) - with the following off-chain routing algo-

rithms.

SilentWhispers (SW) [84]: A landmark routing algorithm that nodes always

send funds to landmarks, and rely on landmarks to find the path. We set the number

of landmarks to 3.

SpeedyMurmurs (SM) [110]: An embedding-based routing algorithm that relies

on assigning coordinates to nodes to find shorter paths with reduced overhead. We set

the number of landmarks to 3 as [110] suggests.

Spider [118]: The off-chain routing algorithm which considers the dynamics

of link balance. It balances paths by using those with maximum available capacity,

following a waterfilling heuristic. It uses 4 edge-disjoint paths for each payment.

Flash [126]: The off-chain routing algorithm which differentiates the treatment

of elephant payments from mice payments. We set the number of preserved paths for

each receiver in mice payment routing to 4, and the number of preserved paths for

elephant routing to 20. The elephant-mice threshold is set such that 90 % of payments
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are mice.

Shortest-Path(SP): Baseline algorithm. SP uses the path with the fewest hops

between senders and receivers in routing.

Metrics. We use communication and storage costs as the primary metrics for

scalability. Similar to prior work [110,126], we also use success ratio and success volume

as evaluation metrics for resource utilization. Besides, we evaluate the anonymity of

the system. The success ratio is defined as the percentage of successful payments whose

demands are met overall generated payments. The success volume describes the total

size of all successful payments. Before sending payments, nodes need to probe the

usable capacity of the candidate paths. The number of probe messages describes the

communication cost, which is the probing overhead. The storage cost is computed by

the average number of distinct neighbors a node needs to know (and store) to perform

routing, including the coordinates of its neighbors and the information of its related

links. We report the average results over 5 runs.

2.6.2 Overall Performance and Overhead

Storage cost in each node. We now show the storage efficiency of WebFlow

by comparing the average states maintained in each node. In Shortest Path, Spider

and Flash, every node needs to locally store the network topology, including all the

information of the links. Besides, in Flash, each node needs to maintain a routing

table for each payment, and periodically refreshed it when the local network topology

updates. In SilentWhispers, the landmarks need to store the network topology as well
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Figure 2.9: Storage cost compared with baseline methods.
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Figure 2.10: Communication cost compared with baseline methods.

as the paths to all the nodes. Each node only maintains the paths to the landmarks.

For SpeedyMurmurs, the coordinate is assigned according to the landmarks, and the

length of the coordinate is depending on the depth of the node in the spanning tree.

Since there are always several landmarks in the system, each node has to store several

coordinates. Different from these schemes, in WebFlow, nodes only need to maintain

the information of their neighbors, including the coordinates and the links to them.

Figure 2.9 shows the average states maintained in each node. For both Ripple and

Lightning, both versions of WebFlow cost less than other routing algorithms.

Communication cost. We evaluate communication cost to see if our algo-

rithms can achieve low overhead of routing. The communication cost is computed as the

total number of probing messages sent over the network. Since SilentWhispers, Speedy-
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Figure 2.11: Performance with varying
transaction numbers in Ripple.
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Figure 2.12: Performance with varying
transaction numbers in Lightning network.

Murmurs, Shortest Path, and WebFlow-PE are static routing schemes, we consider the

number of probing messages the same as their path length. Spider and Flash use mul-

tiple paths. They first select several paths and make payments after probing the path.

Moreover, Flash only probes a path when it cannot deliver the payment in full. So the

number of probing messages along a path is proportional to the number of hops of the

path in Spider and Flash. MDT-based WebFlow only does probing if a node needs to

reach a multi-hop DT neighbor. In this case, the node will probe the path to its DT

neighbor to see if the path has enough capacity to support the payment. Figure 2.10

shows the comparison results with 1000 transactions. The results here demonstrate that

WebFlow indeed efficiently reduce the probing message overhead compared to state of

the art in all of the four topologies.

Performance with different network load. We also vary the number

of transactions to test the performance of our system with different loads. With the

increase of the number of transactions, the success ratio of all schemes decreases in both

Ripple and Lightning topologies as shown in Figure 2.11 and 2.12. This is because as

more transactions flowing into the network, more links are saturated in one direction,
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making them cannot be used for future transactions. In most situations, MDT-based

WebFlow shows a higher success ratio and success volume compared to other methods.

The only exception is for the success ratio of Lightning, where WebFlow has a lower

success ratio than Spider.

Choice of Dimensionality. We perform experiments for ripple and lightning

networks embedded in 2D, 3D, and 4D virtual spaces and evaluate the performance in

terms of success ratio. Figure 2.13 and Figure 2.14 show the results of routing perfor-

mance for the two network topologies respectively. For both topologies, 3D outperforms

2D. For 4D, the results are not much better than those of 3D in ripple, and even has

lower success rati in lightning. This observation is consistent with the PCA results in

Fig. 2.6. Besides, in a 4-dimensional space, since nodes have more DT neighbors to

maintain and have to keep the coordinates of 4-tuples, both the storage and commu-

nication costs will increase compared to 2D and 3D. Hence, we choose 3D in all other

experiments.

Anonymity. We now demonstrate the comparison of anonymity amongWebFlow

and Benchmarks. WebFlow-PE shows better anonymity measure as shown in Fig.2.15
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Table 2.1: Message format in our prototype.

Field Description

TransID A unique ID of a (partial) payment
Type Message type and routing scheme

Direction Routing direction of this message
Capacity Probed link capacity
Commit Total funds for this payment

and 2.16. In SilentWhispers and Flash, as long as the attacker is standing on the

path, it will know exactly who the sender or recipient is. In MDT-based WebFlow,

since the node needs to compute the distance between its neighbors and recipient to

find the neighbor closest to the recipient, all the nodes along the path will know the

information about the recipient. In SpeedyMurmurs, although it improves privacy by

using anonymous return addresses, attackers can still infer that some nodes may be the

sender or recipient with higher probability from the knowledge of tree constructions.

In WebFlow-PE, nodes can only know the routing direction, instead of the coordinate

of the recipient, which reduces privacy leakage. This comparing result does follow our

analysis.

2.6.3 Testbed Evaluation

We conduct a testbed evaluation to further investigate WebFlow’s perfor-

mance. We implement the prototype in Golang with TCP for network communication.

The prototype first generates the network topology and assigns coordinates to each node

at launch time. Upon seeing a new payment, it runs the routing algorithm and sends it

out. we represent each node of the PCN as a single process running in the WebFlow pro-

totype. We build a PCN topology based on Waxman topology generations [128]. The
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Figure 2.17: Testbed results of the 50-node
network.
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Figure 2.18: Testbed results of the 100-
node network.

routing algorithm includes three functions: distributed routing, probing, and commit.

We describe the details in the following.

Distributed Routing. Each node is responsible for finding the next hop

based on the received message. We show the message format of our prototype in Ta-

ble 2.1. Type field shows the message type, and also includes 1 bit indicating the scheme

of routing. The destination field contains the coordinates of the recipient in the MDT-

based WebFlow scheme, while shows the direction function in the WebFlow-PE scheme.

Upon receiving a ROUTE message, a node can get routing direction from this field

and forward it to the next hop according to the Type field. Besides, the nodes need

to record TransID, last-hop, and next-hop locally for further commitment. Recipient

returns ROUTE ACK if path found, and ROUTE NACK if path not found or with

insufficient capacity. In the MDT-based WebFlow scheme, the nodes on the reversed

path will replace the direction field with the coordinate of its last hop and forward the

modified message to it. In the WebFlow-PE scheme, the recipient simply replaces the

direction field with a reversed direction function.

Probing. It is used in the MDT-based WebFlow for nodes to collect the ever-
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changing link balance to determine which link to chose for the next hop. In MDT-based

WebFlow, probing only takes place when a node finds that a candidate next hop is a

DT neighbor. It then probes the underlying physical path of the virtual link to check

if it can support the payment. This node initiates probing by constructing a PROBE

message for the virtual link and initiates the Capacity field to the payment value. The

intermediate nodes compare their current balances with the Capacity field. If their

balances are less than the value in the Capacity field, they replace the Capacity field

with their current balances. Otherwise, they do nothing. After receiving the probing

message, the node simply compares the value in the Capacity field with the value in the

Commit field, and determine whether this virtual link can support this payment.

Commit. It is the step to commit the payment. After finding a path for

the payment, the sender sends a COMMIT message in the path. All the intermediate

nodes receiving the message search for the next hop according to the TransID stored

locally. Then they update their balances according to the COMMIT field and forward

the message to the next hop. If an intermediate node finds that its balance is less than

the payment amount, it constructs a COMMIT NACK message sending back to the

sender. All the nodes that receive COMMIT NACK messages will then recover their

balances.

Figure 2.17 and 2.18 show the performance with different link capacities. The

success ratio and success volume of MDT-based WebFlow are much higher than Shortest

Path in both two topologies with a different number of nodes. This is because we

consider link capacities when routing. The results demonstrate the effectiveness of
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MDT-based WebFlow which selects a good path to improve throughput. However,

the performance of WebFlow-PE is similar to Shortest Path. This is because both

algorithms first select a path without considering link capacities and then check if the

path can satisfy the payment. It is still acceptable since we achieve better anonymity

at the cost of lower performance in WebFlow-PE.

2.7 Conclusion

In this work, we present the design of a scalable and decentralized routing

solution called WebFlow for large and dynamic PCNs. WebFlow includes two protocols:

MDT-based WebFlow and WebFlow-PE. The first one provides a high success rate

and success volume of payments. The second one, the privacy enhancement version of

WebFlow, achieves destination anonymity by using routing with a distributed Voronoi

diagram. Both protocols demonstrate low per-node cost and high network resource

utilization. The evaluation results using simulations and prototype implementation

demonstrate that WebFlow significantly outperforms existing solutions, especially on

per-node cost efficiency, while maintaining high resource utilization and success rate.
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Chapter 3

APCN

3.1 Introduction

To address the well-known scalability issue of Blockchain, payment channel

networks (PCNs) [102] emerge as a leading concept to provide a high-throughput so-

lution for blockchains. The PCN is a promising solution to achieve the scalability of

blockchains because most transactions can be achieved in an off-chain manner. However,

such “layer-2” blockchain solutions have their own problems: PCNs require a separate

deposit for every channel and significant locked-in funds from users [86]. Besides, funds

are not equally distributed among all the channels of one user. A situation might happen

that a user cannot support a transaction due to insufficient funds in a required chan-

nel, but in fact, the node has sufficient unused funds in other channels as in Fig. 3.1.

Redistributing funds among channels immediately is not realistic here, because users

need to react with blockchain to set up new channels which is time-consuming. Such
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Figure 3.1: A multi-hop payment in a PCN.

a: $5

Multi-hop 
payment of $5

b: $8

c: $3
(a) Before payment (b) After payment

Success
a: $0

b: $8

c: $8

Figure 3.2: A multi-hop payment in an APCN.

inflexibility of fund utilization results in significant resource under-utilization in PCNs.

Many recent studies focus on using routing protocols to improve resource utilization in

PCNs, such as Spider [118] and Flash [126]. However, our evaluations show that rout-

ing cannot fully solve the problem of imbalanced fund utilization problem

across different channels. The key reason is that per-channel funds also limit routing

path selections.

In this work, we introduce Aggregated Payment Channel Network (APCN), a

system that enables sharing and freely allocating funding among all payment channels

of a single user. In APCN, funds are maintained in a per-user basis instead of per-

channel, which provides higher flexibility of fund utilization and hence much higher
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payment success rate (from 70% to > 95% in our evaluation). When users perform

multi-hop payments, those intermediate nodes only deliver the payments to the next-

hop node, instead of adjusting funds in the channels as in the PCNs. So intermediate

nodes actually act as relay hops which is more similar to packet-switching networks

compared to existing PCNs. Fig. 3.2 shows an example of multi-hop payment in APCN.

A multi-hop payment is successful as long as: 1) a path exists between the sender and

receiver; 2) the sender has enough funds to pay the receiver. Unlike PCNs, there is no

requirement that every channel on the path must have that amount of lock-in funds.

However, there are multiple challenges in designing APCN. 1) How to prevent

users from double-spending. Since funds are not maintained in separate channels, the

user cannot determine whether the funds sent to her have been paid to others until she

makes the settlement on the main chain. 2) How to make settlements when shutting

down channels or users going offline. In PCNs, payments only change the distribution of

the channel’s funds, and the total balance of the channel always keeps the same. When

closing a channel, two users only need to broadcast a blockchain transaction with the

final balance. However, in APCN, the funds are not kept in a single channel, and it is

difficult to trace payments in the network. In order to address these two challenges, we

design protocols based on the widely available trusted execution environment (TEE) for

controlling funds, balances and payments. TEE is a hardware security feature in modern

CPUs [81] that ensures the confidentiality and integrity of code and data. 3) We further

assume not every user of APCN has a TEE device. Hence how users can rely on other

TEE devices and trust the execution remains another challenge. 4) We consider the
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congestion control problem in APCN: if too many payments go through a certain node,

the transaction processing rate on this node should be slower than the transaction

arrival rate which causes congestion. Such a node will become the bottleneck of the

whole network. To prevent this situation, we design a routing protocol with congestion

control in APCN that each channel locally keeps a congestion factor, and nodes would

consider the congestion factors of channels to select the next hop.

We conduct both prototype implementation and large-scale simulations for

APCN, based on real-world PCN topologies and transactions. The results show that

even the most advanced PCN routing protocols cannot achieve 75% transaction success

rate – a transaction is successful if there is a routing path with sufficient funds – while

APCN always achieves over 95% transaction success. We show APCN is also cost-

efficient.

The rest of this paper is organized as follows. The system overview and model

are presented in Section 3.2. We describe an overview in Section 3.3 and the detail design

of the APCN and routing protocol in Section 3.4. Section 3.6 presents the evaluation

results of APCN. Section 3.7 describes the related work. Section 3.8 concludes this

work.
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3.2 Overview

3.2.1 Network Model

APCN is a payment channel network in which the funds are maintained in a

per-user basis instead of per-channel. In APCN, each user is called a node. The bi-

directional payment channel shared by two nodes is called a physical channel or direct

link, and these two nodes are called direct neighbors. Each node maintains some funds

to make transactions with others or help to relay transactions. We model an APCN

as a graph G = (V,E,Ψ), where E is the set of links, V is the set of nodes with a

weight function w, and ψu ∈ Ψ is the funds of user u in the network. Each node is

assigned a congestion rate which can reflect the time it will take on average to process

a transaction going through it. This value is periodically updated according to the

number of transactions going through it in the last time slot. Furthermore, a path p is a

sequence of links e1...ek with ei = (vi, vi+1) for 1 ≤ i ≤ k− 1. The path of a transaction

is accepted only if the amount of this transaction is less than the fund of the sender, ψ1.

Problem definition. The problem of making successful payments in APCN

is described as follows. Consider a transaction t initiated by sender s that should

be received by the recipient r. APCN needs to find a path from s to r, where two

consecutive nodes on the path should share a physical link (payment channel) to transfer

the payment to the next-hop. The success of the payment implies that s can make a

transaction with r by a sequence of transactions involving other intermediate nodes,

even if s and r have no trusted channel.
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APCN should make use of a routing protocol that finds an end-to-end path

from the sender to the recipient in the network graph. In fact, APCN is able to apply

any existing routing protocol of PCNs and make corresponding adjustments to allow

them to work in APCN. In our implementation, we use the virtual coordinates based

greedy routing introduced in a recent work WebFlow [142] and extend it for APCN.

3.2.2 Trusted execution environment (TEE)

The requirement for synchronous blockchain access in existing payment net-

works comes from the fact that their protocols use the blockchain as a root-of-trust:

parties executing the payment protocol monitor the blockchain to discover when other

parties deviate from the protocol, and react appropriately. In traditional PCNs, users

can easily verify transactions by checking their channel states and balances. This mech-

anism also prevents the double spending problem since a single fund cannot be used in

two different channels. A single fund cannot be paid to the same receiver twice either,

since both the receiver and sender keep a view of channel state. They could detect mis-

behaving parties when a dispute happens. However, in APCN, the channel is stateless.

We should prevent the situation where a malicious node tries to spend a fund twice to

two different receivers.

In order to ensure the faithful execution of the payment protocol in APCN,

we make use of trusted execution environments (TEEs) [66]. TEEs are encrypted and

integrity-protected memory regions, which are isolated by the CPU hardware from the

rest of the software stack. Multiple TEE implementations are commercially available,
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Figure 3.3: APCN overview: APCN nodes operate TEEs to store and manage funds.
Users construct payment channels between nodes to exchange funds directly, and execute
multi-hop payments along concatenated payment channels.

including Intel SGX [64], ARM TrustZone [59] and AMD SEV [66], with several others

currently underway, such as KeyStone Enclave [74], Multizone [112] and OP-TEE [80].

Intel CPUs from the Skylake generation onwards support SGX [61], a set of new in-

structions that permit applications to create TEEs called SGX enclaves. TEEs ensure

faithful execution of software and the owners cannot make changes on either the data

or software in TEEs.

APCN constructs a peer-to-peer payment network in which each node com-

prises: (i) an API for users to interact with the payment network; (ii) an interface

through which to read and write blockchain transactions; and (iii) a TEE-protected

program called Ledger that securely holds and manages users’ funds. Ledgers ensure

the faithful execution of the payment protocol. They are responsible for managing pay-
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ment channels, executing payment transactions, and controlling access to funds. They

communicate via secure channels established by two neighboring nodes to update user

funds.

Fig. 3.3 shows an example of APCN. For a user A, to join in the APCN at

initialization, it needs to construct a set-up message and send it to the blockchain. This

message should include a transaction that A makes a deposit of $128 to the blockchain.

After this message being confirmed in the blockchain, A can open channels with other

users and make or relay transactions in the APCN. Assume A opens channels with user

B and C respectively. When A wants to make a payment of $30 to B, the TEE of

A, denoted as TEEA, will record this transaction in the local ledger as B : −$30, and

update A’s remaining funds to $98. The TEE of B, denoted as TEEB, will also record

this transaction in its local ledger as A : $30, and update B’s remaining funds to $112.

The next time when A wants to make another payment of $80 to user C, TEEA and

TEEC will update their local ledgers to C : −$80 and A : $80 respectively, and update

A and C’s remaining funds to $18 and $83 as well. When A wants to go offline and make

a settlement, it first needs to retrieve the encrypted ledger of the latest version from

TEEA, and then send it to the blockchain. It keeps monitoring the blockchain until its

ledger is confirmed. In this process, TEEA denies all the transactions to or through it.

After the ledger showing up in the block, A sends messages to all its neighbors. The

neighbors’ TEEs who receive the messages will update their local ledgers to mark the

transaction records with A as confirmed.
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3.2.3 Attacker Model

We assume users and webservers can exchange messages through a traditional

secure communication channel such as TLS. Information leakages among them are be-

yond the scope of our discussion. We assume the attackers can gain complete physical

access to a node in which the funds are stored and complete control of its network con-

nections. They may drop, modify and replay messages. An attacker may also delay or

prevent the node it controls from accessing the blockchain for an unbounded amount of

time. However, they cannot make changes to the TEEs on the controlled nodes. The

widely applied TEE implementation SGX is known to be vulnerable to attacks such as

controlled-channel attacks, and there have been some countermeasures to them [96]. To

prevent information leakage from access patterns, existing oblivious RAM library can be

adopted [77]. There are also existing timing and memory-access side-channel resistant

libraries for sensitive data [81]. Shih et al. [117] presented a modified LLVM compiler

dubbed T-SGX, which is effective against all known controlled-channel attacks. Lee et

al. [75] proposed ZigZagger as a defence against their own branch shadowing attack.

To defeat enclave specific attacks such as ROP attacks, Seo et al. [113] activated ASLR

inside SGX enclaves to make exploitation more difficult. BYOTee [12] put forward a

method to build multiple equally secure enclaves by utilizing commodity FPGA devices.

Microcode patch could also help, but it can only be changed by the manufacturer of the

CPU, which is out of scope of this paper. We apply side-channel resistant libraries and

T-SGX in our implementation. We consider the user security of their funds in a fully
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distributed PCN. Users may be malicious and attempt to steal funds and deviate from

the payment protocol, if it benefits them.

3.2.4 Requirements

Security: The main security requirement of APCN is that it should enable

transactions to be executed between users safely and correctly. For safety, we consider

two situations. The first is online users making transactions. Since funds are not kept

in a single channel, we should ensure that APCN could prevent double spending. If a

malicious node tries to spend a fund twice to two different receivers, the receivers should

be able to detect it and reject the transaction. The second situation we consider is the

settlement. When a user goes offline, all the transactions related to this user should be

settled and written to the blockchain. If other users want to go offline later, we need to

guarantee that the same transaction will not be written to the blockchain twice.

Performance: The main performance goal of ACPN is a high transaction

success rate, which is determined by many factors including available funds, routing

protocols, and congestion control to handle concurrent requests.

3.3 Design Overview of APCN

We provide an overview of transaction executions in APCN. Table 3.1 shows

the API that APCN provides to users. It supports 1) creating deposits, 2) operating

payment channels, and 3) settlement. APCN generates unique identifiers for each de-

posit and channel, e.g., when a deposit is created (new deposit), a unique identifier is
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Table 3.1: APCN API
APCN APIs Inputs Outputs API Description

Deposits:
new deposit t, k di Create a new fund deposit with ID di using a transaction t and the TEE’s public key k
new pay channel k ci Create a new payment channel with ID ci with a given TEE identified by k

Payments:
Update ledger v, ci, L L Pay an amount v to the other user in a payment channel ci and update the Ledger
Routing:
routing v, nd nj Determine the next hop node nj of a transaction to destination nd
Settlement:
close channel ci, L - Shut down a payment channel ci by updating the ledger. Mark the status of ci as Inactive
settle deposit v, di t Refund a deposit di by generating and returning a transaction t

returned as a handle to be used in subsequent API calls. TEEs of each user are identified

through unique public keys.

TEE service providers. Users generate public/private key pairs for their

wallet addresses, which are cryptocurrency addresses owned exclusively by a user’s TEE.

They are generated securely inside each TEE, and their private keys are stored in TEE

memory. The owner of the TEE cannot see the private key. Users can send funds to

these addresses in the form of fund deposits. Then deposits can be used in any payment

channels of the users. Note that not all users are equipped with TEEs on their

devices, while some machines with TEEs are willing to provide their TEEs to others.

These machines can serve as TEE service providers. Those users without a TEE-enabled

node of their own can use a remote TEE service provider to manage their funds.

Users must verify the integrity of TEE before trusting them. APCN uses the

remote attestation support of TEEs for verification [62]. A TEE (i) measures the enclave

code, (ii) cryptographically signs the measurement and the user’s public key, and (iii)

provides the signed measurement and public key to the remote user [81]. The remote

user then verifies the attestation, i.e., the remote user ensures that the attestation is

correctly signed by the Trusted hardware and that the measurement corresponds to
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a known TEE implementation. Users can thus verify that a specific service provider,

identified by its public key, is running the protocol correctly in the TEE hardware.

And remote TEE providers have the same abilities as a local TEE. To deal with the

situation that the machine with remote TEE going offline and avoid having to trust a

single remote TEE service provider, APCN constructs committees with multiple remote

service providers.

Service provider Committee. Committees are groups of TEE service

providers that jointly manage fund deposits, ledgers and transactions. They are used

to prevent single point failure when a user does not have a local TEE and has to rely

on a TEE service provider to manage their funds. For each deposit owned by a service

provider committee, a minimum number of members are required to sign transactions

before that deposit can be spent, thus tolerating a fixed percentage of TEE failures to

some degree. For this, APCN used multi-signature support of the blockchain: each fund

deposit is paid to a m-out-of-n wallet address, where m TEE signatures are required

to spend the deposit. The n committee members are responsible to manage the user

deposit [81].

3.4 Payment Protocol

This section describes the design of APCN protocols.
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3.4.1 Deposits allocation

In order to create a deposit for a user, a transaction indicating making deposits

related to the user needs to be recorded on the blockchain. To construct a new deposit

d, users invoke new deposit, and present a deposit transaction t and the public key of

the user’s TEE. The TEE then verifies that t sends funds to the correct address using its

public key k. The TEE then constructs a new deposit d, forwards t to the blockchain,

and returns d’s unique identifier signed by the TEE to the user.

Although the deposit is maintained by each user, we still need payment chan-

nels for transactions among users. Since the channels in APCN are stateless without

funds in them, it is not necessary to associate a determined number of deposit with a

certain channel. To create payment channels between users without a blockchain inter-

action, participants call new pay channel and provide the public key of the TEE with

which to create the channel. The two TEEs then establish a secure communication

channel using authenticated Diffie-Hellman for key provisioning and remote attestation.

Using the secure channel, the TEEs assign a unique channel identifier to the channel c

and return the channel identifier.

3.4.2 Using payment channels

To execute a payment t along a channel, the sender u calls update channel,

which specifies the amount ω to send and the channel identifier ci. The sender’s TEE

first ensures that the sender has sufficient funds, du > ω, before decrementing the

sender’s balance and incrementing the recipient v’s balance locally. It then forwards the
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payment to the recipient’s TEE to update balances. If the payment is not received by the

recipient in a pre-determined time slot, e.g., due to a network failure, the sender’s TEE

rolls back the payment to prevent balance inconsistencies. If the payment is received

by the recipient successfully, the sender’s TEE needs to update the remaining deposit

to be du − ω, and the recipient’s TEE needs to update the deposit to dv + ω. They

also need to update the ledgers of the users respectively, which is v : −ω in the sender’s

ledger, and u : +ω in the recipient’s ledger.

3.4.3 Congestion control

In PCNs like the Lightning and Raiden networks, most users by default pick

the shortest path from the sender to the destination. However, it leads to the congestion

problem [118]. Consider an example PCN shown in Fig 3.4. Suppose many users on

the left side of a (in Cluster A) try to make transactions with users on the right side of

b (in Cluster B) at the same time. Based on many routing protocols, when transaction

requests from cluster A reach node a, a always forward those transactions to node b

which has shorter paths to the receivers in cluster B. This leads to congestion on channel

a− b, while channels a− u and b− u are under-utilized. And thus, all the transactions

between clusters A and B would suffer from extra processing latency of channel a− b.

To address this problem, we introduce a congestion factor lc for each channel,

which shows the current processing latency for an incoming transaction in the channel.

However, it is impossible to minimize the processing latency as well as maximize the

success volume of the whole system as a linear programming problem, because we cannot
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Figure 3.4: Example illustrating the importance of congestion control in APCN.

probe and compare all the possible paths for every transaction in advance. Instead, we

apply a heuristic mechanism to optimize the end-to-end latency - Latency Awareness

(LA) forwarding, which avoids congested links.

In LA forwarding, a node u chooses a neighbor x as the next hop to receiver r

such that it minimizes the heuristic function h(u) = l(u, x)+ l̃(x, r). l(u, x) is computed

as how many transactions are currently using the channel u−x, and l̃(x, r) denotes the

estimated routing latency from x to r from locally computing the distance between the

virtual positions of x and r. The first question is how to assign the congestion factor

lc for each channel. Assume the processing latency of a transaction at an idle channel

c is ∆, and the channel can process one transaction at a time. If multiple transactions

want to use the same channel, they will be put in a queue and lc is adjusted according

to the number of transactions in the queue. For example, the congestion factor of

an idle channel c is lc = ∆. If there are 2 unfinished transactions in the channel

c, the congestion factor becomes lc = 3∆. The second question is how to estimate

the remaining routing latency l̃ from a neighbor node x to the receiver r. Note that

we assign each node a virtual coordinate that reflects the network topology features.

The node pair with small hopcounts in the network also shows a short distance in
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the Euclidean space. So we use the distance dxr between the virtual positions of x

and r as the estimated hopcounts between them. We estimate l̃(x, r) such that it is

proportional to the estimated hopcounts between x and r. For simplicity, we assume all

the channels between x and r are idle. So the heuristic function at node u is computed

as: h(u) = (n(u, x) + 1)∆ + d(x, r)∆, where n(u, x) is the ongoing transactions in the

channel ux.

However, simply assuming that all the channels between x and r are idle is not

accurate since node u does not have any information on these channels. And selecting

the next hop x according to the heuristic function h(u) instead of choosing the next

hop that is closest to the receiver r may lead to a larger routing stretch, and thus may

introduce extra routing latency. There exists a trade-off between WebFlow which has

lower routing stretch, and LA forwarding which has lower estimated routing latency.

So we combine WebFlow and LA forwarding together. For each transaction arrived at

node u, it has the probability p to apply WebFlow to be forwarded to the neighbor

closest to the receiver. Otherwise, it runs the LA forwarding protocol. We will further

evaluate and find the optimal p value in evaluation.

3.4.4 Deposits settlement

In PCNs, if a user wants to shut down a channel, he needs to have a transaction

claiming the final state of the channel recorded on the blockchain. However, in APCN,

shutting down a channel would not require any operation on the blockchain as we

mentioned in Sec 3.4.2. Only if a user wants to go offline, does he need to settle his
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deposits and have his final deposits on the blockchain. The channel record in a ledger has

four statuses: Pending, Complete, Inactive, and Settled. Pending is the status

that there exist one or more ongoing transactions related to this channel. Complete is

that all the transactions going through the channel is complete and confirmed by the

sender and recipient. Inactive is the status that the user has shut down the channel

and this channel does not exist anymore. Settled is the status that the neighbor that

the user shares the channel with is offline and has settled all his channels and deposits.

To shut down a channel of the user u, it invokes close channel and includes

the channel id and the user id of its neighbor v whom it shares this channel c with as

inputs. The TEE of u first checks the status of channel c in its ledger. If the status

is Inactive, it means that the channel c has been closed before and does not exist

currently. So close channel will return ‘FALSE’. If the status is Settled, it indicates

that v is offline and has settled all the related channels. So the function will fail to shut

down the channel and return ‘FALSE’. If the status is Pending, it means that there exist

one or more ongoing transactions related to this channel, including u sending payments

via the channel c, other users sending payments to u via the channel c, and c served

as intermediate hop of passing by transactions. In this case, the TEE of u will hold

the close channel request until the status of c becomes Complete. It is to prevent the

situation that a transaction has probed and determined the path, but some channels

of this path break down before the transaction completes. In the whole process, the

TEE of u will reject any other transactions via the channel c. If the status of channel c

becomes Complete, u’s TEE can directly shut down the channel by changing the status
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to Inactive and inform v’s TEE to change the status of channel c to Inactive in v’s

ledger as well. To prevent the case that a malicious u tries to close the channel using

a stale state to benefit itself, when it invokes close channel, v will have a bounded

reaction time to invalidate the action by providing the latest state with the timestamp.

If v approves or fails to respond within the time slot, u will continue closing the channel.

Consider user u wants to go offline and settle its deposit on the Blockchain.

The first thing it needs to do is to settle all its channels by invoking close channel.

After the status of all the channel records in its ledger becomes Complete, the next step

of u is to call settle deposit and settle its deposits on chain. To do this, u need to

obtain the latest ledger signed by its TEE from the TEE, and directly send its signed

ledger to the Blockchain. u needs to keep monitoring the Blockchain until its ledger is

verified, packed into a block, and added to the Blockchain. Then, u constructs a proof

that its ledger has been added to Blockchain and sends the proof to all its neighbors.

If some neighbors do not agree on the channel states, they could provide the correct

signed ledger to Blockchain to dispute. If the proof is correct, the neighbor nodes will

mark the channel u− v as Settled in their own ledgers.

3.4.5 Transaction data format

Transactions. All transactions among users are conducted via channels by

TEE service providers. Each transaction τ includes the address of the transaction

recipient τto, the transaction amount τa, the address of the last hop user τf , and a

monotonically increasing transaction index τi. We note that τf here is not necessarily
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Algorithm 2 APCN payment protocol executed by each node and TEE service
provider.

1: def new deposit withTEE(t, k):
2: verify tx(t, k)
3: d← create new deposit(t)
4: deposits[di] ← d
5: write to blockchain(t)
6: create Ledger(di)
7: return di

8: def new deposit withoutTEE(t,
k1 ...km):

9: verify tx(t, k1...km)
10: d← create new deposit(t)
11: deposits[di] ← d
12: write to blockchain(t)
13: create Ledger(di)
14: return di

15: def approve channel(k):
16: apprv← ask approve remote(k)
17: return apprv

18: def new pay channel(k):
19: c← create channel with(k)
20: channels[ci] ← c
21: add Ledger(ci)

22: add Ledger(cN )
23: return ci

24: def pay channel(v, ci):
25: c← channels[ci]
26: assert(c.my bal ≥ v)
27: Update Ledger(-v, ci)
28: Update Ledger(v, cN )

29: def create Ledger(di):
30: d← deposits[di]
31: a ← d
32: return L

33: def add Ledger(ci, L):
34: c← channels[ci]
35: c.a ← 0
36: s← sc
37: return L

38: def Update Ledger(v, ci, L):
39: c← channels[ci]
40: c.my bal ← c.my bal + v
41: ca ← ca + v
42: s← sp
43: return L

44: def close channel(ci, L):
45: c← channels[ci]
46: Close Ledger(ci,L)
47: Close Ledger(cN ,L)

48: def Close Ledger(ci, L):
49: // Collect all entries of channel

c
50: c← channels[ci]
51: if s == s.c then
52: s← s.i
53: return TRUE
54: else
55: wait for time ∆
56: if s == s.c then
57: s← s.i
58: return TRUE
59: return FALSE

60: def settle deposit(di):
61: for all channels c in U ’s ledger

do
62: close channel(ci)
63: t ← construct tx(di, k)
64: return t

the sender. For multi-hop transactions, τf records the last hop where the transaction

comes from. For each intermediate user received a transaction, it needs to replace the

τf field to be the address of it, and relay the transaction to the next hop.

Ledger state. The ledger in the TEE maintains state that contains the remaining

deposit amount of the user, and several entries as shown in Table 3.2. Each entry

denotes a channel of the user u, and consist of the following items: the channel c built

by u and its neighbor, the neighbor cN the user u shares the channel c with, the overall

amount u sent to the neighbor cN via channel c, and the state s of this channel c as

introduced in Sec 3.4. The amount of the channel can be negative, which is the amount

user u owes cN .
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Table 3.2: Ledger state

Field Symbol Description

Channel c The channel id of this entry
Neighbor cN Neighbor’s address the user build channel c with
Amount ca The overall transaction amount of the user
State s the state of transactions going on in the channel

↪→ sp Pending, ongoing transaction in the channel
↪→ sc Complete, all transactions in the channel complete
↪→ si Inactive, user has closed the channel
↪→ ss Settled, user’s neighbor has settled the channel

Version ω The version number of the latest transaction

3.4.6 Users with and without TEE

Here we describe two categories of users separately, the user with local TEE,

and the user without local TEE. Algorithm 2 shows the protocol executed by each node

and TEE service provider. To construct a new deposit d, users with local TEE invoke

new deposit withTEE (Alg. 2, line 1) and present a deposit transaction t and the TEE

public key that t sends funds to. TEE verifies that t sends funds to the correct address

using its public key k, and then constructs a new deposit d, forwards t to the blockchain,

and returns d’s unique identifier to the requester (line 7), signed by the corresponding

TEE. For users without local TEE, they have to use more than one remote TEE service

provider to prevent malicious attackers. To construct a new deposit d, users without

local TEE invoke new deposit withoutTEE (line 8), and present a deposit transaction

t and the list of TEE service providers’ public keys forming the committee that t sends

funds to. The service providers then verify that t sends funds to a k-out-of-m multi-

signature address using the committee members’ public keys, k1...km, and notify the

committee of the new t. The user then constructs a new deposit d, forwards t to the
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blockchain, and returns d’s unique identifier to the requester (line 14), signed by all

committee members.

Payment channels do not hold any funds, and can be set up or close at any

time. Creating a payment channel c is to add an entry in the ledger of user u and v.

Before the channel c can be set up, it must be approved by the the remote party (e.g.,

v if u requests channel creation approval) using approve channel (line 15). Approval

contacts the remote user via its TEE and queries if the user is online to build a channel

c.

After approval, to create payment channels between users without blockchain

interaction, participants call new pay channel and provide the public key of the TEE

with which to create the channel (line 18). The TEEs of two users then establish a

secure communication channel using authenticated Diffie-Hellman for key provisioning

and remote attestation. Using the secure channel, the TEEs assign a unique channel

identifier ci to the channel c, initialize both participant’s balances to 0, and return the

channel identifier (line 24). Then the two users u and v need to create the corresponding

entry of the channel in their ledgers using add ledger (line 33). When u creates the

channel c, its TEE initializes the amount of entry c in the ledger to be 0, and the channel

state to be sc. Only after the ledger created successfully, can the channel c be used by

user u and v for future transactions. If one of them wants to close this channel, she

needs to call close channel (line 44) to close the corresponding entry of the channel in

both u and v’s ledgers. At any time, users may settle the deposit using settle deposit

(line 60) by calling close channel for all channels.
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3.4.7 TEE operations

In this section, we describe three functions associated with ledger: Ledger

creation, Ledger update and Ledger close. The construction consists of the instructions

for two users, Alice and Bob, and their ledgers on their TEEs.

Ledger creation: We start with describing a procedure in which Alice and

Bob register in the APCN system with the initial balance, aA and aB. As mentioned

in Sec 3.4.6, after their TEEs verifying the correctness of their deposit transactions tA

and tB, respectively, their TEEs need to construct new deposits dA and dB, forward

their deposit transactions to the blockchain, and initialize a ledger with the deposit dA

and dB, with the amount being aA and aB. The current version of the ledgers is empty

ones with no entry.

When Alice and Bob agree to open a channel c in APCN, their TEEs negotiate

and assign a unique channel identifier ci to the channel c. Then TEEs need to create

the corresponding entry of the channel in their ledgers, whose format should follow

Table 3.2. For the new ledger entry in Alice’s TEE, the Deposit field continues to be

aA, since no transaction happens at this time. The Channel field is ci as the return

value of the function new pay channel in Alg. 2. The Neighbor field cN is set to be

Bob’s address. The Amount field is initialized as 0, since no transaction happens and

the overall transaction amount Alice sends to Bob is 0. The State field is sc, which

means the channel is active and there is no pending transaction in the channel, so the

channel is ready to serve future transactions.
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Ledger update: When Alice and Bob want to make a new transaction when

there is an ongoing transaction in channel c, we use a standard technique (see, e.g, Sec.

3.3 in [102]) for updating the entry for a payment channel in the ledger that is based on

counters called “version numbers” ω ∈ N . Note that the transaction here includes the

direct transaction between Alice and Bob, and the multi-path transaction going through

Alice and Bob. We do not distinguish between these two situations. Initially, ω is set

to 0, and it is incremented after each transaction via channel c. Suppose Alice initiates

the first transaction τ of amount τa in channel c. If Bob agrees on this transaction,

TEEA and TEEB both need to update the corresponding entry in their ledgers. On

Alice’s side, there is only one entry of channel c in its ledger, and the current status

of the entry is sc with version number 0. So Alice will update its ledger by updating

this entry. The Amount field is set to be ca − τa. The State field is changed to sp until

the transaction is complete. Also, the version number ω is incremented by 1. In Bob’s

ledger, its TEE updates the Amount field to be ca + τa, the State field to be sp, and

the version number to be 1 in the entry for channel c.

Ledger close: If one of the parties, say Alice, wants to close the channel c, she

first needs to negotiate with Bob. After approval by Bob, both of them needs to close

the entry of channel c in their ledgers. Again, their TEEs need to check their ledgers,

collect all entries of channel c, and merge all those with status sc. After this, if there

is only one entry of channel c and its state is sc, TEEs can directly close the channel

by setting the State field of the entry to be Inactive si. If there exists some entries of

channel c with status sp, TEEs wait time ∆ for those transactions to complete. After
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Figure 3.5: Illustration of ledger update protocol.

the waiting time ∆, TEEs merge those entries with status sc and update the State field

to be Inactive si. Those entries whose status are still sp will be abandoned.

3.4.8 TEE committees

We provide TEE committees to prevent malicious TEE service providers for

users without TEEs. For a new TEE service provider who wants to join the system, it

has to perform remote attestation with a group of TEE committee to verify that it has

the correct code and works correctly. It also has to pay certain amount of participation

fee to be included in this committee. Every time when the committee performs a

transaction correctly, all the members will receive incentive from the user.

When creating channels or sending a payment, a user should get approval from

the committee and update its ledger. In order to achieve agreement and consistency of

ledger state among all committee members, APCN uses Committee chains introduced

in TeeChain [81]. The chain replication offers strong consistency without requiring all
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committee members to communicate directly. The committee members form a chain,

with the primary at the head, and the last backup at the tail. The user first sends the

update request to the primary in the committee. The primary will check if the user has

sufficient funds and propagates the update down the chain. Each committee member

does the same check, forwards the update to its backup, and waits for an acknowledg-

ment before updating the ledger. When the primary receives an acknowledgment, the

entire chain has updated. If any committee member fails or refuses to update to the

latest agreed upon ledgers, the replication chain is broken, freezing all nodes at the

current ledger state. And this member will lose all its participation fees and incentive

in the committee.

3.5 Protocol Security Analysis

APCN protects the funds of all users in the PCN: despite what others may

do, funds cannot be stolen or double spent. At any time during the payment protocol

execution, each user should be able to perform a finite set of actions that eventually

results in them receiving their perceived balance on the underlying blockchain.

We now prove that APCN achieves funds security using the Universal Compos-

ability (UC) framework [25] similar to prior work [39, 81]. The UC framework includes

parties executing the protocol in the real world, ideal functionalities performed by ide-

alized third parties, and a set of adversaries A. A protocol is said to be UC secure if the

real-world execution of the protocol cannot be distinguished from the idealized protocol
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execution by the environment.

We model committees as a single TEE executing the protocol. Under UC, we

consider a real world, in which users run the APCN protocol, πAPCN , as described in

Sec 3.3, and an ideal world, in which users interact with an ideal functionality, FAPCN ,

implemented by a trusted third party. Attackers behavior is introduced in the ideal

world by a simulator S with appropriate attacker abilities as described in Sec 3.2.3. To

prove that APCN achieves fund security, we show that (i) the real and ideal worlds

are indistinguishable to an external observer ε. This implies that any attack violating

fund security in the real world is also possible in the ideal one; and (ii) FAPCN achieves

fund security in the ideal world. This proves that πAPCN also achieves fund security.

We’ll show that the simulator S in the ideal-world translates every adversary A in the

real-world into a simulated attacker, which is indistinguishable to the environment.

We prove indistinguishability between the real and ideal worlds through a series

of five hybrid steps, starting at the real world H0, and ending in the ideal world H5. In

each step, a key element is changed and indistinguishability is proven. As commonly

done [16], in H0, the desired behavior of TEEs and the blockchain are replaced by

two ideal functionalities, FTEE and FB respectively. FTEE is an ideal functionality

that models a TEE. It abstracts an enclave as a third party trusted for execution,

confidentiality and authenticity, with respect to any user that is part of the system. FB is

an ideal functionality that represents the blockchain. H1 behaves the same as H0 except

that S simulates FTEE . When the adversary A wants to communicate with its FTEE ,

S faithfully emulates FTEE ’s behavior and records A’s messages. As S simulates the
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real-world protocol perfectly, the environment ε cannot distinguish between H0 and H1.

In H2, S simulates FB. When the adversary A wants to interact with the blockchain,

S emulates FB’s behavior for A, and no environment can distinguish between H1 and

H2. H3 behaves the same as H2 except that if A invoked its FTEE with an incorrect

call, S aborts and drops incorrectly signed messages to FTEE . Otherwise, S delivers the

message to the honest party in the protocol. H2 and H3 are indistinguishable, or else ε

and A can be leveraged to construct an adversary that succeeds in a signature forgery.

In H4, the only difference is that incorrectly signed messages to FB are dropped by S.

H4 is indistinguishable from H3 for the same reasons as the last step. H5 is the ideal

world execution, that calls of S to FAPCN are mapped from the calls in the simulated

real-world. In H4, S can faithfully interact with FAPCN , while faithfully emulating A’s

view of the real-world. S can then output to ε exactly A’s output in the real-world. So

it is equivalence between πAPCN and FTEE to ε.

Since for any environment the ideal-world and the real-world executions are

indistinguishable, funds security that holds in the ideal-world will also hold in the real-

world. We now discuss why the ideal functionality FAPCN satisfies the security require-

ments from Sec. 3.2.4.

Correctness on channel update. For users sharing a channel with their own

TEEs, the correct channel activities are achieved by the ideal functionality notifying

the users of whether the channel has successfully been created or updated. For users

without TEEs, chain replication in the TEE committee offers strong consistency among

all TEEs, which will finally achieve consensus on channel state and notify users.
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Guaranteed channel closing with latest state. A channel u − v can be closed

by either u or v with latest state. If u sends a channel closing request to the ideal

functionality FAPCN , it will inform v with a message. If it does not receive any dispute

or response from v within time ∆, it will close the channel after the channel finishing

all the ongoing transactions or reaching time bound. If v provides a dispute with the

correct signed ledger and latest timestamp, FAPCN will accept this channel state to

close the channel, and also for future settlement.

Guaranteed no double spending. Consider a user u, it calls the ideal function-

ality FAPCN to make a transaction to v. FAPCN always guarantees that u has enough

funds to pay v, and updates funds after each transaction. It makes sure that u cannot

use the same amount of money to pay others twice.

3.6 Performance Evaluation

We present the evaluation results based on prototype implementation and sim-

ulations.

3.6.1 Methodology

We implement the APCN prototype using Intel SGX SDK in C++. The pro-

totype is mainly used to evaluate the real latency to generate ledgers, links, and trans-

actions. Note that multiple TEE implementations are commercially available, including

ARM TrustZone and AMD SEV. They can also be applied.

The simulations use two real PCN topologies: Ripple [13] and Lightning [102],
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as well as synthesis topologies. For Ripple, we use the data from January 2021 to

December 2021, and get the network topology with 1,783 nodes and 18,395 edges in our

simulation. For Lightning, we get the network topology with 3,519 nodes and 47,311

edges on one day in January 2022. The node balance in APCN is assigned as the sum

of the channel balances of a node. We build two sets of synthetic PCN topologies based

on the Waxman model [128] and the scale-free network model [34]. The node balances

are assigned similar to those of Ripple. The payments are also generated by mapping

the Ripple transactions to the synthetic topologies.

In order to defend side-channel attacks, we use timing and memory-access

side-channel resistant libraries, AES-NI based AES-GCM [60, 63]. To further enhance

the security of APCN, we apply T-SGX [117], a countermeasure for controlled-channel

attacks.

Comparisons. To evaluate the performance of APCN, we compare APCN

with WebFlow [142], SpeedyMurmurs (SM) [110], Spider [118], Perun [38], and shortest

paths (SP).

Metrics. We use average processing latency and the number of hopcounts to

evaluate the congestion control mechanism in APCN. The processing latency of payment

is calculated as the sum of per-hop delay along the path which is related to the channel

condition. Similar to prior work [110,126], we also use success rate as evaluation metric

for resource utilization, defined as the percentage of successful payments whose demands

are met overall generated payments. We report the average results over 10 runs, each

of which includes hundreds of communication pairs.
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Table 3.3: Channel performance

Operation and Latency(ms) APCN APCN w/ T-SGX

Single Local TEE:
new payment channel 2,310 6,183
close channel 2,205 5,830
makepayments 105 291

Remote TEE:
new payment channel 4,317 25,294
close channel 2,984 12,523
makepayments 427 1,015

3.6.2 Evaluation Results

Performance of payment channels. We conduct a testbed evaluation with

the prototype. In the experiments, we construct a payment channel between two users

with local TEEs. So the users only use a single local TEE to manage their ledgers

and transactions instead of the TEE service providers committee. We execute several

transactions between them. Table 4.1 shows the performance of different actions of

APCN, and the latency when applying T-SGX to improve system security. Each channel

creation takes 2.3 secs on average. It is much faster than channel creation in Lightning

Network, which is approximately 60 mins, as a transaction must be placed onto the

blockchain and confirmation takes 6 Bitcoin blocks. Channel creation in APCN only

requires the corresponding TEE to perform remote attestation and add an entry in

its ledger, without the participants of the blockchain. Even though remote attestation

requires participation of the Intel attestation service, it will not become the bottleneck

when the system scales up. The reason is that each user only has limited number of

channels with its neighbors, and channel creation is not a frequent action. As long as the

channel is there, users can perform unlimited number of transactions via the channel.
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To close a channel, TEE has to wait until the channel status in the ledger becomes

‘Complete’. The waiting time can vary a lot, so we only evaluate the time to close a

channel whose status is Complete. In APCN, closing a channel only requires status

change in the ledger and takes 2.2 secs on average, which is much less than the time to

close a channel in Lightning Network which requires a transaction in blockchain. For

the payments processing latency, we only consider the time of an idle channel processing

one payment. It is 105 ms on average. We use this time as ∆ in our congestion control

mechanism in evaluation.

We then consider the case of non-SGX users. we construct a payment channel

between two users, one is equipped with SGX, one is not and uses a TEE service

provider committee at size of 3. Creation of such a payment channel takes 4.3 secs, as

the non-SGX user must verify the integrity of TEEs of the committee. Closing channel

and processing payment also take more times, 2.9 secs and 427 ms respectively, since

each TEE service provider in the committee needs to verify and sign each update of the

user’s ledger. When applying T-SGX to APCN, the processing latency increased within

5 times in all the cases, which is tolerable for better security.

Comparison with other PCNs. We use simulations to compare the perfor-

mance of APCN, WebFlow, and Perun – a virtual payment channel system. For virtual

payment channels, we analyze the historical transaction dataset in different network

topologies. The virtual channels are built according to the transaction frequency of

user pairs. We tends to build virtual channel for user pairs making transactions with

higher frequency. We set the proportion of virtual channels to be q, and vary the q
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Figure 3.6: The success ratio comparison of APCN, PCN and virtual payment channel
network with varying proportion of virtual channels.

0 10 20 30 40 50 60 70 80 90 100
p (%)

300

400

500

600

700

A
ve

ra
ge

 r
ou

ti
ng

 la
te

nc
y 

(m
s)

(a) Ripple

0 10 20 30 40 50 60 70 80 90 100
p (%)

200

250

300

350

400

A
ve

ra
ge

 r
ou

ti
ng

 la
te

nc
y 

(m
s)

(b) Lightning

0 10 20 30 40 50 60 70 80 90 100
p (%)

400

450

500

550

600

A
ve

ra
ge

 r
ou

ti
ng

 la
te

nc
y 

(m
s)

(c) Waxman

0 10 20 30 40 50 60 70 80 90 100
p (%)

300

350

400

450

500

550

600

A
ve

ra
ge

 r
ou

ti
ng

 la
te

nc
y 

(m
s)

(d) Scale-free

Figure 3.7: The average routing latency with varying p values.

value from 0% to 100% to test the performance. Here, we use 5,000 transactions in

each run. Figure 3.6 shows the success rates of transactions in APCN, WebFlow, and

Perun with varying q value. When q is 0, Perun has no virtual channel, and it becomes

the same scheme as WebFlow. All users need to execute the routing protocol to probe

the payment channels to send or relay transactions. So it has the same performance as

WebFlow. With more payment pairs setting up virtual channel, the overall success rate

decreases a lot. The reason is that, with more virtual channels in the networks, more

funds are locked in the virtual channels, and those funds cannot be used in other chan-

nels. Although virtual payment channels provide a very fast way to stream payments,

it actually affect the overall success rate.

Efficiency of congestion control mechanism. We first consider the influ-
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ence of parameters in our congestion control mechanism. With congestion control, the

intermediate node would send the payment to the direct neighbor closest to the receiver

with a probability p in APCN. To find the optimal p for our system, we vary the p

value from 0% to 100%, and see how the choice impacts the performance, i.e. average

processing latency. Here, we use 5,000 transactions in each run. Figure 3.7 shows the

average processing latency with varying p values. It is understandable that both set-

tings: p = 0% and 100% result in relatively high average processing delay. Because when

p equals to 0%, it becomes the same routing protocol as WebFlow without congestion

control. Even if the algorithm always chooses the next hop that is closest to the receiver

and more likely to have lower routing stretch, the next hop itself may introduce large

processing delay, and thus lead to higher overall processing latency along the path. On

the contrary, when p equals to 100%, our heuristic routing algorithm at intermediate

nodes estimates the remaining processing latency proportional to the distance from the

node to the recipient. However, this estimation is not accurate reflecting the processing

latency, since hop-delay is not a stable metric and changing over time. Observed from

the evaluation result, when p equals to 40%, the congestion control mechanism could

achieve a better performance. So we set p value to 40% in the following experiments.

Performance with different networks. We evaluate APCN with four PCN

topologies and a varied number of transactions. As shown in Fig. 3.8, by increasing of

the number of transactions, the success rate of all schemes except APCN decreases

significantly in all topologies. The reason is that, for other schemes under traditional

payment channel networks, as more transactions flowing into the network, more channels
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Figure 3.8: The success ratio with varying transaction numbers under different network
topologies.

are saturated in one direction, making them cannot be used for future transactions.

However, in APCN, the success ratio almost keeps over 95% and does not have obvious

changes, while success ratio of other schemes are always below 80%.

3.7 Related Work

PCNs provide a high-throughput solution for blockchains [50]. Lightning Net-

work [102] uses max-flow routing algorithms to find paths. Flash [126] also uses mod-

ified max-flow routing algorithms but treats elephant and mice payments differently.

SilentWhispers [84], SpeedyMurmurs [110], and have been proposed to improve routing

scalability.

In order to improve the fund utilization and avoid channel imbalance, Spi-

der [118] develops a multi-path congestion control algorithm. It is a centralized offline

routing algorithm and still has a high probing overhead. REVIVE [68] enables users to

securely rebalance their channels, according to the preferences of the channel owners.

Sprites [90] supports partial withdrawals and deposits, during which the channel can

continue to operate without interruption, but requires smart contracts. Teechain [81]
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supports dynamic deposits with treasuries by TEEs, in order to prevent parties from

stealing the fund. Different from them, APCN enables shared deposits among all pay-

ment channels of each user and allows funds to be used with high flexibility.

3.8 Conclusion

We present APCN, a novel design for PCNs that enables shared funds among

all the payment channels of a node. This design provides high fund-allocation flexibil-

ity and hence significantly increases transaction success rates. To prevent users from

misbehavior, we use TEEs to control funds, balances, and payments. We also design

a routing protocol in APCN that takes congestion control into account. We build a

prototype of APCN with Intel SGX and evaluate the performance with both prototype

experiments and simulations with real PCN data. Results show that APCN achieves ev-

idently higher success rates of multi-hop payments with lower average hops and latency,

compared to existing PCNs.
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Chapter 4

XHub: A Cross-chain Payment Channel

Network

4.1 Introduction

Blockchain is a promising solution for decentralized digital ledgers. Since Bit-

coin was invented in 2008 [94], there have been many other payment systems emerging

based on blockchains, such as Ripple [13], Stellar [46], and Ethereum [45]. The total

number of cryptocurrencies in the world has soared to more than 20,200 in circulation

currently [8]. However, despite the growing ecosystem, cryptocurrencies continue to op-

erate in complete isolation from one another. Interoperability, i.e., allowing cryptocur-

rencies to be transferred across multiple blockchains, is currently one of the bottlenecks

preventing the mass adoption of blockchain technology.

One solution of interoperability is to use sidechains [14]. The mainchain main-
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tains a ledger and connects to the sidechain via a communication protocol that facilitates

asset transfer between the mainchain and the sidechain [14]. However, it does not al-

low payments across sidechains. Another solution is to use a blockchain of blockchains

where there is another level of blockchain recording and monitoring information and

communication between different blockchains [71, 132]. However, introducing another

blockchain leads to high difficulty in managing the blockchain and has high latency.

Cross-chain bridges have been built in practice [5] to enable users to move funds from

one blockchain to another. However, it requires users to have wallets and participate

in both blockchains. In practice, users who are in different blockchains and want to

make transactions might not want to participate in both blockchains. Currently, there

are several commercial centralized exchange systems for executing fund transfers and

exchanges across blockchains, such as Coinbase [29]. They work like banks, and users

completely rely on them for token exchanges. Thus, these services break the trustless

and decentralized property of blockchains.

On the other hand, scalability on the throughput of blockchains remains an-

other huge problem with growing numbers of users and transactions [32, 102]. For

instance, Bitcoin can only support 10 transactions per second at peak in 2022 [7]. Pay-

ment channel networks (PCNs), a type of peer-to-peer network, have been proposed

to provide a high-throughput solution for blockchain [50, 140]. In a PCN, each user

maintains payment channels to a few other users they trust. A transaction between two

arbitrary users can be achieved by a multi-hop path of payment channels. Hence only

opening and closing a payment channel need to be confirmed by the blockchain while

78



1

14

Blockchain B1
Blockchain B2

HubsSender
Receiver

Figure 4.1: An example of the cross-chain transaction.

most transactions do not, which significantly reduces the blockchain load.

One intuitive idea to achieve both interoperability and scalability is to build

a cross-chain PCN that allows two arbitrary users in different blockchains to make

transactions via a multi-hop path. One might immediately think of Internet routing

that may cross multiple domains. Similar to the gateway routers on the Internet, there

could be some users who act as hubs that have wallets in two blockchains. A user

in one blockchain can make a payment to a hub and the hub forwards the payment

to another user in a different blockchain, as shown in Fig. 4.1. In this way, most

users only need to hold tokens in one blockchain and still have the freedom to make

transactions with any user in other blockchains. This design significantly broadens the

user space of blockchain-based applications, compared to existing solutions that rely on

one blockchain or require every user to have tokens of multiple blockchains.

However, there are multiple challenges in designing the decentralized network

architecture of a cross-chain PCN. First, how to manage multi-currency wallets of the

hubs such that malicious hubs cannot steal funds from other users. Since the relay hubs
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are in both blockchains while the clients only have access to one of the blockchains,

clients have no idea if the relay hub performs correctly in the other blockchain. The

design of Hashed Time-Lock Contracts (HTLCs) [56, 102] and the recently proposed

payment channel hubs [38,55,106,120] enable atomic operations, which means payment

will either complete or the sender can get its funds back. However, they cannot solve

another challenge: malicious hubs use low token exchange rates to attract users but fail

all payment requests. In addition, as a decentralized network, how to make trustworthy

hub information available and accessible to other users is another challenge. There is

no solution in the literature that can address all the above challenges for a cross-chain

PCN.

In this work, we present the first network architecture and the corresponding

protocols of a cross-chain PCN, called XHub. XHub addresses the above challenges by

achieving service availability, transaction atomicity, and auditability. In XHub, users

who correctly follow the protocols will succeed in making payments or get profits from

doing the services. In addition, trustworthy information about hubs will be managed

in a decentralized manner and available to all users. To our knowledge, no prior

solution can achieve all these properties. XHub does not propose new crypto-

graphic methods. Instead, it includes a novel design that combines existing security

protocols including multi-signature (multisig) wallets [31], Byzantine agreements with

blockchains [50], simplified payment verification protocol [94], and anonymous atomic

locks (A2L) [120].

We conduct prototype implementation of machines that exchange messages and
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run on two real blockchains, Bitcoin testnet3 [1] and Ethereum Sepolia testnet [9], as

well as large-scale simulations based on real-world PCN topologies and transactions,

Ripple [13] and Lightning [102]. The results show that the latency of cross-chain trans-

actions is below 1 minute, and even if there are malicious hubs, dispute management

takes no more than 3 minutes. The evaluation shows that XHubs could achieve a signif-

icantly higher success rate compared to the version without hub management protocols.

In summary, this work makes the following contributions:

• We propose, XHub, the first decentralized network architecture of a cross-chain

PCN.

• We design a series of protocols, including the auditor communication protocol,

hub registration protocol, transaction protocol, and hub management protocol to

achieve the security properties.

• We use both prototype implementation and large-scale simulations to demonstrate

the effectiveness of XHub.

• This work is an important step towards the big picture of a decentralized trans-

action system that connects a wide scope of users in different blockchains.

The rest of this paper is organized as follows. The network and security models

are presented in Section 4.2. We describe the detailed design of XHub in Section 4.3.

Section 4.4 provides the security analysis of XHub. Section 4.5 presents the evaluation

results. Section 4.6 describes the related work. Section 4.7 concludes this work.
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4.2 Network and Security Models

4.2.1 Network Model

The design of XHub considers the case of two blockchains, B1 and B2. For a

system with more than two blockchains, we assume XHub is built between every pair of

blockchains and leave the design of a network of networks to future work. Every user has

one or more wallets, and each wallet includes tokens (funds) belonging to one blockchain.

We use Ψ1 and Ψ2 to denote the names of the tokens in B1 and B2, respectively. There

are three types of users:

Clients. Clients are users who want to make transactions, even if they are

in different blockchains. Typically, clients are users with only one wallet and maintain

tokens in one blockchain. They cannot directly talk to or transact with users in other

blockchains.

Hubs. Users with wallets in both B1 and B2 can register as hubs that act as

relays to forward payments between clients in B1 and B2, and get profits by charging

transaction fees. For clients in different blockchains to make transactions, they both

need to find a bi-directional payment channel or a path to a selected relay hub first.

Each hub has an exchange rate for tokens. This is public knowledge on blockchains

and can be periodically updated by hubs. Each hub is associated with a reputation,

which is a score to measure its past behaviors. A hub needs to deposit collateral during

registration. If the hub fails to provide the correct relay, XHub guarantees that all

clients will not lose funds and clients can dispute the failed transactions to lower the
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reputations of misbehaving hubs.

Auditors. The system also has a committee of auditors. The committee

provides trustworthy management of hub information, including the exchange rates,

reputations, and collateral. Each auditor is a user of both blockchains and can profit by

correctly performing the committee services. Any user of both blockchains can register

as an auditor as long as they put enough collateral in a multisig wallet maintained by

the system. If an auditor performs maliciously or remains unresponsive for some time,

they will lose all their collateral and be expelled from the system.

For each blockchain Bi, all users and channels form a payment channel network

(PCN), modeled as a graph G = (H,Vi, Ei), where H is the set of hubs, Vi is the set of

clients in blockchain Bi, and Ei is the set of bi-directional payment channels between

users. In a PCN, two users can make transactions if they share a bi-directional channel

by committing a certain fund to open the channel, or find a multi-hop path of channels

between them. Existing work assumes every client needs to open channels with all

hubs the client will use, which leads to significant locked-in funds from hubs [86, 120]

and significantly limits scalability. Hence XHub allows a client to connect a hub via a

multi-hop path within the PCN and send or receive funds through the path. There are

extensive studies on how to route a payment within the same blockchain [84, 110, 118,

142]. Hence, we consider the research of routing within a blockchain to be out of the

scope of this paper and use a decentralized solution [142] to route payments between a

pair of users in the same blockchain.
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4.2.2 Security Model and Assumptions

We assume users can exchange messages through a traditional secure commu-

nication channel such as TLS. Information leakages among them are beyond the scope

of our discussion. We assume the attackers can gain complete control of some but not

all relay hubs. For each compromised hub, including controlling the stored funds and

network communication, they may drop, modify and replay messages. An attacker may

also delay or prevent a hub it controls from accessing the blockchains for an unbounded

amount of time. All users, including clients and hubs, are rational, selfish, and poten-

tially malicious, i.e., they may be malicious and attempt to steal funds and deviate from

the payment protocol, if it benefits them. Hubs may intentionally fail ongoing token

exchanges, keep funds from senders without exchanging and forwarding them to the

receiver, or overcharge transaction fees. Malicious clients may collude to keep sending

cross-chain transactions through a certain hub in one direction (e.g., always from B1 to

B2). This attack will exhaust one type of token of the hub and make it fail to serve as

a hub.

Following Byzantine fault-tolerant settings, we assume the proportion of adver-

saries is less than 33% of the total number of consensus participants of both blockchains

and the committee of auditors. The delay ∆ of posting consensus information to a

blockchain depends on the block generation speed. The block generation speeds vary a

lot among different blockchains and might change over time.
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4.2.3 Design Objectives

XHub achieves the following design objectives.

Availability and auditability: If hubs, clients, and auditors follow the

XHub protocols, they will succeed in making payments or get profits from doing the

services. Auditability provides resilience to denial-of-service (DoS) and counterfeiting

attacks. Although malicious hubs cannot steal funds from clients due to atomicity, they

still can attract clients to select them as relays and fail to forward payments. Those

failures will be detected by clients and clients can dispute them to the auditors. The

auditors will decrease the reputation of any misbehaving hub based on the dispute re-

sults. Clients can find the latest reputations of all hubs and avoid selecting those with

low reputations. Auditability also guarantees detection and penalty of counterfeiting,

i.e., a client, hub, or auditor reporting incorrect information.

Atomicity: Atomicity ensures that in a cross-chain transaction, all the pay-

ments along the path will succeed together or all fail. It guarantees that honest users

will not get any loss even if there exist malicious parties.

Unlinkability: Unlinkability ensures that if there are multiple cross-chain

transactions happening through one hub, the hub cannot determine the sender-receiver

pairs better than a random guess.

Performance: The main performance goal of cross-chain payment hubs in-

cludes low latency for cross-chain transactions, high scalability, and high success rate.
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4.3 Protocol Design of XHub

This section presents the design of the protocols of XHub.

4.3.1 Design Overview

XHub is a network architecture that supports clients to select preferred hubs

for cross-chain transactions while preserving security properties such as atomicity. The

key idea is to maintain public-available and trustworthy information about the hubs,

including their reputation scores, and exchange rates, with the help of a committee of

decentralized auditors. XHub includes the following protocols.

1) Auditor communication protocol supports the functions of a committee

of auditors, which register and manages hub information including their reputations and

exchange rates, responds to queries of this information, and handles disputes from victim

clients. A client or hub needs to broadcast to the whole committee of auditors or let an

arbitrary auditor broadcast to other auditors.

2) Hub registration protocol allows a user of two blockchains to register

as a hub.

3) Transaction protocol allows two clients in different blockchains to make

a transaction via a hub. It includes three components: hub selection, intra-blockchain

routing, and cross-chain transaction.

4) Hub management protocol allows auditors, hubs, and clients to man-

age trustworthy information of hubs, including their reputations and exchange rates.
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Misbehaving hubs will be penalized by lowering their reputations.

4.3.2 Auditor communication protocol

The committee of auditors manages the exchange rates, reputations, and col-

lateral of all hubs together. All the auditors jointly maintain a multi-signature (mul-

tisig) wallet in each blockchain using the multisig protocol proposed in Bitcoin [31].

It performs a write operation to a blockchain when a threshold number of signatures

are successfully collected from the auditors. In XHub, the threshold is set to be 2/3

of all auditors. Hence at least 2/3 of the auditors are required to sign each verifica-

tion or update message for the information of a hub before sending the message to the

blockchain. A user of both blockchains may register as an auditor to get profits when

they correctly provide signatures. When a user registers as an auditor, they need to put

collateral in the multisig wallet. Only the auditors who correctly sign the messages can

get profit [50, 139], which is from the fees of hub registrations, exchange rate updates,

reputation updates, and disputes.

Fig. 4.2 shows the communication processes related to the auditors. The audi-

tor communication protocol achieves Byzantine agreements, because we do not assume
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that all auditors are honest and available all the time. In XHub, we follow the design

of Byzantine agreement protocol in Algorand [50], to achieve Byzantine fault tolerance

among the auditors. This solution can tolerate up to 1/3 faulty auditors.

In addition, auditors also communicate with hubs, clients, and blockchains in

other protocols of XHub including the hub registration and hub management protocols.

Those processes will be detailed in later sections.

4.3.3 Hub registration protocol

Any user with wallets in both blockchains can register as a hub and get profit

by forwarding payments. To register as a hub, a user deposits collateral to the multisig

wallets of auditors in both two blockchains. The value of the collateral is pre-determined

by the system and sufficient to cover dispute fees until its reputation reaches a very low

value.

Figure 4.3 shows the hub registration protocol, which includes the following

steps.

1) The registering user h first sends two transactions of putting collateral colh

to the multisig wallets of the auditors in both blockchains B1 and B2 respectively.

2) h keeps monitoring the two blockchains until the deposit transactions are

posted. It generates two corresponding proofs of inclusion and sends them to an arbi-

trary auditor. The proof is constructed by signing the transaction id and the transaction

data with h’s private key.

3) Upon receiving the proof, each auditor searches both blockchains to verify
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if the deposit transactions are in the blockchains. XHub does not make each auditor

download the whole blockchains to search for the transactions, because it costs a large

amount of storage, computation, bandwidth, as well as long delays [24]. We use the

simplified payment verification (SPV) protocol [94]. Instead of downloading the whole

blockchain, auditors download only the header of each block, which contains the root of a

Merkle tree [89] of transactions. To verify the correct inclusion of a deposit transaction,

it is sufficient to provide the Merkle tree path from the root to the leaf containing the

transaction of the corresponding block.

4) Once an auditor successfully verifies the two deposit transactions, it will

request the registering hub for its exchange rate r and transaction fee f .

5) Upon receiving r and f , the auditor will broadcast to the committee a signed

New Hub message, including the hub’s address, r, f , and a default reputation Rh.

6) When the auditor obtains signatures of the message from at least 2/3 of the

auditors, it sends the New Hub message with these signatures to the two blockchains

respectively. The inclusion of the New Hub message in the blockchains indicates the

successful registration of the hub.

4.3.4 Transaction protocol

The transaction protocol supports that a sender in B1 spends funds in an

amount of ψ1 and a receiver in B2 receives funds in an amount of ψ2. Note ψ2 =

r12(ψ1 − f), where r12 is the exchange rate from B1 to B2 and f is the transaction fee

charged by the hub.
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Hub selection. When two clients want to make a cross-chain transaction,

they need to first select a hub as the relay. There are three factors to consider: the

exchange rate, transaction fee, and reputation score for each hub, and select the one that

is considered ideal. The sender prefers a high exchange rate to pay fewer funds, a low

transaction fee, and a high reputation – note an unsuccessful payment by a malicious

hub does not make the sender’s funds be stolen, but causes extra time to dispute and

select another hub. Each client can self-define a 3-tuple (α, β, γ) to calculate a score

(αR+βrh−γfh) for each hub h and select the one with the highest score. After selecting

the relay hub, the sender needs to confirm with the receiver to guarantee this hub is

correctly registered in the other blockchain with the same reputation, exchange rate,

and transaction fee information. If not, the sender needs to select another hub.

Intra-blockchain routing. After selecting the hub, the sender needs to make

the payment of the corresponding amount of funds to the hub first, via a direct link or

multi-hop path. We use a decentralized routing protocol [142] to find a payment path

between two users in the same blockchain. Similarly, the hub uses the same routing

protocol to find a path to the receiver in the other blockchain.

Cross-chain transaction. One important security requirement when a hub

forwards payments between two blockchains is atomicity. Hubs are not necessarily

honest and, in particular, they might attempt to steal money from clients, such as

withholding funds from the sender without relaying them to the receiver, or overcharging

in conversion fees than what they are allowed to. Atomicity guarantees that either

a transaction of the correct amount is successful or payment funds go back to the
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original sender. In addition, a further requirement is unlinkability, which ensures that if

there are multiple cross-chain transactions happening through one hub, the hub cannot

determine the sender-receiver pairs better than a random guess [51, 85]. The cross-

chain transaction step of XHub is developed by a recently proposed solution called

anonymous atomic locks (A2L) [120] that achieves both atomicity and unlinkability at

a single hub. A2L cannot achieve availability or auditability: a malicious hub can keep

failing payments without penalty.

We briefly present the protocol of a cross-chain transaction as shown in Fig. 4.4.

1) Suppose a sender A wants to send a cross-chain payment to a receiver B.

The selected hub h first creates a fresh cryptographic puzzle Z and its corresponding

solution. The hub then sends a locked fund Lock(h,B, ψ2, Z, T2) with this puzzle to B,

indicating that B can receive the payment in the amount of ψ2 from the hub only if he

provides the correct solution to Z within time T2.

2) B randomizes Z into a new puzzle Z ′ using a randomness rand and sends Z ′

to A. A2L applies a homomorphic cryptographic scheme to guarantee that the solution

of Z can be obtained using the solution of Z ′ and rand, but one cannot link Z with Z ′.

3) A re-randomizes Z ′ to a new puzzle Z ′′ with a randomness rand′ and sends a

locked fund Lock(h,A, ψ1, Z
′′, T1) to h, indicating that h can get the funds if it provides

the solution of Z ′′.

4) h can solve Z ′′ using a universal trapdoor tp but cannot link Z ′′ with Z. h

then provides the solution of Z ′′ and get the payment from A.

5) A computes the solution of Z ′ from the solution of Z ′′ and rand′ and sends
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the solution to B.

6) B computes the solution of Z from the solution of Z ′ and rand and sends

the solution to h. Then B gets the payment from h.

In the end, B2 receives funds in an amount of ψ2. If any of the three parties

fails to perform the correct operations, the whole transaction will fail but no one loses

funds. In addition, the party that causes the failure will be detected by others and

reported to auditors.

In the above protocol, the communication between A and h and B and h can

be direct Internet packet exchanges, but the payments from h to B in 1) and from A to

h in 3) could take one or more hops in the PCN, based on intra-blockchain routing. We

further implement payment forwarding at every hop using A2L for unlinkability within

a blockchain.

In practice, observations show that the exchange rate between the two cryp-

tocurrencies may be susceptible to strong fluctuations. Hence XHub locks the exchange

rate once a transaction is set up until the transaction completes.

4.3.5 Hub management protocol

To achieve the availability of hub services and auditability of hub behaviors,

the reputations of hubs should be correctly managed in XHub and accessible to clients.

For all new hubs that join XHub, they are assigned the same initial reputation

r̂. The reputation of a hub is updated for each time epoch. If the misbehavior of a hub

is disputed by a client and verified by auditors in an epoch, the reputation of this hub
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will decrease by 50%. If a hub keeps behaving correctly for 10 epochs, they can request

the auditors to raise its reputation by 5% by paying a transaction fee. Note that there

is always a latency to post the new reputation to the blockchains. Hence, clients may

contact an arbitrary auditor for the latest reputation in the current epoch. Later clients

can verify this in blockchains. If a hub does not respond to a transaction request from the

beginning, it is not considered misbehavior because the hub can be offline. The clients

can easily choose another hub. However, a hub cannot fail on Step 4) of the cross-chain

transaction protocol, i.e., providing a correct solution of Z ′′. Besides, since auditors

can be arbitrary users with enough collateral in both blockchains, an auditor could

be offline or malicious. In order to mitigate the potential influence on client requests,

clients can always make multiple queries to several auditors. In this way, they can detect

the malicious hub that provided the wrong hub information. Once such misbehavior

is identified, clients can submit disputes to other auditors for compensation and expel

the malicious hub from the committee. Furthermore, if clients notice an auditor who

remains unresponsive, they can also dispute to remove it from the committee.

Dispute handling. When a hub fails to provide a correct solution of Z ′′,

intentionally or unintentionally, this event is guaranteed to be detected by the sender

and receiver, based on the transaction protocol. Although the sender does not lose

funds due to the atomicity of the protocol, the clients can dispute this event to decrease

the reputation of the hub. In order to incentivize the clients and auditors to do so, if

auditors successfully verify a misbehavior and update the reputation to the blockchains,

this hub’s collateral will be used to compensate the users and auditors.
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We first discuss the case of the hub h providing a wrong solution of Z ′′. When

a sender A detects that a hub h fails to perform the transaction protocol, e.g., h sends

a wrong solution of Z ′′, A can send a dispute message DA = {msgkh ||Z ′′||colA} to an

arbitrary auditor U , where msgkh is the signed message from h including the wrong

solution of Z ′′ and colA is A’s collateral. If the dispute launched by A is incorrect, A

will get punished by losing her collateral. This prevents clients from abusing the dispute

process. Upon receiving the dispute message DA, the auditor will broadcast DA to other

auditors and then verify if the solution from h is correct. If the solution is incorrect, the

auditor signs a dispute success message and broadcasts it to all auditors. When 2/3 of

the auditors sign dispute success messages, a reputation update can be posted to the

blockchains.

The second case is that the hub h does not send the solution of Z ′′ to A. A will

first try extra x attempts of requesting the solution of Z ′′, where x is a random integer

in [1, 5]. If there is still no response, A sends a dispute message to an auditor. After

receiving A’s dispute, an auditor will also send Z ′′ to h and ask for the solution. Note

the transaction protocol achieves unlinkability, hence h cannot tell whether a request is

from A or an auditor. If h intentionally declines to send the solution of Z ′′, even with

a very small probability, this misbehavior will eventually be detected by the auditor.

The only way h can avoid being detected is by always responding with the correct

solution of Z ′′. When 2/3 of the auditors detect that h declines to provide the solution,

a reputation update can be posted to the blockchains.

Exchange rate management. Each hub can set its own exchange rate r. It
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ID Rep Rate Time

h1 80 14.4 120

h1 20 14.4 121

h4 80 14.2 123

h1 20 12 124

ID Rep Rate Time Upd

h1 70 14.4 100 f46q

h2 20 16 115 ca92

h3 80 15 110 08b1

h4 80 12 110 08b1

ID Rep Rat
e
Time

h1 20 16 98
h2 80 16 99
h1 70 14.4 100

(a) Update Table (b) Hub Table

ID Rep Rat
e
Time

h3 80 14 118
h3 80 15 110
h4 80 12 110

…

Figure 4.5: Example of the update table and hub information table on an auditor.

can simply set r to the market rate or use the exchange rate to balance its two tokens

in both blockchains. Token balancing is necessary because if one token is depleted, the

hub cannot relay any transactions between two blockchains. Assume that r12 is the rate

such that the sender pays the hub 1 Ψ1 token and the hub will pay the receiver r12 Ψ2

tokens. We have r21 = 1
r12

. For example, if a hub has more Ψ2 tokens than Ψ1 tokens,

the exchange rate r12 can be higher than the market price to encourage clients to make

payments in Ψ1 tokens, while the exchange rate r21 can be lower than the market price.

Hub information management. In every epoch, all active hubs can update

their exchange rate by sending the new one to auditors. Auditors maintain a local table

that stores the exchange rate and reputation information of all hubs that will also be

posted to the blockchains. Auditors might update the hub information every epoch with

the current timestamp and their signatures. The updated hub table needs to be signed

by at least 2/3 of the auditors to be put in the blockchains.

Using blockchain to maintain hub information raises two performance prob-

lems. 1) An update of hub information takes a considerable amount of time to be
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available on a blockchain, due to its long processing time. Hence, the hub information

on the blockchains might not be the latest. 2) The hub information, including hub rep-

utation and exchange rates might change frequently, resulting in both a large amount

of update requests and a large size of blockchain data to be posted.

To resolve the above problems, we propose a hybrid solution that combines

the strengths of trustworthy information on blockchains and large storage capacity on

auditors. Auditors locally maintain a hub table storing all hub information and an

update table recording all the hub updates in the current epoch. At the end of each

epoch, auditors send the digest of these two tables to the blockchains. Users query hub

information directly from auditors and verify the correctness by checking the blockchains

after the digest is processed by the blockchain and posted. In this way, users can access

the latest hub information while still benefiting from the security and trust provided by

blockchains. Furthermore, the combination of blockchains and auditors ensures that hub

information can be updated and maintained in a timely and efficient manner, reducing

the risk of failed transactions due to outdated or incorrect hub information. We provide

an example of the hub table and update table in Fig. 4.5. The Hub table maintains the

latest hub information at the end of the previous epoch. For each hub, the Upd entry

indicates the time of the last update and includes a link to the corresponding update

table in the corresponding epoch. The update table records every hub update in the

current epoch. The update message needs to be signed by at least 2/3 of the auditors

in order to be confirmed in blockchains.

User query. A user can query an arbitrary auditor for the hub information.
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The auditor sends the current update table and hub table with the timestamp and its

signature. The user searches the blockchain to check if this version of the tables has

been confirmed. If this version exists in the blockchains, the user computes the table

digest to verify its correctness. If this version does not exist, the user can ask the

auditor for the most recent version of the tables that is available on the blockchains. If

that version passes the digest checking, the user can temporarily trust the information

from the auditor and wait for some time to check its correctness later. In the future, if

the information is proved to be incorrect by the blockchains, the user can dispute the

misbehavior of the auditor and the auditor will be removed by the committee.

4.3.6 Multiple Blockchains

XHub can be extended to the scenario of more than two blockchains, as long

as there exist hubs and auditors between any two of them. For hubs that have wallets

for multiple blockchains and are willing to work between all of them, they must reg-

ister in each blockchain and set up exchange rates and transaction fees for every pair

of blockchains. Hub reputation in each blockchain pair is independently managed by

auditor committees responsible for that pair. Auditors who can serve between multi-

ple blockchains, similarly, will participate in one auditor committee for each blockchain

pair. And they have to maintain one hub information table for each pair.
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4.4 Protocol Security Analysis

4.4.1 Availability

The availability of XHub refers to the property that any party who fails to

follow the protocols will be detected by others and (eventually) be excluded from the

system. Hence users can receive the services of XHub. First, we show that:

Proposition 4. A registering hub that follows the registration protocol to lock collateral

is guaranteed to be posted to the public as a valid hub even if there exist malicious

auditors.

This proposition holds based on the property of the multisig wallets. Suppose

tlock denotes the transaction of a registering hub locking funds to a multisig wallet of the

auditors. tlock is guaranteed to be confirmed if more than 2/3 of auditors are honest.The

multisig protocol settles a transaction to a blockchain when signatures are successfully

collected from more than 2/3 of the auditors [31]. Hence if more than 2/3 of auditors are

honest, tlock is guaranteed to be confirmed on the blockchain. When the transactions

of both blockchains are confirmed, the hub is successfully registered.

Proposition 5. All the clients have access to the information of a hub that is success-

fully registered.

Clients always query hub information from several auditors. If they notice the

hub information from some auditors is not consistent, they will follow the one with a

correct digest in the blockchains. Since we assume 2/3 of the auditors are honest and
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trusted, the digest of the correct hub information will receive signatures from at least

2/3 of the auditors and be successfully posted to the blockchain, based on Byzantine

agreement protocol [50]. And clients can always get the latest hub information if they

query a sufficient number of auditors.

Denial-of-Service (DoS) attacks. There are two main types of DoS attacks.

1) A hub accepts a payment request but fails to complete the transaction protocol by

either providing a wrong solution of Z ′′ or declining to provide the solution. For a wrong

solution, the sender may submit a dispute message to an auditor. If the solution is

incorrect, the auditor signs a dispute success message and broadcasts it to all auditors.

When 2/3 of the auditors sign dispute success messages, a reputation update can be

posted to the blockchains. For a hub that declines to provide the solution, the dispute

protocol allows an auditor to anonymously request the solution. Hence hub either

always provides the solution or it will be detected by an auditor. 2) A malicious auditor

intentionally refuses to provide the hub information. In this case, clients can simply

query another auditor. Moreover, at the end of each time slot, auditors send the digest

of both the update and hub tables to the blockchains. Even if an adversary refuses to

verify and sign, the system can still rely on the remaining honest auditors to sign the

digest and make sure it can be confirmed in the blockchain. If an adversary tries to

perform a Sybil attack to submit false tables to the blockchain, it would need to register

a large number of auditors to approve this message, which requires it to lock up a large

amount of collateral to be effective, making this attack expensive and irrational.

Counterfeiting. When a client request hub information from auditors, a
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malicious auditor might send a false hub table, creating counterfeit T ′h. However, at

the end of the epoch, auditors will work together to put the hub table digest to the

blockchains which require verification and signatures from more than 2/3 of auditors.

If the malicious auditor tends to put a counterfeit T ′h in the blockchains, it has to

compromise more than 2/3 of auditors in the system, which is impractical in the real

world. The correct table digest D(Th) will ultimately be verified and confirmed in the

blockchains. Auditability ensures that any client with read access to the blockchains can

detect the misbehavior of the malicious auditor by comparing the table digest D(Th)

retrieved from the blockchains with the D(T ′h) computed using T ′h got from the auditor.

If two digests do not match, clients can submit proof showing the auditor manipulates

false tables.

Stale table. During the middle of an epoch, the update table remains incom-

plete. When clients query the update table, the current version of the update table is

T ′u. But the adversary might send a stale version T s
u to its own benefit. For example,

as shown in Fig.4.5, at time 122, the current update table T ′upd shows that hub h1 has

a reputation of 20. But the malicious auditor could collude with the hub h1 and send

a stale update table T s
u at time 120 when h1 had a reputation of 80. After a while, the

clients retrieve the digest of the update table D(Tu) from the blockchains and verify

the correctness of T s
u by checking its inclusion in the Tu. Since T

s
u is not fabricated, the

adversary can still pass this inclusion test, and clients remain unaware of the stale table

T s
u . To prevent this attack, the system requires that all parties include a timestamp

when querying or transmitting hub information. When a client queries the hub informa-
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tion at time t1, they construct a query with timestamp Q(t1) and send it to an auditor.

The auditor constructs the response by including the latest update table T ′u at t1, the

received request Q(t1), and its signature. Consequently, the client can confirm that the

response corresponds to their request at time t1 and cannot deny the timestamp. At

the end of the epoch, when the auditor sends the digest of the update and hub table to

the blockchains or helps to verify the table digest, it will also send a current version of

the update table Tu to the client. At the client side, after verifying the correctness of

Tu by checking the D(Tu) from the blockchains, the client compares its locally stored

T ′u with Tu. If the subset of Tu that all the entries satisfy t <= t1, denoted as Tut1
, is

larger than the table T ′u, T
′
u is detected to be a stale table.

4.4.2 Atomicity and unlinkability

Atomicity guarantees that honest parties will make transactions successfully

or get all their money back, which ensures balance security for the involved parties. The

atomicity and unlinkability properties of XHub relies on the security of the randomized

puzzle scheme, as proved in A2L [120]. The hub can only provide the solution of Z ′′

in order to receive the funds and Z ′′ will be used by A to generate a solution of Z ′,

which will be used by B to unlock the funds from h. The clients can only steal the

funds if they can generate a correct solution to the randomized puzzle, without paying

h. However, this breaks the discrete logarithm (DLOG) problem, which is believed to

be a hard problem [120]. In addition, the unlinkability is achieved by the fact that the

adversary cannot break the indistinguishability of the adaptor signature scheme [120].
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And we skip the detailed proof due to space limit.

We now show that the Cross-chain payment hub achieves funds security using

the Universal Composability (UC) framework [25] similar to prior work [39, 81] which

is based on a system of interactive Turing machines (ITMs). The UC framework in-

cludes parties executing the protocol in the real world, ideal functionalities performed

by idealized third parties, and a set of adversaries A. A protocol is said to be UC-secure

if the real-world execution of the protocol cannot be distinguished from the idealized

protocol execution by the environment. The UC framework includes an environment

ε, which represents the external world. The environment chooses the inputs given to

each ITMs in the system and observes the outputs. The framework also includes hon-

est parties who follow the protocol, and a set of adversary A who try to break the

security of the system. Besides real-world functionalities, the framework also includes

ideal functionalities, which act as idealized third parties, and implement some target

specifications. They exhibit the desired properties of the protocol. We define the ideal

world functionality Fatomic for the transaction protocol. The clients and relay hubs

interact with Fatomic implemented by a trusted third party to perform the cross-chain

transactions. Fatomic manages a list P to keep track of the cryptographic puzzles and

timelocks, and another list K to keep track of the valid key to the puzzles. Atomicity

for a cross-chain transaction means that a puzzle can only be solved if there is a corre-

sponding execution of the solution for that puzzle. This is enforced by Fatomic because

it keeps track of the puzzles in the list P , and checks whether the puzzle matches one

of the existing entries in the list P that has already been solved. Since the puzzles can
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only be solved by a PuzzleSolver function inside Fatomic which is trusted, this ensures

that PuzzleSolver must be called before checking the validity of the puzzle solution in

order for it to succeed.

4.5 Experimental Evaluation

We evaluate the performance and security of XHub using both simulations and

prototype implementation.

4.5.1 Methodology

We implement the system prototype of XHub on two blockchains, Bitcoin

testnet3 [1] and Ethereum Sepolia testnet [9]. The testnets are real blockchains but the

tokens do not have any value. They are used for software testing and research purposes.

Both Bitcoin and Ethereum use ECDSA with the secp256k1 Koblitz curve [69, 107],

proving native support for the corresponding cryptographic operations. The prototype

is mainly used for evaluating the real latency to set up a hub, make transactions, and

dispute management. The transaction protocol of XHub is built based on the RELIC

library [11] for the cryptographic operations and on the PARI library [121] for the

arithmetic operations in class groups.

Our large-scale simulations use two real PCN topology and transaction datasets:

Ripple [13] and Lightning [102]. We treat the Ripple data as transactions sent by clients

in Ripple and sent to clients in the Lightning network. And Lightning data as trans-

actions from clients in Lightning to those in Ripple. For Ripple, we use the data from
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January 2021 to December 2021 and get the network with 1,783 users in our simulation.

For Lightning, we get the network with 3,519 nodes on one day in January 2022. We

assume 500 users are both in Ripple and Lightning networks, and they can volunteer

to be relay hubs. We generate payments from Ripple by randomly sampling the Ripple

transactions for the sender-receiver pair in Ripple and Lightning respectively. Due to

the lack of user information in the Lightning network, we randomly sample the trans-

action volumes and sender-receiver pairs for transactions from Lightning. We generate

cross-chain transactions by randomly selecting transactions from the above two groups

of payments.

Metrics. We use average processing latency to evaluate the performance of

the prototype system. The processing latency of payment is calculated as the total

delay from hub selection to fulfilling a transaction. Similar to prior work [110, 126],

we also use the transaction success rate as an evaluation metric for resource utiliza-

tion, defined as the percentage of successful payments whose demands are met overall

generated payments. Note a transaction may fail due to limited funds on payment

channels. We report the average results over 10 runs, each of which includes hundreds

of communication pairs.

4.5.2 Results of cross-chain transactions in real systems

We conduct a testbed evaluation with the XHub prototype of 7 machines

including 2 clients, 1 hub, and 4 auditors, running on two real blockchains. In the

experiments, we construct a payment path from a client in the Bitcoin testnet to a
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user in the Ethereum testnet via a hub. We execute several transactions between them.

We also have a group of 4 auditors that are both registered in Bitcoin and Ethereum

testnets. Table 4.1 and 4.2 show the performance and cost of different operations of

XHub respectively. Hub registrations take approximately 75 minutes with 1, 3, or 4

auditors, and hub information updates take 60 minutes with 1, 3, or 4 auditors. The

reason why both operations take a relatively long time to complete is that they require

writing operations to real blockchains. For example, each hub registration incurs two

transactions in the blockchains: one is to lock collateral to the blockchain and the other

is to post the new hub information to the blockchain by the auditors. The time waiting

for confirmation on the blockchains contributes to more than 99.9% of the

latency while the XHub protocol execution time is negligible compared to

it. Also, both operations can be executed in parallel to save latency. For

example, multiple hubs can register at the same time and the whole process still takes

around 75 minutes. The time of a new hub proving the locked collateral to auditors and

auditors verifying this information only takes around 105 ms and 729 ms respectively.

Hence the number of auditors does not play an important part in the processing latency.

Hub information update is to update the reputation and exchange rate information on

the blockchains. This information is kept in one table, and this table will be updated

every epoch by the auditors. As long as one relay hub has information changes in an

epoch, the auditors will post the digest of the new table to the blockchains, which takes

around 60 mins. The latency again is dominated by the transaction processing time in

the blockchains. The number of auditors does not affect it.
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Table 4.1: Cross-chain payment hub performance of XHub

Operation and Latency 1 Auditor 3 Auditors 4 Auditors

On chain:
Hub registrations 75 mins 75 mins 75 mins
Hub info updates 60 mins 60 mins 60 mins

Off-chain:
Cross-chain transaction 592 ms 661 ms 748 ms
Dispute management 1,903 ms 2,439 ms 2,987 ms

Table 4.2: Cost of XHub operations on the two blockchains

ETH BTCTEST

Hub registration 0.000032 0.000057
Reputation update 0.000129 0.000158
Exchange fee update 0.000138 0.000174
Dispute 0.000031 0.000092

Off-chain operations of XHub that do not involve blockchain transactions have

much less latency. The time to make a cross-chain transaction is the time to perform the

atomic swap protocol. Before initializing the transaction, two clients need to negotiate

and determine the hub with the help of auditors. So it is the network latency that

leads to the processing time difference with the varying number of auditors. For dispute

management, users need to first send a dispute message to all the auditors, then the

auditors check deposits and verify the malicious behaviors, and make the penalty. It

requires the participation of all the auditors in every step, and the penalty can be

executed only if more than 2/3 of the auditors approve. Even if the system has 4

auditors, the dispute management time is still less than 3 minutes.
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4.5.3 Results of exchange rate management

We use simulations to demonstrate that the dynamic exchange rate in XHub

helps to improve the transaction success rate. A hub can use dynamic rates to encourage

clients to make payments in one of the tokens to achieve token balancing, while fixed

rates may cause one type of token to be exhausted. We compared it with the version of

fixed exchange rates, in which all hubs have the same standard exchange rates, constant

over time. We assume there is no malicious hub in the system. Thus, each hub has

an equal likelihood to be chosen to conduct cross-chain transactions by sender-receiver

pairs. Fig. 4.6 shows that XHub with dynamic exchange rates always achieves higher

transaction success rates compared to that using the fixed rate, by varying the numbers

of transactions and relay hubs. In Fig. 4.6(a), we set the number of hubs to 200 and

vary the number of transactions, and in Fig. 4.6(b) we set the number of transactions

to 1,000 and vary the number of hubs. With a fixed exchange rate, a hub might be-

come imbalanced in two blockchain tokens when the transactions across it are higher

in one direction than the other. Eventually, the hub runs out of one token and cannot

support further payments in this direction. On the contrary, in XHub, with adaptive

exchange rates, hubs set a good rate to attract the transactions which can make their

tokens balance. Hubs are less likely to run out of their funds, and thus, can serve more

transactions.
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4.5.4 Results of reputation management

We evaluate the XHub with different proportions and different behaviors of

malicious hubs, and compare the results with and without our reputation mechanism.

In this experiment, we use 200 relay hubs and 1,000 transactions in total. We consider

the following types of malicious behavior of hubs: 1) hubs provide rational exchange

rates, but fail all transactions going through them deliberately; 2) hubs provide ra-

tional exchange rates, but fail transactions in one direction; 3) hubs provide rational

exchange rates, but fail small transactions below a threshold which provide less profit;

4) hubs provide extremely low exchange rates to attract more transactions, but fail

all those transactions; 5) hubs provide extremely low exchange rates to attract more

transactions going through them, but fail some of them according to their own interests.

Fig. 4.7(a) shows the performance of XHub varying with the percentage of malicious

hubs, ranging from 0% to 50%, with and without reputation management, under differ-

ent malicious attacks. The figure shows the results of Attacks 1 to 5 without reputation

management and XHub under Attack 4 (the one that causes the lowest success rate

with no reputation management). Without the reputation mechanism, the success rate

of XHub decreases a lot with the growing percentage of malicious hubs. When the

percentage of malicious hubs is below 15%, the performance of XHub with reputation

management is similar to that with no malicious hub. When the percentage of mali-

cious hubs achieves 50% (unlikely to happen in practice), the success rate of XHub is

still above 60%, while the success rate without reputation management is only 30% for
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Figure 4.6: The success rates with fixed and adaptive exchange rates.
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Figure 4.7: The success rate with the varying number of transactions and relay hubs
with and without reputation mechanism.

Attack 4. In Fig. 4.7(b) and Fig. 4.7(c), we provide the transaction success rates by

varying the numbers of transactions and hubs. Specifically, we focus on cases where

5% and 10% of the hubs are malicious and perform Attack 4. We believe this focus is

reflective of more realistic systems where attackers tend to fail as many transactions as

possible, and it is uncommon to encounter a high percentage of malicious hubs. With

reputation management, the success rate of 5% and 10% malicious hubs are both close

to that of no malicious hub. However, without reputation management, the success rate

is significantly lower.

We also monitor the change of reputation scores for both honest and malicious
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Figure 4.8: Reputation changes and the number of served transactions of honest and
malicious hubs.

hubs. The initial reputation of each hub is set to be 0.5. The reputation value will

be dynamically updated according to the hub behaviors. The percentage of malicious

hubs in this set of experiments is set to 5%. Fig. 4.8(a) shows the reputation changes

for 5 randomly chosen honest hubs and Fig. 4.8(b) shows that of 5 randomly chosen

malicious hubs. Hub 1 to 5 in Fig. 4.8(b) denotes the corresponding malicious behavior

from the aforementioned 5 types. We find that honest hubs always gradually achieve the

maximum reputation value after 500 epochs, even if they might not be able to fulfill some

cross-chain transactions due to their fund limits. On the other hand, the reputation

value of malicious hubs will shortly decrease to 0, and they will be excluded from the

system. Hubs 4 and 5 experience a rapid decrease in reputation as they attract a larger

volume of transactions, and thus will be detected immediately and excluded from the

system. While transactions do not frequently route through Hub 1, once it is selected

by any transaction, Hub 1 will be detected and get a low reputation. For Hubs 2 and 3,

even though they do not misbehave all the time, they can still be detected and penalized

with low reputations. Fig. 4.8(c) shows the number of total transactions served by these
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5 malicious hubs and one randomly selected honest hub. After a short duration, those

malicious hubs receive fewer cross-chain transaction requests and eventually cannot

serve any transaction, while the honest hub can keep serving cross-chain transactions.

4.6 Related Work

Blockchain interoperability, i.e., how to enable multiple parties to exchange to-

kens across multiple blockchains has been an important problem that attracts increasing

attention. Centralized exchange systems are widely used such as Coinbase [29]. How-

ever, these services require trust and, therefore, undermine the decentralized nature of

the blockchains. Atomic cross-chain swaps (ACCS) is a mechanism to perform a trust-

less cross-chain transfer based on hashed timelocks [56, 102]. Although ACCS enables

trustless exchanges, it relies on all parties monitoring the blockchain throughout the

exchange to ensure security. Moreover, ACCS is vulnerable to packet and transaction

memory-pool sniffing, allowing an adversary to exploit blockchain race conditions to

steal funds. Many decentralized exchanges remove the need to trust centralized in-

termediaries for blockchain transfers through the use of ACCS [72, 99, 127]. However,

they only enable the exchange of cryptocurrency assets within a single blockchain [14].

Interledger [122] is a protocol that supports multi-hop payments where each link rep-

resents a payment channel defined in a different cryptocurrency. It also relies on the

HTLC contract, aiming to ensure payment atomicity across different hops. However, the

HTLC contract breaks the unlinkability property and has privacy issues. XCLAIM [138]
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defines the notion of cryptocurrency-backed assets for blockchains and builds a secure

system to construct cryptocurrency-backed assets without trusted intermediaries. It en-

ables one cryptocurrency one-to-one backed by other cryptocurrencies. It suffers from

the scalability problem that it cannot support a large number of users back up and

construct different cryptocurrency-backed assets. It also leads to large lock-in funds if

a user wants to participate in many different blockchains, requiring one backed asset

for each individual blockchain. zkBridge [133] designs a trustless cross-chain bridge to

move users’ funds from one blockchain to another. The similar problem as XCLAIM

also exists, large lock-in funds for multiple blockchains. Moreover, cross-chain bridges

always require users to have wallets in both blockchains and monitor them. However, the

overall complexity of managing funds across multiple blockchains can be overwhelming

for some users. Different from previous works, XHub is the first to develop the net-

work architecture of flexible cross-chain payments, which considers the problem of hub

selection and management and service availability.

4.7 Conclusion

Extending the concept of PCNs to support multi-hop paths across multiple

blockchains and resolve both interoperability and throughput scalability is an attrac-

tive idea. XHub is the first cross-chain PCN architecture to achieve service availability,

transaction atomicity, and auditability. We design a series of protocols, including the

auditor communication protocol, hub registration protocol, transaction protocol, and
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hub management protocol. Both prototype implementation and large-scale simulations

show that XHub has a small latency for cross-chain payments and can achieve a signifi-

cantly higher success rate compared to the version without hub management protocols.

We expect XHub would be an important step for a decentralized transaction system

that connects a wide scope of users in different blockchains
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Chapter 5

Secure Decentralized Learning with

Blockchain

5.1 Introduction

Federated Learning (FL) [88] is a distributed machine learning (ML) paradigm

that allows training ML models across numerous distributed devices, such as mobile

and IoT devices. Those edge devices hold their data locally and collaboratively perform

training tasks without directly sharing training data among them to ensure privacy.

The trained ML models are then aggregated on a central server, called the aggregator.

The aggregator first distributes a global model to clients. Each client trains the model

locally using its own data and generates a model update, which is then sent back to

the aggregator. The aggregator aggregates these updates to update the global model,

and distribute it to clients for further training. FL preserves data privacy by enabling
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decentralized model training [83, 129], saving communication costs by avoiding moving

raw data, and reducing computational costs by leveraging the computing resource of

each device. However, the existence of the centralized aggregator makes FL vulnerable

to a single point of failure [78]. Once the centralized aggregator is compromised, the

whole FL system will fail. Also, the aggregator that frequently exchanges models with

clients can become the bottleneck of the system.

The recently proposed concept of Decentralized federated learning (DFL) [54,

79, 82, 119] provides a solution for aforementioned problems by removing the involve-

ment of the central server. In a DFL system, instead of communicating with a central

aggregator, clients directly exchange model updates with a subset of other clients, also

known as their “neighbors”, using P2P communication. Clients keep exchanging model

updates until their local models converge to a model that reflects the features of data

from all clients. Thus, DFL improves the limitations of having a single point of failure,

trust dependencies, and bottlenecks on the server side in the traditional FL. However,

DFL still has some challenges such as malicious clients, low-quality models, and the

lack of incentives, which undermines the reliability of the whole system. Given the

large number of participants in the DFL system, it is unrealistic to simply assume all

the clients are honest and follow the protocols to do the training correctly. Therefore,

there may exist malicious clients sharing false model updates about their local training

results. Also, some clients with low-quality models might also affect the performance of

their neighbors with high-quality models, and these errors may be further propagated in

the whole network. Besides, how to motivate data owners to participate in the system
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Figure 5.1: Blockchain-based Decentralized Federated Learning: clients form a peer-
to-peer overlay network to exchange models, and auditors are responsible for model
verification.

and continuously contribute their data to the FL model remains a challenge.

Blockchain, as a distributed ledger technology built on a peer-to-peer network,

provides a possible solution for the security and incentive issue in the DFL system [115],

as shown in Fig. 5.1. It provides trust by allowing all participants to verify transactions

submitted to the blockchain with its underlying provable cryptography and consensus

protocol. Every participant could verify each model update before it can be aggregated

and confirmed in the blockchain. However, directly storing all model updates on the

blockchain is not feasible due to the significant costs incurred by data storage and com-

putation. And pushing large model data to the blockchain has the problem of heavy

latency, limited block size, and transaction size. Thus, we introduce an auditor com-

mittee and the reputation mechanism for model verification. Auditors are responsible

for managing the clients’ reputations according to the quality of their model updates.

Instead of models or gradients, auditors will only put the clients’ reputations on the

blockchain and update periodically.
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In this work, we introduce BDFL, a Blockchain-based Decentralized Federated

Learning system with an incentive mechanism and reputation model. We introduce a

set of auditors for model verification, and honest clients can receive incentives while

clients providing malicious models will be punished. In our reputation model, clients’

reputation scores are assigned by auditors according to their model verification results,

which will be updated periodically. Clients with higher reputations will have a higher

probability for their model updates to be accepted by neighbors, and thus gain more

profits from the system.

In summary, this work makes the following contributions:

• We design BDFL, the first blockchain-based fully decentralized federated learning

system for model verification with high learning accuracy and system robustness.

• We design and implement the BDFL protocol suite. We introduce an incentive

mechanism to encourage clients to participate in the model exchange, and a rep-

utation model to evaluate the trustworthiness of each client to avoid malicious

model updates from attackers.

• We evaluate BDFL using experiments on real ML datasets. We find that BDFL

achieves a high model accuracy and fast convergence. It also has strong resilience

to client dynamic and malicious model updates.

The rest of this paper is organized as follows. The system overview and model

are presented in Section 5.2. We describe a protocol overview in Section 5.3 and the

detailed design of the BDFL in Section 5.4. Section 5.5 presents the evaluation results
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of our protocol. Section 5.6 describes the related work. Section 5.7 concludes this work.

5.2 Overview

5.2.1 Network Model

We consider a decentralized learning system with a large number of clients, in

which clients can join or leave anytime. Those clients, such as edge devices, are willing

to train models using their own data locally, and exchange model updates with their

neighbors to get some profits. There are also some auditors in the system who are

responsible for model verification. They are a group of nodes that have read and write

access to the blockchain, similar to the miners in common blockchain systems. They

work as a committee to verify the model updates using public validation data in the

system, and generate new blocks of reputation information. Honest auditors will receive

rewards for correct verification, and dishonest ones can get punishment if detected.

Our network model is divided into two parts, the decentralized federated learn-

ing network, and the blockchain network. We model the BDFL network as an undirected

graph G = (V,E), where V is the set of clients, and each link e = (u, v) ∈ E represents

that client u and v are neighbors, and can directly exchange local ML models. We

assume clients have equal roles in the BDFL network and similar numbers of neigh-

bors. Clients have read access to the blockchain, and can communicate with auditors

for model verification. In the blockchain network, the clients’ and auditors’ identities

and model verification information are recorded in the blockchain in the form of trans-
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actions. To encourage the participation of more users, auditors successfully performing

verification and clients honestly providing model updates will receive incentives, which

are guaranteed by smart contracts in the blockchain. Malicious participants can also be

identified by the blockchain to protect the quality of the overall model.

5.2.2 Blockchain Model and Assumptions

The blockchain in the BDFL system should support smart contracts, which are

responsible for managing client reputation and ensuring auditors behave appropriately.

Both clients and auditors need to register on the blockchain first to join the BDFL sys-

tem. Since we use the blockchain as the underlying root of trust, if it is compromised

by an adversary, the correct functionality of the BDFL system cannot be guaranteed.

Therefore, we assume that the proportion of consensus participants corrupted by an

adversary for the blockchain is bounded by a threshold to ensure safety and liveness

for the underlying blockchains. Following Byzantine fault-tolerant settings, we assume

the proportion of adversaries is less than 33% of the total number of consensus partici-

pants [49].

5.2.3 Attacker Model

We assume the attackers can potentially gain physical access to some clients in

which the data and model are stored, and complete control of their network connections.

They may want to destroy the global model by performing poisoning attacks. They will

train models using false data and exchanging adversarial updates with neighbors [17,48].
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They may also delay or prevent the client they control from accessing the blockchain

for an unbounded amount of time. They are curious about clients’ private information,

and can perform information leakage attacks by observing the model updates, and then

recover details about clients’ training data [57, 111]. To prevent such attacks during

model update transmission, clients can send differentially-private updates to mask their

gradient [10, 37]. We assume most of the auditors will correctly follow the protocol,

and part of them may be corrupted in a Sybil attack. But attackers cannot control

more than 1/3 of total auditors according to Byzantine fault tolerance. We assume that

all clients in the BDFL system could securely conduct initialization, in which they can

correctly obtain the first version of the global model.Auditors have relatively equivalent

computation resource [137], and rational public validation data to perform model update

verification.

5.2.4 Requirements

Security: The main security requirement of the BDFL system is that it should

enable model update exchanges between clients safely and correctly. We consider the

security of both clients and auditors. Honest clients who provide the correct model

updates will be acknowledged with profits and gain a better reputation, while clients

with malicious model updates will ultimately be detected, and has a dramatic drop in

their reputation. Whenever a client receives a model update from their neighbor, they

can verify the correctness of the update with the help of auditors and the blockchain. If

the model update successfully passes the verification, the client will accept it to further
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aggregate with their own model locally. If the model is considered to be malicious,

the client will reject this update. As for the auditors, if an auditor claims an incorrect

model update could pass verification, this behavior will certainly be detected within the

blockchain, as it requires the approval of more than 2/3 of the auditors for the verifi-

cation result to be confirmed in the blockchain. The malicious auditor will eventually

lose all their collateral as ensured by the smart contract.

Auditability: Any clients with read access to blockchain are able to get the

latest reputation of all clients. Clients can also audit the model updates from their

neighbors with the help of auditors and the blockchain.

Privacy: The BDFL system should be able to keep client training data private

by preventing information leakage attacks. The auditors received masked model updates

from clients can successfully verify the correctness of the model, but cannot learn any

information on the clients’ training data.

Robustness: In the BDFL system, the local models on the honest clients

should eventually converge to a model that reflects the features of data from all clients

with high accuracy. The system should keep robust under attacks, which means, even if

there exist attackers, the system should still achieve equivalent model accuracy. More-

over, the DFL network should be resilient to client dynamics such as client joins, leaves,

and failures.
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5.3 Design Overview

In a fully decentralized overlay network for DFL, the BDFL protocol suite pro-

vides two sets of protocols for clients: 1) a DFL network Topology Maintenance Protocol

to build the overlay network and recover it from churn; 2) a Model Exchange Protocol

which includes model verification to achieve fast model convergence for heterogeneous

clients and asynchronous communication. Table 5.1 shows the API that BDFL provides

to clients. BDFL generates unique identifiers and an initialized reputation for each

client, e.g., when a client u joins the DFL network and registers in the BDFL system for

model exchange, a unique identifier uid is returned as a handle to be used in reputation

management and subsequent API calls.

The BDFL protocols work with any overlay topology and we apply a recently

proposed overlay topology as a case to study BDFL [58], which is based on near-random

regular graphs (RRGs) [135].

In P2P model exchanges, a client with low-quality local models might pollute

its neighbors with high-quality models. This could lead to further propagation of these

errors throughout the overlay network. Thus, every time when a client receives a model

update from its neighbor, the client will first self-evaluate the confidence of this model.

If the reputation of this neighbor is too low, the client can directly reject this model

update. If the client feels the model is unreliable, the Model Exchange Protocol allows

them to request model verification from auditors. Auditors then use an anonymized

public validation dataset to do the model verification [116]. If the computed accuracy
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by the auditors drops a lot compared to its previous model accuracy, this model update

is considered to fail the verification. Auditors will announce the verification result to the

corresponding client, and reduce the reputation of the client who provided this model

update. Otherwise, the client performs the model aggregation locally after receiving the

correct verification result from auditors.

DFL Topology. In BDFL, each client is identified by a set of virtual coor-

dinates C, which is an L-dimensional vector < x1, x2, ..., xL >. Each element xl is a

random real number computed as H(IPx|i) where H is a publicly known hash function

and IPx is x’s IP address. We create L virtual ring spaces [135] such that each client in

the i-th ring space is virtually positioned based on its coordinate xi. In each virtual ring

space, every client has two adjacent clients based on their coordinates, forming overlay

neighbors for model exchanges. Each client can have a maximum of 2L neighbors, with

L serving as a trade-off parameter between communication and convergence. A larger

L leads to more model exchanges but also increases the communication cost.

Auditors. Auditors are groups of nodes that have read and write access to

the blockchain. They work jointly with the blockchain for client registration, model

verification, and reputation management. The system leverages a public smart contract

(aSC) to maintain an auditor list and ensure the correct behavior of the auditors. They

are required to lock some collateral to be registered with this smart contract, i.e., aSC

can verify the auditor’s digital signature and knows the auditor’s public key. We assume

the majority of the auditors are reliable. They are willing to follow the protocol to

get profits, and punish malicious auditors for misbehavior. For each client’s model
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verification request and reputation update, a minimum number of auditors are required

to sign the result before packing the update into the blockchains, thus tolerating a fixed

percentage of auditors’ failures to some degree. A common way to address such concerns

is to use Byzantine-fault tolerant protocols [86]. For example, the auditors could use

a BFT consensus such as [26] to stay up to date with all the coming requests from

users. Such a solution can tolerate up to 1/3 faulty auditors. Thus, in BDFL, the smart

contract defines that at least 2/3 of the auditors are required to sign each verification

or update request before sending them to the blockchain, and only the auditors who

correctly sign the request can get rewards.

Model Update. Different from FL, BDFL does not require a central server for

model aggregation. Instead, every client can run the model aggregation locally using the

model updates gathered from its neighbors. Once clients successfully prepare models

locally, they can collect model updates from their neighbors for further aggregation.

Clients always reject model updates from neighbors with low reputations. Clients then

query auditors for model verification on the rest of the model updates. After verification

by the auditors, clients run the model aggregation on all the correct model updates.

Reputation. In BDFL, each client is assigned a reputation value by auditors

which reflects its trustworthiness. Clients should have a higher possibility to accept

model updates from honest clients, and reject those from malicious ones. To prevent

poisoning attacks from malicious clients, every time when auditors detect a model up-

date of low accuracy, the auditors will decrease the reputations of the corresponding

misbehaving client. On the other hand, honest clients will gain a reputation increase
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Table 5.1: BDFL API
BDFL APIs Inputs Outputs API Description

Topology Maintenance:
join network u, v uid, repu Join the DFL network to find its correct neighbors and register in the BDFL system.
leave network u, uid - Terminate model exchange and leave the network.
maintenance u - Maintain the correct DFL network topology by checking the liveness of all u’s neighbors.

Model Exchange:
local verify u, v, ωv Boolen u locally pre-evaluate the accuracy of model update ωv from their neighbor v.
request verify u, v, ωv σωv u request model verification on the model update ωv from their neighbor v.
aggregate model ωu, ωv ω′ u locally aggregates the models from their neighbors.

by providing good model updates.

5.4 Protocol Design

This section describes the design of BDFL protocols.

5.4.1 Topology Maintenance

The Topology Maintenance Protocol in BDFL system includes join network,

leave network and maintenance as shown in Table 5.1.

Join. Assume we have a correct DFL network topology with n clients cur-

rently. A new client u now boots up and wants to join the BDFL system for future

model exchange. Before joining the DFL network, u has to know one existing client

v in the overlay. u assigns itself a random coordinate in the virtual ring spaces as its

position. Then it sends join requests to its neighbor v, and tries to find all its neighbors

in the network. To achieve this, u lets v send a Neighbor discovery message which

includes u’s IP address to the current DFL network using greedy routing to u’s location

in each ring space respectively. Neighbor discovery stops at the client w who is closest

to u. In each virtual ring space, w finds the adjacent node p from its two adjacent nodes

to insert v in between according to u’s coordinate.
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Leave. When a client wants to leave the system, leave network should guar-

antee that the BDFL system can still maintain a correct DFL network topology. Assume

client u wants to leave by running leave network. u sends messages to its two adjacent

clients in each virtual ring space, and tells them to add each other to their neighbor

sets.

5.4.2 System Maintenance

Auditors are responsible to help maintain the BDFL system. They will track

client information such as client identity and reputation. They will update this informa-

tion to the blockchain periodically, and all the clients can easily check this information

by reading the blockchain. To do this, each auditor maintains a local table to record

client information. It includes three parts: the reputations of all the valid clients, which

are updated according to the quality of models provided by clients; a joining client set,

which is the clients who join the system after the last update; and a leaving client set.

This leaving client set includes two kinds of clients. One is the clients who want to stop

exchanging models with others and leave the system. The other is the clients who have

been inactive for a long period, or with a very low reputation. The system will kick

them out by adding them to the leaving client set.

The BDFL system should also be able to maintain a correct DFL network

topology experiencing client failures. The maintenance protocol requires every client

to send neighbors a heartbeat message periodically, to filter out inactive clients.

Clients join BDFL to collaboratively train ML models. A new client joins the
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BDFL system by calling the join network function. In this function, in addition to

the Join process to the network topology, as previously described, the client also needs

to register on the BDFL blockchain to participate in future model exchanges. To do

this, the new client, denoted as u, sends a join query to auditors. Auditors will record

the client’s information uid and assign a default reputation repu to it. The auditor

committee will pack the client information update to the blockchain periodically. Once

the update message which includes the new client u is confirmed on the blockchain, u is

then considered to have successfully registered within the BDFL system, and can start

model training. Currently, u has no model, and has to initialize the training process

by first gathering models from its neighbors. u has to verify the correctness of the

model with the help of auditors before aggregating them. After getting verification

results from auditors, u only chooses to use the correct models from the neighboring

clients, and discard the others. u then locally generates an aggregated model as its own

model. And later, it will keep gathering model updates from its neighbors and continue

updating its local model to improve accuracy in the future. It will also exchange its local

training model with its neighbors to contribute to the whole system and get profits.

Clients exchange local models with neighbors periodically, and the models will

be evaluated by auditors which will affect their reputations. Thus, client reputations

are updated by auditors during model verification. If a malicious model update is

detected and verified by auditors, the corresponding client who provides this model will

be punished with a low reputation. Clients with very low reputations will be removed

from the BDFL system forever. To achieve this, auditors check their local client table
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Figure 5.2: Protocol overview of BDFL.

periodically to filter out the clients with low reputations, and add them to the leaving

client set. After this client table is confirmed in the blockchain, those clients are removed

from the system successfully.

5.4.3 Model Exchange

In the model exchange, each client exchanges its local update with neighbors

to do aggregation. However, clients might be not willing to send their models directly in

concern that others might learn about their dataset information. It has long been estab-

lished that gradients often leak sensitive information about clients’ local datasets [15,18],

and therefore, it is necessary for clients to hide their model updates to keep privacy. To

prevent information leakage attacks, clients use differential privacy (DP) to hide their

updates during model exchange and verification by adding noise sampled from a normal

distribution [37]. We follow the concept of (ϵ, δ) differential privacy as being applied

in many previous works [115, 129]. (ϵ, δ)-DP provides a strong criterion for privacy-

preserving of distributed data processing systems. Thus, each client constructs a noisy
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model update by adding some noise to the gradient such that ωt = ζt + ωt
original.

Another challenge of performing decentralized model exchanges is that there

is no central server to evaluate the quality of models from different clients. Thus, our

Model Exchange Protocol is designed to validate the model update to mitigate the

impact of malicious models. Fig. 5.2 illustrates the overview of the Model Exchange

Protocol. It runs on both the clients and the auditors. Every client prepares its model

locally, and exchanges the model update with neighbors once they finish training. BDFL

uses asynchronous communication and allows each client to use a different communica-

tion and training time period in a round. Assume an honest client u has a local model

ωt
u in its current round t. And it has three neighbors v, w and x to exchange models

with. In the neighbor set of u, in addition to the IP addresses and coordinates, it also

stores the fingerprint f of the most recent model updates received from each neighbor,

computed by hashing the model updates by a public hash function. When a client

successfully prepares a model update to send, its neighbors would check the fingerprint

f to avoid repetitive updates. This approach effectively mitigates unnecessary traffic,

thereby reducing the frequency of exchanging duplicate models.

At client u, after gathering model exchanges ωt
v, ω

t
w, and ωt

x from all its

neighbors, u first checks their reputations by reading the blockchain, and rejects the

model updates from neighbors with low reputation. Let’s say client x has a low rep-

utation. u will directly reject the model update ωt
x, and only continue to verify the

correctness of the remaining model updates for aggregation. Now u needs to verify

model updates ωt
v and ωt

w by sending verification requests request verify(u, v, ωt
v) and
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request verify(u,w, ωt
w) to auditors. Auditors use the public validation data to verify

the model updates. The smart contract maintains a history of model verification results,

which include an average model accuracy µt−1 and standard deviation σt−1 of the latest

20 epochs. If the computed accuracy of the received model update, e.g. ωt
w, is less than

µt−1 − 2σt−1, this model update is considered to be malicious. Auditors will reply with

the verification results to u, and punish w of the malicious update by decreasing its

reputation. For models that pass the verification, auditors will increase the reputations

of the corresponding clients, and the smart contract needs to update the average model

accuracy µt and standard deviation σt as well. After receiving verification results from

auditors, u finds that ωt
v is the only valid model update. u will discard other model

updates and later aggregate ωt
v to its local model ωt

u to train a new local model ωt+1
u .

In a more complex scenario, client u discovers that it has received multiple

valid model updates from various neighbors with different reputations after conducting

model verification. u always tends to believe clients with high reputations will provide

model updates of high quality, while low-reputation clients might provide low-quality

models. Even if they are all valid updates, u still wants to limit the impact of low-quality

models and amplify the impact of high-quality models in the aggregation. Thus, unlike

the assumption that all model updates contribute equally to model aggregation, we let

high-reputation clients have higher impacts. u defines a set of confidence parameters c

for each model update, assigning higher c values to clients with better reputations. The
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models from u’s neighbors are then aggregated as follows:

ωt+1
u =

∑
j∈N∪{u} c

jωt
j∑

j∈N∪{u} c
j

, with N being the neighbor set of client u. The model aggregation will be computed

once every round and the models from each neighbor are always the most updated ones.

In this way, clients with low reputations will have less impact on other clients.

5.4.4 Model Verification

In FL, every network provides a centralized validation dataset to validate the

global model. The idea of using an anonymized public validation dataset for FL model

validation is well adopted in the existing research [28, 116], and also used for detecting

model poisoning attack [42]. We follow this assumption and adopt this idea for BDFL

model update verification. We assume auditors have a public validation dataset D

contributed by their clients and a global model ω0. Before starting training, auditors

collect training dataset samples from clients. We adopt ϵ-differential privacy [36] for

protecting the data privacy of clients. After gathering all those anonymous datasets,

auditors pre-evaluate their quality by comparing the accuracy of ω0 on the public dataset

D and each fetch dataset Di. If the accuracy of Di is much lower than the training result

on D, auditors will reject this dataset Di. Auditors then integrate the satisfied datasets

into their local validation dataset to compose a new validation dataset D. During the

training process, clients continue collecting local data, and there might be new clients
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joining the system. Thus, auditors will gather clients’ datasets periodically to update

their validation datasets D.

When receiving a model verification request, auditors first check the fingerprint

f . Then they can directly reply to the client with the previous verification result.

Otherwise, auditors compute the accuracy by executing the model ω on the public

validation dataset D. The smart contract aSC collects verification results from all

auditors. It disregards those results that significantly deviate from the majority of the

results, and considers auditors providing such results as malicious. aSC computes the

average of the remaining accuracy results Aω
t , and compares with the previously stored

average model accuracy µt−1 and standard deviation σt−1 of the latest 20 epochs. If

Aω
t < µt−1 − 2σt−1, ω will be judged as a malicious model update.

5.4.5 Reputation Management

Clients joining the system for the first time will be assigned an initial reputation

rep. All the reputations are updated by auditors during each model verification. Let’s

say a client submits a model verification request on model update ωu from its neighbor

u. Auditors validate ωu with public test data [101] and get the corresponding accuracy

values. aSC filters out those outlier results and uses the average of the remaining results

as the accuracy value Aωu
t of model update ωu. Note that aSC maintains an accuracy

history of previous model updates, µt−1 and σt−1, which are average model accuracy

and standard deviation of the latest 20 epochs respectively. If Aωu
t < µt−1 − 2σt−1,

auditors will consider this client u to be malicious, and punish u with a decrease in its
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reputation from repu to repu
2 . For honest clients, their model update accuracy might

not always increase due to the imperfect of their dataset. The system tolerates this

small accuracy decrease and will not lower their reputations as long as their model

accuracy is larger than µt−1 − 2σt−1. Their reputations still keep the same in this

round. Other honest clients can gain a reputation increase ∆rep according to their

model accuracy, which is computed as A−µt−1

σt−1
·0.01. For example, if the model accuracy

of ωu is Aωu
t = µt−1 + 2σt−1, the reputation of the corresponding client u will increase

by 0.02.

If a malicious model update is detected and verified by auditors, the corre-

sponding client will be punished with a decrease in its reputation by 50%. However, a

low reputation could result in its model update being declined by its neighbors in fu-

ture model exchanges. Therefore, if such a client wants to continue participating in the

model exchange and gain its reputation back, it must let auditors pre-verify its model

updates prior to the model exchange period. If auditors validate this model update, the

client will exchange its model along with the proof. Its neighbors can later confirm the

correctness of this model update using the provided proof, thereby eliminating the need

for another round of auditor verification.

Note that there is always a latency to post the new reputation (client table)

to the blockchain. So in order to get the latest reputation information, clients can

query auditors first. After some time, clients can verify the correctness of the query

result by comparing it with the reputation confirmed in the blockchain. If clients detect

that the reputation got from auditors is different from that in the blockchain, they can
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submit disputes to the blockchain for compensation, and the malicious auditors will get

punishment and lose all their collateral.

5.4.6 Incentives Mechanism

The involvement of the blockchain always triggers some fees, such as running

smart contracts and submitting transactions to the blockchains. Thus, auditors require

some incentives in order to do model verification and reputation management. In BDFL,

clients are the devices that want to train a better model using model updates from

other clients in the system. If they directly aggregate models without verification,

potential malicious models from attackers could lead to poor performance on their

training models. Thus, we assume clients are willing to pay auditors for verification,

and honest clients who provide them with a high-quality model update. Clients can

also gain rewards by providing honest model updates to other clients. Besides, there

might be some services that want to use the final model directly without participating

in the training process. Those services could request the model via the smart contract

aSC by making a payment. aSC will then distribute the payment fee to auditors and

clients according to their contribution.

An incentive mechanism is involved via the smart contract aSC to motivate

participating clients and auditors to be honest and report the misbehavior. Any de-

vice with read-and-write access to the blockchain is allowed to become an auditor by

registering with the auditor smart contract (aSC) and providing collateral. They are

required to verify model updates, and distribute incentives to honest clients while impos-
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ing punishment on misbehaving clients through the aSC. For each verification request,

aSC gathers verification results from all auditors, and determines who provide correct

verification results and record who always submit malicious results. If the number of

incorrect verification results submitted by an auditor exceeds a predetermined thresh-

old, this auditor will be judged as malicious and subject to penalties, such as losing all

its collateral. It will then be removed from the auditor list in the smart contract. On

the contrary, honest auditors who provide correct verification results will receive some

rewards.

With the verification result of a model update from a client, the smart contract

aSC will determine if this client is honest and should get some rewards. For example,

currently aSC has a verification result Aωu
t on the model update ωu provided by the client

u. aSC finds that it is a high-quality update with Aωu
t larger than the average model

accuracy of the latest 20 epochs µt−1, and u should be rewarded with c(Aωu
t − µt−1).

In model verification, when receiving a model update with high accuracy, au-

ditors could assume this model is good enough to be a global model that reflects the

features of data from all clients correctly. And auditors can choose to maintain this

model ω locally and send a digest h(ω) to aSC. aSC will record which auditors maintain

a local copy of the global model, and the corresponding digest. This is to prevent audi-

tors from manipulating a malicious global model. If a service requests a model from aSC

with a required fee, aSC will expose the auditor list who maintain the global model to

the service. The service could randomly select an auditor to fetch the model and verify

its correctness by querying aSC. aSC then distribute the fee collected from the service to
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both the auditor who provided the model and to all clients. The distribution to clients

is based on their respective reputations, which reflect their individual contributions to

the model.

5.5 Performance Evaluation

5.5.1 Methodology

We use a desktop machine with an NVIDIA GeForce RTX3060 Ti as the

platform for our experiment. We build a 100-client network, use real data training,

and simulate reputation management and incentive distribution. The purpose of this

experiment is to test the performance of effectiveness of the reputation mechanism and

robustness in a simulated environment. We choose MNIST [33] and CIFAR-10 [70] image

classification as the task of BDFL. We use MultiLayer Perceptron networks (MLP) and

Convolutional Neural Networks (CNN) respectively as the machine learning models.

5.5.2 Evaluation Results

Robustness. We compare BDFL with the version without the reputation

mechanism on two different datasets. The average accuracy of model updates verified

by auditors is shown in Fig. 5.3 and Fig. 5.4 respectively. The Baseline shows the final

model accuracy with no malicious clients in the system. In both two datasets, BDFL

always demonstrates better accuracy under different proportions of malicious clients.

The accuracy increase compared to the baseline without the reputation management
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Figure 5.3: MNIST, Average Accuracy vs. Communication Rounds.

mechanism is more obvious with a higher proportion of malicious clients. Malicious

clients can affect the average model accuracy by model poisoning attacks without ver-

ification. Honest clients will use those malicious models for aggregation directly, and

thus harm the overall performance of the system. The more malicious clients in the sys-

tem, the worse the average model accuracy. However, with the reputation management

mechanism, malicious clients providing bad model updates can be detected by auditors

and filtered out of the system. Malicious model updates will not be accepted by any

client, and thus, even if there are 30% malicious clients in the system, The average ac-

curacy of BDFL with reputation mechanism only has a degradation of 0.73% compared

to baseline and BDFL without reputation mechanism has a degradation of 10.28% for

MNIST classification as shown in Fig. 5.3(c). While in CIFAR-10 task, the average

accuracy of BDFL with reputation mechanism has a degradation of 2.49% and BDFL

without reputation mechanism has a degradation of 19.20% as shown in Fig. 5.4(c).

Reputation value evaluation. We monitor the reputation value changes

for both honest and malicious clients in the MNIST dataset. The initial reputation of

each client is set to be 0.5. The reputation value will be dynamically updated according
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Figure 5.4: CIFAR-10, Average Accuracy vs. Communication Rounds

to their behaviors. The percentage of malicious clients in this set of experiments is set

to 20%. Fig. 5.5(a) shows the reputation changes for 3 randomly chosen honest clients

and 3 randomly chosen malicious clients. We find that honest clients always gradually

achieve a high reputation value, even if they might not always be able to provide model

updates of high accuracy due to the imperfect of their datasets. On the other hand,

the reputation values of malicious clients will decrease to 0 in 100 rounds eventually,

and they will be excluded from the system by auditors once extremely low reputations

are detected. For malicious Client 1, even though it does not misbehave all the time, it

can still be detected and penalized with a low reputation. Fig. 5.5(b) shows the total

number of malicious model updates by malicious clients. After a short while, all these

three malicious devices are detected and not able to perform poisoning attacks.

Incentive mechanism evaluation. We also monitor the accumulative in-

centives for the same 3 honest clients and 3 malicious clients in the MNIST dataset as in

the previous experiment. As shown in Fig. 5.5(c), honest clients can always get rewards

even if sometimes they are not able to provide good model updates. The honest Client

1 who always provides high-quality updates can gain more rewards. On the other hand,
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Figure 5.5: MNIST, 20% Malicious clients. We sample 3 honest clients and 3 ma-
licious clients and plot their reputation, accumulative reward (relative to ’Honest1’)
and the number of successful malicious updates in the training period. Client ’Ma-
licious1’ performs attacks on rounds 4,10,50,80,90. Client ’Malicious2’ performs at-
tacks on rounds 8,14,19,34,52,54,71,77,81,90,95. Client ’Malicious3’ performs attacks
on rounds 20,23,34,58,61,83,95

malicious clients might earn some rewards at the beginning, however, after a short pe-

riod, they will be detected and cannot gain any further profit. The malicious Client 1

behaves correctly sometimes and it is hard to detect. But after round 95, it acquires

an extremely low reputation which makes it expelled from the system, and cannot gain

rewards.

5.6 Related Work

System Asynchronous Global model Dynamic Incentive Privacy Security

BLADE-FL [76] No Yes No No Yes Yes

Biscotti [115] No Yes Yes Yes Yes Yes

BAFFLE [108] No Yes No Yes Not discussed Not discussed

VFChain [101] No Yes Yes Yes Yes Yes

BAFL [43] Yes Yes Yes Yes No Yes

BDFL (this work) Yes No Yes Yes Yes Yes

Table 5.2: List of Blockchain-based Federated Learning System.

Federated Learning with a centralized aggregator reveals a single point of
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failure and is vulnerable to malicious clients and false data. Thus, more decentral-

ized setups have been proposed to address these limitations of centralized architecture,

such as Blockchain-based Federated Learning. We review the existing state-of-the-art

blockchain-based federated learning systems and summarize them in Table. 5.2.

BLADE-FL [76] proposed a blockchain-assisted decentralized FL, in which

each client broadcasts the trained model to other clients, aggregates its own model with

received ones, and then competes to generate a block before its local training of the next

round. However, in FL, clients might not have enough computing capability to do both

training and mining. Biscotti [115] focused on the security and privacy issue between

peering clients. Instead of doing training and mining at the same time, clients’ roles

(such as verifier and aggregator) are selected randomly each round. However, it still

requires all clients to agree on a global model at the end of each round. BAFFLE [108]

leverages smart contracts to maintain the global model copy and the associated com-

putational state of the users. The machine learning model weight vector is partitioned

into numerous chunks to be stored in the smart contracts. However, with the dramat-

ically growing size of the ML models, chunking might become extremely challenging.

VFChain [101] utilized blockchain to verify and audit the correctness of the training

process for federated learning. Instead of storing all the model updates, it only records

the related verifiable information of models in the blockchain for audit in the future.

However, same as in previous works, it requires synchronization between all clients.

BAFL [43] introduced an asynchronous FL framework that uses a blockchain for model

aggregation. However, every client needs to upload its local model to the blockchain,
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which is even more inefficient. In traditional distributed machine learning, there are

also works [100,143,144] concerning incentives for clients.

Compared to existing work, BDFL is the first solution for asynchronous blockchain-

based fully decentralized FL, in which clients can join and leave the system dynamically

and exchange models in a P2P manner without the need to maintain a global model in

each round.

5.7 Conclusion

We present BDFL, a blockchain-based fully decentralized federated learning

system that enables clients to exchange models in a P2P manner with model verification

with high learning accuracy and system robustness. We design an incentive mechanism

to encourage clients to participate in the model exchange, and a reputation model

to evaluate the trustworthiness of each client to avoid malicious model updates from

attackers. The evaluation results via simulations show that BDFL achieves fast model

convergence and high accuracy on real datasets even if there exist 30% malicious clients

in the system.
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Chapter 6

Conclusion

In this thesis, we first improve the scalability of blockchain by presenting the

design of a scalable and decentralized routing solution called WebFlow for large and

dynamic PCNs. Our evaluation shows that WebFlow significantly outperforms existing

solutions in per-node cost efficiency, resource utilization, and success rate. Then, we take

a step further and propose APCN that supports shared funds among all the payment

channels of a node with the help of Trusted Execution Environment. Results show

that APCN achieves significantly higher success rates of multi-hop payments with lower

average hops and latency, compared to existing PCNs. To achieve interoperability in

the blockchain, we design XHub to support multi-hop paths across multiple blockchains,

which achieves service availability, transaction atomicity, and auditability. Lastly, we

explore the potential to integrate blockchain with real-world applications, and present

BDFL, a blockchain-based fully decentralized federated learning system that enables

model verification with high learning accuracy and system robustness.

142



Bibliography

[1] Bitcoin testnet. https://tbtc.bitaps.com/.

[2] Lightning network daemon. https://github.com/lightningnetwork/lnd.

[3] Networkx. http://raiden.network/.

[4] Visa fact sheet. https://usa.visa.com/dam/VCOM/global/about-

visa/documents/visa-fact-sheet-july-2019.pdf, 2019.

[5] Poly network. https://poly.network/, 2020.

[6] Raiden network. http://raiden.network/, 2020.

[7] Transaction rate of bitcoin. http://www.blockchain.com/en/charts/transactions-

per-second, 2020.

[8] Coinmarketcap. https://coinmarketcap.com/, 2021.

[9] Sepolia testnet. https://github.com/eth-clients/sepolia, 2021.

[10] Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov,

143



Kunal Talwar, and Li Zhang. Deep learning with differential privacy. In Proceed-

ings of ACM CCS, 2016.

[11] Diego F Aranha. Relic is an efficient library for cryptography. http://code. google.

com/p/relic-toolkit/, 2020.

[12] Md Armanuzzaman and Ziming Zhao. Byotee: Towards building your own trusted

execution environments using fpga. arXiv preprint arXiv:2203.04214, 2022.

[13] Frederik Armknecht, Ghassan O Karame, Avikarsha Mandal, Franck Youssef, and

Erik Zenner. Ripple: Overview and outlook. In Proceedings of Springer TRUST,

2015.

[14] Adam Back, Matt Corallo, Luke Dashjr, Mark Friedenbach, Gregory Maxwell,

Andrew Miller, Andrew Poelstra, Jorge Timón, and Pieter Wuille. En-

abling blockchain innovations with pegged sidechains. URL: http://www.

opensciencereview. com/papers/123/enablingblockchain-innovations-with-pegged-

sidechains, 2014.

[15] James Henry Bell, Kallista A Bonawitz, Adrià Gascón, Tancrède Lepoint, and
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[86] Vasilios Mavroudis, Karl Wüst, Aritra Dhar, Kari Kostiainen, and Srdjan Capkun.

153



Snappy: Fast on-chain payments with practical collaterals. In Proceedings of

USENIX NSDI, 2020.

[87] Petar Maymounkov and David Mazieres. Kademlia: A peer-to-peer information

system based on the xor metric. In International Workshop on Peer-to-Peer Sys-

tems, pages 53–65. Springer, 2002.

[88] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and

Blaise Aguera y Arcas. Communication-efficient learning of deep networks from

decentralized data. In Artificial intelligence and statistics. PMLR, 2017.

[89] Ralph C Merkle. A digital signature based on a conventional encryption function.

In Advances in Cryptology—CRYPTO’87: Proceedings 7, pages 369–378. Springer,

1988.

[90] Andrew Miller, Iddo Bentov, Surya Bakshi, Ranjit Kumaresan, and Patrick Mc-

Corry. Sprites and state channels: Payment networks that go faster than lightning.

In Proceedings of Springer FC, 2019.

[91] Ahmad Moghimi, Gorka Irazoqui, and Thomas Eisenbarth. Cachezoom: How sgx

amplifies the power of cache attacks. In Proceedings of Springer CHES, 2017.

[92] Pedro Moreno-Sanchez, Aniket Kate, Matteo Maffei, and Kim Pecina. Privacy

preserving payments in credit networks. In Proceedings of USENIX NDSS, 2015.

[93] Hiroshi Nagamochi and Toshihide Ibaraki. Computing edge-connectivity in multi-

graphs and capacitated graphs. SIAM Journal on Discrete Mathematics, 1992.

154



[94] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Technical

report, Manubot, 2009.

[95] TS Eugene Ng and Hui Zhang. Predicting internet network distance with

coordinates-based approaches. In Proceedings of IEEE INFOCOM, 2002.

[96] Alexander Nilsson, Pegah Nikbakht Bideh, and Joakim Brorsson. A survey of

published attacks on intel sgx. arXiv preprint arXiv:2006.13598, 2020.

[97] M. Ogleari, Y. Yu, C. Qian, E. Miller, and J. Zhao. String Figure: A Scalable

and Elastic Memory Network Architecture. In Proceedings of IEEE HPCA, 2019.

[98] Yasuhiro Ohara, Shinji Imahori, and Rodney Van Meter. Mara: Maximum alter-

native routing algorithm. In Proceedings of IEEE INFOCOM, 2009.

[99] Michael Oved and Don Mosites. Airswap whitepaper. https://www.airswap.

io/whitepaper.htm.

[100] Jinlong Pang, Jieling Yu, Ruiting Zhou, and John CS Lui. An incentive auction

for heterogeneous client selection in federated learning. IEEE Transactions on

Mobile Computing, 2022.

[101] Zhe Peng, Jianliang Xu, Xiaowen Chu, Shang Gao, Yuan Yao, Rong Gu, and

Yuzhe Tang. Vfchain: Enabling verifiable and auditable federated learning via

blockchain systems. IEEE TNSE, 2021.

[102] Joseph Poon and Thaddeus Dryja. The bitcoin lightning network: Scalable off-

chain instant payments, 2016.

155



[103] Chen Qian and Simon Lam. ROME: Routing On Metropolitan-scale Ethernet .

In Proceedings of IEEE ICNP, 2012.

[104] Chen Qian and Simon S. Lam. Greedy Distance Vector Routing. In Proceedings

of IEEE ICDCS, 2011.

[105] Chen Qian and Simon S Lam. Greedy routing by network distance embedding.

IEEE/ACM ToN, 2015.

[106] Xianrui Qin, Shimin Pan, Arash Mirzaei, Zhimei Sui, Oguzhan Ersoy, Amin

Sakzad, Muhammed Esgin, Joseph K Liu, Jiangshan Yu, and Tsz Hon Yuen.

Blindhub: Bitcoin-compatible privacy-preserving payment channel hubs support-

ing variable amounts. In 2023 IEEE Symposium on Security and Privacy (SP).

[107] Minghua Qu. Sec 2: Recommended elliptic curve domain parameters. Certicom

Res., Mississauga, ON, Canada, Tech. Rep. SEC2-Ver-0.6, 1999.

[108] Paritosh Ramanan and Kiyoshi Nakayama. Baffle: Blockchain based aggre-

gator free federated learning. In IEEE international conference on blockchain

(Blockchain), 2020.

[109] Stefanie Roos, Martin Beck, and Thorsten Strufe. Anonymous addresses for ef-

ficient and resilient routing in f2f overlays. In Proceedings of IEEE INFOCOM,

2016.

[110] Stefanie Roos, Pedro Moreno-Sanchez, Aniket Kate, and Ian Goldberg. Settling

156



payments fast and private: Efficient decentralized routing for path-based transac-

tions. In Proceedings of USENIX NDSS, 2017.

[111] Ahmed Salem, Yang Zhang, Mathias Humbert, Pascal Berrang, Mario Fritz, and

Michael Backes. Ml-leaks: Model and data independent membership inference at-

tacks and defenses on machine learning models. arXiv preprint arXiv:1806.01246,

2018.

[112] Hex-Five Security. Multizone: The first trusted execution environment for risc-v.

https://hex-five.com/, 2018.

[113] Jaebaek Seo, Byoungyoung Lee, Seong Min Kim, Ming-Wei Shih, Insik Shin,

Dongsu Han, and Taesoo Kim. Sgx-shield: Enabling address space layout ran-

domization for sgx programs. In Proceedings of NDSS, 2017.

[114] Andrei Serjantov and George Danezis. Towards an information theoretic metric

for anonymity. In Proceedings of PET, 2002.

[115] Muhammad Shayan, Clement Fung, Chris JM Yoon, and Ivan Beschastnikh. Bis-

cotti: A blockchain system for private and secure federated learning. proceedings

of IEEE TPDS, 2020.

[116] Micah J Sheller, Brandon Edwards, G Anthony Reina, Jason Martin, Sarthak

Pati, Aikaterini Kotrotsou, Mikhail Milchenko, Weilin Xu, Daniel Marcus,

Rivka R Colen, et al. Federated learning in medicine: facilitating multi-

institutional collaborations without sharing patient data. Scientific reports, 2020.

157



[117] Ming-Wei Shih, Sangho Lee, Taesoo Kim, and Marcus Peinado. T-sgx: Eradicat-

ing controlled-channel attacks against enclave programs. In Proceedings of NDSS,

2017.

[118] Vibhaalakshmi Sivaraman, Shaileshh Bojja Venkatakrishnan, Kathleen Ruan,

Parimarjan Negi, Lei Yang, Radhika Mittal, Giulia Fanti, and Mohammad Al-

izadeh. High throughput cryptocurrency routing in payment channel networks.

In Proceedings of USENIX NSDI, 2020.

[119] Tao Sun, Dongsheng Li, and Bao Wang. Decentralized federated averaging. Pro-

ceedings of IEEE TPAMI, 2022.

[120] Erkan Tairi, Pedro Moreno-Sanchez, and Matteo Maffei. A2l: Anonymous atomic

locks for scalability in payment channel hubs. In 2021 IEEE Symposium on Se-

curity and Privacy (SP), pages 1834–1851. IEEE, 2021.

[121] Univ. Bordeaux The PARI Group. Pari/gp version 2.12.0. 2019.

[122] Stefan Thomas and Evan Schwartz. A protocol for interledger payments. https:

// interledger. org/ interledger. pdf , 2015.

[123] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci, Frank

Piessens, Mark Silberstein, Thomas F Wenisch, Yuval Yarom, and Raoul Strackx.

Foreshadow: Extracting the keys to the intel {SGX} kingdom with transient out-

of-order execution. In Proceedings of USENIX Security, 2018.

[124] Michael E Wall, Andreas Rechtsteiner, and Luis M Rocha. Singular value decom-

158



position and principal component analysis. In A practical approach to microarray

data analysis, pages 91–109. Springer, 2003.

[125] Jiaping Wang and Hao Wang. Monoxide: Scale out blockchains with asynchronous

consensus zones. In Proceedings of USENIX NSDI, 2019.

[126] Peng Wang, Hong Xu, Xin Jin, and Tao Wang. Flash: efficient dynamic routing

for offchain networks. In Proceedings of ACM CoNEXT, 2019.

[127] Will Warren and Amir Bandeali. 0xproject whitepaper. https://www.0x.org/

pdfs/0x\_white\_paper.pdf.

[128] Bernard M Waxman. Routing of multipoint connections. 1988.

[129] Kang Wei, Jun Li, Ming Ding, Chuan Ma, Howard H Yang, Farhad Farokhi, Shi

Jin, Tony QS Quek, and H Vincent Poor. Federated learning with differential

privacy: Algorithms and performance analysis. IEEE TIFS, 2020.

[130] Herbert S Wilf. Algorithms and complexity. AK Peters/CRC Press, 2002.

[131] Svante Wold, Kim Esbensen, and Paul Geladi. Principal component analysis.

Chemometrics and intelligent laboratory systems, 2(1-3):37–52, 1987.

[132] Gavin Wood. Polkadot: Vision for a heterogeneous multi-chain framework. White

paper, 2016.

[133] Tiancheng Xie, Jiaheng Zhang, Zerui Cheng, Fan Zhang, Yupeng Zhang,

Yongzheng Jia, Dan Boneh, and Dawn Song. zkbridge: Trustless cross-chain

bridges made practical. arXiv preprint arXiv:2210.00264, 2022.

159



[134] Han Xue, Qun Huang, and Yungang Bao. Epa-route: Routing payment channel

network with high success rate and low payment fees. In Proceedings of IEEE

ICDCS, 2021.

[135] Ye Yu and Chen Qian. Space shuffle: A scalable, flexible, and high-bandwidth

data center network. In Proceedings of IEEE ICNP, 2014.

[136] Ye Yu and Chen Qian. Space shuffle: A scalable, flexible, and high-performance

data center network. In Proceedings of IEEE ICNP, 2014.

[137] Mahdi Zamani, Mahnush Movahedi, and Mariana Raykova. Rapidchain: Scaling

blockchain via full sharding. In Proceedings of ACM CCS, 2018.

[138] Alexei Zamyatin, Dominik Harz, Joshua Lind, Panayiotis Panayiotou, Arthur Ger-

vais, and William Knottenbelt. Xclaim: Trustless, interoperable, cryptocurrency-

backed assets. In 2019 IEEE Symposium on Security and Privacy (SP), pages

193–210. IEEE, 2019.

[139] Xiaoxue Zhang, Yifan Hua, and Chen Qian. Secure decentralized learning with

blockchain. In IEEE International Conference on Mobile Ad-Hoc and Smart Sys-

tems (MASS). IEEE, 2023.

[140] Xiaoxue Zhang and Chen Qian. Towards aggregated payment channel networks.

In IEEE International Conference on Network Protocols (ICNP). IEEE, 2022.

[141] Xiaoxue Zhang and Chen Qian. A cross-chain payment channel network. In IEEE

31st International Conference on Network Protocols (ICNP). IEEE, 2023.

160



[142] Xiaoxue Zhang, Shouqian Shi, and Chen Qian. Low-overhead routing for offchain

networks with high resource utilization. Proceedings of International Symposium

on Reliable Distributed Systems (SRDS), 2023.

[143] Ruiting Zhou, Jinlong Pang, Zhibo Wang, John CS Lui, and Zongpeng Li. A

truthful procurement auction for incentivizing heterogeneous clients in federated

learning. In 2021 IEEE 41st International Conference on Distributed Computing

Systems (ICDCS), pages 183–193. IEEE, 2021.

[144] Ruiting Zhou, Ne Wang, Yifeng Huang, Jinlong Pang, and Hao Chen. Dps:

Dynamic pricing and scheduling for distributed machine learning jobs in edge-

cloud networks. IEEE Transactions on Mobile Computing, 2022.

[145] Li Zhuang, Feng Zhou, Ben Y Zhao, and Antony Rowstron. Cashmere: Resilient

anonymous routing. In Proceedings of USENIX NSDI, 2005.

161




