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ABSTRACT OF THE DISSERTATION 

 

Multi-scaled Modeling of Electrostatics in Biomolecules  

by 

Haixin Wei 

Doctor of Philosophy in Materials Science and Engineering 

University of California, Irvine, 2022 

Professor Ray Luo, Chair 

 

Molecular dynamics simulations of biomolecules have been widely adopted in 

biomedical studies. Efficient simulations require efficient functional forms, i.e. force fields, 

to model intra- and inter-molecular interactions. As molecular interactions can be 

separated into two main types: ‘long-range’ and ‘short-range’, a reliable force field is often 

designed to contains different terms model each of these interactions. This dissertation 

concerns the modeling of long-range interactions, particularly electrostatic and induction 

interactions. Another long-range interaction, dispersion interaction, would follow widely 

accepted formulation. Our goal here is to establish an accurate and efficient multi-scaled 

modeling scheme for biomolecular systems, which will include atomic, coarse-grained and 

implicit-solvent level of models. Once completed, our multi-scaled models can be combined 

in different manner for different biomolecular applications, serving for various accuracy 

and efficiency requirements in molecular dynamics simulations. 

In the atomic level, as classical point-charge models continue to be used in routine 

biomolecular applications, there have been growing demands on developing polarizable 
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force fields for handling more complicated biomolecular processes. Here, we focus on a 

recently proposed polarizable Gaussian Multipole (pGM) model for biomolecular 

simulations. We present an efficient formulation for the pGM model, and its 

implementation under various simulation conditions. It is hoped that the reformulated 

pGM model will facilitate the development of future force fields. 

Since most particles in explicit molecular model are water molecules that solvate 

the target biomolecules, treating these water molecules implicitly would allow higher 

computational efficiency without losing any atomic-level resolution of the biomolecules. 

Poisson–Boltzmann equation (PBE)-based implicit solvent model has been one such 

attempt and been widely used in biomolecular applications. Thus, in the implicit-solvent 

level, we developed several new implementations of Poisson–Boltzmann (PB) models. We 

also present here the GPU implementations of the linear solver needed in those new PB 

models. Our analysis shows that the new strategies improve the convergence and stability 

of PB models, and also improves the efficiency of the method. 
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INTRODUCTION 

 
 Many important inter-molecular interactions arise ultimately from the electrostatic 

interaction between the particles comprising the two molecules. They can be separated 

into two main types: ‘long-range’, where the energy of interaction behaves as some inverse 

power of inter-molecular distance, and ‘short-range’, where the energy decreases in 

magnitude exponentially with the distance.  

The long-range effects are of three kinds: electrostatic, induction and dispersion. 

The electrostatic effects are the simplest to understand in general terms: they arise from 

the straightforward classical interaction between the static charge distributions of the two 

molecules. Induction effects arise from the distortion of a particular molecule in the electric 

field of all its neighbors and are always attractive. Dispersion is an effect that cannot easily 

be understood in classical terms, but it arises because the charge distributions of the 

molecules are constantly fluctuating as the electrons move.  

Further contributions to the energy arise at short range—that is, at distances where 

the molecular wavefunctions overlap significantly and electron exchange between the 

molecules becomes possible. The most important is described as exchange-repulsion. It can 

be thought of as comprising two effects: an attractive part, arising because the electrons 

become free to move over both molecules rather than just one, increasing the uncertainty 

in their positions and so allowing the momentum and energy to decrease; and a repulsive 

part, arising because the wavefunction has to adapt to maintain the Pauli antisymmetry 

requirement that electrons of the same spin may not be in the same place, and this costs 

energy. 



2 
 

Typical simulations usually involve 103 – 106 atoms. For systems of this magnitude, 

the CPU requirements render electronic-structure-based methods impractical. For this 

reason, force fields have been developed as a set of simplified empirical energy equations 

capable of handling large molecular systems. 

Early force fields were designed using intuitive notions of how atoms and molecules 

interact. In the short-range part, energy is expanded in a Taylor series about equilibrium 

bond lengths r0 and bond angles θ0, and a truncated Fourier series is employed to describe 

torsion rotations about bond axes. The force field intramolecular energy, also called the 

valence energy, is given below: 

�������� = 	 
�� − ���
����� + 	 
��� − ����

������ + 	 ���1 + cos��� −  ���!"��#���  

In addition to the valence part, there is a second part of the force field, which models 

long-range interactions. This non-bonded portion includes an electrostatic term, a short-

range exchange/repulsion, and a weakly attractive dispersion term. In traditional force 

fields, electrostatic interactions are commonly modeled by simple Coulomb interactions 

among point charges on each atom. The short-range repulsion and long-range dispersion 

are often modeled by a 12-6 Lennard Jones potential. The resulting non-bond energy is 

given by: 

����$������ = 	 	 � %!&'!&(� − )!&'!&* + +!+&,'!&�-
&.!/(

-$(
!.(  

 While there is a consensus in modeling dispersion-repulsion interactions, accurate 

and efficient treatment of electrostatic/induction is far from straightforward. However, 

they are vital in computational analyses of biomolecular structures and dynamics as they 
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play crucial roles in biomolecular structures and functions. Given the simplicity and 

efficiency, additive models based on the Coulomb law will continue to play important roles 

in molecular modeling, polarizable models are expected to extend our ability to study more 

complex biomolecular systems and processes. The importance of non-additive effects is 

well known. For example, in pH dependent processes, interactions of ions with charged 

biomolecules, order-disorder transition during folding and binding, enzyme mechanism, 

and heterogeneous solvent environments. It is also clear that there are multiple limitations 

with the use of classical point models of electrostatic/induction in all existing approaches. 

These simple models deviate far from reality, leading to many ad hoc attempts to patch its 

artifacts and numerical issues. These result in lower degree of self-consistency and 

transferability, which both are important for robust modeling of molecular systems based 

on classical physics.  

Thus, we are exploring a more realistic polarizable Gaussian Multipole (pGM) model 

for more satisfactory representation of the atomic charge distributions in molecular 

systems. In the pGM model, all charges and multipoles are represented by Gaussian 

densities instead of classical points. The more realistic representation of molecular charge 

distributions allows for higher accuracy, self-consistency, and transferability. However, 

induction treatments invariably reduce simulation efficiency, leading to a more 

pronounced efficiency issue. 

To address on the efficiency problem, a second major difference from existing 

approaches is our concurrent focus on efficiency based on a multi-scaled framework with 

all-atom polarizable, coarse-grained polarizable, and continuum polarizable models, which 

are consistent with each other. This allows the models to be more easily interfaced in 
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multi-scaled simulation methods. Once completing the multi-scaled framework, we will 

have all-atom and coarse-grained pGM solutes in one hand and explicit and implicit pGM 

solvents in the other. Our pGM solute models and solvent models can be combined in 

different manners for various accuracy and efficiency requirements. 

In the following chapters, we will talk about our model development efforts one by 

one. In chapter 1, we will discuss an efficient second-order Poisson-Boltzmann (PB) model 

for continuum modeling of solvation. In chapter 2, we will talk about how to improve the 

harmonic average method in the PB modeling for parallel computing. In chapter 3, we will 

show how to use the machine-learning technique to reproduce the molecular surface that is 

needed in the PB modeling. In chapter 4, we will develop an efficient formulation for pGM 

model for molecular dynamics simulations. In chapter 5, the pGM virial and pressure 

expression will be presented so the constant pressure MD simulations become feasible. 

Finally, in chapter 6, we conclude our efforts on the development of multi-scale models for 

electrostatics. 
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Chapter 1 

 
1.1 Introduction 

Electrostatic interactions play crucial roles in biophysical processes such as protein-

protein and protein-ligand interactions. Accurate and efficient treatment of electrostatics is 

thus vital in computational analyses of biomolecular structures and dynamics. A closely 

related issue is the modeling of water molecules and their electrostatic interactions with 

biomolecules that must be considered for any realistic representation of biomolecules at 

physiological conditions. Since most particles in explicit molecular model are water 

molecules that solvate the target biomolecules, treating these water molecules implicitly 

would allow higher computational efficiency without losing any atomic-level resolution of 

the biomolecules. The main idea of implicit solvation treatment is to model water 

molecules as continuous medium while still treating the biomolecular solutes in atomic 

detail. In this model, the solute molecule is treated as a low dielectric constant region with 

a number of point charges located at atomic centers, and the solvent is treated as a high 

dielectric constant region. Poisson-Boltzmann equation (PBE)-based implicit solvent model 

has been one such attempt and been widely used in biomolecular applications.  

To solve PBE, numerical solutions are almost always needed for biomolecular applications, 

since analytic solution of the PBE can be achieved only in a few specific cases with simple 

solute geometry. Among the numerical solution methods, finite-difference methods 

(FDM),1-16 finite-element methods17-26 and boundary-element methods27-44 are mostly 

used. Or alternatively, semi-analytical generalized Born approaches, particularly in MD, 

were also explored.7, 9, 11, 12, 45-56 Within numerical methods, FDM has the advantage of being 

straightforward and physically transparent in its discretization. However, if a direct 
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discretization is used without considering the discontinuity in the dielectric constant, the 

numerical solutions tend to have large errors, and the errors are particularly obvious near 

the solute-solvent interface. To overcome this problem, Davis and McCammon proposed a 

harmonic average (HA) method to approach the approximate dielectric constant near 

surface in 1991.57 Efforts have also been reported recently by Wei and co-workers and Li 

and co-workers to develop higher accuracy interface schemes, the immersed interface 

method (IIM) and the matched interface and boundary (MIB) method, to improve 

numerical accuracy of the PBE solution58-66 Additional higher-order schemes are also 

developed,67, 68 some of which are specifically for nonlinear PBE. The idea of IIM is to 

enforce the interface conditions into the finite-difference schemes at grid points near the 

interface. On the other hand, the scheme of MIB is enforcing the lowest-order jump 

condition repeatedly to achieve the high-order jump condition. Alternatively, instead of 

treating the solute-solvent interface explicitly, Alexov and co-workers proposed an 

approach that uses Gaussian-based smooth dielectric functions to model the implicit 

solvation environment in an interface-free manner.69, 70 Some other interesting approaches 

have also been proposed to improve implicit solvent models, such as coupling electrostatic 

and nonelectrostatic interactions within the implicit solvation treatment,71-75 explicit 

simulating implicit solvent as a fluid for the purpose of more physical modeling of solvation 

interactions,76-78 and using the level set function to better define the solvent and solute 

interfaces for dielectric assignment.79, 80 Among those methods, IIM has been a promising 

high-accuracy numerical scheme, and is able to achieve energy conservation in PB 

molecular dynamics (MD).81 This can be attributed, in part, to the fact that a uniform higher 

accuracy of O(h2) can be achieved even near the interface.82  
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However, the original IIM has also suffered from numerical instability in complex 

biomolecular environments.59 This in part is due to the use of the level set scheme to track 

the molecular interface and compute associated jump conditions. Here the molecular 

interface is defined with an analytical density function recently developed by our group.83 

It has been shown that the density function method performs better than geometry-based 

methods such as van der Waals surface and solvent exclude surface in terms of errors, 

transferability, conformation dependence, and convergence.83 The extensive use of the 

level set scheme in the original IIM, however, was found to introduce noises in interface 

properties that leads to numerical instability. For example, it uses a least square 

interpolation approach to obtain all interface parameters and jump conditions.82 Though 

this is a general scheme for partial differential equations with interface, it may not always 

work on the molecular interface formed by densely packed atoms. In addition to the 

instability issue, the original IIM is also very slow and does not work well even when coarse 

grids are used in biomolecular applications.59 This can be attributed to the extensive use of 

finite-difference interface approximations that may also fail to capture the interface 

characteristics at coarse grid spacings and lead to inconsistent linear systems that are 

poorly conditioned and take longer time to solve.  

In this study, we present a new implementation of the second-order accuracy IIM to 

address those issues. Specifically, we show how to calculate geometric properties and jump 

conditions analytically at the interface. In addition, the necessity and rationality of surface 

regulation are discussed, along with a simple and efficient regulation scheme. We also 

present a GPU implementation of the linear solver needed in the IIM, a bottom neck of the 

IIM. Our analysis shows that the new strategy improves the convergence and stability of 
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IIM, and also improves the efficiency of the method. The GPU implementation further 

removes the bottle neck of numerical procedure. These new developments have been 

implemented into the Amber molecular modeling suite and are freely available for the 

biomedical community.84 

 

1. 2 Method 

IIM is a more accurate method for interface treatment than most traditional ones, such as 

the harmonic average method.96 In IIM, the interface can be used to separate the problem 

domain into inside (Ω$), outside (Ω/), and interface (Γ). Next finite-difference grid points 

are classified as regular grid points that are with all their neighboring grid points 

(connected with grid edges) in the same region or as irregular points that are not.  

Next the jump conditions can be predefined as follows so the PDE is well-posted, 

2�34 = 5 

26��34 = 7 

where 5 and 7 are given by users for specific problems at hand. In this study 5 and 7 are 

defined for the singularity-free PBE below. 

For regular points, IIM uses the standard 7-point central finite-difference scheme, since 

those points do not have a neighbor located in a different region. This stencil has an 

accuracy of (O(h2)). For irregular points, IIM proposes a new finite-difference stencil that 

contains at least 10 points instead of 7 (typically 27 points) are used to minimize the 

magnitude of the local truncation error while satisfying the jump conditions. So the finite-

difference scheme becomes, 
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	  8��9 + 98, ; + ;8, 
 + 
8� = <�9, ;, 
� + =�9, ;, 
��>
8  

where ns is the number of grid points (27 typically),  8 are unknown coefficients, C(i,j,k) is 

the unknown correction term, and f(i,j,k) is the discretized right hand term of the PBE. In 

this study, it is always zero because the singularity-free PBE is used as discussed later. 

The basic idea of IIM is to determine  8 at the irregular points so that the second-order 

global accuracy is obtained as in an interface-free problem with the finite-difference/finite-

volume discretization scheme. Specifically, IIM uses the interface relations to translate all 

the outside points into inside (or vice versa) and then forces the truncation error of the 

inside (or outside) to O(h3).119  

The local truncation error T(i,j,k) at grid point (i,j,k) is, 

?�9, ;, 
� = 	  8��9 + 98, ; + ;8, 
 + 
8� − =�9, ;, 
��>
8  

after setting f(i,j,k)= 0. In the local coordinate frame, the Taylor expansion can be used to 

expand each � in the neighborhood of the projection point (X*) of the grid point (i,j,k) from 

each side of the interface to the second order. Thus there are 20 terms, corresponding to 

��@∗�±, �B�@∗� ±, �C�@∗� ±, �D�@∗� ±, �BB�@∗� ±, �BC�@∗� ±, �BD�@∗� ±, �CC�@∗� ±, �CD�@∗� ±, 

�DD�@∗� ±. Here E, F and G are local coordinates, and “+”, “–” denote the outside and inside 

region, respectively. By using the  interface relations shown later,119 those 20 terms are 

reduced to 10, all in the inside (or outside) region as shown below. 

?�9, ;, 
� = H(�$ + H��B$ + HI�C$ + HJ�D$ + HK�BB$ + H*�BC$ + HL�BD$ + HM�CC$ + HN�CD$
+ H(��DD$ + ?O�9, ;, 
� − =�9, ;, 
� + P�max {| 8|ℎI}� 

where ?O�9, ;, 
� is a constant term from imposing the interface relations. 
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Finally, the expansion is matched against the differential equation to the leading terms to 

obtain a system of equations for the finite-difference coefficients. For the Poisson equation, 

we have H( = 0, H� = 0, HI = 0, HJ = 0, HK = 1, H* = 0, HL = 0, HM = 1, HN = 0, H(� = 1. 

Then the constant term C(i,j,k) can be determined with the accuracy of O(h2). With 10 

equations and 27 unknowns ( 8), the problem is in principle solvable.119 

Furthermore, it appears that with 17 extra degrees of freedom, special  8 can be chosen to 

fulfill some optimization requirement such as the maximum principle preserving scheme, 

to achieve even better performance.119 However, this may not always be the case, which 

will be discussed latter. 

 

Point charge models are widely used in molecular simulations of biomolecules. However, 

the representation of point charges by delta functions introduces singularity to the PDE. 

Several strategies are available to remove the charge singularity,58, 100, 146-147 and here we 

adopt the recently developed reaction field potential method.96 

Briefly this method solves the PDE in two different regions with different potentials, i.e. the 

reaction field potential inside and the total field potential outside. Here the reaction field 

potential is the potential caused only by induced charges.148 

Thus, the unified equation describing the whole region is 

∇ ∙ ,∇� = 0 

but with the modified jump conditions as follows, 

[�]=∑ ]#�"�#���  = 5 

[,��] = , inside (∑ ]#�"�#��� )n = 7 

Here, the subscript n means the gradient is along the interface normal direction n.96 
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To obtain the interface relations and the jump conditions, it is necessary to know the 

geometry of the interface and the jump condition values on the interface, in addition to the 

tangential derivatives of the jump conditions. These quantities can be obtained analytically 

if the density function strategy is used to define the interface.119 

The main idea of the density function method is to use a smooth function to approximate 

the solute exclusive surface (SES) of a molecule, and in the meantime adjust the parameters 

of the density function accordingly so that the reaction field energies obtained from these 

two models agree the best.143 Specifically, given the nth atom centered at rn, its density 

function ^� is defined as, 

^��_� = ^��` − �2b � 

Here, d=|r-rn| is the distance to the atom center, rc is the VDW radius of the atom, and rp is 

the solvent probe radius. 

In addition, the density function satisfies the following constraints to be physical and 

reasonable,143 

^��_� > 1, 5ℎd� _ < 0 

^��_� = 1, 5ℎd� _ = 0 

^��_� < 1, 5ℎd� _ > 0 

Here points with x=0 are on the surface of an atom. To guarantee smoothness and good 

numerical behaviors, a cubic-spline interpolation function that fulfills the above constraints 

is used. Next, under the requirement of achieving the best agreement of reaction field 
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energies with the given benchmark for a diversified set of training molecules, all the 

coefficients in the interpolation are optimized and the following formula is obtained.143 

^��_� =
fgh
gi  1.00 − 4.527143_ − 3.640532_� + 32.631235_I   0.0 < x < 0.20.21 − 2.067608_ + 15.938209_� − 35.500854_I   0.2 < x < 0.4     0.15 + 0.047573_ − 5.362303_� + 13.12218_I   0.4 < x < 0.6     0.05 − 0.522686_ + 2.511005_� − 4.487867_I   0.6 < x < 0.8     0.01 − 0.056828_ − 0.181716_� + 1.079289_I   0.8 < x < 1.0

 

Given the atomic density function, the molecular density function is a summation of all the 

atomic density functions as 

^�_� = 	 ^��_���r�8
�  

More details can be found in the literature.143 

Note that in the original IIM, all the geometric and physical interface properties are 

obtained via the level-set numerical toolkit.119 However, with the use of the density 

function, we can obtain all these quantities analytically, including the interface normal 

direction s, interface curvatures ECC, EDD and ECD, jump condition values 5 and 7, and their 

tangential derivatives on the interface. More importantly, by using this method, the 

numerical instability arising from applying hard spheres in classical molecular surface 

representation can also be minimized due to the use of a smoothly varying function.143 

 

A key improvement in the new analytical IIM is the complete elimination of the level set 

functions used to interpolate all interface properties. This is a more natural strategy 

because the underlining density function to represent the interface is a continuous cubic-

spline function. In addition, the jump conditions, i.e. Coulomb potential and field, are also 

analytically available.  
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There are roughly three steps to determine all the analytical interface conditions on the 

interface.119 The first step is to find the projection point of an irregular grid point. The 

projection point here means a point right on the interface that is close to the irregular 

point. This is necessary for the Taylor expansion used to compute the local truncation 

error. The best choice of projection point is the interface point that is closest to the 

irregular point. However, it is almost impossible to locate it, and even if we can, it is 

definitely not worth all the effort.119 Instead, we used its normal projection point on the 

interface. The normal projection point can be easily obtained by finding the intersection 

point of the interface and the steepest descent vector starting from the irregular point (i.e. 

along the gradient of the density function). Because we are looking along the steepest 

descent direction, the projection point may also approximate the closest projection point 

reasonably well. Specifically the Newton’s method was used to search along the normal 

direction for the projection point. One of the advantages of this method is that we can 

locate the projection point as precise as possible and also relatively efficiently. Specifically, 

the precision was set to 10-6 in our method so that its location would never be an issue in 

most finite-difference setups, which means, 

|^�tu;dvw9u� tu9�w� − 1| ≤ 10$* 

The second step is to calculate the local coordinate transformation matrix and the interface 

curvature. This is straightforward given the analytical density function. To calculate the 

transformation matrix, we need the normal direction of the interface, which is the gradient 

direction of the density function of the projection point. Next, the other two tangential 

directions can be determined as follows,119 
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fgg
gh
ggg
i s = y^z, ^{ , ^|}~                                                         � = �^{ , −^z, 0�~                                                        � = y^z^| , ^{^| , −^z� − ^{�}~   ,    9< ^{� ≥ ^|�     s = y^z, ^{ , ^|}~                                                          � = �^| , 0, −^z�~                                                           � = �−^z^{ , ^z� + ^{�, −^{^|�~   ,   uwℎd59�d

 

The three principal curvatures can then be obtained as follows. Under the local coordinates 

of the interface, the following relations hold, 

^��0,0,0� = ^��0,0,0� = 0 

Based on that, the three curvatures are, 

ECC = − ^��^s  

EDD = − ^��^s  

ECD = − ^��^s  

The last step is to calculate all those jump conditions. Given above equations, we obtained 

the following equations of derivatives. 

5C = 	 +!!I! F!  

5D = 	 +!!I! G! 

5CC = 	 3 +!!K! F!� − +!!I + +!!I E! ∙ �ECC�! 

5DD = 	 3 +!!K! G!� − +!!I + +!!I E! ∙ �EDD�! 
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5CD = 	 3 +!!K! F!G! + +!!I E! ∙ �ECD�! 

7C = 	 3 +!!K! E!F!  

7D = 	 3 +!!K! E!G!  

The summation here is over all the charges or atoms. Now all the quantities needed are 

obtained, the interface relations can be constructed as, 

�/ = �$ + 5 

�B/ = ,$,/ �B$ + 7,/ 

�C/ = �C$ + 5C 

�D/ = �D$ + 5D 

�BB/ = ,$,/ �BB$ + �,$,/ − 1� �CC$ + �,$,/ − 1� �DD$ + y�B/ − �B$}yECC + EDD} − 5CC − 5DD 

�BC/ = ,$,/ �BC$ + ��C/ − ,$,/ �C$� ECC + ��D/ − ,$,/ �D$� ECD + 7C,/ 

�BD/ = ,$,/ �BD$ + ��C/ − ,$,/ �C$� ECD + ��D/ − ,$,/ �D$� EDD + 7D,/ 

�CC/ = �CC$ + y�B$ − �B/}ECC + 5CC 

�DD/ = �DD$ + y�B$ − �B/}EDD + 5DD 

�CD/ = �CD$ + y�B$ − �B/}ECD + 5CD 

 

Even if the density function surface was designed to handle the deeply buried atoms as the 

standard SES approach, it is still limited in approximating the solvent reentry interface 

formed among solvent accessible atoms.143 For example, the reentry interface is often 
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flatter than what the density function predicts, as shown in Figure 1. In addition, it is 

almost impossible to model the reentry surface as being formed by a spherical probe as in 

SES. We thus resort to a surface regulation scheme to adjust the interface geometric 

parameters to partially alleviate the limitations.  

Our regulation scheme follows two principles. First, we exploited the original SES idea that 

the molecular interface is simply a surface formed by probing the molecules of hard 

spheres of different radii. Thus, the interface is a union of solvent-exposed spheres of 

different radii. Second, the inward-facing portion (aka solvent reentry portion) of the 

interface cannot have a surface curvature higher than that of solvent probe. Thus, a 

regulation scheme was developed with the following two steps for the solvent reentry 

portion, i.e. when the surface curvature is negative. First, if the curvature of the surface is 

larger than 1/rp, it is reset to 1/rp, where rp is the solvent probe radius (Figure 1.1). Second, 

the mixing curvature ξητ is set to be zero, and the other two curvatures is set to equal to 

whichever has a smaller absolute value. This step implies the use of a sphere to represent 

the reentry surface. These changes were found to improve the numerical stability and 

convergence of the IIM calculations, especially for coarse grid situations, as discussed in 

Results and Discussion. 

 

+ + 

- 
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Figure 1.1. Treatment of the reentry surface. The solid line represents the solvent excluded 

surface. The dash line represents the solvent accessible surface. The dot circle represents 

the solvent probe. “+” signs represent surface elements with positive curvature and “-” 

signs represent surface elements with negative curvature. 

 

Apparently, the whole process of solving PBE with IIM involves many procedures. Here we 

outline the main numerical procedures step by step. 

1) Use the molecular density function to classify grid points into regular and irregular 

points; 

2) For regular points, set up the discretized equation with the standard seven-point stencil; 

3) For irregular points, calculate all the needed interface geometry parameters (e.g. 

curvatures) using the density function; 

4) Apply the regulation scheme to revise the obtained interface geometry parameters; 

5) For irregular points, continue calculating the needed jump conditions, i.e. w and v, 

analytically using the density function and the geometry parameters just obtained; 

6) Set up the discretized equation for irregular points using the obtained geometry 

parameters and jump conditions; 

7) Combine the equations of both regular and irregular points and solve the full linear 

system to obtain the potentials; 

In the above procedures, steps 3), 4), and 5) were completely rewritten in our analytical 

implementation of IIM. Step 7 was also rewritten for both CPU and GPU calculations. 
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To validate the accuracy and precision of the proposed method, we first used a well-studied 

analytical model, i.e. a single dielectric sphere imbedded with point charges. The analytical 

potential in the inside region is,  

���$ �, �, �� = 	 	 4�2� + 1
�

8.$�
1'��/( �� + 1��,$ − ,/�,$��,$ + �� + 1�,/� ��8���8��, ���

�.�  

��8 = 	 +�����8∗ ���, ���-�
�.(  

where R is the radius of the sphere, and the center is set to the origin. �] is the number of 

charges, ��8 are the spherical harmonics as spherical coordinates are used. 

After solving the finite-difference equations, only potentials at grid points are known. To 

obtain potential at any position (x,y,z), we utilized the one-side least-square interpolation 

method.96 Next the reaction field energy is the summation of the products of the reaction 

field potential and the charges. 

∆� = 12 	 +!����"�#���  

For the analytical test, four off-centered charged models were used, which are monopole, 

dipole, quadrupole, and octupole. The radius of sphere was set to 2 Å for convenience, 

which is about the size of a united carbon atom. The Cartesian coordinates of each charges 

are listed in Table S1. The inside dielectric constant was set to 1.0, with that of outside set 

to 80.0. The truncation order l in ���  was chosen to be 120, leading to a precision of 10-6. 

 

A total of 573 biomolecular structures from the Amber PBSA benchmark suite were used to 

study the accuracy and efficiency of the new method.50 We further chose eight small 
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proteins about 1000 atoms from the benchmark suite to analyze the convergence of the 

new method, so that the jobs can be handled on our local compute nodes at the finest grid 

spacing tested. These biomolecules were assigned charges of Cornell et al149 and the 

modified bond radii. The probe radius was set to 1.4 Å. All testing runs were performed 

with the following conditions unless specified otherwise. The convergence criterion of 10−4 

was used for the BiCG linear system solver. The default grid spacing was 0.5 Å for most 

calculations, except that they were set as 1.0 Å, 0.5 Å, 0.33 Å, 0.25 Å, and 0.125 Å in the 

convergence analysis. The ratio of the grid dimension over the solute dimension 

(the fillratio keyword in Amber) was set to 1.5 and 4.0 for biomolecular tests and analytical 

tests, respectively. No electrostatic focusing was applied. The potential values on all grid 

points were initialized to zero. The conductor boundary, i.e. zero potential, was used in all 

non-periodic PBSA calculations. The dielectric constants were set to 1 and 80 for solute and 

solvent, respectively. All other parameters were set as default in the PBSA module in 

Amber 18 package.150 

A BiCG linear system solver for GPUs was also implemented using the Nvidia CUDA Sparse 

Matrix (cuSPARSE) library, which provides basic linear algebra procedures for sparse 

matrix operations.151 The CSR matrix format was used for the non-symmetric coefficient 

matrix as in our previous publication.152  All GPU and CPU tests were conducted on a 

dedicated compute node with two NVIDIA TITAN Xp GPU cards, one Intel Xeon E5-1620 v3 

CPU, and 16GB main memory. Our time measurements for both solvers include all 

execution time of the solver routines, i.e. time elapsed on device (GPU) and on host (CPU) 

and also for transferring data between the device and the host. 
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1.2 Results and Discussion 

The accuracy and precision of reaction field energies were investigated with five different 

grid spacings, 1 Å, 0.5 Å, 0.33 Å, 0.25 Å and 0.125 Å. The detailed results of different 

programs with and without analytical setup are shown in Figure 1.2, Table 1.1. 

 

— analytical setup  --- numerical setup  

··· analytical value 

Figure 1.2.  Convergence of reaction field energies (kcal/mol) versus grid spacing (Å) for 

analytical sphere models with both numerical and analytical setups for IIM. The energy 
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results are obtained by averaging 30 grid orientations/offsets for each test case. All the 

curves are obtained by fitting data to parabolas. Note that the data points at grid spacing 1 

Å are not included in the fitting. 

Clearly, the analytical setup obtains better accuracy than the numerical setup in all the 

cases regardless of the grid spacing. Interestingly, the analytical setup version can obtain a 

good result even with coarse grid, for example in 1 Å spacing. In Figure 2 (a) and (b), 

though not included in the fitting process, data points at grid spacing of 1 Å are close to the 

fitting curves in the analytical setup, showing that those data have already entered the 

convergence region. However, for numerical setup, there is no sign of entering convergence 

region for data at 1 Å for any test cases. Table 1 further shows that the relative errors are 

already less than 0.1% for all the cases at the grid spacing of 0.5 Å when the analytical 

setup was used, much less than those of the numerical setup with the medium value of 

about 0.7%. This indicates that the analytical setup leads to faster converged results than 

the numerical setup. 

Table 1.1. Reaction field energies (kcal/mol) for the analytical sphere models with the 

analytical setup. Each energy is an average of 30 random placements of the finite difference 

grid over a tested model. Analytical reaction field energies were calculated using 

Mathematica 7.0. 

Spacing 1.000Å 0.500Å 0.330Å 0.250Å 0.125Å Analytical 

Monopole -102.80 -103.22 -103.26 -103.28 -103.29 -103.30 

Dipole -24.62 -24.80 -24.81 -24.83 -24.83 -24.83 

Quadrupole -8.56 -9.17 -9.17 -9.15 -9.16 -9.17 

Octupole -24.70 -25.93 -26.02 -25.98 -25.98 -25.98 
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Surface properties are often important for calculation of electrostatic forces, so we used the 

electric field at interface to show how well the interface properties can be reproduced in 

both setups. The results from different setups are presented in Figure 1.3. The root mean 

square deviation (RMSD) values were calculated by comparing values from different 

interpolation schemes and the theoretical values, where the three interpolation methods 

used are those studied in detail in the literature.153 
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Figure 1.3. RMSDs between computed normal component of the surface electric field with 

analytical values (kcal/mol-e-Å) versus grid spacing (Å) for analytical sphere models with 

both numerical and analytical setups for IIM. 

It is clear that for all the three interpolation schemes, the analytical setup always gives 

better agreement with theory. Of all the interpolation schemes used, the 1-d interpolation 

shows the best performance, which is consistent with the literature observation.153 

Interestingly for some cases, the worst results for the analytical setup can even beat the 

best results for the numerical setup. 

 

We conducted convergence analysis of the PB reaction field energy versus grid spacing for 

the IIM with different setups. The results for the eight chosen proteins are shown in Figure 

1.4. IIM with both analytical and numerical setups converge at very fine grids in a unified 

quadratic manner, as predicted by the theory. The converged values are consistent with 

our previously implemented solvers, and also consistent with other existing solvers as in 

DelPhi and APBS, and higher order solver such as MIBPB.154 However, the convergence 

curves do not show a significant improvement after we analytically computed all interface 

parameters and jump conditions. Indeed, some of the test cases were found to lead to even 

worse results (as in case (b) of Figure 1.4).  

The reason is that we do not have proper interface parameters. When numerically solving 

PDEs for systems with interfaces, interface parameters must converge in a quadratic form, 

so we can guarantee the whole numerical scheme converges in a quadratic manner. 

However, this does not hold for the analytical setup. Even if the analytical setup can obtain 

extremely accurate interface parameters (with relative error of 10-6) on each projection 
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point, the projection point may not necessarily be a good representation of its 

neighborhood on the interface. Therefore, when we resort to a finer grid spacing, a new 

projection point in this neighborhood may give a set of totally different interface 

parameters (even the sign may be different for curvatures due to the crowded atomic 

packing in biomolecules), causing the method fail to converge in a quadratic manner. 

Indeed, if we include the data at the grid spacing of 1.0 Å in the fitting curves, the 

asymptotic energy would converge to a wrong value. This phenomenon shows that the data 

at the space 1.0 Å have not entered the convergence region, thus leading to poor 

performance with the analytical setup. We believe this is because the interface parameters 

do not converge in a quadratic form, which motivated us to develop a surface regulation 

scheme. 
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— analytical setup  --- numerical setup  

··· analytical setup with surface regulation 
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Figure 1.4. Convergence trends for reaction field energies of nontrivial biomolecules 

(kcal/mol) versus grid spacing (Å). The energy results are obtained by averaging of 

systematic 30 rotations/offsets of the tested molecules. All the curves are obtained by 

fitting data at discrete grid point to a parabola (y=a+bx2). (Note that for the analytical setup 

without surface regulation, data at grid spacing equal to 1 Å are not included in the fitting.)  

 

That better interface parameters are required to unleash the full potential of the analytical 

setup can also be illustrated in the following rationale. Nontrivial biomolecules in our test 

cases contain atoms with radii as small as 0.6 Å. Thus, a sampling grid spacing of 1.0 Å or 

0.5 Å is inadequate to capture the surface curvatures (ECC, etc). In the numerical IIM 

scheme, the interface properties (such as curvatures) are not accurate as they would be in 

the analytical IIM, because certain fuzziness from the use of the coarse grid is introduced 

within the neighborhood of the projection point.119 Coincidently, however, these inaccurate 

properties lead to a better representation of the surface for the numerical IIM when the 

coarse grid is used (Figure 1.4). Therefore, for a coarse grid such as of 1.0 Å, the accuracy of 

the IIM scheme cannot achieve what the theory best predicts and thus the data deviate 

from the fitting curves. Thus, a better way to deal with coarse grids is to adopt some 

fuzziness for the surface description.  We implemented the surface regulation to introduce 

some “inaccuracy” but more “representativeness” into the analytical IIM for coarse grid 

spacings such as 1.0 Å.  

As shown in Figure 1.4, the convergence performance of the analytical setup with surface 

regulation is much better than the results without regulation and the data follow the 

quadratic pattern more closely. Worth noting is that the PB energies at the grid spacing of 
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1.0 Å enter the convergence region when the surface regulation is used. In addition, the 

analytical setup makes it converge faster (flatter convergence curve) than the numerical 

setup for every test case. The detailed discussion is shown below. 

 

For the widely used coarse grid spacing of 1.0 Å, the analytical setup without regulation 

does not show an improvement. The maximum, medium and minimum relative errors of 

reaction field energy at 1.0 Å for the eight tested proteins are 3.51%, 2.90% and 2.05%, 

respectively (Table 1.2). Those for the numerical setup are 2.54%, 1.79%, and 0.58%, 

respectively. It can be seen that the analytical setup alone does not improve the 

convergence for complex interfaces. The reason is that those projection points do not have 

enough representativeness as we discussed above. However, for analytical setup with 

regulation, those three errors are 1.22%, 1.03%, and 0.49%, respectively (Table 1.3), with 

the accuracy almost doubled for all chosen cases. This shows that by introducing surface 

regulation, we successfully made the interface more representative and thus improved the 

convergence properties. As for the widely used coarse grid spacing of 0.5 Å, the 

convergence improvement is similar to that of 1.0 Å, with the convergence of the analytical 

setup with regulations is also roughly twice better than the other two schemes.  

Since our method is developed to balance accuracy and efficiency as it is mostly used to 

process tens of thousands of structures to post-process MD trajectories, such as in 

MMPBSA calculations, it is essential to make sure the PB energy error is negligible 

compared to the intrinsic error of MMPBSA, which is usually about 10% as discussed in one 

of our recent papers.155 For the recommended grid spacing of 0.5 Å, the relative error of PB 

energies with respect to the limiting values at 0 Å is about 0.5% (Table 1.3), which is 
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twenty times smaller than the intrinsic error and clearly negligible. It is also interesting to 

compare with some existing higher-order solvers, such as MIBPB, which showed a relative 

error of about 0.2% at their recommended grid spacing of 1 Å with respect to the finest 

tested grid of 0.2 Å.154 This is basically the same if we also compare the values with those at 

0.2 Å instead of 0 Å for the analytical IIM. In summary the accuracy of both our second-

order solver and higher-order solvers is sufficient for post-processing methods that are 

based on intensive PBSA calculations. While on the other hand, the trade-off in accuracy 

and efficiency implies that our second-order solver shall benefit more in CPU intensive 

applications. 

 

Table 1.2. Reaction field energies (kcal/mol) of eight selected proteins with analytical 

setup. 

spacing 1aci 1ah9 1b22 1aw0 1bbi 1bdc 1bw6 1c75 

1.000Å -1059.46 -1045.14 -772.98 -1083.10 -1130.23 -820.50 -1536.82 -924.65 

0.500Å -1032.95 -1019.10 -751.89 -1064.22 -1106.95 -800.71 -1512.05 -904.49 

0.333Å -1029.06 -1014.96 -748.88 -1061.70 -1105.35 -797.09 -1507.84 -901.55 

0.250Å -1028.47 -1014.02 -748.30 -1061.11 -1105.72 -796.15 -1507.01 -900.93 

0.125Å -1029.26 -1013.55 -747.08 -1060.72 -1106.34 -795.56 -1506.63 -900.68 

lim values -1028 -1013 -746.8 -1060 -1106 -794.9 -1506 -900.0 

 

Table 1.3. Reaction field energies (kcal/mol) of eight selected proteins with analytical setup 

and the regulation treatment. 

spacing 1aci 1ah9 1b22 1aw0 1bbi 1bdc 1bw6 1c75 
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1.000Å -1035.44 -1023.20 -754.93 -1065.92 -1108.35 -804.33 -1514.27 -908.97 

0.500Å -1028.61 -1014.24 -748.51 -1061.08 -1103.45 -797.99 -1507.33 -901.28 

0.333Å -1025.94 -1011.44 -746.64 -1059.50 -1102.77 -795.28 -1504.58 -899.36 

0.250Å -1026.06 -1011.24 -746.53 -1059.39 -1103.41 -794.77 -1504.37 -899.20 

0.125Å -1027.52 -1011.6 -745.98 -1059.60 -1104.72 -794.70 -1504.93 -899.54 

lim values -1026 -1011 -745.9 -1059 -1103 -794.6 -1504 -898.7 

 

Another point worth addressing is the numerical uncertainty of numerical reaction field 

energies. As stated previously, the final PB energy is an average over PB energies of 30 

different grid orientations/offsets of our test molecule. The standard deviations of collected 

data can be used to show the numerical uncertainty of the algorithm. Table 1.4 shows the 

standard deviations of the 30 energies computed at grid spacings of 0.5 Å and 1.0 Å. For the 

numerical setup at grid spacing of 1.0 Å, the maximum, medium and minimum fluctuations 

among the 8 tested proteins are 7.70, 3.27, and 1.93 kcal/mol, respectively. Those for the 

analytical setup at the same grid spacing are 5.87, 4.51 and 2.68 kcal/mol, respectively. And 

for the analytical setup with regulation, they are 3.25, 2.62 and 1.86 kcal/mol, respectively. 

In general, the energy of the numerical setup may fluctuate about 2~3 times larger than the 

analytical setup, which clearly shows the analytical setup is much more stable and reliable 

than the numerical setup. Similar behaviors were also observed with the grid spacing of 0.5 

Å. The regulation scheme almost always shows a smaller fluctuation than the other two, 

and the performance is roughly 2~3 times better as shown in Table 1.4. Thus it is clear that 

both the convergence accuracy and the numerical fluctuation of our new analytical IIM 
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solver are in the order of a few tenths of a percentage point at the recommended grid 

spacing of 0.5 Å, and also with higher efficiency.  

Table 1.4. Reaction field energies standard deviation (kcal/mol) of eight selected proteins 

with three setups at grid spacing of 0.5 Å and 1.0 Å. 

 

 1aci 1ah9 1b22 1aw0 1bbi 1bdc 1bw6 1c75 

0.5 Å         

numerical 4.529 1.070 1.209 3.214 1.571 0.509 4.015 0.532 

analytical 1.017 1.037 0.660 0.721 1.782 0.628 0.944 0.821 

regulation 0.838 1.046 0.707 0.570 1.332 0.591 0.971 0.722 

1.0 Å         

numerical 7.704 3.202 1.934 4.743 7.476 3.332 3.128 2.333 

analytical 4.024 5.191 2.938 2.678 4.997 5.154 2.762 5.873 

regulation 3.250 2.937 2.752 2.292 2.768 1.885 2.495 1.856 

 

Figure 1.5 shows the timing comparison between two different setups for IIM. It is clear 

that the analytical setup is faster in all the cases, and the improvement in the solver time is 

significant for grid spacings of widely used 1.0 Å and 0.5 Å, for which the performance of 

analytical setup is five-times/double of that of the numerical setup on average. We believe 

this is because the analytical setup gives much more precise coefficients for the final 

discretized equations, leading to better-conditioned linear systems. Thus, the numerical 

solver takes fewer iterations to reach the convergence. Because the solver phase is the 

most time-consuming part in these programs as shown in Table 1.5, this leads to a dramatic 
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reduction in the overall running time. For finer grid spacing of 0.25 Å, the speedup is not 

that significant any more, which is understandable, as the difference between analytical 

setup and numerical setup becomes negligible. 

Table 1.5. Percentages of the average solver time in IIM runs for the protein test set. 

grid spacing 1Å 0.5Å 0.25Å 

numerical 

setup 

74% 82% 90% 

analytical 

setup 

23% 51% 78% 

Figure 1.5 also shows that the analytical setup can be more stable. For spacing of both 1Å 

and 0.5Å cases, the timing data are more concentrated near the fitting curves, which shows 

a more unified scaling behavior. Besides, for the protein test set, 3 (out of 573) cases failed 

for the numerical setup (bad data or NaN for PB energies), but none for the analytical 

setup, as showed in Table 1.6. We further confirmed this result with the analytical setup 

tests in which no case failed. This is consistent with the observations in other analyses of 

the methods. 

Table 1.6. Failed test cases for the IIM runs with numerical setup. 

grid 

spacing 

1Å 0.5Å 0.25Å 

Failures 1lyp 

1dip 

1pih 

1mut 

1e6q 

2jhb 

1hyk 

1gnc 
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— analytical setup   --- numerical setup 

Figure 1.5. Timing comparison between two different setups (without regulation). 

 

Finally, we implemented the BiCG linear system solver for the IIM, which is the most time-

consuming portion of the algorithm as shown in Table 5. The results with the protein test 
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set are showed in Figure 1.6. The PB energies agree excellently between GPU and CPU 

programs, with the medium relative error of 0.07% for the test set. The timing of the GPU 

solver also shows an impressive performance boost here, with the speedup ratio of about 

20. The implementation on GPU makes the analytical setup IIM program more feasible for 

practical biomolecular applications. 

 

 

Figure 1.6. Comparison of PB energies (kcal/mol) and solver timing (seconds) between 

GPU and CPU runs. The energy trend line is 1.001x+1.088, with the medium relative 

deviation between the two sets 0.066%. The timing trend line is 0.045x+0.921, with the 

GPU program about 20 times faster than the CPU program. 
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1.4 Conclusion 

In this study, we introduced both analytical setup of interface conditions and surface 

regulation into the IIM to address its instability and slow convergence. The analytical setup 

was found to obtain more accurate solutions than the numerical setup in the analytical test 

cases. The method was found to be able to obtain a good result even with coarse grid 

spacings, like 1 Å. At the widely used grid spacing of 0.5 Å, the analytical setup can also lead 

to much smaller relative errors (less than 0.1%) than the numerical setup. Overall the 

analytical setup converges in a quadratic manner, as predicted by theory. 

The surface regulation scheme further speeds up the convergence for nontrivial 

biomolecules. For the widely used coarse grid spacings of 0.5 and 1.0 Å, the analytical setup 

with the surface regulation was found to roughly halve the relative errors from the 

numerical setup. Specifically, the relative error of PB energies at 0.5 Å is about 0.5% with 

respect to the limiting values at 0 Å or about 0.2% with respect to the values computed at 

0.2 Å. These are similar to those of the higher-order solvers such as MIBPB at their 

recommended grid spacing. In addition, the numerical uncertainty of the PB energies is 

reduced to a few tenth of a percentage point of the mean. In summary both numerical error 

and uncertainty of the new analytical IIM method are much smaller than the thermal noise 

of typical room-temperature MD simulations, for which the PB method is often used as a 

post-processing tool. 

More interestingly the analytical setup significantly improves the solver efficiency at the 

tested coarser grid spacings. For grid spacings of 1 Å and 0.5 Å, the solver time was 

decreased by 5x and 2x, respectively. This is because the analytical setup generates more 
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precise coefficients for the final discretized equations, leading to better-conditioned linear 

systems. This also leads to a more stable algorithm. In our protein test set over 500 

proteins, none of them failed with the analytical setup. Finally, we implemented the GPU 

BiCG solver for the IIM. The PB energies agree excellently between GPU and CPU programs, 

and the timing analysis shows that the GPU solver is about 20 faster than the CPU solver, 

which makes the analytical setup IIM program more feasible for practical biophysical 

studies. 
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Chapter 2 

 
2.1. Introduction 

Electrostatic interactions are of great significance in biophysical processes, such as protein-

protein and protein-ligand associations. Thus, accurate and efficient treatment of 

electrostatics is crucial to computational studies of biomolecular structures, dynamics, and 

functions. Since water molecules are always involved in biophysical processes, effectively 

modeling their electrostatic interactions with biomolecules has been under active 

exploration. Implicit solvation modeling scheme has been such an attempt, which models 

solvent molecules in a structureless dielectric medium but biomolecular solute in atomic 

details. In this scheme, the solvent and solute molecules are often modeled as high and low 

dielectric regions, respectively, or as Gaussian-based smooth dielectrics in an interface-free 

manner1-3. Because most atoms are used to represent solvent molecules in explicit all-atom 

simulations of biomolecular systems under physiological conditions, modeling solvent 

molecules implicitly would allow higher computational efficiency without sacrificing the 

atomic resolution for the biomolecules. Among all the attempts, Poisson-Boltzmann 

equation (PBE) based implicit solvent models have proven to be among the most successful 

and are widely used in computational studies of biomolecules. 

For biomolecular applications, numerically solving PBE is always inevitable because its 

analytical solution is only possible in a few specific cases with extremely simple solute 

geometries. Beside semi-analytical generalized Born approaches,4-15 most common 

numerical strategies include the following: finite-difference methods (FDM),16-31 finite-

element methods32-41 and boundary-element methods.42-59  FDM, out of its simplicity and 

physical transparency in the discretization process, is one of the most popular schemes. 
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However, if a direct discretization is used without considering the discontinuity of the 

dielectric constant, the numerical solutions tend to have large errors, especially at locations 

near the solute-solvent interface. In order to overcome this difficulty, Davis and 

McCammon proposed a harmonic average (HA) method to alleviate the dielectric 

discontinuity near the interface in 1991.60 Since then further efforts have also been 

reported to develop better interface schemes, such as the immersed interface method (IIM) 

by Li and co-workers,61-64 and the matched interface and boundary (MIB) method by Wei 

and co-workers.65-68 The idea of IIM is to enforce the interface conditions into the finite-

difference schemes at grid points near the interface; while that of MIB is to enforce the 

lowest-order jump condition repeatedly to achieve an high-order jump condition. In 

addition to these higher-order numerical methods, some other approaches have also been 

proposed to improve the implicit solvent models, such as using level set functions to define 

the interfaces for dielectric assignment,69-71 and coupling electrostatic and nonelectrostatic 

interactions within the implicit solvation treatment.72-79  

Apparently higher order interface schemes such as IIM and MIB in principle would lead to 

higher accuracy for PBE applications.80-81 However, they are expensive to use. For example, 

the IIM is quite involving for complex biomolecular environment due to its extensive use of 

the level set method to compute interface geometric properties.61-64 This is because the 

second-order solvers (e.g. IIM and MIB) are usually very liberal in the use of grid points 

nearby the interface to improve the numerical accuracy.61-68 For example IIM uses 27 grid 

points for interface grid points, leading to 27-banded matrices. This is different from the 

first-order HA method, which only uses six nearest grid points to set up discretized linear 
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equations with 7-banded matrices. Interestingly, the HA method shows surprisingly good 

global convergence property, particularly at typically used coarse grids (e.g. 0.5 Å).  

However, even with the advantages of simplicity and effectiveness, the HA method is 

clearly limited due to its lower accuracy. Thus, it would be of great interest if the accuracy 

of simpler 7-point-stencil methods such as HA can be further improved. Furthermore, the 

7-banded matrix feature is also advantageous for high-performance computing platforms, 

such as graphics processing units (GPUs).82 GPUs have a parallel architecture that is suited 

for high-performance computation with dense data parallelism and have been used to 

accelerate linear PBE solutions for biomolecular systems with impressive speedup.82-84 The 

compact 7-banded matrix is more favorable in GPU implementation than the complex 27-

banded matrix due to its denser data parallelism. In addition, in the latter case 20 bands 

out of the 27-banded matrix have non-zero entries only for grid points nearby the interface, 

which leads to huge waste of memory if implemented in the band-optimal diagonal matrix 

format on GPUs. Therefore, improving the accuracy of 7-point stencil discretization 

schemes such as HA while still maintaining the simplicity and effectiveness will greatly 

promote applications of PBE implicit modeling on modern GPU computing platforms. 

In this study, we have developed two new algorithms in the 7-point stencil discretization 

scheme by introducing better physical interface relations and imposing the discretized 

Poisson’s equation to the second order, respectively. To achieve this goal, we first re-

derived the HA relations in a more general scheme and then developed further extensions 

from the original idea. Our testing data show that the new methods significantly improve 

the accuracy to that comparable to the second-order IIM. Meanwhile, the excellent 

convergence property of the HA method is still maintained. Finally, we present our 
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implementation of the new method onto GPU platforms, which shows impressive efficiency 

enhancement, making the new methods capable of high-performance biomolecular 

computational studies. 

 

2.1 Method 

As widely used for numerically solving partial differential equations (PDE), the FDM uses a 

uniform Cartesian grid to discretize the PDE. The grid points are numbered as �9, ;, 
�, 

where 9 = 1, … , _8 , ; = 1, … , �8, 
 = 1, … , �8, and _8, �8 and �8 are the numbers of points 

along the three axes. The grid spacing between neighboring points can be uniformly set to 

h. 

To discretize Poisson’s equation, 

∇ ∙ ,∇� = −4�^ 

the charge density ^�9, ;, 
� can be expressed as +�9, ;, 
�/ℎI, where +�9, ;, 
� is the total 

charge within the cubic volume centered at �9, ;, 
�. The final discretized Poisson’s equation 

is, 

{ , �9 − 12 , ;, 
� 2��9 − 1, ;, 
� − ��9, ;, 
�3 + , �9 + 12 , ;, 
� 2��9 + 1, ;, 
� − ��9, ;, 
�3
+ , �9, ; − 12 , 
� 2��9, ; − 1, 
� − ��9, ;, 
�3
+ , �9, ; + 12 , 
� 2��9, ; + 1, 
� − ��9, ;, 
�3
+ , �9, ;, 
 − 12� 2��9, ;, 
 − 1� − ��9, ;, 
�3
+ , �9, ;, 
 + 12� 2��9, ;, 
 + 1� − ��9, ;, 
�3}/ℎ� = −4�+�9, ;, 
�/ℎI 
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where, ��9, ;, 
� is the potential at grid �9, ;, 
�, and , �9 − (� , ;, 
� is the dielectric constant at 

the mid-point of the grids �9, ;, 
� and �9 − 1, ;, 
�, and all other � and , are defined similarly 

here.  

 A key feature of the discretized PDE is that the coefficient matrix of the linear 

equation system is in a 7-banded structure, and thus can be naturally wrapped into the 

diagonal (DIA) matrix format. The advantage lies in that for a banded matrix, the DIA 

format is the most efficient sparse matrix form for matrix-related linear operations in 

terms of both memory and CPU time. For example, comparing to the widely used 

compressed sparse row (CSR) format, the DIA format uses only about half of the memory 

since it does not store the coefficient indices for the matrix. It is also advantageous for 

matrix operations, such as matrix-vector multiplications, as there is no need to retrieve 

index information from memory. The simplicity and orderliness in matrix operations in the 

banded format further promote the performance on GPUs as our recent analysis of multiple 

PB solvers has shown.152 Thus an important motivation of the current study is to explore 

how to preserve the banded structure in the coefficient matrix while achieving higher-

order accuracy numerical solutions. 

In above equation, the dielectric constants are defined at the mid-points of all grid edges. 

As each edge is flanked by two grid points, it is natural to assign the dielectric constant to 

that of solute (or solvent) if both grid points belong to solute (or solvent). The complication 

arises when the two flanking grid points belong to different regions, i.e. the grid edge is 

across the solute/solvent interface.  

A pioneering idea was the Harmonic Average (HA) method as proposed by Davis and 

McCammon in 1991. The HA method was derived from an infinite parallel plate capacitor 
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model.94 Although it is an excellent simple model to capture the basic physics of the PBE, it 

is limited in generality for further development. Thus, the HA relation is first re-derived in 

a more general scheme for discretized PDEs below. 

 

                                                          A                                        B 

Figure 2.1. Two types of interface geometries. The left side of the interface is considered 

the inside region with the dielectric constant 6!, and the right side the outside region with 

the dielectric constant 6�. h is the grid spacing and 0 < a < 1. 

 

As PBE is a 3-d (dimensional) second-order PDE, the 7-point stencil is the simplest way to 

discretize the equation to achieve the second-order accuracy in both solvent and solute 

regions, but not at the interface. The goal of HA is to achieve an accuracy level as high as 

possible while still using the simplest 7-stencil scheme. To illustrate its idea, consider a 1-d 

interface illustrated in Figure 2.1. The general form of a discretized PDE in 1-d can be 

written as 

 (�( +  ��� +  I�I + = = 0 

where  ! are the coefficients to be determined, and C is a constant.  

First, consider the 1-d (or the x-direction) interface geometry in Figure 1A. Expressing �! in 

the Taylor expansion at the interface point yields 
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fgh
gi�( = � − �1 − H�ℎ ∙ �z$ + 12 �1 − H��ℎ� ∙ �zz$

�� = � + Hℎ ∙ �z/ + 12 H�ℎ� ∙ �zz/                         
�I = � + �1 + H�ℎ ∙ �z/ + 12 �1 + H��ℎ� ∙ �zz/

 

where “–” and “+” denote the solute and solvent regions, respectively. Similar expressions 

in y and z directions can also be obtained simply by changing subscripts. In the HA method, 

the following interface relations are assumed 

�z/ = 6!6� �z$ 

�zz/ = 6!6� �zz$  

which actually imply a conductor-like approximation, i.e. with all tangential components 

assumed to be zero. Of course, this is different from a conductor-like solvent model with an 

infinite dielectric constant. Combine above equations we obtain 

� ( +  � +  I� ∙ � + �−�1 − H�ℎ ( + 6!6� Hℎ � + 6!6� �1 + H�ℎ I� ∙ �z$

+ �12 �1 − H��ℎ� ( + 12 6!6� H�ℎ� � + 12 6!6� �1 + H��ℎ� I� ∙ �zz$ + = = 0 

It should be consistent with the PBE in 1-d so that the coefficients for the 0th- and 1st-order 

terms are all zero. These conditions lead to 

�                                                                         = = 0                                                    ( +  � +  I = 0−�1 − H�ℎ ( + 6!6� Hℎ � + 6!6� �1 + H�ℎ I = 0 

It is obvious that the coefficients used in the HA method, shown in below, are a set of 

special solutions of it, 
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fgg
h
ggi ( = 1H6� + 1 − H6!

              
 � = − 1H6� + 1 − H6!

− 6�
 I = 6�                    

 

For the interface geometry in Figure 2.1B, a similar result can also be obtained by the same 

argument as 

fgg
h
ggi

 ( = 6!                     � = − 1H6! + 1 − H6�
− 6!

 I = 1H6! + 1 − H6�
              

It is clear from the above derivations that the HA method makes two vital approximations: 

utilizing the conductor-like interface conditions and imposing the discretization conditions 

only on the 0th- and 1st-order terms. In this study, we aim to develop new methods by 

modifying these two approximations, while maintaining the simplicity of a 7-point stencil 

as in the HA method for GPU implementations. 

A straightforward modification can be proposed by imposing the discretization conditions 

to the second order, which yields 

fg
h
gi                                                                                    = = 0                                                               ( +  � +  I = 0           −�1 − H�ℎ ( + 6!6� Hℎ � + 6!6� �1 + H�ℎ I = 012 �1 − H��ℎ� ( + 12 6!6� H�ℎ� � + 12 6!6� �1 + H��ℎ� I = ℎ�6!

 

This replaces as the new coefficient relations for the interface in Figure 2.1A. Here the 

right-hand side of the fourth equation above can be arbitrarily set to any nonzero constant. 

The choice of ℎ� is for the simplicity of canceling the same factor on the left-hand side, and 
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the use of 6! is to make sure that the coefficients of the new discretized linear equation 

reduce to those of the standard 7-point stencil when there is no interface. It should be 

noted that though the PBE discretization is imposed to the second order, this method is 

rather different from the second order IIM, as IIM considers more detailed interface 

relations which utilize a 27-point stencil.156 

Solving above equation yields, 

fg
gg
h
ggg
i ( = 26!6!6� �1 + H�H + �2 + H��1 − H�          

 � = −26! �1 + H� + 6�6! �1 − H�6!6� �1 + H�H + �2 + H��1 − H�
 � = 26! H + 6�6! �1 − H�6!6� �1 + H�H + �2 + H��1 − H�    

 

Similarly, for the interface in Figure 2.1B, the following solutions can be obtained, 

fg
gg
h
ggg
i ( = 26! H + 6!6� �1 − H��1 + H�H + 6!6� �2 + H��1 − H�   

 � = −26! �1 + H� + 6!6� �1 − H��1 + H�H + 6!6� �2 + H��1 − H�
 � = 26!�1 + H�H + 6!6� �2 + H��1 − H�          

 

Obviously, the modification only scales the coefficients of the classical HA method. Thus, it 

is reasonable to assume this modification would improve the accuracy without 

jeopardizing its other properties, such as the stability and convergence behaviors. In 

addition, the proposed change retains the compact 7-banded structure of the final 

coefficient matrix, which is favorable for GPU implementations. For simplicity, we term this 
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revised method as the second-order HA method and will refer to it throughout the 

manuscript. 

 

The interface relations here are similar to those on a conductor surface, 

�D$ = 0 

where G denotes the tangential direction of the electric field on the interface. However, the 

outside region obviously does not have an infinite dielectric constant (6� = 80 for water). 

As a result, the tangential electric field cannot be exactly zero. The physical interface 

relations for the first derivatives of electric potential are, 

�z$ = �B$ cosyE�, _�} + �D$cos �Ĝ, _�� 

�z/ = 6!6� �B$ cosyE�, _�} + �D$cos �Ĝ, _�� 

where E denotes the normal direction of the electric field on the interface. The above 

equations show that the factor 
���  should be replaced by a more physical term, ¡, because 

¢£¤¢£¥ 

is no longer equal to 
���  as in the conductor-like interface, 

¡ = �z/�z$ = 6!6� �B$ cosyE�, _�} + �D$cos �Ĝ, _���B$ cosyE�, _�} + �D$cos �Ĝ, _��  

Now the challenge is to evaluate �B$ and �D$ in Eqn (15). This requires a careful look at the 

conductor approximation. For a perfect conductor (6� goes to infinite), the Coulomb field 

�¦$ and the induced field (reaction field) ���$  have the following relations, 

��B$�¦ = ��B$��� 

��D$�¦ = −��D$��� 
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The first equation shows that the normal field is zero inside the conductor (or water) and is 

twice the magnitude of the Coulomb field outside the conductor (or molecular interior). 

The second equation shows that the tangential field is always zero as the two terms cancel 

out. However, for a dielectric medium such as water (6� = 80), the above relations in the 

normal direction may still be similar for the two fields, while in the tangential direction the 

induced field cannot fully cancel the Coulomb field and thus a non-zero residual component 

exists. The tangential residual component may be small, but definitely not zero. Therefore, 

we use the following approximation relations to evaluate the normal and tangential 

components  �B$ and �D$, 

�B$ ≈ 2��B$�¦ 

�D$ ≈ 26!6� ��D$�¦  

It is obvious that the above relations reduce to the conductor-like interface relations when 

6� goes to infinite. Note that while the first relation has a reasonable physical basis, the 

second relation is an approximation proposed after comparing with the simple sphere 

geometries that can be solved analytically, as many proteins are shaped (approximately) as 

spheres (globular proteins).  

Once factor ¡ is obtained, substituting it yields 

fgg
h
ggi ( = 6� 1H + 1 − H¡              

 � = −6� 1H + 1 − H¡ − 6�
 I = 6�                        
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fgh
gi  ( = 6!                             � = −6! 1H + ¡�1 − H� − 6!

 I = 6! 1H + ¡�1 − H�              
This modification would also keep the simple 7-banded coefficient matrix from a standard 

7-point stencil, suitable for GPU implementations. Also, because this modification involves 

only a minor change (replacing 
���  with ¡) to the classical HA method, we assume it would 

not compromise other properties, such as fast convergence, good stability etc., while 

improving its accuracy. In the following, we term this modification as the ¡-factor HA 

method and will refer to it throughout the manuscript. 

 

An analytical model of a single dielectric sphere embedded with point charges was used to 

validate the accuracy and precision of the proposed methods. The analytical reaction and 

total fields of the inside region in spherical coordinates are,  

¨���$ �, �, ��¨ = 	 	 4�2� + 1
�

8.$�
�'��/( �� + 1��,$ − ,/�,$��,$ + �� + 1�,/� ��8�$(��8��, ���

�.�  

¨���$ �, �, ��¨� = 	 	 4�2� + 1
�

8.$�
1'��/( �� + 1��,$ − ,/�,$��,$ + �� + 1�,/� ��8� ¨��8��, ��¨�

�
�.�  

¨���$ �, �, ��¨� = 	 	 4�2� + 1
�

8.$�
1'��/( �� + 1��,$ − ,/�,$��,$ + �� + 1�,/� ��8� ¨��8��, ��¨�

�
�.�  

¨� $�, �, ��¨ = 	 	 ,/,$
�

8.$�
−4��� + 1���,$ + �� + 1�,/� ��8 1'�/� ��8��, ���

�.�  

¨� $�, �, ��¨� = 	 	  �
8.$�

4���,$ + �� + 1�,/� ��8 1'�/( ¨��8��, ��¨�
�

�.�  
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¨� $�, �, ��¨� = 	 	  �
8.$�

4���,$ + �� + 1�,/� ��8 1'�/( ¨��8��, ��¨�
�

�.�  

59wℎ, ��8 = 	 +�����8∗ ���, ���-�
�.(  

where R is the radius of the sphere with the center set to the origin, �] is the number of 

charges, and ��8 is the spherical harmonic function. 

With the above analytical results, we are able to estimate the new jump condition, i.e. the χ 

factor. From above, we can obtain the electric fields of the inside region on the interface as, 

¨���$ �, �, ��¨ = 	 	 4�2� + 1
�

8.$�
�� + 1��,$ − ,/�,$��,$ + �� + 1�,/� ��8 �'�/� ��8��, ���

�.�  

¨���$ �, �, ��¨� = 	 	 4�2� + 1
�

8.$�
�� + 1��,$ − ,/�,$��,$ + �� + 1�,/� ��8 1'�/( ¨��8��, ��¨�

�
�.�  

¨���$ �, �, ��¨� = 	 	 4�2� + 1
�

8.$�
�� + 1��,$ − ,/�,$��,$ + �� + 1�,/� ��8 1'�/( ¨��8��, ��¨�

�
�.�  

¨� $�, �, ��¨ = 	 	 ,/,$
�

8.$�
−4��� + 1���,$ + �� + 1�,/� ��8 1'�/� ��8��, ���

�.�  

¨� $�, �, ��¨� = 	 	  �
8.$�

4���,$ + �� + 1�,/� ��8 1'�/( ¨��8��, ��¨�
�

�.�  

¨� $�, �, ��¨� = 	 	  �
8.$�

4���,$ + �� + 1�,/� ��8 1'�/( ¨��8��, ��¨�
�

�.�  

From the analysis of above equations, we have, 

¨� $�, �, ��¨ ≈ 2 ¨���$ �, �, ��¨ ≈ 2 ¨�¦$�, �, ��¨  

Comparing above results, we obtain, 
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¨� $�, �, ��¨� ≈ − 2,$,/ ¨���$ �, �, ��¨� ≈ 2,$,/ ¨�¦$�, �, ��¨�  

¨� $�, �, ��¨� ≈ − 2,$,/ ¨���$ �, �, ��¨� ≈ 2,$,/ ¨�¦$�, �, ��¨�  

Note that although above equation is a good approximation for spherical cases, its 

correctness and effectiveness for complex biomolecular systems can only be validated by 

actual numerical experiments. A good approximation should have at least the following two 

features. First, the estimated χ values follow the trend of true χ values relatively well, so 

they can capture more accurate interface geometries and field distributions. Second, the 

systematical error should be as small as possible.  

 

2.2. Computation Details 

The potentials at grid points are obtained by solving PBE numerically. Then the potential at 

any position (x,y,z) is obtained with a one-sided least-squares interpolation method.96 The 

linear Poisson-Boltzmann energy (PB energy) can then be obtained as the summation of 

the charges multiplying their respective reaction field potentials as 

∆� = 12 	 +!����"�#���  

For the analytical test cases, four off-center charge models were used, which are monopole, 

dipole, quadrupole, and octupole, respectively. The radius of the sphere was set to 1.6 Å, 

which is about the size of a carbon atom. The Cartesian coordinates of each charge model 

are listed in Table 1. The inside and outside dielectric constants were set to 1.0 and 80.0, 

respectively. The truncation order in Eqn (20) was chosen to be 120, which gives a 

precision of 10-6. 
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Table 2.1. Cartesian coordinates of charges for the analytical monopole, dipole, quadrupole, 

and octupole models.  

Model Positive Charge 

Coordinates 

Negative Charge 

Coordinates 

Monopole (-0.10, -0.10, 0.90)  

Dipole (-0.10, -0.10, 0.90) (-0.10, -0.10, -0.90) 

Quadrupole (0.90, -0.90, -0.10) 

(-0.10, 0.90, -0.10) 

(0.90, 0.90, -0.10) 

(-0.10, -0.90, -0.10) 

Octupole (0.90, -0.10, 0.90) 

(-0.10, 0.90, 0.90) 

(0.90, -0.10, -0.10) 

(-0.10, 0.90, -0.10) 

(0.90, 0.90, 0.90) 

(-0.10, -0.10, 0.90) 

(0.90, 0.90, -0.10) 

(-0.10, -0.10, -0.10) 

In addition, a total of 573 biomolecular structures from the Amber PBSA benchmark suite 

were used to study the overall accuracy and efficiency of the new methods.50 Of these 

molecules, eight small proteins of about 1000 atoms from the suite were selected to 

analyze the properties of the new method in more details, so that computational jobs could 

be handled on our local compute nodes at the finest grid spacings tested. These 

biomolecules were assigned charges of Cornell et al149 and the modified Bondi radii. The 

probe radius was set to 1.4 Å. All testing jobs were performed with the following conditions 

unless specified otherwise. The convergence criterion of 10−4 was used for the biconjugate 

gradient (BiCG) linear solver. The default grid spacing was set to 0.5 Å for most 

calculations, except that in the convergence analysis it was set to a range of values of from 
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1.0 Å to 0.1 Å. The ratio of the grid dimension to the solute dimension (the fillratio keyword 

in Amber) was set to 1.5 and 4.0 for biomolecules and analytical test cases, respectively. No 

electrostatic focusing was applied. The free boundary condition was used to assign the 

finite-difference grid boundary potentials and the charge singularity was removed. The 

dielectric constants were set to 1.0 and 80.0 for solute and solvent, respectively. All other 

parameters were set as default in the PBSA module in Amber 18 package.46, 48, 50-51, 116-118, 

143, 150, 152, 157-165 

A BiCG linear system solver for GPUs was also implemented using the Nvidia CUDA Sparse 

Matrix (cuSPARSE) and CUSP libraries, which provide basic linear algebra procedures for 

sparse matrix operations.151 The DIA matrix format was used for the non-symmetric 

coefficient matrix as in our previous publication.152  All GPU and CPU tests were conducted 

on a dedicated compute node with two Nvidia RTX 2080Ti GPU cards, one Intel Xeon E5-

1620 v3 CPU, and 16GB main memory. Our time measurements for all solvers include all 

execution time of the solver routines, i.e. time elapsed on the device (GPU) and on the host 

(CPU) and also for transferring data between the device and the host. 

 

2.3. Results and Discussion 

We extended the classical HA method by two improvements, i.e. imposing the 

discretization conditions to the second order and relaxing the conductor-like interface 

relation, respectively. These efforts resulted in the second-order and the χ-factor HA 

methods. In the following, we report the numerical experiments to study the quality of the 

approximations, and also compare their accuracy and performance with the classical HA 

method and the analytical IIM. Specifically, analytical models were first used to evaluate 
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the quality of the approximations. Then eight small proteins were studied to evaluate their 

convergence behaviors. Next the robustness and correctness of these methods were 

investigated using a large set of biomolecular structures at the widely used numerical 

conditions. Furthermore, the BiCG linear solver was implemented for the two new methods 

utilizing the compact 7-banded structure of the coefficient matrices to boost their efficiency 

on GPUs. Finally, both the improvement and limitation of the new methods are also 

discussed. 

 

We first tested the new methods using analytical models from monopole to octupole and 

compared them with the classical HA method and the analytical IIM. The convergence 

trends of PB energies over the tested grid spacing for all the methods are shown in Figure 

2.2. Clearly, all tests converge well except for the classical HA method on the monopole 

model. This indicates that the classical HA method may give inaccurate solvation energies 

even for simple spherical cases, yet the two new HA methods were found to overcome the 

limitation. 

More detailed convergence properties are shown in Table 2.2, where the extrapolated 

limiting PB energies at the grid spacing of zero are listed for all models by the four tested 

methods. The analysis confirms that the PB energies of all the four methods converge to the 

analytical values reasonably well except the monopole case with the classical HA method. 
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————   HA method   ---   2nd-order HA method   ············   ¡-factor HA method   -·-   IIM method 

Figure 2.2. Tests of PB energies (kcal/mol) versus grid spacing (Å) for analytical sphere 

models. The energy results were obtained by averaging 30 grid orientations/offsets of the 

molecules. All the curves were obtained by fitting data to trend lines of y=a*x^b+c. Note 

that only data points at grid spacing ≤ 0.33 Å were included in the fitting. 
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Table 2.2. PB energies (kcal/mol) for the analytical sphere models at limiting grid spacing 

of 0 Å. (Analytical PB energies were calculated using Mathematica 7.0.) 

Methods HA 2nd order 

HA 

¡ factor HA IIM Analytical 

Monopole -151.6 -151.3 -151.2 -151.3 -151.29 

Dipole -55.74 -55.74 -55.69 -55.73 -55.73 

Quadrupole -35.35 -35.31 -35.32 -35.32 -35.31 

Octupole -89.91 -89.91 -89.84 -89.87 -89.91 

 

As interface plays a critical role in the PBE modeling, we further examined the abilities of 

these methods to capture the interface property by calculating the electric field on the 

molecular surface. The root mean squared error (RMSE) values were calculated by 

comparing the numerical electric fields with the analytical results obtained before. Here the 

surface electric field was interpolated with the one-dimensional method, shown to perform 

the best for these analytical systems.153 Figure 2.3 indicates that all 7-stencil methods agree 

well with analytical values, though not as accurate as the analytical IIM as expected. It is 

also worth noting that the ¡-factor HA method is better than the classical HA method on 

every test point, though not by much. In summary, it is clear that the two approximations 

work well for all tested analytical systems with no systematic biases. 
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————   HA method   ---   2nd order HA method   ············   ¡ factor HA method   -·-   IIM method 

Figure 2.3. RMSEs of normal component of the surface electric field between the computed 

and the analytical values (kcal/mol-e-Å) versus grid spacing (Å). The surface field values 

were obtained by one-dimensional interpolation. 
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To assess the quality of the two new methods on biomolecules, we studied their numerical 

behaviors with eight small proteins. The convergence trends of PB energies for all the 

methods are shown in Figure 2.4 and the detailed extrapolation analysis is presented in 

Table 2.3. Figure 2.4 shows that all tested methods converge smoothly but to two different 

limiting values: the classical HA method and the second-order HA method converge to 

more negative values; and the ¡-factor HA method and the analytical IIM converge to more 

positive values. More specifically, the difference between the limiting PB energies for the 

latter two methods are mostly within 1 kcal/mol as shown in Table 2.3. As the analytical 

IIM is the most accurate method of the four since there is no approximation in its 

discretization scheme,119 this means the second-order and the classical HA methods tend to 

give more negative PB energies than the true values for molecular systems. Note that this 

behavior has been observed for the classical HA method in the analytical monopole test 

already (Figure 2.2). However, the behavior is a new observation for the second-order HA 

method since it performs well in the analytical tests. This shows that the second-order HA 

method tends to degenerate to the classical HA method when it is applied to complicated 

molecular geometries such as proteins. In contrast, the ¡-factor HA method still maintains 

its excellent numerical behaviors even on proteins, and almost produces the same accuracy 

as the high-order IIM does with its 27-point stencil. 

Another observation from Figure 2.4 is that the classical and the ¡-factor HA methods have 

much flatter convergence curves than the second-order HA method. A closer look of the PB 

energies at the grid spacing of 0.5 Å in Table 2.4 shows that the relative errors with 

respective to methods’ own limiting values are 0.1%, 0.14%, and 0.21%, respectively, for 

the classical, the ¡-factor, and the second-order HA methods. This behavior is rather 
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different from what is observed in the analytical spherical tests, where the second-order 

HA method converges the fastest among the three HA methods.  

Taken all the observations together, we can conclude that when dealing with realistic 

molecular systems such as proteins, the ¡-factor HA method preserves the overall good 

convergence behavior of the classical HA method while it converges to the correct limiting 

values.  Worth noting is that the ¡-factor HA method performs even better than the IIM 

with overall flatter convergence curves. It is worth pointing out that the slower 

convergence of the second-order methods may result from their overly precise description 

of the local complex interface geometries in typical proteins.156 It is likely that fuzzy 

handling of complex geometries as done in simpler methods may lead to a good apparent 

convergence trend simply because the methods are not designed to detect complex 

geometries. However, what the ¡-factor HA method gained over the classical HA method is 

that it converges to the correct limiting values as those from the analytical IIM, while still 

preserving the good convergence trend of the classical HA method. As a result, its 

simplicity, good convergence property, and numerical stability make the ¡-factor HA 

method an outstanding scheme among the four investigated methods in practices. 

 

Table 2.3. PB energies (kcal/mol) for the 8 selected protein molecules at the limiting grid 

spacing of 0 Å. 

Methods HA 2nd order 

HA 

¡ factor HA IIM 

1aci -1029 -1028 -1025 -1024 
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1ah9 -1015 -1013 -1010 -1009 

1b22 -747.9 -747.5 -745.5 -745.4 

1aw0 -1063 -1060 -1059 -1058 

1bbi -1108 -1107 -1105 -1101 

1bdc -795.2 -794.9 -793.6 -793.8 

1bw6 -1509 -1506 -1503 -1503 

1c75 -902.4 -900.4 -898.4 -898.2 

 

Table 2.4. PB energies (kcal/mol) and standard deviations (kcal/mol in parenthesis) for the 

8 selected protein molecules at the grid spacing of 0.5 Å. The energy results were obtained 

by averaging 30 grid orientations/offsets of the molecules. 

Methods HA 2nd order HA ¡ factor HA IIM 

1aci -

1030.38(0.73) 

-

1025.26(0.69) 

-

1026.63(0.76) 

-

1025.37(0.88) 

1ah9 -

1015.32(0.94) 

-

1011.52(0.89) 

-

1010.66(0.93) 

-1010.84(1.1) 

1b22 -749.49(0.61) -745.64(0.64) -746.93(0.65) -746.32(0.71) 

1aw0 -

1064.12(0.59) 

-

1058.73(0.60) 

-

1060.93(0.59) 

-

1059.01(0.55) 

1bbi -

1109.95(0.90) 

-

1103.83(0.85) 

-

1106.20(0.98) 

-1101.10(1.2) 

1bdc -797.71(0.71) -793.18(0.67) -795.81(0.70) -796.21(0.60) 
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1bw6 -

1509.01(0.83) 

-

1503.28(0.81) 

-

1503.83(0.78) 

-

1504.29(0.90) 

1c75 -903.08(0.70) -898.59(0.72) -899.27(0.69) -899.27(0.73) 
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————   HA method   ---   2nd-order HA method   ············   ¡-factor HA method   -·-   IIM method 
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Figure 2.4. Tests of PB energies (kcal/mol) versus grid spacing (Å) for biomolecules. The 

energy results are obtained by averaging 30 grid orientations/offsets of the molecules. All 

trend curves were obtained by fitting data to y=a*x^b+c form. Only the data points within 

grid spacing 0.5 Å were included in the fitting. 

 

To examine the robustness of these methods with large protein molecules under typical 

numerical conditions, we computed the PB energies with 573 biomolecular structures from 

the Amber PBSA benchmark suite at the commonly used grid spacing of 0.5 Å. No failure 

was observed for all the 573 test cases, which confirms that our new methods are robust 

enough for various kinds of biomolecules. 
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Figure 2.5. Tests of PB energies (kcal/mol) at 0.5 Å for 573 biomolecules. The data were 

fitted linearly and the intercepts were set to zero. 

 



63 
 

To confirm the correctness of the new methods, we analyzed the correlations between the 

PB energies from the three HA methods with those from the analytical IIM. As shown in 

Figure 2.5, the linear fitting slopes are 1.004, 0.998, and 1.000 for the classical, the ¡-factor, 

and the second-order HA methods, respectively. This indicates that compared to the IIM, 

the classical HA method has a systematic tendency to give more negative results and the ¡-

factor HA method reduces the error to about a half, and the second-order HA method has 

almost no systematic tendency at the tested condition. Interestingly, the second-order HA 

method is the closest to the IIM at the tested condition, which may seem to be more 

accurate than the other two HA methods. However, note that the calculations were carried 

out at the grid spacing of 0.5 Å, where these methods may deviate from the limiting values 

(i.e. at the grid spacing of 0.0 Å). While it is difficult and impractical to obtain extrapolated 

limiting PB energies for all 573 biomolecular structures, the results from the eight 

representative proteins as discussed in section 4.2 can serve as a guidance. As shown in 

Figure 4, the convergence trendlines of the IIM and the second-order HA method cross over 

near the grid spacing of 0.5 Å and thus their PB energies are closer to each other.  

To quantitively measure the accuracy of each method at the tested grid spacing, we 

calculated the relative error of the PB energy from each method (see Table 2.4) with 

respective to the IIM’s limiting values (see Table 2.3). The medium relative errors are 0.6%, 

0.2%, 0.1% and 0.13% for the classical, the ¡-factor HA, the second-order HA, and the IIM, 

respectively. This means that at the grid spacing of 0.5 Å, a common choice for practical 

biomolecular applications, the ¡-factor and the second-order HA methods are with very 

similar errors as the IIM. This further illustrates the impressive improvements achieved in 

the two new HA methods. It is interesting that the second-order HA method coincidently 
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behaves well at the widely used grid spacing even if its limiting convergence is closer to the 

classical HA method. However, we expect that in a wider range of conditions, the ¡-factor 

HA method would be more accurate and stable as it has better convergence behavior with 

various grid spacings as discussed above. 

 

An important motivation in developing the new HA methods is to utilize their compact 7-

banded structure in the coefficient matrices to improve computational efficiency on high-

performance platforms such as GPUs. We implemented the BiCG linear solver on GPUs for 

the two new HA methods, as the BiCG algorithm is suitable for asymmetric matrices. The 

DIA matrix format was used to store the matrices in the new methods. In contrast the CSR 

matrix format was used in the analytical IIM.  The timing results for 573 biomolecules are 

shown in Figure 2.6, with the timings of the BiCG solver implemented with the IIM on GPUs 

as the benchmark. The results show that the average solver time (Figure 2.6 top two) for 

the ¡-factor and the second-order HA methods is about 35% and 39% of that of the IIM, 

respectively. This means that by using a more compact matrix structure, the solver time 

can be reduced by about two thirds. As simpler interface schemes, the new methods also 

reduce the setup time significantly (Figure 2.6 bottom two). This is because the IIM uses a 

multistep, complicated setup procedure,156 which requires the interface geometry 

parameters up to the second order (curvatures) and the Coulomb field parameters of the 

second order (gradients). While for the two new methods, all these parameters (interface 

normal directions and Coulomb field) are required only to the first order. As a result, the 

intrinsically simpler HA methods leads to significant efficiency gain in PBE modeling on 

GPU platforms. 
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Figure 2.6. Timing (seconds) tests of GPU implementation at 0.5 Å for 573 biomolecules. 

The data were fitted linearly. The fitting line of the ¡ factor HA method solver time is 

y=0.3526x+0.2069, and that of the second-order HA method is y=0.3917x+0.1819. The 

fitting line of the ¡ factor HA method setup time is y=0.7397x-2.405, and that of the second-

order HA method is y=0.3355x+0.1703. The dashed lines are diagonal. 
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2.5 Conclusion 

In this study, we explored new 7-stencil algorithms based on the spirit of the classic HA 

method for PBE modeling, namely, the ¡-factor HA method and the second-order HA 

method by introducing better physical interface relations and imposing the discretized 

Poisson’s equation to the second order. The new methods improve on the original one and 

still maintain the compact 7-banded structure for the discretized equations. As a result, the 

advantages of fast matrix operation and reduced memory requirement are obtained for 

numerical implementation, especially on GPUs for parallel computation.  

We first tested our new methods on multiple analytical test cases to serve as a primary 

check for the quality of the approximations used in the new methods. The results showed 

that the new methods overcome the limitation of the classical HA method in the monopole 

case by giving more accurate limiting PB energy. In addition, the new methods also give 

correct electric field on the interface, showing that the new methods are overall consistent 

with theory for the tested analytical systems. 

We further analyzed the convergence of the new methods on small proteins using the 

analytical IIM as reference, to study their advantages on biomolecules. The results show 

that the ¡-factor HA method performs very well in both accuracy and convergence with its 

limiting PB energies mostly within 1 kcal/mol difference from the reference values. 

Therefore, its simplicity, good convergence property, and stability on complex protein 

molecules make ¡-factor HA an outstanding scheme among the four investigated methods. 

We next examined the robustness and correctness of the new methods with 573 

biomolecular structures at the commonly used grid spacing of 0.5 Å. The results show that 
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all tests passed with no failure, confirming that our new methods are robust enough for 

various complex interface geometries in biomolecules. Interestingly, the second-order HA 

method agrees the best with the IIM in terms of PB energies.  Our further analysis of the 

relative error of the PB energies with respective to the IIM limiting values shows that two 

new HA methods are with very similar errors as the analytical IIM at the widely used 

numerical conditions. We further pointed out that though the second-order HA method 

performs well at the grid spacing of 0.5 Å, it is expected that the ¡-factor HA method will be 

more accurate and stable in a wider range of application conditions. 

Finally, we implemented the BiCG linear solver for the new HA methods and tested their 

performance on GPUs. The results show that by using a more compact 7-banded matrix 

structure, the solver time can be reduced by about two thirds, and the setup time are also 

significantly reduced over the IIM method. As a result, the intrinsic simple design of the HA 

methods leads to significant efficiency gain of PBE modeling on GPU platforms, which 

makes the new methods more suitable for high-performance biomolecular computational 

studies. 
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Chapter 3 

 
3.1. Introduction 

Electrostatic interactions play crucial roles in biophysical processes such as protein and RNA 

folding, enzyme catalysis, and molecular recognition. Thus, accurate and efficient treatment 

of electrostatics is vital to computational studies of biomolecular structures, dynamics, and 

functions. A closely related issue is the modeling of water molecules and their electrostatic 

interactions with biomolecules that must be considered for any realistic representation of 

biomolecules at physiological conditions. Implicit solvent model has been such an attempt, 

in which, the solute molecule is treated as a low dielectric constant region with a number of 

point charges located at atomic centers, and the solvent is treated as a high dielectric 

constant region. Among all the attempts, Poisson-Boltzmann (PB) equation based implicit 

solvent models have proven to be among the most successful ones and are widely used in 

computational studies of biomolecules. 

A crucial component of all implicit solvent models within the PB framework is the dielectric 

model, i.e. the dielectric constant distribution of a given solution system. Typically, a solution 

system is divided into the low dielectric interior and the high dielectric exterior by a 

molecular surface. That is to say that the molecular surface is used as the dielectric interface 

between the two piece-wise dielectric constants. The solvent excluded surface (SES)1-3 is the 

most used surface definition.4, 5 Indeed, previous comparative analyses of PB-based solvent 

models and TIP3P solvent models show that the SES definition is reasonable in calculation 

of reaction field energies and electrostatic potentials of mean force of hydrogen-bonded and 

salt-bridged dimers with respect to the TIP3P explicit solvent.6-8 Given the complexity of the 
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SES, one possible approach in adapting the SES in numerical solutions is to build the 

molecular surface analytically and then to map it onto a grid.9-11 Since analytical procedures 

can be time consuming, they are mostly used in the visualization of SES.3, 12-21 Rocchia et al. 

subsequently converted an analytical algorithm to a semi-analytical version with numerical 

representation of solvent accessible arcs at a very high resolution (i.e. much higher than the 

finite-difference resolution) to facilitate the mapping of the SES to the grid so the mapping 

error is negligible in numerical PB calculations.5 This method is much faster and accurate 

enough for numerical solution of the PB equation, though it is without an analytical 

expression.  

The van der Waals (VDW) surface, or the hard sphere surface, represents the low-dielectric 

molecular interior as a union of atomic van der Waals spheres. This is a very efficient 

algorithm, though there exist many nonphysical high (solvent) dielectric pockets inside the 

solute interior when the VDW definition is used. Considering the limitation, the modified 

VDW definition was proposed. The basic idea of the modified VDW definition is to use the 

solvent accessible surface (SAS) definition for fully buried atoms and the VDW definition for 

fully exposed atoms.22 However, the method is difficult to be optimized to reproduce the 

more physical SES definition.  

The density approaches have recently been developed and can be used for numerical PB 

solutions. Either a Gaussian-like function or a smoothed step function has been explored in 

previous developments.23, 24 It has been shown that if the functional form is allowed to 

change, the density function can be explicitly optimized to reproduce the classical SES 

definition at least for certain “small” solvent probe radii, though this cannot be generalized 

to arbitrary probe radius values.25 In these types of approaches, a distance-dependent 
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density/volume exclusion function is used to define each atomic volume or the dielectric 

constant directly.26-28 This is in contrast to the hard-sphere definition of atomic volume as in 

the VDW or the SES definition. Therefore, the surface cusps are removed by the use of smooth 

density functions.23, 24 

In this study, we intend to address the difficulties of computing SES of complex molecular 

structures. The difficulties arise because SES is formed by different patches thus its analytical 

formulation must be piecewise and localized.29 There are at least three consequences from 

the difficulties. First, the algorithms are very costly. For example, the optimized SES still 

takes about a third of total CPU time of the numerical PB solvers in Amber.30, 31 Second, they 

are hard to be ported to modern parallel platforms, such as GPUs. Third, it is difficult to 

obtain surface curvatures or other higher-order surface parameters that are often used for 

implicit solvent simulations. To overcome the difficulties, our solution is to use a smooth 

level set function to approximate SES. As will be shown below, the single-thread CPU cost 

can be reduced noticeably when the level set function is used. Given the level set function, 

the computation of SES can be carried for all grid points independently and simultaneously, 

and thus achieve parallel computation. Finally, surface curvatures or other higher-order 

surface parameters are readily available from the smooth level set function.32 

Given the complexity of the SES algorithms, we explored a machine learning strategy to look 

for a smooth level set function. Indeed, in recent years, deep learning techniques have been 

widely adapted in handling multi-variable and highly non-linear functions similarly 

challenging such as SES. Deep learning/neural network is inspired by and resembles the 

human brain. The input variables are multiplied by the respective weights and then undergo 

a transformation based on an activation function to obtain the outputs.33 It has been 
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mathematically proven that a single hidden layer was able to solve any continuous 

problem.34 With all its advantages, deep learning has been applied in various biological 

fields, including gene expression35-42, protein secondary and tertiary structures43-55, protein-

protein interactions56-62, and others.63 

In the following, we first overview the necessary physical and mathematical concepts needed 

to set up a machine learning SES model, along with the computational details in collecting 

the training data and conducting the training process. This is followed with accuracy 

analyses of the machine-learned SES, robustness analyses, timing analysis, and finally 

applications to implicit solvent simulations. We end the presentation with a discussion of 

potential future developments. 

 

3.2. Method 

As widely adopted for numerically solving partial differential equations, the finite difference 

method uses a uniform Cartesian grid to discretize the PB equation. The grid points are 

numbered as �9, ;, 
�, where 9 = 1, … , _8 , ; = 1, … , �8 , 
 = 1, … , �8 , and _8 , �8  and �8  are 

the numbers of points along the three axes. The grid spacing between neighboring points can 

be uniformly set to h. To discretize the linearized PB equation, 

∇ ∙ ,∇� − © 	 �!+!��/
?! = −4�^ 

where the charge density ^  can be expressed as +�9, ;, 
�/ℎI , +�9, ;, 
�  is the total charge 

within the cubic volume centered at �9, ;, 
�, © is a masking function for the Stern layer. In the 

salt related term, �!  is the number density of the ion of type i in the bulk solution, +!  is the 

charge of the ion of type i, k is the Boltzmann constant, and T is the temperature. The final 
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discretized PB equation can be expressed as follows, if we ignore the salt related term as it 

is often modeled to be away from the molecular surface, 

{ , �9 − 12 , ;, 
� 2��9 − 1, ;, 
� − ��9, ;, 
�3 + , �9 + 12 , ;, 
� 2��9 + 1, ;, 
� − ��9, ;, 
�3
+ , �9, ; − 12 , 
� 2��9, ; − 1, 
� − ��9, ;, 
�3
+ , �9, ; + 12 , 
� 2��9, ; + 1, 
� − ��9, ;, 
�3
+ , �9, ;, 
 − 12� 2��9, ;, 
 − 1� − ��9, ;, 
�3
+ , �9, ;, 
 + 12� 2��9, ;, 
 + 1� − ��9, ;, 
�3}/ℎ� = −4�+�9, ;, 
�/ℎI 

 

where ��9, ;, 
� is the potential at grid �9, ;, 
�, and , �9 − (� , ;, 
� is the dielectric constant at 

the mid-point of the grids �9, ;, 
� and �9 − 1, ;, 
�. All other �  and ,  are defined similarly 

here.  

 

If a grid point and all its six neighbors are in the same region, either in solvent or in solute, 

the point is termed a regular grid point. Clearly, the simple discretization scheme above can 

be applied only to regular grid points, because only then the mid-point dielectric constant 

can be determined (equal to either solvent or solute dielectric constant). However, for an 

irregular grid point, which means that it has at least one neighboring grid point belongs to 

the different region, complication arises. Thus, how to define and determine the interface 

parameters, and then to determine the dielectric constant based on the interface 

information, is a key for setting up the linearized PB equation. Without question, SES is the 
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mostly adopted interface definition, as it was found to reasonably reproduce both energetic 

and dynamic properties of solvated molecules in explicit solvent. 125-127, 143 After choosing an 

interface definition, the discretization can then be handled with many different schemes. For 

example, the harmonic averaging method is a class of such strategies widely used in 

biomolecular simulations.94, 116, 166 

 

It is often more convenient to use a level set function to represent an interface.167 The level 

set function is often in the form of a second-order continuous distribution function � , 

satisfying,  

��_, �, �� < 0, 5ℎd� �_, �, �� ∈ Ω$ 

��_, �, �� = 0, 5ℎd� �_, �, �� ∈ Γ 

��_, �, �� > 0, 5ℎd� �_, �, �� ∈ Ω/ 

 

Here, Γ  represents the interface, Ω$  and Ω/  denote the solute and solvent regions, 

respectively. For example, a signed distance function representing a sphere interface, 

centered at �_�, ��, ��� with a radius of R can be expressed as, 

��_, �, �� = «�_ − _���+�� − ���� + �� − ���� − ' 

 

Level set functions can be used to determine the interface by setting � = 0 conveniently, but 

also to compute various interface parameters, such as the normal and tangential directions 

on the interface as167 

s = y�z, �{ , �|} 

� = ��{ , −�z, 0� 
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� = y�z�| , �{�| , −�z� − �{�} 

 

Here, s, � and � are the normal and two tangential directions, respectively. In addition, some 

advanced discretization schemes, like IIM,96, 98, 119, 156 also require higher-order interface 

parameters, such as surface curvatures that can also be computed as follows, 

ECC = − ����s  

EDD = − ����s  

ECD = − �CD�B  

In summary, level set functions are convenient mathematical tools in handling interface-

related problems: they can be used to obtain the interface itself and all its geometry 

parameters in a straightforward manner.167 Thus, it would greatly benefit discretization of 

the PB equation if we can express SES as a level set function. However, construction steps of 

SES are simply too complex to be reproduced algebraically. What we are trying to do here is 

to explore how to approximate SES with a level set function that is learned on modern 

computers. Furthermore, we do not intend to reproduce SES 100%, which is impossible, as 

we also aim to find a smooth function that is more friendly for interface tracking in implicit 

solvent simulations, such as numerical PB solutions. 

 

Artificial neural networks (ANNs), usually simply called neural networks, are mathematical 

models that have been motivated by the brain function.168-169 A simple example of an ANN 

structure is shown below in Figure 3.1. 
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The basic idea of a neuron model is that an input, x, together with a bias, b, is weighted by w, 

and then summed together,170 as shown schematically in Figure 1. The bias, b, is a scalar 

value whereas the input x and the weights w are vectors, i.e., x ∈ ℝn and w ∈ ℝn with n ∈ ℕ 

corresponding to the dimension of the input. The sum of these terms, i.e. z = wTx + b, forms 

the argument of an activation function, f(), resulting in the output of the neuron model, 

 

� = <��� = <�®~¯ +  °� 

 

Figure 3.1. Structure of an artificial neural network with one hidden layer. Here, each circular 

node represents an artificial neuron, and an arrow represents a connection from the output 

of one artificial neuron to the input of another. 

 

The role of the activation function, f(), is to perform a non-linear transformation of z. There 

are many activation functions in practice, such as sigmoid, Tanh, ReLU, Leaky ReLU, and so 

on, and the ReLU activation function is usually the most popular activation function for deep 

neural networks.170 

Though its structure may seem highly complicated, a neural network can be viewed as a 

combination of simple elementary functions. Thus, a neural network is differentiable to any 
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order, as all its component functions are differentiable to any order, except for a countable 

number of points. This is an important reason why we have chosen a machine learning 

approach to express the SES level set function, because it ensures that the SES level set 

function can be used to compute surface derivatives to any order as needed. 

Due to its excellent mathematical properties, ANNs have shown great promises in a range of 

applications.171 Most ANN applications fall into two categories: function approximation / 

regression analysis and classification problems. In this study, the ANN is applied as a 

classification tool because the goal is to know which region a grid point belongs to (solvent 

or solute region) in a PB system. 

 

3.3 Computational Details 

The training data were generated from the Amber PBSA benchmark suite of 573 

biomolecular structures.50 A modified PBSA program was used to print out the training data. 

The default atomic cavity radii were read from the topology files. The solvent probe radius 

was set to 1.4 Å, the grid spacing to 0.95 Å, and all other parameters remain as default in the 

PBSA module in the Amber 20 package.172 The training software package is Keras in 

TensorFlow, version 2.2.4.173 Adam was chosen as the optimizer, and the squared hinge 

function as the loss function. The partition ratio of training and validating sets is 9:1, and an 

early stopping criterion of 100 epochs was used. 

The training data contains two parts: labels or the target values, and the variables. The labels 

are integer values of irregular grid points generated by the Amber/PBSA surface builder for 

the geometry-based SES, termed classical SES below.116 This implementation follows the 

basic idea as outlined by You et al.129 and Rocchia et al.124 Specifically, a numerical 
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representation of the solvent accessible arcs was used to map the reentry surface to the 

finite-difference grid. Briefly, there are two steps in assigning the integer labels.  First is to 

determine the solvent accessible arcs that are numerically represented centers of solvent 

accessible probes tangential to at least two atoms simultaneously. The density of the 

numerical arcs is set to be high enough, so that the mapping error is negligible in numerical 

PB calculations. Second is to label grid points nearby the molecular surface as inside or 

outside with a multi-step labeling scheme.116 

The irregular points of the outside (solvent) region are labeled as -1, and those of the inside 

(solute) region are labeled as +1. The variables of the training data are the tuples of 

coordinates and the radii of those atoms near the irregular grid points, in the unit of Å. An 

atom is considered “near” a grid point if the distance between the grid point and the atom is 

within R+2Dp, where R is the atom radius and Dp is the diameter of the probe. The 

coordinates of the atoms are expressed in the relative frame whose origin is the grid point 

of interest. The neighbor atoms were then sorted in an ascending order based on the distance 

between the grid point and their surfaces. In the training data, the maximum neighbor atoms 

are 48, so the maximum number of variables are 192. The variable dimensions are uniformly 

enlarged to 200, by filling in zeros for blanks. Overall, there are about 6 million entries of 

data generated from the Amber PBSA benchmark suite, which was separated into 6 subsets, 

each about 1 million entries. 
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Figure 3.2. Incremental training of the model. The ANN model was set up with different 

numbers of hidden layers, each hidden layer is of 200 neurons. The model was trained with 

the first training data set. The analysis was also repeated with two additional training sets. 

 

The training was conducted in three steps. First, the model was trained incrementally by 

adding one atom at a time, which means in the first round of training, the model was fed with 

only the first (nearest) atom’s coordinates and radius. After the training reaches 

stabilization, the model was fed with the first two atoms’ data, and so on. After enough 

number of atoms were fed to the atom, the accuracy of the model reaches certain stable level. 

We then fed it with all the nearby atoms to complete the training. This step is necessary to 

initialize the ANN model training, because for such a high-dimension (200) nonlinear system, 

its local minimum can be extremely deep, causing the training optimization to fail. 
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In this step, we also investigated how many hidden layers are needed to reach stable 

prediction accuracy, starting with one layer to five layers. As shown in the Figure 3.2, the 

accuracy of the model becomes stable at 16 atoms, no matter how many hidden layers were 

used in the ANN. Therefore after 16 atoms, all available nearby atoms were fed to the model. 

Figure 3.2 further shows that 2 hidden layers are already very good for our problem. The 

second and the third steps are to determine the number of neurons and to finalize the model, 

respectively. The training script and final model can be found at http://rayluolab.org/ml-

ses/. 

 

3.4. Results and Discussion 

 

To evaluate the overall performance of the machine-learned SES method, we first did an 

accuracy test on different structures. The test data sets were generated in the same fashion 

as the training data sets. Except for the original training protein monomers, we also included 

two extra sets of biomolecules for this analysis, nucleic acid structures174 and 

protein/protein complex structures from previous PBSA developments.160 The testing 

results are shown in Table 3.1. 

 

Table 3.1. Model accuracy with different structural data sets. The first six data sets are those 

from the training phase, and the last two sets are not included in the training phase. 

Data 

sets 

Trainin

g data 1 

Trainin

g data 2 

Trainin

g data 3 

Trainin

g data 4 

Trainin

g data 5 

Trainin

g data 6 

Nuclei

c acid 

Protein 
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comple

x 

Accurac

y 

95.96% 96.01% 96.02% 96.03% 96.26% 97.78% 97.07

% 

95.16% 

 

Table 3.1 shows that the machine-learned SES performs very well for all structural sets, 

including those not included in training. The classification accuracies are basically around 

96% for all data sets, with a variance about 1%. The method performs the best for training 

data set 6 and the nucleic acid data set. This is because those two contains mostly smallest 

molecules among all tested molecules. In general, a small molecule has simpler surface 

geometry, so it is easier to predict their geometries. On the contrary, the protein/protein 

complex structures are much larger and thus have more complicated surfaces, so the method 

performs slightly worse on the data set, but still obtains an over 95% accuracy. 

 

Another point worth mentioning is that the accuracy test clearly shows excellent 

transferability of the method, from the smaller training protein monomers to the nucleic acid 

structures and the larger protein/protein complex structures. The testing molecules overall 

do not resemble those in the training sets, such as the nucleic acids. Nevertheless, the method 

can successfully predict the SES of those unseen structures, showing that the method has 

indeed learned the fundamental rules for predicting the SES surface. In summary, the 

consistent accuracy confirms that the machine-learned SES method can be applied to typical 

computational analyses of biomolecules. 
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We chose six representative biomolecules and compared their molecular interfaces 

generated with three different methods: the newly developed machine-learned SES, the 

classical geometry-based SES, and a revised density function surface.143 The superimposed 

surfaces of the machine-learned SES and the classical SES are shown in Figure 3.3.  

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 
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Figure 3.3.  Superimposed rendering of the machine-learned SES (blue) and the classical SES 

(red) of representative molecules. (a) PDB ID: 1enh, all-alpha protein; (b) PDB ID: 1pgb, all-

beta protein; (c) PDB ID: 1shg, alpha/beta protein; (d) PDB ID: 1w0u, protein/protein 

complex; (e) PDB ID: 3czw, RNA duplex; (f) PDB ID: 3fdt, protein/DNA complex. 

 

It is clear from Figure 3.3 that the machine-learned SES excellently reproduces the classical 

SES for all tested molecules, including both proteins and nucleic acids, consistent with the 

accuracy analysis shown in above.  

 

Because SES is a molecular surface, it should possess both translational and rotational 

symmetries. The translational symmetry is naturally included in the machine-learned SES, 

as the input coordinates are relative to the grid point and are invariant to the translational 

transformations. However, the rotational symmetry is in general not preserved if it is not 

imposed. Thus, if the machine-learned SES can reproduce the classical SES, it should be able 

to “learn” the rotational symmetry through the training process. Thus, whether the method 

possess rotational symmetry is a direct test of whether it has learned the essentials of the 

classic SES. 

To test the rotational symmetry of the machine-learned SES, 20,000 interface points are 

randomly selected from the training data set and tested with different orientations imposed. 

Without loss of generality, the z-axis was chosen as the rotational axle to generate different 

orientations. Specifically, we performed the following transformation on the input 

coordinates of the nearby atoms for each grid point: 

_O = _vu���� − ��9���� 
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�O = �vu���� + _�9���� 

 

Here, � is the rotation angel and its values are 30°, 60°, and all the way through 330°. Note 

that the input coordinates are already transformed with the grid point as the origin. Next the 

trained machine-learned SES is used to predict the grid labels, and the agreement rate with 

respect to the original predicted grid labels is then computed.  

 

Table 3.2. Rotational symmetry test. The agreement rate is the percentage of transformed 

inputs give the same prediction (+1 or -1) as the original inputs. 

Angel 30 60 90 120 150 180 

Rate (%) 98.6 98.5 98.1 98.3 98.8 98.4 

Angel 210 240 270 300 330  

Rate (%) 98.2 98.8 98.7 98.6 99.1  

 

As shown above, our machine-learned SES indeed preserves the rotational symmetry, 

because the agreement (aka precision) rate is already higher than the accuracy rate (~95%). 

As we have discussed above, this is achieved without any human intervention. The analysis 

shows that the machine-learned SES has learned the essentials of the classic SES very well. 

In addition, if we look at the actual level set function values that the machine-learned SES 

gives, for about 95% of the tested grid points the deviations between the rotated inputs and 

original inputs that are less than 0.001 and for 97% of the tested grid points the deviations 

between the two are less that 0.01. Thus our model not only gives the correct classification, 

but also gives almost the level set value for different orientations. 
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We further evaluated how the machine-learned SES behaves in binding/unbinding 

scenarios, with a DNA base pair (dGdC, a pair of guanine and cytosine bases) as a test case. 

Starting from the hydrogen bonded dGdC dimer, the two bases are manually pulled part by 

0.5 Å each step to see how the two SES methods agree with each other for each of the tested 

conformations. 

It is clear from Figure 3.4 that the machine-learned SES and the classical SES agree 

excellently for all base separation distances tested, consistent with the performance for 

single molecules shown above. For example, both surfaces first generate a small cavity on 

the right and then another one on the left. The two cavities gradually increase and finally 

break all three hydrogen bonds between the two bases, causing the two molecules to 

separate completely. On the other hand, the two surfaces still differ somewhat during the 

unbinding process. However, whether these details are of any physical significance is subject 

to debate. In contrast, the machine-learned SES does not contain the spikes and as it is 

produced by a smooth function. The binding / unbinding test shows that the machine-

learned SES is numerically more stable than the classical SES in the more challenging 

dynamical process. 

 

To further test the robustness of our model, we want to know how the model performs away 

from the interface (solvent region or deep buried molecular interior), since the ANN model 

was initially trained with irregular points near the solute-solvent interface. 
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We have tested the performance of the model in the entire solvation box, not just nearby the 

interface, include those grid points that are either far away outside the solute or deeply 

buried inside the solute. The performance of the model is shown in Figure 3.5. 

Figure 3.5 shows that the model clearly does not work at grid points far away from the 

interface. Specifically, Figure 3.5(a) illustrates the presence of an “island” or a small cluster 

of predicted interface grid points, outside the interface. Even more serious failures are within 

the molecule interior as illustrated in Figure 3.5(c), where hundreds of small clusters of 

interface grid points are wrongly predicted. This is surprising because the model can predict 

with an accuracy level over 95% in the most difficult interface region yet made hundreds of 

mistakes in the much easier regions. 

 

 

 

 

(a) 

 

(b) 

 

(c) 
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(d) 

 

(e) 

 

(f) 

 

Figure 3.4. Superimposed rendering of machine-learned SES (blue) and the classical SES 

(red) of the dGdC complex. Starting from the hydrogen bonded structure, the two molecules 

are manually pulled part for 0.5 Å each step.  

 

These failures are due to the lack of similar data in the training of our initial model as only 

irregular grid points were fed to the training of the model. Thus, the remedy is to assembly 

a supplementary training set with grid points not just near interface, i.e. the irregular grid 

points in the initial training. In the inside region, the supplementary set includes all grid 

points that are inside SES but outside VDW. In the outside region, the set includes all grid 

points that are in the reentry cones formed by solvent accessible arcs and their associated 

atom pairs. Training of the initial model on the supplementary set leads to the second version 

of the model. Without surprise, the second version of the model can successfully classify 

those grid points incorrectly predicted by the initial model as shown in Figure 3.5(b)/3.5(d).  
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(a) 

 

(b) 
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(c) (d) 

 

Figure 3.5. Detailed views of SES as predicted by first and second versions of the machine-

learned SES model. The PDB id of the tested molecule is 1shg. (a) and (c) are from the first 

version of the model, outside vision and the inside vision, respectively. (b) and (d) are from 

a second version of the model, outside vision and the inside vision, respectively. 

In summary, the extrapolation analysis also demonstrates the robust nature of the machine-

learned SES, as it not only works well near the interface, but also can be applied to the entire 

solvation box. 

 

To illustrate the applications of the machine-learned SES for biomolecular studies, we 

implemented it into the AMBER/PBSA program. It follows the same algorithm structure as 

the revised density function.143 In both approaches, the goal is to assign level set function 

values for all grid points nearby a molecular solute.143 The algorithm contains two parts: pre-

processing and model predicting. The pre-processing part includes all the preparation 

needed for generating inputs for the machine-learned level set function. First, it collects all 

grid points that fall inside the SAS but outside the VDW of each solute atom. This step 

involves a loop over all solute atoms. Second, it generates a list of neighboring atoms of each 

grid points which were collected in the first step and then sorts them in the order of 

distances. The pre-processing part is relatively quick and takes only about 5% of the total 

time. The predicting part is the main bottleneck of the model, involving a loop over all 

collected grid points.  
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Given the current CPU implementation based on the Keras modules, we conducted a timing 

analysis of the method with the Amber/PBSA benchmark suite used in the training.50 The 

classical SES was computed with the default SES builder in Amber/PBSA program, which is 

already highly optimized.116 Figure 3.6 compares both timing data of methods. The 

regression shows that the machine-learned SES method is about 2.5 times as efficient as the 

classical SES algorithm on the tested compute node on our local cluster. 

 

As discussed before, an advantage of the machine-learned SES is that it is naturally suitable 

for parallel computing, because the level set function calls for the grid points are 

independent of each other and thus can be distributed to different computing cores. In other 

words, the computation cost of the machine-learned model in principle scales almost linearly 

with the number of cores, so that its cost can be dramatically reduced on highly parallel 

platforms such as GPUs. Of course, further development to optimize the code and to port it 

to the GPU platform is necessary to realize its full potential, as observed for the PB solvers in 

our previous developments.152, 165-166 
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Figure 3.6. Timing comparison of the machine-learned SES and the classical SES. Both sets of 

data were collected on a single core of an INTEL Xeon E5-4620 CPU. The grid spacing was 

set to 0.95 Å, which is close to the visualization setting (1 Å) used in this study. The 

regression line between the two sets of timing data is y=0.4114x. 

 

The PB reaction field energies were computed with the classical SES, the machine-learned 

SES, and the revised density function with otherwise identical conditions for all protein 

structures in the AMBER/PBSA benchmark suite.50 Figure 3.7 shows the agreement between 

the computed PB energies with both machine-learned SES and the revised density function 

surfaces and those with the classical SES surface. 
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It is clear from Figure 3.7 that the machine-learned SES performs uniformly well when used 

for PB energy calculations. The deviations between the PB energies with the machine-

learned SES and those with the classical SES are around 1%. In contrast, the average 

deviation is roughly 2% but the maximum deviation is over 10% between the PB energies 

with the density function surface and those with the classical SES. Figure 3.7(c)/(d) further 

shows that the PB energies from the machine-learned SES are more random around the 

mean of zero but the PB energies from the density function are systematically more negative. 

This is because a small solvent probe (0.7 Å) has to be used in the density function to achieve 

reasonable agreement with the PB energies with the classical SES.143 If the default probe of 

1.4 Å is used, the PB energies would be 30% more positive than those with the classical SES. 

 

 

(a) 

 

(b) 
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(c) 

 

(d) 

 

Figure 3.7. PB reaction field energies with different molecular surfaces. (a) Correlation 

between energies from machine-learned SES and classical SES. (b) Correlation between 

energies from density function and classical SES. (c) Energy differences in (a). (d) Energy 

differences in (b). The lines in (a) and (b) are the diagonal line “y=x” as reference.  

 

3.5. Conclusion 

In this study, we developed a new level-set formulation to generate the solvent excluded 

surface through a machine learning process. SES is a widely used molecular surface 

definition and there are at least two advantages of expressing SES in a level set formulism: 

to facilitate parallel computing and to make it differentiable for future applications in implicit 

solvent simulations. 

The level set function was trained on the data generated from a set of heterogenous 

biomolecular structures, containing about 6 million entries. The training was conducted in 
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three steps to determine the numbers of nearby atoms needed to define the level set, the 

number of hidden layers, and the number of neurons of each layer. After the final training, 

the machine-learned SES can predict the classical SES with an accuracy over 95% on tested 

proteins, nucleic acids, and complex structures. 

Analysis of visualized molecular surfaces of tested biomolecules shows that the machine-

learned SES agrees excellently with the classical SES. It is also clear that a previous approach 

based on atomic density functions is clearly insufficient, generating a molecular surface often 

larger than the classical SES and causing deeper crevices in the reentry regions. Besides, our 

machine-learned model is incredibly stable, in terms of rotational and translational variation 

of the molecules. 

We also performed a timing analysis between the machine learned SES and the classical SES 

algorithm. The analysis shows that the machine-learned SES is roughly 2.5 times as efficient 

as the classical SES routine in AMBER/PBSA on the tested CPU platform. We expect further 

performance gain on massively parallel platforms such as GPUs given the ease in converting 

the machine-learned SES to a parallel procedure. 

To further test the machine-learned SES, we implemented it into the AMBER/PBSA program 

to see if it can be used to reproduce the PB reaction field energies computed with the classical 

SES. Our analysis shows that the two sets of energies differ on average only about 1%, better 

than the 2% average deviation when the energies between the density-function surface and 

the classical SES are compared. Furthermore, the deviations in PB energies by the machine-

learned SES are uniformly distributed yet the deviations in PB energies by the density-

function surface often exhibit large deviations as high as 10%. This shows that the machine-

learned SES is much more stable in reproducing the classical SES in realistic applications. 
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Chapter 4 

4.1. Introduction 

Atomistic simulations of biomolecules have been applied in a wide range of biological 

systems.1 While additive nonpolarizable models will continue to play important roles,2-4 

nonadditive polarizable models are expected to extend our ability to study more complex 

biomolecular systems and processes. Nonpolarizable models typically use fixed atom-

centered partial charges to model electrostatics and include polarization response to the 

environment (mostly in water) only in an averaged, mean-field manner. Subsequently, 

nonpolarizable models that provide excellent descriptions of the homogeneous bulk phase 

are poor models for gas-phase clusters or in nonpolar solvents. The importance of modeling 

nonadditive effects is well known.5 For example, the gas-phase water dimer interaction 

energy is overestimated by more than 30% in the TIP5P model.6 Similarly for large 

biomolecular systems, there are concerns that such models cannot correctly account for 

situations where the same nonpolarizable moiety is exposed to different electrostatic 

environments/solvents, either within a single large structure or during a simulation process. 

In addition, there is an inherent inconsistency in most nonpolarizable models related to their 

static inclusion of average bulk polarization within the potential. This results in internal 

energies and other properties that are derived against a gas-phase reference state, which is 

already “pre-polarized” for the liquid phase. These limitations lead to issues in modeling 

multiple important problems such as pH-dependent processes, ion-dependent interactions, 

order-disorder transition, enzyme reactions, and so on.  

In response to the above concerns, much effort has been invested on the inclusion of explicit 

polarization within the molecular mechanics potentials.7-9 Several methods are available to 
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explicitly model polarization in molecular simulations, such as the Drude oscillator,10, 11 

fluctuating charges,12 and induced dipoles.6, 13, 14 The use of polarizable point dipoles is a 

classical approach with a long history in molecular simulation.15  The original induced dipole 

model of Applequist places induced point dipoles on atom centers.16 However, this model 

suffers from the so-called “polarization catastrophe”: when interaction between two 

mutually interacting induced dipoles with atomic polarizabilities diverge at a finite distance. 

Thole proposed a solution by applying a damping function to induced dipole – induced dipole 

interactions.17 However, a drawback to this model is that it does not prescribe how induced 

dipoles and permanent charges interact. A great deal of effort has been devoted to 

developing modern polarizable models, including the fluctuating charge models18, 19 in the 

context of OPLS-AA, the fluctuating charge model and the Drude oscillator model20-23 in the 

context of CHARMM, and detailed multipole expansions and more complicated MM 

potentials in the context of Amoeba.24 In Amber, polarization was implemented with induced 

dipoles.25 In Amber ff12pol, the induced dipoles are calculated using Thole models to avoid 

“polarization catastrophe”.26-29 

Another limitation of widely adopted nonpolarizable models is their use of partial atomic 

charges in the electrostatic models, which often lack sufficient mathematical flexibility to 

describe the electrostatic potential around molecules. Williams showed that optimal least-

squares fitting of atom-centered partial charges resulted in relative root-mean-square errors 

of 3-10% over a set of grid points in a shell outside the surface of a series of small polar 

molecules.30 These errors were reduced by 2-3 orders of magnitude via the use of higher 

atomic multipoles.6 In Amoeba force fields, multipoles are placed on each atom, allowing 

better capture of electrostatic potential distribution around molecules.31, 32 Gaussian 
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electrostatic model (GEM) is a force field based on density fitting, which can extend to 

arbitrary angular momentums (multipoles).33-35 Of course there are many other proposals 

to model electronic polarization in the literature.12, 36-38 

Recently, Elking et al. proposed to a polarizable multipole model with Gaussian charge 

densities.39 A key benefit of the polarizable Gaussian Model (pGM) is its screening of all 

short-range electrostatic interactions in a physically consistent manner. This is critical for 

stable charge-fitting in polarizable force fields when the polarization of 1-2 and 1-3 charges 

are included and are needed to reproduce molecular anisotropy, as we discussed before.40 

An advantage of pGM is that each atom’s multipoles are represented by a single Gaussian 

function and its derivatives with different amplitudes. Therefore, pGM is a minimalist 

Gaussian polarizable model. In comparison, the GEM model33-35 treats nuclear charges 

explicitly and uses Hermite Gaussian auxiliary basis sets to reproduce atomic electron 

density, so it has the potential to represent the short-range interactions more faithfully than 

the pGM model. However, because the computational cost of the nonbonded electrostatic 

calculation scales as the squared number of functions on each atom, the multiple functions 

used to represent each atom in GEM can notably increase the simulation cost. The increased 

number of parameters associated with the functions may also pose additional challenges in 

parameterization. Another major difference is that GEM,33-35 like several other efforts, such 

as X-Pol41 and Amoeba,31, 32 uses electronic densities to model molecular polarization and 

other effects. In comparison, our pGM model follows the Amber tradition and uses the ab 

initio electrostatic potential (ESP) to fit the parameters of atomic partial charges and dipoles.  

Most macromolecular simulations with long-range electrostatic interactions are performed 

using periodic boundary conditions. A rigorous treatment of electrostatic interactions in 
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periodic boundary conditions requires a careful treatment of the associated lattice sums. 

Thus, the widely used lattice sum methods, like particle mesh Ewald (PME), need to be 

extended to handle multipolar related summations. Fortunately, efficient implementations 

of PME of dipoles and higher multipoles are already available in widely used software 

package such as Amber.42, 43 This greatly simplifies the integration of pGM with PME for 

molecular simulations. 

In the following sections we first describe the detailed pGM electrostatics scheme with a 

focus on how to define the atomic Gaussian multipoles and associated analytical algorithms 

for force computation. This is followed by algorithmic details of interfacing pGM and PME. 

We then present the validation of the analytical force formulation and accuracy discussion 

of pGM in PME simulations.  Finally, we conclude the manuscript with a brief discussion of 

the next steps in our development. 

 

4.2. Theory 

The Gaussian multipole model represents the charge distribution on each atom as a 

Gaussian-shaped multipole expansion. So, an nth order Gaussian multipole with the radius of 

1/², located at position '³́ , is175 

^���ý; '³́ } = ¶��� ∙ ·����� ²√��Id_t �−²�|́ − '³́ |�� 

Here Θ���  is the nth rank momentum tensor and ∇���  is the nth rank gradient operator 

(Appendix A.1). 

In our current polarizable Gaussian multipole (pGM) model, only monopoles and dipoles are 

retained, so only the first two terms are needed at each atom as shown below 
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^���ý; '³́ } = +� ²√��Iexp �−²�|́ − '³́ |�� 

^�(�ý; '³́ } = ¼́ ∙ ·� � ²√��Iexp �−²�|́ − '³́ |�� 

where the zeroth-order term represents a monopole, and the first-order term represents a 

dipole. 

Once the charge densities are defined, the pairwise Coulombic interaction energy 

expressions needed for the current pGM model are as follows 

(1) Monopole-Monopole: 

+(+� d< �²(�'(��'(�  

(2) Monopole-Dipole: 

+(¼́� ∙ ∇� d<�²(�'(��'(�  

(3) Dipole-Dipole: 

�¼́( ∙ ∇(��¼́� ∙ ∇�� d<�²(�'(��'(�  

where erf() is the error function and 

²(� = ½¾½¿À½¾¿/½¿¿  and '(� = |'(³³³³́ − '�³³³³́  

Finally it is often convenient to introduce the dipole-dipole interaction tensor ?³́³́ (� =
∇(∇� �#Á�½¾¿�¾¿��¾¿  so that the interaction can be simplified as ¼́( ∙ ?³́³́ (� ∙ ¼́�.  Here it is worth 

pointing out an important convention used throughout this manuscript. All gradient 

operators paired with a dipole only operate on coordinates. For example, the gradient 

operator in ¼́( ∙ ∇( only operates on the atomic coordinates that follow. On the other hand, 
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all other gradient operators that are not paired with a dipole are used in the normal sense. 

This convention is adopted throughout this manuscript. 

It can be shown that an effective potential and corresponding effective field at atomic center 

'(³³³³́  can be defined as 

��ÁÁ��r!�� = �+� + ¼́� ∙ ∇�� d< �²(�'(��'(�  

��ÁÁ��r!�� = −�+� + ¼́� ∙ ∇��∇( erf�²(�'(��'(�  

due to a charge distribution at atomic center '�³³³³́ , so that the pairwise Coulomb energies can 

be reproduced when an effective point charge of +(  and an effective point dipole ¼́(  are 

placed at atomic center '(³³³³́ . The use of effective potential and field simplifies the derivation 

of pairwise Coulombic force calculations as to be shown below. Note that these are different 

from the real Coulombic potential and field due to Gaussian charges and dipoles. For 

example, the real potential at any location '(³³³³́  due to atom 2 at '�³³³³́  is 

�#��� = �+� + ¼́� ∙ ∇�� d< �²�'(��'(�  

 

In our current pGM model, interactions are modeled with both permanent and induced 

atomic multipoles at atomic centers, both of which are truncated at the dipole level. The 

framework can be easily extended to higher-order multipoles, if needed in future 

developments. 

Permanent multipoles are the first part of the pGM model and are defined with respect to a 

local frame overlapped with an atom’s covalent bonds. This choice is based on the fact that 

atomic moments result from atomic covalent bonding interactions. This is also because 
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covalent bonding interactions are along the stiffest degrees of freedom of a molecule. Thus 

our design follows the logic that induced moments are meant to be responsible for changes 

in molecular moments due to changes in soft degrees of freedom in molecular simulations. 

Of course, the partition between permanent and induced moments is somewhat artificial in 

a moment fitting procedure. Therefore we refer permanent multipoles in our pGM model as 

covalent multipoles in the following discussion. 

The zeroth-order covalent multipoles, i.e. covalent monopoles, are simply the atomic partial 

charges as in other polarizable or nonpolarizable force fields. The first-order multipoles, i.e. 

covalent dipoles, are expressed in linear combinations of certain basis vectors. We define the 

basis vectors to be along the bonding directions, or more precisely, covalent interaction 

directions. Thus, there may be more covalent interactions than the number of bonds needed 

to fully define all covalent dipoles on an atom. For example, hydrogen atoms in water are 

with covalent dipole moments not 100% along the H-O bonds, so virtual H-H bonds may be 

needed to define covalent dipoles more accurately. On the other hand, sp3 carbon atoms may 

have up to 4 covalent dipoles due to the presence of 4 bonds, though the presence of 

symmetry often reduces the number of unique covalent dipoles. The new local frame 

originates from a physical consideration that permanent dipole moments are primarily 

aligned along the covalent bonds due to the differences in electronegativity of bonded atoms. 

An illustration of basis vectors is shown in Figure 4.1 for O and H atoms of water, and we 

refer these as the covalent basis vectors (CBVs). The local frame formed by CBVs on an atom 

is termed its CBV frame. Another representative case is the alpha carbon atom in proteins, 

which has four bonds, so there can be four basis vectors in its CBV frame to define the 

covalent dipoles. 
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     (a)        (b) 

Figure 4.1. Definition of covalent basis vectors for atoms in the water molecule. (a) For 

covalent dipoles centered at A (oxygen), the two basis vectors are d́ÄÅ and d́¦Å, which are 

defined as unit vectors along its two O-H bonds, whose two covalent dipoles are the same 

due to symmetry. (b) For covalent dipoles centered at C (hydrogen), the two basis vectors 

are d́Å¦ , the unit vector along the H-O bond, and d́Ä¦ , the unit vector along the H-H virtual 

bond. The covalent dipoles centered on the other hydrogen atom B can be defined similarly. 

The CBV frame is also chosen for the sake of simplifying force calculations because the basis 

vectors are directly dependent on the positions of atoms. For example, the gradient of a 

covalent dipole vector used extensively in force calculations can be obtained easily within 

the CBV frame as 

∇�Æ³́ � = ∇ Ç	 Æ! '³́ !È'³́ !È! É = 	 Æ! Ê Ë́́È'³́ !È − '³́ !'³́ !È'³́ !ÈIÌ!  

where Æ³́  is the permanent dipole of an atom, '³́ ! is the vector pointing from the atom to its ith 

bonded atom (including virtually), Ë́́  is the identity tensor, and the summation is over all 

covalent interactions of the atom. 

Even if quadrupoles are not used in the current pGM model, it is instructive to outline how 

they are defined in the CBV frame. Given the covalent basis vectors defined above, covalent 

A 

B C 

A 

C B 
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basis tensors are constructed as dyadic tensors, with each of which formed as a dyadic 

product of two covalent basis vectors. For example in the case of oxygen atom with two 

covalent basis vectors ( d́ÄÅ, d́¦Å )  in Figure 1a, there are up to four dyadic tensors 

(d́ÄÅd́ÄÅ, d́¦Åd́¦Å, d́ÄÅd́¦Å, d́¦Åd́ÄÅ) available to define its quadrupole. 

 

Induced multipoles are the second part of the pGM model. Only first-order terms, i.e. induced 

dipoles, are used. The pGM polarization scheme can naturally avoid the well-known 

polarization catastrophe in point polarizable models without employing any artificial 

screening factors,16 because distributed dipole densities instead of point dipoles are induced 

at atomic centers.176 

In the current pGM model, the linear polarization relation is retained as follows 

t́! = Í!�³́ ! �ÁÁ��r!�� = Í!��³́ !�������r,�ÁÁ��r!�� − 	 ?³́³́ !& ∙ t́&
 

&Î! � 

�³́ !�������r,�ÁÁ��r!�� = − 	�+& + ¼́&
 

&Î! ∙ ∇&�∇! erfy²!&'!&}'!&  

?³́³́ !& = ∇!∇& erfy²!&'!&}'!&  

where t́! is the induced dipole and Í! is the polarizability coefficient of atom i, �³́ ! �ÁÁ��r!��
 is 

the total effective electric field at atom i, which contains two parts, (1) the effective field of 

covalent multipoles, �³́ !�������r,�ÁÁ��r!��, and (2) that of induced dipoles, − ∑ ?³́³́ !& ∙ t́& &Î! . Note 

that we have used the effective electric field instead of the real electric field to define the 

induced dipoles in the pGM model. One reason is to ensure the symmetry of ?³́³́ !&, which greatly 

reduces the complexity of force calculation later.176 To simplify the following discussion, we 
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drop the effective superscript as we plan to use effective electric fields in all subsequent 

discussions of energy and force calculations in the pGM model. 

Another issue worth pointing out about induced dipoles is their self energies. The linear 

polarization itself implies a self-energy term of the form 

Ï = 12 t́ �Í  

The derivation can be found in many publications.177 However, the pGM model, due to its use 

of Gaussian distributions of multipoles, posts extra difficulty. For example, a Gaussian charge 

distribution itself has self-energy, or assembly energy, of the form, 

Ï = +�² √2� + ²I�¼́ + t́  ��3√2�  

Clearly, the self-energy is different from above and it does not lead to a linear polarization 

behavior. In fact, it is difficult to assess the physical meaning for the nonlinear assembly 

energy, just like it is hard to discuss the physical meaning of the infinitely large assembly/self 

energy for a point charge. Thus, for the current model development, we do not consider self-

energies beyond that. 

 

From the introduction of the pGM model in previous sections, it is clear that the electrostatic 

potential energy of the system can be divided into two parts: 

(1) Covalent Dipole-Covalent Dipole Interaction Energy: 

Ï�������r$�������r = 12 	 	�+! + ¼́! ∙ ∇!��+& + ¼́& ∙ ∇&� erf �²!&'!&�'!&
-

&Î!
-
!  

(2) Induced Energy: 

Ï!��Ð��� = Ï!��Ð���$�������r + Ï!��Ð���$!��Ð��� + Ï���Á 
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= − 	 t́!
-
! ∙ �³́ !�������r + 12 	 	�t́! ∙-

&Î!
-
! ?³́³́ !& ∙ t́&� + 12 	 t́! ∙ ��³́ !�������r − 	 ?³́³́ !& ∙ t́&

-
&Î!

-
! � 

= − 12 	 t́!
-
! ∙ �³́ !�������r 

where N denotes the number of atoms in the system. Thus, atomic electrostatic forces can be 

derived as negative gradients of the above two potential energy terms, respectively. 

When computing gradients for the covalent-dipole interaction energy, it is very important to 

know which quantities are the variables of the virtual displacement of atom i. There are two 

types of variables: (1) pairwise distances between atom i and all other atoms, and (2) 

covalent dipoles on atom i and covalent dipoles on atoms covalently interacting with atom i. 

Given this classification of variables, we can group the terms in Eqn. (13) into four different 

parts and discuss their gradients with respect to '³́ !, separately. 

The detailed derivations are presented in Appendix A.2, and the final force expression for 

the covalent-dipole interaction energy is 

Ñ́�������r$�������r! = − 	 ∇!
-
& yÆ³́ &} ∙ 	 ∇&

-
�Î& �+� + Æ³́ � ∙ ∇�� erfy²&�'&�}'&�  

−�+! + Æ³́ ! ∙ ∇!� 	y+& + Æ³́ & ∙ ∇&}∇!
-

&Î!
erfy²!&'!&}'!&  

where N denotes the number of atoms in the system. Briefly, the first term is from the 

derivatives over the covalent dipoles, and the second term is from derivatives over the 

pairwise distances.  

The derivation of forces for the induced energy is not that straightforward. We first need to 

express the induced dipole, t́! , in terms of fields from covalent dipoles only, not as their 
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definition. This is because t́! appears on both sides, i.e. induced dipoles mutually influence 

each other, so it is difficult to take their derivatives. Instead we proceed by expressing t́! as 

shown in Appendix A.2 as 

t!� = %$(!&�r�&�������r,r 

where %$(!&�r
 is an 3� × 3� matrix which we do not know the expression of, and s t and i j are 

coordinate component indices and atom indices, respectively. Next it can be rewritten as 

Ï = − 12 %$(&��r�&�������r,����������r,r 

where the Einstein’s index notation is employed for j k s t, so that a repeated index implies a 

summation over all possible values of the index, i.e. it is a quadruple summation. Even if we 

do not know the expression of matrix %$(, we can still obtain its gradient with respect to '³́ ! 
, or the virtual displacement of atom i 

¨%$(!&�r¨_�Ó = −%$(!!Ô��Ô ¨?  !Ô&Ô�ÔrÔ
¨_�Ó %$(&Ô&rÔr

 

where all primed indices follow the Einstein’s index notation, and ?  is the dipole-dipole 

interaction tensor. 

Given the above preparations, the induced part of the force can be obtained as  

Ñ́!��Ð���! = −t́! ∙ ∇! 	�t́& ∙ ∇&�∇!
-

&Î!
erfy²!&'!&}'!& + 	 ∇!��³́&�������r� ∙ t́&

-
&  

where N denotes the number of atoms in the system. Details are presented in Appendix A.2. 

Briefly, the first term is obtained from the derivative of matrix %$( and the second term is 

calculated as derivative of the covalent field �³́&�������r as follows 
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∇!��³́&�������r�
=

fgh
gi − 	 ∇!�Æ³́ �� ∙�

�Î& ∇�∇& erf �²&�'&��²&�'&� − �+! + Æ³́ ! ∙ ∇!�∇!∇& erfy²!&'!&}²!&'!&    9<   ; ≠ 9
− 	 ∇!�Æ³́ �� ∙�

�Î! ∇�∇! erf �²!�'!��²!�'!� − 	�+� + Æ³́ � ∙ ∇��-
�Î! ∇!∇! erf�²!�'!��²!�'!�    9<   ; = 9 

where n denotes all atoms that are covalently (including virtually) bonded with atom i, and 

atom i itself. 

In practice, force calculations must be combined with an Ewald summation or particle mesh 

Ewald (PME) technique to handle long-range under periodic boundary condition. This is to 

be discussed in detail later. 

The Ewald summation was introduced to compute the electrostatic energy of an infinite 

lattice under periodic boundary conditions.178 The basic idea is to put a mask Gaussian 

charge distribution on the real charge on each atom. Then a direct-space pairwise 

summation is conducted to compute the electric field due to real charges masked by the 

Gaussian charges. This step can be executed with a reasonably short cutoff distance due to 

the very fast decay after applying the mask Gaussian charges. Next the field generated by the 

mask Gaussians can be computed efficiently by a reciprocal-space summation to bring back 

the original electric field due to the real charges. Finally, a correction step is used to remove 

interactions not needed in the original electrostatic model. Similar to its use in point 

charge/dipole models, a mask Gaussian distribution is also used on each moment of each 

atom in the pGM model. 

^!8���ý; '³́ !} = +! Ö²��� ×I� exp �−²��È́ − '³́ !È�� + �¼́!  + t́!� ∙ ·��  Ö²��� ×I� exp �−²��È́ − '³́ !È�� 
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where ²� is an adjustable parameter usually in the range of about 
(K ~ 

(� Å$(, universal for all 

atoms. 

Given the mask distribution is also a Gaussian function, it is straightforward to compute 

electrostatic potential, field, and the gradient of field of a masked pGM charge distribution, 

as follows 

�! = 	2 +& + �¼́& + t́&� ∙ ∇&  3 erfy²!&'!&} − erfy²�'!&}'!&
-

&Î!  

�³́ ! = − 	2 +& + �¼́& + t́&� ∙ ∇&  3∇! erfy²!&'!&} − erfy²�'!&}'!&
-

&Î!  

�³́³́ ! = − 	2 +& + �¼́& + t́&� ∙ ∇&  3∇!∇! erfy²!&'!&} − erfy²�'!&}'!&
-

&Î!  

For the current pGM model, no higher-order field is needed. Here, N represents all the atoms 

including those in the periodic boxes, but their influence would decay to zero very quickly 

due to the masking effect.  

Another point worth pointing out is that the real field of the mask Gaussian multipoles is 

used, i.e. ²� is used instead of ²!� = ½�½ÙÀ½�¿/½Ù¿ in the above expressions. The mixed use is not 

an issue because mask multipoles do not really exist, their role is just a mathematical 

treatment in the Ewald summation as long as the effect is exactly cancelled out in the later 

step. 

The reciprocal summation of the pGM model follows the same procedure as a traditional 

point polarizable model.179 Thus the electrostatic potential, field, and gradient of field can be 

shown as 
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�! = 1�� 	 exp Ö− ��Ú³³́ �²�� ×Ú³³́ �8³³³́ Î� expy−2�9Ú³³́ ∙ '³́ !} Û�Ú³³́ � 

�³́ ! = 29� 	 Ú³³́ exp Ö− ��Ú³³́ �²�� ×Ú³³́ �8³³³́ Î� expy−2�9Ú³³́ ∙ '³́ !} Û�Ú³³́ � 

�³́³́ ! = − 4�� 	 Ú³³́ Ú³³́ exp Ö− ��Ú³³́ �²�� ×Ú³³́ �8³³³́ Î� expy−2�9Ú³³́ ∙ '³́ !} Û�Ú³³́ � 

where the i’s that are not subscripts but the imaginary unit, V is the volume of the unit cell, 

and Ú³³́  is the reciprocal space vector. Û�Ú³³́ � is the structure factor 

Û�Ú³³́ � = 	 ÜÝ&�Ú³³́ � expy2�9Ú³³́ ∙ '³́&}-
&.(  

ÜÝ&�Ú³³́ � = +& + 2�9�¼́& + t́&� ∙ Ú³³́  

Here N is the number of atoms in the primary simulation box only. 

The PME correction term is used to handle various specific situations in a force field. For 

example, most force fields have masked bonded (1-2 and 1-3) atom pairs, which result in no 

electrostatic interactions between these pairwise atoms. Thus, the interactions among these 

masked pairs must be removed. However, in the current pGM model we do not have any 

masked pairs, so there is no need for such correction. 

Another correction that needs paying attention to is the self-interaction correction. This is 

the only correction in the pGM model. The self-potential, self-field, gradient of self-field can 

be shown as179-180 

�! = 2+!²�√�  
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�³́ ! = − 4�¼́! + t́!�²�I3√�  

�³́³́ ! = 4+!²�I3√� Ë́́ 

These terms need to be properly subtracted to obtain correct potential, field, and field 

gradient, respectively  

In summary, the similarity between the Ewald summation in pGM model and that in the 

polarizable point charge/dipole model shows that the PME MD engine for the point 

charge/dipole model can be easily transplanted over for pGM applications with little 

revision. There are excellent literature discussing the details of PME for polarizable point 

dipole models, and can be safely omitted in this work.179-180 

 

As pointed out before, analytical force expressions cannot be used directly in typical MD 

simulations since all summations are over infinite numbers of atoms with periodic boundary 

conditions. They must be combined with an Ewald summation or a PME technique to 

facilitate solvated-phase simulations. To bypass the infinite summations, the force 

expressions are reformulated in terms of fields and its derivatives, which are also the 

quantities that an Ewald or PME procedure would return. The key to express energy and 

force with fields and gradients of fields is to consider the following quantities together 

�³́ !�������r = − 	� +& + ¼́& ∙ ∇& �∇! erfy²!&'!&}'!&
-

&Î!  

�³́³́ !�������r = − 	� +& + ¼́& ∙ ∇&  �∇!∇! erfy²!&'!&}'!&
-

&Î!  
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�³́ !!��Ð��� = − 	 t́& ∙ ∇&∇! erfy²!&'!&}'!&
-

&Î!  

�³́³́ !!��Ð��� = − 	 t́& ∙ ∇&∇!∇! erfy²!&'!&}'!&
-

&Î!  

where N denotes all atoms in the system, including those of the periodic boxes. Thus, these 

are all infinite summations. 

A key step is in the computation of Ñ́!��Ð���! , where term ∑ ∇!��³́&�������r� ∙ t́&-&  also has to be 

reformulated accordingly. Given that ∇!y�³́&�������r} lists two separate terms for ; = 9 and ; ≠
9, we can rewrite ∑ ∇!��³́&�������r� ∙ t́&-&  as follows 

	 ∇!y�³́&�������r} ∙ t́&
-
&

= 	  -
&Î! 	�−∇!�Æ³́ ��� ∙�

�Î& ∇�yt́& ∙ ∇&} erf �²&�'&��²&�'&�
− 	�+! + ¼́! ∙ ∇!�∇!�t́& ∙ ∇&� erfy²!&'!&}²!&'!&  -

&Î! − 	 ∇!�Æ³́ �� ∙�
�Î! ∇��t́! ∙ ∇!� erf�²!�'!��²!�'!�

− 	�+� + ¼́� ∙ ∇��-
�Î! ∇!�t́! ∙ ∇!� erf�²!�'!��²!�'!�  

where both ; = 9  and ; ≠ 9  terms are needed due to the outermost summation over j. 

Combining the first and third terms gives 

= 	  -
& 	�−∇!�Æ³́ ��� ∙�

�Î& ∇�yt́& ∙ ∇&} erfy²&�'&�}²&�'&� − 	�+! + ¼́! ∙ ∇!�∇!�t́& ∙ ∇&� erfy²!&'!&}²!&'!&  -
&Î!

− 	�+� + ¼́� ∙ ∇��-
�Î! ∇!�t́! ∙ ∇!� erf�²!�'!��²!�'!�  
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Exchanging the summation order for the first term leads to 

= 	  �
� 	�−∇!�Æ³́ ��� ∙-

&Î� ∇�yt́& ∙ ∇&} erfy²&�'&�}²&�'&� − 	  -
&Î! �+! + ¼́! ∙ ∇!�∇!yt́& ∙ ∇&} erfy²!&'!&}²!&'!&

− 	�+� + ¼́� ∙ ∇��-
�Î! ∇!�t́! ∙ ∇!� erf�²!�'!��²!�'!�  

Substitution of the expressions of electric fields and derivatives gives 

	 ∇!y�³́&�������r} ∙ t́&
-
& = 	 ∇!

�
� �Æ³́ �� ∙ �³́ �!��Ð��� + +!�³́ !!��Ð��� + Æ³́ ! ∙ �³́³́ !!��Ð��� + t́! ∙ �³́³́ !�������r 

Here, n means those atoms that covalently interact with atom i. 

Given the above preparations, force can finally be expressed as follows after substitution 

Ñ́�������r$�������r! = 	 ∇!
�
& yÆ³́ &} ∙ �³́&�������r + +!�³́ !�������r + Æ³́ ! ∙ �³́³́ !�������r 

Ñ́!��Ð���! = 	 ∇!
�
& yÆ³́ &} ∙ �³́&!��Ð��� + +!�³́ !!��Ð��� + t́! ∙ �³́³́ !!��Ð��� + Æ³́ ! ∙ �³́³́ !!��Ð��� + t́! ∙ �³́³́ !�������r 

Adding these two terms together, the final force expression is, 

Ñ́ ! = 	 ∇!
�
& yÆ³́ &} ∙ �³́& + +!�³́ ! + �Æ³́ ! + t́!� ∙ �³́³́ !  

This shows that a key step in this algorithm is to accumulate atomic electric potential and its 

first and second derivatives from various components, including both reciprocal and direct 

summations. 

 

4.3. Results and Discussion 
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To validate the pGM force expressionsabove, we constructed a small toy system of two water 

molecules in free space. The detailed water pGM parameters are listed in Table 4.1. These 

parameters were derived with an iterative RESP procedure for the pGM model with quantum 

mechanical ESP data from a B3LYP/aug-cc-pvtz calculation of the water dimer. 

 

Table 4.1. Two water molecules in free space. The permanent dipole moments are expressed 

in the lab frame. The moments in the CBV frame can be obtained once the CBV’s are defined 

according to Figure 1 via a least square fitting procedure. 

Tested atoms water-1 

O 

water-1 

H1 

water-1 

H2 

water-2 

O 

water-2 

H1 

water-2 

H2 

Charge (d) -

1.79704

5 

0.89852

3 

0.89852

3 

-

1.79704

5 

0.89852

3 

0.89852

3 

Dipole moment 

(d ∙ Å) 

(1.31733

2,  

-

0.12086

7, 

1.71198

8) 

(0.26284

9,  

-

0.48421

3, 

0.32387

6) 

(0.27618

2, 

0.43699

9, 

0.37672

8) 

(0.92737

6, 

0.13405

8,  

-

1.96733

7) 

(-

0.23659

1, 

0.04139

4,  

-

0.65079

0) 

(0.59026

9, 

0.01396

6,  

-

0.16405

9) 
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Polarizability 

(ÅI) 

1.44898

0 

0.42735

0 

0.42735

0 

1.44898

0 

0.42735

0 

0.42735

0 

Gaussian radius 

(Å) 

0.80662

49 

0.71475

97 

0.71475

97 

0.80662

49 

0.71475

97 

0.71475

97 

Coordinates (Å) (-

1.38766

9,  

-

0.00677

5, 

0.11072

8) 

(-

1.73411

0, 

0.79014

7,  

-

0.31003

6) 

(-

1.75616

4,  

-

0.74012

2,  

-

0.39770

8) 

(1.51453

6, 

0.00752

2,  

-

0.12155

4) 

(1.91941

9,  

-

0.04751

7, 

0.75125

1) 

(0.55592

1,  

-

0.00848

5, 

0.04310

1) 

 

Two methods were used to calculate the atomic forces. The first method is to use the force 

expressions to calculate forces analytically. The second method is to calculate forces 

numerically via the finite-difference method, based on the fact that each force is the negative 

gradient of potential energy. Here the potential energy was computed analytically. The finite-

difference coordinate displacement was set to be 1 × 10$*Å , and the induced dipole 

accuracy was set to 1 × 10$N. It is clear that the differences between the two sets of atomic 

forces appear only on the nineth digit after the decimal point.  

There is also an indirect way to confirm the correctness of the force expression, which is to 

utilize the fact that the total force of the system should always be zero in any direction. If we 
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add up all atomic forces, the system net force (in e2/Å� ) is 1 × 10$N , 2 × 10$(L  and 3 ×
10$(L, for x, y and z directions, respectively. The overall error here is consistent with the 

induction tolerance used in the testing, 1 × 10$N. 

 

To achieve aqueous-phase simulations, an Ewald summation or PME technique is essential 

for any electrostatic model. Although there are various publications discussing the accuracy 

of PME 179-182, we have to acknowledge the fact that the pGM model has a higher accuracy 

requirement than classical point-charge force fields due to the presence of dipoles. In 

general, higher moments would require higher PME accuracy. This can be appreciated from 

the perspective of two considerations. Firstly, the interaction energy between two dipoles 

decays faster with distance (1 I⁄ ) than that between two charges (1 ⁄ ). Secondly, the 

second derivatives of potential are needed to compute forces on dipoles, whereas only first 

derivatives, e.g. electric fields, are needed to compute forces on charges. Due to these 

differences, we have to carefully examine the accuracy requirement of PME methods used in 

our model. 

To test the accuracy, we only look at the most difficult pairwise interactions, so that the 

errors reported below are the maximum errors in the tested water system. For the reciprocal 

part, we focus on the electrostatic field between the bonded O atom and H atoms, whose 

interactions are the strongest and thus the most difficult in PME. For the direct summation 

part, we focus on the electrostatic field between two H atoms. Because they have the smallest 

Gaussian radii, their interactions converge slowest in the direct summation. Thus, to 

guarantee a given accuracy level for forces in the pGM model, we need to consider both PME 

components. 
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In the following analysis we set the grid spacing to 1 Å for PME as in most biomolecular 

simulations and varied other parameters to see how accuracy changes in both the reciprocal 

and the direct summation components. Also, because our model contains both charges and 

dipoles, we analyzed their field separately to assess the impact of different setups on their 

accuracy of electric field. The test results are shown below in Table 4.3, 4.4 and 4.5. 

 

Table 4.2. Errors of reciprocal potentials and derivatives generated by the dipoles of water-

1 H1 atom on water-1 O atom at different PME setups. The analytical values  were calculated 

with MATLAB. Interpolation order refers to the rank of the B-spline interpolation method 

used in PME. See Ref182 for details. 

Interpolation order 5 6 7 8 9 

Ewald 

coefficient 

²� = 0.3Å$( 

potential 
8.2
× 10$K 

2.8
× 10$K 

1.5
× 10$L 

3.4
× 10$* 

2.7
× 10$* 

first 

derivative 

3.0
× 10$J 

6.4
× 10$K 

9.2
× 10$* 

7.6
× 10$* 

3.9
× 10$* 

second 

derivative 

1.3
× 10$I 

3.9
× 10$J 

4.6
× 10$K 

1.6
× 10$K 

5.7
× 10$* 

Ewald 

coefficient 

²� = 0.4Å$( 

potential 
1.2
× 10$J 

4.0
× 10$K 

4.3
× 10$* 

3.5
× 10$M 

5.4
× 10$* 

first 

derivative 

1.3
× 10$I 

4.6
× 10$J 

1.5
× 10$J 

6.5
× 10$K 

2.5
× 10$K 
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second 

derivative 

2.6
× 10$I 

1.6
× 10$I 

4.0
× 10$J 

1.9
× 10$J 

8.1
× 10$K 

Ewald 

coefficient 

²� = 0.5Å$( 

potential 
2.6
× 10$J 

1.1
× 10$J 

1.7
× 10$J 

6.1
× 10$K 

9.1
× 10$K 

first 

derivative 

5.1
× 10$I 

2.5
× 10$I 

1.2
× 10$I 

7.2
× 10$J 

4.0
× 10$J 

second 

derivative 

8.8
× 10$I 

5.5
× 10$I 

2.4
× 10$I 

1.3
× 10$I 

8.8
× 10$J 

 

Table 4.3. Errors of reciprocal potentials and derivatives generated by the charges of water-

1 H1 atom on water-1 O atom at different PME setups. The analytical values  were calculated 

with MATLAB. Interpolation order refers to the rank of the B-spline interpolation method 

used in PME. See Ref182 for details. 

Interpolation order 5 6 7 8 9 

Ewald 

coefficient 

²� = 0.3Å$( 

potential 
1.4
× 10$* 

3.7
× 10$M 

6.5
× 10$M 

1.4
× 10$M 

5.3
× 10$N 

first 

derivative 

1.8
× 10$J 

3.8
× 10$K 

5.5
× 10$* 

1.1
× 10$* 

3.4
× 10$L 

second 

derivative 

7.7
× 10$J 

2.1
× 10$J 

3.0
× 10$K 

7.8
× 10$* 

1.8
× 10$* 

potential 
1.4
× 10$K 

3.7
× 10$* 

1.6
× 10$* 

6.8
× 10$L 

3.2
× 10$L 
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Ewald 

coefficient 

²� = 0.4Å$( 

first 

derivative 

7.4
× 10$J 

1.1
× 10$J 

6.1
× 10$K 

2.1
× 10$K 

1.0
× 10$K 

second 

derivative 

2.5
× 10$I 

7.7
× 10$J 

2.1
× 10$J 

7.5
× 10$K 

3.0
× 10$K 

Ewald 

coefficient 

²� = 0.5Å$( 

potential 
8.1
× 10$K 

3.9
× 10$K 

1.9
× 10$K 

1.2
× 10$K 

7.0
× 10$* 

first 

derivative 

2.5
× 10$I 

7.8
× 10$J 

4.5
× 10$J 

2.6
× 10$J 

1.5
× 10$J 

second 

derivative 

6.7
× 10$I 

2.6
× 10$I 

1.1
× 10$I 

6.3
× 10$J 

3.4
× 10$J 

 

Table 4.4. Errors of direct summation potentials for Gaussian potentials between two H 

atoms at different PME setups. These values are the difference between two error functions, 

erf�²'�� − erf �²�'�� . Here, '�  is the direct summation cutoff distance, and ² = 1/
�0.7147597 ∙ √2�Å$( for the H atom pairs. 

Cutoff 

distance (Å) 
7 8 9 10 11 

²� = 0.3Å$( 3.0 × 10$I 6.9 × 10$J 1.3 × 10$J 2.2 × 10$K 3.1 × 10$* 

²� = 0.4Å$( 7.5 × 10$K 6.0 × 10$* 3.6 × 10$L 1.5 × 10$M 
4.9
× 10$(� 

²� = 0.5Å$( 7.4 × 10$L 1.5 × 10$M 2.0 × 10$(� 1.5 × 10$(� 
7.3
× 10$(K 
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It is clear from the above analyses that the pGM model demands a higher accuracy level than 

classical point-charge models. This is as expected for any electrostatic model with dipoles or 

higher moments. For the reciprocal part, the field generated by dipoles are more difficult to 

handle than that of charges in PME. Comparing Tables 4.3 and 4.4, we can see that the errors 

of dipole fields are about twice larger than that of charge fields. Furthermore, Table 4.3 and 

4.4 show that the second derivatives are the most difficult in PME. Thus, to ensure the 

accuracy of the reciprocal summation of PME, we need to make sure the second derivatives 

reach a specified accuracy level. For example, if we use 5 × 10$K as the accuracy threshold, 

which is a common choice, we have to set Ewald ²� = 0.3Å$( and the interpolation order 7 

or higher in the PME setup (Table 4.3). Of course, use of smaller grid spacing would increase 

the accuracy but with a higher overhead in reciprocal summation. We will explore the best 

tradeoff in accuracy and efficiency for realistic biomolecular systems in a later publication. 

Situations are similar for the direct summation part. To reach a common accuracy threshold 

of 5 × 10$K, if we set ²� = 0.3Å$( as in the reciprocal part, the direct space cutoff should be 

set to a relatively longer cutoff distance of 10 Å, as shown in Table 4.5. Of course, a choice of 

larger ²� (i.e. 0.35Å$() would allow a commonly used cutoff distance of 9 Å. However, this 

would require a higher interpolation order to achieve the similar level of accuracy. 

 

Given all the accuracy consideration above, we performed a pure water simulation to test 

the energy conservation behavior in an NVE run with the PME treatment. The electrostatic 

parameters were derived from those in Table 1 and transplanted onto the TIP3P water 

model. We used 512 water molecules in a truncated octahedron box of 27.5 Å. The dimension 

of the particle mesh grid is 303, so the grid spacing is a bit less than 1 Å. The PME ²� =
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0.35Å$(, the real space cutoff was set as 9 Å, and the interpolation order was 8 so that the 

overall PME error was less than 5 × 10$K.  
We first tested a range of induction tolerance criteria, ranging from 10$I  to 10$*. Our 

experiments show that 10$I and 10$J are clearly not sufficient for the induction iteration, 

leading to decreasing energy throughout the MD simulations. This is consistent with 

previous findings in the developments of polarizable point dipole models.180 Specifically, the 

energy in the NVE run of 10$I drifts too fast, so that it is already out of the plotting range at 

the 100th step, the very first data point. The rest of the energy plots over the simulation time 

are shown below in Figure 4.2. The initial testing shows that the energy convergence became 

much better after we tighten the iteration tolerance to 10$K. Though the total energy still 

drifts down a little, but much slower. Finally, after we tighten it to 10$*, the total energy is 

basically conserved. Of course, the total energy fluctuation does exist. 

 

Figure 4.2. Total energy versus simulation time for the 512-water box simulation. Here, all 

the simulations are performed with a 5 × 10$K PME accuracy, but with different induction 

iteration tolerance (1 × 10$J ~ 1 × 10$*). 
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Next we also studied the influences of the PME setup on the energy conservation.  To 

compare with the NVE run with the high PME accuracy above. We collected a comparable 

NVE run with the same induction tolerance of 10$*, but with a somewhat lower PME setting. 

The real space cutoff was set as 8 Å and the interpolation order was set as 6 but others 

remained to be the same, which leads to a lower PME accuracy of ~5 × 10$J. The total energy 

is more positive because there are fewer van der Waals pairs. As shown in Figure 4.3, the 

total energy also drifts noticeably, though it becomes more positive over time. In summary, 

our experiment shows that high enough accuracy in both the PME calculation and the 

induction iteration is necessary for a polarizable dipole model with permanent dipoles to 

achieve energy conservation. Furthermore, we expect even higher accuracy is necessary if 

higher moments, i.e. quadrupoles, are used in future pGM developments as higher 

derivatives are needed from the PME calculation. 

 

Figure 4.3. Total energy versus simulation time for the 512-water box simulation. Here, both 

simulations were performed with a 1 × 10$* induction iteration tolerance, but with different 

PME accuracy, low for 5 × 10$J  and high for 5 × 10$K. 
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4.4. Conclusion 

In this work, we proposed an efficient formulation for the polarizable Gaussian Multipole 

(pGM) model for biomolecular simulations. Firstly, a local frame based on the covalent basis 

vectors (CBV) /tensors was used to set up the permanent (covalent) multipoles on all atoms. 

The CBV frame nicely allows the intrinsic molecular flexibility during simulations and 

facilitates an efficient expression of the electrostatic forces in the closed form. Based on the 

new CBV local frame, we then derived the analytical force expressions for the pGM model. 

Finally, we outlined how to interface the pGM electrostatics seamlessly with the PME 

implementation for molecular simulations under the periodic boundary conditions. 

To validate the analytical force expression for the pGM model defined on the CBV frame, we 

studied the accuracy of the analytical atomic forces with a finite-different force analysis for 

a water dimer. The analysis shows a very good consistency between the analytical and 

numerical forces, with an error comparable to the finite difference uncertainty. In addition, 

total analytical and numerical forces of the water dimer are very close to zero with an error 

consistent with the induction iteration tolerance. 

Next, we analyzed the PME setups necessary for accurate pGM energy and force calculations. 

It was found that the pGM model requires higher accuracy than the classical point-charge 

models due to the presence of dipoles. This is because the electrostatic field generated by 

dipoles are much more difficult to interpolate than that of charges in PME, and the error of 

the dipole field is about twice that of the charge field. In addition, the second derivative of 

potential is needed, which is the more difficult to compute accurately in PME to ensure 

accurate pGM forces.  
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To validate the overall electrostatic framework for the reformulated pGM model, we 

conducted an NVE simulation for a small water box of 512 water molecules. Our results show 

that, to achieve energy conservation, it is important to ensure enough accuracy on both PME 

and induced dipoles. With a 5 × 10$K accuracy on PME and a 1 × 10$* tolerance for induced 

dipoles, the tested NVE water simulation in the pGM model was shown to conserve energy 

reasonably well. Future development will be necessary to improve the efficiency of the pGM 

model in both PME setup and induction iteration to bring out the potential of the pGM model. 
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Chapter 5 

 

5.1. Introduction 

Atomistic simulations of biomolecules have been applied to various biological systems.2 

While additive nonpolarizable models continue to play dominant roles,3-5 nonadditive 

polarizable models are emerging as a tool extending our capability of studying more complex 

biomolecular systems and processes. Nonpolarizable models typically use fixed atomic 

partial charges to model electrostatics. As a result, they only incorporate polarization 

response to the environment (mostly in water) in a mean-field manner. Thus, nonpolarizable 

models with excellent descriptions of the homogeneous bulk phase can be poor models 

treating gas-phase clusters or in cases where large scale conformational changes are 

accompanied by changes in dielectric environment.6 Another limitation of the 

nonpolarizable models is the use of partial atomic charges. This treatment often lacks 

sufficient mathematical flexibility to accurately describe the electrostatic potential nearby 

molecules. Williams showed that optimal least-squares fitting of atom-centered partial 

charges resulted in relative root-mean-square errors of 3-10% in reproducing quantum 

electrostatic potentials at grid points in a shell outside the surface of a series of small polar 

molecules.7 In summary, the importance of modeling polarization effects and the limitation 

of point charge models have been well documented.6, 8 

To address the above issues, extensive efforts have been invested in the development of 

explicit polarizable models.9-11 Several methods have been proposed including explicit 

polarization in the molecular mechanics potentials, such as the Drude oscillator,12-13 

fluctuating charges,14 and induced dipoles.6, 15-16 Among these new models, implementation 
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of polarizable point dipoles was originally proposed by Applequist17. It is a classical 

approach with a long history in molecular simulation.18 However, this model suffers from 

the so-called “polarization catastrophe”,19 which requires proper screenings for short range 

electrostatics. 

Recently, Elking et al. proposed the polarizable multipole model with Gaussian charge 

densities.20 A key benefit of the polarizable Gaussian Multipole model (pGM) is its screening 

of all short-range electrostatic interactions in a physically consistent manner, as we 

discussed previously.21 We have presented an analytical formulation for the pGM model that 

is more suitable for molecular dynamics simulation due to the lack of explicit torque 

computation.1 In addition, we further exploited a new local frame, the covalent basis vectors 

(CBVs) to preserve the physical symmetry and to better accommodate the fact that 

permanent dipoles are primarily resulted from covalent bonds. Subsequent numerical tests 

show that, with enough accuracy involving both pGM and Particle Mesh Ewald (PME), NVE 

simulation can be realized with a similar energy drift as in classic point charge models.1 

However, most of the real-world biological systems resemble constant pressure ensembles, 

which requires our pGM model to be extended to NPT simulations. Andersen first proposed 

a new constant pressure method in which the volume was allowed to fluctuate, with its 

average value being determined by the balance between the internal stress in a system and 

the externally set pressure.22 Following his pioneer works, Nose ́ and Klein23 and Darden et 

al.24 indicated how to extend the formulation to include the case of the long range charge-

charge interactions. Toukmaji et al. introduced an efficient approach to include induced 

dipolar interactions,25 and Sagui et al. extended the formulation to multipolar situations.26 

Recently, these virials for point induced dipoles and multipoles have been implemented for 
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AMOEBA in Tinker-HP and Tinker9 (GPU).27 Additionally, there have been interesting 

discussions about pressure calculation related to Ewald surface correction.28-29 However, 

how to rigorously treat internal stress in a system with both permanent and induced dipoles 

is still unclear. 

In this work, we present an analytical formulation of stress tensor for both flexible and rigid 

molecular systems modeled with the pGM model. We performed a finite difference test and 

confirmed that both are rigorously correct. Finally, we implemented the proposed pGM 

formalism in the context of PME into the SANDER program in Amber. Our NPT simulations 

of a 512-water system showed the algorithm is stable as indicated by the time evolutions of 

pressure, temperature, density, and total system energy. 

 

5.2. Method 

The total electrostatic energy of the system, as shown in our previous work183, is defined as: 

Ïbâã = 	 12 �+! + ¼́! ∙ ∇!��!�
-
! + 	 12 �t́! ∙ ∇!��!�

-
!  

Here, +!, ¼́!, and t́! are the charge, covalent dipole (i.e. permanent dipole) and induced dipole 

on atom i, respectively, and �!� is the electrostatic potential on atom i that is generated only 

by charges and covalent dipoles in the system. Later in this paper, we will denote �! , as the 

electrostatic potential on atom i that is generated by charges, covalent dipoles and induced 

dipoles in the system. 

Due to the periodic boundary condition, �!�  has to be obtained through certain lattice 

summation technique, and here the Ewald summation technique is used. 

According to the Ewald summation, 
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�!� = 1�� 	 {exp �− ��Ú³³́ �²�� �Ú³³́ � 	äy+& + 2�9Ú³³́ ∙ ¼́&} expy2�9Ú³³́ ∙ '³́&}å-
& expy−2�9Ú³³́ ∙ '³́ !}}8³³³́ Î�

+ 	�+& + ¼́& ∙ ∇&� erfy²!&'!&} − erfy²�'!&}'!&
∞

&Î! − lim�³́ è→�³́ ��+! + ¼́! ∙ ∇&� erfy²�'!&}'!&  

Here, �  is the volume of the box, and Ú³³́  is the reciprocal lattice vector, and '³́ !  and '!& =
È'³́& − '³́ !È are the coordinate of atom i and its distance to atom j, respectively. In addition, ²� 

is the Ewald coefficient, whose value is usually between 
(K ~ 

(� Å$( for typical biomolecular 

applications, and ²!& equals to 
½�½èÀ½�¿/½è¿ , where ²!  and ²&  are the Gaussian parameters for 

atoms i and j, respectively. 

Below we will use the following notation convention: all gradients paired with a dipole 

(covalent or induced) only apply to atom coordinates. For example, the gradient operator in 

¼́! ∙ ∇! only acts on the coordinates of atom i. On the other hand, all other gradient operators 

(not paired with a dipole) follow the standard convention. 

 

Stress Tensor 

From its definition, stress tensor (virial) is the derivative of system Lagrangian with respect 

to the system size parameters, except for a constant pre-factor. In a typical biomolecular 

simulation, the simulating box can be described by three column vectors that represent the 

edges of the box, Æ³́ (, Æ³́ � and Æ³́ I. Thus, a matrix h can be constructed from these three unit-cell 

vectors, defined as the system shape parameters, 

ℎ = �Æ³́ (, Æ³́ �, Æ³́ I� 
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Thus, stress tensor �³́³́  can be expressed as: 

�³́³́ ∙ �ℎ$(�~ = ¨Ü¨ℎ = ¨?¨ℎ − ¨Ï¨ℎ  

Here, L represents the system Lagrangian, superscript “T” denotes transpose of the matrix, 

T and U are kinetic and potential energies, respectively. The derivative with respect to matrix 

h is equivalent to differentiating L against each component of h, with the fractional 

coordinates of each atom held constant. 

 

Because the kinetic energy expression is the same for a pGM system and a classic point 

charge system, the related virial terms are the same, so we omit their derivations here. There 

are many different components in the potential energy, but only the electrostatic part is 

different from other force fields in the current pGM model. Thus, we only need to derive the 

electrostatic components of the virial. This is to say, we are deriving the following quantity 

in this work, 

�³́³́ bâã = − ¨Ïbâã¨ℎ ∙ �ℎ�~ 

To do so, we first need to identify which quantities in energy are dependent on matrix h. 

 

Stress Tensor in a pGM System 

Quantities that obviously depend on h are as follows: 

1. Atomic coordinates, '³́ ! = �!(Æ³́ ( + �!�Æ³́ � + �!IÆ³́ I . Here, s’s are fractional coordinates 

and are constants when computing the derivatives with respect to h. 
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2. Atomic covalent dipoles, ¼́! = ∑ Æ!� �³́ �êÈ�³́ �êÈ�� = ∑ Æ!� �³́ ê$�³́ �È�³́ �êÈ�� . Here, n refers the number of 

atoms covalently connected to atom i (this notation will be used thoroughly in the 

paper) and Æ!� is the dipole moment along the specific direction '³́ � − '³́ ! , which is a 

constant. Noted that the definition of '³́ !� ≡ '³́ � − '³́ !  is used, throughout this 

manuscript. 

3. System volume, � = det �ℎ�.  

4. Reciprocal lattice vector, Ú³³́ = �
(, 
�, 
I� ∙ ℎ$(, where 
(, 
�, 
I are integer constants. 

The derivatives of these quantities with respect to h are given in Appendix B.1. 

 

Moreover, the induced dipole, t́! , is clearly dependent on h. However, there is no explicit 

expression of t́!, as t́! is computed through a self-consistent iteration. In the following, we 

show how to obtain its derivatives. 

As shown in our previous work,183 the induced dipole can be expressed in the periodic 

system as 

t́! = Í!y�³́ !� + �³́ !!��Ð���} = Í!��³́ !� − 	 ?³́³́ !& ∙ t́&
 -
& � 

�³́ !� = −∇!�!� 

?!&í½ =
¨!í &̈½

fgh
gi (îï ∑ ðñòÖ$ó¿ô³³³³́ ¿õÙ¿ ×

8³³³́ ¿ expy2�9Ú³³́ ∙ '³́&} expy−2�9Ú³³́ ∙ '³́ !}8³³³́ Î� + ðö÷y½�è��è}$ðö÷y½Ù��è}��è    9< 9 ≠ ;
(îï ∑ ðñòÖ$ó¿ô³³³³́ ¿õÙ¿ ×

8³³³́ ¿ expy2�9Ú³³́ ∙ '³́&} expy−2�9Ú³³́ ∙ '³́ !}8³³³́ Î� − lim�³́ è→�³́ �
ðö÷y½Ù��è}��è    9< 9 = ;   
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Here Í, ² = 1, 2, 3 refer to x, y, z directions, respectively. The expression of ?!&í½ comes from 

Ewald summation of ¨!í &̈½ ðö÷y½�è��è}��è . Thus the summation for 9 ≠ ; includes all images in the 

periodic system. Introduction of 

%!&í½ = 1Í! �ø!&í½ + Í! ∙ ?!&í½� 

leads to the following short-hand expression for the induced dipole183 

t́! = 	 %́́!&$( ∙ �³́&�
 -
&  

In above we have transferred the dependence of t́! on h to the dependence of %́́!&$( and �³́&� on 

h, and the dependence of �³́&� = −∇&�&� is already known. Thus, what is needed is to derive 

the dependence of %́́!&$( on h.  

 

Given % ∙ %$( = 1, we have 

¨�%$(�!&í½¨ℎ = −�%$(�!!ÔííÔ ¨%!Ô&ÔíÔ½Ô
¨ℎ �%$(�&Ô&½Ô½ = −�%$(�!!ÔííÔ ¨?!Ô&ÔíÔ½Ô

¨ℎ �%$(�&Ô&½Ô½ 

where the Einstein’s index notation is employed for 9O , ;O , ÍO , ²O . We can now proceed to 

compute the derivatives for the energy term related to t́! in energy as follows,  

¨ − ∑ 12 t́! ∙ �³́ !�-!¨ℎ = 12 �!�í�%$(�!!ÔííÔ ¨?!Ô&ÔíÔ½Ô
¨ℎ �%$(�&Ô&½Ô½�&�½ − 	 t́! ∙ ¨�³́ !�¨ℎ

-
!

= 12 t!ÔíÔ ¨?!Ô&ÔíÔ½Ô
¨ℎ t&Ô½Ô − 	 t́! ∙ ¨�³́ !�¨ℎ

-
!  

Again, the Einstein’s index notation is employed here for 9  , ;  , Í  , ²  9O, ;O, ÍO, ²O. 
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With the above preparations, we can calculate the electrostatic energy part of the virial from 

its definition, 

�³́³́ ∙ �ℎ$(�~ = − ¨Ï¨ℎùú = −�¨Ï#��¨ℎùú + ¨Ï�!#¨ℎùú + ¨Ï���Á¨ℎùú � 

¨Ï#��¨ℎùú

=
¨ ∑ 12 �+! + ¼́! ∙ ∇!� 1�� ∑ fh

iexp �− ��Ú³³́ �²�� �Ú³³́ � ∑ äy+& + 2�9Ú³³́ ∙ ¼́&} expy2�9Ú³³́ ∙ '³́&}å-& expy−2�9Ú³³́ ∙ '³́ !}ûü
ý8³³³́ Î�-!

¨ℎùú

+ 12 t!ÔíÔ ¨ ¨!ÔíÔ &̈Ô½Ô 1�� ∑ exp �− ��Ú³³́ �²�� �Ú³³́ � expy2�9Ú³³́ ∙ '³́ &Ô} expy−2�9Ú³³́ ∙ '³́ !Ô}8³³³́ Î� ¨ℎùú t&Ô½Ô

+ 	 t́!
-
!

∙ ¨∇! 1�� ∑ {exp �− ��Ú³³́ �²�� �Ú³³́ � ∑ äy+& + 2�9Ú³³́ ∙ ¼́&} expy2�9Ú³³́ ∙ '³́&}å-& expy−2�9Ú³³́ ∙ '³́ !}}8³³³́ Î� ¨ℎùú  

 



131 
 

¨Ï�!#¨ℎùú = ¨ ∑ 12 �+! + ¼́! ∙ ∇!� ∑ �+& + ¼́& ∙ ∇&� erfy²!&'!&} − erfy²�'!&}'!&�&Î!-! ¨ℎùú

+ 12 t!ÔíÔ ¨ ¨!ÔíÔ &̈Ô½Ô erfy²!Ô&Ô'!Ô&Ô} − erfy²�'!Ô&Ô}'!Ô&Ô¨ℎùú t&Ô½Ô

+ 	 t́! ∙ ¨∇! ∑ �+& + ¼́& ∙ ∇&� erfy²!&'!&} − erfy²�'!&}'!&�&Î! ¨ℎùú
-
!  

 

¨Ï���Á¨ℎùú = ¨ ∑ 12 �+! + ¼́! ∙ ∇!�2− lim�³́ è→�³́ �y+! + ¼́! ∙ ∇&} erfy²�'!&}'!& 3-! ¨ℎùú

+ 12 t!ÔíÔ ¨ ¨!ÔíÔ &̈Ô½Ô2− lim�³́ è→�³́ �
erfy²�'!&}'!& 3¨ℎùú t&Ô½Ô

+ 	 t́! ∙ ¨∇!2− lim�³́ è→�³́ �y+! + ¼́! ∙ ∇&} erfy²�'!&}'!& 3¨ℎùú
-
!  

 

After careful derivation (see Appendix B.2. for details), the following results can be 

obtained: 
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¨Ï#��¨ℎùú = − 12�� �ℎ$(�ùú~ 	 fh
iexp �− ��Ú³³́ �²�� �Ú³³́ � 	ä+& + 2�9Ú³³́-

&8³³³́ Î�

∙ y¼́& + t́&}å expy2�9Ú³³́ ∙ '³́&} 	2+! − 2�9Ú³³́ ∙ �¼́! + t́!�3 expy−2�9Ú³³́ ∙ '³́ !}-
! ûü

ý

+ 1�� 	 fh
iexp �− ��Ú³³́ �²�� �Ú³³́ � þ

�− 1 + ��Ú³³́ �²��Ú³³́ � �
� y−Ú³³́ ùℎú�$(Ú³³́ �} 	ä+& + 2�9Ú³³́-

&8³³³́ Î�

∙ y¼́& + t́&}å expy2�9Ú³³́ ∙ '³́&} 	2+! − 2�9Ú³³́ ∙ �¼́! + t́!�3 expy−2�9Ú³³́ ∙ '³́ !}-
! ûü

ý

+ 1�� 	 fh
iexp �− ��Ú³³́ �²�� �Ú³³́ � 	ä+& + 2�9Ú³³́-

&8³³³́ Î�

∙ y¼́& + t́&}å expy2�9Ú³³́ ∙ '³́&} 	 	 �y−2�9Ú³³́ ∙ '³́ !�¼!�} Ç− '³́ !�ù Û́!�úÈ'³́ !�ÈI É��
� expy−2�9Ú³³́-

!

∙ '³́ !}ûü
ý

+ 1�� 	 fh
iexp �− ��Ú³³́ �²�� �Ú³³́ � 	ä+& + 2�9Ú³³́-

&8³³³́ Î�

∙ y¼́& + t́&}å expy2�9Ú³³́ ∙ '³́&} 	ä�−2�9�y−Ú³³́ ùℎú�$(t!�}å expy−2�9Ú³³́ ∙ '³́ !}-
! ûü

ý
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= − 12 �ℎ$(�ùú~ ∙ 	ä+!��#���! − �¼́! + t́!� ∙ ��³́ #���!å-
!

+ 1�� 	 fh
iexp �− ��Ú³³́ �²�� �Ú³³́ � þ

�− 1 + ��Ú³³́ �²��Ú³³́ � �
� y−Ú³³́ ùℎú�$(Ú³³́ �}Û�Ú³³́ �Û�−Ú³³́ �ûü

ý
8³³³́ Î�

+ 	 	 �y−��³́ #���! ∙ '³́ !�¼!�} Ç− '³́ !�ù Û́!�úÈ'³́ !�ÈI É��
�

-
! + 	��³́ #���!ùℎú�$(t!�

-
!  

where Û�Ú³³́ � is the structure factor, defined as ∑ ä+& + 2�9Ú³³́ ∙ y¼́& + t́&}å expy2�9Ú³³́ ∙ '³́&}-& . 

¨Ï�!#¨ℎùú = − 	 	 Æ!� �y�³́ �!#}!ùÛ́!�úÈ'³́ !�È − y�³́ �!#}! ∙ '³́ !� '³́ !�ù Û́!�úÈ'³́ !�ÈI��
�

-
!

− 12 	 	{+!y�³́ �!#}&→!ù �Û́!ú − Û́&ú� + ��Æ³́ ! + t́!� ∙ ��³́³́ �!#�&→!�ù �Û́!ú − Û́&ú�}�
&Î!

-
!  

¨Ï���Á¨ℎùú = − 	 	 Æ!� �y�³́ ���Á}!ùÛ́!�úÈ'³́ !�È − y�³́ ���Á}! ∙ '³́ !� '³́ !�ù Û́!�úÈ'³́ !�ÈI��
�

-
!  

Here �³́ #��, �³́ �!#  and �³́ ���Á refer to the electrostatic fields resulting from the reciprocal part, 

direct part, or self-part of an Ewald summation, respectively. And the notation for � and �³́³́  

are similar. Furthermore, the following expressions for electric field and its derivatives are 

used: 

y�³́ �!#}&→! = −�+& + ¼́& ∙ ∇&�∇! erfy²!&'!&} − erfy²�'!&}'!&  

��³́³́ �!#�&→! = −�+& + ¼́& ∙ ∇&�∇!∇! erfy²!&'!&} − erfy²�'!&}'!&  
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Adding up all three terms above and removing the common factor −�ℎ$(�~ , the final 

expression of the electrostatic energy contribution to virial is as follows: 

�ùú = 12 øùú ∙ 	 	+!��#���! − �¼́! + t́!� ∙ y�³́ #��}!

-
!

− 1�� 	 fh
iexp �− ��Ú³³́ �²�� �Ú³³́ �

1 + ��Ú³³́ �²��Ú³³́ � Ú³³́ ùÚ³³́ úÛ�Ú³³́ �Û�−Ú³³́ �ûü
ý

8³³³́ Î� − 	y�³́ #��}!ùt!ú
-
!

+ 	 	 Æ!� �y�³́ �!# + �³́ ���Á}!ù'³́ !�úÈ'³́ !�È − y�³́ #�� + �³́ �!# + �³́ ���Á}! ∙ '³́ !� '³́ !�ù '³́ !�úÈ'³́ !�ÈI ��
�

-
!

+ 12 	 	{+!y�³́ �!#}&→!ù �'³́ !ú − '³́&ú� + ��Æ³́ ! + t́!� ∙ ��³́³́ �!#�&→!�ù �'³́ !ú − '³́&ú�}�
&Î!

-
!  

 

Stress Tensor of Rigid Molecules 

Molecular dynamics simulations of bio-molecular systems are often conducted under certain 

constraints. The most common are distance constraints, 

y'³́ ! − '³́&}� − `!&� = 0 

When molecules are under this kind of constraints, a molecule-based scaling in NPT 

simulations is often used to vary the box dimensions instead of atom-based scaling. In doing 

so, the atomic coordinate can be expressed as 

'³́ ! = '³́ !� + `́! = �!�,(Æ³́ ( + �!�,�Æ³́ � + �!�,IÆ³́ I + `́! 
where '³́ !� is the molecular center to which atom i belongs (usually the mass center of the 

molecule), �́!�′�  are the fractional coordinates of the center, and `́!  is the relative 
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displacement of atom i from the center. Obviously, `́!  is a constant vector during the box 

dimension scaling. 

 

Thus, the virial tensor of a pGM system under this rigid body condition with distance 

constraints is 

�ùú = 12 øùú ∙ 	 	+!��#���! − �¼́! + t́!� ∙ y�³́ #��}!

-
!

− 1�� 	 fh
iexp �− ��Ú³³́ �²�� �Ú³³́ �

1 + ��Ú³³́ �²��Ú³³́ � Ú³³́ ùÚ³³́ úÛ�Ú³³́ �Û�−Ú³³́ �ûü
ý

8³³³́ Î�

− 	y�³́ #��}!ùy¼́!ú + t́!ú + +!`́!ú}-
! − 	y¼́!� + t́!�} ��³́³́ #���!

�ù `́!ú
-
!

+ 12 	 	{+!y�³́ �!#}&→!ù �'³́ !�ú − '³́&�ú � + ��Æ³́ ! + t́!� ∙ ��³́³́ �!#�&→!�ù �'³́ !�ú − '³́&�ú �}�
&Î!

-
!  

Here index   follows the Einstein’s summation notation. The derivation of the above 

expression is similar to what was described before for flexible molecules, so it is omitted 

here. The detail can be found in Appendix B.3. 

 

Virial Correction of Screened System 

In the current pGM setup, the electrostatic interactions are not screened, meaning all 1-2, 1-

3, and 1-4 electrostatic interactions are considered at their full strength. This choice is based 

on the consideration of polarizability anisotropy.184 However, if electrostatic interactions 

between certain atoms are screened, the electrostatic virial correction can be defined as 

follows.  
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(1) For flexible molecules 

y�ùú}��##��r!�� = 	 	 Æ!� �y−�³́ ��#���}!ù'³́ !�úÈ'³́ !�È − y−�³́ ��#���}! ∙ '³́ !� '³́ !�ù '³́ !�úÈ'³́ !�ÈI ��
�

-
!

+ 12 	 	{+!y−�³́ ��#���}&→!ù �'³́ !ú − '³́&ú� + ��Æ³́ ! + t́!� ∙ �−�³́³́ ��#����&→!�ù �'³́ !ú
∗�!�
&Î!

-
!

− '³́&ú�} 

(2) For rigid molecules 

y�ùú}��##��r!�� = 12 	 	{+!y−�³́ ��#���}&→!ù �'³́ !�ú − '³́&�ú � + ��Æ³́ ! + t́!� ∙ �−�³́³́ ��#����&→!�ù �'³́ !�ú
∗�!�
&Î!

-
!

− '³́&�ú �} 

Here �³́ ��#��� and �³́³́ ��#��� are the electric field and its derivative generated by the screened 

interactions, and ∗ �9� represents the screened atom pairs of atom i. 

Derivation of the above equations is given in Appendix B.4, which is similar to what was 

presented in our previous development.183 However, it is important to point out that the 

screening has to be consistent throughout the model. In other words, we must screen the 

same interactions when computing both induced dipoles and forces. This is to ensure that 

the energy and corresponding forces are consistent under the same screening scheme. 

 

5.3 Results and Discussion 

 

Finite Difference Validation 
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As we presented above, there are the electrostatic virial expressions of flexible and rigid pGM 

molecular systems. To confirm the theoretical derivation, we performed a finite difference 

test, starting from the virial definition of Lagrangian, to assess whether the derivation is 

correct. Here a cubic box with 512 water molecules as in our previous study was used,183-184 

and the dimension of the box is 33 Å. To guarantee high-precision energy calculation, the 

PME setup uses the following parameters: coefficient ²�  = 0.3 Å$( , B-spline interpolation 

order = 9, FFT grid spacing = 0.33 Å, and direct space cutoff = 14.4 Å. The induced dipole 

convergence was also set to a very tight criterium of 10-12. The setup leads to an energy 

accuracy level of  ~10-12, so that the finite difference test can be carried successfully. 

 

It is clear from Figure 5.1 that both finite-difference virial values approach their respective 

analytical values in roughly linear fashions as the finite difference step sizes decrease, 

demonstrating that the numerical values converge to the analytical values. This finding 

confirms that the analytical virial expressions are correct when used to compute virials of 

the tested molecular system. Note also that the finite-difference steps in the rigid body 

system (Fig. 5.1b) are 10-time larger than the ones used in the flexible system (Fig. 5.1a). 

This is because the virials of the rigid body system are much smaller (~1/50) than those of 

the flexible system due to large intramolecular contributions that are sensitive to the 

distance variations in the finite difference calculations. Hence, rather small finite difference 

step sizes were needed. Such large intramolecular contributions were absent in the rigid-

body system and a somewhat larger step sizes were used for numerical accuracy. The linear 

convergence trends illustrated in both the flexible and rigid body systems confirm the 

correctness of virial. To further validate the result, we conducted the same finite difference 
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test on another box with 4096 water molecules. The PME was set to even higher accuracy: 

coefficient ²� = 0.4 Å$(, B-spline interpolation order = 16, FFT grid spacing = 0.33 Å, and 

direct space cutoff = 15.0 Å. The induced dipole convergence was also set to 10-12. The test 

results are extremely similar to that of Figure 5.1. 

 

NPT Simulation of Water Box 

To illustrate that the analytical formulation can achieve stable NPT simulations, we 

performed a test run for 1 ns of the water box containing 512 pGM water molecules.183-184 

The rigid-body formula was used in this test, and the water models were simply created from 

the standard TIP3P geometry by adding permanent and induced dipole moments and by 

setting the van der Waals parameters to be 9% of those in the standard TIP3P waters, to give 

a relatively reasonable density. We note that this pGM water model is yet to be optimized to 

reproduce any physical water properties. Here a setup of lower energy accuracy was used 

for reasonable simulation throughput, with the Ewald coefficient ²�  = 0.4 Å$( , B-spline 

interpolation order = 8,  FFT grid spacing = 0.5 Å, and direct space cutoff = 9 Å. The induced 

dipole convergence criterium was also raised to 10-6. The simulation time step was chosen 

to be 1fs. The temperature was set to 300 K and the pressure 1.0 bar. The Berendsen 

thermostat and barostat were used and all other dynamics simulation parameters were set 

as default from the Amber SANDER program. The job was run on a single core of an INTEL 

Xeon E5-4620 CPU with a wall-clock time of 6.9 days. 

Figure 5.2 shows that the pGM/PME runs well under the NPT condition. Both density and 

pressure fluctuate around the equilibrium values, and the fluctuation ranges were similar to 

those observed for the classical point-charge models. The simulation was stable, no 
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“polarization catastrophe” event was observed even if all interactions, including 1-2 and 1-3 

interactions, were included. 

It is interesting to point out that the electrostatic component of the pGM water model is much 

smaller (~1/10) than the TIP3P water model, even though the atomic charges are usually 

higher in polarizable models. This in part explains why we need to reduce the van der Waals 

parameters to 9% of the original TIP3P values, to match the much smaller electrostatic virial 

component so that the system would eventually equilibrate to a reasonable state. Indeed, the 

average density and pressure values are 0.99 g/cm3 and 1.0 bar during the 1 ns run, 

respectively. As a supporting evidence for the correct NPT implementation for the pGM 

model, we also implemented a Monte Calo pressure regulation scheme for the pGM model, 

as no virial (pressure) calculation is needed in this regulation scheme.185 The simulation 

followed the exact same setup and was found to stabilize at the same state, with averaged 

density values of 0.99 g/cm3.  

The much-reduced electrostatic virial component is worth noting but a reasonable behavior. 

The induced dipoles in the pGM model are actively playing the role of electrostatic screening. 

As a result, the electrostatic interactions between water molecules are largely reduced, 

leading to much lower electrostatic virial component. This phenomenon shows that the 

polarizable pGM model is fundamentally different from classical point-charge models. Thus, 

its parameterization shall require extensive development and validation. Nevertheless, we 

reiterate that the goal of this development is not to develop a pGM water model, but to 

establish a constant pressure simulation protocol for polarizable methods such as the pGM 

model.  
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(a) 

 

(b) 
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Figure 5.1. Finite-difference validation of the analytical virial expressions in the xx direction. 

(a) is for the flexible case and (b) is for the rigid body case. x axis refers to proportional 

changes of simulation box dimension in the x direction. The star on the y axis is the analytical 

virial value. The finite-difference values were obtained.  

 

 

(a) 
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(b) 

 

Figure 5.2. Time evolutions of density and pressure of the NPT simulation for the 512-water 

box. The red lines are the running averages of every 10 ps.  

 

Another interesting observation upon inspecting Fig 5.2 is that the pGM water model 

exhibits a longer correlation time in density than the TIP3P water model, with pGM water’s 

density correlation time as long as 200~300 ps, rather than tens of picoseconds as is usually 

observed for point-charge water models. This effect could either result from the imperfect 

calibration of the pGM water tested here, the use of a barostat coupling constant that is too 

weak for the pGM model, or the inclusion of the explicit polarization in the pGM model, which 

requires longer time to equilibrate. Obviously, the point charge models also have certain 

level of polarization effect from reorientation of the molecules, but they certainly do not 
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acquire any electronic polarization that is explicitly modeled with the induced dipoles. All 

these phenomena strongly suggest that the parametrization of pGM models requires extra 

care and extensive validations. 

 

5.4. Conclusion 

In this work, we presented the derivation and implementation of an analytical method for 

achieving constant pressure simulation for the pGM model. Specifically, we derived the 

stress tensor expression for both flexible and rigid body molecular system in the pGM 

electrostatic model, the trace of which gives the expression for internal stress. In addition, 

we showed how to correct the stress tensor if a short-range screening strategy is used in the 

force field development. Once the internal stress is obtained, by balancing it with the 

externally applied pressure through a certain type of barostat, a constant pressure 

simulation is readily realized. 

Since the formulation of the stress tensor in pGM model is rather complex, we first 

performed a finite difference test to validate its correctness. We showed that for both flexible 

and rigid-body systems, the finite-difference virial approaches the analytical values when 

decreasing the differentiation step size, confirming the correctness of the derived 

expressions.  

The tensor expression was implemented into the Amber/SANDER program and tested with 

a small box of 512 pGM water molecules. In the calculations the revised TIP3P water 

geometry was applied, and the TIP3P van der Waals parameters were scaled down to 9% of 

the original values after imposing the pGM electrostatic interactions. After equilibration, the 

system was found to reach a reasonable density of 0.99 g/cm3 and pressure of 1.0 bar under 
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the room temperature during the production run of 1 ns. A constant pressure simulation of 

the system with Monte Carlo pressure regulation scheme stabilized at the same state. This 

shows that the analytical stress tensor formula and its implementation are successful. 

Several interesting differences were observed between the pGM water model and the TIP3P 

water model from which the pGM model was currently derived. Notably, the electrostatic 

virial was much smaller, requiring much smaller van der Waals parameters to reach 

reasonable water density. The density correlation time was also much longer. The 

observation strongly suggests that the pGM model, as a polarizable model, is fundamentally 

different compared to classic point charge models. Thus, the parametrization of the pGM 

model requires extra care and extensive validation, which is a major focus of our next step 

research. 
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Chapter 6 

 

Electrostatic interactions play crucial roles in biophysical processes such as protein-protein 

and protein-ligand interactions. Accurate and efficient treatment of electrostatics is thus 

vital in computational analyses of biomolecular structures and dynamics. In our multi-scaled 

modeling framework, the solute is represented in the atomic resolution or the coarse-

grained resolution and the solvent is represented either in the atomic detail or in a 

continuum. Once completing the multi-scaled framework, we will have all-atom and coarse-

grained solutes in one hand and explicit and implicit solvents in the other. Our solute models 

and solvent models can be combined in different manners for various accuracy and efficiency 

requirements. 

 

When the solvent is in the continuum representation, the Poisson-Boltzmann modeling is 

necessary due to the presence of dielectric interface in the solution system, where the solute 

region is treated as a low dielectric constant region with a number of point charges/dipoles 

located at atomic centers, and the solvent is treated as a high dielectric constant region. 

Poisson-Boltzmann equation (PBE)-based implicit solvent model has been widely used in 

biomolecular applications. 

 

Immersed interface method (IIM) is a promising high-accuracy numerical scheme for the 

Poisson-Boltzmann model. However, the IIM suffers from instability and slow convergence 

for typical applications. In this study, we introduced both analytical interface and surface 

regulation into IIM to address these issues. The analytical interface setup leads to better 
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accuracy and its convergence closely follows a quadratic manner as predicted by theory. The 

surface regulation further speeds up the convergence for nontrivial biomolecules. In 

addition, uncertainties of the numerical energies for tested systems are also reduced by 

about half. More interestingly, the analytical setup significantly improves the linear solver 

efficiency and stability by generating more precise and better-conditioned linear systems. 

Finally, we implemented the bottleneck linear system solver on GPUs to further improve the 

efficiency of the method, so it can be widely used for practical biomolecular applications. 

 

However, methods like IIM are very liberal in the use of grid points nearby the molecular 

surface, making them difficult to use on high-performance computing platforms. 

Alternatively, the harmonic average (HA) method has been used to approximate dielectric 

interface conditions near the molecular surface with surprisingly good convergence and is 

well suited for high-performance computing. By adopting a 7-point stencil, the HA method is 

advantageous in generating simple 7-banded coefficient matrices, which greatly facilitate 

linear system solution with dense data parallelism, on high-performance computing 

platforms such as graphics processing unit (GPU). However, the HA method is limited due to 

its lower accuracy. Therefore, it would be of great interest for high-performance applications 

to develop more accurate methods while retaining the simplicity and effectiveness of the 7-

point stencil discretization scheme. In this study, we have developed two new algorithms 

based on the spirit of the HA method by introducing more physical interface relations and 

imposing the discretized Poisson’s equation to the second order, respectively. Our testing 

shows that, for typical biomolecules, the new methods significantly improve the numerical 
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accuracy to that comparable to the second-order solvers, and with ~65% overall efficiency 

gain on widely available high-performance GPU platforms. 

 

Except for solving Poisson Boltzmann equations, a vital step in almost all implicit solvent 

models is to determine the solvent-solute interface, and the solvent excluded surface (SES) 

is the most widely used interface definition in these models. However, classical algorithms 

used for computing SES are geometry-based, thus neither suitable for parallel 

implementations nor convenient for obtaining surface derivatives. To address the 

limitations, we explored a machine learning strategy to obtain a level-set formulation for the 

SES. The training process was conducted in three steps, eventually leading to a model with 

over 95% agreement with the classical SES. Visualization of tested molecular surfaces shows 

that the machine-learned SES overlaps with the classical SES on almost all situations. Further 

analyses shows that the machine-learned SES is incredibly stable in terms of both rotational 

and translational variation of the molecules. Our timing analysis shows that the machine-

learned SES is roughly 2.5 times as efficient as the classical SES routine implemented in 

Amber/PBSA on a tested CPU platform. We expect further performance gain on massively 

parallel platforms such as GPUs given the ease in converting the machine-learned SES to a 

parallel procedure. We also implemented the machine-learned SES into the Amber/PBSA 

program to study its performance on reaction field energy calculation. The analysis shows 

that the two sets of reaction field energies are highly consistent with 1% deviation on 

average. Given its level-set formulation, we expect the machine-learned SES to be applied in 

molecular simulations that require either surface derivatives or high efficiency on parallel 

computing platforms. 



148 
 

 

Another aspect of our effort on modeling electrostatics is to develop a novel polarizable 

atomic model. Here we focus on a recently proposed polarizable Gaussian Multipole (pGM) 

model for biomolecular simulations. A key benefit of pGM is its screening of all short-range 

electrostatic interactions in a physically consistent manner, which is critical for stable 

charge-fitting and is needed to reproduce molecular anisotropy. Another advantage of pGM 

is that each atom’s multipoles are represented by a single Gaussian function or its 

derivatives, allowing for more efficient electrostatics than other Gaussian-based models. In 

this study we present an efficient formulation for the pGM model defined with respect to a 

local frame formed with a set of covalent basis vectors. The covalent basis vectors are chosen 

to be along each atom’s covalent bonding directions. The new local frame allows molecular 

flexibility during molecular simulations and facilitates an efficient formulation of analytical 

electrostatic forces without explicit torque computation. Subsequent numerical tests show 

that analytical atomic forces agree excellently with numerical finite-difference forces for the 

tested system. Finally, the new pGM electrostatics algorithm is interfaced with the PME 

implementation in Amber for molecular simulations under the periodic boundary 

conditions. To validate the overall pGM/PME electrostatics, we conducted an NVE simulation 

for a small water box of 512 water molecules. Our results show that, to achieve energy 

conservation in the polarizable model, it is important to ensure enough accuracy on both 

PME and induction iteration. It is hoped that the reformulated pGM model will facilitate the 

development of future force fields based on the pGM electrostatics for applications in 

biomolecular systems and processes where polarization plays crucial roles. 
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After the basic framework of pGM model has been built, we move forward to derive the pGM 

internal stress tensor for constant pressure MD simulations with the pGM electrostatics. 

Three different formulations are presented for the flexible, rigid, and short-range screened 

systems, respectively. The analytical formulations were implemented in the SANDER 

program in the Amber package and were first validated with the finite-difference method for 

two different boxes of pGM water molecules. This is followed by a constant temperature and 

constant pressure MD simulation for a box of 512 pGM water molecules. Our results show 

that the simulation system stabilized at a physically reasonable state and maintained the 

balance with the externally applied pressure. In addition, several fundamental differences 

were observed between the pGM and classic point charge models in terms of the simulation 

behaviors, indicating more extensive parametrization is necessary to utilizing the pGM 

electrostatics. 

 

For future directions, we will continue working on the multi-scaled models of electrostatics. 

At the atomic level, we plan to vastly accelerate our current pGM implementation, including 

exploring fast convergence algorithms and utilizing advanced computing hardware, e.g., 

GPUs. At the coarse-grain level, we will develop models targeting large molecular systems 

with united-atom and residue-level resolutions. At the continuum (solvent) level, we are 

working on adding induction interactions back into Poisson-Boltzmann model, so that it will 

be able to model solute-solvent interaction more accurately, without losing its advantage in 

efficiency. In addition, we will continue to apply developed models to interesting biomedical 

problems in the field of molecular biology. 
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Appendix A 

 

A.1 Tensor Format of Boys Serial 

In this study, Boys functions up to rank three were used and are listed below as reference. 

Higher ranked tensors and Boys functions can be found in literatures.44, 49  

Boys functions up to rank three are 

)��_� = ðö÷ �z�z   

)(�_� = ðö÷ �z�z − �√î d$z¿ (z¿  

)��_� = Iðö÷ �z�z� − �√î d$z¿ (z� �3 + 2_��  

)I�_� = (Kðö÷ �z�z� − �√î d$z¿ (z� �15 + 10_� + 4_J�  

The associated tensors are 

∇ ðö÷ �½��� = −'³́ ²I)(�²'�  

∇∇ ðö÷ �½��� = _�b_�]�'b']²K)��²'� − øb]²I)(�²'��  

∇∇∇ ðö÷ �½��� = _�b_�]_�#�yøb]'# + øb#'] + ø#]'b}²K)��²'� − 'b']'#²L)I�²'��  

   

A.2 Force derivation 

We precede in two steps, covalent-covalent interactions and induced interactions as shown 

in section 2.3. First, we consider interaction energies due to covalent multipoles interacting 

with covalent multipoles. 

The system can be split into two groups of atoms, bonded atoms and nonbonded atoms. 

Bonded group are those atoms bonded to the atom to be considered (including itself), and 
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the nonbonded group are the rest. In the bonded group, the atoms can be further split into 

two subgroups: the atom that is currently under consideration, termed the bonded-moving 

atom below; the other atoms in the bonded group are termed bonded-non-moving atoms. A 

total of three groups of atoms can be classified. 

Thus, we can rewrite the covalent-covalent interaction energy as the following four parts. 

1) Nonbonded atoms interacting with bonded-non-moving atoms, 

Ï = 	 	 �+! + ¼́! ∙ ∇!��+& + ¼́& ∙ ∇&� erf �²!&'!&�'!&
���������

&
������$���$8��!��

!  

2) Nonbonded atoms interacting with bonded-moving atom i, 

Ï = 	 �+! + ¼́! ∙ ∇!��+& + ¼́& ∙ ∇&� erf �²!&'!&�'!&
���������

&  

3) Bonded-non-moving atoms interacting with bonded-non-moving atoms, 

Ï = 12 	 	 �+! + ¼́! ∙ ∇!��+& + ¼́& ∙ ∇&� erf �²!&'!&�'!&
������$���$8��!��

&Î!
������$���$8��!��

!  

4) Bonded-non-moving atoms interacting with bonded-moving atom i, 

Ï = 	 �+! + ¼́! ∙ ∇!��+& + ¼́& ∙ ∇&� erf �²!&'!&�'!&
������$���$8��!��

&  

Apparently, there should be a fifth part of interaction energy, nonbonded atoms interacting 

with nonbonded atoms. However, this part of energy does not change in the force calculation, 

so we omit its expression here. Of course, atom i’s self-interaction is also ignored as 

discussed in the text. 

Next force on bonded-moving atom (i) can be derived as the negative gradient of the above 

energy terms. When computing the gradient, it is worth pointing out that nothing varies on 
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the nonbonded atoms, only the dipole directions vary on the bonded-non-moving atoms, and 

both dipole directions and positions of the bonded-moving atoms vary. The above four 

energy parts thus lead to the following four force components, respectively, 

�Ñ́!�( = − 	 	 ∇!�¼́�� ∙ ∇��+& + ¼́& ∙ ∇&� erf �²�&'�&�'�&
���������

&
������$���$8��!��

�  

            �Ñ́!�� = − 	 ∇!�¼́!� ∙ ∇!�+& + ¼́& ∙ ∇&� erfy²!&'!&}'!&
���������

&
− 	 �+! + ¼́! ∙ ∇!�y+& + ¼́& ∙ ∇&}∇! erfy²!&'!&}'!&

���������
&  

�Ñ́!�I = − 	 	 ∇!�¼́�� ∙ ∇��+& + ¼́& ∙ ∇&� erf �²�&'�&�'�&
������$���$8��!��

&Î�
������$���$8��!��

�  

            �Ñ́!�J = − 	 ∇!�¼́!� ∙ ∇!�+& + ¼́& ∙ ∇&� erfy²!&'!&}'!&
������$���$8��!��

&
− 	 �+! + ¼́! ∙ ∇!�∇!�¼́&� ∙ ∇& erfy²!&'!&}'!&

������$���$8��!��
&

− 	 �+! + ¼́! ∙ ∇!��+& + ¼́& ∙ ∇&�∇! erf �²!&'!&�'!&
������$���$8��!��

&  

Summing up all four components, the final force expression is, 

Ñ́! = − 	 	 ∇!�¼́�� ∙ ∇��+& + ¼́& ∙ ∇&� erfy²�&'�&}'�&
-

&Î�
�
�

− 	�+! + ¼́! ∙ ∇!��+& + ¼́& ∙ ∇&�∇! erf �²!&'!&�'!&
-

&Î!  
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Here, n and N follows the same notation as section 2.3, number of atoms in the bonded group 

and the system, respectively. 

Second, we consider energies caused by induced dipoles. As stated before, the induced 

energy contains three parts, induced dipoles interacting with covalent multipoles, induced 

dipoles interacting with induced dipoles, and induced dipole self-energy 
(� t́ ∙ �³́ . From section 

2.3, we know that the total induced energy is, 

12 	 −t́!
-
! ∙ �³́ !� 

where �³́ !� is the electric field on atom i only by covalent multipoles. 

The induced dipoles are determined by the total electric field, 

t́! = Í!�³́ ! = Í!��³́ !� − 	 ?³́³́ !& ∙ t́&
-

&Î! � 

?³́³́ !& = ∇!∇& erf �²!&'!&�'!&  

Changing the above expressions into the component format, and applying the Einstein’s 

index notation, we obtain 

t!� = Í!��!�,� − ?!&�rt&r� 

Rearrangement leads to 

Ö 1Í& ø!&�r + ?!&�r× t&r = %!&�rt&r = �!�,� 

If we assume %!&�r  is inversible, and its inverse matrix is %$(!&�r
, we have 

t!� = %$(!&�r�&�,r 

%$(!&�r
 is a 3� × 3� matrix, symmetrical for both atom index and component index, 
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%$(!&�r = %$(!&r� = %$(&!�r
 

The gradient of %$( is, 

¨%$(!&�r¨_�Ó = −%$(!!Ô��Ô ¨% !Ô&Ô�ÔrÔ
¨_�Ó %$(!Ô&�Ôr = −%$(!!Ô��Ô ¨?  !Ô&Ô�ÔrÔ

¨_�Ó %$(&Ô&rÔr
 

where w refers to coordinate indices (x1, x2, x3). It is obvious that 9O or ;O has to be equal to k 

for T to have a nonzero value. We have 

¨?  !Ô&Ô�ÔrÔ
¨_�Ó = ¨?  �&Ô�ÔrÔ

¨_�Ó + ¨?  !Ô��ÔrÔ
¨_�Ó  

Based on above relations, the force expressed as the negative gradient of the induced energy 

is 

Ñ!Ó = ¨¨_!Ó �12 t́& ∙ �³́&�� = ¨¨_!Ó �12 %$(&��r�&�,����,r� = 12 ¨%$(&��r¨_!Ó �&�,����,r + %$(&��r�&�,� ¨���,r¨_!Ó

= − 12 %$(&&Ô��Ô ¨?  &Ô�Ô�ÔrÔ
¨_!Ó %$(�Ô�rÔr �&�,����,r + t�r ¨���,r¨_!Ó = − 12 t&Ô�Ô ¨?  &Ô�Ô�ÔrÔ

¨_!Ó t�ÔrÔ + t�r ¨���,r¨_!Ó

= −t!�Ô ¨?  !�Ô�ÔrÔ
¨_!Ó t�ÔrÔ + t�r ¨���,r¨_!Ó  

Rewriting the above component format into the vector/tensor format, we have 

Ñ́! = − 	 t́! ∙ ∇!yt́& ∙ ∇&}∇! erfy²!&'!&}'!&
-

&Î! + 	 ∇!��³́&�� ∙ t́&
-
&  

The next step is to evaluate ∇!��³́&��. Following the similar strategy used in covalent-covalent 

interactions, we split the system into two groups: non-moving atoms and moving atom (i.e. 

atom i). 
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When computing the derivative of field on a non-moving atom j, it is worth pointing out that 

other nonbonded non-moving atoms are not influenced by the virtual displacement of atom 

i, so only bonded non-moving atoms are considered below. 

∇!y�³́&�} = ∇! Ê 	 −∇&�+� + ¼́� ∙ ∇�� erfy²�&'�&}'�&
������$���$8��!��

�Î&
− ∇&�+! + ¼́! ∙ ∇!� erfy²!&'!&}'!& Ì
= 	 −∇!�¼́�� ∙ ∇�∇& erfy²�&'�&}'�&

������$���$8��!��
�Î& − ∇!�¼́!� ∙ ∇!∇& erfy²!&'!&}'!&

− �+! + ¼́! ∙ ∇!�∇!∇& erfy²!&'!&}'!&
= 	 −∇!�¼́�� ∙ ∇�∇& erfy²�&'�&}'�&

�
�Î& − �+! + ¼́! ∙ ∇!�∇!∇& erfy²!&'!&}'!&  

Here n represents the number of atoms in the bonded group, including atom i. 

Next we compute the derivative of field on the moving atom, i.e. atom i, as follows 

∇!y�³́ !�} = ∇! Ê	 −∇!y+& + ¼́& ∙ ∇&} erfy²!&'!&}'!&
�

&Î! − 	 ∇!y+& + ¼́& ∙ ∇&} erfy²!&'!&}'!&
���������

& Ì
= 	 −∇!�¼́&� ∙ ∇&∇! erfy²!&'!&}'!&

�
&Î! − 	y+& + ¼́& ∙ ∇&}∇!∇! erfy²!&'!&}'!&

�
&Î!

− 	 y+& + ¼́& ∙ ∇&}∇!∇! erfy²!&'!&}'!&
���������

&Î!
= − 	 ∇!y¼́&} ∙ ∇&∇! erfy²!&'!&}'!&

�
&Î! − 	y+& + ¼́& ∙ ∇&}∇!∇! erfy²!&'!&}'!&

-
&Î!  
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Here N represents the number of all atoms in the system. 
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Appendix B 

 

B.1. Several Useful Derivatives Against h 

 

¨'³́ í¨ℎùú = øíùÛ́ú 

¨�¨ℎùú = ��ℎ$(�ùú~  

¨�ℎ$(�í½¨ℎùú = −�ℎ$(�íù�ℎ$(�ú½ 

¨Ú³³́ í¨ℎùú = −Ú³³́ ù�ℎ$(�úí 

 

B.2. Virial Derivation 

 

From previous discussions in the main text, 

¨Ï¨ℎùú = ¨Ï#��¨ℎùú + ¨Ï�!#¨ℎùú + ¨Ï���Á¨ℎùú  

Since for the direct part and the self-part the only variable that depends on h is the atom 

coordinates '³́ , we have the following: 



168 
 

¨Ï�!#¨ℎùú = 	 ¨¼́!¨ℎùú ∙ ∇! 	y+& + ¼́& ∙ ∇&} erfy²!&'!&} − erfy²�'!&}'!&
�

&Î!
-
!

+ 	 t́! ∙ ∇! 	 ¨¼́&¨ℎùú ∙ ∇& erfy²!&'!&} − erfy²�'!&}'!&
�

&Î!
-
!

+ 12 	�+! + ¼́! ∙ ∇!� 	�+& + ¼́& ∙ ∇&� ¨ erfy²!&'!&} − erfy²�'!&}'!&¨ℎùú
�

&Î!
-
!

+ 12 	 t́! ∙ ∇! 	 t́& ∙ ∇& ¨ erfy²!&'!&} − erfy²�'!&}'!&¨ℎùú
�

&Î!
-
!

+ 	 t́! ∙ ∇! 	�+& + ¼́& ∙ ∇&� ¨ erfy²!&'!&} − erfy²�'!&}'!&¨ℎùú
�

&Î!
-
!

= 	 ¨¼́!¨ℎùú ∙ ∇! 	2+& + �¼́& + t́&� ∙ ∇&3 erfy²!&'!&} − erfy²�'!&}'!&
�

&Î!
-
!

+ 12 	2+! + �¼́! + t́!� ∙ ∇!3 	2+& + �¼́& + t́&� ∙ ∇&3 ¨ erfy²!&'!&} − erfy²�'!&}'!&¨ℎùú
�

&Î!
-
!

= − 	 ¨¼́!¨ℎùú ∙ �³́ �!#
-
!

+ 12 	2+! + �¼́! + t́!� ∙ ∇!3 	ä+& + y¼́& + t́&} ∙ ∇&å ¨ erfy²!&'!&} − erfy²�'!&}'!&¨'³́ !
�

&Î!
-
!

∙ Ö ¨'³́ !¨ℎùú − ¨'³́&¨ℎùú×
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= − 	 	 Æ!� �y�³́ �!#}!ùÛ́!�úÈ'³́ !�È − y�³́ �!#}! ∙ '³́ !� '³́ !�ù Û́!�úÈ'³́ !�ÈI��
�

-
!

− 12 	 	{+!y�³́ �!#}&→!ù �Û́!ú − Û́&ú� + ��Æ³́ ! + t́!� ∙ ��³́³́ �!#�&→!�ù �Û́!ú − Û́&ú�}�
&Î!

-
!  

 

Similarly, for the self-part, 

¨Ï���Á¨ℎùú = − 	 	 Æ!� �y�³́ ���Á}!ùÛ́!�úÈ'³́ !�È − y�³́ ���Á}! ∙ '³́ !� '³́ !�ù Û́!�úÈ'³́ !�ÈI��
�

-
!

− lim�³́ è→�³́ �
12 	 	 �+!y�³́ ���Á}&→!ù yÛ́!ú − Û́&ú} + ��Æ³́ ! + t́!� ∙ ��³́³́ ���Á�&→!�ù yÛ́!ú − Û́&ú}��

&Î!
-
!

= − 	 	 Æ!� �y�³́ ���Á}!ùÛ́!�úÈ'³́ !�È − y�³́ ���Á}! ∙ '³́ !� '³́ !�ù Û́!�úÈ'³́ !�ÈI��
�

-
!  

 

However, the above approach cannot be applied for the reciprocal part of the virial. Thus, we 

must resort to a brute force calculation, 

 

¨Ï#��¨ℎùú = �1� + �2� + �3� 

�1�

=
¨ ∑ 12 �+! + ¼́! ∙ ∇!� 1�� ∑ fh

iexp �− ��Ú³³́ �²�� �Ú³³́ � ∑ äy+& + 2�9Ú³³́ ∙ ¼́&} expy2�9Ú³³́ ∙ '³́&}å-& expy−2�9Ú³³́ ∙ '³́ !}ûü
ý8³³³́ Î�-!

¨ℎùú  
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�2� = 12 t!ÔíÔ ¨ ¨!ÔíÔ &̈Ô½Ô 1�� ∑ exp �− ��Ú³³́ �²�� �Ú³³́ � expy2�9Ú³³́ ∙ '³́ &Ô} expy−2�9Ú³³́ ∙ '³́ !Ô}8³³³́ Î� ¨ℎùú t&Ô½Ô
 

�3�
= 	 t́!

-
!

∙ ¨∇! 1�� ∑ {exp �− ��Ú³³́ �²�� �Ú³³́ � ∑ äy+& + 2�9Ú³³́ ∙ ¼́&} expy2�9Ú³³́ ∙ '³́&}å-& expy−2�9Ú³³́ ∙ '³́ !}}8³³³́ Î� ¨ℎùú  

 

For each part we derive the following expressions: 
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�1� = − 12�� �ℎ$(�ùú~ 	 fh
iexp �− ��Ú³³́ �²�� �Ú³³́ � 	�+& + 2�9Ú³³́ ∙ ¼́&� expy2�9Ú³³́ ∙ '³́&}-

& 	�+! − 2�9Ú³³́-
!8³³³́ Î�

∙ ¼́!� expy−2�9Ú³³́ ∙ '³́ !}ûü
ý

+ 1�� 	 fh
iexp �− ��Ú³³́ �²�� �Ú³³́ � þ

�− 1 + ��Ú³³́ �²��Ú³³́ � �
� y−Ú³³́ ùℎú�$(Ú³³́ �} 	�+& + 2�9Ú³³́-

&8³³³́ Î�

∙ ¼́&� expy2�9Ú³³́ ∙ '³́&} 	�+! − 2�9Ú³³́ ∙ ¼́!� expy−2�9Ú³³́ ∙ '³́ !}-
! ûü

ý

+ 1�� 	 fh
iexp �− ��Ú³³́ �²�� �Ú³³́ � 	�+& + 2�9Ú³³́-

&8³³³́ Î�

∙ ¼́&� expy2�9Ú³³́ ∙ '³́&} 	 	 �y−2�9Ú³³́ ∙ '³́ !�¼!�} Ç− '³́ !�ù Û́!�úÈ'³́ !�ÈI É��
� expy−2�9Ú³³́ ∙ '³́ !}-

! ûü
ý
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�2� = − 12�� �ℎ$(�ùú~ 	 fh
iexp �− ��Ú³³́ �²�� �Ú³³́ � 	�2�9Ú³³́ ∙ t́&� expy2�9Ú³³́ ∙ '³́&}-

& 	�−2�9Ú³³́-
!8³³³́ Î�

∙ t́!� expy−2�9Ú³³́ ∙ '³́ !}ûü
ý

+ 1�� 	 fh
iexp �− ��Ú³³́ �²�� �Ú³³́ � þ

�− 1 + ��Ú³³́ �²��Ú³³́ � �
� y−Ú³³́ ùℎú�$(Ú³³́ �} 	�2�9Ú³³́-

&8³³³́ Î�

∙ t́&� expy2�9Ú³³́ ∙ '³́&} 	�−2�9Ú³³́ ∙ t́!� expy−2�9Ú³³́ ∙ '³́ !}-
! ûü

ý

+ 1�� 	 fh
iexp �− ��Ú³³́ �²�� �Ú³³́ � 	�2�9Ú³³́-

&8³³³́ Î�

∙ t́&� expy2�9Ú³³́ ∙ '³́&} 	ä�−2�9�y−Ú³³́ ùℎú�$(t!�}å expy−2�9Ú³³́ ∙ '³́ !}-
! ûü

ý
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�3� = − 1�� �ℎ$(�ùú~ 	 fh
iexp �− ��Ú³³́ �²�� �Ú³³́ � 	�+& + 2�9Ú³³́ ∙ ¼́&� expy2�9Ú³³́ ∙ '³́&}-

& 	�−2�9Ú³³́-
!8³³³́ Î�

∙ t́!� expy−2�9Ú³³́ ∙ '³́ !}ûü
ý

+ 2�� 	 fh
iexp �− ��Ú³³́ �²�� �Ú³³́ � þ

�− 1 + ��Ú³³́ �²��Ú³³́ � �
� y−Ú³³́ ùℎú�$(Ú³³́ �} 	�+& + 2�9Ú³³́-

&8³³³́ Î�

∙ ¼́&� expy2�9Ú³³́ ∙ '³́&} 	�−2�9Ú³³́ ∙ t́!� expy−2�9Ú³³́ ∙ '³́ !}-
! ûü

ý

+ 1�� 	 fh
iexp �− ��Ú³³́ �²�� �Ú³³́ � 	�2�9Ú³³́-

&8³³³́ Î�

∙ t́&� expy2�9Ú³³́ ∙ '³́&} 	 	 �y−2�9Ú³³́ ∙ '³́ !�¼!�} Ç− '³́ !�ù Û́!�úÈ'³́ !�ÈI É��
� expy−2�9Ú³³́ ∙ '³́ !}-

! ûü
ý

+ 1�� 	 fh
iexp �− ��Ú³³́ �²�� �Ú³³́ � 	�+& + 2�9Ú³³́-

&8³³³́ Î�

∙ ¼́&� expy2�9Ú³³́ ∙ '³́&} 	ä�−2�9�y−Ú³³́ ùℎú�$(t!�}å expy−2�9Ú³³́ ∙ '³́ !}-
! ûü

ý
 

 

By adding together expressions for (1), (2) and (3), we arrive at the final result for  
������"��  , 

which is shown in before. 
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B.3. Virial of Rigid Body Systems 

 

As in the derivation presented in the Appendix B.2, for the direct part and the self-part, the 

only variable that depends on h is the atom coordinate '³́ . However, a major difference is that, 

for the rigid molecules, the covalent dipole Æ³́  is a constant vector now. Thus, the derivation 

complexity is greatly reduced, 

¨Ï�!#¨ℎùú = − 12 	 	{+!y�³́ �!#}&→!ù �Û́!�ú − Û́&�ú � + ��Æ³́ ! + t́!� ∙ ��³́³́ �!#�&→!�ù �Û́!�ú − Û́&�ú �}�
&Î!

-
!  

¨Ï���Á¨ℎùú = 0 

 

As for the reciprocal part, we follow the procedure presented in the Appendix B.2, 
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�1� = − 12�� �ℎ$(�ùú~ 	 fh
iexp �− ��Ú³³́ �²�� �Ú³³́ � 	�+& + 2�9Ú³³́ ∙ ¼́&� expy2�9Ú³³́ ∙ '³́&}-

& 	�+! − 2�9Ú³³́-
!8³³³́ Î�

∙ ¼́!� expy−2�9Ú³³́ ∙ '³́ !}ûü
ý

+ 1�� 	 fh
iexp �− ��Ú³³́ �²�� �Ú³³́ � þ

�− 1 + ��Ú³³́ �²��Ú³³́ � �
� y−Ú³³́ ùℎú�$(Ú³³́ �} 	�+& + 2�9Ú³³́-

&8³³³́ Î�

∙ ¼́&� expy2�9Ú³³́ ∙ '³́&} 	�+! − 2�9Ú³³́ ∙ ¼́!� expy−2�9Ú³³́ ∙ '³́ !}-
! ûü

ý

+ 1�� 	 fh
iexp �− ��Ú³³́ �²�� �Ú³³́ � 	2−2�9Ú³³́ ùℎú�$(¼́&� expy2�9Ú³³́ ∙ '³́&}-

&8³³³́ Î�

− y+& + 2�9Ú³³́ ∙ ¼́&}2�9Ú³³́ ùℎú�$(`́&� expy2�9Ú³³́ ∙ '³́&}3 	�+! − 2�9Ú³³́-
!

∙ ¼́!� expy−2�9Ú³³́ ∙ '³́ !}ûü
ý
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�2� = − 12�� �ℎ$(�ùú~ 	 fh
iexp �− ��Ú³³́ �²�� �Ú³³́ � 	y2�9Ú³³́ ∙ t́&} expy2�9Ú³³́ ∙ '³́&}-

& 	�−2�9Ú³³́-
!8³³³́ Î�

∙ t́!� expy−2�9Ú³³́ ∙ '³́ !}ûü
ý

+ 1�� 	 fh
iexp �− ��Ú³³́ �²�� �Ú³³́ � þ

�− 1 + ��Ú³³́ �²��Ú³³́ � �
� y−Ú³³́ ùℎú�$(Ú³³́ �} 	y2�9Ú³³́-

&8³³³́ Î�

∙ t́&} expy2�9Ú³³́ ∙ '³́&} 	�−2�9Ú³³́ ∙ t́!� expy−2�9Ú³³́ ∙ '³́ !}-
! ûü

ý

+ 1�� 	 fh
iexp �− ��Ú³³́ �²�� �Ú³³́ � 	y2�9Ú³³́-

&8³³³́ Î�

∙ t́&} expy2�9Ú³³́ ∙ '³́&} 	ä�−2�9�y−Ú³³́ ùℎú�$(t!�}å expy−2�9Ú³³́ ∙ '³́ !}-
! ûü

ý

+ 1�� 	 fh
iexp �− ��Ú³³́ �²�� �Ú³³́ � 	y2�9Ú³³́-

&8³³³́ Î�

∙ t́&}�−2�9Ú³³́ ùℎú�$(`́&�� expy2�9Ú³³́ ∙ '³́&} 	�−2�9Ú³³́ ∙ t́!� expy−2�9Ú³³́ ∙ '³́ !}-
! ûü

ý
 

 



177 
 

�3� = − 1�� �ℎ$(�ùú~ 	 fh
iexp �− ��Ú³³́ �²�� �Ú³³́ � 	�+& + 2�9Ú³³́ ∙ ¼́&� expy2�9Ú³³́ ∙ '³́&}-

& 	�−2�9Ú³³́-
!8³³³́ Î�

∙ t́!� expy−2�9Ú³³́ ∙ '³́ !}ûü
ý

+ 2�� 	 fh
iexp �− ��Ú³³́ �²�� �Ú³³́ � þ

�− 1 + ��Ú³³́ �²��Ú³³́ � �
� y−Ú³³́ ùℎú�$(Ú³³́ �} 	�+& + 2�9Ú³³́-

&8³³³́ Î�

∙ ¼́&� expy2�9Ú³³́ ∙ '³́&} 	�−2�9Ú³³́ ∙ t́!� expy−2�9Ú³³́ ∙ '³́ !}-
! ûü

ý

+ 1�� 	 fh
iexp �− ��Ú³³́ �²�� �Ú³³́ � 	2−2�9Ú³³́ ùℎú�$(¼́&� expy2�9Ú³³́ ∙ '³́&}-

&8³³³́ Î�

− y+& + 2�9Ú³³́ ∙ ¼́&}2�9Ú³³́ ùℎú�$(`́&� expy2�9Ú³³́ ∙ '³́&}3 	�−2�9Ú³³́-
!

∙ t́!� expy−2�9Ú³³́ ∙ '³́ !}ûü
ý

+ 1�� 	 fh
iexp �− ��Ú³³́ �²�� �Ú³³́ � 	�+& + 2�9Ú³³́-

&8³³³́ Î�

∙ ¼́&� expy2�9Ú³³́ ∙ '³́&} 	�−2�9Ú³³́ ∙ t́!��2�9Ú³³́ ùℎú�$(`́!�� expy−2�9Ú³³́ ∙ '³́ !}-
! ûü

ý
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By adding final expressions for (1), (2) and (3), we arrive at the result for  
������"�� , 

 

¨Ï#��¨ℎùú = − 12 �ℎ$(�ùú~ ∙ 	 	+!��#���! − �¼́! + t́!� ∙ y�³́ #��}!

-
!

+ 1�� 	 fh
iexp �− ��Ú³³́ �²�� �Ú³³́ � þ

�− 1 + ��Ú³³́ �²��Ú³³́ � �
� y−Ú³³́ ùℎú�$(Ú³³́ �}Û�Ú³³́ �Û�−Ú³³́ �ûü

ý
8³³³́ Î�

+ 	y�³́ #��}!ùℎú�$(y¼́!� + t́!� + +!`́!�}-
! + 	y¼́!� + t́!�} ��³́³́ #���!

�ù ℎúB$(`́!B
-
!  

 

Finally, adding up all above terms and removing the common factor −�ℎ$(�~ , the final 

expression is the one shown before. 

 

B.4. Screening Correction 

 

If certain short-range electrostatic interactions are screened, the pGM system energy can be 

expressed as, 

Ï = 	 12 �+! + ¼́! ∙ ∇!��!�∗-
! + 	 12 �t́!∗ ∙ ∇!��!�∗-

!  

Here, �!�∗ represents the electrostatic potential on atom i that is created by only charges and 

covalent dipoles that are not screened in the system, and t́!∗ means the induced dipole on 

atom i that is created under the screening condition. Specifically, 
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�!�∗ = 1�� 	 {exp �− ��Ú³³́ �²�� �Ú³³́ � 	äy+& + 2�9Ú³³́ ∙ ¼́&} expy2�9Ú³³́ ∙ '³́&}å-
& expy−2�9Ú³³́ ∙ '³́ !}}8³³³́ Î�

+ 	 �+& + ¼́& ∙ ∇&� erfy²!&'!&} − erfy²�'!&}'!&
�

&∉∗�!�&Î!
− lim�³́ è→�³́ �y+! + ¼́! ∙ ∇&} erfy²�'!&}'!&

− 	 �+& + ¼́& ∙ ∇&� erfy²�'!&}'!&
 

&∈∗�!�  

t́!∗ = Í!��³́ !�∗ − 	 ?³́³́ !&∗ ∙ t́&∗
 -
& � 

�³́ !�∗ = −∇!�!�∗ 

?!&∗í½

= ¨!í &̈½

fgg
ggg
h
ggg
ggi 1�� 	 exp �− ��Ú³³́ �²�� �Ú³³́ � expy2�9Ú³³́ ∙ '³́&} expy−2�9Ú³³́ ∙ '³́ !}8³³³́ Î� + erfy²!&'!&} − erfy²�'!&}'!&9< 9 ≠ ;, ; ∉∗ �9�                                                                                                                               

1�� 	 exp �− ��Ú³³́ �²�� �Ú³³́ � expy2�9Ú³³́ ∙ '³́&} expy−2�9Ú³³́ ∙ '³́ !}8³³³́ Î� − lim�³́ è→�³́ �
erfy²�'!&}'!&    9< 9 = ;

1�� 	 exp �− ��Ú³³́ �²�� �Ú³³́ � expy2�9Ú³³́ ∙ '³́&} expy−2�9Ú³³́ ∙ '³́ !}8³³³́ Î� − erfy²�'!&}'!&    9< ; ∈∗ �9�

 

Here, ∗ �9� represent the screened atom pairs of atom i. 

 

Before we calculate the correction term under screening conditions for virial, we want first 

to show the electrostatic force expression under screening. Following our previous paper, it 

can be easily shown that, 
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Ñ́!�������r$�������r∗ = 	 ∇!
�
& yÆ³́ &} ∙ �³́&�������r∗ + +!�³́ !�������r∗ + Æ³́ ! ∙ �³́³́ !�������r∗ 

The asterisk here means that the quantities are calculated under the screening condition. 

 

The induced part, however, requires some extra attention, 

Ñ́!!��Ð��� = t́!∗ ∙ �³́³́ !!��Ð���∗ + 	 ∇!��³́&�������r∗� ∙ t́&∗
-
&  

Here, 
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	 ∇!��³́&�������r∗� ∙ t́&∗
-
&

= 	  -
&Î! 	 �−∇!�Æ³́ ��� ∙�

�Î&�∉∗�&�
∇�yt́&∗ ∙ ∇&} erf �²&�'&��²&�'&�

− 	 �+! + ¼́! ∙ ∇!�∇!yt́&∗ ∙ ∇&} erfy²!&'!&}²!&'!&  -
&Î!&∉∗�!�

− 	 ∇!�Æ³́ �� ∙�
�Î!�∉∗�!�

∇��t́!∗ ∙ ∇!� erf�²!�'!��²!�'!�

− 	 �+� + ¼́� ∙ ∇��-
�Î!�∉∗�!�

∇!�t́!∗ ∙ ∇!� erf�²!�'!��²!�'!�

= 	  -
& 	 y−∇!�Æ³́ ��} ∙�

�Î&�∉∗�&�
∇�yt́&∗ ∙ ∇&} erfy²&�'&�}²&�'&�

− 	 �+! + ¼́! ∙ ∇!�∇!yt́&∗ ∙ ∇&} erfy²!&'!&}²!&'!&  -
&Î!&∉∗�!�

− 	 �+� + ¼́� ∙ ∇��-
�Î!�∉∗�!�

∇!�t́!∗ ∙ ∇!� erf�²!�'!��²!�'!�

= 	  �
� 	 y−∇!�Æ³́ ��} ∙-

&Î�&∉∗���
∇�yt́&∗ ∙ ∇&} erfy²&�'&�}²&�'&� + +!�³́ !!��Ð���∗ + Æ³́ ! ∙ �³́³́ !!��Ð���∗

+ t́!∗ ∙ �³́³́ !�������r∗



182 
 

= 	 ∇!
�
� �Æ³́ �� ∙ �³́ �!��Ð���∗ + +!�³́ !!��Ð���∗ + Æ³́ ! ∙ �³́³́ !!��Ð���∗ + t́!∗ ∙ �³́³́ !�������r∗ 

In the derivation here, we have used the fact that if ; ∈∗ �9� then 9 ∈∗ �;� for any i and j. 

 

So, the result for the force under the screening condition is, 

Ñ́!∗ = 	 ∇!
�
& yÆ³́ &} ∙ �³́&∗ + +!�³́ !∗ + �Æ³́ ! + t́!∗� ∙ �³́³́ !∗ 

The asterisk here means that the quantities are calculated under the screening condition. 

 

To derive the correction of screening for virial, we notice that the only variable in the 

correction term that depends on h is the atom coordinate '³́ , so, the virial correction is: 

¨Ï��##��r!��¨ℎùú = ¨ ∑ 12 �+! + ¼́! ∙ ∇!� ∑ �+& + ¼́& ∙ ∇&� − erfy²!&'!&}'!&�&Î!-! ¨ℎùú

+ 12 t!Ô∗íÔ ¨ ¨!ÔíÔ &̈Ô½Ô − erfy²!Ô&Ô'!Ô&Ô}'!Ô&Ô¨ℎùú t&Ô∗½Ô

+ 	 t́!∗ ∙ ¨∇! ∑ �+& + ¼́& ∙ ∇&� − erfy²!&'!&}'!&�&Î! ¨ℎùú
-
!  

 

Following a similar derivation as in Appendix B.2, we can easily obtain the correction term 

for the virial expression under screening. 

 




