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STRICHARTZ ESTIMATES AND LOCAL SMOOTHING ESTIMATES

FOR ASYMPTOTICALLY FLAT SCHRÖDINGER EQUATIONS

JEREMY MARZUOLA, JASON METCALFE, AND DANIEL TATARU

Abstract. In this article we study global-in-time Strichartz estimates for the Schrö-
dinger evolution corresponding to long-range perturbations of the Euclidean Lapla-
cian. This is a natural continuation of a recent article [28] of the third author, where
it is proved that local smoothing estimates imply Strichartz estimates.

By [28] the local smoothing estimates are known to hold for small perturbations
of the Laplacian. Here we consider the case of large perturbations in three increas-
ingly favorable scenarios: (i) without non-trapping assumptions we prove estimates
outside a compact set modulo a lower order spatially localized error term, (ii) with
non-trapping assumptions we prove global estimates modulo a lower order spatially
localized error term, and (iii) for time independent operators with no resonance or
eigenvalue at the bottom of the spectrum we prove global estimates for the projection
onto the continuous spectrum.

1. Introduction

This article is a natural continuation of the third author’s work in [28], which studies
the connection between long-time Strichartz estimates and local smoothing estimates for
Schrödinger equations with C2, asymptotically flat coefficients.

Given a time dependent second order elliptic operator in Rn

A(t, x,D) = Dia
ij(t, x)Dj + bi(t, x)Di +Dib

i(t, x) + c(t, x)

we consider the dispersive properties of solutions to the Schrödinger evolution

(1.1) Pu := (Dt +A(t, x,D))u = f, u(0) = u0.

Two of the most stable ways of measuring dispersion are the local smoothing estimates
and the Strichartz estimates. The local smoothing estimates give L2 time integrability
for the spatially localized energy, with a half-derivative gain. To state them we use a
local smoothing space X which will be defined shortly, and its dual X ′,

(1.2) ‖u‖X∩L∞
t L2

x
. ‖u0‖L2 + ‖f‖X′+L1

tL
2
x

where in a first approximation one may set

‖u‖X ∼ ‖〈x〉−
1
2−|D|

1
2 u‖L2

t,x
.

The second author was supported by the NSF through a MSPRF, and the other two authors were
partially supported by the NSF through grants DMS0354539 and DMS 0301122.
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The Strichartz estimates on the other hand measure the space-time integrability of
solutions and have the form

(1.3) ‖u‖Lp1
t L

q1
x

. ‖u0‖L2 + ‖f‖
L

p′
2

t L
q′2
x

where the indices (p1, q1) and (p2, q2) satisfy the relation

2

p
+
n

q
=
n

2
, 2 ≤ p, q ≤ ∞

and (p, q) 6= (2,∞) if n = 2. Any pair (p, q) satisfying these requirements will be called
a Strichartz pair.1

The local smoothing estimates have been long known to hold in the flat case A = −∆
and for certain small perturbations. For operators with variable coefficients, local in
time smoothing estimates were first established in [7] and [9]. Global in time estimates
on the other hand are considerably more difficult to obtain and are known only in some
very special cases. See, e.g., [20] for time independent, non-trapping, smooth, compactly
supported, though not necessarily small, perturbations of the Laplacian.

There are also some known results which show global-in-time smoothing estimates in
the presence of certain trapped rays. Here, the estimates involve a different spatial weight
and a loss of regularity due to the trapping. See [6], [21] and the references therein.

The Strichartz estimates hold globally in the flat case A = −∆. Local-in-time Stri-
chartz estimates for variable coefficient operators have also been established in [23], [12],
and [19] provided, amongst other things, that the coefficients are non-trapping. We also
refer the interested reader to the simplified approaches of [15] and [27]. Again, global
in time estimates are more difficult and have been obtained only recently in [20] (time
independent, non-trapping, smooth, compactly supported perturbations of the Laplacian)
respectively [28] (small, C2 long range perturbations of the Laplacian).

The above references would be incomplete without mentioning the vast body of work
on dispersive and Strichartz estimates for lower order perturbations of the Laplacian.
For this we refer the reader to some of the more recent papers [10, 11] and the references
therein.

The third author’s article [28] is one of the starting points of this work. The main
result in [28] is to construct a global in time outgoing parametrix for the equation (1.1) for
C2 long range perturbations of the Laplacian. This construction uses the FBI transform,
an approach that is reminiscent of the earlier works [24, 25, 26] for the wave equation.
See, also, [27] for a survey of these techniques and the closely related work [22] which is
based instead on a wave packet decomposition.

The errors associated to the parametrix are handled using the local smoothing esti-
mates. Consequently one is led to the second result of [28], which roughly asserts that

Local Smoothing Estimates =⇒ Strichartz Estimates.

1For simplicity of exposition, we shall not directly address the q =∞ endpoint estimate. This permits
us in the sequel to use Littlewood-Paley theory. See [14] for the corresponding endpoint argument in the
flat case.
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Local smoothing estimates are also proved in [28], but only for small long range per-
turbations of the Laplacian. The aim of the present work is to consider large long range
perturbations of the Laplacian.

A difficulty one encounters is the possible presence of trapped rays, i.e. geodesics
which are confined to a compact spatial region. This brings us to our second starting
point, namely Bouclet and Tzvetkov’s work [2]. For smooth, time independent, long
range perturbations of the Laplacian, they prove that local in time Strichartz estimates
hold in the exterior of a sufficiently large ball, in other words that the loss due to trapping
is also confined to a bounded region. Another aim of the present work is to provide an
analogous result which is global in time and holds for C2 time-dependent coefficients.

1.1. Estimates outside a ball. We begin with our assumptions on the coefficients.
Consider a dyadic spatial decomposition of Rn into the sets

D0 = {|x| ≤ 2}, Dj = {2j ≤ |x| ≤ 2j+1}, j = 1, 2, . . .

and for j ≥ 0 set

Aj = R ×Dj , j ≥ 0, A<j = R × {|x| ≤ 2j} =
⋃

l<j

Al.

Our weak asymptotic flatness condition has the form

(1.4)
∑

j∈N

sup
Aj

[

〈x〉2
(

|∂2
xa(t, x)| + |∂ta(t, x)|

)

+ 〈x〉|∂xa(t, x)| + |a(t, x) − In|
]

≤ κ <∞

and for the lower order terms we have a related condition,

(1.5)
∑

j∈N

sup
Aj

〈x〉|b(t, x)| ≤ κ











sup〈x〉2(|c(t, x)| + |div b(t, x)|) ≤ κ

lim sup
|x|→∞

〈x〉2(|c(t, x)| + |div b(t, x)|) < ε≪ 1
n 6= 2











sup〈x〉2(ln(2 + |x|2))2(|c(t, x)| + |div b(t, x)|) ≤ κ,

lim sup
|x|→∞

〈x〉2(ln〈x〉)2(|c(t, x)| + |div b(t, x)|) < ε≪ 1
n = 2.

(1.6)

Here ε is a fixed sufficiently small parameter. For any κ, (1.4) restricts the trapped
rays to finitely many of the regions Aj . If κ is sufficiently small, which we do not assume,
then it is known that trapped rays do not exist. Notice that we may choose M = M(ε)
sufficiently large so that

(1.7)
∑

j≥M

sup
Aj

[

〈x〉2
(

|∂2
xa(t, x)| + |∂ta(t, x)|

)

+ 〈x〉|∂xa(t, x)| + |a(t, x) − In|
]

≤ ε

and

(1.8)
∑

j≥M

sup
Aj

〈x〉|b(t, x)| ≤ ε
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sup
A≥M

〈x〉2(|c(t, x)| + |div b(t, x)|) ≤ ε, n 6= 2

sup
A≥M

〈x〉2(ln〈x〉)2(|c(t, x)| + |div b(t, x)|) ≤ ε, n = 2.
(1.9)

To describe the local smoothing spaceX , we use a dyadic partition of unity of frequency

1 =

∞
∑

k=−∞

Sk(D).

The functions at frequency 2k are measured using the norms

‖u‖Xk
= ‖u‖L2

t,x(A<0) + sup
j≥0

‖〈x〉−1/2u‖L2
t,x(Aj), k > 0

‖u‖Xk
= 2

k
2 ‖u‖L2

t,x(A<−k) + sup
j≥−k

‖(|x| + 2−k)−1/2u‖L2
t,x(Aj), k ≤ 0.

The local smoothing space X is the completion of the Schwartz space with respect to the
norm

‖u‖2
X =

∞
∑

k=−∞

2k‖Sku‖
2
Xk
.

Its dual X ′ has norm

‖f‖2
X′ =

∞
∑

k=−∞

2−k‖Skf‖
2
X′

k
.

In dimension n ≥ 3 the space X is a space of distributions, and we have the Hardy
type inequality

(1.10) ‖〈x〉−1u‖L2
t,x

. ‖u‖X .

On the other hand in dimensions n = 1, 2, the space X is a space of distributions modulo
constants, and we have the BMO type inequality

(1.11)
∑

j≥0

‖〈x〉−1(u− uDj )‖
2
L2

t,x(Aj)
. ‖u‖2

X

where uDj represents the (time dependent) average of u in Dj . At the same time X ′

contains only functions with integral zero. We refer the reader to [28] for more details.

In [28] the case of a small perturbation of the Laplacian is considered, and it is proved
that

Theorem 1.1. [28]. Assume that either

(i) n ≥ 3 and (1.4), (1.5),(1.6) hold with a sufficiently small κ or

(ii) n = 1, 2, bi = 0, c = 0 and (1.4) holds with a sufficiently small κ.

Then the local smoothing estimate

(1.12) ‖u‖X∩L∞
t L

2
x

. ‖u0‖L2 + ‖f‖X′+L1
tL

2
x

holds for all solutions u to (1.1).
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As one can see, the assumptions are more restrictive in low dimensions. This is related
to the spectral structure of the operator A, precisely to the presence of a resonance at
zero. This is the case if A = −∆ or, more generally, if bi = 0 and c = 0. However
the zero resonance is unstable with respect to lower order perturbations. To account for
non-resonant situations, it is convenient to introduce a stronger norm which removes the
quotient structure,

‖u‖2
X̃

= ‖〈x〉−1u‖2
L2

t,x
+

∞
∑

k=−∞

2k‖Sku‖
2
Xk
, n 6= 2

‖u‖2
X̃

= ‖〈x〉−1(ln(2 + |x|))−1u‖2
L2

t,x
+

∞
∑

k=−∞

2k‖Sku‖
2
Xk
, n = 2.

Its dual is

X̃ ′ = X ′ + 〈x〉L2
t,x, n 6= 2, X̃ ′ = X ′ + 〈x〉(ln(2 + |x|))L2

t,x, n = 2.

Due to the Hardy inequality above, if n ≥ 3 we have X̃ = X . On the other hand in low
dimension the X̃ norm adds some local square integrability to the X norm. Precisely, we
have

Lemma 1.2. Let n = 1, 2. Then

(1.13) ‖u‖X̃ . ‖u‖X + ‖u‖L2
t,x({|x|≤1}).

The first goal of this article is to show, without any trapping assumption, that loss-less
(with respect to regularity), global-in-time local smoothing and Strichartz estimates hold
exterior to a sufficiently large ball, modulo a localized error term. It is hoped that this
error term can be separately estimated for applications of interest. Moreover, in the case
of finite times, this error term can be trivially estimated by the energy inequality and
immediately yields a C2, long range, time dependent analog of the result of [2].

For M fixed and sufficiently large so that (1.7), (1.8) and (1.9) hold, we consider a
smooth, radial, nondecreasing cutoff function ρ which is supported in {|x| ≥ 2M} with

ρ(|x|) ≡ 1 for |x| ≥ 2M+1. Then we define the exterior local smoothing space X̃e with
norm

‖u‖X̃e
= ‖ρu‖X̃ + ‖(1 − ρ)u‖L2

t,x

and the dual space X̃ ′
e with norm

‖f‖X̃′
e

= inf
f=ρf1+(1−ρ)f2

‖f1‖X̃′ + ‖f2‖L2
t,x
.

Now we can state our exterior local smoothing estimates.

Theorem 1.3. Let n ≥ 1. Assume that the coefficients aij , bi and c are real and satisfy
(1.4), (1.5), (1.6). Then the solution u to (1.1) satisfies

(1.14) ‖u‖X̃e∩L∞
t L2

x
. ‖u0‖L2 + ‖f‖X̃′

e+L
1
tL

2
x

+ ‖u‖L2
t,x({|x|≤2M+1}).

In the low dimensional resonant case the situation is a bit more delicate. First of all,
the above theorem does not give a meaningful estimate in the n = 1, 2 resonant case as
the last term in the right of (1.14) blows up for constant functions, which correspond to
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the zero resonance. Since we do not control the local L2 norm for X functions, truncation
by the cutoff function ρ does not preserve the X space. To remedy this we define a time
dependent local average for u, namely

uρ =

(∫

Rn

(1 − ρ) dx

)−1 ∫

Rn

(1 − ρ)u dx,

and define a modified truncation by the self-adjoint operator

Tρu = ρu+ (1 − ρ)uρ.

We note that Tρ leaves constant functions unchanged, as well as the integral of u (if
finite).

Then we set
‖u‖Xe = ‖Tρu‖X + ‖u− Tρu‖L2

t,x

and have the dual space X ′
e with norm

‖f‖X′
e

= inf
f=Tρf1+(1−Tρ)f2

‖f1‖X′ + ‖f2‖L2
t,x
.

We now have the following alternative to Theorem 1.3 which is consistent with operators
with a constant zero resonance:

Theorem 1.4. Let n = 1, 2. Assume that

(i) the coefficients aij are real and satisfy (1.4);

(ii) the coefficients bi are real, satisfy (1.5), and ∂ib
i = 0;

(iii) there are no zero order terms, c = 0.

Then the solution u to (1.1) satisfies

(1.15) ‖u‖Xe∩L∞
t L2

x
. ‖u0‖L2 + ‖f‖X′

e+L
1
tL

2
x

+ ‖u− uρ‖L2
t,x({|x|≤2M+1}).

Once we have the local smoothing estimates, the parametrix construction in [28] allows
us to obtain corresponding Strichartz estimates. If (p, q) is a Strichartz pair we define

the exterior space X̃e(p, q) with norm

‖u‖X̃e(p,q)
= ‖u‖X̃e

+ ‖ρu‖Lp
tL

q
x

and the dual space X̃ ′(p, q) with norm

‖f‖X̃′
e(p,q)

= inf
f=f1+ρf2

‖f1‖X̃′
e
+ ‖f2‖Lp′

t L
q′
x
.

Theorem 1.5. Let n ≥ 1. Assume that the coefficients aij, bi and c are real and satisfy
(1.4), (1.5), (1.6). Then for any two Strichartz pairs (p1, q1) and (p2, q2), the solution u
to (1.1) satisfies

(1.16) ‖u‖X̃e(p1,q1)∩L∞
t L2

x
. ‖u0‖L2 + ‖f‖X̃′

e(p2,q2)+L1
tL

2
x

+ ‖u‖L2
t,x({|x|≤2M+1}).

Correspondingly, in the resonant case we define

‖u‖Xe(p,q) = ‖u‖Xe + ‖ρu‖Lp
tL

q
x

and the dual space X ′
e(p, q) with norm

‖f‖X′
e(p,q)

= inf
f=f1+ρf2

‖f1‖X′
e
+ ‖f2‖Lp′

t L
q′
x
.
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Then we have

Theorem 1.6. Let n = 1, 2. Assume that the coefficients of P are as in Theorem 1.4.
Then for any two Strichartz pairs (p1, q1) and (p2, q2), the solution u to (1.1) satisfies

(1.17) ‖u‖Xe(p1,q1)∩L∞
t L2

x
. ‖u0‖L2 + ‖f‖X′

e(p2,q2)+L1
tL

2
x

+ ‖u− uρ‖L2
t,x({|x|≤2M+1}).

In both cases the space-time norms are over [0, T ] × Rn for any time T > 0 with
constants independent of T . If the time T is finite, then we may use energy estimates to
trivially bound the error term. Doing so results in the following, which is a C2-analog of
the exterior Strichartz estimates of [2].

Corollary 1.7. (a.) Assume that the coefficients aij , bi, and c are as in Theorem 1.3.
Then for any two Strichartz pairs (p1, q1) and (p2, q2), the solution u to (1.1) satisfies

(1.18) ‖u‖X̃(p1,q1)∩L∞
t L2

x
.T ‖u0‖L2 + ‖f‖X̃′(p2,q2)+L1

tL
2
x
.

(b.) Assume that the coefficients aij and bi are as in Theorem 1.4. Then for any two
Strichartz pairs (p1, q1) and (p2, q2), the solution u to (1.1) satisfies

(1.19) ‖u‖X(p1,q1)∩L∞
t L2

x
.T ‖u0‖L2 + ‖f‖X′(p2,q2)+L1

tL
2
x
.

In both cases, the space-time norms are over [0, T ]× Rn and T > 0 is finite.

We conclude this subsection with a few remarks concerning several alternative set-ups
for these results.

1.1.1. Boundary value problems. Our proof of Theorems 1.3,1.4, 1.5 1.6 treats the interior
of the ball B = {|x| < 2M} as a black box with the sole property that the energy
is conserved by the evolution. Hence the results remain valid for exterior boundary
problems. Precisely, take a bounded domain Ω ⊂ B and consider either the Dirichlet
problem

(1.20)







Pu = f in Ωc

u(0) = u0

u = 0 in ∂Ω

or the Neumann problem

(1.21)











Pu = f in Ωc

u(0) = u0

∂u

∂ν
= 0 in ∂Ω

where
∂

∂ν
= νi(a

ijDj + bi)

and ν is the unit normal to ∂Ω.

Then we have

Corollary 1.8. a) The results in Theorems 1.3 and 1.5 remain valid for both the Dirichlet
problem (1.20) and the Neumann problem (1.21).

b) The results in Theorems 1.4 and 1.6 remain valid for the Neumann problem (1.21)
with the additional condition biνi = 0 on ∂Ω.
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The more restrictive hypothesis in part (b) is caused by the requirement that constant
functions solve the homogeneous problem.

1.1.2. Complex coefficients. The only role played in our proofs by the assumption that
the coefficients bi and c are real is to insure the energy conservation in the interior region.
Hence we can allow complex coefficients in the region {|x| > 2M+1} where the coefficients
satisfy the smallness condition.

In addition, allowing c to be complex in the interior region does not affect energy
conservation either, since we are assuming an a priori control of the local L2 space-time
norm of the solution. Hence we have

Remark 1.9. a) The results in Theorems 1.3 and 1.5 remain valid for complex coeffi-
cients bi, c with the restriction that bi are real in the region {|x| < 2M+1}.

b) The results in Theorems 1.4 and 1.6 remain valid for coefficients bi which are real
in the region {|x| < 2M+1}.

1.2. Non-trapping metrics. The second goal of the article is to consider the previous
setup but with an additional non-trapping assumption. To state it we consider the
Hamilton flow Ha for the principal symbol of the operator A, namely

a(t, x, ξ) = aij(t, x)ξiξj .

The spatial projections of the trajectories of the Hamilton flow Ha are the geodesics for
the metric aijdx

idxj where (aij) = (aij)−1.

Definition 1.10. We say that the metric (aij) is non-trapping if for each R > 0 there
exists L > 0 independent of t so that any portion of a geodesic contained in {|x| < R}
has length at most L.

The non-trapping condition allows us to use standard propagation of singularities
techniques to bound high frequencies inside a ball in terms of the high frequencies outside.
Then the cutoff function ρ which was used before is no longer needed, and we obtain

Theorem 1.11. Let R > 0 be sufficiently large. Assume that the coefficients aij, bi and
c are real and satisfy (1.4), (1.5), (1.6). Assume also that the metric aij is non-trapping.
Then the solution u to (1.1) satisfies

(1.22) ‖u‖X̃ . ‖u0‖L2 + ‖f‖X̃′ + ‖u‖L2
t,x({|x|≤2R}),

respectively

Theorem 1.12. Let R > 0 be sufficiently large, and let n = 1, 2. Assume that the
coefficients of P are as in Theorem 1.4. Assume also that the metric aij is non-trapping.
Then the solution u to (1.1) satisfies

(1.23) ‖u‖X . ‖u0‖L2 + ‖f‖X′ + ‖u− uρ‖L2
t,x({|x|≤2R}).

We note that the high frequencies in the error term on the right are controlled by the
X norm on the left. Also the low frequencies (≪ 1) are controlled by the X norm using
the uncertainty principle. Hence the only nontrivial part of the error term corresponds
to intermediate (i.e. ≈ 1 ) frequencies.
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The proof combines the arguments used for the exterior estimates with a standard
multiplier construction from the theory of propagation of singularities. Adding to the
above results the parametrix obtained in [28] we obtain

Theorem 1.13. Let R > 0 be sufficiently large. Assume that the coefficients aij , bi and
c are real and satisfy (1.4), (1.5), (1.6). Assume also that the metric aij is non-trapping.
Then for any two Strichartz pairs (p1, q1) and (p2, q2), the solution u to (1.1) satisfies

(1.24) ‖u‖X̃∩L
p1
t L

q1
x

. ‖u0‖L2 + ‖f‖
X̃′+L

p′
2

t L
q′2
x

+ ‖u‖L2
t,x({|x|≤2R}),

respectively

Theorem 1.14. Let n = 1, 2, and let R > 0 be sufficiently large. Assume that the
coefficients of P are as in Theorem 1.4. Assume also that the metric aij is non-trapping.
Then for any two Strichartz pairs (p1, q1) and (p2, q2), the solution u to (1.1) satisfies

(1.25) ‖u‖X∩L
p1
t L

q1
x

. ‖u0‖L2 + ‖f‖
X′+L

p′
2

t L
q′
2

x

+ ‖u− uρ‖L2
t,x({|x|≤2R}).

1.2.1. An improved result for trapped metrics. A variation on the above theme is obtained
in the case when there are trapped rays, but not too many. If they exist, they must be
confined to the interior region {|x| ≤ 2M}. Then we can define the conic set

ΩLtrapped = { (t, x, ξ) ∈ R × T ∗B(0, 2M ); the Ha bicharacteristic through (t, x, ξ)

has length at least L within |x| ≤ 2M}.

Given a smooth zero homogeneous symbol q(x, ξ) which equals 1 for |x| > 2M , we define
modified exterior spaces by

‖u‖X̃q
= ‖q(x,D)u‖X̃ + ‖u‖L2({|x|≤2M+1})

with similar modifications for X̃ ′
q, Xq and X ′

q.

Then the same argument as in the proof of the above Theorems gives

Corollary 1.15. Assume that q is supported outside ΩLtrapped for some L > 0. Then the

results in Theorems 1.3, 1.5, 1.4 and 1.6 remain valid with X̃e, X̃
′
e, Xe and X ′

e replaced

by X̃q, X̃
′
q, Xq and X ′

q.

We also note that if A has time independent coefficients then ΩLtrapped is translation

invariant. Hence a compactness argument allows us to replace ΩLtrapped by Ω∞
trapped, which

contains all the trapped geodesics.

1.2.2. Boundary value problems. Consider solutions u for either the Dirichlet problem
(1.20) or the Neumann problem (1.21). Then singularities will propagate along gener-
alized broken bicharacteristics (see [17, 18],[13],[4]). Hence the non-trapping condition
needs to be modified accordingly.

Definition 1.16. We say that the metric (aij) is non-trapping if for each R > 0 there
exists L > 0 independent of t so that any portion of a generalized broken bicharacteristic
is contained in {|x| < R} has length at most L.
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With this modification the results of Theorems 1.11, 1.12, remain valid. However, some
care must be taken with the results on propagation of singularities near the boundary,
as not all of them are known to be valid for operators with only C2 coefficients.

On the other hand we do not know whether the bounds in Theorems 1.13, 1.14 are
true or not. These hinge on the validity of local Strichartz estimates near the boundary.
This is currently an unsolved problem.

1.2.3. Complex coefficients. Again, one may ask to what extent are our results in this
section are valid if complex coefficients are allowed. We have

Remark 1.17. The results in Theorems 1.11, 1.12, 1.13, 1.14 remain valid if the coef-
ficients bi and c are allowed to be complex.

This result is obtained without making any changes to our proofs provided that the
constant κ in (1.5) is sufficiently small. Otherwise, the multiplier q used in the proof has
to change too much along bicharacteristics from entry to exit from B(0, 2M ); this in turn
forces a modified multiplier for the exterior region. See, e.g., [8, 9] and [23].

1.3. Time independent metrics. It is natural to ask when can one eliminate the
error term altogether. This is a very delicate question, which hinges on the local in
space evolution of low frequency solutions. For general operators A with time dependent
coefficients this question seems out of reach for now.

This leads us to the third part of the paper where, in addition to the flatness assump-
tion above and the non-trapping hypothesis on aij , we take our coefficients aij , bi, c to be
time-independent. Then the natural obstruction to the dispersive estimates comes from
possible eigenvalues and zero resonances of the operator A.

Since the operator A is self-adjoint, it follows that its spectrum is real. More precisely,
A has a continuous spectrum σc = [0,∞) and a point spectrum σp consisting of discrete
finite multiplicity eigenvalues in R−, whose only possible accumulation point is 0.

From the point of view of dispersion there is nothing we can do about eigenvalues.
Consequently we introduce the spectral projector Pc onto the continuous spectrum, and
obtain dispersive estimates only for Pcu for solutions u to (1.1).

The resolvent
Rλ = (λ−A)−1

is well defined in C\(σc∪σp). One may ask whether there is any meromorphic continuation
of the resolvent Rλ across the positive real axis, starting on either side. This is indeed
possible. The poles of this meromorphic continuation are called resonances. This is of
interest to us because the resonances which are close to the real axis play an important
role in the long time behavior of solutions to the Schrödinger equation.

In the case which we consider here (asymptotically flat), there are no resonances nor
eigenvalues inside the continuous spectrum i.e. in (0,∞). However, the bottom of the
continuous spectrum, namely 0, may be either an eigenfunction (if n ≥ 5) or a resonance
(if n ≤ 4). For zero resonances we use a fairly restrictive definition:

Definition 1.18. We say that 0 is a resonance for A if there is a function u ∈ X̃0 so
that Au = 0. The function u is called a zero resonant state of A.
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Here X̃0 denotes the spatial part of the X̃ norm. I.e. X̃ = L2
t X̃

0.

The main case we consider here is when 0 is neither an eigenfunction (if n ≥ 5) nor a
resonance (if n ≤ 4). This implies that there are no eigenvalues close to 0. Then A has
at most finitely many negative eigenvalues, and the corresponding eigenfunctions decay
exponentially at infinity.

Theorem 1.19. Suppose that aij , bi, c are real, time-independent, and satisfy the condi-
tions (1.4),(1.5), and (1.6). We also assume that the Hamiltonian vector field Ha permits
no trapped geodesics and that 0 is not an eigenvalue or a resonance of A. Then for all
solutions u to (1.1) we have

(1.26) ‖Pcu‖X̃ . ‖u0‖2 + ‖f‖X̃′.

From this, using the parametrix of [28], we immediately obtain the corresponding
global-in-time Strichartz estimates:

Theorem 1.20. Suppose that aij , bi, c are real, time-independent, and satisfy the con-
ditions (1.4),(1.5), and (1.6). Moreover, assume that the Hamiltonian vector field Ha

permits no trapped geodesics. Assume, also, that 0 is not an eigenvalue or a resonance
of A. Then for all solutions u to (1.1), we have

(1.27) ‖Pcu‖Lp1
t L

q1
x ∩X̃ . ‖u0‖2 + ‖f‖

L
p′
2

t L
q′
2

x +X̃′
,

for any Strichartz pairs (p1, q1) and (p2, q2).

One can compare this with the result of [20], where the authors consider a smooth
compactly supported perturbation of the metric in 3+1 dimensions where no eigenvalues
are present. Estimates in the spirit of (1.27) have also recently be shown by [3], though
only for smooth coefficients and with a more restrictive spectral projection. We also note
the related work [10] on Schrödinger equations with magnetic potentials. In their work,
the second order operator is taken to be −∆. Theorem 1.20 is a more general version of
the main theorem in [10] in the sense that it allows a more general leading order operator
and that it assumes less flatness on the coefficients.

In dimension n ≥ 3 zero is not an eigenvalue or a resonance for −∆, nor for small
perturbations of it. However, in dimension n = 1, 2, zero is a resonance and the corre-
sponding resonant states are the constant functions. This spectral picture is not stable
with respect to lower order perturbations, but it does remain stable with respect to per-
turbations of the metric aij . Hence there is some motivation to also investigate this case
in more detail. We prove the following result.

Theorem 1.21. Assume that the coefficients of P are time-independent, but otherwise
as in Theorem 1.4. Assume also that the Hamiltonian vector field Ha permits no trapped
geodesics, and that there are no nonconstant zero resonant states of A. Then for all
solutions u to (1.1), we have

(1.28) ‖u‖X . ‖u0‖2 + ‖f‖X′ .

In terms of Strichartz estimates, this has the following consequence:

Theorem 1.22. Assume that the coefficients of P are time-independent, but otherwise
as in Theorem 1.4. Assume also that the Hamiltonian vector field Ha permits no trapped
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geodesics, and that there are no nonconstant zero resonant states of A. Then for all
solutions u to (1.1), we have

(1.29) ‖u‖Lp1
t L

q1
x ∩X . ‖u0‖2 + ‖f‖

L
p′
2

t L
q′
2

x +X′

for any Strichartz pairs (p1, q1) and (p2, q2).

Implicit in the above theorems is the fact that there are, under their hypothesis, no
eigenvalues for A. There is another simplification if we make the additional assumption
that b = 0.

Remark 1.23. If in addition b = 0, then there are no nonconstant generalized zero
eigenvalues of A.

In order to prove Theorems 1.19 and 1.21, we restate the bounds (1.26) and (1.28) in
terms of estimates on the resolvent using the Fourier transform in t. We then argue via
contradiction. Using the positive commutator method, we show an outgoing radiation
condition (see Steps 8-10 of the proof), which allows us to pass to subsequences and
claim that if (1.26) were false, then there is a resonance or an eigenvalue v within the
continuous spectrum. By hypothesis this cannot occur at 0. We use another multiplier
and the radiation condition to then show that v ∈ L2 and thus cannot be a resonance. As
results of [16] show that there are no eigenvalues embedded in the continuous spectrum,
we reach a contradiction. If instead (1.28) were false, then the same argument produces
a nonconstant zero resonance, again reaching a contradiction.

The paper is organized as follows. In the next section, we fix some further notations
and our paradifferential setup. It is here that we show that we may permit the lower
order terms in the local smoothing estimates in a perturbative manner. In the third
section, we prove the local smoothing estimates using the positive commutator method,
first in the exterior local smoothing spaces and then in the non-trapping case. The fourth
section is devoted to non-trapping, time-independent operators. In the final section, we
review the parametrix of [28] and use it to show how the Strichartz estimates follow from
the local smoothing estimates.

Acknowledgements: The authors thank W. Schlag and M. Zworski for helpful discus-
sions regarding some of the spectral theory, and in particular the behavior of resonances,
contained herein.

2. Notations and the paradifferential setup

2.1. Notations. We shall be using dyadic decompositions of both space and frequency.
For the spatial decomposition, we let χk denote smooth functions satisfying

1 =

∞
∑

j=0

χj(x), supp χ0 ⊂ {|x| ≤ 2}, supp χj ⊂ {2j−1 < |x| < 2j+1} for j ≥ 1.
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We also set
χ<k =

∑

0≤j<k

χj

with the obvious modification for χ>k. In frequency, we use a smooth Littlewood-Paley
decomposition

1 =
∞
∑

j=−∞

Sj(D), supp sj ⊂ {2j−1 < |ξ| < 2j+1}

and similar notations for S<k, S>k are applied.

We say that a function is frequency localized at frequency 2k if its Fourier transform
is supported in the annulus {2k−1 < |ξ| < 2k+1}. An operator K is said to be frequency
localized ifKf is supported in {2k−10 < |ξ| < 2k+10} for any function f which is frequency
localized at 2k.

For κ as in (1.4), we may choose a positive, slowly varying sequence κj ∈ ℓ1 satisfying

(2.1) sup
Aj

〈x〉2|∂2
xa(t, x)| + 〈x〉|∂xa(t, x)| + |a(t, x) − In| ≤ κj ,

∑

κj . κ,

and

| lnκj − lnκj−1| ≤ 2−10.

When the lower order terms are present, we may choose κj so that each dyadic piece of
(1.5) is also controlled similarly. We may also assume thatM in (1.7) is chosen sufficiently
large that

∑

j≥M

κj . ε.

Associated to this slowly varying sequence, we may choose functions κk(s) with

κ0 < κk(s) < 2κ0, 0 ≤ s < 2,

κj < κk(s) < 2κj, 2j < s < 2j+1, j ≥ 1,

for k ≥ 0,

κk < κk(s) < 2κk, 0 ≤ s < 2−k,

κj < κk(s) < 2κj, 2j < s < 2j+1, j ≥ −k

for k < 0, and
|κ′k(s)| ≤ 2−5s−1κk(s).

2.2. Embeddings for the X spaces. Here we prove Lemma 1.2. For the purpose of
this section we can entirely neglect the time variable. Let ψ be a smooth, spherically
symmetric Schwartz function with ψ(0) = 1 which is frequency localized in the unit
annulus. Set

ψk(x) = ψ(2kx).

Given u ∈ X̃, we split it into

u = uin + uout

where

uin =
∑

k<0

TkSku
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and Tk is the operator

Tkv = v(t, 0)ψk(x).

For frequencies k > 0, we have the dyadic bound

‖〈x〉−1Sku‖L2 . ‖Sku‖Xk

which we can easily sum over k to obtain

‖〈x〉−1S>0u‖L2 . ‖u‖X .

For frequencies k < 0 it is easy to see that

(2.2) ‖(1 − Tk)Sku‖Xk
. ‖Sku‖Xk

follows from the bound

(2.3) ‖χ<−kSku‖L2
tL

∞
x

. 2
n−1

2 k‖Sku‖Xk
, k ≤ 0.

which is a consequence of Bernstein’s inequality.

The gain is that (1 − Tk)Sku(t, 0) = 0. This leads to the improved pointwise bound

|x|−1|(1 − Tk)Sku| . 2
n+1
2 k‖Sku‖Xk

, |x| < 2−k

and further to the improved L2 bound

(2.4) sup
j

‖(2k|x| + 2−k|x|−1)
1
2 |x|−1(1 − Tk)Sku‖L2(Aj) . 2

k
2 ‖Sku‖Xk

.

Then, by orthogonality with respect to spatial dyadic regions, we can sum up

‖〈x〉−1
∑

k<0

(1 − Tk)Sku‖
2
L2 . ‖u‖2

X

which combined with the previous high frequency bound yields

(2.5) ‖〈x〉−1uout‖L2 . ‖u‖X.

For the terms in uin, differentiation yields a 2k factor, and therefore we can estimate

(2.6) ‖uin‖Ḣ1 . ‖u‖X .

It remains to prove the bounds

(2.7) ‖〈x〉−1v‖L2 . ‖v‖L2(B(0,1)) + ‖v‖Ḣ1 , n = 1

respectively

(2.8) ‖〈x〉−1(ln(1 + 〈x〉))−1v‖L2 . ‖v‖L2(B(0,1)) + ‖v‖Ḣ1 , n = 2.

Due to the first factor in the right of both estimates, we may without loss of generality
take v to vanish in B(0, 1/2). For (2.7) we integrate

2

∫ R

1/2

x−1vvxdx =

∫ R

1/2

x−2v2dx+R−1v2(R).

Using Cauchy-Schwarz the conclusion follows.
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For (2.8) we argue in a similar fashion. We have

2

∫

BR\B1/2

|x|−2(ln(2 + |x|2))−1vx∇vdx =

∫

BR\B1/2

(2 + |x|2)−1(ln(2 + |x|2))−2v2dx

+

∫

∂BR

|x|−1(ln(2 + |x|2))−1v2dσ

and conclude again by Cauchy-Schwarz. The lemma is proved. �

On a related note, we include here another result which simplifies the type of local
error terms we allow in the non-trapping case.

Lemma 2.1. Let n ≥ 1 and R > 0. Then for each ε > 0 there is mε > 0 and cε > 0 so
that

(2.9) ‖〈x〉−
3
2u‖L2 ≤ ε‖u‖X + cε‖S<mεu‖L2({|x|<R}).

Proof. Frequencies in u which are large enough can be estimated solely by the first term
on the right. It remains to show that for large m we have

‖〈x〉−
3
2S<mu‖L2 ≤ ε‖S<mu‖X + cε,m‖S<mu‖L2({|x|<R}).

For large x the left hand side can also be estimated solely by the first term on the right.
It remains to show that for large m, k we have

‖〈x〉−
3
2χ<kS<mu‖L2 ≤ ‖〈x〉−

3
2χ>kS<mu‖L2 + ck,m‖S<mu‖L2({|x|<R}).

We argue by contradiction. Suppose this is false. Then there exists a sequence uj ∈ X
so that

‖〈x〉−
3
2χ<kS<muj‖L2 = 1, ‖〈x〉−

3
2χ>kS<muj‖L2 < 1, ‖S<muj‖L2({|x|<R}) → 0.

The functions 〈x〉−
3
2S<muj are uniformly bounded in all Sobolev spaces HN(Rn); there-

fore on a subsequence we have uniform convergence on compact sets,

S<muj → u.

Then the function u satisfies

‖〈x〉−
3
2χ<ku‖L2 = 1, ‖〈x〉−

3
2χ>ku‖L2 < 1, ‖u‖L2({|x|<R}) = 0.

But u is also frequency localized in |ξ| < 2m+1 and is therefore analytic. Then the last
condition above implies u = 0 which is a contradiction. �

2.3. Paradifferential calculus. Here, we seek to frequency localize the coefficients of P .
A similar argument is present in [28], where for solutions at frequency 2k the coefficients
are localized at frequency

|ξ| ≪ 2k/2〈x〉−1/2.

Such a strong localization was essential there in order to carry out the parametrix con-
struction. Here we are able to keep the setup simpler and use a classical paradifferential
construction, where for solutions at frequency 2k the coefficients are localized at frequency
below 2k. For a fixed frequency scale 2k, we set

aij(k) = S<k−4a
ij ,
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and we define the associated mollified operators

A(k) = Dia
ij
(k)Dj .

It is easy to verify that the mollified coefficients aij(k) satisfy the bounds

|∂α(aij(k) − In)| . κk(|x|)〈x〉
−|α|, |α| ≤ 2, k > 0

|∂α(aij(k) − In)| . κk(|x|)2
|α|k〈2kx〉−|α|, |α| ≤ 2, k ≤ 0.

(2.10)

The next proposition will be used to pass back and forth between A(k) and A. We
first define

Ã =
∑

k

A(k)Sk.

Proposition 2.2. Assume that the coefficients aij satisfy (1.4), and that b = 0, c = 0.
Then

(2.11)
∑

k

2−k‖Sk(A−A(k))u‖
2
X′

k
. κ2‖u‖2

X,

(2.12) ‖(A− Ã)u‖X′ . κ‖u‖X ,

(2.13) 2−k‖[A(k), Sk]u‖X′
k

. κ‖u‖Xk
.

Proof of Lemma 2.2: We begin by writing

Sk(A−A(k)) = Amedk +Ahighk

with

Amedk =

k+4
∑

l=k−4

k+8
∑

m=−∞

SkDi(Sla
ij)DjSm

Ahighk =
∑

l>k+4

l+4
∑

m=l−4

SkDi(Sla
ij)DjSm.

For Amedk we take l = k ≥ m for simplicity; then it suffices to establish the off-diagonal
decay

(2.14) ‖SkDi(Ska
ijDjSmv)‖X′

k
. κ2m‖Smv‖Xm .

If k ≥ m ≥ 0 then we have

‖SkDi(Ska
ijDjSmv)‖X′

k
. 2k‖Ska

ijDjSmv‖X′
k

. κ2−k‖〈x〉−2DjSmv‖X′
k

. κ2−k‖DjSmv‖Xm

. κ2m−k‖Smv‖Xm .
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If k ≥ 0 > m then we have two spatial scales to deal with, namely 1 and 2−m. To
separate them we use the cutoff function χ<−m. For contributions corresponding to large
x we estimate

‖SkDi(Ska
ijχ≥−mDjSmv)‖X′

k
. 2k‖Ska

ijχ≥−mDjSmv‖X′
k

. κ2−k‖|x|−2χ≥−mDjSmv‖X′
k

. κ2m−k‖DjSmv‖Xm

. κ22m−k‖Smv‖Xm .

For contributions corresponding to small x, we first note that by Bernstein’s inequality,
see (2.3), we have

(2.15) ‖DjSmv‖L2
tL

∞
x (A≤−m) ≤ 2

n+1
2 m‖Smv‖Xm .

Then

‖SkDi(Ska
ijχ<−mDjSmv)‖X′

k
. 2k‖Ska

ijχ<−mDjSmv‖X′
k

. 2−k2
n+1
2 m‖〈x〉−2χ<−mκ(|x|)‖(X0

k
)′‖Smv‖Xm

. κ2−k2
n+1
2 mmax{1, 2

3−n
2 m}‖Smv‖Xm

. κ2−kmax{2
n+1
2 m, 22m}‖Smv‖Xm

where (X0
k)

′ is the spatial part of the X ′
k norm, i.e. X ′

k = L2
t (X

0
k)

′.

Finally if 0 > k ≥ m then the spatial scales are 2−k and 2−m, and we separate them
using the cutoff function χ<−m. The exterior part is exactly as in the previous case. For
the interior part we use again (2.15) to compute

‖SkDi(Ska
ijχ<−mDjSmv)‖X′

k
. 2k‖Ska

ijχ<−mDjSmv‖X′
k

. 2k2
n+1
2 m‖〈2kx〉−2χ<−mκ(|x|)‖(X0

k)′‖Smv‖Xm

. κ2k2
n+1
2 m max{2−

n+1
2 k, 2−2k2

3−n
2 m}‖Smv‖Xm

. max{2
1−n
2 k2

n+1
2 m, 2−k22m}‖Smv‖Xm .

Hence (2.14) is proved, which by summation yields the bound (2.11) for Amedk . The

bound for Ahighk follows from summation of (2.14) in a duality argument.

We note that in all cases there is some room to spare in the estimates. This shows that
our hypothesis is too strong for this lemma. Indeed, one could prove it without using at
all the bound on the second derivatives of the coefficients.

The bound (2.12) follows by duality from (2.11). The proof of (2.13), as in [28], follows
from the |α| = 1 case of (2.10). �

The next proposition allows us to treat lower order terms perturbatively in most of
our results.

Proposition 2.3. a) Assume that b, c satisfy (1.5) and (1.6). Then

(2.16) ‖(biDi +Dib
i + c)u‖X̃′ . κ‖u‖X̃ .
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b) Assume that b satisfies (1.5) and div b = 0. Then

(2.17) ‖(biDi +Dib
i)u‖X′ . κ‖u‖X.

Proof. This proof parallels a similar argument in [28]. However in there only dimensions
n ≥ 3 are considered, and the bound (1.6) is stronger to include the full gradient of
b. Thus we provide a complete proof here. We consider two cases, the first of which is
similar to [28], while the second requires a new argument.

Case 1: The estimate (2.16) for n ≥ 3 and (2.17) for n = 1, 2. The estimate for
the c term is straightforward since, by (1.6),

〈cu, v〉 . κ‖〈x〉−1u‖L2
t,x
‖〈x〉−1v‖L2

t,x
. κ‖u‖X̃‖v‖X̃ .

For the b term, we consider a paradifferential decomposition,

(2.18) (biDi +Dib
i)u =

∑

k

(S<kb
iDi +DiS<kb

i)Sku

+
∑

k

(Skb
iDi +DiSkb

i)Sku +
∑

k

(S>kb
iDi +DiS>kb

i)Sku.

The frequency localization is preserved in the first term; therefore it suffices to verify
that

‖(S<kb
iDi +DiS<kb

i)Sku‖X′
k

. κ2k‖Sku‖Xk
.

The derivative yields a factor of 2k, and we are left with proving that

‖S<kb
iv‖X′

k
. κ‖v‖Xk

.

This in turn follows from the pointwise bound

|S<kb
i| .

{

κk(|x|)〈x〉
−1 , k ≥ 0,

max
{

2kκk(|x|)〈2
kx〉−1, κ2k〈2kx〉−2

}

, k < 0

which is easy to obtain. The second term on the second line above is only needed in the
worst case n = 1.

The remaining two terms in (2.18) are dual. Hence it suffices to consider the last one.
We want the derivative to go to the low frequency; therefore we rewrite it in the form

(2.19)
∑

k

2S>kb
iDiSku− iS>kdiv b Sku.

We consider the two terms separately. The second one occurs only in the case of (2.16)
but the first one occurs also in (2.17). So we need to show that

‖
∑

k

S>kb
iDiSku‖X′ . κ‖u‖X .

This will follow from the dyadic estimates

‖Smb
iSku‖X′

m
. κ‖Sku‖Xk

, m > k.

Given the pointwise bound on Smb
i, this reduces to

‖Sku‖Xm . ‖Sku‖Xk
.
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For |x| > max{2−k, 1} this is trivial. For smaller x we use (2.3), and the conclusion is
obtained by a direct computation.

It remains to consider the second term in (2.19), for which we want to show that in
dimension n ≥ 3

(2.20) ‖
∑

k

S>kdiv b Sku‖X̃′ . κ‖u‖X̃ .

For this we establish again off-diagonal decay,

(2.21) ‖Smdiv b Sku‖X′
m

. κ(m− k)2k‖Sku‖Xk
, m > k.

This follows from the pointwise bounds

|Smdiv b| ≤ κ22m〈2mx〉−2, m < 0

|Smdiv b| ≤ κ〈x〉−2, m ≥ 0.

We consider the worst case 0 > m > k and leave the rest for the reader. We use χ<−k to
separate small and large values of x. For large x we have

‖χ>−kSmdiv b Sku‖X′
m

. κ‖|x|−2χ>−k Sku‖X′
k

. κ2k‖Sku‖Xk
.

For small x we use (2.3) instead,

‖χ<−kSmdiv b Sku‖X′
m

. κ22m2
n−1

2 k‖χ<−k〈2
mx〉−2‖(X0

m)′‖Sku‖Xk
. κ2k‖Sku‖Xk

.

The last computation above is accurate if n ≥ 4. In dimension n = 3 we encounter
a harmless additional logarithmic factor |m − k|. However if n = 1, 2 then the above
off-diagonal decay can no longer be obtained.

Case 2: The estimate (2.16) in dimension n = 1, 2. The c term is again easy to
deal with. We write the estimate for b in a symmetric way,

|〈(biDi +Dib
i)u, v〉| . κ‖u‖X̃‖v‖X̃ .

We use the decomposition in Section 2.2,

u = uin + uout, v = vin + vout.

We consider first the expression

〈(biDi +Dib
i)uout, vout〉.

For this we can take advantage of the improved L2 bound (2.4) to carry out the same com-
putation as in dimension n ≥ 3, establishing off-diagonal decay. Precisely, the difference
arises in the proof of (2.21), whose replacement is

(2.22) ‖Smdiv b (1 − Tk)Sku‖X′
m

. κ(m− k)2k‖Sku‖Xk
, m > k.

Consider now one of the cross terms,

〈(biDi +Dib
i)uin, vout〉 = 〈(2biDi − idivb)uin, vout〉.

The proof for the other cross term will follow similarly. For the div b term we use the L2

bound for both uin and vout, as in the case of c. For the rest we use (2.6) and (2.5) to
estimate

|〈biDiu
in, vout〉| . ‖uin‖Ḣ1‖bv

out‖L2 . ‖u‖X‖v‖X .
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Finally, consider the last term

〈(biDi +Dib
i)uin, vin〉.

In dimension n = 1, we can easily estimate it by

|〈(biDi +Dib
i)uin, vin〉| . ‖uin‖Ḣ1‖〈x〉

−1vin‖L2 + ‖vin‖Ḣ1‖〈x〉
−1uin‖L2 . ‖u‖X̃‖v‖X̃ .

This argument fails for n = 2 due to the logarithmic factor in the L2 weights. Instead
we will take advantage of the spherical symmetry of both uin and vin.

In polar coordinates we write

biDi = brDr + r−1bθDθ

and

div b = ∂rb
r + r−1br + r−1∂θb

θ.

For a function b(r, θ), we denote b̄(r) its spherical average. By spherical symmetry, we
compute

〈biDiu
in, vin〉 = 〈(brDr + r−1bθDθ)u

in, vin〉 = 〈Dru
in, b̄rvin〉.

Then we can estimate

|〈(biDi +Dib
i)uin, vin〉| . ‖uin‖Ḣ1‖b̄rv

in‖L2 + ‖vin‖Ḣ1‖b̄ru
in‖L2 . ‖u‖X̃‖v‖X̃

provided we are able to establish the improved bound

(2.23) |b̄r(r)| . 〈r〉−1(ln(2 + r))−1.

For this we take spherical averages in the divergence equation to obtain

∂r b̄
r + r−1b̄r = div b.

At infinity we have b(r) = o(r−1). Integrating from infinity we obtain

b̄r(r) =

∫ ∞

r

s

r
div b(s)ds.

Hence

|b̄r(r)| .

∫ ∞

r

s

r
(1 + s)−2(ln(2 + s))−2ds

and (2.23) follows. �

3. Local smoothing estimates

In this section we prove our main local smoothing estimates, first in the exterior region
and then in the non-trapping case.
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3.1. The high dimensional case n ≥ 3: Proof of Theorem 1.3. The proof uses
energy estimates and the positive commutator method. This turns out to be rather
delicate. The difficulty is that the trapping region acts essentially as a black box, where
the energy is conserved but little else is known. Hence all the local smoothing information
has to be estimated starting from infinity along rays of the Hamilton flow which are
incoming either forward or backward in time.

We begin with the energy estimate. This is standard if the right hand side is in L1
tL

2
x,

but we would like to allow the right hand side to be in the dual smoothing space as well.

Proposition 3.1. Let u solve the equation

(3.1) Dt +Au = f1 + f2, u(0) = u0

in the time interval [0, T ]. Then we have

(3.2) ‖u‖2
L∞

t L2
x

. ‖u0‖
2
L2 + ‖f1‖

2
L1

tL
2
x

+ ‖u‖X̃e
‖f2‖X̃′

e
.

Proof. The proof is straightforward. We compute

d

dt

1

2
‖u(t)‖2

L2 = ℑ〈u, f1 + f2〉.

Hence for each t ∈ [0, T ] we have

‖u(t)‖2
L2 . ‖u(0)‖2

L2 + ‖u‖L∞
t L2

x
‖f1‖L1

tL
2
x

+ ‖u‖X̃e
‖f2‖X̃′

e
.

We take the supremum over t on the left and use bootstrapping for the second term on
the right. The conclusion follows. �

To prove (1.14) we need a complementary estimate, namely

(3.3) ‖ρu‖2
X̃

. ‖u‖2
L∞

t L2
x

+ ‖f1‖
2
L1

tL
2
x

+ ‖ρf2‖
2
X̃′ + ‖〈x〉−2u‖2

L2
t,x
.

Given (3.2) and (3.3), the bound (1.14) is obtained by bootstrapping, with some careful
balancing of constants.

It remains to prove (3.3). We will use a positive commutator method. We shall assume
that b = 0 and c = 0. For a self-adjoint operator Q, we have

2ℑ〈Au,Qu〉 = 〈Cu, u〉

where

C = i[A,Q].

As a consequence of this, we see that

d

dt
〈u,Qu〉 = −2ℑ〈(Dt +A)u,Qu〉 + 〈Cu, u〉.

Taking this into account, the estimate (3.3) is an immediate consequence of the following
lemma.

Proposition 3.2. There is a family Q of bounded self-adjoint operators Qρ with the
following properties:

(i) L2 boundedness,

‖Qρ‖L2→L2 . 1
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(ii) X̃ boundedness,

|〈Qρu, f〉| . ‖ρf‖X̃′‖ρu‖X̃

(iii) Positive commutator,

sup
Qρ∈Q

〈Cu, u〉 ≥ c1‖ρu‖
2
X̃
− c2‖〈x〉

−2u‖2
L2

t,x
.

We first note that the condition (ii) shows that Qρu is supported in {|x| > 2M} and
depends only on the values of u in the same region. Hence for the purpose of this proof
we can modify the operator A arbitrarily in the inner region {|x| < 2M}. In particular
we can improve the constant κ in (1.4) to the extent that (1.7) holds globally. Similarly,
we can assume without any restriction in generality that u = 0 in {|x| < 2M}.

Using (ii), we may argue similarly and assume that (1.8) and (1.9) hold globally if
lower order terms are present. The estimate (2.16) then justifies neglecting the lower
order terms in A. I.e., we may assume that b = 0, c = 0.

Proof. The main step in the proof of the proposition is to construct some frequency
localized versions of the operator Qρ. Precisely, for each k ∈ Z we produce a family Qk

of operators Qk, which we later use to construct Qρ. We consider two cases, depending
on whether k is positive or negative.

We first introduce some variants of the spaces Xk. Let k ∈ Z and k− = |k|−k
2 be its

negative part. For any positive, slowly varying sequence (αm)|m≥k− with

∑

k≥k−

αj = 1, αk− ≈ 1,

we define the space Xk,α with norm

‖u‖2
Xk,α

= 2−k
−

‖u‖2
L2(A≤k− ) +

∑

j>k−

αj‖|x|
−1/2u‖2

L2(Aj)
.

Then our low frequency result has the form

Lemma 3.3. Let n ≥ 1 and k < 0. Then for any slowly varying sequence (αm) with
α−k ≈ 1 and

∑

m≥−k αm = 1, there is a self-adjoint operator Qk so that

‖Qku‖L2 . ‖u‖L2,(3.4)

‖Qku‖Xk,α
. ‖u‖Xk,α

,(3.5)

〈Cku, u〉 & 2k‖u‖2
Xk,α

, Ck = i[A(k), Qk](3.6)

for all functions u frequency localized at frequency 2k.

Proof. We argue exactly as in [28, Lemma 9]. The only difference is that here we work
with the operator A(k) whose coefficients have less regularity, but this turns out to be
nonessential.
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We first increase the sequence (αm) so that

(3.7)



























(αm) remains slowly varying,

αm = 1 for m ≤ −k
∑

m>−k

αm ≈ 1,

κm ≤ εαm for m > −k.

To this slowly varying sequence we may associate a slowly varying function α(s) with

α(s) ≈ αm, s ≈ 2m+k.

We construct an even smooth symbol φ of order −1 satisfying

φ(s) ≈ 〈s〉−1, s > 0(3.8)

φ(s) + sφ′(s) ≈
α(s)

〈s〉
, s > 0.(3.9)

We notice that the radial function S<10(D)φ(|x|) satisfies the same estimates; therefore
without any restriction in generality we assume that φ(|x|) is frequency localized in
|ξ| < 210.

We now define the self-adjoint multiplier

Qk(x,D) = δ(Dxφ(2kδ|x|) + φ(2kδ|x|)xD).

For small δ this takes frequency 2k functions to frequency 2k functions. The first property
(3.4) follows immediately. The estimate (3.5) is also straightforward as the weight in
the Xk,α norm is slowly varying on the dyadic scale. It remains to prove (3.6) for which
we begin by computing the commutator

Ck = 4δDiφ(2kδ|x|)aij(k)Dj

+ 2k+1δ2
(

Dx|x|−1φ′(2kδ|x|)xia
ij
(k)Dj +Dia

ij
(k)xj |x|

−1φ′(2kδ|x|)xD
)

− 2δDiφ(2kδ|x|)(xl∂la
ij
(k))Dj + ∂i(a

ij
(k)(∂j∂(δxφ(2kδ|x|)))).

(3.10)

The positive contribution comes from the first two terms. Replacing aij(k) by the identity

leaves us with the principal part

C0
k = 4δDφ(2kδ|x|)D + 4δD

x

|x|
2kδ|x|φ′(2kδ|x|)

x

|x|
D

which by (3.9) satisfies

〈C0
ku, u〉 ≥ 4δ〈(φ(2kδ|x|) + 2kδ|x|φ′(2kδ|x|))∇u,∇u〉 & δ22k

〈α(2kδ|x|)

〈2kδx〉
u, u

〉

.

Since aij(k)(x)−δ
ij = O(κk(|x|)), the error we produce by substituting aij(k) by the identity

has size

δ22k

〈

κk(|x|)

〈2kδx〉
u, u

〉

.

It remains to examine the last two terms in Ck. Using (2.10), we see that

|δφ(2kδ|x|)(xl∂la
ij
(k))| .

δκk(|x|)

〈2kδx〉
.
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So, the third term yields an error similar to the above one.

Finally,

|∂i(a
ij
(k)(∂j∂(δxφ(2kδ|x|))))| .

δ322k

〈2kδx〉3
.
δ322kα(2kδ|x|)

〈2kδx〉
,

which yields

〈∂i(a
ij
(k)(∂j∂δxφ(2kδ|x|)))u, u〉 . δ322k

〈α(2kδ|x|)

〈2kδx〉
u, u

〉

.

Summing up, we have proved that
(3.11)

〈Cku, u〉 ≥ c1δ2
2k
〈α(2kδ|x|)

〈2kδx〉
u, u

〉

− c2δ
322k

〈α(2kδ|x|)

〈2kδx〉
u, u

〉

− c3δ2
2k

〈

κk(|x|)

〈2kδx〉
u, u

〉

.

In order to absorb the second term into the first we need to know that δ is sufficiently
small. This determines the choice of δ as a small universal constant. In order to absorb
the third term into the first we use the last part of (3.7) and the fact that α is slowly
varying on the dyadic scale to estimate

κ(|x|) . εα(2k|x|) . δ−1εα(2kδ|x|).

Thus the third term is negligible if ε≪ δ. This determines the choice of ε in (1.7), (1.8)
and (1.9). �

We continue with the result for high frequencies.

Lemma 3.4. Let n ≥ 1 and k ≥ 0. Then for any sequence (αm) with α0 = 1 and
∑

m≥0 αm = 1 there is a self-adjoint operator Qk so that

‖Qku‖L2 . ‖u‖L2,(3.12)

‖Qku‖Xk,α
. ‖u‖Xk,α

,(3.13)

〈Cku, u〉 & 2k‖u‖2
Xk,α

, Ck = i[A(k), Qk],(3.14)

2ℑ〈[A(k), ρ<k]u,Qkρ<ku〉 . 2−k‖〈x〉−2u‖2
L2

t,x
(3.15)

for all functions u frequency localized at frequency 2k. Here, ρ<k = S<k−4ρ where ρ is as

in the definition of X̃e.

Proof. We replace the sequence (αm) by a larger one satisfying an analogue of (3.7),
namely

(3.16)



























(αm) is slowly varying,

α0 = 1
∑

m≥0

αm ≈ 1,

κm ≤ εαm for m ≥ 0,

and let α be a slowly varying function satisfying

α(s) ≈ αm, s ≈ 2m.
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We construct φ as in the low frequency case so that (3.8) and (3.9) are satisfied. Then
we set

Qk = 2−kδ(Dia
ij
(k)xjφ(δ|x|) + φ(δ|x|)aij(k)xiDj).

This choice is not very different from the one in the low frequency case. The metric aij

is inserted in order to insure a crucial sign condition in the proof (3.15).

The first property, (3.12), is immediate from the properties of φ and (2.10). The bound

(3.13) is also straightforward since the coefficients aij(k) are bounded.

Proof of (3.14): In order to prove (3.14), we calculate (using the symmetry of aij)

Ck =δ2−k
[

2Dla
lm
(k)∂m(aij(k)xjφ(δ|x|))Di + 2Di∂l(a

ij
(k)xjφ(δ|x|))alm(k)Dm

− 2Dl∂i(a
lm
(k))a

ij
(k)xjφ(δ|x|)Dm − ∂l(a

lm
(k)∂i∂m(aij(k)xjφ(δ|x|)))

]

.
(3.17)

The main positive contribution is obtained by substituting a by In in the first two terms,

C0
k = 2−kδ [2Dl∂l(xiφ(δ|x|))Di + 2Di∂l(xiφ(δ|x|))Dl]

= 4 · 2−kδ

[

Dφ(δ|x|)D +D
x

|x|
δ|x|φ′(δ|x|)

x

|x|
D

]

.

As in the low frequency case, this satisfies

〈C0
ku, u〉 & δ2k

〈

α(δ|x|)

〈δ|x|〉
u, u

〉

for any function u localized at frequency 2k. The other contributions are shown to be
smaller error terms. Consider for instance the error made by substituting aij(k) by In in

the first term. By (2.10), we can estimate

|alm(k)∂m(aij(k)xjφ(δ|x|)) − δlm∂m(δijxjφ(δ|x|))| .
κk(|x|)

〈δx〉

which contributes to 〈Cku, u〉 an error of size

δ2k
〈

κk(|x|)

〈δx〉
u, u

〉

.

A similar contribution comes from the second term and the third term. Finally, for the
last term in C we have

|∂l(a
lm
(k)∂i∂m(aij(k)xjφk(δ|x|)))| .

2kκk(|x|)

〈x〉〈δx〉
+

δ2

〈δx〉3
.

2kκk(|x|)

〈δx〉
+
δ2α(δ|x|)

〈δx〉

which yields an error of size

δ

〈

κ(|x|)

〈δx〉
u, u

〉

+ δ32−k
〈

α(δ|x|)

〈δx〉
u, u

〉

.

Summing up we have proved that

(3.18) 〈Cku, u〉 ≥ c1δ2
k
〈α(δ|x|)

〈δx〉
u, u

〉

− c2δ
32−k

〈α(δ|x|)

〈δx〉
u, u

〉

− c3δ2
k

〈

κ(|x|)

〈δx〉
u, u

〉

.

Choosing δ small enough (independently of (αm) and k), the second term on the right is
negligible compared to the first. Since α is slowly varying, by (3.16) the last term is also
negligible provided that ε is sufficiently small. Hence (3.14) follows.
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Proof of (3.15): We denote by L the self-adjoint operator

L = xia
ij
(k)Dj +Dia

ij
(k)xj

and begin by calculating

1

i
[A(k), ρ<k] = −Dia

ij
(k)(∂jρ<k) − aij(k)(∂iρ<k)Dj .

= −|x|−1ρ′<kL+ ixia
ij
(k)∂j(|x|

−1ρ′<k)

and

2kQkρ<k = δρ<kφ(δ|x|)L − ixia
ij
(k)(ρ<k∂jφ(δ|x|) + 2φ(δ|x|)∂jρ<k).

Thus, after one integration by parts we obtain

(3.19) 2kℑ〈[A(k), ρ<k]u,Qρ<ku〉 = −δ

∫

|x|−1ρ′<kφ(δ|x|)ρ<k |Lu|
2dxdt+

∫

V |u|2dxdt

where the scalar function V is given by

V = (xia
ij
(k)∂j + ∂ia

ij
(k)xj)

(

ρ<kφ(δ|x|)xla
lm
(k)∂m(|x|−1ρ′<k)

)

+ (xia
ij
(k)∂j + ∂ia

ij
(k)xj)

(

|x|−1ρ′<kxla
lm
(k)(ρ<k∂mφ(δ|x|) + 2φ(δ|x|)∂mρ<k)

)

−
(

xia
ij
(k)∂j(|x|

−1ρ′<k)
)(

xla
lm
(k)[ρ<k∂mφ(δ|x|) + 2φ(δ|x|)∂mρ<k]

)

.

Morally speaking, the first term in (3.19) is negative and can be dropped. This is true
modulo the tails that are introduced by the frequency cutoff which is applied to ρ. Since

|r−1(ρ′(r) − ρ′<k(r))| . 2−Nk〈r〉−N ,

the error is estimated by

2−Nk‖〈x〉−2u‖2
L2

t,x
.

On the other hand the weight V is bounded and rapidly decreasing at infinity,

|V | . 〈x〉−N ,

from which (3.15) follows. �

We now return to the proof of Proposition 3.2. We choose Qρ of the form

Qρ =

∞
∑

k=−∞

ρSkQkSkρ

where for each k we have an L2 bounded self-adjoint operator localized at frequency 2k.

The L2 boundedness of Qρ follows from the L2 boundedness of Qk, and the X̃ bound-
edness of Qρ follows from the Xk,α boundedness of Qk after optimizing in α. It remains
to consider the commutator C. We write

C = i
∑

k

[A, ρSkQkSkρ].

We first replace A by A(k) and ρ by ρ<k for k > 0 and by 1 for k < 0. This generates
error terms which we need to estimate.
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If k < 0 then these error terms are estimated as follows. We first want to substitute
A by A(k), and as such, we see errors of the form

(3.20) |〈[A, ρ]u,
∑

k<0

SkQkSkρu〉| + |
∑

k<0

〈(A −A(k))ρu, SkQkSkρu〉|.

For the first term, we use (3.5) (after optimizing in α)

|〈[A, ρ]u,
∑

k<0

SkQkSkρu〉| . |〈−2iDia
ij(∂jρ)u+ ∂j((∂iρ)a

ij)u,
∑

k<0

SkQkSkρu〉|

. ‖u‖L2
t,x(2M<|x|<2M+1)‖

∑

k<0

SkQkSkρu‖L2
t,x({2M<|x|<2M+1})

. ‖〈x〉−2u‖L2
t,x
‖
∑

k<0

SkQkSkρu‖X

. ‖〈x〉−2u‖L2
t,x
‖ρu‖X̃.

For the second term in (3.20), we use (2.11) and (3.5) to see that

|
∑

k<0

〈(A −A(k))ρu, SkQkSkρu〉| .
(

∑

2−k‖Sk(A−A(k))ρu‖
2
X′

k

)
1
2

‖ρu‖X

. ε‖ρu‖2
X̃
.

For the remaining errors, we use the fact that A(k) preserves localizations at frequency

2k combined with (2.10), and (3.4) to see that

|
∑

k<0

〈A(k)(1 − ρ)u, SkQkSkρu〉| . ‖〈x〉−2u‖L2
t,x
‖〈x〉2

∑

k<0

SkQkSkA(k)(1 − ρ)u‖L2
t,x

. ‖〈x〉−2u‖L2
t,x
‖(1 − ρ)u‖L2

t,x

and respectively,

|
∑

k<0

〈A(k)u, SkQkSk(1 − ρ)u〉| . ‖〈x〉−2u‖L2
t,x
‖〈x〉2A(k)

∑

k<0

SkQkSk(1 − ρ)u‖L2
t,x

. ‖〈x〉−2u‖L2
t,x
‖(1 − ρ)u‖L2

t,x
.

In both formulas above the last step is achieved by commuting the x2 factor to the right,
where it is absorbed by the (1 − ρ) factor. The two possible commutators may yield an
extra 2−2k factor, which is compensated for by the two derivatives in A(k).

On the other hand if k ≥ 0 then we have the bound

|ρ− ρ<k| . 2−Nk〈x〉−N .

This estimate clearly provides summability in k, and the control for the correction terms
similar to the above ones follows from analogous arguments. The terms, e.g., of the form
‖(1 − ρ)u‖L2

t,x
are simply replaced by ‖〈x〉−2u‖L2

t,x
.

Hence we are left with the modified commutator

C̃ = i
∑

k<0

[A(k), SkQkSk] + i
∑

k≥0

[A(k), ρ<kSkQkSkρ<k]

where all terms are now frequency localized. The first term is rewritten in the form

i[A(k), SkQkSk] = i[A(k), Sk]QkSk + iSkQk[A(k), Sk] + SkCkSk.
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For the first two terms we use the commutator estimate (2.13) and the Xk boundedness
of Qk (3.5). We can, thus, bound the corresponding inner products by

ε‖ρu‖2
X̃

+ ε‖(1 − ρ)u‖2
L2

t,x
.

For the third term, we shall use (3.6).

Next we consider the high frequency terms in C,

[A(k), ρ<kSkQkSkρ<k] = ρ<k[A(k), SkQkSk]ρ<k + [A(k), ρ<k]SkQkSkρ<k

+ ρ<kSkQkSk[A(k), ρ<k].

The first term is treated as above but using (3.14) instead. For the remaining two
terms we commute both outside factors inside. This yields a main contribution which is
estimated by (3.15),

2ℑ〈[A(k), ρ<k]Sku,Qkρ<kSku〉 . 2−k‖〈x〉−2Sku‖
2
L2

t,x
.

The remaining terms involve an extra commutation which kills the remaining derivative
in A(k). Also ρ<k is differentiated, which yields rapid decay at infinity. Hence we can
bound them by

‖〈x〉−2Sku‖
2
L2

t,x
.

Summing up, we have proved that

〈Cu, u〉 ≥ c1

(

∑

k<0

2k‖Sku‖
2
Xk.α(k)

+
∑

k>0

2k‖Skρ<ku‖
2
Xk,α(k)

)

− c2

(

‖〈x〉−2u‖2
L2

t,x
+ ε‖ρu‖2

X̃

)

where for each k we have used a different α denoted by α(k). Optimizing with respect
to all choices of α(k) we obtain

〈Cu, u〉 ≥ c1

(

∑

k<0

2k‖Sku‖
2
Xk

+
∑

k>0

2k‖Skρ<ku‖
2
Xk

)

− c2

(

‖〈x〉−2u‖2
L2

t,x
+ ε‖ρu‖2

X̃

)

which for ε sufficiently small yields part (iii) of the proposition. �

3.2. The non-resonant low dimensional case n = 1, 2: Proof of Theorem 1.3.

Almost all the arguments in the high dimensional case apply also in low dimension. The
only difference arises in part (ii) of Proposition 3.2. Since the multiplication by ρ is

bounded in both X̃ and X̃ ′, the property (ii) reduces to proving that

∞
∑

k=−∞

SkQkSk : X̃ → X̃.

In dimension n ≥ 3 the X̃ norm is described in terms of the Xk norms of its dyadic
pieces, and the above property follows from the Xk boundedness of Qk at frequency 2k.
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However, in dimension n = 1, 2 the X̃ norm also has a weighted L2 component. The
high frequency part k ≥ 0 of the above sum causes no difficulty, but the low frequency
part does. We do know that

0
∑

k=−∞

SkQkSk : X → X.

Therefore, due to Lemma 1.2, it would remain to prove that

∥

∥

∥

0
∑

k=−∞

SkQkSku
∥

∥

∥

L2
t,x({|x|≤1})

. ‖u‖X̃ .

Unfortunately, the operators SkQkSk act on the 2−k spatial scale; therefore without
any additional cancellation there is no reason to expect a good control of the output in a
bounded region. The aim of the next few paragraphs is to replace the above low frequency
sum by a closely related expression which exhibits the desired cancellation property.

First of all, it is convenient to replace the discrete parameter k by a continuous one σ.
The operators Sσ are defined in the same way as Sk by scaling. Let φk be the functions
in Lemma 3.3. The functions φσ are defined from φk using a partition of unity on the
unit scale in σ. The normalization we need is very simple, namely φk(0) = 1, which
leads to φσ(0) = 1. The operators Qσ are defined in a similar way. Then it is natural to
substitute

0
∑

k=−∞

SkQkSk →

∫ 0

−∞

SσQσSσdσ

and all the estimates for the second sum carry over identically from the discrete sum.

However, the desired cancellation is still not present in the second sum. To obtain
that we consider a spherically symmetric Schwartz function φ0 localized at frequency
≪ 1 with φ0(0) = 1. Then we write φσ in the form

φσ(x) = φ0(x) + x2ψσ(x).

The modified self-adjoint operators Q̃σ are defined as

Q̃σ = SσQσ,φ0Sσ + 22σδ2xSσQσ,ψσSσx

where, as in Lemma 3.3, we set

Qσ,φ = δ(Dxφ(2σδ|x|) + φ(2σδ|x|)xD).

We claim that the conclusion of Proposition 3.2 is valid with the operator Q defined
as

(3.21) Qρ = ρQρ, Q =

∫ 0

−∞

Q̃σdσ +

∞
∑

k=0

SkQkSk.

The family Q is obtained as before by allowing the choice of the functions φk to depend
on the slowly varying sequences (ασj )j∈N which are chosen independently2 for different k.

2In effect, without any restriction in generality, one may also assume that ασ
j

is also slowly varying

with respect to σ
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There is no change in part (i) of Proposition 3.2. For part (ii) we need to prove that

(3.22) ‖Qu‖X̃ . ‖u‖X̃.

The high frequencies are estimated directly from the X norm; therefore we have to
consider the integral term in Q and show that

∥

∥

∥

∥

∫ 0

−∞

Q̃σu dσ

∥

∥

∥

∥

X̃

. ‖u‖X̃ .

The X component of the X̃ norm is easily estimated by Littlewood-Paley theory, so
due to Lemma 1.2, it would remain to prove the local L2 bound

(3.23)

∥

∥

∥

∥

∫ 0

−∞

Q̃σudσ

∥

∥

∥

∥

L2
t,x({|x|≤1})

. ‖u‖X̃ .

We can neglect the time variable in the sequel. We have the L2 bound

‖Q̃σu‖Xσ . ‖Sσu‖Xσ

which leads to

‖∇Q̃σu‖Xσ . 2σ‖Sσu‖Xσ

and the corresponding pointwise bound

‖∇Q̃σu‖L∞(A<−σ) . 2
n+1
2 σ‖Sσu‖Xσ

which establishes the convergence and the bound for the corresponding integral
∥

∥

∥

∥

∫ 0

−∞

∇Q̃σu dσ

∥

∥

∥

∥

L∞(A<0)

. ‖S≤0u‖X .

Hence in order to prove (3.23) it remains to establish a similar bound for the integral
at x = 0. Assume first that u ∈ L2, which arguing as above guarantees the uniform
convergence of the integral. Denoting by Kσ the kernel of Sσ we have

(Q̃σu)(0) = (SσQσ,φ0Sσ)u(0)

= 〈Kσ, Qσ,φ0Sσu〉 = 〈Qσ,φ0Kσ, Sσu〉

=

∫

Qσ,φ0(x,Dx)Kσ(x)

∫

Kσ(x− y)u(y)dydx

= (S1
σu)(0)

where S1
σ is the frequency localized multiplier with spherically symmetric Schwartz kernel

K1
σ = Qσ,φ0(x,Dx)Kσ ∗Kσ.

Due to the frequency localization we can define

S1
<0 =

∫ 0

−∞

S1
σdσ.

The punch line is that by construction the operators S1
σ have the same kernel up to the

appropriate rescaling. This implies that the symbols of S1
<0 are constant for |ξ| ≤ 2−4.
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Hence both the symbols and the kernelsK1
<0 of S1

<0 are Schwartz functions which coincide
modulo rescaling. Hence for all functions u ∈ L2 we have

∫ 0

−∞

Q̃σu(0)dσ = 〈K1
<0, u〉

which leads to the estimate
∣

∣

∣

∣

∫ 0

−∞

(Q̃σu)(0)dσ

∣

∣

∣

∣

. ‖u‖X̃.

This completes the proof of the estimate (3.23) for all u ∈ L2, and, by density, shows
that the integral

∫ 0

−∞

Q̃σdσ

has a unique bounded extension to X̃ .

It remains to prove part (iii) of Proposition 3.2. If Q̃σ is replaced by SσQσSσ then
the high dimensional argument applies by simply replacing sums with integrals. Hence
it remains to estimate the difference. Commuting we obtain

Q̃σ − SσQσSσ = iδ222σ (S′
σQσ,ψxSσ − SσxQσ,ψS

′
σ − S′

σQσ,ψS
′
σ(D)) .

Commuting again to take advantage of the cancellation between the first two terms, by
semiclassical pdo calculus we can write

Q̃σ − SσQσSσ = δ2Rσ(2
σδx, 2−σD)

where the symbol rσ(y, η) is localized in {|η| ≈ 1} and satisfies

|∂αy ∂
β
η rσ(y, η)| ≤ cαβ〈y〉

−2.

This implies the bound

‖(Q̃σ − SσQσSσ)u‖X′
σ

. δ22−σ‖Sσu‖Xσ .

Therefore without any commuting we obtain

|〈[Q̃σ − SσQσSσ, A(σ)]u, u〉| . δ2‖u‖2
X .

This error is negligible since, as one can note in the proofs of Lemmas 3.3, 3.4, the
constant c1 in (iii) has size c1 = O(δ).

3.3. The resonant low dimensional case n = 1, 2: Proof of 1.4. The proof follows
the same outline as in the non-resonant case, with minor modifications. The energy
estimate (3.2) is now replaced by

(3.24) ‖u‖2
L∞

t L2
x

. ‖u0‖
2
L2 + ‖f1‖

2
L1

tL
2
x

+ ‖u‖Xe‖f2‖X′
e
.

Instead of the exterior smoothing estimate (3.3), we need to prove

(3.25) ‖Tρu‖
2
X . ‖u‖2

L∞
t L2

x
+ ‖f1‖

2
L1

tL
2
x

+ ‖Tρf2‖
2
X′ + ‖〈x〉−2(u− uρ)‖

2
L2

t,x
.

The estimate (1.15) then follows from the previous two estimates as well as (2.9).

The lower order terms will still be negligible. Indeed, letting B = 2biDi, we have

TρBu = BTρu− (Bρ)(u − uρ) + (1 − ρ)

(∫

(1 − ρ)dx

)−1 ∫

(Bρ)(u − uρ)dx.
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Therefore by (2.17), we obtain

‖TρBu‖X′ . ε‖u‖Xe,

which combined with the X boundedness of our multiplier below shows that the lower
order terms can be neglected.

The estimate (3.25) follows from

Proposition 3.5. There is a family Qres of bounded self-adjoint operators Qres with the
following properties:

(i) L2 boundedness,

‖Qres‖L2→L2 . 1,

(ii) X boundedness,

|〈Qresu, f〉| . ‖Tρf‖X′‖Tρu‖X ,

(iii) Positive commutator,

sup
Qres∈Qres

〈Cu, u〉 ≥ c1‖Tρu‖
2
X − c2‖〈x〉

−2(u − uρ)‖
2
L2

t,x
.

Proof. We construct Qres as in the non-resonant case but with the modified truncation
operator

Qresu = TρQTρ.

with Q given by (3.21).

The properties (i) and (ii) are straightforward. For (iii) we note that

SkTρu = Skρ(u− uρ)

while

TρAu = ρAu+ c(1 − ρ)

∫

(1 − ρ)A(u − uρ)dx = ρA(u − uρ) − c(1 − ρ)

∫

(u− uρ)Aρdx.

Hence we can express the bilinear form 〈Au,Qresu〉 in terms of the operator Qρ in the
nonresonant case

〈Au,Qresu〉 = 〈A(u − uρ), Qρ(u− uρ)〉 − c

∫

(u − uρ)Aρdx 〈(1 − ρ), QTρu〉

which implies that

〈Cresu, u〉 = 〈C(u − uρ), u− uρ〉 + cℑ

∫

(u− uρ)Aρdx 〈(1 − ρ), QTρu〉.

Hence we can apply part (iii) of Proposition 3.2 and (3.22) to obtain the desired conclu-
sion. �
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3.4. Non-trapping metrics: Proof of Theorem 1.11. This requires some modifica-
tions of the previous argument. First of all, instead of the energy estimate (3.2), we need
a straightforward modification of it, namely

(3.26) ‖u‖2
L∞

t L
2
x

. ‖u0‖
2
L2 + ‖f1‖

2
L1

tL
2
x

+ ‖u‖X̃‖f2‖X̃′ .

We still need the exterior local smoothing estimate (3.3). However, now we can comple-
ment it with an interior estimate, namely

(3.27) ‖(1 − ρ)u‖2
X̃

. ‖u‖2
L∞

t L2
x

+ ‖f1‖
2
L1

tL
2
x

+ ‖ρu‖2
X̃

+ ‖(1 − ρ)f2‖
2
X̃′ + ‖(1 − ρ)u‖2

L2
t,x
.

The conclusion of Theorem 1.11 is obtained by combining the three estimates (3.26),
(3.3) and (3.27).

It remains to prove (3.27). This is obtained by applying to the function v = (1 − ρ)u
the local bound

Proposition 3.6. Assume that the coefficients aij, bi, c are real and satisfy (1.4), (1.5),
and (1.6). Moreover, assume that the metric aij is non-trapping. Let v be a function
supported in {|x| ≤ 2M+1} which solves the equation

(3.28) (Dt +A)v = g1 + g2, v(0) = v0

in the time interval [0, T ]. Then we have

(3.29) ‖v‖2

L2
tH

1
2

x

. ‖v‖2
L∞

t L2
x

+ ‖g1‖
2
L1

tL
2
x

+ ‖g2‖
2

L2
tH

− 1
2

x

+ ‖v‖2
L2

t,x
.

Proof. We use again the multiplier method. The following lemma tells us how to choose
an appropriate multiplier.

Proposition 3.7. Assume that the coefficients aij satisfy (1.4). Moreover, we assume
that the Hamiltonian vector field Ha permits no trapped geodesics. Then there exists a
smooth, time-independent, real-valued symbol q ∈ S0

hom so that

Haq & |ξ|, in {|x| ≤ 2M+1}.

This proposition is essentially from [8], if aij were smooth. See also Lemma 1 of [23],
which includes some discussion of the limited regularity.

Working in the Weyl calculus and using this multiplier Q, we compute

d

dt
〈v,Qv〉 = −2ℑ〈(Dt +A)v,Qv〉 + i〈[A,Q]v, v〉

which after time integration yields

〈i[A,Q]v, v〉 = 〈v,Qv〉|T0 + 2ℑ〈g1 + g2, Qv〉.

For the second term on the right, we apply Cauchy-Schwarz and use the L2 and H
1
2

boundedness of Q to obtain

|〈(Dt +A)v,Qv〉| . ‖v‖2
L∞

t L2
x

+ ‖g1‖
2
L1

tL
2
x

+ ‖g2‖
L2

tH
− 1

2
x

‖v‖
L2

tH
1
2

x

.

Hence

〈i[A,Q]v, v〉 . ‖v‖2
L∞

t L2
x

+ ‖g1‖
2
L1

tL
2
x

+ ‖g2‖
L2

tH
− 1

2
x

‖v‖
L2

tH
1
2

x

.
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Then it remains to prove the positive commutator bound

(3.30) 〈i[A,Q]v, v〉 ≥ c1‖v‖
2

L2
tH

1
2

x

− c2‖v‖
2
L2

t,x
.

The positive contribution comes from the second order terms in P . Precisely, we have

i[Dia
ijDj , Q(x,D)] = Op(Haq) +O(1)L2→L2 .

The first symbol is positive, and we can obtain a bound from below by G̊arding’s inequal-
ity. The first order term yields an L2 bounded commutator, and the zero order term is
L2 bounded by itself.

Here, we remind the reader that we are not working with classical smooth symbols
but instead with symbols of limited regularity, and we refer the interested reader to the
discussion in Taylor [29, p. 45] for further details on these otherwise classical results. �

3.5. Non-trapping metrics: Proof of Theorem 1.12. The argument is similar to
the above one, with some obvious modifications. Instead of (3.26) we have

(3.31) ‖u‖2
L∞

t L
2
x

. ‖u0‖
2
L2 + ‖f1‖

2
L1

tL
2
x

+ ‖u‖X‖f2‖X′

while (3.27) is replaced by

(3.32) ‖(1 − ρ)(u− uρ)‖
2
X . ‖u‖2

L∞
t L2

x
+ ‖f1‖

2
L1

tL
2
x

+ ‖ρ(u− uρ)‖
2
X + ‖f2‖

2
X′

+ ‖〈x〉−2(u− uρ)‖
2
L2

t,x
.

The conclusion of Theorem 1.12 is obtained by combining the estimates (3.31), (3.25)
and (3.32) and applying (2.9) to reduce the error terms to the form presented in (1.23).

It remains to prove (3.32). We first compute

Dtuρ =
(

∫

(1 − ρ) dx
)−1[

〈(Dt +A)u, (1 − ρ)〉 − 〈Au, (1 − ρ)〉
]

=
(

∫

(1 − ρ) dx
)−1[

〈f1 + f2, (1 − ρ)〉 − 〈u− uρ, A(1 − ρ)〉
]

.

The function v = (1 − ρ)(u− uρ) solves

Pv = (1− ρ)(f1 + f2)− (1− ρ)
(

∫

(1− ρ) dx
)−1[

〈f1 + f2, (1− ρ)〉− 〈u− uρ, A(1− ρ)〉
]

+ [A, (1 − ρ)](u − uρ).

Then we apply (3.29) to v to obtain

‖v‖2

L2
tH

1
2

x

. ‖v‖2
L∞

t L2
x

+ ‖(1 − ρ)f1‖
2
L1

tL
2
x

+ ‖[A, (1 − ρ)](u− uρ)‖
L2

tH
− 1

2
x

+ ‖(1 − ρ)f2‖
2

L2
tH

− 1
2

x

+ ‖〈x〉−2(u − uρ)‖
2
L2

t,x

. ‖u‖2
L∞

t L2
x

+ ‖f1‖
2
L1

tL
2
x

+ ‖ρ(u− uρ)‖
2
X + ‖f2‖

2
X′ + ‖〈x〉−2(u− uρ)‖

2
L2

t,x

and (3.32) follows.
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4. Time independent nontrapping metrics

The aim of this section is to prove Theorems 1.19,1.21. Thus we work with a non-
trapping, self-adjoint operator A whose coefficients are time independent. We prove
Theorem 1.19 in detail, and then outline the modifications which are needed for Theo-
rem 1.21.

4.1. Proof of Theorem 1.19. Here we shall provide the details for the n 6= 2 case. The
general case follows with the obvious logarithmic adjustments to the X̃ spaces in n = 2.

We break the proof into steps.

Step 1: Without any restriction, we assume that u0 = 0 and that u is the forward
solution to (1.1). Nonzero initial data u0 can be easily added in via a TT ∗ argument.

Step 2: We add a damping term to the equation

(Dt +A− iε)uε = f

in order to insure global square integrability of the solution uε. Applying our nontrapping
estimate (1.22) we have

(4.1) ‖uε‖X̃ . ‖f‖X̃′ + ‖uε‖L2
t,x(R×B(0,2R)).

We want to eliminate the second term on the right (when we add Pc on the left).

Step 3: We want to take a Fourier transform in time and use Plancherel’s theorem. For
this we need to work with Hilbert spaces. These are defined using the structure introduced
in the previous section. We denote by α a family of positive sequences (α(k)j)j≥k− which
have sum 1 for each k and by A the collection of such sequences. For α ∈ A we define
the Hilbert space X̃α with norm

‖u‖2
X̃α

=
∑

k

2k‖Sku‖
2
Xk,α(k)

+ ‖〈x〉−1u‖2
L2

t,x

as well as its dual X̃ ′
α. Since

‖u‖X̃ ≈ sup
α∈A

‖u‖X̃α
, ‖u‖X̃′ ≈ inf

α∈A
‖u‖X̃′

α

we can rewrite (4.1) in the equivalent form

‖uε‖X̃α
. ‖f‖X̃′

β
+ ‖uε‖L2

t,x(R×B(0,2R)), α, β ∈ A.

We denote by X0
α the spatial version of Xα, i.e. Xα = L2

tX
0
α. Then we take a time

Fourier transform, and by Plunderer this is equivalent to

‖ûε‖L2
τX̃

0
α

. ‖f̂‖L2
τ (X̃0

β)′ + ‖ûε‖L2
τ,x(R×B(0,2R)).

This is in turn equivalent to the fixed τ bound

‖ûε(τ)‖X̃0
α

. ‖f̂(τ)‖(X̃0
β)′ + ‖ûε(τ)‖L2(B(0,2R)),

which we rewrite in the form

‖v‖X̃0
α

. ‖(A− τ − iε)v‖(X̃0
β)′ + ‖v‖L2(B(0,2R)),
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or, optimizing with respect to α, β ∈ A,

(4.2) ‖v‖X̃0 . ‖(A− τ − iε)v‖(X̃0)′ + ‖v‖L2(B(0,2R)).

A similar computation shows that the estimate that we want to prove, namely (1.26)
with u0 = 0, can be rewritten in the equivalent form

(4.3) ‖Pcv‖X̃0 . ‖(A− τ − iε)v‖(X̃0)′

uniformly with respect to τ ∈ R, ε > 0.

Step 4: When |τ | is large, (4.3) follows from (4.2) combined with the elliptic bound

(4.4) τ1/4‖v‖L2(B(0,2R)) . ‖v‖X̃0 + ‖(A− τ − iε)v‖(X̃0)′ .

To prove this we replace v by w = (1 − ρ)v and rewrite it in the form

τ1/4‖w‖L2 . ‖w‖
H

1
2

+ ‖(A− τ − iε)w‖
H− 1

2

for w with compact support. Since

τ‖w‖
H− 3

2
. ‖(A− τ − iε)w‖

H− 3
2

+ ‖Aw‖
H− 3

2
. ‖(A− τ − iε)w‖

H− 1
2

+ ‖w‖
H

1
2
,

the bound (4.4) follows by interpolation.

Step 5: For τ in a bounded set we argue by contradiction. If (4.3) does not hold
uniformly then we find sequences

εn → 0, τn → τ,

and vn ∈ X̃0 with Pcvn = vn and

‖(A− τn − iεn)vn‖(X̃0)′ → 0, ‖vn‖L2(B(0,2R)) = 1.

On a subsequence we have

vn → v weakly* in X̃0.

Since X̃0 ⊂ H
1
2

loc, on a subsequence we have the strong convergence

vn → v in L2
loc.

Hence we have produced a function v with

(4.5) v ∈ X̃0, Pcv = v, (A− τ)v = 0, ‖v‖L2(B(0,2R)) = 1.

Depending on the sign of τ we consider three cases.

Step 6: If τ < 0 then, using the bound (2.16) for the lower order terms in A, we
obtain

‖Dia
ijDjv − τv‖(X̃0)′ . ‖v‖X̃0 .

Then
‖v‖2

X̃0 & 〈v,Dia
ijDjv − τv〉 & ‖v‖2

H1 ,

and therefore v ∈ L2 is an eigenfunction. This contradicts the relation Pcv = v.

Step 7: If τ = 0 then there is either a zero eigenvalue or a zero resonance, both of
which are excluded by hypothesis.

Step 8: It remains to consider the most difficult case τ > 0. Here the properties
(4.5) of v are no longer sufficient to obtain a contradiction. Instead we will establish
an additional property of v, namely that v satisfies an outgoing radiation condition. In
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order to state this, we need an additional regularity property for v. We define the space
X̃0
med with norm

‖v‖X̃0
med

= ‖v‖L2(D0) + ‖∇v‖L2(D0) + sup
j>0

‖|x|−
1
2 v‖L2(Dj) + ‖|x|−

1
2∇v‖L2(Dj)

which coincides with the X̃0 norm for intermediate frequencies but improves it at both
low and high frequencies. Then we claim that v ∈ X̃0

med. More precisely, we will prove
the elliptic bound

(4.6) ‖v‖X̃0
med

. ‖v‖X̃0 + ‖(A− τ − iε)v‖(X̃0)′ , 0 < τ0 < τ < τ1

with implicit constants which may depend on the thresholds τ0, τ1.

Now we define the closed subspace X̃0
out of X̃0,

X̃0
out = {v ∈ X̃0

med : lim
j→∞

‖r−1/2(∂r − iτ1/2)v‖L2(Dj) = 0},

and also claim that v has the additional property

(4.7) v ∈ X̃0
out.

In other words this implies that v is a resonance contained inside the continuous spectrum.

We postpone the proof of (4.6) and (4.7) and conclude first our proof by contradiction,
by showing that there are no resonances inside the continuous spectrum. Such results
are known, see for instance [1], but perhaps not in the degree of generality we need here.
In any case, for the sake of completeness, we provide a full proof.

Let χ be a smooth spherically symmetric increasing bump function χ with χ(r) ≡ 0
for r < 1/2 and χ(r) ≡ 1 for r > 2. Since A is self-adjoint, for large j we commute

0 =
i

2
〈[A,χ(2−jr)]v, v〉

= ℑ

〈

2−jχ′(2−jr)
(xia

ij

r
∂j − iτ1/2

)

v, v

〉

+ 2−jτ1/2〈χ′(2−jr)v, v〉

+ 2−j
〈

bi
xi
r
χ′(2−jr)v, v

〉

.

Using the Schwarz inequality, (1.8), and the outgoing radiation condition, we conclude
that

(4.8) lim
j→∞

‖r−1/2v‖L2(Dj) = 0

which shows that v has better decay at infinity. We note that this is the only use we
make of the radiation condition. From this, by elliptic theory, we also obtain a similar
decay for the gradient,

(4.9) lim
j→∞

‖r−1/2∇v‖L2(Dj) = 0.

To conclude we use (4.8) and (4.9) to show that in effect v ∈ L2; i.e. v is an eigenvalue.
Then by the results of [16] v must be 0. Here, we shall again use a positive commutator
argument. The multiplier we use is the operator Qk, for some k ≤ 0, in Lemma 3.3 but
where for simplicity we set δ = 1. We have

0 = −2ℑ〈Qkv, (A− τ)v〉 = 〈Ckv, v〉 − 2ℑ〈Qkv, (b
jDj +Djb

j + c)v〉
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where

Ck = i[Dla
lmDm, Qk].

The expression of the operator Ck is exactly as in the formula (3.10) but with unmollified
coefficients aij . The main contribution C0

k is estimated as there by

〈C0
kv, v〉 &

〈

α(2k|x|)

〈2kx〉
∇v,∇v

〉

,

while the error terms are bounded by
〈

κ(|x|)

〈2kx〉
∇v,∇v

〉

respectively
〈

〈x〉−2v, v
〉

.

The expression ℑ〈Qkv, (b
jDj +Djb

j + c)v〉 can also be included in the two error terms.
Thus we obtain

〈

α(2k|x|)

〈2kx〉
∇v,∇v

〉

.

〈

κ(|x|)

〈2kx〉
∇v,∇v

〉

+
〈

〈x〉−2v, v
〉

.

For |x| > 2M we have, by (3.7),

κ(x) . εα(2kx);

therefore the first term on the right is essentially negligible. We obtain
∫

α(2k|x|)

〈2kx〉
|∇v|2dx .

∫

D<M

|∇v|2dx+

∫

〈x〉−2|v|2dx.

At the same time we have

0 =

〈

α(2k|x|)

〈2kx〉
v, (A− τ)v

〉

,

which after an integration by parts yields

τ

∫

α(2k|x|)

〈2kx〉
|v|2dx .

∫

α(2k|x|)

〈2kx〉
|∇v|2dx+

∫

〈x〉−2|v|2dx.

Combining the two relations we obtain
∫

α(2k|x|)

〈2kx〉
(|∇v|2 + |v|2)dx .

∫

D<M

|∇v|2dx+

∫

〈x〉−2|v|2dx.

Finally we let k → −∞ to obtain
∫

|∇v|2 + |v|2dx .

∫

D<M

|∇v|2dx+

∫

〈x〉−2|v|2dx <∞

which shows that v ∈ L2.

We note that (4.8) and (4.9) are not used in any quantitative way but serve only to
justify the previous computations. More precisely, one can introduce in the computation
a cutoff outside a large enough ball and then pass to the limit.

It remains to prove (4.6) and (4.7).
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Step 9: Here we prove (4.6). We begin with the bounds on v. This is trivial for the
high frequencies of v,

‖S>0v‖X0
0

. ‖v‖X̃0 .

To estimate the low frequencies, we compute

(τ + iε)S<0v = S<0Av − S<0(A− τ − iε)v.

Writing A in the generic form

A = D2a+Db+ c,

we have

‖S<0v‖X0
0

. ‖S<0D
2av‖X0

0
+ ‖S<0bv‖X0

0
+ ‖S<0cv‖X0

0
+ ‖S<0(A− τ − iε)v‖X0

0

. ‖av‖X0 + ‖bv‖X0
0

+ ‖cv‖X0
0

+ ‖(A− τ − iε)v‖(X̃0)′

. ‖v‖X0 + ‖〈x〉−1v‖L2 + ‖(A− τ − iε)v‖(X̃0)′ .

Once we control ‖v‖X0
0
, we can also obtain control of ‖∇v‖X0

0
by a straightforward elliptic

estimate.

Step 10: Here we prove the outgoing radiation condition (4.7) for v. This is obtained
from similar outgoing radiation conditions for the functions vn. However, vn only con-
verges to v in a weak sense. Hence we need to produce some uniform estimates for vn
which will survive in the limit.

(4.10) ‖r−
1
2 (Dr − τ

1
2 )u‖2

L2(Dj)

.

∞
∑

k=0

2−δ(k−j)
−
(

‖〈r〉
1
2 (A− τ − iε)u‖L2(Dk)‖〈r〉

− 1
2 (u,∇u)‖L2(Dk)

+κk‖r
− 1

2 (u,∇u)‖2
L2(Dk)

)

.

In other words, there is decay when k < j. Applying to vn, in the weak limit we obtain

‖r−
1
2 (Dr − τ

1
2 )v‖2

L2(Dj)
.

∞
∑

k=0

2−δ(k−j)
−

κk

which implies (4.7).

The lower order terms in A can be treated perturbatively in (4.10). I.e. they can be
included in the right hand side. Hence without any restriction in generality we assume
that

A = Dia
ijDj .

We use again a positive commutator method. The multiplier is the self-adjoint operator

Q = b(R)
(xia

ij

R
Dj − τ

1
2

)

+
(

Dj
aijxi
R

− τ
1
2

)

b(R), R2 = xia
ijxj

where the coefficient b(R) is smooth, increasing and satisfies

b(R) ≈

{

1 R > 2j+2

(2−jR)δ, 1 < R < 2j+2

with δ a small parameter. We write

(4.11) − 2ℑ〈Qu, (A− τ − iε)u〉 = 〈i[A,Q]u, u〉 − 2ε〈Qu, u〉.



40 JEREMY MARZUOLA, JASON METCALFE, AND DANIEL TATARU

We expect to get the main positive contribution from the first term on the right. The
second term on the right on the other hand is essentially negative definite due to the fact
that its symbol is negative on the characteristic set of A − τ . Finally, the term on the
left is bounded simply by Cauchy-Schwarz.

To shorten the notations, in the sequel we denote by E error terms of the form

E = DO(b(R)r−1κ(|x|))D +O(b(R)r−1κ(|x|)).

Such terms occur whenever aij is either differentiated or replaced by the identity and are
easily estimated in terms of the right hand side of (4.10).

We evaluate the commutator i[A,Q]. A similar computation was already carried out
in (3.17), which we reuse with k = 0, δ = 1 and φ(r) = b(R)/R. We obtain

i[A,Q] = 4D
b(R)

R
D + 4Dx

(

b′(R)

R2
−
b(R)

R3

)

xD − 2τ
1
2

(

b′(R)

R
xD +Dx

b′(R)

R

)

+ E

= 2D

(

2
b(R)

R
− b′(R)

)

D − 2Dx

(

2
b(R)

R3
−
b′(R)

R2

)

xD

+ b′(R)(A− τ) + (A− τ)b′(R) + 2
(

Dx− τ
1
2 r
) b′(R)

rR

(

xD − rτ
1
2

)

+ E.

Our choice of b insures that the coefficient in the first two terms is positive,

2
b(R)

R
− b′(R) ≥ 0 R > 1.

Hence we obtain

〈i[A,Q]u, u〉 & 2〈b′(R)(Dr − τ
1
2 )u, (Dr − τ

1
2 )u〉 + 2ℜ〈(A− τ − iε)u, b′(R)u〉 + 〈Eu, u〉

where we have inserted a harmless ε term.

It remains to evaluate the second term on the right in (4.11). We have

τ
1
2Q = −

(

Dk
xla

kl

R
− τ1/2

)

b(R)
(xia

ij

R
Dj − τ1/2

)

+
b(R)

2
(A− τ) + (A− τ)

b(R)

2

−
(

Di −Dl
alkxkxi
R2

)

aijb(R)
(

Dj −
xjxma

mn

R2
Dn

)

−
1

2
(Ab(R)).

The first and third terms are negative while the last term can be included in E. Hence
we obtain

τ
1
2 〈Qu, u〉 ≤ ℜ〈b(R)u, (A− τ − iε)u〉 + 〈Eu, u〉.

Returning to (4.11), we insert the bounds for the two terms on the right to obtain

〈b′(R)(Dr − τ
1
2 )u, (Dr − τ

1
2 )u〉 . ℜ〈(A− τ − iε)u, (2b′(R)+ ετ−

1
2 b(R)+ iQ)u〉+ 〈Eu, u〉.

In the region Dj , we have b′ ≈ 2−j ≈ r−1; therefore (4.10) follows.

4.2. Proof of Theorem 1.21. We proceed as in the nonresonant case. The bound (4.1)
is replaced by

(4.12) ‖uε‖X . ‖f‖X′ + ‖uε − uερ‖L2
t,x(R×B(0,2R)).

Using Plancherel as in Step 3, this is equivalent to the spatial bound

(4.13) ‖v‖X0 . ‖(A− τ − iε)v‖(X0)′ + ‖v − vρ‖L2(B(0,2R))
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where X0 is the fixed time counterpart of X . On the other hand the estimate that we
want to prove, namely (1.28) with u0 = 0, has the equivalent form

(4.14) ‖v‖X0 . ‖(A− τ − iε)v‖(X0)′

uniformly with respect to τ ∈ R, ε > 0.

For τ away from 0 we can easily bound the local average of v. We have

(τ + iε)vρ = (Av)ρ − ((A− τ − iε)v)ρ.

Therefore, by Cauchy-Schwarz,

τ |vρ| . ‖(A− τ − iε)v‖(X0)′ + ‖v‖L2(B(0,2R)).

Hence we are able to bound v in X̃0 as well,

(4.15) ‖v‖X̃0 . ‖(A− τ − iε)v‖(X0)′ + ‖v‖L2(B(0,2R)), |τ | > τ0.

Consequently, the argument for large τ rests unchanged.

Consider now the proof by contradiction.

In the case τ < 0, we use the bound (2.17) instead of (2.16) for the lower order terms
and show that v is an eigenvalue. However, by the maximum principle, there can be no
negative eigenvalue for A.

The case τ = 0 is the interesting one. Then v satisfies

v ∈ X, Av = 0, ‖v − vρ‖L2(B(0,2R)) = 1.

Hence v is a zero generalized eigenvalue; therefore it must be constant. But this contra-
dicts the last relation.

Finally, due to (4.15), the case τ > 0 is identical to the nonresonant case.

4.3. Proof of Remark 1.23. If Av = 0 then from

0 = 〈A(v − vDj ), χ<j(v − vDj )〉

and integration by parts, we obtain
∫

D<j

|∇v|2 dx .

∫

Dj

|x|−2|v − vDj |
2dx.

The right hand side is square summable with respect to j; therefore it decays as j → ∞.
We conclude that ∇v = 0, and therefore v is constant.

5. Strichartz estimates

In this section we combine the smoothing estimates of the preceding sections with the
long-time parametrix construction of [28] to obtain the Strichartz estimates of Theorems
1.5, 1.6, 1.13, 1.14, 1.20, 1.22. We begin by recalling the relevant results of [28]. A
first result asserts that full Strichartz/local smoothing estimates hold under a smallness
assumptions on κ in (1.4).
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Theorem 5.1 ([28]). Assume that the coefficients aij satisfy (1.4) with κ sufficiently
small and b = 0, c = 0. Then for any Strichartz pairs (p1, q1), (p2, q2), the solution u to
(1.1) satisfies

(5.1) ‖u‖Lp1
t L

q1
x ∩X . ‖u0‖L2 + ‖f‖

L
p′
2

t L
q′2
x +X′

.

For large κ, which is the case we are interested in here, it is shown that

Theorem 5.2 ([28]). Assume that the coefficients aij satisfy (1.4) and b = 0, c = 0.
Then there is a parametrix K =

∑

kKkSk for Dt+A with each Kk localized at frequency

2k so that the following properties hold:

(i) For any Strichartz pairs (p1, q1) and (p2, q2) we have

(5.2) ‖KkSkf‖Lp1
t L

q1
x ∩Xk

. ‖Skf‖
L

p′
2

t L
q′
2

x

and

(5.3) ‖Kf‖Lp1
t L

q1
x ∩X . ‖f‖

L
p′
2

t L
q′
2

x

.

(ii) For any Strichartz pair (p, q), we have

(5.4) ‖((Dt +A)K − I)f‖X′ . ‖f‖
Lp′

t L
q′
x
.

As a consequence of this, it is also proved in [28] that

Theorem 5.3 ([28]). Assume that the coefficients aij satisfy (1.4) and b = 0, c = 0.
Then for any Strichartz pair (p, q), we have

(5.5) ‖u‖Lp
tL

q
x

. ‖u‖X∩L∞
t L

2
x

+ ‖Pu‖X′.

These are slight modifications of the results in [28] as our assumption (1.4) is not scale

invariant and as such we have modified the definitions of X̃k and A(k) slightly. Scale
invariance, however, was only assumed in [28] as a convenience, and the modifications
that are necessary to adapt the proofs to the current setting are straightforward.

The above results are suitable for the high dimension n ≥ 3 and for the low dimensional
resonant case. However, for the low dimensional nonresonant case, we need a modified
formulation of the last two theorems.

Theorem 5.4. Assume that the coefficients aij satisfy (1.4) and b = 0, c = 0. There
there is a parametrix K for Dt +A with the following properties:

(i) For any Strichartz pairs (p1, q1) and (p2, q2) we have

(5.6) ‖Kf‖Lp1
t L

q1
x ∩X̃ . ‖f‖

L
p′
2

t L
q′
2

x

.

(ii) For any Strichartz pair (p, q),

(5.7) ‖((Dt +A)K − I)f‖X̃′ . ‖f‖
Lp′

t L
q′
x
.

As a consequence of this, by the same duality argument as in [28], we obtain
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Theorem 5.5. Assume that the coefficients aij satisfy (1.4) and b = 0, c = 0. Then for
any Strichartz pair (p, q), we have

(5.8) ‖u‖Lp
tL

q
x

. ‖u‖X̃∩L∞
t L2

x
+ ‖Pu‖X̃′.

Proof of Theorem 5.4. The conclusion of the theorem follows by replacing the parametrix
K with (1−T )K+R, where T and R are linear operators which are translation invariant
in t and have the following properties:

(5.9) ‖(1 − T )u‖X̃ . ‖u‖X ,

(5.10) ‖(1 − T )Kf‖Lp1
t L

q1
x

. ‖f‖
L

p′
2

t L
q′2
x

,

(5.11) ‖ARf‖X′ + ‖Rf‖X̃∩L
p1
t L

q1
x

. ‖f‖
L

p′
2

t L
q′
2

x

,

(5.12) ‖ATu‖X′ + ‖TAu‖X′ . ‖u‖X,

(5.13) ‖(T −DtR)f‖X̃′ . ‖f‖
Lp′

t L
q′
x
.

We seek T , R of the form

Tu =

0
∑

k=−∞

TkSku, Rf =

0
∑

k=−∞

RkSkf

where the operators Tk, Rk are localized at frequency 2k, respectively ≥ 2k and are
defined by

Tk = u(t, 0)φk, Rkf = φ0(x)D
−1
t St>0f(t, 0) −

−1
∑

j=k

(φj+1(x) − φj(x))D
−1
t St>2jf(t, 0)

with φk(x) = φ(2kx) and

φ(0) = 1, supp φ̂ ⊂ {|ξ| ∈ [1/2, 2]}.

Notice that Tu = uin with uin as in Section 2.2. As such, the bound (5.9) follows
directly from (2.2) and (2.5). The bound (5.10) follows similarly using a Bernstein bound,
Littlewood-Paley theory, and (5.2). For (5.12) we use Proposition 2.2 to replace A by
∑

A(k)Sk. Then we use the spatial localization coming from T , (2.3), and the two
derivatives gain from A(k).

We consider now the X bounds in (5.11). For the second term in the left of (5.11),
using Bernstein’s inequality twice yields

∥

∥(φj+1(x) − φj(x))D
−1
t St>2j(Skf)(t, 0)

∥

∥

Xj
. 2

2−n
2 j2

2j(−1+ 1
p′
2
− 1

2 )
‖Skf(t, 0)‖

L
p′
2

t

. 2
2−n

2 j2
2j(−1+ 1

p′
2
− 1

2 )
2

n
q′
2
k
‖Skf‖

L
p′
2

t L
q′
2

x

= 2
n
q′2

(k−j)
‖Skf‖

L
p′
2

t L
q′2
x

.
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The j = 0 term in Rk is estimated in a similar fashion. Summing with respect to
k ≤ j ≤ 0 we use the off-diagonal decay to obtain

‖Rf‖X .





0
∑

j=−∞

(

j
∑

k=−∞

2
n
q′
2
(k−j)

‖Skf‖
L

p′
2

t L
q′2
x

)2




1
2

.

(

0
∑

k=−∞

‖Skf‖
2

L
p′
2

t L
q′
2

x

)
1
2

.

The boundX bound for the second term in the left of (5.11) then follows from Littlewood-
Paley theory. The Lp1t L

q1
x estimate follows from similar applications of Bernstein esti-

mates and Littlewood-Paley theory.

For the first term in the left of (5.11), we may apply Proposition 2.2 to again replace
A by

∑

A(k)Sk. As the derivatives in A(k) yield a 22k factor, the estimate for the first
term in (5.11) follows from a very similar argument.

In order to complete the proof of (5.11), we examine the L2 part of the X̃ norm. We
may first apply (1.10) and (1.2) to reduce the problem to the bound

‖
∑

k<0

RkSkf‖L2
t,x({|x|≤1}) . ‖f‖

L
p′
2

t L
q′2
x

in dimensions n = 1, 2. Here we use the fact that φj+1(0) − φj(0) = 0. Using this gain
in a fashion similar to that from Section 2.2, we have

‖φj+1 − φj‖L2({|x|≤1}) . 2j .

Thus, arguing as above,

‖RkSkf‖L2({|x|≤1}) .
∑

j≥k

2j2
2j(−1+ 1

p′
2
− 1

2 )
2

n
q′
2
k
‖Skf‖

L
p′
2

t L
q′
2

x

. 2
n
2 k‖Skf‖

L
p′
2

t L
q′2
x

.

This can clearly be summed to yield the desired bound.

It remains to prove (5.13). For this we will show the bound

(5.14) ‖〈x〉(T −DtR)f‖L2 . ‖f‖
Lp′

t L
q′
x
.

We have

(T −DtR)f = −
∑

k<0



φ0S
t
≤0(Skf)(t, 0) +

−1
∑

j=k

(φj+1 − φj)S
t
≤2j(Skf)(t, 0)



 .

Arguing as above we obtain

‖(φj+1 − φj)S
t
≤2j(Skf)(t, 0)‖L2 . 2j2

n
q′2

(k−j)
‖Skf‖

L
p′
2

t L
q′2
x

respectively

‖x(φj+1 − φj)S
t
≤2j(Skf)(t, 0)‖L2 . 2

n
q′2

(k−j)
‖Skf‖

L
p′
2

t L
q′2
x
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and similarly for the j = 0 term. Then (5.14) is obtained by summation using the
off-diagonal decay and Littlewood-Paley theory. �

Theorems 5.4, 5.5 will allow us to derive Theorems 1.5, 1.13, 1.20 from Theorems 1.3,
1.11, 1.19. Similarly, Theorems 5.1, 5.3 will allow us to derive Theorems 1.6, 1.14, 1.22
from Theorems 1.4, 1.12, 1.21.

5.1. Proof of Theorems 1.13, 1.20, 1.14, 1.22. The four proofs are almost identical,
so we discuss only the first theorem. Suppose the function u solves

Pu = f + g, f ∈ X̃ ′, g ∈ L
p′2
t L

q′2
x

with initial data

u(0) = u0.

We let K be the parametrix of Theorem 5.4 and denote

v = u−Kg.

Then

Pv = f + g − PKg, v(0) = u(0) −Kg(0).

Using the bounds (2.16), (5.6), and (5.7), we obtain

‖v(0)‖L2 + ‖Pv‖X̃′ . ‖u(0)‖L2 + ‖f‖X̃′ + ‖g‖
L

p′
2

t L
q′2
x

.

Then Theorem 1.11 gives

‖v‖L∞
t L2

x∩X̃
+ ‖Pv‖X̃′ . ‖u(0)‖L2 + ‖f‖X̃′ + ‖g‖

L
p′
2

t L
q′
2

x

+ ‖v‖L2
t,x(A<2R).

Hence by (2.16) and Theorem 5.5 it follows that

‖v‖L∞
t L2

x∩X̃
+ ‖v‖Lp1

t L
p2
x

. ‖u(0)‖L2 + ‖f‖X̃′ + ‖g‖
L

p′
2

t L
q′
2

x

+ ‖v‖L2
t,x(A<2R).

Using again (5.7) we return to u to obtain

‖u‖L∞
t L2

x∩X̃
+ ‖u‖Lp1

t L
p2
x

. ‖u(0)‖L2 + ‖f‖X̃′ + ‖g‖
L

p′
2

t L
q′
2

x

+ ‖u‖L2
t,x(A<2R)

concluding the proof of the Theorem.

5.2. Proof of Theorem 1.5. Suppose the function u solves

Pu = f + ρg, f ∈ X̃ ′
e, g ∈ L

p′2
t L

q′2
x

with initial data

u(0) = u0.

We consider two additional spherically symmetric cutoff functions ρ1 and ρ2 supported
in {|x| > 2M} so that ρ2 = 1 in the support of ρ1 and ρ1 = 1 in the support of ρ.

Let K be the parametrix of Theorem 5.4 and denote

v = u− ρ1Kρg.

Then

Pv = f + ρ2(ρ1(ρg − PKρg) − [P, ρ1]Kρg), v(0) = u(0) − ρ1Kρg(0).
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Using the bounds (2.16), (5.6), and (5.7), we obtain

‖v(0)‖L2 + ‖Pv‖X̃′
e2

. ‖u(0)‖L2 + ‖f‖X̃′
e
+ ‖g‖

L
p′
2

t L
q′
2

x

where X̃ ′
e2 is similar to X̃ ′

e but with ρ replaced by ρ2. Then we can apply Theorem 1.3
to v to obtain

‖v‖L∞
t L2

x∩X̃e
+ ‖Pv‖X̃′

e2
. ‖u(0)‖L2 + ‖f‖X̃′

e
+ ‖g‖

L
p′
2

t L
q′2
x

+ ‖v‖L2
t,x(|x|≤2M+1).

We truncate v with ρ and compute

Pρv = [P, ρ]v + ρPv.

Then we can estimate

‖v‖L∞
t L2

x
+ ‖ρv‖X̃ + ‖P (ρv)‖X̃′ . ‖u(0)‖L2 + ‖f‖X̃′

e
+ ‖g‖

L
p′
2

t L
q′2
x

+ ‖v‖L2
t,x(|x|≤2M+1).

Hence by (2.16) and Theorem 5.5 applied to ρv, we obtain

‖v‖L∞
t L2

x
+ ‖ρv‖X̃∩L

p1
t L

q1
x

. ‖u(0)‖L2 + ‖f‖X̃′
e
+ ‖g‖

L
p′
2

t L
q′2
x

+ ‖v‖L2
t,x(|x|≤2M+1).

Finally, we use (5.6) to return to u and obtain

‖u‖L∞
t L2

x
+ ‖ρu‖X̃∩L

p1
t L

q1
x

. ‖u(0)‖L2 + ‖f‖X̃′
e
+ ‖g‖

L
p′
2

t L
q′2
x

+ ‖u‖L2
t,x(|x|≤2M+1),

concluding the proof of the Theorem.

5.3. Proof of Theorem 1.6. The argument is similar to the one above. The chief
difference is that we can no longer use the truncations by ρ, ρ1, ρ2 and instead we use
the modified truncation operators such as Tρ.

Suppose the function u solves

Pu = f + ρg, f ∈ X ′
e, g ∈ L

p′2
t L

q′2
x

with initial data
u(0) = u0.

We let K be the parametrix of Theorem 5.1 and denote

v = u− Tρ1Kρg

Then we can write

Pv = f + Tρ2(Tρ1(ρg − PKρg) − [P, Tρ1 ]Kρg), v(0) = u(0) − Tρ1Kρg(0).

Here we compute the commutator

[A, Tρ1 ]w = Aρ1(w−wρ1)−ρ1A(w−wρ1 )−(1−ρ)(Aw)ρ1 = [A, ρ1](w−wρ1 )−(1−ρ)(Aw)ρ1 .

Also we have

(Aw)ρ1 = cρ

∫

(1 − ρ1)A(w − wρ1 )dx = −cρ

∫

(w − wρ1)Aρ1dx.

Then using the bounds (2.17), (5.3), and (5.4), we obtain

‖v(0)‖L2 + ‖Pv‖X′
e2

. ‖u(0)‖L2 + ‖f‖X′
e
+ ‖g‖

L
p′
2

t L
q′
2

x

.

By Theorem 1.3 for v we get

‖v‖L∞
t L2

x∩Xe
+ ‖Pv‖X′

e2
. ‖u(0)‖L2 + ‖f‖X′

e
+ ‖g‖

L
p′
2

t L
q′2
x

+ ‖(1 − ρ)(v − vρ)‖L2
t,x
.
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We truncate v with Tρ and compute as above the commutator [P, Tρ]. Then we estimate

‖v‖L∞
t L2

x
+‖Tρv‖X +‖P (Tρv)‖X′ . ‖u(0)‖L2 +‖f‖X′

e
+‖g‖

L
p′
2

t L
q′2
x

+‖(1−ρ)(v−vρ)‖L2
t,x
.

Hence by (2.17) and Theorem 5.3 applied to Tρv, we obtain

‖v‖L∞
t L2

x
+ ‖Tρv‖X∩L

p1
t L

q1
x

. ‖u(0)‖L2 + ‖f‖X′
e
+ ‖g‖

L
p′
2

t L
q′2
x

+ ‖(1 − ρ)(v − vρ)‖L2
t,x
.

Finally, we use (5.3) to return to u and obtain

‖u‖L∞
t L2

x
+ ‖Tρu‖X∩L

p1
t L

q1
x

. ‖u(0)‖L2 + ‖f‖X′
e
+ ‖g‖

L
p′
2

t L
q′2
x

+ ‖(1 − ρ)(u− uρ)‖L2
t,x
,

concluding the proof of the Theorem.
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