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Polygenic overlap between schizophrenia risk and antipsychotic 
response: a genomic medicine approach
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PhD, Anna K Kähler, PhD, Paul J Kenny, PhD, Michael J Keiser, PhD, Jennifer L Moran, 
PhD, Prof. Christina M Hultman, PhD, Stuart A Scott, PhD, Prof. Patrick F Sullivan, MD, 
Shaun M Purcell, PhD, Joel T Dudley, PhD, and Prof. Pamela Sklar, MD
Division of Psychiatric Genomics, Department of Psychiatry (D M Ruderfer PhD, A W Charney 
MD, S M Purcell PhD, Prof P Sklar MD), Institute for Genomics and Multiscale Biology (D M 
Ruderfer, A W Charney, B Readhead MBBS, B A Kidd PhD, S M Purcell, J T Dudley PhD, Prof P 
Sklar), Department of Genetics and Genomic Sciences (B Readhead, B A Kidd, S A Scott PhD, S 
M Purcell, J T Dudley, Prof P Sklar), Department of Pharmacology and Systems Therapeutics (P 
J Kenny PhD), and Friedman Brain Institute (Prof P Sklar), Icahn School of Medicine at Mount 
Sinai, New York, NY, USA (D M Ruderfer, S M Purcell); Stanley Center for Psychiatric Research, 
Broad Institute of MIT and Harvard, Cambridge, MA, USA (D M Ruderfer, J L Moran PhD, S M 
Purcell); Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, 
Sweden (A K Kähler PhD, Prof C M Hultman PhD); Department of Pharmaceutical Chemistry (M 
J Keiser PhD), USA Department of Bioengineering & Therapeutic Sciences (M J Keiser), and 
Institute of Neurodegenerative Diseases (M J Keiser), University of California, San Francisco, CA, 
USA; Department of Genetics, University of North Carolina, Chapel Hill, NC, USA (Prof P F 
Sullivan MD); and Analytic and Translational Genetics Unit, Psychiatric and Neurodevelopmental 
Genetics Unit, Massachusetts General Hospital, Boston, MA, USA (S M Purcell)

Summary

Background—Therapeutic treatments for schizophrenia do not alleviate symptoms for all 

patients and efficacy is limited by common, often severe, side-effects. Genetic studies of disease 

can identify novel drug targets, and drugs for which the mechanism has direct genetic support have 

increased likelihood of clinical success. Large-scale genetic studies of schizophrenia have 

increased the number of genes and gene sets associated with risk. We aimed to examine the 

overlap between schizophrenia risk loci and gene targets of a comprehensive set of medications to 

potentially inform and improve treatment of schizophrenia.

Correspondence to: Prof Douglas M Ruderfer, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA, 
douglas.ruderfer@mssm.edu. 

Contributors
DMR, AWC, JTD, and PS designed the study. DMR, AWC, BR, BAK, and SMP contributed to statistical analyses. AKK, JLM, CMH, 
and PFS contributed samples and phenotypes. MJK and SAS provided pharmacological data. DMR, AWC, PJK, SMP, JTD, and PS 
contributed to main interpretations. DMR, AWC, and PS performed the primary drafting of the report. All authors contributed to, read, 
and approved the final manuscript.

Declaration of interests
MJK is a co-founder and board member of SeaChange Pharmaceuticals. JTD reports personal fees for bioinformatics consulting from 
Janssen Pharmaceuticals. All other authors declare no competing interests.

See Online for appendix

HHS Public Access
Author manuscript
Lancet Psychiatry. Author manuscript; available in PMC 2017 April 01.

Published in final edited form as:
Lancet Psychiatry. 2016 April ; 3(4): 350–357. doi:10.1016/S2215-0366(15)00553-2.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Methods—We defined schizophrenia risk loci as genomic regions reaching genome-wide 

significance in the latest Psychiatric Genomics Consortium schizophrenia genome-wide 

association study (GWAS) of 36 989 cases and 113 075 controls and loss of function variants 

observed only once among 5079 individuals in an exome-sequencing study of 2536 schizophrenia 

cases and 2543 controls (Swedish Schizophrenia Study). Using two large and orthogonally created 

databases, we collated drug targets into 167 gene sets targeted by pharmacologically similar drugs 

and examined enrichment of schizophrenia risk loci in these sets. We further linked the exome-

sequenced data with a national drug registry (the Swedish Prescribed Drug Register) to assess the 

contribution of rare variants to treatment response, using clozapine prescription as a proxy for 

treatment resistance.

Findings—We combined results from testing rare and common variation and, after correction for 

multiple testing, two gene sets were associated with schizophrenia risk: agents against amoebiasis 

and other protozoal diseases (106 genes, p=0·00046, pcorrected =0·024) and antipsychotics (347 

genes, p=0·00078, pcorrected=0·046). Further analysis pointed to antipsychotics as having 

independent enrichment after removing genes that overlapped these two target sets. We noted 

significant enrichment both in known targets of antipsychotics (70 genes, p=0·0078) and novel 

predicted targets (277 genes, p=0·019). Patients with treatment-resistant schizophrenia had an 

excess of rare disruptive variants in gene targets of antipsychotics (347 genes, p=0·0067) and in 

genes with evidence for a role in antipsychotic efficacy (91 genes, p=0·0029).

Interpretation—Our results support genetic overlap between schizophrenia pathogenesis and 

antipsychotic mechanism of action. This finding is consistent with treatment efficacy being 

polygenic and suggests that single-target therapeutics might be insufficient. We provide evidence 

of a role for rare functional variants in antipsychotic treatment response, pointing to a subset of 

patients where their genetic information could inform treatment. Finally, we present a novel 

framework for identifying treatments from genetic data and improving our understanding of 

therapeutic mechanism.

Introduction

Schizophrenia is a debilitating disease affecting 0·7% of the population worldwide.1 

Although antipsychotics are effective treatments for schizophrenia, they do not alleviate all 

symptoms and often result in serious side-effects,2 reducing efficacy through poor 

adherence.3 In general, the reasons antipsychotic medications are ineffective for some 

patients remain unclear.

Genetic studies of schizophrenia have implicated genomic regions and genes with shared 

biological function. A genome-wide association study (GWAS) of 34 241 schizophrenia 

cases and 45 604 controls (36 989 cases and 113 075 controls with replication) identified 

108 independently associated regions.4 An exome-sequencing study of 2536 schizophrenia 

cases and 2543 controls demonstrated a polygenic burden of rare variants (disruptive 

variants seen once in 10 158 chromosomes) in sets of genes related to synaptic transmission, 

calcium channels, and genes with de-novo mutations in schizophrenia probands.5

A challenge is how to use genomic data to understand drug efficacy, improve drug design, 

and identify opportunities for drug repurposing. Genetic studies have identified drug targets; 
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for example two genes associated with LDL cholesterol, HMGCR6 and NPC1L1,7 are the 

main targets of the cholesterol-lowering drugs HMG-CoA reductase inhibitors (HMGCR) 

and ezetimibe (NPC1L1).8 DRD2, the main target of antipsychotics, is within one of the 108 

associated regions reported in schizophrenia.4 Rare disease variation can also predict drug 

effects; a novel obesity drug that inhibits DGAT1 (a gene implicated in a form of severe 

congenital diarrhoea9) had treatment-limiting, dose-dependent gastrointestinal side-effects, 

in particular diarrhoea.10 Findings from a recent study11 showed that drugs with genetically 

supported mechanisms proceeded further along the development pipeline and were more 

likely to be clinically successful.11 Taken together, these findings suggest that direct 

assessment of the overlap between genetics and drug targets has the potential to inform our 

knowledge of both drug mechanisms and disease pathology.

Research in context

Evidence before this study

Studies have shown a broad overlap between genes contributing to genetic risk of disease 

and the key targets of drugs that treat the disease. For example, the main gene targets of 

the cholesterol-lowering drugs statins and ezetimibe have been associated with 

cholesterol concentrations through genome-wide association studies. Further, drugs with 

direct genetic evidence supporting their targets are more likely to be clinically successful. 

There are also examples demonstrating consistent phenotypic outcomes from a drug 

targeting a gene and a specific variant within that gene. We sought articles related to 

schizophrenia that addressed whether plausible pharmacological interventions can be 

found in the overlap between disease risk-associated genes and known druggable targets, 

and whether deleterious mutations in genes targeted by a treatment can affect response to 

that treatment. We searched PubMed multiple times between June 1, 2013, and Aug 31, 

2015, using combinations of search terms including “schizophrenia”, “antipsychotics”, 

“pharmacogenetics”, “genetics”, and “drug response”. Abstracts in English were 

reviewed and limited evidence for specific genes was found. A review article gave the 

strongest support to a few genes, including DRD3,which encodes the main target of all 

antipsychotics.

Added value of this study

Our systematic evaluation using all available data and information on genome-wide 

genetic risk factors and druggable targets identified antipsychotics as the class of drugs 

with most direct genetic support for treating schizophrenia. We show that efficacy of 

these drugs is mediated through a complex polygenic mechanism including many genes 

not previously known to be involved in antipsychotic drug response or believed to 

contribute only to off -target effects. Additionally, we show that rare deleterious variants 

in genes targeted by antipsychotics and those previously implicated in being relevant to 

the pharmacogenetics of antipsychotics are enriched in individuals with treatment-

resistant schizophrenia.

Implications of all the available evidence

Ruderfer et al. Page 3

Lancet Psychiatry. Author manuscript; available in PMC 2017 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Our analysis identified both known and novel genes likely facilitating antipsychotic 

efficacy. This approach and these findings can be used to identify novel drugs with target 

profiles more directly supported by the genetics, or novel pharmacogenes for guiding 

individualised therapy in schizophrenia. The finding that treatment-resistant individuals 

are more likely to carry deleterious mutations in antipsychotic targets or key 

pharmacogenetic genes suggests a method for identifying patients whose clinical 

outcomes could be improved through earlier administration of clozapine.

A third of patients with schizophrenia do not respond to standard treatments,12 and three-

quarters discontinue treatment within 18 months because of ineffectiveness or side-effects.13 

Pharmacogenetic studies have yielded few reproducible findings, probably because of the 

limited availability of large samples with both treatment response and genetic data. Common 

variants in DRD2 and genes that metabolise antipsychotics such as CYP2D6 have been 

variably associated with efficacy of several antipsychotics.14 By contrast, pharmacogenetic 

studies in cancer have identified target-associated resistance for several therapies, often the 

result of rare functional mutations within gene targets of the chemotherapeutic agent.15 

These results suggest that rare functional variants have a pharmacodynamic role in treatment 

response. Use of genetic data to identify the appropriate treatment for each patient could 

greatly improve efficacy and reduce time and morbidity during failed treatment periods.

Here, we aimed to intersect schizophrenia risk loci and gene targets of therapeutic agents to 

inform and potentially improve treatment of schizophrenia.

Methods

Study design and participants

In this analysis we tested schizophrenia risk loci from both common and rare variation for 

enrichment in gene targets of therapeutic agents to identify medications that were enriched 

for targeting these loci. Additionally, we linked the rare variation data with a national drug 

registry to assess the contribution of rare variants to treatment response. We identified rare 

variants from an exome-sequencing sample of schizophrenia cases and controls (Swedish 

Schizophrenia Study). Cases were selected from the Swedish Hospital Discharge Register, 

requiring at least two discharge diagnoses of schizophrenia.16 Controls were randomly 

selected from Swedish population registers, requiring no discharge diagnoses of 

schizophrenia or bipolar disorder. Diagnostic validity has been reported in previous 

publications4,16,17 and is supported by clinical, epidemiological, and genetic evidence. 

Samples were sequenced using either the SureSelect Human All Exon Kit (29 megabases 

[Mb] of sequence targeted) or the SureSelect Human All Exon version 2 Kit (33 Mb of 

sequence targeted; Agilent, Santa Clara, CA, USA). Sequencing was done by Genome 

Analyzer IIx or HiSeq 2000 (illumina, San Diego, CA, USA). Additional details of sample 

and sequencing have been previously reported.5

There are no formal diagnostic criteria for treatment-resistant schizophrenia. Research 

studies have defined it empirically as more than one antipsychotic trial at a particular dose 

and duration without improvement in symptoms; generally, two failed trials, with doses of 

400–1000 chlorpromazine equivalent mg daily, for a duration of 4–6 weeks, with less than 
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20% improvement in the Positive and Negative Symptom Scale.18 In large population-based 

genetic studies of schizophrenia, ascertainment of such high-dimensional clinical data has 

proven difficult. Despite its proven efficacy,19 clozapine is usually reserved as a second-line 

or third-line therapy in schizophrenia because of side-effects. However, it is the only 

approved medication for treatment-resistant schizophrenia and as a result, a history of 

having been prescribed clozapine has been used as a proxy for treatment resistance.

All individuals provided written informed consent; institutional human subject committees 

at the Karolinska Institutet and the University of North Carolina at Chapel Hill approved the 

research.

Data sources

The Swedish Prescribed Drug Register20 contains data on all redeemed prescriptions from 

Jan 7, 2005, to Dec 31, 2012. For each individual, the following information was available: 

dates for first and last antipsychotic prescriptions, dates for first and last clozapine 

prescriptions, total number of antipsychotic pre scriptions, total number of clozapine 

prescriptions, and the number of unique antipsychotics prescribed. We classified any 

individual that had been prescribed clozapine at least once as treatment resistant.

The Swedish Schizo phrenia Study contains data for 5001 schizophrenia cases and 6243 

controls. In this analysis, we included 2543 controls with exome-sequencing data available. 

We included 4932 individuals with schizophrenia who were in the Swedish Prescribed Drug 

Register, of whom 2533 had exome-sequencing data available (figure 1).

Of the 4932 individuals in the medication register, clozapine was prescribed and dispensed 

one or more times for 1078 individuals. 829 (77%) received clozapine as their first 

prescription in the register, implying that any initial antipsychotic treatments occurred before 

the beginning of register (Jan 7, 2005). Because our goal was to assess the prescription 

patterns leading to clozapine initiation, these individuals offered no information and were 

removed. 58 of the remaining 249 patients were on a non-clozapine antipsychotic at the end 

of the register. In these cases we cannot tell from the available data the temporal relationship 

of the other antipsychotics to clozapine initiation, so we removed these individuals from 

analysis of prescription patterns. The remaining 191 individuals could be used for an 

assessment of prescribing patterns before clozapine (figure 1). This subset of 191 cases 

received a mean of 3·13 (SD 1·73) unique antipsychotic prescriptions (not including 

clozapine) compared with 2·09 (1·50) for the 3854 patients with schizophrenia who were 

never prescribed clozapine, and the mean amount of time before the first clozapine 

prescription was 1126 days (SD 824 days). In our analysis of treatment resistance, we 

included 531 patients who had been prescribed clozapine at least once (not restricting to the 

subset of 191 patients where clozapine was initiated during the registry) and who had 

exome-sequencing data available. We also stratified cases into a more stringent class of 

treatment resistance, defined as having been prescribed clozapine and two or more additional 

antipsychotics (n=324 cases with exome sequencing).

Drugs were classified according to the third level of the Anatomical Therapeutic Chemical 

classification system, a hierarchical classification system from anatomical group (level 1) to 

Ruderfer et al. Page 5

Lancet Psychiatry. Author manuscript; available in PMC 2017 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



chemical substance (level 5). Level 3 represents the pharmacological subgroup (eg, 

antipsychotics) and contains 243 drug classes.

We used two databases to link drugs to gene targets (proteins). DrugBank version 4.121 is a 

widely used, publicly available catalogue of drug targets manually curated from the 

literature where each drug–protein target pair is referenced on average four times; Similarity 

Ensemble Approach (SEA)22 is an in-silico drug target prediction method using ligand 

similarity. Ligand-to-target training information for SEA was pulled from ChEMBL-14, a 

curated chemical database of more than 1·5 million compounds and 13·5 million activities. 

Although DrugBank represents the space of experimentally observed drug targets, SEA 

surveys the larger landscape of possible drug-to-target connections using chemical structure. 

By comparing the 603 drugs to all structural features in known reference ligands, and to 

random expectation,22,23 SEA assessed significance for all 1·6 million possible drug–target 

pairs retaining the 19 327 most significant drug–target predictions (1·2%), for which 

similarity was unlikely by random chance alone. Individually, DrugBank contains a unique 

set of 1048 drugs, 878 protein targets, and 4592 drug–target pairs; SEA consists of 603 

drugs, 1440 protein targets, and 19 327 predicted drug–target pairs. We combined the 

databases, removing duplicates resulting in 1267 drugs, 1820 protein targets, and 23 383 

drug–target pairs.

For each of the 243 classes of drugs, we created one set of all targets from both databases 

(requiring that the gene that codes for the target protein be one of 23 085 RefSeq genes). Of 

the 243 drug classes, 174 had at least one drug target.

PharmGKB24 is a database of pharmacogenetic information including genetic variants and 

their association with drug response. We extracted all references to any of the 64 

antipsychotics from the Anatomical Therapeutic Chemical classification system. We 

identified 294 entries of genetic variants being associated with efficacy of an antipsychotic 

for 13 unique drugs and 91 unique genes.

Other genes will contribute to treatment response, for example cytochrome P450 (CYP) 

genes explain a large proportion of the known metabolic effects on efficacy of a broad range 

of drugs.25 Thus, we compiled the family of 65 cytochrome P450 genes (CYP) and a subset 

of 12 that account for nearly 75% of all phase I drug oxidation reactions (CYP-12).26 

Additionally, we compiled a set of 32 core genes related to drug absorption, distribution, 

metabolism, and excretion (ADME core) and the full list of 298 genes including the 

extended ADME set. In total, we defined five pharmacogenetic gene sets to be tested.

Statistical analysis

We used two enrichment testing methods. To test for an excess of rare genetic case variants 

we used the statistic/matrix/permutation test,5 in which gene sets were evaluated on the 

empirical distribution of the sum of individual gene burden statistics. P values were 

corrected for exome-wide burden. Individuals were matched based on ancestry, sex, and 

experimental batch; permutation was done within clusters of matched individuals. To test for 

enrichment in genome-wide significant schizophrenia regions4, we used Inrich.27 Inrich 

performs gene set analysis by comparing the number of genes within associated regions to 
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the number within randomly placed regions, accounting for gene size, marker density, and 

linkage disequilibrium between genes. Regions tested were required to be genome-wide 

significant and were defined by the furthest single nucleotide polymorphisms, in either 

genomic direction, having high linkage disequilibrium (r2>0·6) with the most significant 

single nucleotide polymorphism.

We applied an empirical multiple test correction procedure, randomly assigning genes from 

the list of 23 085 RefSeq genes to each drug class preserving the same number of genes. We 

performed 100 000 permutations testing the rare and common variation separately and then 

combined p-values using Fisher’s method. For each class, we counted the number of times 

the observed p-value was equal to or greater than the most significant permuted p-value 

across all classes. Empirical correction was performed over all 167 pharmacological gene 

sets having at least one rare variant and two drug targets.

For testing enrichment of rare variants in treatment-resistant cases, phenotypes were 

permuted 10 000 times and permutation-based gene burden statistics were combined. 

Corrected p values were calculated empirically across the five pharmacogenetic gene sets 

and targets of antipsychotics. The same approach was employed to test gene sets previously 

implicated in schizophrenia through rare variation for a role in treatment response.

Role of the funding source

The funders had no role in study design, execution, analysis, or manuscript preparation. The 

corresponding author had access to all the data in the study and had responsibility for the 

final decision to submit for publication.

Results

We tested for enrichment of schizophrenia risk loci within sets of genes coding for the 

proteins targeted by drugs within each of 167 pharmacological subgroups defined by the 

Anatomical Therapeutic Chemical classification system (figure 2). Enrichment of rare 

deleterious variants in the 167 gene sets was tested in an exome-sequenced sample of 2536 

schizophrenia cases and 2543 controls.5 Previous analysis of these data demonstrated that 

rare variants found only once in the study and predicted to be disruptive of gene function 

(so-called singleton disruptives) contributed most to schizophrenia risk.5 Thus, we 

specifically focused on this rarest and most functionally deleterious class of variation. In 

total, 10 (6%) of 167 gene sets were enriched with rare variants in schizophrenia cases 

(p<0·05), with the strongest finding in the 347 genes targeted by antipsychotics (122 case 

mutations, 90 control mutations, p=0·0056, odds ratio 1·36 (1·03–1·84).

Next, we tested common variants using the 108 genome-wide significant loci4 and found 

that 35 (21%) of the 167 gene sets were enriched for genes within schizophrenia associated 

loci (p<0·05). Several of the genes within the GWAS regions associated with schizophrenia 

are common drug targets for many drug classes and probably contribute to this enrichment, 

including DRD2 which is a target for at least one drug in 46 different non-antipsychotic 

pharmacological subgroups.
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Two gene sets were associated with schizophrenia risk after an empirical multiple test 

correction on the combined results: agents against amoebiasis and other protozoal diseases 

(106 genes, p=0·00046, pcorrected=0·024), followed by antipsychotics (347 genes, 

p=0·00078, pcorrected=0·046). These were the only gene sets showing an association with 

schizophrenia risk for both rare and common variation (appendix). 56 genes were in both 

sets, representing 53% (56/106) of genes from the agents against amoebiasis and other 

protozoal diseases gene set and 16% (56/347) of genes from the antipsychotics gene set. The 

antipsychotics set still showed an association after removal of the 56 overlapping genes 

(antipsychotics, p=0·041; agents against amoebiasis and other protozoal diseases, p=0·63; 

appendix). Enrichment of rare variants persisted after removal of the 11 genes found in 

GWAS loci (p=0·024). Further, enrichment persisted within the 49% (170/347) of genes 

highly expressed in the brain (p=0·00006).5,28 Of the 11 genes in GWAS loci, five had 

singleton disruptive mutations in cases only (number of cases shown in parentheses): 

CACNA1C (2), CYP2D6 (2), GRIN2A (2), AKT3 (1), and HCN1 (1; appendix).

To test the contribution of targets of antipsychotics to enrichment for schizophrenia risk, we 

used drug target information from two sources: a database representing the wealth of all 

publicly known and literature referenced drug–target pairs (DrugBank) and a set of predicted 

targets (SEA) representing a broader pharmacological group of drug–target connections. 386 

drugs, representing 37% of the referenced set and 64% of the predicted set were shared. On 

average, the referenced set had 4·4 gene targets per drug and the predicted set had 32. Of the 

64 drugs listed as antipsychotics in level 3 of the Anatomical Therapeutic Chemical 

classification system (appendix), 40 had at least one target.

We identified enrichment for schizophrenia risk in both the set of predicted targets (313 

genes, p=0·00071) and the set of referenced targets (70 genes, p=0·0078). After removing all 

referenced gene targets, enrichment remained in the genes that were novel predicted targets 

of antipsychotics (277 genes, p=0·0189; table).

We next examined the role of rare disruptive mutations in treatment resistance in 

schizophrenia. Of the 2536 schizophrenia cases in our sample that were exome sequenced, 

all but three had clozapine prescription information (figure 1): 531 had been prescribed 

clozapine (“clozapine group”) and 2002 had not (“no-clozapine group”). The 347 gene 

targets of antipsychotics were enriched for singleton disruptive mutations in the clozapine 

group compared with the no-clozapine group. This enrichment remained after empirical 

multiple test correction for the six total tests including the five pharmacogenetic sets tested 

(37 clozapine, 85 no-clozapine, p=0·0067, pcorrected=0·044). In total, 6·4% of the clozapine 

group carried a variant in these genes compared to 4·2% of the no-clozapine group (figure 

3).

Genes implicated in antipsychotic efficacy by PharmGKB and genes with known roles in 

ADME including a set of cytochrome P450 (CYP) genes were also tested. Enrichment was 

observed (figure 4, appendix) in the set of PharmGKB genes (91 genes, 14 clozapine, 21 no-

clozapine, p=0·0029, pcorrected=0·018) but not in the ADME or CYP sets (figure 4, 

appendix) and no burden of rare singleton disruptive mutations existed exome-wide 

(p=0·28).
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Among the 324 individuals who had been prescribed clozapine and two or more other 

antipsychotics, 26 (8%) had at least one singleton disruptive mutation in an antipsychotic 

gene target (figure 3) compared with 85 in the no-clozapine group (4%, p=0·0018). The 

PharmGKB sets showed similar increased burden of singleton disruptive mutations in these 

cases (data not shown).

To identify genes with a role in both schizophrenia risk and treatment resistance, we tested 

for association to treatment response in gene sets that were previously enriched for 

schizophrenia singleton disruptive mutations.5 These sets included genes with either a 

disruptive, non-synonymous, or copy-number de-novo mutation, post-synaptic density genes 

(including activity-regulated cytoskeleton-associated scaffold protein [ARC], N-methyl-D-

aspartate receptor [NMDAR], and postsynaptic density genes encoded by DLG4 [PSD-95]), 

and targets of the fragile X mental retardation protein (FMRP). None were enriched in the 

clozapine group compared with the no-clozapine group. Furthermore, none of the 

pharmacogenetic gene sets were enriched for schizophrenia risk alleles (figure 4, appendix). 

Targets of antipsychotics represented the only set showing enrichment for both disease risk 

and treatment resistance.

Discussion

In this analysis, we leveraged genetic findings in schizophrenia from large studies of both 

common and rare variation to ask which drugs are targeting proteins encoded by genes 

having the most genetic evidence for a role in schizophrenia. Among 167 drug sets, only two 

were enriched for both genes within GWAS regions associated with schizophrenia and case 

singleton disruptive mutations, and after removing overlapping targets only the class of 

antipsychotics retained an association. This result supports the hypothesis that the 

pathogenesis of schizophrenia and the mechanism of action of antipsychotics overlap. 

Crucially, this overlap is not solely through dopamine or serotonin receptors and no 

particular gene or even the set of all currently known antipsychotic targets fully accounts for 

the enrichment. This finding suggests that, similar to genetic risk, the underlying 

mechanisms that prove useful in treating schizophrenia are probably polygenic and 

modulated at least partly through unknown pathways. A corollary of this finding is that it 

could be hard for a single target to provide the perfect therapeutic.

Of the 347 gene targets of antipsychotics, only a subset is probably relevant to efficacy. Our 

results point to perhaps dozens of new targets contributing to treatment efficacy, including 

four predicted genes (CACNA1C, GRIN2A, AKT3, HCN1) that were identified as 

associated with schizophrenia through GWAS and carry only case singleton disruptive 

mutations representing putative novel moderators of the mode of action of these drugs. 

These results, together with research into identifying the genes relevant to efficacy or 

contributing to adverse effects, should inform future drug design and repurposing.

Clozapine is the most effective treatment for refractory schizophrenia. Individuals with 

treatment-resistant schizophrenia have more symptoms, are burdened with a higher 

prevalence of substance abuse, and have a lower quality of life.30 Early identification of 

treatment-resistant patients who would be candidates to receive clozapine sooner could have 
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a meaningful impact. In this study, we have identified an enrichment of rare mutations in 

gene targets of antipsychotics and previously implicated pharmacogenetic genes in 

treatment-resistant patients, pointing to a method of identifying patients who might be 

candidates for earlier treatment with clozapine. Prospective trials are warranted to 

investigate this further. Of all the gene sets tested, including those previously implicated in 

schizophrenia risk and treatment efficacy, only the set of genes targeted by antipsychotics 

showed significant enrichment in both disease risk and treatment response.

The drug class of agents against amoebiasis and other protozoal diseases showed an 

association with schizophrenia that was no longer observed after removal of the overlap of 

genes with antipsychotics, which does not preclude relevance to schizophrenia. There have 

been links between the presence of protozoal antibodies and disease status.31 Alternatively, 

this overlap might account for the antiprotozoal properties of antipsychotics, indicating that 

antipsychotics might be candidate antiprotozoal drugs rather than that antiprotozoal drugs 

are potential antipsychotics.32,33

As genetic studies have become well powered, loci from these studies are being used to 

develop therapeutic targets (eg, imatinib for cancer). However, the advent of currently 

available antipsychotics long preceded genetic findings, meaning the drug–target data and 

genetic findings are orthogonal pieces of information and unlikely subject to the same 

biases. Limitations of our study include the fact that drug target and chemical structure data 

are incomplete and false-positive predictions remain, which could be inducing unknown 

biases and effects on power. The lack of additional clinical information limits our ability to 

further characterise treatment-resistant individuals with rare mutations. Although clozapine 

prescription is only a proxy for treatment resistance, we have used the prescription register 

to show that clozapine in this sample was reserved mainly for refractory illness; the average 

number of antipsychotics prescribed (3·13 non-clozapine antipsychotics) and amount of time 

before the first clozapine prescription (1126 days) suggests that clozapine prescription 

practices in our cohort met criteria for treatment-resistant schizophrenia. Although more 

stringent methods for defining treatment resistance exist, none allow for investigation of a 

large sample with available GWAS and exome-sequence data. Nonetheless, when we used a 

more standard definition (two or more antipsychotics and clozapine), we demonstrated an 

even larger burden of rare mutations, consistent with this sample representing a more severe 

group of treatment-resistant patients.

This work demonstrates the potential of using genomic findings of schizophrenia to inform 

and ultimately improve treatment through identifying more effective drug target profiles or 

classifying individuals as to whether they will respond to particular therapies.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Description of sample and phenotypes for rare variant analyses
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Figure 2. Construction of the analysis pipeline
ATC=Anatomical Therapeutic Chemical. SEA=Similarity Ensemble Approach. 

GWAS=genome-wide association study.
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Figure 3. Proportion of individuals carrying singleton disruptive mutations within the 347 gene 
targets of antipsychotics stratified by case/control and treatment response
OR=odds ratio.
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Figure 4. Enrichment results of singleton disruptive mutations for both schizophrenia and 
treatment resistance in antipsychotic targets and sets of previously identified genes enriched for 
rare variants in schizophrenia
SCZ de novo (disruptive) relates to genes carrying disruptive mutations in schizophrenia 

probands. SCZ de novo (nonsyn) relates to genes carrying non-synonymous mutations in 

schizophrenia probands. SCZ de novo (CNV) relates to genes carrying de novo copy number 

variants in schizophrenia probands. Calcium channels relates to genes related to voltage-

gated calcium ion channel functioning. ARC relates to signalling complex formed by the 

activity-regulated cytoskeleton-associated scaffold protein (ARC) of the postsynaptic 

density. NMDAR relates to N-methyl-D-aspartate receptor (NMDAR) postsynaptic 

signalling complex. PSD-95 relates to postsynaptic density set encoded by DLG3, FMRP 

targets (Darnell) relates to targets of the fragile X mental retardation protein from Darnell et 

al.29 Sets of pharmacogenetic genes described in the methods. p values presented are before 

multiple hypothesis correction.
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