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ABSTRACT 

 
Multi-parametric MRI (mpMRI) is a powerful non-invasive 
tool for diagnosing prostate cancer (PCa) and is widely 
recommended to be performed before prostate biopsies. 
Prostate Imaging Reporting and Data System version (PI-
RADS) is used to interpret mpMRI. However, when the pre-
biopsy mpMRI is negative, PI-RADS 1 or 2, there exists no 
consensus on which patients should undergo prostate biopsies. 
Recently, radiomics has shown great abilities in quantitative 
imaging analysis with outstanding performance on computer-
aid diagnosis tasks. We proposed an integrative radiomics-
based approach to predict the prostate biopsy results when 
pre-biopsy mpMRI is negative. Specifically, the proposed 
approach combined radiomics features and clinical features 
with machine learning to stratify positive and negative biopsy 
groups among negative mpMRI patients. We retrospectively 
reviewed all clinical prostate MRIs and identified 330 
negative mpMRI scans, followed by biopsy results. Our 
proposed model was trained and validated with 10-fold cross-
validation and reached the negative predicted value (NPV) of 
0.99, the sensitivity of 0.88, and the specificity of 0.63 in 
receiver operating characteristic (ROC) analysis. Compared 
with results from existing methods, ours achieved 11.2% 
higher NPV and 87.2% higher sensitivity with a cost of 23.2% 
less specificity. 
 

Index Terms— Computer-aided diagnosis, prostate 
cancer, MRI, radiomics 
 

1. INTRODUCTION 
 
Prostate cancer (PCa) is the most common solid organ 
malignancy among men in the United States [1]. Multi-
parametric MRI (mpMRI) gains clinical acceptance as the 
preferred imaging technique for diagnosing PCa, and mpMRI 
is widely recommended, prior to prostate biopsies, to improve 
the detection rate of clinically significant PCa (csPCa) [2]. 
Prostate Imaging Reporting and Data System: Version 2.1 
(PI-RADS v2.1) [3] is commonly used to interpret mpMRI. 
When mpMRI is negative, where PI-RADS is either 1 or 2, 
there is no consensus about which patients can forgo biopsies 
with current medical practice.  

    Several studies have investigated systematic strategies to 
predict risks associated with csPCa among patients with 
negative mpMRI [4-7]. The studies suggested performing 
prostate biopsy among negative mpMRI patients if the 
prostate-specific antigen density (PSAD) level is higher than 
0.15/ng/ml/ml [4-6]. Moreover, another study stated that 
patients’ age showed a significant difference between 
negative and positive biopsy groups among negative mpMRI 
patients [7]. However, the current prediction models based on 
clinical information are limited by marginal improvement in 
prediction abilities [6]. 
    Radiomics is an emerging field in quantitative imaging that 
aims to associate large-scale radiomic features with specific 
clinical endpoints [8]. The radiomic features, extracted from 
medical images, are assumed to provide large-scale imaging 
information, such as intensity, shape, size, and texture 
features within regions of interest (ROIs).  Many studies have 
shown its outstanding performances on computer-aid 
diagnosis tasks, especially for the detection and classification 
of the aggressiveness PCa [9-12], due to its unique ability to 
extract and assess the spatial arrangement within the tumor 
regions on medical images.  
    In this study, we proposed an integrative radiomics-based 
machine learning approach that predicts biopsy results when 
pre-biopsy mpMRI is negative. Specifically, we combined 
radiomics features within the whole prostate, extracted from 
functional and anatomical information of mpMRI, with 
routinely used clinical information to separate negative and 
positive biopsy groups among negative mpMRI patients. The 
efficacy of the integration between radiomics features and 
clinical information was evaluated by comparing machine 
learning models with individual feature groups alone. In 
addition, the proposed model was also compared with 
existing conventional strategies that were proposed to predict 
risks associated with csPCa [4, 5], evaluated by negative 
predictive value (NPV), sensitivity, specificity, and area 
under the curve (AUC). 
     

2. MATERIALS AND METHODS 
 
2.1. MRI Data and Clinical Information 
 



We retrospectively identified negative prostate MRI cases by 
reviewing all clinical prostate MRI scans, acquired from 
January 2016 to December 2018, at a single academic 
institution and classified them as negative MRI if the PI-
RADS v2.1 score was either one or two. All scans were 
performed with a standard protocol using one of the three 3 
Tesla scanners: Siemens Magnetom Trio, Skyra, and Verio 
scanner (Siemens Medical Systems, Malvern, Pennsylvania, 
USA). The MRI scans with the following conditions were 
excluded: 1) patients with prior treatment for PCa and benign 
prostatic hyperplasia (BPH), 2) patients who did not undergo 
prostate biopsies within six months after MRI, 3) patients 
who were undergoing active surveillance, and 4) patients who 
did not include prostate-specific antigen density (PSAD) on 
their medical records.  
    We included the following clinical information: patients’ 
age, family history of PCa, prostate biopsy history, prostate 
volume, PSA, and PSAD. Other clinical information was not 
included in the study to avoid potential selection bias [13] as 
it was partially available to certain patient cohorts. Patients 
with negative mpMRI and high suspicion of PCa (family 
history of PCa, elevated PSA, abnormal DRE, etc.) 
underwent standardized 12-14 core systematic transrectal 
ultrasound-guided (TRUS) biopsy. All biopsy cores were 
immediately fixed in formalin, stained with hematoxylin and 
eosin (H & E), and microscopic evaluation was performed by 
dedicated pathologists as part of the routine histopathological 
evaluation.  
    In all, 330 men were included in the study. A total of 24 
patients were categorized as having positive biopsies, defined 
as patients who had at least one positive biopsy core, Gleason 
Score (GS) ³ 7 per biopsy session, and the rest (n=306) was 
categorized as the negative biopsy (GS=6 or benign 
condition).  
 
 

 
Fig. 1: Workflow of building the integrative radiomics model for 
predicting biopsy results. The three inputs of the model were the 
patient’s clinical information, T2WI, and ADC images. First, 
clinical features were selected from all clinical information, and 
radiomics features were extracted from the T2WI and ADC images 
that have been pre-processed and cropped based on ROI. Then, 
integrative feature selection was made based on the combination of 
the two categories of features. Finally, with the selected features, 
cross-validation was performed to evaluate the model’s 
predictability. 
 

2.2. Imaging Pre-processing 
 
The workflow for our proposed radiomics model is shown in 
Figure 1. For a patient-basis prediction of positive or negative 
biopsy results, we used both apparent diffusion coefficient 
maps (ADC) and T2-weighted images (T2WI) from mpMRI 
[3]. ADC images were first registered to T2WI through rigid 
spatial transformation using voxel size and real-world 
coordinates information for each patient [14]. We did not 
apply for additional non-rigid registration since only the 
minimal patient motion was observed between two imaging 
sequences as the time between DWI and T2WI was minimal 
[15]. The prostate area was manually segmented on T2W 
images slice-by-slice by an experienced radiologist (4 years 
of post-fellowship experience) using OsiriX MD (ver. 
11.0.3). We then applied N4 bias field correction to T2WI to 
compensate for the low-frequency intensity non-uniformities 
[16] and applied z-score normalization [17] to T2WI and 
ADC images to minimize the potential intensity differences 
among different scans and other physiological variations. 
 
2.3. Radiomics Features 
 
Radiomics features were extracted from ADC and T2WI after 
cropping the whole prostate, as shown in Fig. 1. All the slices 
containing ROIs of the whole prostate were used for feature 
extraction, and the mid-prostate slice was separately used to 
extract additional radiomics features. Among texture 
features, Gray-Level Cooccurrence Matrix (GLCM) and 
Gray-Level Run Length Matrix (GLRLM) were included 
using Pyradiomics package based on Python [18]. We 
extracted a total of 300 radiomics features for each patient, 
including 32 shape-based, 38 first-order, and 80 texture (or 
second-order) features from each of the T2WI and ADC 
images. 
 
 2.4. Feature Selection 
 
We calculated the significance level of all routinely-used 
clinical features between prostate biopsy positive group and 
negative group in order to pre-select important clinical 
information. Given the six initial clinical characteristics, we 
used the Mann-Whitney U test for continuous-valued features 
(e.g., age, PSA, PSAD, prostate volume) and the Chi-Square 
test for categorized features (e.g., family PCa history, prostate 
biopsy history). We selected the features with a significant 
difference (p<0.05) between the biopsy positive and negative 
groups. Finally, age, prostate volume, and PSAD were pre-
selected.  
    We first combined the pre-selected clinical features and all 
radiomics features and then applied the Sequential Floating 
Forwarding Selection (SFFS) algorithm [19] for integrative 
feature selection (Fig. 1). The number of integrative features, 
k, is a hyperparameter, which was decided by investigating 
the relationship between k and the prediction performances  
 



Table 1: Selected nine integrative features. 

Selected Features Type Imaging 
Sequence 

Gray Level Nonuniformity GLRLM ADC 
Run Length Nonuniformity GLRLM ADC 

Sum Squares GLCM T2WI 
Least Axis Length Shape ADC/T2WI 
Major Axis Length Shape ADC/T2WI  
Minor Axis Length Shape ADC/T2WI  

Age Clinical Info. -- 
PSAD Clinical Info. -- 

Prostate Volume Clinical Info. -- 
 
Table 2: Comparison of different machine learning approaches. 

 
Table 3: Comparisons of the biopsy prediction results. Conducted 
by other existing studies, using the PSAD level within our dataset, 
and the results generated by our integrative approach. 

 
during training. We ran the SFFS algorithm with different 
values of k and selected k with the highest AUC. 
 
2.5. Model Evaluation and Comparison 
 
We used a quadratic-kernelized SVM classifier with a class-
balanced weight for building our proposed model. In order to 
minimize potential overfitting, the model was validated by 
100-times iterative 10-fold random-split cross-validation. 
The data were randomly split into ten folds at each time, and 
the model was trained on nine of the ten folds (n=297) and 
validated on the remaining fold (n=33).  
    We first investigated the value of the integrative radiomic-
feature-based model by comparing the performance of the 
integrative radiomics model with the radiomics-features-only 
and the clinical-features-only models. All models were based 
on the same classifier, the quadratic-kernelized SVM with the 
class-balanced weight, for a fair comparison. We then 
compared the proposed model's prediction performance with 
conventional strategies [4, 5] that predict prostate cancer risks 
using routinely available clinical features. The method was 
based on a threshold of the PSAD level, suggesting patients 
with PSAD>0.15ng/ml/ml are high risks of having prostate 
cancer among mpMRI negative patients [4, 5].  
  

 
Fig. 2: Relationship between the number of integrative features and 
their corresponding AUCs generated by the prediction model 

 

 
Fig. 3: Comparisons between the integrative-based model and 
machine learning models with individual feature groups. Red solid, 
blue dash and green dot-dash curves are the ROC curves of the 
integrative-features-based, radiomics-features-only, and clinical-
features-only model. Points represented with the cross, dot, and 
triangle shapes and labeled with magenta color are the optimal 
points for the three ROC curves. The shadow area visualizes the 
variability of ROC curves generated from each iteration of the 100 
times 10-fold cross-validation using the proposed integrative-
features-based model, and is ranged using ±1 standard deviation. 
Horizontal and vertical gray dash lines of each optimal point aim to 
visualize sensitivity and “1-specificity” value on the figures.    
 
    For each experiment, we identified the optimal cut point 
for the prediction of biopsy results by maximizing Youden’s 
index value (sensitivity+specificity-1) [20]. The sensitivity, 
specificity and NPV were calculated based on the optimal cut 
point. All the model comparisons were evaluated based on 
AUC, sensitivity, specificity and NPV. 
    

3. RESULTS  
 
3.1. Integrative Radiomics Model 
 
The total number of the integrative features was nine (three 
clinical and six radiomics features), and their corresponding 
AUC values with different numbers of selected features are 
shown in Figure 2. The selected integrative features are listed 
in Table 1. Radiomics features extracted from both imaging 
sequences (ADC and T2WI) and certain clinical features 
helped improve the predictability of the prostate biopsy 
results, consistent with previous studies [4-7]. 

Models AUC Sens. Spec. NPV 
Clinical-only 0.70 0.82 0.53 0.97 

Radiomics-only 0.71 0.84 0.53 0.98 
Integrative Approach 0.80 0.88 0.63 0.99 

 Sens. Spec. NPV 
Oishi et al. [5] 0.47 0.82 0.90 
Distler et al. [4] N/A N/A 0.89 
Our data + PSAD>0.15 0.50 0.73 0.95 
Integrative Approach 0.88 0.63 0.99 



3.2 Model Comparisons 
 
Figure 3 shows the comparisons between different machine 
learning models. Based on the ROC curves of the three 
models, the integrative approach not only reached the highest 
AUC, compared with the models using an individual group 
of radiomics or clinical features but also showed the highest 
sensitivity and specificity at the optimal cut point. Table 2 
shows the comparisons of the AUC, sensitivity, specificity 
and NPV at the optimal point of the clinical-only, radiomics-
only and integrative-based models. The integrative model 
outperformed the other two models in all measurements.  The 
integrative-based model improved the AUC of 14.3% and 
12.6%, the sensitivity of 7.3% and 4.8%, the specificity of 
18.9% and 18.9% and NPV of 2.1% and 1.0%, compared 
with the clinical-only and radiomics-only models.  
    Figure 4 shows representative examples of negative MRI 
(T2WI and ADC) scans with positive and negative biopsy 
results. The proposed model cam achieve a high averaged 
accuracy of 1.0 and 0.79, calculated by the total number of 
the correct prediction / the total number of the prediction with  
the 100 iterative random-split 10-fold cross-validations. 
   Table 3 shows the comparison results between the proposed 
model and existing conventional strategies [4, 5], designed to 
predict prostate biopsy results among patients with negative 
mpMRI. Only NPV was included for Distler. et al. since the 
specificity and sensitivity were not available. We observed 
that in terms of sensitivity and NPV, our proposed integrative 
approach got better performances compared with not only the 
reported results from the two studies but also the results 
conducted by applying their method onto our dataset. Our 
model outperformed both Oishi [5] and Distler [4], largely in 
the sensitivity of 87.2%. Comparing with both studies, we 
also outperformed the NPV of 10.0% and 11.2%, 
respectively. With the identical patient cohort, our proposed 
model improved 76% of the sensitivity and 4.2% of NPV. 
     

4. DISCUSSIONS 
 
We proposed an integrative radiomics-based approach to 
predict the biopsy results when mpMRI was negative. The 
proposed model was built based on SVM and the integration 
of radiomics features extracted from mpMRI and clinical 
features. We trained and validated our model with 330 
patients with negative mpMRI, where the ground truth for the 
biopsy results was confirmed by a systematic TRUS biopsy 
within six months. 
    In current medical practice, to stratify which patient with 
negative prostate MRI should undergo prostate biopsy, both 
high NPV and sensitivity are desired since we want to avoid 
as much negative biopsies as possible, and meanwhile limit 
the number of false-negative prediction cases, which are 
measured by both NPV and sensitivity. Compared with other 
models, our proposed model achieved much higher NPV and 
sensitivity, and thus can help improve the stratification results 
for the patients with negative prostate mpMRI. In addition, 

 
Fig. 4: Examples of T2WI (left) and ADC (right) images with 
negative mpMRI and the averaged prediction accuracy. A): a patient 
with a positive biopsy. B): a patient with a negative biopsy. 
 
the results conducted by the proposed model showed that 
both radiomics features and clinical information helped build 
the prediction model. The investigation of important 
radiomics features may also provide more insights for 
radiologists to interpret mpMRI in the future. In all, our 
proposed integrative radiomics-based model outperformed 
the other methods conducted largely on the predictability of 
prostate biopsy results among patients with negative prostate 
mpMRI, especially on sensitivity (improved by 87.2%) and 
NPV (improved by 11.2%).     
    Our next step would include adapting our methods onto 
other datasets from multiple institutions to further investigate 
the generalization of our prediction model.  
 

5. CONCLUSIONS 
 
The study showed an integrative radiomics-based machine 
learning model to predict biopsy results among patients with 
negative prostate MRI. We presented that integration of 
radiomics and clinical features helps predict biopsy results, 
compared with other approaches using an individual group of 
features. Moreover, our proposed model outperformed other 
existing strategies on the prediction of prostate biopsy results 
among patients with negative prostate mpMRI.  
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