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The Neurotoxic Effects of Cycads and Metals: A Review

Brendan Mitchell1 and Xiaoping Hu2

1 Department of Molecular, Cell and Systems Biology

2 Department of Bioengineering

A B S T R A C T

The bioaccumulation of environmental toxins as possible risk factors in the etiology of 
amyotrophic lateral sclerosis and parkinsonism-dementia complex (ALS/PDC) is studied in 
three foci of the Western Pacific: Guam, the Kii Peninsula, and West Papua New Guinea. The 
objective of this study was to evaluate the best evidence on the exogenous causes of ALS/
PDC, with emphasis on the role of cycads, iron, and manganese in the Western Pacific foci, 
by performing a systematic review of major electronic databases using predefined criteria, 68 
of which met the selection criteria. Two major environmental hypotheses are associated with 
this enigmatic disease: the vegetal hypothesis, which focuses on the neurotoxic and genotoxic 
properties of the cycad, and the mineral hypothesis, which focuses on the neurotoxic properties 
of metals. Although typically studied independently, environmental data suggests these two 
hypotheses may, in fact, converge. Epidemiologic research investigating the association between 
exposure to environmental toxins and ALS/PDC has proven inconclusive. Nevertheless, 
possible causal links indicate a need for more holistic research to not only better understand 
ALS/PDC, but also glean new insights regarding the associated neurodegenerative diseases. 
 
Keyterms: amyotrophic lateral sclerosis and parkinsonism-dementia complex; Alzheimer’s 
disease; Parkinson’s disease; Western Pacific; cycad; iron; manganese; neurotoxicity
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INTRODUCTION
Amyotrophic lateral sclerosis and parkinsonism-dementia 
complex (ALS/PDC) is a prototypical, long latency neuro-
degenerative disease that, during the first decade after World 
War II, was reported to develop in extraordinarily high 
frequencies among three geographically and genetically 
distinct populations in the Western Pacific: the indigenous 
Chamorro residents of Guam,1 the Japanese of Honshu 
Island’s Kii peninsula in Japan,2 and the West Papuan 
New Guineas of Irian Jaya, Indonesia.3 The clinical and 
neuropathological features of this disease are best studied 
among the Chamorro people of Guam and the Japanese 
living in the Kii Peninsula of Honshu Island. Least studied, 
and lacking neuropathological confirmation, is the Auyu 
and Jakai (Jaqai) linguistic groups in the southern lowlands 
of West Papua, the Indonesian side within New Guinea. 
This review explicates the polemical role of plants and 
minerals in the pathogenesis of ALS/PDC in the three foci 
of the Western Pacific.

This enigmatic and invariably fatal disease of the Western 
Pacific is characteristic of classical ALS, Parkinsonism, 
and Dementia. Although the insidious progression of 
neurodegenerative diseases is typically due to senescence, 
the age of onset for ALS/PDC can be as early as adolescence 
for the ALS phenotype and middle adulthood for the 
parkinsonian and dementia phenotypes.4 Those afflicted 
with this disease experience debilitating symptoms such as 
cognitive deficits, spasticity, and muscle atrophy leading to 
a vegetative state and death. Despite the dramatic decline 
of ALS/PDC incidence, the Western Pacific foci can be a 
valuable case-study for understanding the etiology of the 
associated neurodegenerative diseases. 

The hallmark biomarker of ALS/PDC is polyproteinopathy, 
in which multiple proteins aggregate in the brain. In ALS/
PDC, the affected brain accumulates a constellation of 
abnormal intracellular deposits (synuclein, β-amyloid, 
and transactive response (TAR)-DNA-binding protein 43 
(TDP-43))5 but is dominated by telencephalic (anterior 
region of the forebrain) neurofibrillary tangles (NFTs), 
contributing to stark cortical neuron loss.6 Even though 
tauopathy, aggregation of tau protein in the brain, is a key 
characteristic of ALS/PDC, it cannot be distinguished from 
other neurodegenerative disorders; ALS/PDC has a great 

degree of heterogeneity. The following examples elucidate 
this point: (1) the presence of hyperphosphorylated tau7 
and α-synuclein negative inclusions found in ALS/PDC 
are also seen in frontotemporal lobar degeneration with 
ubiquitinated inclusions (FTLD-U), a neuropathological 
subtype of frontotemporal dementias;8 (2) tau isoform 
distribution, commonly associated with ALS/PDC, is 
observed in cases of Alzheimer’s disease (AD);9 (3) cortical 
laminar distribution is linked to progressive supranuclear 
palsy (PSP);9 (4) possible malfunctioning of TDP-43 
proteinopathy is seen in FTLD-U and ALS;9 and (5) leucine-
rich-repeat-kinase 2 (Lrrk2), a gene that, when mutated, 
is seen in several major neurodegenerative disorders 
associated with parkinsonism.10 In combination, these 
biomarkers convolute the clinical pathological spectrum of 
ALS/PDC, and, as a result of the heterogeneity, ALS/PDC 
can only be confirmed by postmortem examination.4 

Genetic studies posit that ALS/PDC does not follow 
Mendelian patterns of inheritance.1 Rather, it follows an 
irregular, multifactorial autosomal dominant mode of 
inheritance11 with incomplete penetrance.12 The familial 
nature of ALS/PDC indicates that one or more genes may 
be responsible; however, attempts to identify a causative 
gene have yet to be successful.9 Since NFTs are the most 
prominent biomarker of this disease, a genetic study of 
Guam focused on the gene that encodes for microtubule-
associated protein tau (MAPT). Two independent single 
nucleotide polymorphisms (SNPs), variations of a single 
base pair in a DNA sequence, within the MAPT region 
confer a risk of susceptibility by a recessive, cis-acting 
mechanism; however, the polymorphisms only increase the 
risk in combination with other genetic and environmental 
factors.13

Methods
A computer literature search of the PubMED/MEDLINE, 
Google Scholar, and Mendeley databases was conducted to 
find relevant literature on ALS/PDC in the Western Pacific 
foci with respect to cycad and mineral neurotoxicity. 
The main search terms were ALS/PDC, cycad, iron, 
manganese, Guam, Kii Peninsula, West Papua New 
Guinea, and neuro# (the symbol is used for identifying 
all words starting with neuro, e.g. neurodegenerative, 
neurotoxic, and neuropathological). The literature found to 
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satisfy the following criteria was included in the review: 
(a) examination of at least one risk factor of ALS/PDC in 
at least one of the Western Pacific foci; (b) discussion of 
cycad or mineral neurotoxicity; and/or (c) discussion of 
the biomarkers of ALS/PDC. The following literature was 
excluded: (a) language other than English, (b) small sample 
size, and/or (c) ALS/PDC not being the central focus.

Results
Environmental Aspects
Although genetic factors may be linked to ALS/PDC, 
the decline in prevalence of these disorders over a short 
period argues for a gene-environmental interaction in 
which exogenous or environmental factors may contribute 
to the pathogenesis of ALS/PDC. Many environmental 
risk factors have been examined over the past years, 
including exposure to animals, fish poisoning, and mineral 
deficiencies; however, no relationship has been definitively 
identified. There are two major environmental hypotheses 
regarding ALS/PDC that are typically researched separately: 
the vegetal hypothesis and the mineral hypothesis. 

1. Vegetal Hypothesis
The vegetal hypothesis focuses on a common, etiological 
factor to all three ALS/PDC foci: the exposure to traditional 
foods and medicines derived from the cycad plant.14 Major 
cycad neurotoxins correlated with a high incidence of 
ALS/PDC include methylazoxymethanol β-D-glucoside 
(cycasin), and its aglycone methyl-azoxymethanol acetate 
(MAM), β-N-methylamino-L-alanine (BMAA), and 
β-oxalylamino-L-alanine (BOAA).15 The toxic part of 
cycasin is the active ingredient that is released as MAM by 
enzymatic processes occurring in digestion; thus, cycasin 
only exerts a toxic effect when it is ingested.16 

The most affected population, due to consumption of 
cycads and inhalation of cycad pollen, was the indigenous 
Chamarro of Guam. They used fresh cycad seed cover 
to relieve thirst and dried seed cover as a confection;17 
however, the most studied and common traditional food 
of the Chamarro is a flour called fadang made from the 
seed. Although the preparation of the flour includes 
successive washings of cycad ovules to reduce the content 
of cycad toxins, a study revealed large concentrations of 
cycasin were still present in the flour which, though not 

lethal, did induce acute illness in children likely due to 
the hepatotoxic properties of cycasin.18 Additionally, the 
consumption of flying foxes, or fruit bats, in the diets of 
the Chamorros has been proposed to cause ALS/PDC due 
to the bats’ substantial consumption of cycad seeds and 
bioaccumulation BMAA.19 It should be noted, however, 
that flying foxes are not part of the diet of Japanese or 
New Guinean subjects at risk for ALS/PDC. Moreover, 
cycads have been observed to produce pollen with high 
concentrations of cycasin and BMAA.20 The respiratory 
system is another potential entry path for cycad toxins: the 
pollen contacts the nasal epithelium and can be transported 
to brain tissue to induce neurotoxic effects.21 A recent 
study confirmed that intranasal administration of MAM 
in mice caused elevated mitogen-activated protein kinases 
(MAPKs) and increased caspase-3 activity, which are 
linked to the tau aggregation and neuronal cell death that is 
characteristic of ALS/PDC.22 

The medicinal use of cycads through prolonged 
subcutaneous or repeated oral application of raw cycad 
seed is common to all three foci of the Western Pacific. 
The cycad seed has been used as a topical treatment for 
skin lesions,23, 24 but such use undoubtedly declined 
as man-made pharmaceuticals were introduced. The 
use of the cycad seed for oral medicine was practiced 
in Japanese folk medicine in the Kii Peninsula until the 
1980s, with prescriptions written by practitioners and 
filled by pharmacies.24 It should also be noted that the 
Fore people, outside of the ALS/PDC foci, living in 
the south-eastern Papua New Guinea, were exposed to 
cycad toxins by chewing the fleshy cycad seed cover and 
spitting the contents into food which precipitated kuru, a 
neurodegenerative disease with tau pathology.5

Despite extensive research on the cycad, no conclusive 
association between ALS/PDC and plant or animal toxins 
has become evident. A study on cycad-derived products 
such as fadang, flying foxes, and topical medicine 
as possible risk factors for dementia, mild cognitive 
impairment (MCI), and ALS/PDC found no significant 
relationship between the consumption of flying foxes or 
topical medicine, but did find a significant odds ratio (OR), 
which provides a measure of the strength of association,25 
for picking, processing, and eating fadang in young 
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adulthood for any of the neurodegenerative diseases 
present in the native population of Guam.26 Although 
starch-making from cycads was prevalent in the Mariana 
Islands, ALS/PDC was found to be concentrated only in 
certain villages on Guam such as Umatac, Merizo, and 
Inarajan; however, the BMAA content of cycad samples 
from Umatac contained no significant differences relative 
to the controls.27 Additionally, a survey of the Hohara area 
of Nasei-cho, one of the foci in the Kii Peninsula, showed 
no relationship between cycad use and neurological 
disease.28 Furthermore, the consumption of cycads is 
not remarkable because aboriginal groups in Australia 
historically prepared food from carefully detoxified cycad 
seed ovules, and Japanese living in the Ryukyu Islands 
employed fermentation techniques to eliminate cycad 
toxins without precipitating neurological disease.29 Thus, 
the vegetal hypothesis by itself appears to lack scientific 
support, suggesting the role of other possible risk factors.

2. Mineral Hypothesis
Environmental data from the Western Pacific endemic foci 
of ALS/PDC supports the interactions between essential 
and neurotoxic metals and contributes to what is known 
as the mineral hypothesis. Although ALS/PDC is possibly 
associated with a constellation of metals,30, 31, 32, 33 this 
review focuses on the bioaccumulation of iron (Fe) and 
manganese (Mn) from the environment in bulk central 
nervous system (CNS) tissue of patients in the ALS/PDC 
foci. Metals and trace elements play salient roles in the CNS; 
however, clinical disease may result from deficiencies and 
excesses of such essential minerals, and nonessential trace 
elements may also induce neurological disease through 
excessive exposure.34 Thus, iron and manganese may be 
causally implicated in ALS/PDC in the Western Pacific 
foci based on the bio-accumulation of neurotoxic minerals 
in the soil, drinking water, and vegetation.

A. Iron
Iron is integral to many biological functions: it has a role 
in many enzymes involved in oxidative and amino acid 
metabolism, it has an effect on dopamine D2 receptor 
function, and it interacts with other neurotransmitters such 
as gamma-aminobutyric acid (GABA)35 and glutamate.36 

Iron deposition in the brain is most prominent in the globus 
pallidus, red nucleus, substantia nigra pars reticulate, 

putamen, caudate, and the dentate nucleus, but is found in 
white matter and cortex as well.37 Trace amounts of these 
deposits are minimal at birth and gradually increase for the 
first three decades of life after which they tend to stabilize 
until about the sixth decade of life, and then insidiously 
increase.38 Excessive iron deposition is associated as a 
putative factor in the pathogenesis of neurodegenerative 
disorders, most notably AD and Parkinson’s disease (PD).39

The neurotoxic effects of iron may result from iron 
catalyzing the production of reactive oxygen species 
(ROS) through the Fenton and Haber-Weiss reactions, 
provoking oxidative stress.40, 41 Moreover, the products of 
these reactions can continuously form organic free radicals, 
spawning a self-perpetuating neuronal death cascade that is 
“continuously propagated” by excess free iron.42 

A neutron activation analysis (NAA), a non-destructive 
technique for simultaneously determining the 
concentrations of trace elements in a sample,43 of iron 
and zinc (Zn) in gray and white matter of the frontal 
and occipital regions in Guam patients with ALS/PDC 
indicated an increase of iron in gray and white matter 
and a decrease of zinc in gray matter, relative to controls, 
coupled with an excess of bioavailable aluminum (Al) and 
deficiency of calcium (Ca).44 However, this result conflicts 
with the findings of another study of Guamanian patients 
with ALS/PDC: eight metals in formalin-fixed brain 
tissue were analyzed by inductively coupled plasma-mass 
spectrometry (ICP-MS),45 revealing that for all metals, the 
concentrations tended to be higher in gray matter than in 
white matter, and finding no significant differences between 
the patients and the control groups for iron.30 Even though 
the sample sizes of both studies are small, the contradictory 
results of the two studies suggest other risk factors are at 
play in the precipitation of ALS/PDC, in addition to iron 
concentration. 

In an environmental field study, samples of soil, water, and 
vegetation were obtained from three southern villages of 
Guam with high incidences of neurodegenerative disease 
— that is, Umatac, Merizo, and Inarajan — to investigate 
any abnormal mineral concentrations and whether they 
could be linked to ALS/PDC. The study indicated higher 
levels of iron, among other compounds, in these villages 
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than in the disease-free north of Guam. Specifically, 
elevated levels of iron were found in the red laterite top 
soils along the western side of Guam,46 in the river water at 
Merizo, and in the vegetation around Umatac and Merizo.31 

The soil, drinking water, and vegetation were also analyzed 
for mineral imbalances in the Kii Peninsula. An analysis 
of seven metal concentrations in the environment of the 
Hohara area reported elevation of iron and manganese in 
the drinking water of Iseji, one of the five sub regions of 
Hohara, relative to that of Uchikawame and Nankohdai, 
two control areas remote from the focus.47 In contrast, in 
another study, a chemical analysis by neutron activation of 
Guam and Kii Peninsula water sources found no significant 
difference in iron content;48 however, a constellation of 
factors, such as a deficiency in suitable controls, may result 
in inconsistencies across studies that may be related to the 
incidence of ALS/PDC in the foci. 

B. Manganese
Manganese is another essential metal that is important 
for many physiological processes such as carbohydrate 
metabolism, calcium absorption, defense against free 
radicals, and is an important cofactor in several enzymes 
integral for neuronal and glial cell function and enzymes 
involved in neurotransmitter synthesis and metabolism, 
namely dopamine, GABA, and glutamate.49, 50, 51 Despite 
its vital role in a multitude of biological functions, 
excessive manganese exposure is associated with 
several neurodegenerative diseases, including ALS, PD, 
Manganism (manganese poisoning, an analog of PD), and 
AD.52 

The highest concentrations of manganese occur in the 
basal ganglia, more specifically, the same deep-brain 
nuclei associated with iron deposition.53, 54, 55, 56 Due 
to the similarity of iron and manganese, both metals 
are interdependent and can use the same transporters.57 
Moreover, the neurotoxic effects may transpire from 
the interactions between iron and manganese: an in vivo 
study indicated elevated manganese exposure facilitated 
unidirectional influx of iron from the blood to the 
cerebrospinal fluid (CSF) in rats, thus by increasing free iron 
levels, manganese may elicit iron-induced oxidative stress 
and cause oxidative damage to neurons.58, 59 Additionally, 

excess manganese has been linked to decreased function 
of dopamine, glutamate, and GABA which can induce 
neurological disease.60

By neutron activation analysis, a study of Guam and Kii 
Peninsula ALS-PDC analyzed samples of water, soil, 
plants, CNS tissue, and cattle hair. The study found a 
higher content of manganese in the spinal cord than in any 
other CNS tissue and, concurrently, reported a generally 
high content of manganese in the river and drinking water 
of Guam, particularly in Inarajan and in the tap water of 
Agana. In addition, while the water samples from the 
Kii Peninsula have about the same content of manganese 
as the rivers in the Kinki District and the rest of Japan, 
the residences of a few patients showed a relatively high 
content of manganese in their drinking water. Furthermore, 
the study found elevated manganese levels in the soil taken 
from both foci, and significantly high manganese content 
in the hair of cattle living in the Kii Peninsula.61

The same environmental study of soil, water, and vegetation 
in three high incidence villages of Guam — Umatac, 
Merizo, and Inarajan — found elevated manganese levels, 
along with iron and other metals, in the top soils and in the 
vegetation around Umatac and Merizo. The results suggest 
that the elevated levels of iron and manganese, besides 
other metals, in the soil could cause enhanced levels of 
magnetic susceptibility in Southern Guam which may be a 
key to understanding the pathogenesis of ALS/PDC.31

 
Samples of soil, water, and vegetation were also studied 
in the Kii Peninsula in which the concentrations of seven 
minerals were analyzed. The study found significantly 
higher manganese levels in the paddy field soils of Iseji 
and higher manganese and iron levels in Iseji drinking 
water, relative to the two control areas Uchiwakame and 
Nankohai. Furthermore, the study found higher manganese 
intake in Iseji local rice consumers than in imported rice 
consumers from the same area and in three control areas 
(Kirihara, Uchiwakame, and Nankohai), and higher 
manganese content on a dry-weight basis in boiled rice in 
Iseji than in Kirihara. Regardless of the types of samples 
collected, the manganese content was always more elevated 
in Iseji than in the control areas.47 
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In West Papua New Guinea, the primitive Auyu and Jakai 
(Jaqai) populations lacked manufactured products due to their 
isolation and primitive technology.62 The high ALS/PDC 
incidence in this focus was hypothesized to be associated 
with low concentrations of calcium and magnesium (Mg) in 
their drinking water,62 which is also seen in other foci.63, 64  
However, ALS prevalence in these sessile populations 
declined without any known change in their source of 
drinking water.3 This finding conflicts with a study of the 
Kii Peninsula that showed an increase in ALS incidence due 
to a change in sources of drinking water.65 Contradictory 
evidence may suggest the role of other risk factors and 
calls for further investigation.

Concluding Remarks
Although there are studies focusing on the possible risk 
factors in the three foci of the Western Pacific, they are 
often insufficient in suitable controls, and, in some cases, 

sample size to show that the cycads and the levels of 
metals are causally related to the high incidence of ALS/
PDC. While these studies tend to treat the vegetal and 
mineral hypotheses as mutually exclusive, it may be more 
beneficial to consider an intersectional relationship. For 
instance, the vegetal hypothesis focuses on cycads, yet, 
the Western Pacific foci is known to be a manganese-rich 
environment (as is plainly evident in the aforementioned 
studies), especially as it relates to Guam,66 with elevated 
levels of iron and low levels of calcium and magnesium 
present, suggesting possible mineral interdependency57, 59 
and antagonism,67, 68, 47 respectively. Thus, for the reasons 
discussed supra, further investigation of cycads and 
metal neurotoxicity, in combination, in all three foci of 
the Western Pacific, is warranted, and could be beneficial 
in further understanding the etiology and underlying 
mechanisms of the enigmatic ALS/PDC endemic.
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